]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
0b302171 JB |
3 | Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free |
4 | Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
fa864999 | 60 | #include "gdb_vecs.h" |
14f9c5c9 | 61 | |
ccefe4c4 | 62 | #include "psymtab.h" |
40bc484c | 63 | #include "value.h" |
956a9fb9 | 64 | #include "mi/mi-common.h" |
9ac4176b | 65 | #include "arch-utils.h" |
28010a5d | 66 | #include "exceptions.h" |
0fcd72ba | 67 | #include "cli/cli-utils.h" |
ccefe4c4 | 68 | |
4c4b4cd2 | 69 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 70 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
71 | Copied from valarith.c. */ |
72 | ||
73 | #ifndef TRUNCATION_TOWARDS_ZERO | |
74 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
75 | #endif | |
76 | ||
d2e4a39e | 77 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 86 | |
556bdfd4 | 87 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_data (struct value *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int desc_arity (struct type *); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 106 | |
d2e4a39e | 107 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 108 | |
40658b94 PH |
109 | static int full_match (const char *, const char *); |
110 | ||
40bc484c | 111 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 112 | |
4c4b4cd2 | 113 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 114 | struct block *, const char *, |
2570f2b7 | 115 | domain_enum, struct objfile *, int); |
14f9c5c9 | 116 | |
4c4b4cd2 | 117 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 118 | |
76a01679 | 119 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 120 | struct block *); |
14f9c5c9 | 121 | |
4c4b4cd2 PH |
122 | static int num_defns_collected (struct obstack *); |
123 | ||
124 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 125 | |
4c4b4cd2 | 126 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 127 | struct type *); |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 130 | struct symbol *, struct block *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 133 | |
4c4b4cd2 PH |
134 | static char *ada_op_name (enum exp_opcode); |
135 | ||
136 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int numeric_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int integer_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int scalar_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int discrete_type_p (struct type *); |
14f9c5c9 | 145 | |
aeb5907d JB |
146 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
147 | const char **, | |
148 | int *, | |
149 | const char **); | |
150 | ||
151 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
152 | struct block *); | |
153 | ||
4c4b4cd2 | 154 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 155 | int, int, int *); |
4c4b4cd2 | 156 | |
d2e4a39e | 157 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 158 | |
b4ba55a1 JB |
159 | static struct type *ada_find_parallel_type_with_name (struct type *, |
160 | const char *); | |
161 | ||
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
28c85d6c | 170 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 171 | |
d2e4a39e | 172 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 173 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 174 | |
d2e4a39e | 175 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 180 | |
ad82864c JB |
181 | static long decode_packed_array_bitsize (struct type *); |
182 | ||
183 | static struct value *decode_constrained_packed_array (struct value *); | |
184 | ||
185 | static int ada_is_packed_array_type (struct type *); | |
186 | ||
187 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 190 | struct value **); |
14f9c5c9 | 191 | |
50810684 | 192 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int is_name_suffix (const char *); |
14f9c5c9 | 204 | |
73589123 PH |
205 | static int advance_wild_match (const char **, const char *, int); |
206 | ||
207 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static LONGEST pos_atr (struct value *); |
212 | ||
3cb382c9 | 213 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
d2e4a39e | 215 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct symbol *standard_lookup (const char *, const struct block *, |
218 | domain_enum); | |
14f9c5c9 | 219 | |
4c4b4cd2 PH |
220 | static struct value *ada_search_struct_field (char *, struct value *, int, |
221 | struct type *); | |
222 | ||
223 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
224 | struct type *); | |
225 | ||
0d5cff50 | 226 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 227 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
228 | |
229 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
230 | struct value *); | |
231 | ||
4c4b4cd2 PH |
232 | static int ada_resolve_function (struct ada_symbol_info *, int, |
233 | struct value **, int, const char *, | |
234 | struct type *); | |
235 | ||
4c4b4cd2 PH |
236 | static int ada_is_direct_array_type (struct type *); |
237 | ||
72d5681a PH |
238 | static void ada_language_arch_info (struct gdbarch *, |
239 | struct language_arch_info *); | |
714e53ab PH |
240 | |
241 | static void check_size (const struct type *); | |
52ce6436 PH |
242 | |
243 | static struct value *ada_index_struct_field (int, struct value *, int, | |
244 | struct type *); | |
245 | ||
246 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
247 | struct expression *, |
248 | int *, enum noside); | |
52ce6436 PH |
249 | |
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
4c4b4cd2 PH |
274 | \f |
275 | ||
76a01679 | 276 | |
4c4b4cd2 | 277 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
278 | static unsigned int varsize_limit; |
279 | ||
4c4b4cd2 PH |
280 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
281 | returned by a function that does not return a const char *. */ | |
282 | static char *ada_completer_word_break_characters = | |
283 | #ifdef VMS | |
284 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
285 | #else | |
14f9c5c9 | 286 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 287 | #endif |
14f9c5c9 | 288 | |
4c4b4cd2 | 289 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 290 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 291 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 292 | |
4c4b4cd2 PH |
293 | /* Limit on the number of warnings to raise per expression evaluation. */ |
294 | static int warning_limit = 2; | |
295 | ||
296 | /* Number of warning messages issued; reset to 0 by cleanups after | |
297 | expression evaluation. */ | |
298 | static int warnings_issued = 0; | |
299 | ||
300 | static const char *known_runtime_file_name_patterns[] = { | |
301 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | static const char *known_auxiliary_function_name_patterns[] = { | |
305 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
306 | }; | |
307 | ||
308 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
309 | static struct obstack symbol_list_obstack; | |
310 | ||
e802dbe0 JB |
311 | /* Inferior-specific data. */ |
312 | ||
313 | /* Per-inferior data for this module. */ | |
314 | ||
315 | struct ada_inferior_data | |
316 | { | |
317 | /* The ada__tags__type_specific_data type, which is used when decoding | |
318 | tagged types. With older versions of GNAT, this type was directly | |
319 | accessible through a component ("tsd") in the object tag. But this | |
320 | is no longer the case, so we cache it for each inferior. */ | |
321 | struct type *tsd_type; | |
3eecfa55 JB |
322 | |
323 | /* The exception_support_info data. This data is used to determine | |
324 | how to implement support for Ada exception catchpoints in a given | |
325 | inferior. */ | |
326 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
327 | }; |
328 | ||
329 | /* Our key to this module's inferior data. */ | |
330 | static const struct inferior_data *ada_inferior_data; | |
331 | ||
332 | /* A cleanup routine for our inferior data. */ | |
333 | static void | |
334 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
335 | { | |
336 | struct ada_inferior_data *data; | |
337 | ||
338 | data = inferior_data (inf, ada_inferior_data); | |
339 | if (data != NULL) | |
340 | xfree (data); | |
341 | } | |
342 | ||
343 | /* Return our inferior data for the given inferior (INF). | |
344 | ||
345 | This function always returns a valid pointer to an allocated | |
346 | ada_inferior_data structure. If INF's inferior data has not | |
347 | been previously set, this functions creates a new one with all | |
348 | fields set to zero, sets INF's inferior to it, and then returns | |
349 | a pointer to that newly allocated ada_inferior_data. */ | |
350 | ||
351 | static struct ada_inferior_data * | |
352 | get_ada_inferior_data (struct inferior *inf) | |
353 | { | |
354 | struct ada_inferior_data *data; | |
355 | ||
356 | data = inferior_data (inf, ada_inferior_data); | |
357 | if (data == NULL) | |
358 | { | |
359 | data = XZALLOC (struct ada_inferior_data); | |
360 | set_inferior_data (inf, ada_inferior_data, data); | |
361 | } | |
362 | ||
363 | return data; | |
364 | } | |
365 | ||
366 | /* Perform all necessary cleanups regarding our module's inferior data | |
367 | that is required after the inferior INF just exited. */ | |
368 | ||
369 | static void | |
370 | ada_inferior_exit (struct inferior *inf) | |
371 | { | |
372 | ada_inferior_data_cleanup (inf, NULL); | |
373 | set_inferior_data (inf, ada_inferior_data, NULL); | |
374 | } | |
375 | ||
4c4b4cd2 PH |
376 | /* Utilities */ |
377 | ||
720d1a40 | 378 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 379 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
380 | |
381 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
382 | In other words, we really expect the target type of a typedef type to be | |
383 | a non-typedef type. This is particularly true for Ada units, because | |
384 | the language does not have a typedef vs not-typedef distinction. | |
385 | In that respect, the Ada compiler has been trying to eliminate as many | |
386 | typedef definitions in the debugging information, since they generally | |
387 | do not bring any extra information (we still use typedef under certain | |
388 | circumstances related mostly to the GNAT encoding). | |
389 | ||
390 | Unfortunately, we have seen situations where the debugging information | |
391 | generated by the compiler leads to such multiple typedef layers. For | |
392 | instance, consider the following example with stabs: | |
393 | ||
394 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
395 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
396 | ||
397 | This is an error in the debugging information which causes type | |
398 | pck__float_array___XUP to be defined twice, and the second time, | |
399 | it is defined as a typedef of a typedef. | |
400 | ||
401 | This is on the fringe of legality as far as debugging information is | |
402 | concerned, and certainly unexpected. But it is easy to handle these | |
403 | situations correctly, so we can afford to be lenient in this case. */ | |
404 | ||
405 | static struct type * | |
406 | ada_typedef_target_type (struct type *type) | |
407 | { | |
408 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
409 | type = TYPE_TARGET_TYPE (type); | |
410 | return type; | |
411 | } | |
412 | ||
41d27058 JB |
413 | /* Given DECODED_NAME a string holding a symbol name in its |
414 | decoded form (ie using the Ada dotted notation), returns | |
415 | its unqualified name. */ | |
416 | ||
417 | static const char * | |
418 | ada_unqualified_name (const char *decoded_name) | |
419 | { | |
420 | const char *result = strrchr (decoded_name, '.'); | |
421 | ||
422 | if (result != NULL) | |
423 | result++; /* Skip the dot... */ | |
424 | else | |
425 | result = decoded_name; | |
426 | ||
427 | return result; | |
428 | } | |
429 | ||
430 | /* Return a string starting with '<', followed by STR, and '>'. | |
431 | The result is good until the next call. */ | |
432 | ||
433 | static char * | |
434 | add_angle_brackets (const char *str) | |
435 | { | |
436 | static char *result = NULL; | |
437 | ||
438 | xfree (result); | |
88c15c34 | 439 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
440 | return result; |
441 | } | |
96d887e8 | 442 | |
4c4b4cd2 PH |
443 | static char * |
444 | ada_get_gdb_completer_word_break_characters (void) | |
445 | { | |
446 | return ada_completer_word_break_characters; | |
447 | } | |
448 | ||
e79af960 JB |
449 | /* Print an array element index using the Ada syntax. */ |
450 | ||
451 | static void | |
452 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 453 | const struct value_print_options *options) |
e79af960 | 454 | { |
79a45b7d | 455 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
456 | fprintf_filtered (stream, " => "); |
457 | } | |
458 | ||
f27cf670 | 459 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 460 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 461 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 462 | |
f27cf670 AS |
463 | void * |
464 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 465 | { |
d2e4a39e AS |
466 | if (*size < min_size) |
467 | { | |
468 | *size *= 2; | |
469 | if (*size < min_size) | |
4c4b4cd2 | 470 | *size = min_size; |
f27cf670 | 471 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 472 | } |
f27cf670 | 473 | return vect; |
14f9c5c9 AS |
474 | } |
475 | ||
476 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 477 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
478 | |
479 | static int | |
ebf56fd3 | 480 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
481 | { |
482 | int len = strlen (target); | |
5b4ee69b | 483 | |
d2e4a39e | 484 | return |
4c4b4cd2 PH |
485 | (strncmp (field_name, target, len) == 0 |
486 | && (field_name[len] == '\0' | |
487 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
488 | && strcmp (field_name + strlen (field_name) - 6, |
489 | "___XVN") != 0))); | |
14f9c5c9 AS |
490 | } |
491 | ||
492 | ||
872c8b51 JB |
493 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
494 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
495 | and return its index. This function also handles fields whose name | |
496 | have ___ suffixes because the compiler sometimes alters their name | |
497 | by adding such a suffix to represent fields with certain constraints. | |
498 | If the field could not be found, return a negative number if | |
499 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
500 | |
501 | int | |
502 | ada_get_field_index (const struct type *type, const char *field_name, | |
503 | int maybe_missing) | |
504 | { | |
505 | int fieldno; | |
872c8b51 JB |
506 | struct type *struct_type = check_typedef ((struct type *) type); |
507 | ||
508 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
509 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
510 | return fieldno; |
511 | ||
512 | if (!maybe_missing) | |
323e0a4a | 513 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 514 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
515 | |
516 | return -1; | |
517 | } | |
518 | ||
519 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
520 | |
521 | int | |
d2e4a39e | 522 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
523 | { |
524 | if (name == NULL) | |
525 | return 0; | |
d2e4a39e | 526 | else |
14f9c5c9 | 527 | { |
d2e4a39e | 528 | const char *p = strstr (name, "___"); |
5b4ee69b | 529 | |
14f9c5c9 | 530 | if (p == NULL) |
4c4b4cd2 | 531 | return strlen (name); |
14f9c5c9 | 532 | else |
4c4b4cd2 | 533 | return p - name; |
14f9c5c9 AS |
534 | } |
535 | } | |
536 | ||
4c4b4cd2 PH |
537 | /* Return non-zero if SUFFIX is a suffix of STR. |
538 | Return zero if STR is null. */ | |
539 | ||
14f9c5c9 | 540 | static int |
d2e4a39e | 541 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
542 | { |
543 | int len1, len2; | |
5b4ee69b | 544 | |
14f9c5c9 AS |
545 | if (str == NULL) |
546 | return 0; | |
547 | len1 = strlen (str); | |
548 | len2 = strlen (suffix); | |
4c4b4cd2 | 549 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
550 | } |
551 | ||
4c4b4cd2 PH |
552 | /* The contents of value VAL, treated as a value of type TYPE. The |
553 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 554 | |
d2e4a39e | 555 | static struct value * |
4c4b4cd2 | 556 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 557 | { |
61ee279c | 558 | type = ada_check_typedef (type); |
df407dfe | 559 | if (value_type (val) == type) |
4c4b4cd2 | 560 | return val; |
d2e4a39e | 561 | else |
14f9c5c9 | 562 | { |
4c4b4cd2 PH |
563 | struct value *result; |
564 | ||
565 | /* Make sure that the object size is not unreasonable before | |
566 | trying to allocate some memory for it. */ | |
714e53ab | 567 | check_size (type); |
4c4b4cd2 | 568 | |
41e8491f JK |
569 | if (value_lazy (val) |
570 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
571 | result = allocate_value_lazy (type); | |
572 | else | |
573 | { | |
574 | result = allocate_value (type); | |
575 | memcpy (value_contents_raw (result), value_contents (val), | |
576 | TYPE_LENGTH (type)); | |
577 | } | |
74bcbdf3 | 578 | set_value_component_location (result, val); |
9bbda503 AC |
579 | set_value_bitsize (result, value_bitsize (val)); |
580 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 581 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
582 | return result; |
583 | } | |
584 | } | |
585 | ||
fc1a4b47 AC |
586 | static const gdb_byte * |
587 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
588 | { |
589 | if (valaddr == NULL) | |
590 | return NULL; | |
591 | else | |
592 | return valaddr + offset; | |
593 | } | |
594 | ||
595 | static CORE_ADDR | |
ebf56fd3 | 596 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
597 | { |
598 | if (address == 0) | |
599 | return 0; | |
d2e4a39e | 600 | else |
14f9c5c9 AS |
601 | return address + offset; |
602 | } | |
603 | ||
4c4b4cd2 PH |
604 | /* Issue a warning (as for the definition of warning in utils.c, but |
605 | with exactly one argument rather than ...), unless the limit on the | |
606 | number of warnings has passed during the evaluation of the current | |
607 | expression. */ | |
a2249542 | 608 | |
77109804 AC |
609 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
610 | provided by "complaint". */ | |
a0b31db1 | 611 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 612 | |
14f9c5c9 | 613 | static void |
a2249542 | 614 | lim_warning (const char *format, ...) |
14f9c5c9 | 615 | { |
a2249542 | 616 | va_list args; |
a2249542 | 617 | |
5b4ee69b | 618 | va_start (args, format); |
4c4b4cd2 PH |
619 | warnings_issued += 1; |
620 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
621 | vwarning (format, args); |
622 | ||
623 | va_end (args); | |
4c4b4cd2 PH |
624 | } |
625 | ||
714e53ab PH |
626 | /* Issue an error if the size of an object of type T is unreasonable, |
627 | i.e. if it would be a bad idea to allocate a value of this type in | |
628 | GDB. */ | |
629 | ||
630 | static void | |
631 | check_size (const struct type *type) | |
632 | { | |
633 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 634 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
635 | } |
636 | ||
0963b4bd | 637 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 638 | static LONGEST |
c3e5cd34 | 639 | max_of_size (int size) |
4c4b4cd2 | 640 | { |
76a01679 | 641 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 642 | |
76a01679 | 643 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
644 | } |
645 | ||
0963b4bd | 646 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 647 | static LONGEST |
c3e5cd34 | 648 | min_of_size (int size) |
4c4b4cd2 | 649 | { |
c3e5cd34 | 650 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
651 | } |
652 | ||
0963b4bd | 653 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 654 | static ULONGEST |
c3e5cd34 | 655 | umax_of_size (int size) |
4c4b4cd2 | 656 | { |
76a01679 | 657 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 658 | |
76a01679 | 659 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
660 | } |
661 | ||
0963b4bd | 662 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
663 | static LONGEST |
664 | max_of_type (struct type *t) | |
4c4b4cd2 | 665 | { |
c3e5cd34 PH |
666 | if (TYPE_UNSIGNED (t)) |
667 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
668 | else | |
669 | return max_of_size (TYPE_LENGTH (t)); | |
670 | } | |
671 | ||
0963b4bd | 672 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
673 | static LONGEST |
674 | min_of_type (struct type *t) | |
675 | { | |
676 | if (TYPE_UNSIGNED (t)) | |
677 | return 0; | |
678 | else | |
679 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
680 | } |
681 | ||
682 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
683 | LONGEST |
684 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 685 | { |
76a01679 | 686 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
687 | { |
688 | case TYPE_CODE_RANGE: | |
690cc4eb | 689 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 690 | case TYPE_CODE_ENUM: |
690cc4eb PH |
691 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
692 | case TYPE_CODE_BOOL: | |
693 | return 1; | |
694 | case TYPE_CODE_CHAR: | |
76a01679 | 695 | case TYPE_CODE_INT: |
690cc4eb | 696 | return max_of_type (type); |
4c4b4cd2 | 697 | default: |
43bbcdc2 | 698 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
699 | } |
700 | } | |
701 | ||
702 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
703 | LONGEST |
704 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 705 | { |
76a01679 | 706 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
707 | { |
708 | case TYPE_CODE_RANGE: | |
690cc4eb | 709 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 710 | case TYPE_CODE_ENUM: |
690cc4eb PH |
711 | return TYPE_FIELD_BITPOS (type, 0); |
712 | case TYPE_CODE_BOOL: | |
713 | return 0; | |
714 | case TYPE_CODE_CHAR: | |
76a01679 | 715 | case TYPE_CODE_INT: |
690cc4eb | 716 | return min_of_type (type); |
4c4b4cd2 | 717 | default: |
43bbcdc2 | 718 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
719 | } |
720 | } | |
721 | ||
722 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 723 | non-range scalar type. */ |
4c4b4cd2 PH |
724 | |
725 | static struct type * | |
18af8284 | 726 | get_base_type (struct type *type) |
4c4b4cd2 PH |
727 | { |
728 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
729 | { | |
76a01679 JB |
730 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
731 | return type; | |
4c4b4cd2 PH |
732 | type = TYPE_TARGET_TYPE (type); |
733 | } | |
734 | return type; | |
14f9c5c9 | 735 | } |
4c4b4cd2 | 736 | \f |
76a01679 | 737 | |
4c4b4cd2 | 738 | /* Language Selection */ |
14f9c5c9 AS |
739 | |
740 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 741 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 742 | |
14f9c5c9 | 743 | enum language |
ccefe4c4 | 744 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 745 | { |
d2e4a39e | 746 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
747 | (struct objfile *) NULL) != NULL) |
748 | return language_ada; | |
14f9c5c9 AS |
749 | |
750 | return lang; | |
751 | } | |
96d887e8 PH |
752 | |
753 | /* If the main procedure is written in Ada, then return its name. | |
754 | The result is good until the next call. Return NULL if the main | |
755 | procedure doesn't appear to be in Ada. */ | |
756 | ||
757 | char * | |
758 | ada_main_name (void) | |
759 | { | |
760 | struct minimal_symbol *msym; | |
f9bc20b9 | 761 | static char *main_program_name = NULL; |
6c038f32 | 762 | |
96d887e8 PH |
763 | /* For Ada, the name of the main procedure is stored in a specific |
764 | string constant, generated by the binder. Look for that symbol, | |
765 | extract its address, and then read that string. If we didn't find | |
766 | that string, then most probably the main procedure is not written | |
767 | in Ada. */ | |
768 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
769 | ||
770 | if (msym != NULL) | |
771 | { | |
f9bc20b9 JB |
772 | CORE_ADDR main_program_name_addr; |
773 | int err_code; | |
774 | ||
96d887e8 PH |
775 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
776 | if (main_program_name_addr == 0) | |
323e0a4a | 777 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 778 | |
f9bc20b9 JB |
779 | xfree (main_program_name); |
780 | target_read_string (main_program_name_addr, &main_program_name, | |
781 | 1024, &err_code); | |
782 | ||
783 | if (err_code != 0) | |
784 | return NULL; | |
96d887e8 PH |
785 | return main_program_name; |
786 | } | |
787 | ||
788 | /* The main procedure doesn't seem to be in Ada. */ | |
789 | return NULL; | |
790 | } | |
14f9c5c9 | 791 | \f |
4c4b4cd2 | 792 | /* Symbols */ |
d2e4a39e | 793 | |
4c4b4cd2 PH |
794 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
795 | of NULLs. */ | |
14f9c5c9 | 796 | |
d2e4a39e AS |
797 | const struct ada_opname_map ada_opname_table[] = { |
798 | {"Oadd", "\"+\"", BINOP_ADD}, | |
799 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
800 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
801 | {"Odivide", "\"/\"", BINOP_DIV}, | |
802 | {"Omod", "\"mod\"", BINOP_MOD}, | |
803 | {"Orem", "\"rem\"", BINOP_REM}, | |
804 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
805 | {"Olt", "\"<\"", BINOP_LESS}, | |
806 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
807 | {"Ogt", "\">\"", BINOP_GTR}, | |
808 | {"Oge", "\">=\"", BINOP_GEQ}, | |
809 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
810 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
811 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
812 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
813 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
814 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
815 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
816 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
817 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
818 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
819 | {NULL, NULL} | |
14f9c5c9 AS |
820 | }; |
821 | ||
4c4b4cd2 PH |
822 | /* The "encoded" form of DECODED, according to GNAT conventions. |
823 | The result is valid until the next call to ada_encode. */ | |
824 | ||
14f9c5c9 | 825 | char * |
4c4b4cd2 | 826 | ada_encode (const char *decoded) |
14f9c5c9 | 827 | { |
4c4b4cd2 PH |
828 | static char *encoding_buffer = NULL; |
829 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 830 | const char *p; |
14f9c5c9 | 831 | int k; |
d2e4a39e | 832 | |
4c4b4cd2 | 833 | if (decoded == NULL) |
14f9c5c9 AS |
834 | return NULL; |
835 | ||
4c4b4cd2 PH |
836 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
837 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
838 | |
839 | k = 0; | |
4c4b4cd2 | 840 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 841 | { |
cdc7bb92 | 842 | if (*p == '.') |
4c4b4cd2 PH |
843 | { |
844 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
845 | k += 2; | |
846 | } | |
14f9c5c9 | 847 | else if (*p == '"') |
4c4b4cd2 PH |
848 | { |
849 | const struct ada_opname_map *mapping; | |
850 | ||
851 | for (mapping = ada_opname_table; | |
1265e4aa JB |
852 | mapping->encoded != NULL |
853 | && strncmp (mapping->decoded, p, | |
854 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
855 | ; |
856 | if (mapping->encoded == NULL) | |
323e0a4a | 857 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
858 | strcpy (encoding_buffer + k, mapping->encoded); |
859 | k += strlen (mapping->encoded); | |
860 | break; | |
861 | } | |
d2e4a39e | 862 | else |
4c4b4cd2 PH |
863 | { |
864 | encoding_buffer[k] = *p; | |
865 | k += 1; | |
866 | } | |
14f9c5c9 AS |
867 | } |
868 | ||
4c4b4cd2 PH |
869 | encoding_buffer[k] = '\0'; |
870 | return encoding_buffer; | |
14f9c5c9 AS |
871 | } |
872 | ||
873 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
874 | quotes, unfolded, but with the quotes stripped away. Result good |
875 | to next call. */ | |
876 | ||
d2e4a39e AS |
877 | char * |
878 | ada_fold_name (const char *name) | |
14f9c5c9 | 879 | { |
d2e4a39e | 880 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
881 | static size_t fold_buffer_size = 0; |
882 | ||
883 | int len = strlen (name); | |
d2e4a39e | 884 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
885 | |
886 | if (name[0] == '\'') | |
887 | { | |
d2e4a39e AS |
888 | strncpy (fold_buffer, name + 1, len - 2); |
889 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
890 | } |
891 | else | |
892 | { | |
893 | int i; | |
5b4ee69b | 894 | |
14f9c5c9 | 895 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 896 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
897 | } |
898 | ||
899 | return fold_buffer; | |
900 | } | |
901 | ||
529cad9c PH |
902 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
903 | ||
904 | static int | |
905 | is_lower_alphanum (const char c) | |
906 | { | |
907 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
908 | } | |
909 | ||
c90092fe JB |
910 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
911 | This function saves in LEN the length of that same symbol name but | |
912 | without either of these suffixes: | |
29480c32 JB |
913 | . .{DIGIT}+ |
914 | . ${DIGIT}+ | |
915 | . ___{DIGIT}+ | |
916 | . __{DIGIT}+. | |
c90092fe | 917 | |
29480c32 JB |
918 | These are suffixes introduced by the compiler for entities such as |
919 | nested subprogram for instance, in order to avoid name clashes. | |
920 | They do not serve any purpose for the debugger. */ | |
921 | ||
922 | static void | |
923 | ada_remove_trailing_digits (const char *encoded, int *len) | |
924 | { | |
925 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
926 | { | |
927 | int i = *len - 2; | |
5b4ee69b | 928 | |
29480c32 JB |
929 | while (i > 0 && isdigit (encoded[i])) |
930 | i--; | |
931 | if (i >= 0 && encoded[i] == '.') | |
932 | *len = i; | |
933 | else if (i >= 0 && encoded[i] == '$') | |
934 | *len = i; | |
935 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
936 | *len = i - 2; | |
937 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
938 | *len = i - 1; | |
939 | } | |
940 | } | |
941 | ||
942 | /* Remove the suffix introduced by the compiler for protected object | |
943 | subprograms. */ | |
944 | ||
945 | static void | |
946 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
947 | { | |
948 | /* Remove trailing N. */ | |
949 | ||
950 | /* Protected entry subprograms are broken into two | |
951 | separate subprograms: The first one is unprotected, and has | |
952 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 953 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
954 | the protection. Since the P subprograms are internally generated, |
955 | we leave these names undecoded, giving the user a clue that this | |
956 | entity is internal. */ | |
957 | ||
958 | if (*len > 1 | |
959 | && encoded[*len - 1] == 'N' | |
960 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
961 | *len = *len - 1; | |
962 | } | |
963 | ||
69fadcdf JB |
964 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
965 | ||
966 | static void | |
967 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
968 | { | |
969 | int i = *len - 1; | |
970 | ||
971 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
972 | i--; | |
973 | ||
974 | if (encoded[i] != 'X') | |
975 | return; | |
976 | ||
977 | if (i == 0) | |
978 | return; | |
979 | ||
980 | if (isalnum (encoded[i-1])) | |
981 | *len = i; | |
982 | } | |
983 | ||
29480c32 JB |
984 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
985 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
986 | replaced by ENCODED. | |
14f9c5c9 | 987 | |
4c4b4cd2 | 988 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 989 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
990 | is returned. */ |
991 | ||
992 | const char * | |
993 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
994 | { |
995 | int i, j; | |
996 | int len0; | |
d2e4a39e | 997 | const char *p; |
4c4b4cd2 | 998 | char *decoded; |
14f9c5c9 | 999 | int at_start_name; |
4c4b4cd2 PH |
1000 | static char *decoding_buffer = NULL; |
1001 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1002 | |
29480c32 JB |
1003 | /* The name of the Ada main procedure starts with "_ada_". |
1004 | This prefix is not part of the decoded name, so skip this part | |
1005 | if we see this prefix. */ | |
4c4b4cd2 PH |
1006 | if (strncmp (encoded, "_ada_", 5) == 0) |
1007 | encoded += 5; | |
14f9c5c9 | 1008 | |
29480c32 JB |
1009 | /* If the name starts with '_', then it is not a properly encoded |
1010 | name, so do not attempt to decode it. Similarly, if the name | |
1011 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1012 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1013 | goto Suppress; |
1014 | ||
4c4b4cd2 | 1015 | len0 = strlen (encoded); |
4c4b4cd2 | 1016 | |
29480c32 JB |
1017 | ada_remove_trailing_digits (encoded, &len0); |
1018 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1019 | |
4c4b4cd2 PH |
1020 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1021 | the suffix is located before the current "end" of ENCODED. We want | |
1022 | to avoid re-matching parts of ENCODED that have previously been | |
1023 | marked as discarded (by decrementing LEN0). */ | |
1024 | p = strstr (encoded, "___"); | |
1025 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1026 | { |
1027 | if (p[3] == 'X') | |
4c4b4cd2 | 1028 | len0 = p - encoded; |
14f9c5c9 | 1029 | else |
4c4b4cd2 | 1030 | goto Suppress; |
14f9c5c9 | 1031 | } |
4c4b4cd2 | 1032 | |
29480c32 JB |
1033 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1034 | is for the body of a task, but that information does not actually | |
1035 | appear in the decoded name. */ | |
1036 | ||
4c4b4cd2 | 1037 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1038 | len0 -= 3; |
76a01679 | 1039 | |
a10967fa JB |
1040 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1041 | from the TKB suffix because it is used for non-anonymous task | |
1042 | bodies. */ | |
1043 | ||
1044 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1045 | len0 -= 2; | |
1046 | ||
29480c32 JB |
1047 | /* Remove trailing "B" suffixes. */ |
1048 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1049 | ||
4c4b4cd2 | 1050 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1051 | len0 -= 1; |
1052 | ||
4c4b4cd2 | 1053 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1054 | |
4c4b4cd2 PH |
1055 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1056 | decoded = decoding_buffer; | |
14f9c5c9 | 1057 | |
29480c32 JB |
1058 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1059 | ||
4c4b4cd2 | 1060 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1061 | { |
4c4b4cd2 PH |
1062 | i = len0 - 2; |
1063 | while ((i >= 0 && isdigit (encoded[i])) | |
1064 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1065 | i -= 1; | |
1066 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1067 | len0 = i - 1; | |
1068 | else if (encoded[i] == '$') | |
1069 | len0 = i; | |
d2e4a39e | 1070 | } |
14f9c5c9 | 1071 | |
29480c32 JB |
1072 | /* The first few characters that are not alphabetic are not part |
1073 | of any encoding we use, so we can copy them over verbatim. */ | |
1074 | ||
4c4b4cd2 PH |
1075 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1076 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1077 | |
1078 | at_start_name = 1; | |
1079 | while (i < len0) | |
1080 | { | |
29480c32 | 1081 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1082 | if (at_start_name && encoded[i] == 'O') |
1083 | { | |
1084 | int k; | |
5b4ee69b | 1085 | |
4c4b4cd2 PH |
1086 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1087 | { | |
1088 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1089 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1090 | op_len - 1) == 0) | |
1091 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1092 | { |
1093 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1094 | at_start_name = 0; | |
1095 | i += op_len; | |
1096 | j += strlen (ada_opname_table[k].decoded); | |
1097 | break; | |
1098 | } | |
1099 | } | |
1100 | if (ada_opname_table[k].encoded != NULL) | |
1101 | continue; | |
1102 | } | |
14f9c5c9 AS |
1103 | at_start_name = 0; |
1104 | ||
529cad9c PH |
1105 | /* Replace "TK__" with "__", which will eventually be translated |
1106 | into "." (just below). */ | |
1107 | ||
4c4b4cd2 PH |
1108 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1109 | i += 2; | |
529cad9c | 1110 | |
29480c32 JB |
1111 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1112 | be translated into "." (just below). These are internal names | |
1113 | generated for anonymous blocks inside which our symbol is nested. */ | |
1114 | ||
1115 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1116 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1117 | && isdigit (encoded [i+4])) | |
1118 | { | |
1119 | int k = i + 5; | |
1120 | ||
1121 | while (k < len0 && isdigit (encoded[k])) | |
1122 | k++; /* Skip any extra digit. */ | |
1123 | ||
1124 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1125 | is indeed followed by "__". */ | |
1126 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1127 | i = k; | |
1128 | } | |
1129 | ||
529cad9c PH |
1130 | /* Remove _E{DIGITS}+[sb] */ |
1131 | ||
1132 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1133 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1134 | one implements the actual entry code, and has a suffix following |
1135 | the convention above; the second one implements the barrier and | |
1136 | uses the same convention as above, except that the 'E' is replaced | |
1137 | by a 'B'. | |
1138 | ||
1139 | Just as above, we do not decode the name of barrier functions | |
1140 | to give the user a clue that the code he is debugging has been | |
1141 | internally generated. */ | |
1142 | ||
1143 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1144 | && isdigit (encoded[i+2])) | |
1145 | { | |
1146 | int k = i + 3; | |
1147 | ||
1148 | while (k < len0 && isdigit (encoded[k])) | |
1149 | k++; | |
1150 | ||
1151 | if (k < len0 | |
1152 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1153 | { | |
1154 | k++; | |
1155 | /* Just as an extra precaution, make sure that if this | |
1156 | suffix is followed by anything else, it is a '_'. | |
1157 | Otherwise, we matched this sequence by accident. */ | |
1158 | if (k == len0 | |
1159 | || (k < len0 && encoded[k] == '_')) | |
1160 | i = k; | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1165 | the GNAT front-end in protected object subprograms. */ | |
1166 | ||
1167 | if (i < len0 + 3 | |
1168 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1169 | { | |
1170 | /* Backtrack a bit up until we reach either the begining of | |
1171 | the encoded name, or "__". Make sure that we only find | |
1172 | digits or lowercase characters. */ | |
1173 | const char *ptr = encoded + i - 1; | |
1174 | ||
1175 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1176 | ptr--; | |
1177 | if (ptr < encoded | |
1178 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1179 | i++; | |
1180 | } | |
1181 | ||
4c4b4cd2 PH |
1182 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1183 | { | |
29480c32 JB |
1184 | /* This is a X[bn]* sequence not separated from the previous |
1185 | part of the name with a non-alpha-numeric character (in other | |
1186 | words, immediately following an alpha-numeric character), then | |
1187 | verify that it is placed at the end of the encoded name. If | |
1188 | not, then the encoding is not valid and we should abort the | |
1189 | decoding. Otherwise, just skip it, it is used in body-nested | |
1190 | package names. */ | |
4c4b4cd2 PH |
1191 | do |
1192 | i += 1; | |
1193 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1194 | if (i < len0) | |
1195 | goto Suppress; | |
1196 | } | |
cdc7bb92 | 1197 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1198 | { |
29480c32 | 1199 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1200 | decoded[j] = '.'; |
1201 | at_start_name = 1; | |
1202 | i += 2; | |
1203 | j += 1; | |
1204 | } | |
14f9c5c9 | 1205 | else |
4c4b4cd2 | 1206 | { |
29480c32 JB |
1207 | /* It's a character part of the decoded name, so just copy it |
1208 | over. */ | |
4c4b4cd2 PH |
1209 | decoded[j] = encoded[i]; |
1210 | i += 1; | |
1211 | j += 1; | |
1212 | } | |
14f9c5c9 | 1213 | } |
4c4b4cd2 | 1214 | decoded[j] = '\000'; |
14f9c5c9 | 1215 | |
29480c32 JB |
1216 | /* Decoded names should never contain any uppercase character. |
1217 | Double-check this, and abort the decoding if we find one. */ | |
1218 | ||
4c4b4cd2 PH |
1219 | for (i = 0; decoded[i] != '\0'; i += 1) |
1220 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1221 | goto Suppress; |
1222 | ||
4c4b4cd2 PH |
1223 | if (strcmp (decoded, encoded) == 0) |
1224 | return encoded; | |
1225 | else | |
1226 | return decoded; | |
14f9c5c9 AS |
1227 | |
1228 | Suppress: | |
4c4b4cd2 PH |
1229 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1230 | decoded = decoding_buffer; | |
1231 | if (encoded[0] == '<') | |
1232 | strcpy (decoded, encoded); | |
14f9c5c9 | 1233 | else |
88c15c34 | 1234 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1235 | return decoded; |
1236 | ||
1237 | } | |
1238 | ||
1239 | /* Table for keeping permanent unique copies of decoded names. Once | |
1240 | allocated, names in this table are never released. While this is a | |
1241 | storage leak, it should not be significant unless there are massive | |
1242 | changes in the set of decoded names in successive versions of a | |
1243 | symbol table loaded during a single session. */ | |
1244 | static struct htab *decoded_names_store; | |
1245 | ||
1246 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1247 | in the language-specific part of GSYMBOL, if it has not been | |
1248 | previously computed. Tries to save the decoded name in the same | |
1249 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1250 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1251 | GSYMBOL). |
4c4b4cd2 PH |
1252 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1253 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1254 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1255 | |
76a01679 JB |
1256 | char * |
1257 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1258 | { |
76a01679 | 1259 | char **resultp = |
afa16725 | 1260 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1261 | |
4c4b4cd2 PH |
1262 | if (*resultp == NULL) |
1263 | { | |
1264 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1265 | |
714835d5 | 1266 | if (gsymbol->obj_section != NULL) |
76a01679 | 1267 | { |
714835d5 | 1268 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1269 | |
714835d5 UW |
1270 | *resultp = obsavestring (decoded, strlen (decoded), |
1271 | &objf->objfile_obstack); | |
76a01679 | 1272 | } |
4c4b4cd2 | 1273 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1274 | case, we put the result on the heap. Since we only decode |
1275 | when needed, we hope this usually does not cause a | |
1276 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1277 | if (*resultp == NULL) |
76a01679 JB |
1278 | { |
1279 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1280 | decoded, INSERT); | |
5b4ee69b | 1281 | |
76a01679 JB |
1282 | if (*slot == NULL) |
1283 | *slot = xstrdup (decoded); | |
1284 | *resultp = *slot; | |
1285 | } | |
4c4b4cd2 | 1286 | } |
14f9c5c9 | 1287 | |
4c4b4cd2 PH |
1288 | return *resultp; |
1289 | } | |
76a01679 | 1290 | |
2c0b251b | 1291 | static char * |
76a01679 | 1292 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1293 | { |
1294 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1295 | } |
1296 | ||
1297 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1298 | suffixes that encode debugging information or leading _ada_ on |
1299 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1300 | information that is ignored). If WILD, then NAME need only match a | |
1301 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1302 | either argument is NULL. */ | |
14f9c5c9 | 1303 | |
2c0b251b | 1304 | static int |
40658b94 | 1305 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1306 | { |
1307 | if (sym_name == NULL || name == NULL) | |
1308 | return 0; | |
1309 | else if (wild) | |
73589123 | 1310 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1311 | else |
1312 | { | |
1313 | int len_name = strlen (name); | |
5b4ee69b | 1314 | |
4c4b4cd2 PH |
1315 | return (strncmp (sym_name, name, len_name) == 0 |
1316 | && is_name_suffix (sym_name + len_name)) | |
1317 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1318 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1319 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1320 | } |
14f9c5c9 | 1321 | } |
14f9c5c9 | 1322 | \f |
d2e4a39e | 1323 | |
4c4b4cd2 | 1324 | /* Arrays */ |
14f9c5c9 | 1325 | |
28c85d6c JB |
1326 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1327 | generated by the GNAT compiler to describe the index type used | |
1328 | for each dimension of an array, check whether it follows the latest | |
1329 | known encoding. If not, fix it up to conform to the latest encoding. | |
1330 | Otherwise, do nothing. This function also does nothing if | |
1331 | INDEX_DESC_TYPE is NULL. | |
1332 | ||
1333 | The GNAT encoding used to describle the array index type evolved a bit. | |
1334 | Initially, the information would be provided through the name of each | |
1335 | field of the structure type only, while the type of these fields was | |
1336 | described as unspecified and irrelevant. The debugger was then expected | |
1337 | to perform a global type lookup using the name of that field in order | |
1338 | to get access to the full index type description. Because these global | |
1339 | lookups can be very expensive, the encoding was later enhanced to make | |
1340 | the global lookup unnecessary by defining the field type as being | |
1341 | the full index type description. | |
1342 | ||
1343 | The purpose of this routine is to allow us to support older versions | |
1344 | of the compiler by detecting the use of the older encoding, and by | |
1345 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1346 | we essentially replace each field's meaningless type by the associated | |
1347 | index subtype). */ | |
1348 | ||
1349 | void | |
1350 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1351 | { | |
1352 | int i; | |
1353 | ||
1354 | if (index_desc_type == NULL) | |
1355 | return; | |
1356 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1357 | ||
1358 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1359 | to check one field only, no need to check them all). If not, return | |
1360 | now. | |
1361 | ||
1362 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1363 | the field type should be a meaningless integer type whose name | |
1364 | is not equal to the field name. */ | |
1365 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1366 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1367 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1368 | return; | |
1369 | ||
1370 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1371 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1372 | { | |
0d5cff50 | 1373 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1374 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1375 | ||
1376 | if (raw_type) | |
1377 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1378 | } | |
1379 | } | |
1380 | ||
4c4b4cd2 | 1381 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1382 | |
d2e4a39e AS |
1383 | static char *bound_name[] = { |
1384 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1385 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1386 | }; | |
1387 | ||
1388 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1389 | ||
4c4b4cd2 | 1390 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1391 | |
14f9c5c9 | 1392 | |
4c4b4cd2 PH |
1393 | /* The desc_* routines return primitive portions of array descriptors |
1394 | (fat pointers). */ | |
14f9c5c9 AS |
1395 | |
1396 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1397 | level of indirection, if needed. */ |
1398 | ||
d2e4a39e AS |
1399 | static struct type * |
1400 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1401 | { |
1402 | if (type == NULL) | |
1403 | return NULL; | |
61ee279c | 1404 | type = ada_check_typedef (type); |
720d1a40 JB |
1405 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1406 | type = ada_typedef_target_type (type); | |
1407 | ||
1265e4aa JB |
1408 | if (type != NULL |
1409 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1410 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1411 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1412 | else |
1413 | return type; | |
1414 | } | |
1415 | ||
4c4b4cd2 PH |
1416 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1417 | ||
14f9c5c9 | 1418 | static int |
d2e4a39e | 1419 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1420 | { |
d2e4a39e | 1421 | return |
14f9c5c9 AS |
1422 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1423 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1424 | } | |
1425 | ||
4c4b4cd2 PH |
1426 | /* The descriptor type for thin pointer type TYPE. */ |
1427 | ||
d2e4a39e AS |
1428 | static struct type * |
1429 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1430 | { |
d2e4a39e | 1431 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1432 | |
14f9c5c9 AS |
1433 | if (base_type == NULL) |
1434 | return NULL; | |
1435 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1436 | return base_type; | |
d2e4a39e | 1437 | else |
14f9c5c9 | 1438 | { |
d2e4a39e | 1439 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1440 | |
14f9c5c9 | 1441 | if (alt_type == NULL) |
4c4b4cd2 | 1442 | return base_type; |
14f9c5c9 | 1443 | else |
4c4b4cd2 | 1444 | return alt_type; |
14f9c5c9 AS |
1445 | } |
1446 | } | |
1447 | ||
4c4b4cd2 PH |
1448 | /* A pointer to the array data for thin-pointer value VAL. */ |
1449 | ||
d2e4a39e AS |
1450 | static struct value * |
1451 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1452 | { |
828292f2 | 1453 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1454 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1455 | |
556bdfd4 UW |
1456 | data_type = lookup_pointer_type (data_type); |
1457 | ||
14f9c5c9 | 1458 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1459 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1460 | else |
42ae5230 | 1461 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1462 | } |
1463 | ||
4c4b4cd2 PH |
1464 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1465 | ||
14f9c5c9 | 1466 | static int |
d2e4a39e | 1467 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1468 | { |
1469 | type = desc_base_type (type); | |
1470 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1471 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1472 | } |
1473 | ||
4c4b4cd2 PH |
1474 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1475 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1476 | |
d2e4a39e AS |
1477 | static struct type * |
1478 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1479 | { |
d2e4a39e | 1480 | struct type *r; |
14f9c5c9 AS |
1481 | |
1482 | type = desc_base_type (type); | |
1483 | ||
1484 | if (type == NULL) | |
1485 | return NULL; | |
1486 | else if (is_thin_pntr (type)) | |
1487 | { | |
1488 | type = thin_descriptor_type (type); | |
1489 | if (type == NULL) | |
4c4b4cd2 | 1490 | return NULL; |
14f9c5c9 AS |
1491 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1492 | if (r != NULL) | |
61ee279c | 1493 | return ada_check_typedef (r); |
14f9c5c9 AS |
1494 | } |
1495 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1496 | { | |
1497 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1498 | if (r != NULL) | |
61ee279c | 1499 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1500 | } |
1501 | return NULL; | |
1502 | } | |
1503 | ||
1504 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1505 | one, a pointer to its bounds data. Otherwise NULL. */ |
1506 | ||
d2e4a39e AS |
1507 | static struct value * |
1508 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1509 | { |
df407dfe | 1510 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1511 | |
d2e4a39e | 1512 | if (is_thin_pntr (type)) |
14f9c5c9 | 1513 | { |
d2e4a39e | 1514 | struct type *bounds_type = |
4c4b4cd2 | 1515 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1516 | LONGEST addr; |
1517 | ||
4cdfadb1 | 1518 | if (bounds_type == NULL) |
323e0a4a | 1519 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1520 | |
1521 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1522 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1523 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1524 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1525 | addr = value_as_long (arr); |
d2e4a39e | 1526 | else |
42ae5230 | 1527 | addr = value_address (arr); |
14f9c5c9 | 1528 | |
d2e4a39e | 1529 | return |
4c4b4cd2 PH |
1530 | value_from_longest (lookup_pointer_type (bounds_type), |
1531 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1532 | } |
1533 | ||
1534 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1535 | { |
1536 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1537 | _("Bad GNAT array descriptor")); | |
1538 | struct type *p_bounds_type = value_type (p_bounds); | |
1539 | ||
1540 | if (p_bounds_type | |
1541 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1542 | { | |
1543 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1544 | ||
1545 | if (TYPE_STUB (target_type)) | |
1546 | p_bounds = value_cast (lookup_pointer_type | |
1547 | (ada_check_typedef (target_type)), | |
1548 | p_bounds); | |
1549 | } | |
1550 | else | |
1551 | error (_("Bad GNAT array descriptor")); | |
1552 | ||
1553 | return p_bounds; | |
1554 | } | |
14f9c5c9 AS |
1555 | else |
1556 | return NULL; | |
1557 | } | |
1558 | ||
4c4b4cd2 PH |
1559 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1560 | position of the field containing the address of the bounds data. */ | |
1561 | ||
14f9c5c9 | 1562 | static int |
d2e4a39e | 1563 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1564 | { |
1565 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1566 | } | |
1567 | ||
1568 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1569 | size of the field containing the address of the bounds data. */ |
1570 | ||
14f9c5c9 | 1571 | static int |
d2e4a39e | 1572 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1573 | { |
1574 | type = desc_base_type (type); | |
1575 | ||
d2e4a39e | 1576 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1577 | return TYPE_FIELD_BITSIZE (type, 1); |
1578 | else | |
61ee279c | 1579 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1580 | } |
1581 | ||
4c4b4cd2 | 1582 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1583 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1584 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1585 | data. */ | |
4c4b4cd2 | 1586 | |
d2e4a39e | 1587 | static struct type * |
556bdfd4 | 1588 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1589 | { |
1590 | type = desc_base_type (type); | |
1591 | ||
4c4b4cd2 | 1592 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1593 | if (is_thin_pntr (type)) |
556bdfd4 | 1594 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1595 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1596 | { |
1597 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1598 | ||
1599 | if (data_type | |
1600 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1601 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1602 | } |
1603 | ||
1604 | return NULL; | |
14f9c5c9 AS |
1605 | } |
1606 | ||
1607 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1608 | its array data. */ | |
4c4b4cd2 | 1609 | |
d2e4a39e AS |
1610 | static struct value * |
1611 | desc_data (struct value *arr) | |
14f9c5c9 | 1612 | { |
df407dfe | 1613 | struct type *type = value_type (arr); |
5b4ee69b | 1614 | |
14f9c5c9 AS |
1615 | if (is_thin_pntr (type)) |
1616 | return thin_data_pntr (arr); | |
1617 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1618 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1619 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1620 | else |
1621 | return NULL; | |
1622 | } | |
1623 | ||
1624 | ||
1625 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1626 | position of the field containing the address of the data. */ |
1627 | ||
14f9c5c9 | 1628 | static int |
d2e4a39e | 1629 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1630 | { |
1631 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1632 | } | |
1633 | ||
1634 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1635 | size of the field containing the address of the data. */ |
1636 | ||
14f9c5c9 | 1637 | static int |
d2e4a39e | 1638 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1639 | { |
1640 | type = desc_base_type (type); | |
1641 | ||
1642 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1643 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1644 | else |
14f9c5c9 AS |
1645 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1646 | } | |
1647 | ||
4c4b4cd2 | 1648 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1649 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1650 | bound, if WHICH is 1. The first bound is I=1. */ |
1651 | ||
d2e4a39e AS |
1652 | static struct value * |
1653 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1654 | { |
d2e4a39e | 1655 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1656 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1657 | } |
1658 | ||
1659 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1660 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1661 | bound, if WHICH is 1. The first bound is I=1. */ |
1662 | ||
14f9c5c9 | 1663 | static int |
d2e4a39e | 1664 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1665 | { |
d2e4a39e | 1666 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1667 | } |
1668 | ||
1669 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1670 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1671 | bound, if WHICH is 1. The first bound is I=1. */ |
1672 | ||
76a01679 | 1673 | static int |
d2e4a39e | 1674 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1675 | { |
1676 | type = desc_base_type (type); | |
1677 | ||
d2e4a39e AS |
1678 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1679 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1680 | else | |
1681 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1682 | } |
1683 | ||
1684 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1685 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1686 | ||
d2e4a39e AS |
1687 | static struct type * |
1688 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1689 | { |
1690 | type = desc_base_type (type); | |
1691 | ||
1692 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1693 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1694 | else | |
14f9c5c9 AS |
1695 | return NULL; |
1696 | } | |
1697 | ||
4c4b4cd2 PH |
1698 | /* The number of index positions in the array-bounds type TYPE. |
1699 | Return 0 if TYPE is NULL. */ | |
1700 | ||
14f9c5c9 | 1701 | static int |
d2e4a39e | 1702 | desc_arity (struct type *type) |
14f9c5c9 AS |
1703 | { |
1704 | type = desc_base_type (type); | |
1705 | ||
1706 | if (type != NULL) | |
1707 | return TYPE_NFIELDS (type) / 2; | |
1708 | return 0; | |
1709 | } | |
1710 | ||
4c4b4cd2 PH |
1711 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1712 | an array descriptor type (representing an unconstrained array | |
1713 | type). */ | |
1714 | ||
76a01679 JB |
1715 | static int |
1716 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1717 | { |
1718 | if (type == NULL) | |
1719 | return 0; | |
61ee279c | 1720 | type = ada_check_typedef (type); |
4c4b4cd2 | 1721 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1722 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1723 | } |
1724 | ||
52ce6436 | 1725 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1726 | * to one. */ |
52ce6436 | 1727 | |
2c0b251b | 1728 | static int |
52ce6436 PH |
1729 | ada_is_array_type (struct type *type) |
1730 | { | |
1731 | while (type != NULL | |
1732 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1733 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1734 | type = TYPE_TARGET_TYPE (type); | |
1735 | return ada_is_direct_array_type (type); | |
1736 | } | |
1737 | ||
4c4b4cd2 | 1738 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1739 | |
14f9c5c9 | 1740 | int |
4c4b4cd2 | 1741 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1742 | { |
1743 | if (type == NULL) | |
1744 | return 0; | |
61ee279c | 1745 | type = ada_check_typedef (type); |
14f9c5c9 | 1746 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1747 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1748 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1749 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1750 | } |
1751 | ||
4c4b4cd2 PH |
1752 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1753 | ||
14f9c5c9 | 1754 | int |
4c4b4cd2 | 1755 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1756 | { |
556bdfd4 | 1757 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1758 | |
1759 | if (type == NULL) | |
1760 | return 0; | |
61ee279c | 1761 | type = ada_check_typedef (type); |
556bdfd4 UW |
1762 | return (data_type != NULL |
1763 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1764 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1765 | } |
1766 | ||
1767 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1768 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1769 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1770 | is still needed. */ |
1771 | ||
14f9c5c9 | 1772 | int |
ebf56fd3 | 1773 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1774 | { |
d2e4a39e | 1775 | return |
14f9c5c9 AS |
1776 | type != NULL |
1777 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1778 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1779 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1780 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1781 | } |
1782 | ||
1783 | ||
4c4b4cd2 | 1784 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1785 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1786 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1787 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1788 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1789 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1790 | a descriptor. */ |
d2e4a39e AS |
1791 | struct type * |
1792 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1793 | { |
ad82864c JB |
1794 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1795 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1796 | |
df407dfe AC |
1797 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1798 | return value_type (arr); | |
d2e4a39e AS |
1799 | |
1800 | if (!bounds) | |
ad82864c JB |
1801 | { |
1802 | struct type *array_type = | |
1803 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1804 | ||
1805 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1806 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1807 | decode_packed_array_bitsize (value_type (arr)); | |
1808 | ||
1809 | return array_type; | |
1810 | } | |
14f9c5c9 AS |
1811 | else |
1812 | { | |
d2e4a39e | 1813 | struct type *elt_type; |
14f9c5c9 | 1814 | int arity; |
d2e4a39e | 1815 | struct value *descriptor; |
14f9c5c9 | 1816 | |
df407dfe AC |
1817 | elt_type = ada_array_element_type (value_type (arr), -1); |
1818 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1819 | |
d2e4a39e | 1820 | if (elt_type == NULL || arity == 0) |
df407dfe | 1821 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1822 | |
1823 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1824 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1825 | return NULL; |
d2e4a39e | 1826 | while (arity > 0) |
4c4b4cd2 | 1827 | { |
e9bb382b UW |
1828 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1829 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1830 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1831 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1832 | |
5b4ee69b | 1833 | arity -= 1; |
df407dfe | 1834 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1835 | longest_to_int (value_as_long (low)), |
1836 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1837 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1838 | |
1839 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1840 | { |
1841 | /* We need to store the element packed bitsize, as well as | |
1842 | recompute the array size, because it was previously | |
1843 | computed based on the unpacked element size. */ | |
1844 | LONGEST lo = value_as_long (low); | |
1845 | LONGEST hi = value_as_long (high); | |
1846 | ||
1847 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1848 | decode_packed_array_bitsize (value_type (arr)); | |
1849 | /* If the array has no element, then the size is already | |
1850 | zero, and does not need to be recomputed. */ | |
1851 | if (lo < hi) | |
1852 | { | |
1853 | int array_bitsize = | |
1854 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1855 | ||
1856 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1857 | } | |
1858 | } | |
4c4b4cd2 | 1859 | } |
14f9c5c9 AS |
1860 | |
1861 | return lookup_pointer_type (elt_type); | |
1862 | } | |
1863 | } | |
1864 | ||
1865 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1866 | Otherwise, returns either a standard GDB array with bounds set |
1867 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1868 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1869 | ||
d2e4a39e AS |
1870 | struct value * |
1871 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1872 | { |
df407dfe | 1873 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1874 | { |
d2e4a39e | 1875 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1876 | |
14f9c5c9 | 1877 | if (arrType == NULL) |
4c4b4cd2 | 1878 | return NULL; |
14f9c5c9 AS |
1879 | return value_cast (arrType, value_copy (desc_data (arr))); |
1880 | } | |
ad82864c JB |
1881 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1882 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1883 | else |
1884 | return arr; | |
1885 | } | |
1886 | ||
1887 | /* If ARR does not represent an array, returns ARR unchanged. | |
1888 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1889 | be ARR itself if it already is in the proper form). */ |
1890 | ||
720d1a40 | 1891 | struct value * |
d2e4a39e | 1892 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1893 | { |
df407dfe | 1894 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1895 | { |
d2e4a39e | 1896 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1897 | |
14f9c5c9 | 1898 | if (arrVal == NULL) |
323e0a4a | 1899 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1900 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1901 | return value_ind (arrVal); |
1902 | } | |
ad82864c JB |
1903 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1904 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1905 | else |
14f9c5c9 AS |
1906 | return arr; |
1907 | } | |
1908 | ||
1909 | /* If TYPE represents a GNAT array type, return it translated to an | |
1910 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1911 | packing). For other types, is the identity. */ |
1912 | ||
d2e4a39e AS |
1913 | struct type * |
1914 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1915 | { |
ad82864c JB |
1916 | if (ada_is_constrained_packed_array_type (type)) |
1917 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1918 | |
1919 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1920 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1921 | |
1922 | return type; | |
14f9c5c9 AS |
1923 | } |
1924 | ||
4c4b4cd2 PH |
1925 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1926 | ||
ad82864c JB |
1927 | static int |
1928 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1929 | { |
1930 | if (type == NULL) | |
1931 | return 0; | |
4c4b4cd2 | 1932 | type = desc_base_type (type); |
61ee279c | 1933 | type = ada_check_typedef (type); |
d2e4a39e | 1934 | return |
14f9c5c9 AS |
1935 | ada_type_name (type) != NULL |
1936 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1937 | } | |
1938 | ||
ad82864c JB |
1939 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1940 | packed-array type. */ | |
1941 | ||
1942 | int | |
1943 | ada_is_constrained_packed_array_type (struct type *type) | |
1944 | { | |
1945 | return ada_is_packed_array_type (type) | |
1946 | && !ada_is_array_descriptor_type (type); | |
1947 | } | |
1948 | ||
1949 | /* Non-zero iff TYPE represents an array descriptor for a | |
1950 | unconstrained packed-array type. */ | |
1951 | ||
1952 | static int | |
1953 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1954 | { | |
1955 | return ada_is_packed_array_type (type) | |
1956 | && ada_is_array_descriptor_type (type); | |
1957 | } | |
1958 | ||
1959 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1960 | return the size of its elements in bits. */ | |
1961 | ||
1962 | static long | |
1963 | decode_packed_array_bitsize (struct type *type) | |
1964 | { | |
0d5cff50 DE |
1965 | const char *raw_name; |
1966 | const char *tail; | |
ad82864c JB |
1967 | long bits; |
1968 | ||
720d1a40 JB |
1969 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1970 | of the fat pointer type. We need the name of the fat pointer type | |
1971 | to do the decoding, so strip the typedef layer. */ | |
1972 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1973 | type = ada_typedef_target_type (type); | |
1974 | ||
1975 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1976 | if (!raw_name) |
1977 | raw_name = ada_type_name (desc_base_type (type)); | |
1978 | ||
1979 | if (!raw_name) | |
1980 | return 0; | |
1981 | ||
1982 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1983 | gdb_assert (tail != NULL); |
ad82864c JB |
1984 | |
1985 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1986 | { | |
1987 | lim_warning | |
1988 | (_("could not understand bit size information on packed array")); | |
1989 | return 0; | |
1990 | } | |
1991 | ||
1992 | return bits; | |
1993 | } | |
1994 | ||
14f9c5c9 AS |
1995 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1996 | in, and that the element size of its ultimate scalar constituents | |
1997 | (that is, either its elements, or, if it is an array of arrays, its | |
1998 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1999 | but with the bit sizes of its elements (and those of any | |
2000 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2001 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2002 | in bits. */ | |
2003 | ||
d2e4a39e | 2004 | static struct type * |
ad82864c | 2005 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2006 | { |
d2e4a39e AS |
2007 | struct type *new_elt_type; |
2008 | struct type *new_type; | |
14f9c5c9 AS |
2009 | LONGEST low_bound, high_bound; |
2010 | ||
61ee279c | 2011 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2012 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2013 | return type; | |
2014 | ||
e9bb382b | 2015 | new_type = alloc_type_copy (type); |
ad82864c JB |
2016 | new_elt_type = |
2017 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2018 | elt_bits); | |
262452ec | 2019 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2020 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2021 | TYPE_NAME (new_type) = ada_type_name (type); | |
2022 | ||
262452ec | 2023 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2024 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2025 | low_bound = high_bound = 0; |
2026 | if (high_bound < low_bound) | |
2027 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2028 | else |
14f9c5c9 AS |
2029 | { |
2030 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2031 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2032 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2033 | } |
2034 | ||
876cecd0 | 2035 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2036 | return new_type; |
2037 | } | |
2038 | ||
ad82864c JB |
2039 | /* The array type encoded by TYPE, where |
2040 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2041 | |
d2e4a39e | 2042 | static struct type * |
ad82864c | 2043 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2044 | { |
0d5cff50 | 2045 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2046 | char *name; |
0d5cff50 | 2047 | const char *tail; |
d2e4a39e | 2048 | struct type *shadow_type; |
14f9c5c9 | 2049 | long bits; |
14f9c5c9 | 2050 | |
727e3d2e JB |
2051 | if (!raw_name) |
2052 | raw_name = ada_type_name (desc_base_type (type)); | |
2053 | ||
2054 | if (!raw_name) | |
2055 | return NULL; | |
2056 | ||
2057 | name = (char *) alloca (strlen (raw_name) + 1); | |
2058 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2059 | type = desc_base_type (type); |
2060 | ||
14f9c5c9 AS |
2061 | memcpy (name, raw_name, tail - raw_name); |
2062 | name[tail - raw_name] = '\000'; | |
2063 | ||
b4ba55a1 JB |
2064 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2065 | ||
2066 | if (shadow_type == NULL) | |
14f9c5c9 | 2067 | { |
323e0a4a | 2068 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2069 | return NULL; |
2070 | } | |
cb249c71 | 2071 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2072 | |
2073 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2074 | { | |
0963b4bd MS |
2075 | lim_warning (_("could not understand bounds " |
2076 | "information on packed array")); | |
14f9c5c9 AS |
2077 | return NULL; |
2078 | } | |
d2e4a39e | 2079 | |
ad82864c JB |
2080 | bits = decode_packed_array_bitsize (type); |
2081 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2082 | } |
2083 | ||
ad82864c JB |
2084 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2085 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2086 | standard GDB array type except that the BITSIZEs of the array |
2087 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2088 | type length is set appropriately. */ |
14f9c5c9 | 2089 | |
d2e4a39e | 2090 | static struct value * |
ad82864c | 2091 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2092 | { |
4c4b4cd2 | 2093 | struct type *type; |
14f9c5c9 | 2094 | |
4c4b4cd2 | 2095 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2096 | |
2097 | /* If our value is a pointer, then dererence it. Make sure that | |
2098 | this operation does not cause the target type to be fixed, as | |
2099 | this would indirectly cause this array to be decoded. The rest | |
2100 | of the routine assumes that the array hasn't been decoded yet, | |
2101 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2102 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2103 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2104 | arr = value_ind (arr); |
4c4b4cd2 | 2105 | |
ad82864c | 2106 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2107 | if (type == NULL) |
2108 | { | |
323e0a4a | 2109 | error (_("can't unpack array")); |
14f9c5c9 AS |
2110 | return NULL; |
2111 | } | |
61ee279c | 2112 | |
50810684 | 2113 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2114 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2115 | { |
2116 | /* This is a (right-justified) modular type representing a packed | |
2117 | array with no wrapper. In order to interpret the value through | |
2118 | the (left-justified) packed array type we just built, we must | |
2119 | first left-justify it. */ | |
2120 | int bit_size, bit_pos; | |
2121 | ULONGEST mod; | |
2122 | ||
df407dfe | 2123 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2124 | bit_size = 0; |
2125 | while (mod > 0) | |
2126 | { | |
2127 | bit_size += 1; | |
2128 | mod >>= 1; | |
2129 | } | |
df407dfe | 2130 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2131 | arr = ada_value_primitive_packed_val (arr, NULL, |
2132 | bit_pos / HOST_CHAR_BIT, | |
2133 | bit_pos % HOST_CHAR_BIT, | |
2134 | bit_size, | |
2135 | type); | |
2136 | } | |
2137 | ||
4c4b4cd2 | 2138 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2139 | } |
2140 | ||
2141 | ||
2142 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2143 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2144 | |
d2e4a39e AS |
2145 | static struct value * |
2146 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2147 | { |
2148 | int i; | |
2149 | int bits, elt_off, bit_off; | |
2150 | long elt_total_bit_offset; | |
d2e4a39e AS |
2151 | struct type *elt_type; |
2152 | struct value *v; | |
14f9c5c9 AS |
2153 | |
2154 | bits = 0; | |
2155 | elt_total_bit_offset = 0; | |
df407dfe | 2156 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2157 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2158 | { |
d2e4a39e | 2159 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2160 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2161 | error | |
0963b4bd MS |
2162 | (_("attempt to do packed indexing of " |
2163 | "something other than a packed array")); | |
14f9c5c9 | 2164 | else |
4c4b4cd2 PH |
2165 | { |
2166 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2167 | LONGEST lowerbound, upperbound; | |
2168 | LONGEST idx; | |
2169 | ||
2170 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2171 | { | |
323e0a4a | 2172 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2173 | lowerbound = upperbound = 0; |
2174 | } | |
2175 | ||
3cb382c9 | 2176 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2177 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2178 | lim_warning (_("packed array index %ld out of bounds"), |
2179 | (long) idx); | |
4c4b4cd2 PH |
2180 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2181 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2182 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2183 | } |
14f9c5c9 AS |
2184 | } |
2185 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2186 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2187 | |
2188 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2189 | bits, elt_type); |
14f9c5c9 AS |
2190 | return v; |
2191 | } | |
2192 | ||
4c4b4cd2 | 2193 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2194 | |
2195 | static int | |
d2e4a39e | 2196 | has_negatives (struct type *type) |
14f9c5c9 | 2197 | { |
d2e4a39e AS |
2198 | switch (TYPE_CODE (type)) |
2199 | { | |
2200 | default: | |
2201 | return 0; | |
2202 | case TYPE_CODE_INT: | |
2203 | return !TYPE_UNSIGNED (type); | |
2204 | case TYPE_CODE_RANGE: | |
2205 | return TYPE_LOW_BOUND (type) < 0; | |
2206 | } | |
14f9c5c9 | 2207 | } |
d2e4a39e | 2208 | |
14f9c5c9 AS |
2209 | |
2210 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2211 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2212 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2213 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2214 | VALADDR is ignored unless OBJ is NULL, in which case, |
2215 | VALADDR+OFFSET must address the start of storage containing the | |
2216 | packed value. The value returned in this case is never an lval. | |
2217 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2218 | |
d2e4a39e | 2219 | struct value * |
fc1a4b47 | 2220 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2221 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2222 | struct type *type) |
14f9c5c9 | 2223 | { |
d2e4a39e | 2224 | struct value *v; |
4c4b4cd2 PH |
2225 | int src, /* Index into the source area */ |
2226 | targ, /* Index into the target area */ | |
2227 | srcBitsLeft, /* Number of source bits left to move */ | |
2228 | nsrc, ntarg, /* Number of source and target bytes */ | |
2229 | unusedLS, /* Number of bits in next significant | |
2230 | byte of source that are unused */ | |
2231 | accumSize; /* Number of meaningful bits in accum */ | |
2232 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2233 | unsigned char *unpacked; |
4c4b4cd2 | 2234 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2235 | unsigned char sign; |
2236 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2237 | /* Transmit bytes from least to most significant; delta is the direction |
2238 | the indices move. */ | |
50810684 | 2239 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2240 | |
61ee279c | 2241 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2242 | |
2243 | if (obj == NULL) | |
2244 | { | |
2245 | v = allocate_value (type); | |
d2e4a39e | 2246 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2247 | } |
9214ee5f | 2248 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2249 | { |
2250 | v = value_at (type, | |
42ae5230 | 2251 | value_address (obj) + offset); |
d2e4a39e | 2252 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2253 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2254 | } |
d2e4a39e | 2255 | else |
14f9c5c9 AS |
2256 | { |
2257 | v = allocate_value (type); | |
0fd88904 | 2258 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2259 | } |
d2e4a39e AS |
2260 | |
2261 | if (obj != NULL) | |
14f9c5c9 | 2262 | { |
42ae5230 | 2263 | CORE_ADDR new_addr; |
5b4ee69b | 2264 | |
74bcbdf3 | 2265 | set_value_component_location (v, obj); |
42ae5230 | 2266 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2267 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2268 | set_value_bitsize (v, bit_size); | |
df407dfe | 2269 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2270 | { |
42ae5230 | 2271 | ++new_addr; |
9bbda503 | 2272 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2273 | } |
42ae5230 | 2274 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2275 | } |
2276 | else | |
9bbda503 | 2277 | set_value_bitsize (v, bit_size); |
0fd88904 | 2278 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2279 | |
2280 | srcBitsLeft = bit_size; | |
2281 | nsrc = len; | |
2282 | ntarg = TYPE_LENGTH (type); | |
2283 | sign = 0; | |
2284 | if (bit_size == 0) | |
2285 | { | |
2286 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2287 | return v; | |
2288 | } | |
50810684 | 2289 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2290 | { |
d2e4a39e | 2291 | src = len - 1; |
1265e4aa JB |
2292 | if (has_negatives (type) |
2293 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2294 | sign = ~0; |
d2e4a39e AS |
2295 | |
2296 | unusedLS = | |
4c4b4cd2 PH |
2297 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2298 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2299 | |
2300 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2301 | { |
2302 | case TYPE_CODE_ARRAY: | |
2303 | case TYPE_CODE_UNION: | |
2304 | case TYPE_CODE_STRUCT: | |
2305 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2306 | accumSize = | |
2307 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2308 | /* ... And are placed at the beginning (most-significant) bytes | |
2309 | of the target. */ | |
529cad9c | 2310 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2311 | ntarg = targ + 1; |
4c4b4cd2 PH |
2312 | break; |
2313 | default: | |
2314 | accumSize = 0; | |
2315 | targ = TYPE_LENGTH (type) - 1; | |
2316 | break; | |
2317 | } | |
14f9c5c9 | 2318 | } |
d2e4a39e | 2319 | else |
14f9c5c9 AS |
2320 | { |
2321 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2322 | ||
2323 | src = targ = 0; | |
2324 | unusedLS = bit_offset; | |
2325 | accumSize = 0; | |
2326 | ||
d2e4a39e | 2327 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2328 | sign = ~0; |
14f9c5c9 | 2329 | } |
d2e4a39e | 2330 | |
14f9c5c9 AS |
2331 | accum = 0; |
2332 | while (nsrc > 0) | |
2333 | { | |
2334 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2335 | part of the value. */ |
d2e4a39e | 2336 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2337 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2338 | 1; | |
2339 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2340 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2341 | |
d2e4a39e | 2342 | accum |= |
4c4b4cd2 | 2343 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2344 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2345 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2346 | { |
2347 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2348 | accumSize -= HOST_CHAR_BIT; | |
2349 | accum >>= HOST_CHAR_BIT; | |
2350 | ntarg -= 1; | |
2351 | targ += delta; | |
2352 | } | |
14f9c5c9 AS |
2353 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2354 | unusedLS = 0; | |
2355 | nsrc -= 1; | |
2356 | src += delta; | |
2357 | } | |
2358 | while (ntarg > 0) | |
2359 | { | |
2360 | accum |= sign << accumSize; | |
2361 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2362 | accumSize -= HOST_CHAR_BIT; | |
2363 | accum >>= HOST_CHAR_BIT; | |
2364 | ntarg -= 1; | |
2365 | targ += delta; | |
2366 | } | |
2367 | ||
2368 | return v; | |
2369 | } | |
d2e4a39e | 2370 | |
14f9c5c9 AS |
2371 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2372 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2373 | not overlap. */ |
14f9c5c9 | 2374 | static void |
fc1a4b47 | 2375 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2376 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2377 | { |
2378 | unsigned int accum, mask; | |
2379 | int accum_bits, chunk_size; | |
2380 | ||
2381 | target += targ_offset / HOST_CHAR_BIT; | |
2382 | targ_offset %= HOST_CHAR_BIT; | |
2383 | source += src_offset / HOST_CHAR_BIT; | |
2384 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2385 | if (bits_big_endian_p) |
14f9c5c9 AS |
2386 | { |
2387 | accum = (unsigned char) *source; | |
2388 | source += 1; | |
2389 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2390 | ||
d2e4a39e | 2391 | while (n > 0) |
4c4b4cd2 PH |
2392 | { |
2393 | int unused_right; | |
5b4ee69b | 2394 | |
4c4b4cd2 PH |
2395 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2396 | accum_bits += HOST_CHAR_BIT; | |
2397 | source += 1; | |
2398 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2399 | if (chunk_size > n) | |
2400 | chunk_size = n; | |
2401 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2402 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2403 | *target = | |
2404 | (*target & ~mask) | |
2405 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2406 | n -= chunk_size; | |
2407 | accum_bits -= chunk_size; | |
2408 | target += 1; | |
2409 | targ_offset = 0; | |
2410 | } | |
14f9c5c9 AS |
2411 | } |
2412 | else | |
2413 | { | |
2414 | accum = (unsigned char) *source >> src_offset; | |
2415 | source += 1; | |
2416 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2417 | ||
d2e4a39e | 2418 | while (n > 0) |
4c4b4cd2 PH |
2419 | { |
2420 | accum = accum + ((unsigned char) *source << accum_bits); | |
2421 | accum_bits += HOST_CHAR_BIT; | |
2422 | source += 1; | |
2423 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2424 | if (chunk_size > n) | |
2425 | chunk_size = n; | |
2426 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2427 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2428 | n -= chunk_size; | |
2429 | accum_bits -= chunk_size; | |
2430 | accum >>= chunk_size; | |
2431 | target += 1; | |
2432 | targ_offset = 0; | |
2433 | } | |
14f9c5c9 AS |
2434 | } |
2435 | } | |
2436 | ||
14f9c5c9 AS |
2437 | /* Store the contents of FROMVAL into the location of TOVAL. |
2438 | Return a new value with the location of TOVAL and contents of | |
2439 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2440 | floating-point or non-scalar types. */ |
14f9c5c9 | 2441 | |
d2e4a39e AS |
2442 | static struct value * |
2443 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2444 | { |
df407dfe AC |
2445 | struct type *type = value_type (toval); |
2446 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2447 | |
52ce6436 PH |
2448 | toval = ada_coerce_ref (toval); |
2449 | fromval = ada_coerce_ref (fromval); | |
2450 | ||
2451 | if (ada_is_direct_array_type (value_type (toval))) | |
2452 | toval = ada_coerce_to_simple_array (toval); | |
2453 | if (ada_is_direct_array_type (value_type (fromval))) | |
2454 | fromval = ada_coerce_to_simple_array (fromval); | |
2455 | ||
88e3b34b | 2456 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2457 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2458 | |
d2e4a39e | 2459 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2460 | && bits > 0 |
d2e4a39e | 2461 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2462 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2463 | { |
df407dfe AC |
2464 | int len = (value_bitpos (toval) |
2465 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2466 | int from_size; |
d2e4a39e AS |
2467 | char *buffer = (char *) alloca (len); |
2468 | struct value *val; | |
42ae5230 | 2469 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2470 | |
2471 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2472 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2473 | |
52ce6436 | 2474 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2475 | from_size = value_bitsize (fromval); |
2476 | if (from_size == 0) | |
2477 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2478 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2479 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2480 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2481 | else |
50810684 UW |
2482 | move_bits (buffer, value_bitpos (toval), |
2483 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2484 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2485 | observer_notify_memory_changed (to_addr, len, buffer); |
2486 | ||
14f9c5c9 | 2487 | val = value_copy (toval); |
0fd88904 | 2488 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2489 | TYPE_LENGTH (type)); |
04624583 | 2490 | deprecated_set_value_type (val, type); |
d2e4a39e | 2491 | |
14f9c5c9 AS |
2492 | return val; |
2493 | } | |
2494 | ||
2495 | return value_assign (toval, fromval); | |
2496 | } | |
2497 | ||
2498 | ||
52ce6436 PH |
2499 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2500 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2501 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2502 | * COMPONENT, and not the inferior's memory. The current contents | |
2503 | * of COMPONENT are ignored. */ | |
2504 | static void | |
2505 | value_assign_to_component (struct value *container, struct value *component, | |
2506 | struct value *val) | |
2507 | { | |
2508 | LONGEST offset_in_container = | |
42ae5230 | 2509 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2510 | int bit_offset_in_container = |
2511 | value_bitpos (component) - value_bitpos (container); | |
2512 | int bits; | |
2513 | ||
2514 | val = value_cast (value_type (component), val); | |
2515 | ||
2516 | if (value_bitsize (component) == 0) | |
2517 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2518 | else | |
2519 | bits = value_bitsize (component); | |
2520 | ||
50810684 | 2521 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2522 | move_bits (value_contents_writeable (container) + offset_in_container, |
2523 | value_bitpos (container) + bit_offset_in_container, | |
2524 | value_contents (val), | |
2525 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2526 | bits, 1); |
52ce6436 PH |
2527 | else |
2528 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2529 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2530 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2531 | } |
2532 | ||
4c4b4cd2 PH |
2533 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2534 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2535 | thereto. */ |
2536 | ||
d2e4a39e AS |
2537 | struct value * |
2538 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2539 | { |
2540 | int k; | |
d2e4a39e AS |
2541 | struct value *elt; |
2542 | struct type *elt_type; | |
14f9c5c9 AS |
2543 | |
2544 | elt = ada_coerce_to_simple_array (arr); | |
2545 | ||
df407dfe | 2546 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2547 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2548 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2549 | return value_subscript_packed (elt, arity, ind); | |
2550 | ||
2551 | for (k = 0; k < arity; k += 1) | |
2552 | { | |
2553 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2554 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2555 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2556 | } |
2557 | return elt; | |
2558 | } | |
2559 | ||
2560 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2561 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2562 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2563 | |
2c0b251b | 2564 | static struct value * |
d2e4a39e | 2565 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2566 | struct value **ind) |
14f9c5c9 AS |
2567 | { |
2568 | int k; | |
2569 | ||
2570 | for (k = 0; k < arity; k += 1) | |
2571 | { | |
2572 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2573 | |
2574 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2575 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2576 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2577 | value_copy (arr)); |
14f9c5c9 | 2578 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2579 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2580 | type = TYPE_TARGET_TYPE (type); |
2581 | } | |
2582 | ||
2583 | return value_ind (arr); | |
2584 | } | |
2585 | ||
0b5d8877 | 2586 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2587 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2588 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2589 | per Ada rules. */ |
0b5d8877 | 2590 | static struct value * |
f5938064 JG |
2591 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2592 | int low, int high) | |
0b5d8877 | 2593 | { |
b0dd7688 | 2594 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2595 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2596 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2597 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2598 | struct type *index_type = |
b0dd7688 | 2599 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2600 | low, high); |
6c038f32 | 2601 | struct type *slice_type = |
b0dd7688 | 2602 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2603 | |
f5938064 | 2604 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2605 | } |
2606 | ||
2607 | ||
2608 | static struct value * | |
2609 | ada_value_slice (struct value *array, int low, int high) | |
2610 | { | |
b0dd7688 | 2611 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2612 | struct type *index_type = |
0b5d8877 | 2613 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2614 | struct type *slice_type = |
0b5d8877 | 2615 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2616 | |
6c038f32 | 2617 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2618 | } |
2619 | ||
14f9c5c9 AS |
2620 | /* If type is a record type in the form of a standard GNAT array |
2621 | descriptor, returns the number of dimensions for type. If arr is a | |
2622 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2623 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2624 | |
2625 | int | |
d2e4a39e | 2626 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2627 | { |
2628 | int arity; | |
2629 | ||
2630 | if (type == NULL) | |
2631 | return 0; | |
2632 | ||
2633 | type = desc_base_type (type); | |
2634 | ||
2635 | arity = 0; | |
d2e4a39e | 2636 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2637 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2638 | else |
2639 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2640 | { |
4c4b4cd2 | 2641 | arity += 1; |
61ee279c | 2642 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2643 | } |
d2e4a39e | 2644 | |
14f9c5c9 AS |
2645 | return arity; |
2646 | } | |
2647 | ||
2648 | /* If TYPE is a record type in the form of a standard GNAT array | |
2649 | descriptor or a simple array type, returns the element type for | |
2650 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2651 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2652 | |
d2e4a39e AS |
2653 | struct type * |
2654 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2655 | { |
2656 | type = desc_base_type (type); | |
2657 | ||
d2e4a39e | 2658 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2659 | { |
2660 | int k; | |
d2e4a39e | 2661 | struct type *p_array_type; |
14f9c5c9 | 2662 | |
556bdfd4 | 2663 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2664 | |
2665 | k = ada_array_arity (type); | |
2666 | if (k == 0) | |
4c4b4cd2 | 2667 | return NULL; |
d2e4a39e | 2668 | |
4c4b4cd2 | 2669 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2670 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2671 | k = nindices; |
d2e4a39e | 2672 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2673 | { |
61ee279c | 2674 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2675 | k -= 1; |
2676 | } | |
14f9c5c9 AS |
2677 | return p_array_type; |
2678 | } | |
2679 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2680 | { | |
2681 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2682 | { |
2683 | type = TYPE_TARGET_TYPE (type); | |
2684 | nindices -= 1; | |
2685 | } | |
14f9c5c9 AS |
2686 | return type; |
2687 | } | |
2688 | ||
2689 | return NULL; | |
2690 | } | |
2691 | ||
4c4b4cd2 | 2692 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2693 | Does not examine memory. Throws an error if N is invalid or TYPE |
2694 | is not an array type. NAME is the name of the Ada attribute being | |
2695 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2696 | the error message. */ | |
14f9c5c9 | 2697 | |
1eea4ebd UW |
2698 | static struct type * |
2699 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2700 | { |
4c4b4cd2 PH |
2701 | struct type *result_type; |
2702 | ||
14f9c5c9 AS |
2703 | type = desc_base_type (type); |
2704 | ||
1eea4ebd UW |
2705 | if (n < 0 || n > ada_array_arity (type)) |
2706 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2707 | |
4c4b4cd2 | 2708 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2709 | { |
2710 | int i; | |
2711 | ||
2712 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2713 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2714 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2715 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2716 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2717 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2718 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2719 | result_type = NULL; | |
14f9c5c9 | 2720 | } |
d2e4a39e | 2721 | else |
1eea4ebd UW |
2722 | { |
2723 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2724 | if (result_type == NULL) | |
2725 | error (_("attempt to take bound of something that is not an array")); | |
2726 | } | |
2727 | ||
2728 | return result_type; | |
14f9c5c9 AS |
2729 | } |
2730 | ||
2731 | /* Given that arr is an array type, returns the lower bound of the | |
2732 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2733 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2734 | array-descriptor type. It works for other arrays with bounds supplied |
2735 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2736 | |
abb68b3e | 2737 | static LONGEST |
1eea4ebd | 2738 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2739 | { |
1ce677a4 | 2740 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2741 | int i; |
262452ec JK |
2742 | |
2743 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2744 | |
ad82864c JB |
2745 | if (ada_is_constrained_packed_array_type (arr_type)) |
2746 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2747 | |
4c4b4cd2 | 2748 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2749 | return (LONGEST) - which; |
14f9c5c9 AS |
2750 | |
2751 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2752 | type = TYPE_TARGET_TYPE (arr_type); | |
2753 | else | |
2754 | type = arr_type; | |
2755 | ||
1ce677a4 UW |
2756 | elt_type = type; |
2757 | for (i = n; i > 1; i--) | |
2758 | elt_type = TYPE_TARGET_TYPE (type); | |
2759 | ||
14f9c5c9 | 2760 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2761 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2762 | if (index_type_desc != NULL) |
28c85d6c JB |
2763 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2764 | NULL); | |
262452ec | 2765 | else |
1ce677a4 | 2766 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2767 | |
43bbcdc2 PH |
2768 | return |
2769 | (LONGEST) (which == 0 | |
2770 | ? ada_discrete_type_low_bound (index_type) | |
2771 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2772 | } |
2773 | ||
2774 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2775 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2776 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2777 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2778 | |
1eea4ebd | 2779 | static LONGEST |
4dc81987 | 2780 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2781 | { |
df407dfe | 2782 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2783 | |
ad82864c JB |
2784 | if (ada_is_constrained_packed_array_type (arr_type)) |
2785 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2786 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2787 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2788 | else |
1eea4ebd | 2789 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2790 | } |
2791 | ||
2792 | /* Given that arr is an array value, returns the length of the | |
2793 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2794 | supplied by run-time quantities other than discriminants. |
2795 | Does not work for arrays indexed by enumeration types with representation | |
2796 | clauses at the moment. */ | |
14f9c5c9 | 2797 | |
1eea4ebd | 2798 | static LONGEST |
d2e4a39e | 2799 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2800 | { |
df407dfe | 2801 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2802 | |
ad82864c JB |
2803 | if (ada_is_constrained_packed_array_type (arr_type)) |
2804 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2805 | |
4c4b4cd2 | 2806 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2807 | return (ada_array_bound_from_type (arr_type, n, 1) |
2808 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2809 | else |
1eea4ebd UW |
2810 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2811 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2812 | } |
2813 | ||
2814 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2815 | with bounds LOW to LOW-1. */ | |
2816 | ||
2817 | static struct value * | |
2818 | empty_array (struct type *arr_type, int low) | |
2819 | { | |
b0dd7688 | 2820 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2821 | struct type *index_type = |
b0dd7688 | 2822 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2823 | low, low - 1); |
b0dd7688 | 2824 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2825 | |
0b5d8877 | 2826 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2827 | } |
14f9c5c9 | 2828 | \f |
d2e4a39e | 2829 | |
4c4b4cd2 | 2830 | /* Name resolution */ |
14f9c5c9 | 2831 | |
4c4b4cd2 PH |
2832 | /* The "decoded" name for the user-definable Ada operator corresponding |
2833 | to OP. */ | |
14f9c5c9 | 2834 | |
d2e4a39e | 2835 | static const char * |
4c4b4cd2 | 2836 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2837 | { |
2838 | int i; | |
2839 | ||
4c4b4cd2 | 2840 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2841 | { |
2842 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2843 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2844 | } |
323e0a4a | 2845 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2846 | } |
2847 | ||
2848 | ||
4c4b4cd2 PH |
2849 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2850 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2851 | undefined namespace) and converts operators that are | |
2852 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2853 | non-null, it provides a preferred result type [at the moment, only |
2854 | type void has any effect---causing procedures to be preferred over | |
2855 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2856 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2857 | |
4c4b4cd2 PH |
2858 | static void |
2859 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2860 | { |
30b15541 UW |
2861 | struct type *context_type = NULL; |
2862 | int pc = 0; | |
2863 | ||
2864 | if (void_context_p) | |
2865 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2866 | ||
2867 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2868 | } |
2869 | ||
4c4b4cd2 PH |
2870 | /* Resolve the operator of the subexpression beginning at |
2871 | position *POS of *EXPP. "Resolving" consists of replacing | |
2872 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2873 | with their resolutions, replacing built-in operators with | |
2874 | function calls to user-defined operators, where appropriate, and, | |
2875 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2876 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2877 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2878 | |
d2e4a39e | 2879 | static struct value * |
4c4b4cd2 | 2880 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2881 | struct type *context_type) |
14f9c5c9 AS |
2882 | { |
2883 | int pc = *pos; | |
2884 | int i; | |
4c4b4cd2 | 2885 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2886 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2887 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2888 | int nargs; /* Number of operands. */ | |
52ce6436 | 2889 | int oplen; |
14f9c5c9 AS |
2890 | |
2891 | argvec = NULL; | |
2892 | nargs = 0; | |
2893 | exp = *expp; | |
2894 | ||
52ce6436 PH |
2895 | /* Pass one: resolve operands, saving their types and updating *pos, |
2896 | if needed. */ | |
14f9c5c9 AS |
2897 | switch (op) |
2898 | { | |
4c4b4cd2 PH |
2899 | case OP_FUNCALL: |
2900 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2901 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2902 | *pos += 7; | |
4c4b4cd2 PH |
2903 | else |
2904 | { | |
2905 | *pos += 3; | |
2906 | resolve_subexp (expp, pos, 0, NULL); | |
2907 | } | |
2908 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2909 | break; |
2910 | ||
14f9c5c9 | 2911 | case UNOP_ADDR: |
4c4b4cd2 PH |
2912 | *pos += 1; |
2913 | resolve_subexp (expp, pos, 0, NULL); | |
2914 | break; | |
2915 | ||
52ce6436 PH |
2916 | case UNOP_QUAL: |
2917 | *pos += 3; | |
17466c1a | 2918 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2919 | break; |
2920 | ||
52ce6436 | 2921 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2922 | case OP_ATR_SIZE: |
2923 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2924 | case OP_ATR_FIRST: |
2925 | case OP_ATR_LAST: | |
2926 | case OP_ATR_LENGTH: | |
2927 | case OP_ATR_POS: | |
2928 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2929 | case OP_ATR_MIN: |
2930 | case OP_ATR_MAX: | |
52ce6436 PH |
2931 | case TERNOP_IN_RANGE: |
2932 | case BINOP_IN_BOUNDS: | |
2933 | case UNOP_IN_RANGE: | |
2934 | case OP_AGGREGATE: | |
2935 | case OP_OTHERS: | |
2936 | case OP_CHOICES: | |
2937 | case OP_POSITIONAL: | |
2938 | case OP_DISCRETE_RANGE: | |
2939 | case OP_NAME: | |
2940 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2941 | *pos += oplen; | |
14f9c5c9 AS |
2942 | break; |
2943 | ||
2944 | case BINOP_ASSIGN: | |
2945 | { | |
4c4b4cd2 PH |
2946 | struct value *arg1; |
2947 | ||
2948 | *pos += 1; | |
2949 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2950 | if (arg1 == NULL) | |
2951 | resolve_subexp (expp, pos, 1, NULL); | |
2952 | else | |
df407dfe | 2953 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2954 | break; |
14f9c5c9 AS |
2955 | } |
2956 | ||
4c4b4cd2 | 2957 | case UNOP_CAST: |
4c4b4cd2 PH |
2958 | *pos += 3; |
2959 | nargs = 1; | |
2960 | break; | |
14f9c5c9 | 2961 | |
4c4b4cd2 PH |
2962 | case BINOP_ADD: |
2963 | case BINOP_SUB: | |
2964 | case BINOP_MUL: | |
2965 | case BINOP_DIV: | |
2966 | case BINOP_REM: | |
2967 | case BINOP_MOD: | |
2968 | case BINOP_EXP: | |
2969 | case BINOP_CONCAT: | |
2970 | case BINOP_LOGICAL_AND: | |
2971 | case BINOP_LOGICAL_OR: | |
2972 | case BINOP_BITWISE_AND: | |
2973 | case BINOP_BITWISE_IOR: | |
2974 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2975 | |
4c4b4cd2 PH |
2976 | case BINOP_EQUAL: |
2977 | case BINOP_NOTEQUAL: | |
2978 | case BINOP_LESS: | |
2979 | case BINOP_GTR: | |
2980 | case BINOP_LEQ: | |
2981 | case BINOP_GEQ: | |
14f9c5c9 | 2982 | |
4c4b4cd2 PH |
2983 | case BINOP_REPEAT: |
2984 | case BINOP_SUBSCRIPT: | |
2985 | case BINOP_COMMA: | |
40c8aaa9 JB |
2986 | *pos += 1; |
2987 | nargs = 2; | |
2988 | break; | |
14f9c5c9 | 2989 | |
4c4b4cd2 PH |
2990 | case UNOP_NEG: |
2991 | case UNOP_PLUS: | |
2992 | case UNOP_LOGICAL_NOT: | |
2993 | case UNOP_ABS: | |
2994 | case UNOP_IND: | |
2995 | *pos += 1; | |
2996 | nargs = 1; | |
2997 | break; | |
14f9c5c9 | 2998 | |
4c4b4cd2 PH |
2999 | case OP_LONG: |
3000 | case OP_DOUBLE: | |
3001 | case OP_VAR_VALUE: | |
3002 | *pos += 4; | |
3003 | break; | |
14f9c5c9 | 3004 | |
4c4b4cd2 PH |
3005 | case OP_TYPE: |
3006 | case OP_BOOL: | |
3007 | case OP_LAST: | |
4c4b4cd2 PH |
3008 | case OP_INTERNALVAR: |
3009 | *pos += 3; | |
3010 | break; | |
14f9c5c9 | 3011 | |
4c4b4cd2 PH |
3012 | case UNOP_MEMVAL: |
3013 | *pos += 3; | |
3014 | nargs = 1; | |
3015 | break; | |
3016 | ||
67f3407f DJ |
3017 | case OP_REGISTER: |
3018 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3019 | break; | |
3020 | ||
4c4b4cd2 PH |
3021 | case STRUCTOP_STRUCT: |
3022 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3023 | nargs = 1; | |
3024 | break; | |
3025 | ||
4c4b4cd2 | 3026 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3027 | *pos += 1; |
3028 | nargs = 3; | |
3029 | break; | |
3030 | ||
52ce6436 | 3031 | case OP_STRING: |
14f9c5c9 | 3032 | break; |
4c4b4cd2 PH |
3033 | |
3034 | default: | |
323e0a4a | 3035 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3036 | } |
3037 | ||
76a01679 | 3038 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3039 | for (i = 0; i < nargs; i += 1) |
3040 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3041 | argvec[i] = NULL; | |
3042 | exp = *expp; | |
3043 | ||
3044 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3045 | switch (op) |
3046 | { | |
3047 | default: | |
3048 | break; | |
3049 | ||
14f9c5c9 | 3050 | case OP_VAR_VALUE: |
4c4b4cd2 | 3051 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3052 | { |
3053 | struct ada_symbol_info *candidates; | |
3054 | int n_candidates; | |
3055 | ||
3056 | n_candidates = | |
3057 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3058 | (exp->elts[pc + 2].symbol), | |
3059 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
d9680e73 | 3060 | &candidates, 1); |
76a01679 JB |
3061 | |
3062 | if (n_candidates > 1) | |
3063 | { | |
3064 | /* Types tend to get re-introduced locally, so if there | |
3065 | are any local symbols that are not types, first filter | |
3066 | out all types. */ | |
3067 | int j; | |
3068 | for (j = 0; j < n_candidates; j += 1) | |
3069 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3070 | { | |
3071 | case LOC_REGISTER: | |
3072 | case LOC_ARG: | |
3073 | case LOC_REF_ARG: | |
76a01679 JB |
3074 | case LOC_REGPARM_ADDR: |
3075 | case LOC_LOCAL: | |
76a01679 | 3076 | case LOC_COMPUTED: |
76a01679 JB |
3077 | goto FoundNonType; |
3078 | default: | |
3079 | break; | |
3080 | } | |
3081 | FoundNonType: | |
3082 | if (j < n_candidates) | |
3083 | { | |
3084 | j = 0; | |
3085 | while (j < n_candidates) | |
3086 | { | |
3087 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3088 | { | |
3089 | candidates[j] = candidates[n_candidates - 1]; | |
3090 | n_candidates -= 1; | |
3091 | } | |
3092 | else | |
3093 | j += 1; | |
3094 | } | |
3095 | } | |
3096 | } | |
3097 | ||
3098 | if (n_candidates == 0) | |
323e0a4a | 3099 | error (_("No definition found for %s"), |
76a01679 JB |
3100 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3101 | else if (n_candidates == 1) | |
3102 | i = 0; | |
3103 | else if (deprocedure_p | |
3104 | && !is_nonfunction (candidates, n_candidates)) | |
3105 | { | |
06d5cf63 JB |
3106 | i = ada_resolve_function |
3107 | (candidates, n_candidates, NULL, 0, | |
3108 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3109 | context_type); | |
76a01679 | 3110 | if (i < 0) |
323e0a4a | 3111 | error (_("Could not find a match for %s"), |
76a01679 JB |
3112 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3113 | } | |
3114 | else | |
3115 | { | |
323e0a4a | 3116 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3117 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3118 | user_select_syms (candidates, n_candidates, 1); | |
3119 | i = 0; | |
3120 | } | |
3121 | ||
3122 | exp->elts[pc + 1].block = candidates[i].block; | |
3123 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3124 | if (innermost_block == NULL |
3125 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3126 | innermost_block = candidates[i].block; |
3127 | } | |
3128 | ||
3129 | if (deprocedure_p | |
3130 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3131 | == TYPE_CODE_FUNC)) | |
3132 | { | |
3133 | replace_operator_with_call (expp, pc, 0, 0, | |
3134 | exp->elts[pc + 2].symbol, | |
3135 | exp->elts[pc + 1].block); | |
3136 | exp = *expp; | |
3137 | } | |
14f9c5c9 AS |
3138 | break; |
3139 | ||
3140 | case OP_FUNCALL: | |
3141 | { | |
4c4b4cd2 | 3142 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3143 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3144 | { |
3145 | struct ada_symbol_info *candidates; | |
3146 | int n_candidates; | |
3147 | ||
3148 | n_candidates = | |
76a01679 JB |
3149 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3150 | (exp->elts[pc + 5].symbol), | |
3151 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
d9680e73 | 3152 | &candidates, 1); |
4c4b4cd2 PH |
3153 | if (n_candidates == 1) |
3154 | i = 0; | |
3155 | else | |
3156 | { | |
06d5cf63 JB |
3157 | i = ada_resolve_function |
3158 | (candidates, n_candidates, | |
3159 | argvec, nargs, | |
3160 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3161 | context_type); | |
4c4b4cd2 | 3162 | if (i < 0) |
323e0a4a | 3163 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3164 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3165 | } | |
3166 | ||
3167 | exp->elts[pc + 4].block = candidates[i].block; | |
3168 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3169 | if (innermost_block == NULL |
3170 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3171 | innermost_block = candidates[i].block; |
3172 | } | |
14f9c5c9 AS |
3173 | } |
3174 | break; | |
3175 | case BINOP_ADD: | |
3176 | case BINOP_SUB: | |
3177 | case BINOP_MUL: | |
3178 | case BINOP_DIV: | |
3179 | case BINOP_REM: | |
3180 | case BINOP_MOD: | |
3181 | case BINOP_CONCAT: | |
3182 | case BINOP_BITWISE_AND: | |
3183 | case BINOP_BITWISE_IOR: | |
3184 | case BINOP_BITWISE_XOR: | |
3185 | case BINOP_EQUAL: | |
3186 | case BINOP_NOTEQUAL: | |
3187 | case BINOP_LESS: | |
3188 | case BINOP_GTR: | |
3189 | case BINOP_LEQ: | |
3190 | case BINOP_GEQ: | |
3191 | case BINOP_EXP: | |
3192 | case UNOP_NEG: | |
3193 | case UNOP_PLUS: | |
3194 | case UNOP_LOGICAL_NOT: | |
3195 | case UNOP_ABS: | |
3196 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3197 | { |
3198 | struct ada_symbol_info *candidates; | |
3199 | int n_candidates; | |
3200 | ||
3201 | n_candidates = | |
3202 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3203 | (struct block *) NULL, VAR_DOMAIN, | |
d9680e73 | 3204 | &candidates, 1); |
4c4b4cd2 | 3205 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3206 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3207 | if (i < 0) |
3208 | break; | |
3209 | ||
76a01679 JB |
3210 | replace_operator_with_call (expp, pc, nargs, 1, |
3211 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3212 | exp = *expp; |
3213 | } | |
14f9c5c9 | 3214 | break; |
4c4b4cd2 PH |
3215 | |
3216 | case OP_TYPE: | |
b3dbf008 | 3217 | case OP_REGISTER: |
4c4b4cd2 | 3218 | return NULL; |
14f9c5c9 AS |
3219 | } |
3220 | ||
3221 | *pos = pc; | |
3222 | return evaluate_subexp_type (exp, pos); | |
3223 | } | |
3224 | ||
3225 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3226 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3227 | a non-pointer. */ |
14f9c5c9 | 3228 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3229 | liberal. */ |
14f9c5c9 AS |
3230 | |
3231 | static int | |
4dc81987 | 3232 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3233 | { |
61ee279c PH |
3234 | ftype = ada_check_typedef (ftype); |
3235 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3236 | |
3237 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3238 | ftype = TYPE_TARGET_TYPE (ftype); | |
3239 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3240 | atype = TYPE_TARGET_TYPE (atype); | |
3241 | ||
d2e4a39e | 3242 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3243 | { |
3244 | default: | |
5b3d5b7d | 3245 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3246 | case TYPE_CODE_PTR: |
3247 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3248 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3249 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3250 | else |
1265e4aa JB |
3251 | return (may_deref |
3252 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3253 | case TYPE_CODE_INT: |
3254 | case TYPE_CODE_ENUM: | |
3255 | case TYPE_CODE_RANGE: | |
3256 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3257 | { |
3258 | case TYPE_CODE_INT: | |
3259 | case TYPE_CODE_ENUM: | |
3260 | case TYPE_CODE_RANGE: | |
3261 | return 1; | |
3262 | default: | |
3263 | return 0; | |
3264 | } | |
14f9c5c9 AS |
3265 | |
3266 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3267 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3268 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3269 | |
3270 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3271 | if (ada_is_array_descriptor_type (ftype)) |
3272 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3273 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3274 | else |
4c4b4cd2 PH |
3275 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3276 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3277 | |
3278 | case TYPE_CODE_UNION: | |
3279 | case TYPE_CODE_FLT: | |
3280 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3281 | } | |
3282 | } | |
3283 | ||
3284 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3285 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3286 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3287 | argument function. */ |
14f9c5c9 AS |
3288 | |
3289 | static int | |
d2e4a39e | 3290 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3291 | { |
3292 | int i; | |
d2e4a39e | 3293 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3294 | |
1265e4aa JB |
3295 | if (SYMBOL_CLASS (func) == LOC_CONST |
3296 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3297 | return (n_actuals == 0); |
3298 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3299 | return 0; | |
3300 | ||
3301 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3302 | return 0; | |
3303 | ||
3304 | for (i = 0; i < n_actuals; i += 1) | |
3305 | { | |
4c4b4cd2 | 3306 | if (actuals[i] == NULL) |
76a01679 JB |
3307 | return 0; |
3308 | else | |
3309 | { | |
5b4ee69b MS |
3310 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3311 | i)); | |
df407dfe | 3312 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3313 | |
76a01679 JB |
3314 | if (!ada_type_match (ftype, atype, 1)) |
3315 | return 0; | |
3316 | } | |
14f9c5c9 AS |
3317 | } |
3318 | return 1; | |
3319 | } | |
3320 | ||
3321 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3322 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3323 | FUNC_TYPE is not a valid function type with a non-null return type | |
3324 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3325 | ||
3326 | static int | |
d2e4a39e | 3327 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3328 | { |
d2e4a39e | 3329 | struct type *return_type; |
14f9c5c9 AS |
3330 | |
3331 | if (func_type == NULL) | |
3332 | return 1; | |
3333 | ||
4c4b4cd2 | 3334 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3335 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3336 | else |
18af8284 | 3337 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3338 | if (return_type == NULL) |
3339 | return 1; | |
3340 | ||
18af8284 | 3341 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3342 | |
3343 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3344 | return context_type == NULL || return_type == context_type; | |
3345 | else if (context_type == NULL) | |
3346 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3347 | else | |
3348 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3349 | } | |
3350 | ||
3351 | ||
4c4b4cd2 | 3352 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3353 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3354 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3355 | that returns that type, then eliminate matches that don't. If | |
3356 | CONTEXT_TYPE is void and there is at least one match that does not | |
3357 | return void, eliminate all matches that do. | |
3358 | ||
14f9c5c9 AS |
3359 | Asks the user if there is more than one match remaining. Returns -1 |
3360 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3361 | solely for messages. May re-arrange and modify SYMS in |
3362 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3363 | |
4c4b4cd2 PH |
3364 | static int |
3365 | ada_resolve_function (struct ada_symbol_info syms[], | |
3366 | int nsyms, struct value **args, int nargs, | |
3367 | const char *name, struct type *context_type) | |
14f9c5c9 | 3368 | { |
30b15541 | 3369 | int fallback; |
14f9c5c9 | 3370 | int k; |
4c4b4cd2 | 3371 | int m; /* Number of hits */ |
14f9c5c9 | 3372 | |
d2e4a39e | 3373 | m = 0; |
30b15541 UW |
3374 | /* In the first pass of the loop, we only accept functions matching |
3375 | context_type. If none are found, we add a second pass of the loop | |
3376 | where every function is accepted. */ | |
3377 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3378 | { |
3379 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3380 | { |
61ee279c | 3381 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3382 | |
3383 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3384 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3385 | { |
3386 | syms[m] = syms[k]; | |
3387 | m += 1; | |
3388 | } | |
3389 | } | |
14f9c5c9 AS |
3390 | } |
3391 | ||
3392 | if (m == 0) | |
3393 | return -1; | |
3394 | else if (m > 1) | |
3395 | { | |
323e0a4a | 3396 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3397 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3398 | return 0; |
3399 | } | |
3400 | return 0; | |
3401 | } | |
3402 | ||
4c4b4cd2 PH |
3403 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3404 | in a listing of choices during disambiguation (see sort_choices, below). | |
3405 | The idea is that overloadings of a subprogram name from the | |
3406 | same package should sort in their source order. We settle for ordering | |
3407 | such symbols by their trailing number (__N or $N). */ | |
3408 | ||
14f9c5c9 | 3409 | static int |
0d5cff50 | 3410 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3411 | { |
3412 | if (N1 == NULL) | |
3413 | return 0; | |
3414 | else if (N0 == NULL) | |
3415 | return 1; | |
3416 | else | |
3417 | { | |
3418 | int k0, k1; | |
5b4ee69b | 3419 | |
d2e4a39e | 3420 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3421 | ; |
d2e4a39e | 3422 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3423 | ; |
d2e4a39e | 3424 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3425 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3426 | { | |
3427 | int n0, n1; | |
5b4ee69b | 3428 | |
4c4b4cd2 PH |
3429 | n0 = k0; |
3430 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3431 | n0 -= 1; | |
3432 | n1 = k1; | |
3433 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3434 | n1 -= 1; | |
3435 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3436 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3437 | } | |
14f9c5c9 AS |
3438 | return (strcmp (N0, N1) < 0); |
3439 | } | |
3440 | } | |
d2e4a39e | 3441 | |
4c4b4cd2 PH |
3442 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3443 | encoded names. */ | |
3444 | ||
d2e4a39e | 3445 | static void |
4c4b4cd2 | 3446 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3447 | { |
4c4b4cd2 | 3448 | int i; |
5b4ee69b | 3449 | |
d2e4a39e | 3450 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3451 | { |
4c4b4cd2 | 3452 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3453 | int j; |
3454 | ||
d2e4a39e | 3455 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3456 | { |
3457 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3458 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3459 | break; | |
3460 | syms[j + 1] = syms[j]; | |
3461 | } | |
d2e4a39e | 3462 | syms[j + 1] = sym; |
14f9c5c9 AS |
3463 | } |
3464 | } | |
3465 | ||
4c4b4cd2 PH |
3466 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3467 | by asking the user (if necessary), returning the number selected, | |
3468 | and setting the first elements of SYMS items. Error if no symbols | |
3469 | selected. */ | |
14f9c5c9 AS |
3470 | |
3471 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3472 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3473 | |
3474 | int | |
4c4b4cd2 | 3475 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3476 | { |
3477 | int i; | |
d2e4a39e | 3478 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3479 | int n_chosen; |
3480 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3481 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3482 | |
3483 | if (max_results < 1) | |
323e0a4a | 3484 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3485 | if (nsyms <= 1) |
3486 | return nsyms; | |
3487 | ||
717d2f5a JB |
3488 | if (select_mode == multiple_symbols_cancel) |
3489 | error (_("\ | |
3490 | canceled because the command is ambiguous\n\ | |
3491 | See set/show multiple-symbol.")); | |
3492 | ||
3493 | /* If select_mode is "all", then return all possible symbols. | |
3494 | Only do that if more than one symbol can be selected, of course. | |
3495 | Otherwise, display the menu as usual. */ | |
3496 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3497 | return nsyms; | |
3498 | ||
323e0a4a | 3499 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3500 | if (max_results > 1) |
323e0a4a | 3501 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3502 | |
4c4b4cd2 | 3503 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3504 | |
3505 | for (i = 0; i < nsyms; i += 1) | |
3506 | { | |
4c4b4cd2 PH |
3507 | if (syms[i].sym == NULL) |
3508 | continue; | |
3509 | ||
3510 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3511 | { | |
76a01679 JB |
3512 | struct symtab_and_line sal = |
3513 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3514 | |
323e0a4a AC |
3515 | if (sal.symtab == NULL) |
3516 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3517 | i + first_choice, | |
3518 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3519 | sal.line); | |
3520 | else | |
3521 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3522 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3523 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3524 | continue; |
3525 | } | |
d2e4a39e | 3526 | else |
4c4b4cd2 PH |
3527 | { |
3528 | int is_enumeral = | |
3529 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3530 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3531 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3532 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3533 | |
3534 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3535 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3536 | i + first_choice, |
3537 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3538 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3539 | else if (is_enumeral |
3540 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3541 | { |
a3f17187 | 3542 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3543 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3544 | gdb_stdout, -1, 0); | |
323e0a4a | 3545 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3546 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3547 | } | |
3548 | else if (symtab != NULL) | |
3549 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3550 | ? _("[%d] %s in %s (enumeral)\n") |
3551 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3552 | i + first_choice, |
3553 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3554 | symtab->filename); | |
3555 | else | |
3556 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3557 | ? _("[%d] %s (enumeral)\n") |
3558 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3559 | i + first_choice, |
3560 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3561 | } | |
14f9c5c9 | 3562 | } |
d2e4a39e | 3563 | |
14f9c5c9 | 3564 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3565 | "overload-choice"); |
14f9c5c9 AS |
3566 | |
3567 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3568 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3569 | |
3570 | return n_chosen; | |
3571 | } | |
3572 | ||
3573 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3574 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3575 | order in CHOICES[0 .. N-1], and return N. |
3576 | ||
3577 | The user types choices as a sequence of numbers on one line | |
3578 | separated by blanks, encoding them as follows: | |
3579 | ||
4c4b4cd2 | 3580 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3581 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3582 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3583 | ||
4c4b4cd2 | 3584 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3585 | |
3586 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3587 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3588 | |
3589 | int | |
d2e4a39e | 3590 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3591 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3592 | { |
d2e4a39e | 3593 | char *args; |
0bcd0149 | 3594 | char *prompt; |
14f9c5c9 AS |
3595 | int n_chosen; |
3596 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3597 | |
14f9c5c9 AS |
3598 | prompt = getenv ("PS2"); |
3599 | if (prompt == NULL) | |
0bcd0149 | 3600 | prompt = "> "; |
14f9c5c9 | 3601 | |
0bcd0149 | 3602 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3603 | |
14f9c5c9 | 3604 | if (args == NULL) |
323e0a4a | 3605 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3606 | |
3607 | n_chosen = 0; | |
76a01679 | 3608 | |
4c4b4cd2 PH |
3609 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3610 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3611 | while (1) |
3612 | { | |
d2e4a39e | 3613 | char *args2; |
14f9c5c9 AS |
3614 | int choice, j; |
3615 | ||
0fcd72ba | 3616 | args = skip_spaces (args); |
14f9c5c9 | 3617 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3618 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3619 | else if (*args == '\0') |
4c4b4cd2 | 3620 | break; |
14f9c5c9 AS |
3621 | |
3622 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3623 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3624 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3625 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3626 | args = args2; |
3627 | ||
d2e4a39e | 3628 | if (choice == 0) |
323e0a4a | 3629 | error (_("cancelled")); |
14f9c5c9 AS |
3630 | |
3631 | if (choice < first_choice) | |
4c4b4cd2 PH |
3632 | { |
3633 | n_chosen = n_choices; | |
3634 | for (j = 0; j < n_choices; j += 1) | |
3635 | choices[j] = j; | |
3636 | break; | |
3637 | } | |
14f9c5c9 AS |
3638 | choice -= first_choice; |
3639 | ||
d2e4a39e | 3640 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3641 | { |
3642 | } | |
14f9c5c9 AS |
3643 | |
3644 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3645 | { |
3646 | int k; | |
5b4ee69b | 3647 | |
4c4b4cd2 PH |
3648 | for (k = n_chosen - 1; k > j; k -= 1) |
3649 | choices[k + 1] = choices[k]; | |
3650 | choices[j + 1] = choice; | |
3651 | n_chosen += 1; | |
3652 | } | |
14f9c5c9 AS |
3653 | } |
3654 | ||
3655 | if (n_chosen > max_results) | |
323e0a4a | 3656 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3657 | |
14f9c5c9 AS |
3658 | return n_chosen; |
3659 | } | |
3660 | ||
4c4b4cd2 PH |
3661 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3662 | on the function identified by SYM and BLOCK, and taking NARGS | |
3663 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3664 | |
3665 | static void | |
d2e4a39e | 3666 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3667 | int oplen, struct symbol *sym, |
3668 | struct block *block) | |
14f9c5c9 AS |
3669 | { |
3670 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3671 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3672 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3673 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3674 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3675 | struct expression *exp = *expp; |
14f9c5c9 AS |
3676 | |
3677 | newexp->nelts = exp->nelts + 7 - oplen; | |
3678 | newexp->language_defn = exp->language_defn; | |
3489610d | 3679 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3680 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3681 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3682 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3683 | |
3684 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3685 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3686 | ||
3687 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3688 | newexp->elts[pc + 4].block = block; | |
3689 | newexp->elts[pc + 5].symbol = sym; | |
3690 | ||
3691 | *expp = newexp; | |
aacb1f0a | 3692 | xfree (exp); |
d2e4a39e | 3693 | } |
14f9c5c9 AS |
3694 | |
3695 | /* Type-class predicates */ | |
3696 | ||
4c4b4cd2 PH |
3697 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3698 | or FLOAT). */ | |
14f9c5c9 AS |
3699 | |
3700 | static int | |
d2e4a39e | 3701 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3702 | { |
3703 | if (type == NULL) | |
3704 | return 0; | |
d2e4a39e AS |
3705 | else |
3706 | { | |
3707 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3708 | { |
3709 | case TYPE_CODE_INT: | |
3710 | case TYPE_CODE_FLT: | |
3711 | return 1; | |
3712 | case TYPE_CODE_RANGE: | |
3713 | return (type == TYPE_TARGET_TYPE (type) | |
3714 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3715 | default: | |
3716 | return 0; | |
3717 | } | |
d2e4a39e | 3718 | } |
14f9c5c9 AS |
3719 | } |
3720 | ||
4c4b4cd2 | 3721 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3722 | |
3723 | static int | |
d2e4a39e | 3724 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3725 | { |
3726 | if (type == NULL) | |
3727 | return 0; | |
d2e4a39e AS |
3728 | else |
3729 | { | |
3730 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3731 | { |
3732 | case TYPE_CODE_INT: | |
3733 | return 1; | |
3734 | case TYPE_CODE_RANGE: | |
3735 | return (type == TYPE_TARGET_TYPE (type) | |
3736 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3737 | default: | |
3738 | return 0; | |
3739 | } | |
d2e4a39e | 3740 | } |
14f9c5c9 AS |
3741 | } |
3742 | ||
4c4b4cd2 | 3743 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3744 | |
3745 | static int | |
d2e4a39e | 3746 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3747 | { |
3748 | if (type == NULL) | |
3749 | return 0; | |
d2e4a39e AS |
3750 | else |
3751 | { | |
3752 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3753 | { |
3754 | case TYPE_CODE_INT: | |
3755 | case TYPE_CODE_RANGE: | |
3756 | case TYPE_CODE_ENUM: | |
3757 | case TYPE_CODE_FLT: | |
3758 | return 1; | |
3759 | default: | |
3760 | return 0; | |
3761 | } | |
d2e4a39e | 3762 | } |
14f9c5c9 AS |
3763 | } |
3764 | ||
4c4b4cd2 | 3765 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3766 | |
3767 | static int | |
d2e4a39e | 3768 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3769 | { |
3770 | if (type == NULL) | |
3771 | return 0; | |
d2e4a39e AS |
3772 | else |
3773 | { | |
3774 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3775 | { |
3776 | case TYPE_CODE_INT: | |
3777 | case TYPE_CODE_RANGE: | |
3778 | case TYPE_CODE_ENUM: | |
872f0337 | 3779 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3780 | return 1; |
3781 | default: | |
3782 | return 0; | |
3783 | } | |
d2e4a39e | 3784 | } |
14f9c5c9 AS |
3785 | } |
3786 | ||
4c4b4cd2 PH |
3787 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3788 | a user-defined function. Errs on the side of pre-defined operators | |
3789 | (i.e., result 0). */ | |
14f9c5c9 AS |
3790 | |
3791 | static int | |
d2e4a39e | 3792 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3793 | { |
76a01679 | 3794 | struct type *type0 = |
df407dfe | 3795 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3796 | struct type *type1 = |
df407dfe | 3797 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3798 | |
4c4b4cd2 PH |
3799 | if (type0 == NULL) |
3800 | return 0; | |
3801 | ||
14f9c5c9 AS |
3802 | switch (op) |
3803 | { | |
3804 | default: | |
3805 | return 0; | |
3806 | ||
3807 | case BINOP_ADD: | |
3808 | case BINOP_SUB: | |
3809 | case BINOP_MUL: | |
3810 | case BINOP_DIV: | |
d2e4a39e | 3811 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3812 | |
3813 | case BINOP_REM: | |
3814 | case BINOP_MOD: | |
3815 | case BINOP_BITWISE_AND: | |
3816 | case BINOP_BITWISE_IOR: | |
3817 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3818 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3819 | |
3820 | case BINOP_EQUAL: | |
3821 | case BINOP_NOTEQUAL: | |
3822 | case BINOP_LESS: | |
3823 | case BINOP_GTR: | |
3824 | case BINOP_LEQ: | |
3825 | case BINOP_GEQ: | |
d2e4a39e | 3826 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3827 | |
3828 | case BINOP_CONCAT: | |
ee90b9ab | 3829 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3830 | |
3831 | case BINOP_EXP: | |
d2e4a39e | 3832 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3833 | |
3834 | case UNOP_NEG: | |
3835 | case UNOP_PLUS: | |
3836 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3837 | case UNOP_ABS: |
3838 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3839 | |
3840 | } | |
3841 | } | |
3842 | \f | |
4c4b4cd2 | 3843 | /* Renaming */ |
14f9c5c9 | 3844 | |
aeb5907d JB |
3845 | /* NOTES: |
3846 | ||
3847 | 1. In the following, we assume that a renaming type's name may | |
3848 | have an ___XD suffix. It would be nice if this went away at some | |
3849 | point. | |
3850 | 2. We handle both the (old) purely type-based representation of | |
3851 | renamings and the (new) variable-based encoding. At some point, | |
3852 | it is devoutly to be hoped that the former goes away | |
3853 | (FIXME: hilfinger-2007-07-09). | |
3854 | 3. Subprogram renamings are not implemented, although the XRS | |
3855 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3856 | ||
3857 | /* If SYM encodes a renaming, | |
3858 | ||
3859 | <renaming> renames <renamed entity>, | |
3860 | ||
3861 | sets *LEN to the length of the renamed entity's name, | |
3862 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3863 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3864 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3865 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3866 | are undefined). Otherwise, returns a value indicating the category | |
3867 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3868 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3869 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3870 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3871 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3872 | may be NULL, in which case they are not assigned. | |
3873 | ||
3874 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3875 | ||
3876 | enum ada_renaming_category | |
3877 | ada_parse_renaming (struct symbol *sym, | |
3878 | const char **renamed_entity, int *len, | |
3879 | const char **renaming_expr) | |
3880 | { | |
3881 | enum ada_renaming_category kind; | |
3882 | const char *info; | |
3883 | const char *suffix; | |
3884 | ||
3885 | if (sym == NULL) | |
3886 | return ADA_NOT_RENAMING; | |
3887 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3888 | { |
aeb5907d JB |
3889 | default: |
3890 | return ADA_NOT_RENAMING; | |
3891 | case LOC_TYPEDEF: | |
3892 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3893 | renamed_entity, len, renaming_expr); | |
3894 | case LOC_LOCAL: | |
3895 | case LOC_STATIC: | |
3896 | case LOC_COMPUTED: | |
3897 | case LOC_OPTIMIZED_OUT: | |
3898 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3899 | if (info == NULL) | |
3900 | return ADA_NOT_RENAMING; | |
3901 | switch (info[5]) | |
3902 | { | |
3903 | case '_': | |
3904 | kind = ADA_OBJECT_RENAMING; | |
3905 | info += 6; | |
3906 | break; | |
3907 | case 'E': | |
3908 | kind = ADA_EXCEPTION_RENAMING; | |
3909 | info += 7; | |
3910 | break; | |
3911 | case 'P': | |
3912 | kind = ADA_PACKAGE_RENAMING; | |
3913 | info += 7; | |
3914 | break; | |
3915 | case 'S': | |
3916 | kind = ADA_SUBPROGRAM_RENAMING; | |
3917 | info += 7; | |
3918 | break; | |
3919 | default: | |
3920 | return ADA_NOT_RENAMING; | |
3921 | } | |
14f9c5c9 | 3922 | } |
4c4b4cd2 | 3923 | |
aeb5907d JB |
3924 | if (renamed_entity != NULL) |
3925 | *renamed_entity = info; | |
3926 | suffix = strstr (info, "___XE"); | |
3927 | if (suffix == NULL || suffix == info) | |
3928 | return ADA_NOT_RENAMING; | |
3929 | if (len != NULL) | |
3930 | *len = strlen (info) - strlen (suffix); | |
3931 | suffix += 5; | |
3932 | if (renaming_expr != NULL) | |
3933 | *renaming_expr = suffix; | |
3934 | return kind; | |
3935 | } | |
3936 | ||
3937 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3938 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3939 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3940 | ADA_NOT_RENAMING otherwise. */ | |
3941 | static enum ada_renaming_category | |
3942 | parse_old_style_renaming (struct type *type, | |
3943 | const char **renamed_entity, int *len, | |
3944 | const char **renaming_expr) | |
3945 | { | |
3946 | enum ada_renaming_category kind; | |
3947 | const char *name; | |
3948 | const char *info; | |
3949 | const char *suffix; | |
14f9c5c9 | 3950 | |
aeb5907d JB |
3951 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3952 | || TYPE_NFIELDS (type) != 1) | |
3953 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3954 | |
aeb5907d JB |
3955 | name = type_name_no_tag (type); |
3956 | if (name == NULL) | |
3957 | return ADA_NOT_RENAMING; | |
3958 | ||
3959 | name = strstr (name, "___XR"); | |
3960 | if (name == NULL) | |
3961 | return ADA_NOT_RENAMING; | |
3962 | switch (name[5]) | |
3963 | { | |
3964 | case '\0': | |
3965 | case '_': | |
3966 | kind = ADA_OBJECT_RENAMING; | |
3967 | break; | |
3968 | case 'E': | |
3969 | kind = ADA_EXCEPTION_RENAMING; | |
3970 | break; | |
3971 | case 'P': | |
3972 | kind = ADA_PACKAGE_RENAMING; | |
3973 | break; | |
3974 | case 'S': | |
3975 | kind = ADA_SUBPROGRAM_RENAMING; | |
3976 | break; | |
3977 | default: | |
3978 | return ADA_NOT_RENAMING; | |
3979 | } | |
14f9c5c9 | 3980 | |
aeb5907d JB |
3981 | info = TYPE_FIELD_NAME (type, 0); |
3982 | if (info == NULL) | |
3983 | return ADA_NOT_RENAMING; | |
3984 | if (renamed_entity != NULL) | |
3985 | *renamed_entity = info; | |
3986 | suffix = strstr (info, "___XE"); | |
3987 | if (renaming_expr != NULL) | |
3988 | *renaming_expr = suffix + 5; | |
3989 | if (suffix == NULL || suffix == info) | |
3990 | return ADA_NOT_RENAMING; | |
3991 | if (len != NULL) | |
3992 | *len = suffix - info; | |
3993 | return kind; | |
3994 | } | |
52ce6436 | 3995 | |
14f9c5c9 | 3996 | \f |
d2e4a39e | 3997 | |
4c4b4cd2 | 3998 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3999 | |
4c4b4cd2 | 4000 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4001 | lvalues, and otherwise has the side-effect of allocating memory |
4002 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4003 | |
d2e4a39e | 4004 | static struct value * |
40bc484c | 4005 | ensure_lval (struct value *val) |
14f9c5c9 | 4006 | { |
40bc484c JB |
4007 | if (VALUE_LVAL (val) == not_lval |
4008 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4009 | { |
df407dfe | 4010 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4011 | const CORE_ADDR addr = |
4012 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4013 | |
40bc484c | 4014 | set_value_address (val, addr); |
a84a8a0d | 4015 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4016 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4017 | } |
14f9c5c9 AS |
4018 | |
4019 | return val; | |
4020 | } | |
4021 | ||
4022 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4023 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4024 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4025 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4026 | |
a93c0eb6 | 4027 | struct value * |
40bc484c | 4028 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4029 | { |
df407dfe | 4030 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4031 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4032 | struct type *formal_target = |
4033 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4034 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4035 | struct type *actual_target = |
4036 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4037 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4038 | |
4c4b4cd2 | 4039 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4040 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4041 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4042 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4043 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4044 | { |
a84a8a0d | 4045 | struct value *result; |
5b4ee69b | 4046 | |
14f9c5c9 | 4047 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4048 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4049 | result = desc_data (actual); |
14f9c5c9 | 4050 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4051 | { |
4052 | if (VALUE_LVAL (actual) != lval_memory) | |
4053 | { | |
4054 | struct value *val; | |
5b4ee69b | 4055 | |
df407dfe | 4056 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4057 | val = allocate_value (actual_type); |
990a07ab | 4058 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4059 | (char *) value_contents (actual), |
4c4b4cd2 | 4060 | TYPE_LENGTH (actual_type)); |
40bc484c | 4061 | actual = ensure_lval (val); |
4c4b4cd2 | 4062 | } |
a84a8a0d | 4063 | result = value_addr (actual); |
4c4b4cd2 | 4064 | } |
a84a8a0d JB |
4065 | else |
4066 | return actual; | |
4067 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4068 | } |
4069 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4070 | return ada_value_ind (actual); | |
4071 | ||
4072 | return actual; | |
4073 | } | |
4074 | ||
438c98a1 JB |
4075 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4076 | type TYPE. This is usually an inefficient no-op except on some targets | |
4077 | (such as AVR) where the representation of a pointer and an address | |
4078 | differs. */ | |
4079 | ||
4080 | static CORE_ADDR | |
4081 | value_pointer (struct value *value, struct type *type) | |
4082 | { | |
4083 | struct gdbarch *gdbarch = get_type_arch (type); | |
4084 | unsigned len = TYPE_LENGTH (type); | |
4085 | gdb_byte *buf = alloca (len); | |
4086 | CORE_ADDR addr; | |
4087 | ||
4088 | addr = value_address (value); | |
4089 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4090 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4091 | return addr; | |
4092 | } | |
4093 | ||
14f9c5c9 | 4094 | |
4c4b4cd2 PH |
4095 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4096 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4097 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4098 | to-descriptor type rather than a descriptor type), a struct value * |
4099 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4100 | |
d2e4a39e | 4101 | static struct value * |
40bc484c | 4102 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4103 | { |
d2e4a39e AS |
4104 | struct type *bounds_type = desc_bounds_type (type); |
4105 | struct type *desc_type = desc_base_type (type); | |
4106 | struct value *descriptor = allocate_value (desc_type); | |
4107 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4108 | int i; |
d2e4a39e | 4109 | |
0963b4bd MS |
4110 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4111 | i > 0; i -= 1) | |
14f9c5c9 | 4112 | { |
19f220c3 JK |
4113 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4114 | ada_array_bound (arr, i, 0), | |
4115 | desc_bound_bitpos (bounds_type, i, 0), | |
4116 | desc_bound_bitsize (bounds_type, i, 0)); | |
4117 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4118 | ada_array_bound (arr, i, 1), | |
4119 | desc_bound_bitpos (bounds_type, i, 1), | |
4120 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4121 | } |
d2e4a39e | 4122 | |
40bc484c | 4123 | bounds = ensure_lval (bounds); |
d2e4a39e | 4124 | |
19f220c3 JK |
4125 | modify_field (value_type (descriptor), |
4126 | value_contents_writeable (descriptor), | |
4127 | value_pointer (ensure_lval (arr), | |
4128 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4129 | fat_pntr_data_bitpos (desc_type), | |
4130 | fat_pntr_data_bitsize (desc_type)); | |
4131 | ||
4132 | modify_field (value_type (descriptor), | |
4133 | value_contents_writeable (descriptor), | |
4134 | value_pointer (bounds, | |
4135 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4136 | fat_pntr_bounds_bitpos (desc_type), | |
4137 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4138 | |
40bc484c | 4139 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4140 | |
4141 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4142 | return value_addr (descriptor); | |
4143 | else | |
4144 | return descriptor; | |
4145 | } | |
14f9c5c9 | 4146 | \f |
963a6417 | 4147 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4148 | * used in the public sources. */ |
96d887e8 | 4149 | |
96d887e8 PH |
4150 | static int |
4151 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4152 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4153 | { |
4154 | return 0; | |
4155 | } | |
4156 | ||
4157 | static void | |
4158 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4159 | struct block *block) |
96d887e8 PH |
4160 | { |
4161 | } | |
4c4b4cd2 PH |
4162 | \f |
4163 | /* Symbol Lookup */ | |
4164 | ||
c0431670 JB |
4165 | /* Return nonzero if wild matching should be used when searching for |
4166 | all symbols matching LOOKUP_NAME. | |
4167 | ||
4168 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4169 | for Ada lookups (see ada_name_for_lookup). */ | |
4170 | ||
4171 | static int | |
4172 | should_use_wild_match (const char *lookup_name) | |
4173 | { | |
4174 | return (strstr (lookup_name, "__") == NULL); | |
4175 | } | |
4176 | ||
4c4b4cd2 PH |
4177 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4178 | given DOMAIN, visible from lexical block BLOCK. */ | |
4179 | ||
4180 | static struct symbol * | |
4181 | standard_lookup (const char *name, const struct block *block, | |
4182 | domain_enum domain) | |
4183 | { | |
4184 | struct symbol *sym; | |
4c4b4cd2 | 4185 | |
2570f2b7 | 4186 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4187 | return sym; |
2570f2b7 UW |
4188 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4189 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4190 | return sym; |
4191 | } | |
4192 | ||
4193 | ||
4194 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4195 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4196 | since they contend in overloading in the same way. */ | |
4197 | static int | |
4198 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4199 | { | |
4200 | int i; | |
4201 | ||
4202 | for (i = 0; i < n; i += 1) | |
4203 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4204 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4205 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4206 | return 1; |
4207 | ||
4208 | return 0; | |
4209 | } | |
4210 | ||
4211 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4212 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4213 | |
4214 | static int | |
d2e4a39e | 4215 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4216 | { |
d2e4a39e | 4217 | if (type0 == type1) |
14f9c5c9 | 4218 | return 1; |
d2e4a39e | 4219 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4220 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4221 | return 0; | |
d2e4a39e | 4222 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4223 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4224 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4225 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4226 | return 1; |
d2e4a39e | 4227 | |
14f9c5c9 AS |
4228 | return 0; |
4229 | } | |
4230 | ||
4231 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4232 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4233 | |
4234 | static int | |
d2e4a39e | 4235 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4236 | { |
4237 | if (sym0 == sym1) | |
4238 | return 1; | |
176620f1 | 4239 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4240 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4241 | return 0; | |
4242 | ||
d2e4a39e | 4243 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4244 | { |
4245 | case LOC_UNDEF: | |
4246 | return 1; | |
4247 | case LOC_TYPEDEF: | |
4248 | { | |
4c4b4cd2 PH |
4249 | struct type *type0 = SYMBOL_TYPE (sym0); |
4250 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4251 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4252 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4253 | int len0 = strlen (name0); |
5b4ee69b | 4254 | |
4c4b4cd2 PH |
4255 | return |
4256 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4257 | && (equiv_types (type0, type1) | |
4258 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4259 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4260 | } |
4261 | case LOC_CONST: | |
4262 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4263 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4264 | default: |
4265 | return 0; | |
14f9c5c9 AS |
4266 | } |
4267 | } | |
4268 | ||
4c4b4cd2 PH |
4269 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4270 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4271 | |
4272 | static void | |
76a01679 JB |
4273 | add_defn_to_vec (struct obstack *obstackp, |
4274 | struct symbol *sym, | |
2570f2b7 | 4275 | struct block *block) |
14f9c5c9 AS |
4276 | { |
4277 | int i; | |
4c4b4cd2 | 4278 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4279 | |
529cad9c PH |
4280 | /* Do not try to complete stub types, as the debugger is probably |
4281 | already scanning all symbols matching a certain name at the | |
4282 | time when this function is called. Trying to replace the stub | |
4283 | type by its associated full type will cause us to restart a scan | |
4284 | which may lead to an infinite recursion. Instead, the client | |
4285 | collecting the matching symbols will end up collecting several | |
4286 | matches, with at least one of them complete. It can then filter | |
4287 | out the stub ones if needed. */ | |
4288 | ||
4c4b4cd2 PH |
4289 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4290 | { | |
4291 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4292 | return; | |
4293 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4294 | { | |
4295 | prevDefns[i].sym = sym; | |
4296 | prevDefns[i].block = block; | |
4c4b4cd2 | 4297 | return; |
76a01679 | 4298 | } |
4c4b4cd2 PH |
4299 | } |
4300 | ||
4301 | { | |
4302 | struct ada_symbol_info info; | |
4303 | ||
4304 | info.sym = sym; | |
4305 | info.block = block; | |
4c4b4cd2 PH |
4306 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4307 | } | |
4308 | } | |
4309 | ||
4310 | /* Number of ada_symbol_info structures currently collected in | |
4311 | current vector in *OBSTACKP. */ | |
4312 | ||
76a01679 JB |
4313 | static int |
4314 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4315 | { |
4316 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4317 | } | |
4318 | ||
4319 | /* Vector of ada_symbol_info structures currently collected in current | |
4320 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4321 | its final address. */ | |
4322 | ||
76a01679 | 4323 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4324 | defns_collected (struct obstack *obstackp, int finish) |
4325 | { | |
4326 | if (finish) | |
4327 | return obstack_finish (obstackp); | |
4328 | else | |
4329 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4330 | } | |
4331 | ||
96d887e8 PH |
4332 | /* Return a minimal symbol matching NAME according to Ada decoding |
4333 | rules. Returns NULL if there is no such minimal symbol. Names | |
4334 | prefixed with "standard__" are handled specially: "standard__" is | |
4335 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4336 | |
96d887e8 PH |
4337 | struct minimal_symbol * |
4338 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4339 | { |
4c4b4cd2 | 4340 | struct objfile *objfile; |
96d887e8 | 4341 | struct minimal_symbol *msymbol; |
c0431670 | 4342 | const int wild_match = should_use_wild_match (name); |
4c4b4cd2 | 4343 | |
c0431670 JB |
4344 | /* Special case: If the user specifies a symbol name inside package |
4345 | Standard, do a non-wild matching of the symbol name without | |
4346 | the "standard__" prefix. This was primarily introduced in order | |
4347 | to allow the user to specifically access the standard exceptions | |
4348 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4349 | is ambiguous (due to the user defining its own Constraint_Error | |
4350 | entity inside its program). */ | |
96d887e8 | 4351 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4352 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4353 | |
96d887e8 PH |
4354 | ALL_MSYMBOLS (objfile, msymbol) |
4355 | { | |
40658b94 | 4356 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4357 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4358 | return msymbol; | |
4359 | } | |
4c4b4cd2 | 4360 | |
96d887e8 PH |
4361 | return NULL; |
4362 | } | |
4c4b4cd2 | 4363 | |
96d887e8 PH |
4364 | /* For all subprograms that statically enclose the subprogram of the |
4365 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4366 | and their blocks to the list of data in OBSTACKP, as for | |
4367 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4368 | wildcard prefix. */ | |
4c4b4cd2 | 4369 | |
96d887e8 PH |
4370 | static void |
4371 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4372 | const char *name, domain_enum namespace, |
96d887e8 PH |
4373 | int wild_match) |
4374 | { | |
96d887e8 | 4375 | } |
14f9c5c9 | 4376 | |
96d887e8 PH |
4377 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4378 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4379 | |
96d887e8 PH |
4380 | static int |
4381 | is_nondebugging_type (struct type *type) | |
4382 | { | |
0d5cff50 | 4383 | const char *name = ada_type_name (type); |
5b4ee69b | 4384 | |
96d887e8 PH |
4385 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4386 | } | |
4c4b4cd2 | 4387 | |
8f17729f JB |
4388 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4389 | that are deemed "identical" for practical purposes. | |
4390 | ||
4391 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4392 | types and that their number of enumerals is identical (in other | |
4393 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4394 | ||
4395 | static int | |
4396 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4397 | { | |
4398 | int i; | |
4399 | ||
4400 | /* The heuristic we use here is fairly conservative. We consider | |
4401 | that 2 enumerate types are identical if they have the same | |
4402 | number of enumerals and that all enumerals have the same | |
4403 | underlying value and name. */ | |
4404 | ||
4405 | /* All enums in the type should have an identical underlying value. */ | |
4406 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4407 | if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i)) | |
4408 | return 0; | |
4409 | ||
4410 | /* All enumerals should also have the same name (modulo any numerical | |
4411 | suffix). */ | |
4412 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4413 | { | |
0d5cff50 DE |
4414 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4415 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4416 | int len_1 = strlen (name_1); |
4417 | int len_2 = strlen (name_2); | |
4418 | ||
4419 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4420 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4421 | if (len_1 != len_2 | |
4422 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4423 | TYPE_FIELD_NAME (type2, i), | |
4424 | len_1) != 0) | |
4425 | return 0; | |
4426 | } | |
4427 | ||
4428 | return 1; | |
4429 | } | |
4430 | ||
4431 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4432 | that are deemed "identical" for practical purposes. Sometimes, | |
4433 | enumerals are not strictly identical, but their types are so similar | |
4434 | that they can be considered identical. | |
4435 | ||
4436 | For instance, consider the following code: | |
4437 | ||
4438 | type Color is (Black, Red, Green, Blue, White); | |
4439 | type RGB_Color is new Color range Red .. Blue; | |
4440 | ||
4441 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4442 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4443 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4444 | As a result, when an expression references any of the enumeral | |
4445 | by name (Eg. "print green"), the expression is technically | |
4446 | ambiguous and the user should be asked to disambiguate. But | |
4447 | doing so would only hinder the user, since it wouldn't matter | |
4448 | what choice he makes, the outcome would always be the same. | |
4449 | So, for practical purposes, we consider them as the same. */ | |
4450 | ||
4451 | static int | |
4452 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4453 | { | |
4454 | int i; | |
4455 | ||
4456 | /* Before performing a thorough comparison check of each type, | |
4457 | we perform a series of inexpensive checks. We expect that these | |
4458 | checks will quickly fail in the vast majority of cases, and thus | |
4459 | help prevent the unnecessary use of a more expensive comparison. | |
4460 | Said comparison also expects us to make some of these checks | |
4461 | (see ada_identical_enum_types_p). */ | |
4462 | ||
4463 | /* Quick check: All symbols should have an enum type. */ | |
4464 | for (i = 0; i < nsyms; i++) | |
4465 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4466 | return 0; | |
4467 | ||
4468 | /* Quick check: They should all have the same value. */ | |
4469 | for (i = 1; i < nsyms; i++) | |
4470 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4471 | return 0; | |
4472 | ||
4473 | /* Quick check: They should all have the same number of enumerals. */ | |
4474 | for (i = 1; i < nsyms; i++) | |
4475 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4476 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4477 | return 0; | |
4478 | ||
4479 | /* All the sanity checks passed, so we might have a set of | |
4480 | identical enumeration types. Perform a more complete | |
4481 | comparison of the type of each symbol. */ | |
4482 | for (i = 1; i < nsyms; i++) | |
4483 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4484 | SYMBOL_TYPE (syms[0].sym))) | |
4485 | return 0; | |
4486 | ||
4487 | return 1; | |
4488 | } | |
4489 | ||
96d887e8 PH |
4490 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4491 | duplicate other symbols in the list (The only case I know of where | |
4492 | this happens is when object files containing stabs-in-ecoff are | |
4493 | linked with files containing ordinary ecoff debugging symbols (or no | |
4494 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4495 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4496 | |
96d887e8 PH |
4497 | static int |
4498 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4499 | { | |
4500 | int i, j; | |
4c4b4cd2 | 4501 | |
8f17729f JB |
4502 | /* We should never be called with less than 2 symbols, as there |
4503 | cannot be any extra symbol in that case. But it's easy to | |
4504 | handle, since we have nothing to do in that case. */ | |
4505 | if (nsyms < 2) | |
4506 | return nsyms; | |
4507 | ||
96d887e8 PH |
4508 | i = 0; |
4509 | while (i < nsyms) | |
4510 | { | |
a35ddb44 | 4511 | int remove_p = 0; |
339c13b6 JB |
4512 | |
4513 | /* If two symbols have the same name and one of them is a stub type, | |
4514 | the get rid of the stub. */ | |
4515 | ||
4516 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4517 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4518 | { | |
4519 | for (j = 0; j < nsyms; j++) | |
4520 | { | |
4521 | if (j != i | |
4522 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4523 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4524 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4525 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4526 | remove_p = 1; |
339c13b6 JB |
4527 | } |
4528 | } | |
4529 | ||
4530 | /* Two symbols with the same name, same class and same address | |
4531 | should be identical. */ | |
4532 | ||
4533 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4534 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4535 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4536 | { | |
4537 | for (j = 0; j < nsyms; j += 1) | |
4538 | { | |
4539 | if (i != j | |
4540 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4541 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4542 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4543 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4544 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4545 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4546 | remove_p = 1; |
4c4b4cd2 | 4547 | } |
4c4b4cd2 | 4548 | } |
339c13b6 | 4549 | |
a35ddb44 | 4550 | if (remove_p) |
339c13b6 JB |
4551 | { |
4552 | for (j = i + 1; j < nsyms; j += 1) | |
4553 | syms[j - 1] = syms[j]; | |
4554 | nsyms -= 1; | |
4555 | } | |
4556 | ||
96d887e8 | 4557 | i += 1; |
14f9c5c9 | 4558 | } |
8f17729f JB |
4559 | |
4560 | /* If all the remaining symbols are identical enumerals, then | |
4561 | just keep the first one and discard the rest. | |
4562 | ||
4563 | Unlike what we did previously, we do not discard any entry | |
4564 | unless they are ALL identical. This is because the symbol | |
4565 | comparison is not a strict comparison, but rather a practical | |
4566 | comparison. If all symbols are considered identical, then | |
4567 | we can just go ahead and use the first one and discard the rest. | |
4568 | But if we cannot reduce the list to a single element, we have | |
4569 | to ask the user to disambiguate anyways. And if we have to | |
4570 | present a multiple-choice menu, it's less confusing if the list | |
4571 | isn't missing some choices that were identical and yet distinct. */ | |
4572 | if (symbols_are_identical_enums (syms, nsyms)) | |
4573 | nsyms = 1; | |
4574 | ||
96d887e8 | 4575 | return nsyms; |
14f9c5c9 AS |
4576 | } |
4577 | ||
96d887e8 PH |
4578 | /* Given a type that corresponds to a renaming entity, use the type name |
4579 | to extract the scope (package name or function name, fully qualified, | |
4580 | and following the GNAT encoding convention) where this renaming has been | |
4581 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4582 | |
96d887e8 PH |
4583 | static char * |
4584 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4585 | { |
96d887e8 | 4586 | /* The renaming types adhere to the following convention: |
0963b4bd | 4587 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4588 | So, to extract the scope, we search for the "___XR" extension, |
4589 | and then backtrack until we find the first "__". */ | |
76a01679 | 4590 | |
96d887e8 PH |
4591 | const char *name = type_name_no_tag (renaming_type); |
4592 | char *suffix = strstr (name, "___XR"); | |
4593 | char *last; | |
4594 | int scope_len; | |
4595 | char *scope; | |
14f9c5c9 | 4596 | |
96d887e8 PH |
4597 | /* Now, backtrack a bit until we find the first "__". Start looking |
4598 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4599 | |
96d887e8 PH |
4600 | for (last = suffix - 3; last > name; last--) |
4601 | if (last[0] == '_' && last[1] == '_') | |
4602 | break; | |
76a01679 | 4603 | |
96d887e8 | 4604 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4605 | |
96d887e8 PH |
4606 | scope_len = last - name; |
4607 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4608 | |
96d887e8 PH |
4609 | strncpy (scope, name, scope_len); |
4610 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4611 | |
96d887e8 | 4612 | return scope; |
4c4b4cd2 PH |
4613 | } |
4614 | ||
96d887e8 | 4615 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4616 | |
96d887e8 PH |
4617 | static int |
4618 | is_package_name (const char *name) | |
4c4b4cd2 | 4619 | { |
96d887e8 PH |
4620 | /* Here, We take advantage of the fact that no symbols are generated |
4621 | for packages, while symbols are generated for each function. | |
4622 | So the condition for NAME represent a package becomes equivalent | |
4623 | to NAME not existing in our list of symbols. There is only one | |
4624 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4625 | |
96d887e8 | 4626 | char *fun_name; |
76a01679 | 4627 | |
96d887e8 PH |
4628 | /* If it is a function that has not been defined at library level, |
4629 | then we should be able to look it up in the symbols. */ | |
4630 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4631 | return 0; | |
14f9c5c9 | 4632 | |
96d887e8 PH |
4633 | /* Library-level function names start with "_ada_". See if function |
4634 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4635 | |
96d887e8 | 4636 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4637 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4638 | if (strstr (name, "__") != NULL) |
4639 | return 0; | |
4c4b4cd2 | 4640 | |
b435e160 | 4641 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4642 | |
96d887e8 PH |
4643 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4644 | } | |
14f9c5c9 | 4645 | |
96d887e8 | 4646 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4647 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4648 | |
96d887e8 | 4649 | static int |
0d5cff50 | 4650 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4651 | { |
aeb5907d JB |
4652 | char *scope; |
4653 | ||
4654 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4655 | return 0; | |
4656 | ||
4657 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4658 | |
96d887e8 | 4659 | make_cleanup (xfree, scope); |
14f9c5c9 | 4660 | |
96d887e8 PH |
4661 | /* If the rename has been defined in a package, then it is visible. */ |
4662 | if (is_package_name (scope)) | |
aeb5907d | 4663 | return 0; |
14f9c5c9 | 4664 | |
96d887e8 PH |
4665 | /* Check that the rename is in the current function scope by checking |
4666 | that its name starts with SCOPE. */ | |
76a01679 | 4667 | |
96d887e8 PH |
4668 | /* If the function name starts with "_ada_", it means that it is |
4669 | a library-level function. Strip this prefix before doing the | |
4670 | comparison, as the encoding for the renaming does not contain | |
4671 | this prefix. */ | |
4672 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4673 | function_name += 5; | |
f26caa11 | 4674 | |
aeb5907d | 4675 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4676 | } |
4677 | ||
aeb5907d JB |
4678 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4679 | is not visible from the function associated with CURRENT_BLOCK or | |
4680 | that is superfluous due to the presence of more specific renaming | |
4681 | information. Places surviving symbols in the initial entries of | |
4682 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4683 | |
4684 | Rationale: | |
aeb5907d JB |
4685 | First, in cases where an object renaming is implemented as a |
4686 | reference variable, GNAT may produce both the actual reference | |
4687 | variable and the renaming encoding. In this case, we discard the | |
4688 | latter. | |
4689 | ||
4690 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4691 | entity. Unfortunately, STABS currently does not support the definition |
4692 | of types that are local to a given lexical block, so all renamings types | |
4693 | are emitted at library level. As a consequence, if an application | |
4694 | contains two renaming entities using the same name, and a user tries to | |
4695 | print the value of one of these entities, the result of the ada symbol | |
4696 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4697 | |
96d887e8 PH |
4698 | This function partially covers for this limitation by attempting to |
4699 | remove from the SYMS list renaming symbols that should be visible | |
4700 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4701 | method with the current information available. The implementation | |
4702 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4703 | ||
4704 | - When the user tries to print a rename in a function while there | |
4705 | is another rename entity defined in a package: Normally, the | |
4706 | rename in the function has precedence over the rename in the | |
4707 | package, so the latter should be removed from the list. This is | |
4708 | currently not the case. | |
4709 | ||
4710 | - This function will incorrectly remove valid renames if | |
4711 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4712 | has been changed by an "Export" pragma. As a consequence, | |
4713 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4714 | |
14f9c5c9 | 4715 | static int |
aeb5907d JB |
4716 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4717 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4718 | { |
4719 | struct symbol *current_function; | |
0d5cff50 | 4720 | const char *current_function_name; |
4c4b4cd2 | 4721 | int i; |
aeb5907d JB |
4722 | int is_new_style_renaming; |
4723 | ||
4724 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4725 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4726 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4727 | is_new_style_renaming = 0; |
4728 | for (i = 0; i < nsyms; i += 1) | |
4729 | { | |
4730 | struct symbol *sym = syms[i].sym; | |
4731 | struct block *block = syms[i].block; | |
4732 | const char *name; | |
4733 | const char *suffix; | |
4734 | ||
4735 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4736 | continue; | |
4737 | name = SYMBOL_LINKAGE_NAME (sym); | |
4738 | suffix = strstr (name, "___XR"); | |
4739 | ||
4740 | if (suffix != NULL) | |
4741 | { | |
4742 | int name_len = suffix - name; | |
4743 | int j; | |
5b4ee69b | 4744 | |
aeb5907d JB |
4745 | is_new_style_renaming = 1; |
4746 | for (j = 0; j < nsyms; j += 1) | |
4747 | if (i != j && syms[j].sym != NULL | |
4748 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4749 | name_len) == 0 | |
4750 | && block == syms[j].block) | |
4751 | syms[j].sym = NULL; | |
4752 | } | |
4753 | } | |
4754 | if (is_new_style_renaming) | |
4755 | { | |
4756 | int j, k; | |
4757 | ||
4758 | for (j = k = 0; j < nsyms; j += 1) | |
4759 | if (syms[j].sym != NULL) | |
4760 | { | |
4761 | syms[k] = syms[j]; | |
4762 | k += 1; | |
4763 | } | |
4764 | return k; | |
4765 | } | |
4c4b4cd2 PH |
4766 | |
4767 | /* Extract the function name associated to CURRENT_BLOCK. | |
4768 | Abort if unable to do so. */ | |
76a01679 | 4769 | |
4c4b4cd2 PH |
4770 | if (current_block == NULL) |
4771 | return nsyms; | |
76a01679 | 4772 | |
7f0df278 | 4773 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4774 | if (current_function == NULL) |
4775 | return nsyms; | |
4776 | ||
4777 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4778 | if (current_function_name == NULL) | |
4779 | return nsyms; | |
4780 | ||
4781 | /* Check each of the symbols, and remove it from the list if it is | |
4782 | a type corresponding to a renaming that is out of the scope of | |
4783 | the current block. */ | |
4784 | ||
4785 | i = 0; | |
4786 | while (i < nsyms) | |
4787 | { | |
aeb5907d JB |
4788 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4789 | == ADA_OBJECT_RENAMING | |
4790 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4791 | { |
4792 | int j; | |
5b4ee69b | 4793 | |
aeb5907d | 4794 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4795 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4796 | nsyms -= 1; |
4797 | } | |
4798 | else | |
4799 | i += 1; | |
4800 | } | |
4801 | ||
4802 | return nsyms; | |
4803 | } | |
4804 | ||
339c13b6 JB |
4805 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4806 | whose name and domain match NAME and DOMAIN respectively. | |
4807 | If no match was found, then extend the search to "enclosing" | |
4808 | routines (in other words, if we're inside a nested function, | |
4809 | search the symbols defined inside the enclosing functions). | |
4810 | ||
4811 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4812 | ||
4813 | static void | |
4814 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4815 | struct block *block, domain_enum domain, | |
4816 | int wild_match) | |
4817 | { | |
4818 | int block_depth = 0; | |
4819 | ||
4820 | while (block != NULL) | |
4821 | { | |
4822 | block_depth += 1; | |
4823 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4824 | ||
4825 | /* If we found a non-function match, assume that's the one. */ | |
4826 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4827 | num_defns_collected (obstackp))) | |
4828 | return; | |
4829 | ||
4830 | block = BLOCK_SUPERBLOCK (block); | |
4831 | } | |
4832 | ||
4833 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4834 | enclosing subprogram. */ | |
4835 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4836 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4837 | } | |
4838 | ||
ccefe4c4 | 4839 | /* An object of this type is used as the user_data argument when |
40658b94 | 4840 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4841 | |
40658b94 | 4842 | struct match_data |
ccefe4c4 | 4843 | { |
40658b94 | 4844 | struct objfile *objfile; |
ccefe4c4 | 4845 | struct obstack *obstackp; |
40658b94 PH |
4846 | struct symbol *arg_sym; |
4847 | int found_sym; | |
ccefe4c4 TT |
4848 | }; |
4849 | ||
40658b94 PH |
4850 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4851 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4852 | containing the obstack that collects the symbol list, the file that SYM | |
4853 | must come from, a flag indicating whether a non-argument symbol has | |
4854 | been found in the current block, and the last argument symbol | |
4855 | passed in SYM within the current block (if any). When SYM is null, | |
4856 | marking the end of a block, the argument symbol is added if no | |
4857 | other has been found. */ | |
ccefe4c4 | 4858 | |
40658b94 PH |
4859 | static int |
4860 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4861 | { |
40658b94 PH |
4862 | struct match_data *data = (struct match_data *) data0; |
4863 | ||
4864 | if (sym == NULL) | |
4865 | { | |
4866 | if (!data->found_sym && data->arg_sym != NULL) | |
4867 | add_defn_to_vec (data->obstackp, | |
4868 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4869 | block); | |
4870 | data->found_sym = 0; | |
4871 | data->arg_sym = NULL; | |
4872 | } | |
4873 | else | |
4874 | { | |
4875 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4876 | return 0; | |
4877 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4878 | data->arg_sym = sym; | |
4879 | else | |
4880 | { | |
4881 | data->found_sym = 1; | |
4882 | add_defn_to_vec (data->obstackp, | |
4883 | fixup_symbol_section (sym, data->objfile), | |
4884 | block); | |
4885 | } | |
4886 | } | |
4887 | return 0; | |
4888 | } | |
4889 | ||
4890 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4891 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4892 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4893 | what symbols compare equal). */ | |
5b4ee69b | 4894 | |
40658b94 PH |
4895 | static int |
4896 | compare_names (const char *string1, const char *string2) | |
4897 | { | |
4898 | while (*string1 != '\0' && *string2 != '\0') | |
4899 | { | |
4900 | if (isspace (*string1) || isspace (*string2)) | |
4901 | return strcmp_iw_ordered (string1, string2); | |
4902 | if (*string1 != *string2) | |
4903 | break; | |
4904 | string1 += 1; | |
4905 | string2 += 1; | |
4906 | } | |
4907 | switch (*string1) | |
4908 | { | |
4909 | case '(': | |
4910 | return strcmp_iw_ordered (string1, string2); | |
4911 | case '_': | |
4912 | if (*string2 == '\0') | |
4913 | { | |
052874e8 | 4914 | if (is_name_suffix (string1)) |
40658b94 PH |
4915 | return 0; |
4916 | else | |
1a1d5513 | 4917 | return 1; |
40658b94 | 4918 | } |
dbb8534f | 4919 | /* FALLTHROUGH */ |
40658b94 PH |
4920 | default: |
4921 | if (*string2 == '(') | |
4922 | return strcmp_iw_ordered (string1, string2); | |
4923 | else | |
4924 | return *string1 - *string2; | |
4925 | } | |
ccefe4c4 TT |
4926 | } |
4927 | ||
339c13b6 JB |
4928 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4929 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4930 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4931 | ||
4932 | static void | |
40658b94 PH |
4933 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4934 | domain_enum domain, int global, | |
4935 | int is_wild_match) | |
339c13b6 JB |
4936 | { |
4937 | struct objfile *objfile; | |
40658b94 | 4938 | struct match_data data; |
339c13b6 | 4939 | |
6475f2fe | 4940 | memset (&data, 0, sizeof data); |
ccefe4c4 | 4941 | data.obstackp = obstackp; |
339c13b6 | 4942 | |
ccefe4c4 | 4943 | ALL_OBJFILES (objfile) |
40658b94 PH |
4944 | { |
4945 | data.objfile = objfile; | |
4946 | ||
4947 | if (is_wild_match) | |
4948 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4949 | aux_add_nonlocal_symbols, &data, | |
4950 | wild_match, NULL); | |
4951 | else | |
4952 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4953 | aux_add_nonlocal_symbols, &data, | |
4954 | full_match, compare_names); | |
4955 | } | |
4956 | ||
4957 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4958 | { | |
4959 | ALL_OBJFILES (objfile) | |
4960 | { | |
4961 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4962 | strcpy (name1, "_ada_"); | |
4963 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4964 | data.objfile = objfile; | |
0963b4bd MS |
4965 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4966 | objfile, global, | |
4967 | aux_add_nonlocal_symbols, | |
4968 | &data, | |
40658b94 PH |
4969 | full_match, compare_names); |
4970 | } | |
4971 | } | |
339c13b6 JB |
4972 | } |
4973 | ||
4c4b4cd2 PH |
4974 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4975 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4976 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4977 | indicating the symbols found and the blocks and symbol tables (if |
4978 | any) in which they were found. This vector are transient---good only to | |
4979 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4980 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4981 | is the one match returned (no other matches in that or | |
d9680e73 TT |
4982 | enclosing blocks is returned). If there are any matches in or |
4983 | surrounding BLOCK0, then these alone are returned. Otherwise, if | |
4984 | FULL_SEARCH is non-zero, then the search extends to global and | |
4985 | file-scope (static) symbol tables. | |
4c4b4cd2 PH |
4986 | Names prefixed with "standard__" are handled specially: "standard__" |
4987 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4988 | |
4989 | int | |
4c4b4cd2 | 4990 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
d9680e73 TT |
4991 | domain_enum namespace, |
4992 | struct ada_symbol_info **results, | |
4993 | int full_search) | |
14f9c5c9 AS |
4994 | { |
4995 | struct symbol *sym; | |
14f9c5c9 | 4996 | struct block *block; |
4c4b4cd2 | 4997 | const char *name; |
c0431670 | 4998 | const int wild_match = should_use_wild_match (name0); |
14f9c5c9 | 4999 | int cacheIfUnique; |
4c4b4cd2 | 5000 | int ndefns; |
14f9c5c9 | 5001 | |
4c4b4cd2 PH |
5002 | obstack_free (&symbol_list_obstack, NULL); |
5003 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5004 | |
14f9c5c9 AS |
5005 | cacheIfUnique = 0; |
5006 | ||
5007 | /* Search specified block and its superiors. */ | |
5008 | ||
4c4b4cd2 | 5009 | name = name0; |
76a01679 JB |
5010 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5011 | needed, but adding const will | |
5012 | have a cascade effect. */ | |
339c13b6 JB |
5013 | |
5014 | /* Special case: If the user specifies a symbol name inside package | |
5015 | Standard, do a non-wild matching of the symbol name without | |
5016 | the "standard__" prefix. This was primarily introduced in order | |
5017 | to allow the user to specifically access the standard exceptions | |
5018 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5019 | is ambiguous (due to the user defining its own Constraint_Error | |
5020 | entity inside its program). */ | |
4c4b4cd2 PH |
5021 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5022 | { | |
4c4b4cd2 PH |
5023 | block = NULL; |
5024 | name = name0 + sizeof ("standard__") - 1; | |
5025 | } | |
5026 | ||
339c13b6 | 5027 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5028 | |
339c13b6 JB |
5029 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
5030 | wild_match); | |
d9680e73 | 5031 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) |
14f9c5c9 | 5032 | goto done; |
d2e4a39e | 5033 | |
339c13b6 JB |
5034 | /* No non-global symbols found. Check our cache to see if we have |
5035 | already performed this search before. If we have, then return | |
5036 | the same result. */ | |
5037 | ||
14f9c5c9 | 5038 | cacheIfUnique = 1; |
2570f2b7 | 5039 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5040 | { |
5041 | if (sym != NULL) | |
2570f2b7 | 5042 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5043 | goto done; |
5044 | } | |
14f9c5c9 | 5045 | |
339c13b6 JB |
5046 | /* Search symbols from all global blocks. */ |
5047 | ||
40658b94 PH |
5048 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
5049 | wild_match); | |
d2e4a39e | 5050 | |
4c4b4cd2 | 5051 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5052 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5053 | |
4c4b4cd2 | 5054 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
5055 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
5056 | wild_match); | |
14f9c5c9 | 5057 | |
4c4b4cd2 PH |
5058 | done: |
5059 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5060 | *results = defns_collected (&symbol_list_obstack, 1); | |
5061 | ||
5062 | ndefns = remove_extra_symbols (*results, ndefns); | |
5063 | ||
d2e4a39e | 5064 | if (ndefns == 0) |
2570f2b7 | 5065 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5066 | |
4c4b4cd2 | 5067 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 5068 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5069 | |
aeb5907d | 5070 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5071 | |
14f9c5c9 AS |
5072 | return ndefns; |
5073 | } | |
5074 | ||
f8eba3c6 TT |
5075 | /* If NAME is the name of an entity, return a string that should |
5076 | be used to look that entity up in Ada units. This string should | |
5077 | be deallocated after use using xfree. | |
5078 | ||
5079 | NAME can have any form that the "break" or "print" commands might | |
5080 | recognize. In other words, it does not have to be the "natural" | |
5081 | name, or the "encoded" name. */ | |
5082 | ||
5083 | char * | |
5084 | ada_name_for_lookup (const char *name) | |
5085 | { | |
5086 | char *canon; | |
5087 | int nlen = strlen (name); | |
5088 | ||
5089 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5090 | { | |
5091 | canon = xmalloc (nlen - 1); | |
5092 | memcpy (canon, name + 1, nlen - 2); | |
5093 | canon[nlen - 2] = '\0'; | |
5094 | } | |
5095 | else | |
5096 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5097 | return canon; | |
5098 | } | |
5099 | ||
5100 | /* Implementation of the la_iterate_over_symbols method. */ | |
5101 | ||
5102 | static void | |
5103 | ada_iterate_over_symbols (const struct block *block, | |
5104 | const char *name, domain_enum domain, | |
8e704927 | 5105 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
5106 | void *data) |
5107 | { | |
5108 | int ndefs, i; | |
5109 | struct ada_symbol_info *results; | |
5110 | ||
d9680e73 | 5111 | ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0); |
f8eba3c6 TT |
5112 | for (i = 0; i < ndefs; ++i) |
5113 | { | |
5114 | if (! (*callback) (results[i].sym, data)) | |
5115 | break; | |
5116 | } | |
5117 | } | |
5118 | ||
d2e4a39e | 5119 | struct symbol * |
aeb5907d | 5120 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 5121 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 5122 | { |
4c4b4cd2 | 5123 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5124 | int n_candidates; |
5125 | ||
d9680e73 TT |
5126 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates, |
5127 | 1); | |
14f9c5c9 AS |
5128 | |
5129 | if (n_candidates == 0) | |
5130 | return NULL; | |
4c4b4cd2 | 5131 | |
aeb5907d JB |
5132 | if (block_found != NULL) |
5133 | *block_found = candidates[0].block; | |
4c4b4cd2 | 5134 | |
21b556f4 | 5135 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
5136 | } |
5137 | ||
5138 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5139 | scope and in global scopes, or NULL if none. NAME is folded and | |
5140 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5141 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
5142 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
5143 | table in which the symbol was found (in both cases, these | |
5144 | assignments occur only if the pointers are non-null). */ | |
5145 | struct symbol * | |
5146 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5147 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
5148 | { |
5149 | if (is_a_field_of_this != NULL) | |
5150 | *is_a_field_of_this = 0; | |
5151 | ||
5152 | return | |
5153 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 5154 | block0, namespace, NULL); |
4c4b4cd2 | 5155 | } |
14f9c5c9 | 5156 | |
4c4b4cd2 PH |
5157 | static struct symbol * |
5158 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5159 | const struct block *block, |
21b556f4 | 5160 | const domain_enum domain) |
4c4b4cd2 | 5161 | { |
94af9270 | 5162 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5163 | } |
5164 | ||
5165 | ||
4c4b4cd2 PH |
5166 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5167 | that is to be ignored for matching purposes. Suffixes of parallel | |
5168 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5169 | are given by any of the regular expressions: |
4c4b4cd2 | 5170 | |
babe1480 JB |
5171 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5172 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5173 | TKB [subprogram suffix for task bodies] |
babe1480 | 5174 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5175 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5176 | |
5177 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5178 | match is performed. This sequence is used to differentiate homonyms, | |
5179 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5180 | |
14f9c5c9 | 5181 | static int |
d2e4a39e | 5182 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5183 | { |
5184 | int k; | |
4c4b4cd2 PH |
5185 | const char *matching; |
5186 | const int len = strlen (str); | |
5187 | ||
babe1480 JB |
5188 | /* Skip optional leading __[0-9]+. */ |
5189 | ||
4c4b4cd2 PH |
5190 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5191 | { | |
babe1480 JB |
5192 | str += 3; |
5193 | while (isdigit (str[0])) | |
5194 | str += 1; | |
4c4b4cd2 | 5195 | } |
babe1480 JB |
5196 | |
5197 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5198 | |
babe1480 | 5199 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5200 | { |
babe1480 | 5201 | matching = str + 1; |
4c4b4cd2 PH |
5202 | while (isdigit (matching[0])) |
5203 | matching += 1; | |
5204 | if (matching[0] == '\0') | |
5205 | return 1; | |
5206 | } | |
5207 | ||
5208 | /* ___[0-9]+ */ | |
babe1480 | 5209 | |
4c4b4cd2 PH |
5210 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5211 | { | |
5212 | matching = str + 3; | |
5213 | while (isdigit (matching[0])) | |
5214 | matching += 1; | |
5215 | if (matching[0] == '\0') | |
5216 | return 1; | |
5217 | } | |
5218 | ||
9ac7f98e JB |
5219 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5220 | ||
5221 | if (strcmp (str, "TKB") == 0) | |
5222 | return 1; | |
5223 | ||
529cad9c PH |
5224 | #if 0 |
5225 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5226 | with a N at the end. Unfortunately, the compiler uses the same |
5227 | convention for other internal types it creates. So treating | |
529cad9c | 5228 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5229 | some regressions. For instance, consider the case of an enumerated |
5230 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5231 | name ends with N. |
5232 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5233 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5234 | to be something like "_N" instead. In the meantime, do not do |
5235 | the following check. */ | |
5236 | /* Protected Object Subprograms */ | |
5237 | if (len == 1 && str [0] == 'N') | |
5238 | return 1; | |
5239 | #endif | |
5240 | ||
5241 | /* _E[0-9]+[bs]$ */ | |
5242 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5243 | { | |
5244 | matching = str + 3; | |
5245 | while (isdigit (matching[0])) | |
5246 | matching += 1; | |
5247 | if ((matching[0] == 'b' || matching[0] == 's') | |
5248 | && matching [1] == '\0') | |
5249 | return 1; | |
5250 | } | |
5251 | ||
4c4b4cd2 PH |
5252 | /* ??? We should not modify STR directly, as we are doing below. This |
5253 | is fine in this case, but may become problematic later if we find | |
5254 | that this alternative did not work, and want to try matching | |
5255 | another one from the begining of STR. Since we modified it, we | |
5256 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5257 | if (str[0] == 'X') |
5258 | { | |
5259 | str += 1; | |
d2e4a39e | 5260 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5261 | { |
5262 | if (str[0] != 'n' && str[0] != 'b') | |
5263 | return 0; | |
5264 | str += 1; | |
5265 | } | |
14f9c5c9 | 5266 | } |
babe1480 | 5267 | |
14f9c5c9 AS |
5268 | if (str[0] == '\000') |
5269 | return 1; | |
babe1480 | 5270 | |
d2e4a39e | 5271 | if (str[0] == '_') |
14f9c5c9 AS |
5272 | { |
5273 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5274 | return 0; |
d2e4a39e | 5275 | if (str[2] == '_') |
4c4b4cd2 | 5276 | { |
61ee279c PH |
5277 | if (strcmp (str + 3, "JM") == 0) |
5278 | return 1; | |
5279 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5280 | the LJM suffix in favor of the JM one. But we will | |
5281 | still accept LJM as a valid suffix for a reasonable | |
5282 | amount of time, just to allow ourselves to debug programs | |
5283 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5284 | if (strcmp (str + 3, "LJM") == 0) |
5285 | return 1; | |
5286 | if (str[3] != 'X') | |
5287 | return 0; | |
1265e4aa JB |
5288 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5289 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5290 | return 1; |
5291 | if (str[4] == 'R' && str[5] != 'T') | |
5292 | return 1; | |
5293 | return 0; | |
5294 | } | |
5295 | if (!isdigit (str[2])) | |
5296 | return 0; | |
5297 | for (k = 3; str[k] != '\0'; k += 1) | |
5298 | if (!isdigit (str[k]) && str[k] != '_') | |
5299 | return 0; | |
14f9c5c9 AS |
5300 | return 1; |
5301 | } | |
4c4b4cd2 | 5302 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5303 | { |
4c4b4cd2 PH |
5304 | for (k = 2; str[k] != '\0'; k += 1) |
5305 | if (!isdigit (str[k]) && str[k] != '_') | |
5306 | return 0; | |
14f9c5c9 AS |
5307 | return 1; |
5308 | } | |
5309 | return 0; | |
5310 | } | |
d2e4a39e | 5311 | |
aeb5907d JB |
5312 | /* Return non-zero if the string starting at NAME and ending before |
5313 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5314 | |
5315 | static int | |
5316 | is_valid_name_for_wild_match (const char *name0) | |
5317 | { | |
5318 | const char *decoded_name = ada_decode (name0); | |
5319 | int i; | |
5320 | ||
5823c3ef JB |
5321 | /* If the decoded name starts with an angle bracket, it means that |
5322 | NAME0 does not follow the GNAT encoding format. It should then | |
5323 | not be allowed as a possible wild match. */ | |
5324 | if (decoded_name[0] == '<') | |
5325 | return 0; | |
5326 | ||
529cad9c PH |
5327 | for (i=0; decoded_name[i] != '\0'; i++) |
5328 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5329 | return 0; | |
5330 | ||
5331 | return 1; | |
5332 | } | |
5333 | ||
73589123 PH |
5334 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5335 | that could start a simple name. Assumes that *NAMEP points into | |
5336 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5337 | |
14f9c5c9 | 5338 | static int |
73589123 | 5339 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5340 | { |
73589123 | 5341 | const char *name = *namep; |
5b4ee69b | 5342 | |
5823c3ef | 5343 | while (1) |
14f9c5c9 | 5344 | { |
aa27d0b3 | 5345 | int t0, t1; |
73589123 PH |
5346 | |
5347 | t0 = *name; | |
5348 | if (t0 == '_') | |
5349 | { | |
5350 | t1 = name[1]; | |
5351 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5352 | { | |
5353 | name += 1; | |
5354 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5355 | break; | |
5356 | else | |
5357 | name += 1; | |
5358 | } | |
aa27d0b3 JB |
5359 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5360 | || name[2] == target0)) | |
73589123 PH |
5361 | { |
5362 | name += 2; | |
5363 | break; | |
5364 | } | |
5365 | else | |
5366 | return 0; | |
5367 | } | |
5368 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5369 | name += 1; | |
5370 | else | |
5823c3ef | 5371 | return 0; |
73589123 PH |
5372 | } |
5373 | ||
5374 | *namep = name; | |
5375 | return 1; | |
5376 | } | |
5377 | ||
5378 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5379 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5380 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5381 | ||
5382 | static int | |
5383 | wild_match (const char *name, const char *patn) | |
5384 | { | |
5385 | const char *p, *n; | |
5386 | const char *name0 = name; | |
5387 | ||
5388 | while (1) | |
5389 | { | |
5390 | const char *match = name; | |
5391 | ||
5392 | if (*name == *patn) | |
5393 | { | |
5394 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5395 | if (*p != *name) | |
5396 | break; | |
5397 | if (*p == '\0' && is_name_suffix (name)) | |
5398 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5399 | ||
5400 | if (name[-1] == '_') | |
5401 | name -= 1; | |
5402 | } | |
5403 | if (!advance_wild_match (&name, name0, *patn)) | |
5404 | return 1; | |
96d887e8 | 5405 | } |
96d887e8 PH |
5406 | } |
5407 | ||
40658b94 PH |
5408 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5409 | informational suffix. */ | |
5410 | ||
c4d840bd PH |
5411 | static int |
5412 | full_match (const char *sym_name, const char *search_name) | |
5413 | { | |
40658b94 | 5414 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5415 | } |
5416 | ||
5417 | ||
96d887e8 PH |
5418 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5419 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5420 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5421 | OBJFILE is the section containing BLOCK. |
5422 | SYMTAB is recorded with each symbol added. */ | |
5423 | ||
5424 | static void | |
5425 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5426 | struct block *block, const char *name, |
96d887e8 | 5427 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5428 | int wild) |
96d887e8 PH |
5429 | { |
5430 | struct dict_iterator iter; | |
5431 | int name_len = strlen (name); | |
5432 | /* A matching argument symbol, if any. */ | |
5433 | struct symbol *arg_sym; | |
5434 | /* Set true when we find a matching non-argument symbol. */ | |
5435 | int found_sym; | |
5436 | struct symbol *sym; | |
5437 | ||
5438 | arg_sym = NULL; | |
5439 | found_sym = 0; | |
5440 | if (wild) | |
5441 | { | |
c4d840bd PH |
5442 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5443 | wild_match, &iter); | |
5444 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5445 | { |
5eeb2539 AR |
5446 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5447 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5448 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5449 | { |
2a2d4dc3 AS |
5450 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5451 | continue; | |
5452 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5453 | arg_sym = sym; | |
5454 | else | |
5455 | { | |
76a01679 JB |
5456 | found_sym = 1; |
5457 | add_defn_to_vec (obstackp, | |
5458 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5459 | block); |
76a01679 JB |
5460 | } |
5461 | } | |
5462 | } | |
96d887e8 PH |
5463 | } |
5464 | else | |
5465 | { | |
c4d840bd | 5466 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5467 | full_match, &iter); |
c4d840bd | 5468 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5469 | { |
5eeb2539 AR |
5470 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5471 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5472 | { |
c4d840bd PH |
5473 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5474 | { | |
5475 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5476 | arg_sym = sym; | |
5477 | else | |
2a2d4dc3 | 5478 | { |
c4d840bd PH |
5479 | found_sym = 1; |
5480 | add_defn_to_vec (obstackp, | |
5481 | fixup_symbol_section (sym, objfile), | |
5482 | block); | |
2a2d4dc3 | 5483 | } |
c4d840bd | 5484 | } |
76a01679 JB |
5485 | } |
5486 | } | |
96d887e8 PH |
5487 | } |
5488 | ||
5489 | if (!found_sym && arg_sym != NULL) | |
5490 | { | |
76a01679 JB |
5491 | add_defn_to_vec (obstackp, |
5492 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5493 | block); |
96d887e8 PH |
5494 | } |
5495 | ||
5496 | if (!wild) | |
5497 | { | |
5498 | arg_sym = NULL; | |
5499 | found_sym = 0; | |
5500 | ||
5501 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5502 | { |
5eeb2539 AR |
5503 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5504 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5505 | { |
5506 | int cmp; | |
5507 | ||
5508 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5509 | if (cmp == 0) | |
5510 | { | |
5511 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5512 | if (cmp == 0) | |
5513 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5514 | name_len); | |
5515 | } | |
5516 | ||
5517 | if (cmp == 0 | |
5518 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5519 | { | |
2a2d4dc3 AS |
5520 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5521 | { | |
5522 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5523 | arg_sym = sym; | |
5524 | else | |
5525 | { | |
5526 | found_sym = 1; | |
5527 | add_defn_to_vec (obstackp, | |
5528 | fixup_symbol_section (sym, objfile), | |
5529 | block); | |
5530 | } | |
5531 | } | |
76a01679 JB |
5532 | } |
5533 | } | |
76a01679 | 5534 | } |
96d887e8 PH |
5535 | |
5536 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5537 | They aren't parameters, right? */ | |
5538 | if (!found_sym && arg_sym != NULL) | |
5539 | { | |
5540 | add_defn_to_vec (obstackp, | |
76a01679 | 5541 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5542 | block); |
96d887e8 PH |
5543 | } |
5544 | } | |
5545 | } | |
5546 | \f | |
41d27058 JB |
5547 | |
5548 | /* Symbol Completion */ | |
5549 | ||
5550 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5551 | name in a form that's appropriate for the completion. The result | |
5552 | does not need to be deallocated, but is only good until the next call. | |
5553 | ||
5554 | TEXT_LEN is equal to the length of TEXT. | |
5555 | Perform a wild match if WILD_MATCH is set. | |
5556 | ENCODED should be set if TEXT represents the start of a symbol name | |
5557 | in its encoded form. */ | |
5558 | ||
5559 | static const char * | |
5560 | symbol_completion_match (const char *sym_name, | |
5561 | const char *text, int text_len, | |
5562 | int wild_match, int encoded) | |
5563 | { | |
41d27058 JB |
5564 | const int verbatim_match = (text[0] == '<'); |
5565 | int match = 0; | |
5566 | ||
5567 | if (verbatim_match) | |
5568 | { | |
5569 | /* Strip the leading angle bracket. */ | |
5570 | text = text + 1; | |
5571 | text_len--; | |
5572 | } | |
5573 | ||
5574 | /* First, test against the fully qualified name of the symbol. */ | |
5575 | ||
5576 | if (strncmp (sym_name, text, text_len) == 0) | |
5577 | match = 1; | |
5578 | ||
5579 | if (match && !encoded) | |
5580 | { | |
5581 | /* One needed check before declaring a positive match is to verify | |
5582 | that iff we are doing a verbatim match, the decoded version | |
5583 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5584 | is not a suitable completion. */ | |
5585 | const char *sym_name_copy = sym_name; | |
5586 | int has_angle_bracket; | |
5587 | ||
5588 | sym_name = ada_decode (sym_name); | |
5589 | has_angle_bracket = (sym_name[0] == '<'); | |
5590 | match = (has_angle_bracket == verbatim_match); | |
5591 | sym_name = sym_name_copy; | |
5592 | } | |
5593 | ||
5594 | if (match && !verbatim_match) | |
5595 | { | |
5596 | /* When doing non-verbatim match, another check that needs to | |
5597 | be done is to verify that the potentially matching symbol name | |
5598 | does not include capital letters, because the ada-mode would | |
5599 | not be able to understand these symbol names without the | |
5600 | angle bracket notation. */ | |
5601 | const char *tmp; | |
5602 | ||
5603 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5604 | if (*tmp != '\0') | |
5605 | match = 0; | |
5606 | } | |
5607 | ||
5608 | /* Second: Try wild matching... */ | |
5609 | ||
5610 | if (!match && wild_match) | |
5611 | { | |
5612 | /* Since we are doing wild matching, this means that TEXT | |
5613 | may represent an unqualified symbol name. We therefore must | |
5614 | also compare TEXT against the unqualified name of the symbol. */ | |
5615 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5616 | ||
5617 | if (strncmp (sym_name, text, text_len) == 0) | |
5618 | match = 1; | |
5619 | } | |
5620 | ||
5621 | /* Finally: If we found a mach, prepare the result to return. */ | |
5622 | ||
5623 | if (!match) | |
5624 | return NULL; | |
5625 | ||
5626 | if (verbatim_match) | |
5627 | sym_name = add_angle_brackets (sym_name); | |
5628 | ||
5629 | if (!encoded) | |
5630 | sym_name = ada_decode (sym_name); | |
5631 | ||
5632 | return sym_name; | |
5633 | } | |
5634 | ||
5635 | /* A companion function to ada_make_symbol_completion_list(). | |
5636 | Check if SYM_NAME represents a symbol which name would be suitable | |
5637 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5638 | it is appended at the end of the given string vector SV. | |
5639 | ||
5640 | ORIG_TEXT is the string original string from the user command | |
5641 | that needs to be completed. WORD is the entire command on which | |
5642 | completion should be performed. These two parameters are used to | |
5643 | determine which part of the symbol name should be added to the | |
5644 | completion vector. | |
5645 | if WILD_MATCH is set, then wild matching is performed. | |
5646 | ENCODED should be set if TEXT represents a symbol name in its | |
5647 | encoded formed (in which case the completion should also be | |
5648 | encoded). */ | |
5649 | ||
5650 | static void | |
d6565258 | 5651 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5652 | const char *sym_name, |
5653 | const char *text, int text_len, | |
5654 | const char *orig_text, const char *word, | |
5655 | int wild_match, int encoded) | |
5656 | { | |
5657 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5658 | wild_match, encoded); | |
5659 | char *completion; | |
5660 | ||
5661 | if (match == NULL) | |
5662 | return; | |
5663 | ||
5664 | /* We found a match, so add the appropriate completion to the given | |
5665 | string vector. */ | |
5666 | ||
5667 | if (word == orig_text) | |
5668 | { | |
5669 | completion = xmalloc (strlen (match) + 5); | |
5670 | strcpy (completion, match); | |
5671 | } | |
5672 | else if (word > orig_text) | |
5673 | { | |
5674 | /* Return some portion of sym_name. */ | |
5675 | completion = xmalloc (strlen (match) + 5); | |
5676 | strcpy (completion, match + (word - orig_text)); | |
5677 | } | |
5678 | else | |
5679 | { | |
5680 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5681 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5682 | strncpy (completion, word, orig_text - word); | |
5683 | completion[orig_text - word] = '\0'; | |
5684 | strcat (completion, match); | |
5685 | } | |
5686 | ||
d6565258 | 5687 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5688 | } |
5689 | ||
ccefe4c4 | 5690 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5691 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5692 | struct add_partial_datum |
5693 | { | |
5694 | VEC(char_ptr) **completions; | |
5695 | char *text; | |
5696 | int text_len; | |
5697 | char *text0; | |
5698 | char *word; | |
5699 | int wild_match; | |
5700 | int encoded; | |
5701 | }; | |
5702 | ||
7b08b9eb JK |
5703 | /* A callback for expand_partial_symbol_names. */ |
5704 | static int | |
e078317b | 5705 | ada_expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
5706 | { |
5707 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5708 | |
5709 | return symbol_completion_match (name, data->text, data->text_len, | |
5710 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5711 | } |
5712 | ||
41d27058 JB |
5713 | /* Return a list of possible symbol names completing TEXT0. The list |
5714 | is NULL terminated. WORD is the entire command on which completion | |
5715 | is made. */ | |
5716 | ||
5717 | static char ** | |
5718 | ada_make_symbol_completion_list (char *text0, char *word) | |
5719 | { | |
5720 | char *text; | |
5721 | int text_len; | |
5722 | int wild_match; | |
5723 | int encoded; | |
2ba95b9b | 5724 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5725 | struct symbol *sym; |
5726 | struct symtab *s; | |
41d27058 JB |
5727 | struct minimal_symbol *msymbol; |
5728 | struct objfile *objfile; | |
5729 | struct block *b, *surrounding_static_block = 0; | |
5730 | int i; | |
5731 | struct dict_iterator iter; | |
5732 | ||
5733 | if (text0[0] == '<') | |
5734 | { | |
5735 | text = xstrdup (text0); | |
5736 | make_cleanup (xfree, text); | |
5737 | text_len = strlen (text); | |
5738 | wild_match = 0; | |
5739 | encoded = 1; | |
5740 | } | |
5741 | else | |
5742 | { | |
5743 | text = xstrdup (ada_encode (text0)); | |
5744 | make_cleanup (xfree, text); | |
5745 | text_len = strlen (text); | |
5746 | for (i = 0; i < text_len; i++) | |
5747 | text[i] = tolower (text[i]); | |
5748 | ||
5749 | encoded = (strstr (text0, "__") != NULL); | |
5750 | /* If the name contains a ".", then the user is entering a fully | |
5751 | qualified entity name, and the match must not be done in wild | |
5752 | mode. Similarly, if the user wants to complete what looks like | |
5753 | an encoded name, the match must not be done in wild mode. */ | |
5754 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5755 | } | |
5756 | ||
5757 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5758 | { |
ccefe4c4 TT |
5759 | struct add_partial_datum data; |
5760 | ||
5761 | data.completions = &completions; | |
5762 | data.text = text; | |
5763 | data.text_len = text_len; | |
5764 | data.text0 = text0; | |
5765 | data.word = word; | |
5766 | data.wild_match = wild_match; | |
5767 | data.encoded = encoded; | |
7b08b9eb | 5768 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5769 | } |
5770 | ||
5771 | /* At this point scan through the misc symbol vectors and add each | |
5772 | symbol you find to the list. Eventually we want to ignore | |
5773 | anything that isn't a text symbol (everything else will be | |
5774 | handled by the psymtab code above). */ | |
5775 | ||
5776 | ALL_MSYMBOLS (objfile, msymbol) | |
5777 | { | |
5778 | QUIT; | |
d6565258 | 5779 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5780 | text, text_len, text0, word, wild_match, encoded); |
5781 | } | |
5782 | ||
5783 | /* Search upwards from currently selected frame (so that we can | |
5784 | complete on local vars. */ | |
5785 | ||
5786 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5787 | { | |
5788 | if (!BLOCK_SUPERBLOCK (b)) | |
5789 | surrounding_static_block = b; /* For elmin of dups */ | |
5790 | ||
5791 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5792 | { | |
d6565258 | 5793 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5794 | text, text_len, text0, word, |
5795 | wild_match, encoded); | |
5796 | } | |
5797 | } | |
5798 | ||
5799 | /* Go through the symtabs and check the externs and statics for | |
5800 | symbols which match. */ | |
5801 | ||
5802 | ALL_SYMTABS (objfile, s) | |
5803 | { | |
5804 | QUIT; | |
5805 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5806 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5807 | { | |
d6565258 | 5808 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5809 | text, text_len, text0, word, |
5810 | wild_match, encoded); | |
5811 | } | |
5812 | } | |
5813 | ||
5814 | ALL_SYMTABS (objfile, s) | |
5815 | { | |
5816 | QUIT; | |
5817 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5818 | /* Don't do this block twice. */ | |
5819 | if (b == surrounding_static_block) | |
5820 | continue; | |
5821 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5822 | { | |
d6565258 | 5823 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5824 | text, text_len, text0, word, |
5825 | wild_match, encoded); | |
5826 | } | |
5827 | } | |
5828 | ||
5829 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5830 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5831 | |
2ba95b9b JB |
5832 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5833 | return the copy. It's unfortunate that we have to make a copy | |
5834 | of an array that we're about to destroy, but there is nothing much | |
5835 | we can do about it. Fortunately, it's typically not a very large | |
5836 | array. */ | |
5837 | { | |
5838 | const size_t completions_size = | |
5839 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5840 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5841 | |
5842 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5843 | ||
5844 | VEC_free (char_ptr, completions); | |
5845 | return result; | |
5846 | } | |
41d27058 JB |
5847 | } |
5848 | ||
963a6417 | 5849 | /* Field Access */ |
96d887e8 | 5850 | |
73fb9985 JB |
5851 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5852 | for tagged types. */ | |
5853 | ||
5854 | static int | |
5855 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5856 | { | |
0d5cff50 | 5857 | const char *name; |
73fb9985 JB |
5858 | |
5859 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5860 | return 0; | |
5861 | ||
5862 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5863 | if (name == NULL) | |
5864 | return 0; | |
5865 | ||
5866 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5867 | } | |
5868 | ||
963a6417 PH |
5869 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5870 | to be invisible to users. */ | |
96d887e8 | 5871 | |
963a6417 PH |
5872 | int |
5873 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5874 | { |
963a6417 PH |
5875 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5876 | return 1; | |
73fb9985 JB |
5877 | |
5878 | /* Check the name of that field. */ | |
5879 | { | |
5880 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5881 | ||
5882 | /* Anonymous field names should not be printed. | |
5883 | brobecker/2007-02-20: I don't think this can actually happen | |
5884 | but we don't want to print the value of annonymous fields anyway. */ | |
5885 | if (name == NULL) | |
5886 | return 1; | |
5887 | ||
5888 | /* A field named "_parent" is internally generated by GNAT for | |
5889 | tagged types, and should not be printed either. */ | |
5890 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5891 | return 1; | |
5892 | } | |
5893 | ||
5894 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5895 | if (ada_is_tagged_type (type, 1) | |
5896 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5897 | return 1; | |
5898 | ||
5899 | /* Not a special field, so it should not be ignored. */ | |
5900 | return 0; | |
963a6417 | 5901 | } |
96d887e8 | 5902 | |
963a6417 | 5903 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5904 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5905 | |
963a6417 PH |
5906 | int |
5907 | ada_is_tagged_type (struct type *type, int refok) | |
5908 | { | |
5909 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5910 | } | |
96d887e8 | 5911 | |
963a6417 | 5912 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5913 | |
963a6417 PH |
5914 | int |
5915 | ada_is_tag_type (struct type *type) | |
5916 | { | |
5917 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5918 | return 0; | |
5919 | else | |
96d887e8 | 5920 | { |
963a6417 | 5921 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5922 | |
963a6417 PH |
5923 | return (name != NULL |
5924 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5925 | } |
96d887e8 PH |
5926 | } |
5927 | ||
963a6417 | 5928 | /* The type of the tag on VAL. */ |
76a01679 | 5929 | |
963a6417 PH |
5930 | struct type * |
5931 | ada_tag_type (struct value *val) | |
96d887e8 | 5932 | { |
df407dfe | 5933 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5934 | } |
96d887e8 | 5935 | |
963a6417 | 5936 | /* The value of the tag on VAL. */ |
96d887e8 | 5937 | |
963a6417 PH |
5938 | struct value * |
5939 | ada_value_tag (struct value *val) | |
5940 | { | |
03ee6b2e | 5941 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5942 | } |
5943 | ||
963a6417 PH |
5944 | /* The value of the tag on the object of type TYPE whose contents are |
5945 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5946 | ADDRESS. */ |
96d887e8 | 5947 | |
963a6417 | 5948 | static struct value * |
10a2c479 | 5949 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5950 | const gdb_byte *valaddr, |
963a6417 | 5951 | CORE_ADDR address) |
96d887e8 | 5952 | { |
b5385fc0 | 5953 | int tag_byte_offset; |
963a6417 | 5954 | struct type *tag_type; |
5b4ee69b | 5955 | |
963a6417 | 5956 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5957 | NULL, NULL, NULL)) |
96d887e8 | 5958 | { |
fc1a4b47 | 5959 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5960 | ? NULL |
5961 | : valaddr + tag_byte_offset); | |
963a6417 | 5962 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5963 | |
963a6417 | 5964 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5965 | } |
963a6417 PH |
5966 | return NULL; |
5967 | } | |
96d887e8 | 5968 | |
963a6417 PH |
5969 | static struct type * |
5970 | type_from_tag (struct value *tag) | |
5971 | { | |
5972 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5973 | |
963a6417 PH |
5974 | if (type_name != NULL) |
5975 | return ada_find_any_type (ada_encode (type_name)); | |
5976 | return NULL; | |
5977 | } | |
96d887e8 | 5978 | |
963a6417 PH |
5979 | struct tag_args |
5980 | { | |
5981 | struct value *tag; | |
5982 | char *name; | |
5983 | }; | |
4c4b4cd2 | 5984 | |
529cad9c PH |
5985 | |
5986 | static int ada_tag_name_1 (void *); | |
5987 | static int ada_tag_name_2 (struct tag_args *); | |
5988 | ||
4c4b4cd2 | 5989 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5990 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5991 | The value stored in ARGS->name is valid until the next call to |
5992 | ada_tag_name_1. */ | |
5993 | ||
5994 | static int | |
5995 | ada_tag_name_1 (void *args0) | |
5996 | { | |
5997 | struct tag_args *args = (struct tag_args *) args0; | |
5998 | static char name[1024]; | |
76a01679 | 5999 | char *p; |
4c4b4cd2 | 6000 | struct value *val; |
5b4ee69b | 6001 | |
4c4b4cd2 | 6002 | args->name = NULL; |
03ee6b2e | 6003 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
6004 | if (val == NULL) |
6005 | return ada_tag_name_2 (args); | |
03ee6b2e | 6006 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
6007 | if (val == NULL) |
6008 | return 0; | |
6009 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
6010 | for (p = name; *p != '\0'; p += 1) | |
6011 | if (isalpha (*p)) | |
6012 | *p = tolower (*p); | |
6013 | args->name = name; | |
6014 | return 0; | |
6015 | } | |
6016 | ||
e802dbe0 JB |
6017 | /* Return the "ada__tags__type_specific_data" type. */ |
6018 | ||
6019 | static struct type * | |
6020 | ada_get_tsd_type (struct inferior *inf) | |
6021 | { | |
6022 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
6023 | ||
6024 | if (data->tsd_type == 0) | |
6025 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6026 | return data->tsd_type; | |
6027 | } | |
6028 | ||
529cad9c PH |
6029 | /* Utility function for ada_tag_name_1 that tries the second |
6030 | representation for the dispatch table (in which there is no | |
6031 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 6032 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
6033 | |
6034 | static int | |
6035 | ada_tag_name_2 (struct tag_args *args) | |
6036 | { | |
6037 | struct type *info_type; | |
6038 | static char name[1024]; | |
6039 | char *p; | |
6040 | struct value *val, *valp; | |
6041 | ||
6042 | args->name = NULL; | |
e802dbe0 | 6043 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
6044 | if (info_type == NULL) |
6045 | return 0; | |
6046 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
6047 | valp = value_cast (info_type, args->tag); | |
6048 | if (valp == NULL) | |
6049 | return 0; | |
2497b498 | 6050 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
6051 | if (val == NULL) |
6052 | return 0; | |
03ee6b2e | 6053 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
6054 | if (val == NULL) |
6055 | return 0; | |
6056 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
6057 | for (p = name; *p != '\0'; p += 1) | |
6058 | if (isalpha (*p)) | |
6059 | *p = tolower (*p); | |
6060 | args->name = name; | |
6061 | return 0; | |
6062 | } | |
6063 | ||
6064 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 6065 | a C string. */ |
4c4b4cd2 PH |
6066 | |
6067 | const char * | |
6068 | ada_tag_name (struct value *tag) | |
6069 | { | |
6070 | struct tag_args args; | |
5b4ee69b | 6071 | |
df407dfe | 6072 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6073 | return NULL; |
76a01679 | 6074 | args.tag = tag; |
4c4b4cd2 PH |
6075 | args.name = NULL; |
6076 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
6077 | return args.name; | |
6078 | } | |
6079 | ||
6080 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6081 | |
d2e4a39e | 6082 | struct type * |
ebf56fd3 | 6083 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6084 | { |
6085 | int i; | |
6086 | ||
61ee279c | 6087 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6088 | |
6089 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6090 | return NULL; | |
6091 | ||
6092 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6093 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6094 | { |
6095 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6096 | ||
6097 | /* If the _parent field is a pointer, then dereference it. */ | |
6098 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6099 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6100 | /* If there is a parallel XVS type, get the actual base type. */ | |
6101 | parent_type = ada_get_base_type (parent_type); | |
6102 | ||
6103 | return ada_check_typedef (parent_type); | |
6104 | } | |
14f9c5c9 AS |
6105 | |
6106 | return NULL; | |
6107 | } | |
6108 | ||
4c4b4cd2 PH |
6109 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6110 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6111 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6112 | |
6113 | int | |
ebf56fd3 | 6114 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6115 | { |
61ee279c | 6116 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6117 | |
4c4b4cd2 PH |
6118 | return (name != NULL |
6119 | && (strncmp (name, "PARENT", 6) == 0 | |
6120 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6121 | } |
6122 | ||
4c4b4cd2 | 6123 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6124 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6125 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6126 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6127 | structures. */ |
14f9c5c9 AS |
6128 | |
6129 | int | |
ebf56fd3 | 6130 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6131 | { |
d2e4a39e | 6132 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6133 | |
d2e4a39e | 6134 | return (name != NULL |
4c4b4cd2 PH |
6135 | && (strncmp (name, "PARENT", 6) == 0 |
6136 | || strcmp (name, "REP") == 0 | |
6137 | || strncmp (name, "_parent", 7) == 0 | |
6138 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6139 | } |
6140 | ||
4c4b4cd2 PH |
6141 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6142 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6143 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6144 | |
6145 | int | |
ebf56fd3 | 6146 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6147 | { |
d2e4a39e | 6148 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6149 | |
14f9c5c9 | 6150 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6151 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6152 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6153 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6154 | } |
6155 | ||
6156 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6157 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6158 | returns the type of the controlling discriminant for the variant. |
6159 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6160 | |
d2e4a39e | 6161 | struct type * |
ebf56fd3 | 6162 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6163 | { |
d2e4a39e | 6164 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6165 | |
7c964f07 | 6166 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6167 | } |
6168 | ||
4c4b4cd2 | 6169 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6170 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6171 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6172 | |
6173 | int | |
ebf56fd3 | 6174 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6175 | { |
d2e4a39e | 6176 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6177 | |
14f9c5c9 AS |
6178 | return (name != NULL && name[0] == 'O'); |
6179 | } | |
6180 | ||
6181 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6182 | returns the name of the discriminant controlling the variant. |
6183 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6184 | |
d2e4a39e | 6185 | char * |
ebf56fd3 | 6186 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6187 | { |
d2e4a39e | 6188 | static char *result = NULL; |
14f9c5c9 | 6189 | static size_t result_len = 0; |
d2e4a39e AS |
6190 | struct type *type; |
6191 | const char *name; | |
6192 | const char *discrim_end; | |
6193 | const char *discrim_start; | |
14f9c5c9 AS |
6194 | |
6195 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6196 | type = TYPE_TARGET_TYPE (type0); | |
6197 | else | |
6198 | type = type0; | |
6199 | ||
6200 | name = ada_type_name (type); | |
6201 | ||
6202 | if (name == NULL || name[0] == '\000') | |
6203 | return ""; | |
6204 | ||
6205 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6206 | discrim_end -= 1) | |
6207 | { | |
4c4b4cd2 PH |
6208 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6209 | break; | |
14f9c5c9 AS |
6210 | } |
6211 | if (discrim_end == name) | |
6212 | return ""; | |
6213 | ||
d2e4a39e | 6214 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6215 | discrim_start -= 1) |
6216 | { | |
d2e4a39e | 6217 | if (discrim_start == name + 1) |
4c4b4cd2 | 6218 | return ""; |
76a01679 | 6219 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6220 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6221 | || discrim_start[-1] == '.') | |
6222 | break; | |
14f9c5c9 AS |
6223 | } |
6224 | ||
6225 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6226 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6227 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6228 | return result; |
6229 | } | |
6230 | ||
4c4b4cd2 PH |
6231 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6232 | Put the position of the character just past the number scanned in | |
6233 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6234 | Return 1 if there was a valid number at the given position, and 0 | |
6235 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6236 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6237 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6238 | |
6239 | int | |
d2e4a39e | 6240 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6241 | { |
6242 | ULONGEST RU; | |
6243 | ||
d2e4a39e | 6244 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6245 | return 0; |
6246 | ||
4c4b4cd2 | 6247 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6248 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6249 | LONGEST. */ |
14f9c5c9 AS |
6250 | RU = 0; |
6251 | while (isdigit (str[k])) | |
6252 | { | |
d2e4a39e | 6253 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6254 | k += 1; |
6255 | } | |
6256 | ||
d2e4a39e | 6257 | if (str[k] == 'm') |
14f9c5c9 AS |
6258 | { |
6259 | if (R != NULL) | |
4c4b4cd2 | 6260 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6261 | k += 1; |
6262 | } | |
6263 | else if (R != NULL) | |
6264 | *R = (LONGEST) RU; | |
6265 | ||
4c4b4cd2 | 6266 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6267 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6268 | number representable as a LONGEST (although either would probably work | |
6269 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6270 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6271 | |
6272 | if (new_k != NULL) | |
6273 | *new_k = k; | |
6274 | return 1; | |
6275 | } | |
6276 | ||
4c4b4cd2 PH |
6277 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6278 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6279 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6280 | |
d2e4a39e | 6281 | int |
ebf56fd3 | 6282 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6283 | { |
d2e4a39e | 6284 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6285 | int p; |
6286 | ||
6287 | p = 0; | |
6288 | while (1) | |
6289 | { | |
d2e4a39e | 6290 | switch (name[p]) |
4c4b4cd2 PH |
6291 | { |
6292 | case '\0': | |
6293 | return 0; | |
6294 | case 'S': | |
6295 | { | |
6296 | LONGEST W; | |
5b4ee69b | 6297 | |
4c4b4cd2 PH |
6298 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6299 | return 0; | |
6300 | if (val == W) | |
6301 | return 1; | |
6302 | break; | |
6303 | } | |
6304 | case 'R': | |
6305 | { | |
6306 | LONGEST L, U; | |
5b4ee69b | 6307 | |
4c4b4cd2 PH |
6308 | if (!ada_scan_number (name, p + 1, &L, &p) |
6309 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6310 | return 0; | |
6311 | if (val >= L && val <= U) | |
6312 | return 1; | |
6313 | break; | |
6314 | } | |
6315 | case 'O': | |
6316 | return 1; | |
6317 | default: | |
6318 | return 0; | |
6319 | } | |
6320 | } | |
6321 | } | |
6322 | ||
0963b4bd | 6323 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6324 | |
6325 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6326 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6327 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6328 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6329 | |
4c4b4cd2 | 6330 | static struct value * |
d2e4a39e | 6331 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6332 | struct type *arg_type) |
14f9c5c9 | 6333 | { |
14f9c5c9 AS |
6334 | struct type *type; |
6335 | ||
61ee279c | 6336 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6337 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6338 | ||
4c4b4cd2 | 6339 | /* Handle packed fields. */ |
14f9c5c9 AS |
6340 | |
6341 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6342 | { | |
6343 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6344 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6345 | |
0fd88904 | 6346 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6347 | offset + bit_pos / 8, |
6348 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6349 | } |
6350 | else | |
6351 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6352 | } | |
6353 | ||
52ce6436 PH |
6354 | /* Find field with name NAME in object of type TYPE. If found, |
6355 | set the following for each argument that is non-null: | |
6356 | - *FIELD_TYPE_P to the field's type; | |
6357 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6358 | an object of that type; | |
6359 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6360 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6361 | 0 otherwise; | |
6362 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6363 | fields up to but not including the desired field, or by the total | |
6364 | number of fields if not found. A NULL value of NAME never | |
6365 | matches; the function just counts visible fields in this case. | |
6366 | ||
0963b4bd | 6367 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6368 | |
4c4b4cd2 | 6369 | static int |
0d5cff50 | 6370 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6371 | struct type **field_type_p, |
52ce6436 PH |
6372 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6373 | int *index_p) | |
4c4b4cd2 PH |
6374 | { |
6375 | int i; | |
6376 | ||
61ee279c | 6377 | type = ada_check_typedef (type); |
76a01679 | 6378 | |
52ce6436 PH |
6379 | if (field_type_p != NULL) |
6380 | *field_type_p = NULL; | |
6381 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6382 | *byte_offset_p = 0; |
52ce6436 PH |
6383 | if (bit_offset_p != NULL) |
6384 | *bit_offset_p = 0; | |
6385 | if (bit_size_p != NULL) | |
6386 | *bit_size_p = 0; | |
6387 | ||
6388 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6389 | { |
6390 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6391 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6392 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6393 | |
4c4b4cd2 PH |
6394 | if (t_field_name == NULL) |
6395 | continue; | |
6396 | ||
52ce6436 | 6397 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6398 | { |
6399 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6400 | |
52ce6436 PH |
6401 | if (field_type_p != NULL) |
6402 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6403 | if (byte_offset_p != NULL) | |
6404 | *byte_offset_p = fld_offset; | |
6405 | if (bit_offset_p != NULL) | |
6406 | *bit_offset_p = bit_pos % 8; | |
6407 | if (bit_size_p != NULL) | |
6408 | *bit_size_p = bit_size; | |
76a01679 JB |
6409 | return 1; |
6410 | } | |
4c4b4cd2 PH |
6411 | else if (ada_is_wrapper_field (type, i)) |
6412 | { | |
52ce6436 PH |
6413 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6414 | field_type_p, byte_offset_p, bit_offset_p, | |
6415 | bit_size_p, index_p)) | |
76a01679 JB |
6416 | return 1; |
6417 | } | |
4c4b4cd2 PH |
6418 | else if (ada_is_variant_part (type, i)) |
6419 | { | |
52ce6436 PH |
6420 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6421 | fixed type?? */ | |
4c4b4cd2 | 6422 | int j; |
52ce6436 PH |
6423 | struct type *field_type |
6424 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6425 | |
52ce6436 | 6426 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6427 | { |
76a01679 JB |
6428 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6429 | fld_offset | |
6430 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6431 | field_type_p, byte_offset_p, | |
52ce6436 | 6432 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6433 | return 1; |
4c4b4cd2 PH |
6434 | } |
6435 | } | |
52ce6436 PH |
6436 | else if (index_p != NULL) |
6437 | *index_p += 1; | |
4c4b4cd2 PH |
6438 | } |
6439 | return 0; | |
6440 | } | |
6441 | ||
0963b4bd | 6442 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6443 | |
52ce6436 PH |
6444 | static int |
6445 | num_visible_fields (struct type *type) | |
6446 | { | |
6447 | int n; | |
5b4ee69b | 6448 | |
52ce6436 PH |
6449 | n = 0; |
6450 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6451 | return n; | |
6452 | } | |
14f9c5c9 | 6453 | |
4c4b4cd2 | 6454 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6455 | and search in it assuming it has (class) type TYPE. |
6456 | If found, return value, else return NULL. | |
6457 | ||
4c4b4cd2 | 6458 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6459 | |
4c4b4cd2 | 6460 | static struct value * |
d2e4a39e | 6461 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6462 | struct type *type) |
14f9c5c9 AS |
6463 | { |
6464 | int i; | |
14f9c5c9 | 6465 | |
5b4ee69b | 6466 | type = ada_check_typedef (type); |
52ce6436 | 6467 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 6468 | { |
0d5cff50 | 6469 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6470 | |
6471 | if (t_field_name == NULL) | |
4c4b4cd2 | 6472 | continue; |
14f9c5c9 AS |
6473 | |
6474 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6475 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6476 | |
6477 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6478 | { |
0963b4bd | 6479 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6480 | ada_search_struct_field (name, arg, |
6481 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6482 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6483 | |
4c4b4cd2 PH |
6484 | if (v != NULL) |
6485 | return v; | |
6486 | } | |
14f9c5c9 AS |
6487 | |
6488 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6489 | { |
0963b4bd | 6490 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6491 | int j; |
5b4ee69b MS |
6492 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6493 | i)); | |
4c4b4cd2 PH |
6494 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6495 | ||
52ce6436 | 6496 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6497 | { |
0963b4bd MS |
6498 | struct value *v = ada_search_struct_field /* Force line |
6499 | break. */ | |
06d5cf63 JB |
6500 | (name, arg, |
6501 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6502 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6503 | |
4c4b4cd2 PH |
6504 | if (v != NULL) |
6505 | return v; | |
6506 | } | |
6507 | } | |
14f9c5c9 AS |
6508 | } |
6509 | return NULL; | |
6510 | } | |
d2e4a39e | 6511 | |
52ce6436 PH |
6512 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6513 | int, struct type *); | |
6514 | ||
6515 | ||
6516 | /* Return field #INDEX in ARG, where the index is that returned by | |
6517 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6518 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6519 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6520 | |
6521 | static struct value * | |
6522 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6523 | struct type *type) | |
6524 | { | |
6525 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6526 | } | |
6527 | ||
6528 | ||
6529 | /* Auxiliary function for ada_index_struct_field. Like | |
6530 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6531 | * *INDEX_P. */ |
52ce6436 PH |
6532 | |
6533 | static struct value * | |
6534 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6535 | struct type *type) | |
6536 | { | |
6537 | int i; | |
6538 | type = ada_check_typedef (type); | |
6539 | ||
6540 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6541 | { | |
6542 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6543 | continue; | |
6544 | else if (ada_is_wrapper_field (type, i)) | |
6545 | { | |
0963b4bd | 6546 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6547 | ada_index_struct_field_1 (index_p, arg, |
6548 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6549 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6550 | |
52ce6436 PH |
6551 | if (v != NULL) |
6552 | return v; | |
6553 | } | |
6554 | ||
6555 | else if (ada_is_variant_part (type, i)) | |
6556 | { | |
6557 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6558 | find_struct_field. */ |
52ce6436 PH |
6559 | error (_("Cannot assign this kind of variant record")); |
6560 | } | |
6561 | else if (*index_p == 0) | |
6562 | return ada_value_primitive_field (arg, offset, i, type); | |
6563 | else | |
6564 | *index_p -= 1; | |
6565 | } | |
6566 | return NULL; | |
6567 | } | |
6568 | ||
4c4b4cd2 PH |
6569 | /* Given ARG, a value of type (pointer or reference to a)* |
6570 | structure/union, extract the component named NAME from the ultimate | |
6571 | target structure/union and return it as a value with its | |
f5938064 | 6572 | appropriate type. |
14f9c5c9 | 6573 | |
4c4b4cd2 PH |
6574 | The routine searches for NAME among all members of the structure itself |
6575 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6576 | (e.g., '_parent'). |
6577 | ||
03ee6b2e PH |
6578 | If NO_ERR, then simply return NULL in case of error, rather than |
6579 | calling error. */ | |
14f9c5c9 | 6580 | |
d2e4a39e | 6581 | struct value * |
03ee6b2e | 6582 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6583 | { |
4c4b4cd2 | 6584 | struct type *t, *t1; |
d2e4a39e | 6585 | struct value *v; |
14f9c5c9 | 6586 | |
4c4b4cd2 | 6587 | v = NULL; |
df407dfe | 6588 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6589 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6590 | { | |
6591 | t1 = TYPE_TARGET_TYPE (t); | |
6592 | if (t1 == NULL) | |
03ee6b2e | 6593 | goto BadValue; |
61ee279c | 6594 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6595 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6596 | { |
994b9211 | 6597 | arg = coerce_ref (arg); |
76a01679 JB |
6598 | t = t1; |
6599 | } | |
4c4b4cd2 | 6600 | } |
14f9c5c9 | 6601 | |
4c4b4cd2 PH |
6602 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6603 | { | |
6604 | t1 = TYPE_TARGET_TYPE (t); | |
6605 | if (t1 == NULL) | |
03ee6b2e | 6606 | goto BadValue; |
61ee279c | 6607 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6608 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6609 | { |
6610 | arg = value_ind (arg); | |
6611 | t = t1; | |
6612 | } | |
4c4b4cd2 | 6613 | else |
76a01679 | 6614 | break; |
4c4b4cd2 | 6615 | } |
14f9c5c9 | 6616 | |
4c4b4cd2 | 6617 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6618 | goto BadValue; |
14f9c5c9 | 6619 | |
4c4b4cd2 PH |
6620 | if (t1 == t) |
6621 | v = ada_search_struct_field (name, arg, 0, t); | |
6622 | else | |
6623 | { | |
6624 | int bit_offset, bit_size, byte_offset; | |
6625 | struct type *field_type; | |
6626 | CORE_ADDR address; | |
6627 | ||
76a01679 JB |
6628 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6629 | address = value_as_address (arg); | |
4c4b4cd2 | 6630 | else |
0fd88904 | 6631 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6632 | |
1ed6ede0 | 6633 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6634 | if (find_struct_field (name, t1, 0, |
6635 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6636 | &bit_size, NULL)) |
76a01679 JB |
6637 | { |
6638 | if (bit_size != 0) | |
6639 | { | |
714e53ab PH |
6640 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6641 | arg = ada_coerce_ref (arg); | |
6642 | else | |
6643 | arg = ada_value_ind (arg); | |
76a01679 JB |
6644 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6645 | bit_offset, bit_size, | |
6646 | field_type); | |
6647 | } | |
6648 | else | |
f5938064 | 6649 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6650 | } |
6651 | } | |
6652 | ||
03ee6b2e PH |
6653 | if (v != NULL || no_err) |
6654 | return v; | |
6655 | else | |
323e0a4a | 6656 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6657 | |
03ee6b2e PH |
6658 | BadValue: |
6659 | if (no_err) | |
6660 | return NULL; | |
6661 | else | |
0963b4bd MS |
6662 | error (_("Attempt to extract a component of " |
6663 | "a value that is not a record.")); | |
14f9c5c9 AS |
6664 | } |
6665 | ||
6666 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6667 | If DISPP is non-null, add its byte displacement from the beginning of a |
6668 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6669 | work for packed fields). |
6670 | ||
6671 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6672 | followed by "___". |
14f9c5c9 | 6673 | |
0963b4bd | 6674 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6675 | be a (pointer or reference)+ to a struct or union, and the |
6676 | ultimate target type will be searched. | |
14f9c5c9 AS |
6677 | |
6678 | Looks recursively into variant clauses and parent types. | |
6679 | ||
4c4b4cd2 PH |
6680 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6681 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6682 | |
4c4b4cd2 | 6683 | static struct type * |
76a01679 JB |
6684 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6685 | int noerr, int *dispp) | |
14f9c5c9 AS |
6686 | { |
6687 | int i; | |
6688 | ||
6689 | if (name == NULL) | |
6690 | goto BadName; | |
6691 | ||
76a01679 | 6692 | if (refok && type != NULL) |
4c4b4cd2 PH |
6693 | while (1) |
6694 | { | |
61ee279c | 6695 | type = ada_check_typedef (type); |
76a01679 JB |
6696 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6697 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6698 | break; | |
6699 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6700 | } |
14f9c5c9 | 6701 | |
76a01679 | 6702 | if (type == NULL |
1265e4aa JB |
6703 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6704 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6705 | { |
4c4b4cd2 | 6706 | if (noerr) |
76a01679 | 6707 | return NULL; |
4c4b4cd2 | 6708 | else |
76a01679 JB |
6709 | { |
6710 | target_terminal_ours (); | |
6711 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6712 | if (type == NULL) |
6713 | error (_("Type (null) is not a structure or union type")); | |
6714 | else | |
6715 | { | |
6716 | /* XXX: type_sprint */ | |
6717 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6718 | type_print (type, "", gdb_stderr, -1); | |
6719 | error (_(" is not a structure or union type")); | |
6720 | } | |
76a01679 | 6721 | } |
14f9c5c9 AS |
6722 | } |
6723 | ||
6724 | type = to_static_fixed_type (type); | |
6725 | ||
6726 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6727 | { | |
0d5cff50 | 6728 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6729 | struct type *t; |
6730 | int disp; | |
d2e4a39e | 6731 | |
14f9c5c9 | 6732 | if (t_field_name == NULL) |
4c4b4cd2 | 6733 | continue; |
14f9c5c9 AS |
6734 | |
6735 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6736 | { |
6737 | if (dispp != NULL) | |
6738 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6739 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6740 | } |
14f9c5c9 AS |
6741 | |
6742 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6743 | { |
6744 | disp = 0; | |
6745 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6746 | 0, 1, &disp); | |
6747 | if (t != NULL) | |
6748 | { | |
6749 | if (dispp != NULL) | |
6750 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6751 | return t; | |
6752 | } | |
6753 | } | |
14f9c5c9 AS |
6754 | |
6755 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6756 | { |
6757 | int j; | |
5b4ee69b MS |
6758 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6759 | i)); | |
4c4b4cd2 PH |
6760 | |
6761 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6762 | { | |
b1f33ddd JB |
6763 | /* FIXME pnh 2008/01/26: We check for a field that is |
6764 | NOT wrapped in a struct, since the compiler sometimes | |
6765 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6766 | if the compiler changes this practice. */ |
0d5cff50 | 6767 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6768 | disp = 0; |
b1f33ddd JB |
6769 | if (v_field_name != NULL |
6770 | && field_name_match (v_field_name, name)) | |
6771 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6772 | else | |
0963b4bd MS |
6773 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6774 | j), | |
b1f33ddd JB |
6775 | name, 0, 1, &disp); |
6776 | ||
4c4b4cd2 PH |
6777 | if (t != NULL) |
6778 | { | |
6779 | if (dispp != NULL) | |
6780 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6781 | return t; | |
6782 | } | |
6783 | } | |
6784 | } | |
14f9c5c9 AS |
6785 | |
6786 | } | |
6787 | ||
6788 | BadName: | |
d2e4a39e | 6789 | if (!noerr) |
14f9c5c9 AS |
6790 | { |
6791 | target_terminal_ours (); | |
6792 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6793 | if (name == NULL) |
6794 | { | |
6795 | /* XXX: type_sprint */ | |
6796 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6797 | type_print (type, "", gdb_stderr, -1); | |
6798 | error (_(" has no component named <null>")); | |
6799 | } | |
6800 | else | |
6801 | { | |
6802 | /* XXX: type_sprint */ | |
6803 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6804 | type_print (type, "", gdb_stderr, -1); | |
6805 | error (_(" has no component named %s"), name); | |
6806 | } | |
14f9c5c9 AS |
6807 | } |
6808 | ||
6809 | return NULL; | |
6810 | } | |
6811 | ||
b1f33ddd JB |
6812 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6813 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6814 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6815 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6816 | |
6817 | static int | |
6818 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6819 | { | |
6820 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6821 | |
b1f33ddd JB |
6822 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6823 | == NULL); | |
6824 | } | |
6825 | ||
6826 | ||
14f9c5c9 AS |
6827 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6828 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6829 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6830 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6831 | |
d2e4a39e | 6832 | int |
ebf56fd3 | 6833 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6834 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6835 | { |
6836 | int others_clause; | |
6837 | int i; | |
d2e4a39e | 6838 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6839 | struct value *outer; |
6840 | struct value *discrim; | |
14f9c5c9 AS |
6841 | LONGEST discrim_val; |
6842 | ||
0c281816 JB |
6843 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6844 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6845 | if (discrim == NULL) | |
14f9c5c9 | 6846 | return -1; |
0c281816 | 6847 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6848 | |
6849 | others_clause = -1; | |
6850 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6851 | { | |
6852 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6853 | others_clause = i; |
14f9c5c9 | 6854 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6855 | return i; |
14f9c5c9 AS |
6856 | } |
6857 | ||
6858 | return others_clause; | |
6859 | } | |
d2e4a39e | 6860 | \f |
14f9c5c9 AS |
6861 | |
6862 | ||
4c4b4cd2 | 6863 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6864 | |
6865 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6866 | (i.e., a size that is not statically recorded in the debugging | |
6867 | data) does not accurately reflect the size or layout of the value. | |
6868 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6869 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6870 | |
6871 | /* There is a subtle and tricky problem here. In general, we cannot | |
6872 | determine the size of dynamic records without its data. However, | |
6873 | the 'struct value' data structure, which GDB uses to represent | |
6874 | quantities in the inferior process (the target), requires the size | |
6875 | of the type at the time of its allocation in order to reserve space | |
6876 | for GDB's internal copy of the data. That's why the | |
6877 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6878 | rather than struct value*s. |
14f9c5c9 AS |
6879 | |
6880 | However, GDB's internal history variables ($1, $2, etc.) are | |
6881 | struct value*s containing internal copies of the data that are not, in | |
6882 | general, the same as the data at their corresponding addresses in | |
6883 | the target. Fortunately, the types we give to these values are all | |
6884 | conventional, fixed-size types (as per the strategy described | |
6885 | above), so that we don't usually have to perform the | |
6886 | 'to_fixed_xxx_type' conversions to look at their values. | |
6887 | Unfortunately, there is one exception: if one of the internal | |
6888 | history variables is an array whose elements are unconstrained | |
6889 | records, then we will need to create distinct fixed types for each | |
6890 | element selected. */ | |
6891 | ||
6892 | /* The upshot of all of this is that many routines take a (type, host | |
6893 | address, target address) triple as arguments to represent a value. | |
6894 | The host address, if non-null, is supposed to contain an internal | |
6895 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6896 | target at the target address. */ |
14f9c5c9 AS |
6897 | |
6898 | /* Assuming that VAL0 represents a pointer value, the result of | |
6899 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6900 | dynamic-sized types. */ |
14f9c5c9 | 6901 | |
d2e4a39e AS |
6902 | struct value * |
6903 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6904 | { |
d2e4a39e | 6905 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6906 | |
4c4b4cd2 | 6907 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6908 | } |
6909 | ||
6910 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6911 | qualifiers on VAL0. */ |
6912 | ||
d2e4a39e AS |
6913 | static struct value * |
6914 | ada_coerce_ref (struct value *val0) | |
6915 | { | |
df407dfe | 6916 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6917 | { |
6918 | struct value *val = val0; | |
5b4ee69b | 6919 | |
994b9211 | 6920 | val = coerce_ref (val); |
d2e4a39e | 6921 | val = unwrap_value (val); |
4c4b4cd2 | 6922 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6923 | } |
6924 | else | |
14f9c5c9 AS |
6925 | return val0; |
6926 | } | |
6927 | ||
6928 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6929 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6930 | |
6931 | static unsigned int | |
ebf56fd3 | 6932 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6933 | { |
6934 | return (off + alignment - 1) & ~(alignment - 1); | |
6935 | } | |
6936 | ||
4c4b4cd2 | 6937 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6938 | |
6939 | static unsigned int | |
ebf56fd3 | 6940 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6941 | { |
d2e4a39e | 6942 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6943 | int len; |
14f9c5c9 AS |
6944 | int align_offset; |
6945 | ||
64a1bf19 JB |
6946 | /* The field name should never be null, unless the debugging information |
6947 | is somehow malformed. In this case, we assume the field does not | |
6948 | require any alignment. */ | |
6949 | if (name == NULL) | |
6950 | return 1; | |
6951 | ||
6952 | len = strlen (name); | |
6953 | ||
4c4b4cd2 PH |
6954 | if (!isdigit (name[len - 1])) |
6955 | return 1; | |
14f9c5c9 | 6956 | |
d2e4a39e | 6957 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6958 | align_offset = len - 2; |
6959 | else | |
6960 | align_offset = len - 1; | |
6961 | ||
4c4b4cd2 | 6962 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6963 | return TARGET_CHAR_BIT; |
6964 | ||
4c4b4cd2 PH |
6965 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6966 | } | |
6967 | ||
6968 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6969 | ||
6970 | struct symbol * | |
6971 | ada_find_any_symbol (const char *name) | |
6972 | { | |
6973 | struct symbol *sym; | |
6974 | ||
6975 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6976 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6977 | return sym; | |
6978 | ||
6979 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6980 | return sym; | |
14f9c5c9 AS |
6981 | } |
6982 | ||
dddfab26 UW |
6983 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6984 | solely for types defined by debug info, it will not search the GDB | |
6985 | primitive types. */ | |
4c4b4cd2 | 6986 | |
d2e4a39e | 6987 | struct type * |
ebf56fd3 | 6988 | ada_find_any_type (const char *name) |
14f9c5c9 | 6989 | { |
4c4b4cd2 | 6990 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6991 | |
14f9c5c9 | 6992 | if (sym != NULL) |
dddfab26 | 6993 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6994 | |
dddfab26 | 6995 | return NULL; |
14f9c5c9 AS |
6996 | } |
6997 | ||
aeb5907d JB |
6998 | /* Given NAME and an associated BLOCK, search all symbols for |
6999 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
7000 | associated to NAME. Return this symbol if found, return |
7001 | NULL otherwise. */ | |
7002 | ||
7003 | struct symbol * | |
7004 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
7005 | { |
7006 | struct symbol *sym; | |
7007 | ||
7008 | sym = find_old_style_renaming_symbol (name, block); | |
7009 | ||
7010 | if (sym != NULL) | |
7011 | return sym; | |
7012 | ||
0963b4bd | 7013 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
7014 | sym = ada_find_any_symbol (name); |
7015 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
7016 | return sym; | |
7017 | else | |
7018 | return NULL; | |
7019 | } | |
7020 | ||
7021 | static struct symbol * | |
7022 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 7023 | { |
7f0df278 | 7024 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7025 | char *rename; |
7026 | ||
7027 | if (function_sym != NULL) | |
7028 | { | |
7029 | /* If the symbol is defined inside a function, NAME is not fully | |
7030 | qualified. This means we need to prepend the function name | |
7031 | as well as adding the ``___XR'' suffix to build the name of | |
7032 | the associated renaming symbol. */ | |
0d5cff50 | 7033 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7034 | /* Function names sometimes contain suffixes used |
7035 | for instance to qualify nested subprograms. When building | |
7036 | the XR type name, we need to make sure that this suffix is | |
7037 | not included. So do not include any suffix in the function | |
7038 | name length below. */ | |
69fadcdf | 7039 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7040 | const int rename_len = function_name_len + 2 /* "__" */ |
7041 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7042 | |
529cad9c | 7043 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7044 | ada_remove_trailing_digits (function_name, &function_name_len); |
7045 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7046 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7047 | |
4c4b4cd2 PH |
7048 | /* Library-level functions are a special case, as GNAT adds |
7049 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7050 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7051 | have this prefix, so we need to skip this prefix if present. */ |
7052 | if (function_name_len > 5 /* "_ada_" */ | |
7053 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7054 | { |
7055 | function_name += 5; | |
7056 | function_name_len -= 5; | |
7057 | } | |
4c4b4cd2 PH |
7058 | |
7059 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7060 | strncpy (rename, function_name, function_name_len); |
7061 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7062 | "__%s___XR", name); | |
4c4b4cd2 PH |
7063 | } |
7064 | else | |
7065 | { | |
7066 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7067 | |
4c4b4cd2 | 7068 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7069 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7070 | } |
7071 | ||
7072 | return ada_find_any_symbol (rename); | |
7073 | } | |
7074 | ||
14f9c5c9 | 7075 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7076 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7077 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7078 | otherwise return 0. */ |
7079 | ||
14f9c5c9 | 7080 | int |
d2e4a39e | 7081 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7082 | { |
7083 | if (type1 == NULL) | |
7084 | return 1; | |
7085 | else if (type0 == NULL) | |
7086 | return 0; | |
7087 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7088 | return 1; | |
7089 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7090 | return 0; | |
4c4b4cd2 PH |
7091 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7092 | return 1; | |
ad82864c | 7093 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7094 | return 1; |
4c4b4cd2 PH |
7095 | else if (ada_is_array_descriptor_type (type0) |
7096 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7097 | return 1; |
aeb5907d JB |
7098 | else |
7099 | { | |
7100 | const char *type0_name = type_name_no_tag (type0); | |
7101 | const char *type1_name = type_name_no_tag (type1); | |
7102 | ||
7103 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7104 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7105 | return 1; | |
7106 | } | |
14f9c5c9 AS |
7107 | return 0; |
7108 | } | |
7109 | ||
7110 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7111 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7112 | ||
0d5cff50 | 7113 | const char * |
d2e4a39e | 7114 | ada_type_name (struct type *type) |
14f9c5c9 | 7115 | { |
d2e4a39e | 7116 | if (type == NULL) |
14f9c5c9 AS |
7117 | return NULL; |
7118 | else if (TYPE_NAME (type) != NULL) | |
7119 | return TYPE_NAME (type); | |
7120 | else | |
7121 | return TYPE_TAG_NAME (type); | |
7122 | } | |
7123 | ||
b4ba55a1 JB |
7124 | /* Search the list of "descriptive" types associated to TYPE for a type |
7125 | whose name is NAME. */ | |
7126 | ||
7127 | static struct type * | |
7128 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7129 | { | |
7130 | struct type *result; | |
7131 | ||
7132 | /* If there no descriptive-type info, then there is no parallel type | |
7133 | to be found. */ | |
7134 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7135 | return NULL; | |
7136 | ||
7137 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7138 | while (result != NULL) | |
7139 | { | |
0d5cff50 | 7140 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7141 | |
7142 | if (result_name == NULL) | |
7143 | { | |
7144 | warning (_("unexpected null name on descriptive type")); | |
7145 | return NULL; | |
7146 | } | |
7147 | ||
7148 | /* If the names match, stop. */ | |
7149 | if (strcmp (result_name, name) == 0) | |
7150 | break; | |
7151 | ||
7152 | /* Otherwise, look at the next item on the list, if any. */ | |
7153 | if (HAVE_GNAT_AUX_INFO (result)) | |
7154 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7155 | else | |
7156 | result = NULL; | |
7157 | } | |
7158 | ||
7159 | /* If we didn't find a match, see whether this is a packed array. With | |
7160 | older compilers, the descriptive type information is either absent or | |
7161 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7162 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7163 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7164 | return ada_find_any_type (name); |
7165 | ||
7166 | return result; | |
7167 | } | |
7168 | ||
7169 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7170 | descriptive type taken from the debugging information, if available, | |
7171 | and otherwise using the (slower) name-based method. */ | |
7172 | ||
7173 | static struct type * | |
7174 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7175 | { | |
7176 | struct type *result = NULL; | |
7177 | ||
7178 | if (HAVE_GNAT_AUX_INFO (type)) | |
7179 | result = find_parallel_type_by_descriptive_type (type, name); | |
7180 | else | |
7181 | result = ada_find_any_type (name); | |
7182 | ||
7183 | return result; | |
7184 | } | |
7185 | ||
7186 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7187 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7188 | |
d2e4a39e | 7189 | struct type * |
ebf56fd3 | 7190 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7191 | { |
0d5cff50 DE |
7192 | char *name; |
7193 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7194 | int len; |
d2e4a39e | 7195 | |
14f9c5c9 AS |
7196 | if (typename == NULL) |
7197 | return NULL; | |
7198 | ||
7199 | len = strlen (typename); | |
7200 | ||
b4ba55a1 | 7201 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7202 | |
7203 | strcpy (name, typename); | |
7204 | strcpy (name + len, suffix); | |
7205 | ||
b4ba55a1 | 7206 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7207 | } |
7208 | ||
14f9c5c9 | 7209 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7210 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7211 | |
d2e4a39e AS |
7212 | static struct type * |
7213 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7214 | { |
61ee279c | 7215 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7216 | |
7217 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7218 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7219 | return NULL; |
d2e4a39e | 7220 | else |
14f9c5c9 AS |
7221 | { |
7222 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7223 | |
4c4b4cd2 PH |
7224 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7225 | return type; | |
14f9c5c9 | 7226 | else |
4c4b4cd2 | 7227 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7228 | } |
7229 | } | |
7230 | ||
7231 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7232 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7233 | |
d2e4a39e AS |
7234 | static int |
7235 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7236 | { |
7237 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7238 | |
d2e4a39e | 7239 | return name != NULL |
14f9c5c9 AS |
7240 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7241 | && strstr (name, "___XVL") != NULL; | |
7242 | } | |
7243 | ||
4c4b4cd2 PH |
7244 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7245 | represent a variant record type. */ | |
14f9c5c9 | 7246 | |
d2e4a39e | 7247 | static int |
4c4b4cd2 | 7248 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7249 | { |
7250 | int f; | |
7251 | ||
4c4b4cd2 PH |
7252 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7253 | return -1; | |
7254 | ||
7255 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7256 | { | |
7257 | if (ada_is_variant_part (type, f)) | |
7258 | return f; | |
7259 | } | |
7260 | return -1; | |
14f9c5c9 AS |
7261 | } |
7262 | ||
4c4b4cd2 PH |
7263 | /* A record type with no fields. */ |
7264 | ||
d2e4a39e | 7265 | static struct type * |
e9bb382b | 7266 | empty_record (struct type *template) |
14f9c5c9 | 7267 | { |
e9bb382b | 7268 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7269 | |
14f9c5c9 AS |
7270 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7271 | TYPE_NFIELDS (type) = 0; | |
7272 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7273 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7274 | TYPE_NAME (type) = "<empty>"; |
7275 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7276 | TYPE_LENGTH (type) = 0; |
7277 | return type; | |
7278 | } | |
7279 | ||
7280 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7281 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7282 | the beginning of this section) VAL according to GNAT conventions. | |
7283 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7284 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7285 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7286 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7287 | of the variant. |
14f9c5c9 | 7288 | |
4c4b4cd2 PH |
7289 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7290 | length are not statically known are discarded. As a consequence, | |
7291 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7292 | ||
7293 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7294 | variants occupy whole numbers of bytes. However, they need not be | |
7295 | byte-aligned. */ | |
7296 | ||
7297 | struct type * | |
10a2c479 | 7298 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7299 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7300 | CORE_ADDR address, struct value *dval0, |
7301 | int keep_dynamic_fields) | |
14f9c5c9 | 7302 | { |
d2e4a39e AS |
7303 | struct value *mark = value_mark (); |
7304 | struct value *dval; | |
7305 | struct type *rtype; | |
14f9c5c9 | 7306 | int nfields, bit_len; |
4c4b4cd2 | 7307 | int variant_field; |
14f9c5c9 | 7308 | long off; |
d94e4f4f | 7309 | int fld_bit_len; |
14f9c5c9 AS |
7310 | int f; |
7311 | ||
4c4b4cd2 PH |
7312 | /* Compute the number of fields in this record type that are going |
7313 | to be processed: unless keep_dynamic_fields, this includes only | |
7314 | fields whose position and length are static will be processed. */ | |
7315 | if (keep_dynamic_fields) | |
7316 | nfields = TYPE_NFIELDS (type); | |
7317 | else | |
7318 | { | |
7319 | nfields = 0; | |
76a01679 | 7320 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7321 | && !ada_is_variant_part (type, nfields) |
7322 | && !is_dynamic_field (type, nfields)) | |
7323 | nfields++; | |
7324 | } | |
7325 | ||
e9bb382b | 7326 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7327 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7328 | INIT_CPLUS_SPECIFIC (rtype); | |
7329 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7330 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7331 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7332 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7333 | TYPE_NAME (rtype) = ada_type_name (type); | |
7334 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7335 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7336 | |
d2e4a39e AS |
7337 | off = 0; |
7338 | bit_len = 0; | |
4c4b4cd2 PH |
7339 | variant_field = -1; |
7340 | ||
14f9c5c9 AS |
7341 | for (f = 0; f < nfields; f += 1) |
7342 | { | |
6c038f32 PH |
7343 | off = align_value (off, field_alignment (type, f)) |
7344 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7345 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7346 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7347 | |
d2e4a39e | 7348 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7349 | { |
7350 | variant_field = f; | |
d94e4f4f | 7351 | fld_bit_len = 0; |
4c4b4cd2 | 7352 | } |
14f9c5c9 | 7353 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7354 | { |
284614f0 JB |
7355 | const gdb_byte *field_valaddr = valaddr; |
7356 | CORE_ADDR field_address = address; | |
7357 | struct type *field_type = | |
7358 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7359 | ||
4c4b4cd2 | 7360 | if (dval0 == NULL) |
b5304971 JG |
7361 | { |
7362 | /* rtype's length is computed based on the run-time | |
7363 | value of discriminants. If the discriminants are not | |
7364 | initialized, the type size may be completely bogus and | |
0963b4bd | 7365 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7366 | size first before creating the value. */ |
7367 | check_size (rtype); | |
7368 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7369 | } | |
4c4b4cd2 PH |
7370 | else |
7371 | dval = dval0; | |
7372 | ||
284614f0 JB |
7373 | /* If the type referenced by this field is an aligner type, we need |
7374 | to unwrap that aligner type, because its size might not be set. | |
7375 | Keeping the aligner type would cause us to compute the wrong | |
7376 | size for this field, impacting the offset of the all the fields | |
7377 | that follow this one. */ | |
7378 | if (ada_is_aligner_type (field_type)) | |
7379 | { | |
7380 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7381 | ||
7382 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7383 | field_address = cond_offset_target (field_address, field_offset); | |
7384 | field_type = ada_aligned_type (field_type); | |
7385 | } | |
7386 | ||
7387 | field_valaddr = cond_offset_host (field_valaddr, | |
7388 | off / TARGET_CHAR_BIT); | |
7389 | field_address = cond_offset_target (field_address, | |
7390 | off / TARGET_CHAR_BIT); | |
7391 | ||
7392 | /* Get the fixed type of the field. Note that, in this case, | |
7393 | we do not want to get the real type out of the tag: if | |
7394 | the current field is the parent part of a tagged record, | |
7395 | we will get the tag of the object. Clearly wrong: the real | |
7396 | type of the parent is not the real type of the child. We | |
7397 | would end up in an infinite loop. */ | |
7398 | field_type = ada_get_base_type (field_type); | |
7399 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7400 | field_address, dval, 0); | |
27f2a97b JB |
7401 | /* If the field size is already larger than the maximum |
7402 | object size, then the record itself will necessarily | |
7403 | be larger than the maximum object size. We need to make | |
7404 | this check now, because the size might be so ridiculously | |
7405 | large (due to an uninitialized variable in the inferior) | |
7406 | that it would cause an overflow when adding it to the | |
7407 | record size. */ | |
7408 | check_size (field_type); | |
284614f0 JB |
7409 | |
7410 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7411 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7412 | /* The multiplication can potentially overflow. But because |
7413 | the field length has been size-checked just above, and | |
7414 | assuming that the maximum size is a reasonable value, | |
7415 | an overflow should not happen in practice. So rather than | |
7416 | adding overflow recovery code to this already complex code, | |
7417 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7418 | fld_bit_len = |
4c4b4cd2 PH |
7419 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7420 | } | |
14f9c5c9 | 7421 | else |
4c4b4cd2 | 7422 | { |
9f0dec2d JB |
7423 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7424 | ||
720d1a40 JB |
7425 | /* If our field is a typedef type (most likely a typedef of |
7426 | a fat pointer, encoding an array access), then we need to | |
7427 | look at its target type to determine its characteristics. | |
7428 | In particular, we would miscompute the field size if we took | |
7429 | the size of the typedef (zero), instead of the size of | |
7430 | the target type. */ | |
7431 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7432 | field_type = ada_typedef_target_type (field_type); | |
7433 | ||
9f0dec2d | 7434 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7435 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7436 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7437 | fld_bit_len = |
4c4b4cd2 PH |
7438 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7439 | else | |
d94e4f4f | 7440 | fld_bit_len = |
9f0dec2d | 7441 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7442 | } |
14f9c5c9 | 7443 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7444 | bit_len = off + fld_bit_len; |
d94e4f4f | 7445 | off += fld_bit_len; |
4c4b4cd2 PH |
7446 | TYPE_LENGTH (rtype) = |
7447 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7448 | } |
4c4b4cd2 PH |
7449 | |
7450 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7451 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7452 | the record. This can happen in the presence of representation |
7453 | clauses. */ | |
7454 | if (variant_field >= 0) | |
7455 | { | |
7456 | struct type *branch_type; | |
7457 | ||
7458 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7459 | ||
7460 | if (dval0 == NULL) | |
7461 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7462 | else | |
7463 | dval = dval0; | |
7464 | ||
7465 | branch_type = | |
7466 | to_fixed_variant_branch_type | |
7467 | (TYPE_FIELD_TYPE (type, variant_field), | |
7468 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7469 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7470 | if (branch_type == NULL) | |
7471 | { | |
7472 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7473 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7474 | TYPE_NFIELDS (rtype) -= 1; | |
7475 | } | |
7476 | else | |
7477 | { | |
7478 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7479 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7480 | fld_bit_len = | |
7481 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7482 | TARGET_CHAR_BIT; | |
7483 | if (off + fld_bit_len > bit_len) | |
7484 | bit_len = off + fld_bit_len; | |
7485 | TYPE_LENGTH (rtype) = | |
7486 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7487 | } | |
7488 | } | |
7489 | ||
714e53ab PH |
7490 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7491 | should contain the alignment of that record, which should be a strictly | |
7492 | positive value. If null or negative, then something is wrong, most | |
7493 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7494 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7495 | the current RTYPE length might be good enough for our purposes. */ |
7496 | if (TYPE_LENGTH (type) <= 0) | |
7497 | { | |
323e0a4a AC |
7498 | if (TYPE_NAME (rtype)) |
7499 | warning (_("Invalid type size for `%s' detected: %d."), | |
7500 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7501 | else | |
7502 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7503 | TYPE_LENGTH (type)); | |
714e53ab PH |
7504 | } |
7505 | else | |
7506 | { | |
7507 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7508 | TYPE_LENGTH (type)); | |
7509 | } | |
14f9c5c9 AS |
7510 | |
7511 | value_free_to_mark (mark); | |
d2e4a39e | 7512 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7513 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7514 | return rtype; |
7515 | } | |
7516 | ||
4c4b4cd2 PH |
7517 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7518 | of 1. */ | |
14f9c5c9 | 7519 | |
d2e4a39e | 7520 | static struct type * |
fc1a4b47 | 7521 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7522 | CORE_ADDR address, struct value *dval0) |
7523 | { | |
7524 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7525 | address, dval0, 1); | |
7526 | } | |
7527 | ||
7528 | /* An ordinary record type in which ___XVL-convention fields and | |
7529 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7530 | static approximations, containing all possible fields. Uses | |
7531 | no runtime values. Useless for use in values, but that's OK, | |
7532 | since the results are used only for type determinations. Works on both | |
7533 | structs and unions. Representation note: to save space, we memorize | |
7534 | the result of this function in the TYPE_TARGET_TYPE of the | |
7535 | template type. */ | |
7536 | ||
7537 | static struct type * | |
7538 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7539 | { |
7540 | struct type *type; | |
7541 | int nfields; | |
7542 | int f; | |
7543 | ||
4c4b4cd2 PH |
7544 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7545 | return TYPE_TARGET_TYPE (type0); | |
7546 | ||
7547 | nfields = TYPE_NFIELDS (type0); | |
7548 | type = type0; | |
14f9c5c9 AS |
7549 | |
7550 | for (f = 0; f < nfields; f += 1) | |
7551 | { | |
61ee279c | 7552 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7553 | struct type *new_type; |
14f9c5c9 | 7554 | |
4c4b4cd2 PH |
7555 | if (is_dynamic_field (type0, f)) |
7556 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7557 | else |
f192137b | 7558 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7559 | if (type == type0 && new_type != field_type) |
7560 | { | |
e9bb382b | 7561 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7562 | TYPE_CODE (type) = TYPE_CODE (type0); |
7563 | INIT_CPLUS_SPECIFIC (type); | |
7564 | TYPE_NFIELDS (type) = nfields; | |
7565 | TYPE_FIELDS (type) = (struct field *) | |
7566 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7567 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7568 | sizeof (struct field) * nfields); | |
7569 | TYPE_NAME (type) = ada_type_name (type0); | |
7570 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7571 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7572 | TYPE_LENGTH (type) = 0; |
7573 | } | |
7574 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7575 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7576 | } |
14f9c5c9 AS |
7577 | return type; |
7578 | } | |
7579 | ||
4c4b4cd2 | 7580 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7581 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7582 | which should be a non-dynamic-sized record, in which the variant | |
7583 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7584 | for discriminant values in DVAL0, which can be NULL if the record |
7585 | contains the necessary discriminant values. */ | |
7586 | ||
d2e4a39e | 7587 | static struct type * |
fc1a4b47 | 7588 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7589 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7590 | { |
d2e4a39e | 7591 | struct value *mark = value_mark (); |
4c4b4cd2 | 7592 | struct value *dval; |
d2e4a39e | 7593 | struct type *rtype; |
14f9c5c9 AS |
7594 | struct type *branch_type; |
7595 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7596 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7597 | |
4c4b4cd2 | 7598 | if (variant_field == -1) |
14f9c5c9 AS |
7599 | return type; |
7600 | ||
4c4b4cd2 PH |
7601 | if (dval0 == NULL) |
7602 | dval = value_from_contents_and_address (type, valaddr, address); | |
7603 | else | |
7604 | dval = dval0; | |
7605 | ||
e9bb382b | 7606 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7607 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7608 | INIT_CPLUS_SPECIFIC (rtype); |
7609 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7610 | TYPE_FIELDS (rtype) = |
7611 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7612 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7613 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7614 | TYPE_NAME (rtype) = ada_type_name (type); |
7615 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7616 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7617 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7618 | ||
4c4b4cd2 PH |
7619 | branch_type = to_fixed_variant_branch_type |
7620 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7621 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7622 | TYPE_FIELD_BITPOS (type, variant_field) |
7623 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7624 | cond_offset_target (address, |
4c4b4cd2 PH |
7625 | TYPE_FIELD_BITPOS (type, variant_field) |
7626 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7627 | if (branch_type == NULL) |
14f9c5c9 | 7628 | { |
4c4b4cd2 | 7629 | int f; |
5b4ee69b | 7630 | |
4c4b4cd2 PH |
7631 | for (f = variant_field + 1; f < nfields; f += 1) |
7632 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7633 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7634 | } |
7635 | else | |
7636 | { | |
4c4b4cd2 PH |
7637 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7638 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7639 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7640 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7641 | } |
4c4b4cd2 | 7642 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7643 | |
4c4b4cd2 | 7644 | value_free_to_mark (mark); |
14f9c5c9 AS |
7645 | return rtype; |
7646 | } | |
7647 | ||
7648 | /* An ordinary record type (with fixed-length fields) that describes | |
7649 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7650 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7651 | should be in DVAL, a record value; it may be NULL if the object |
7652 | at ADDR itself contains any necessary discriminant values. | |
7653 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7654 | values from the record are needed. Except in the case that DVAL, | |
7655 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7656 | unchecked) is replaced by a particular branch of the variant. | |
7657 | ||
7658 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7659 | is questionable and may be removed. It can arise during the | |
7660 | processing of an unconstrained-array-of-record type where all the | |
7661 | variant branches have exactly the same size. This is because in | |
7662 | such cases, the compiler does not bother to use the XVS convention | |
7663 | when encoding the record. I am currently dubious of this | |
7664 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7665 | |
d2e4a39e | 7666 | static struct type * |
fc1a4b47 | 7667 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7668 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7669 | { |
d2e4a39e | 7670 | struct type *templ_type; |
14f9c5c9 | 7671 | |
876cecd0 | 7672 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7673 | return type0; |
7674 | ||
d2e4a39e | 7675 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7676 | |
7677 | if (templ_type != NULL) | |
7678 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7679 | else if (variant_field_index (type0) >= 0) |
7680 | { | |
7681 | if (dval == NULL && valaddr == NULL && address == 0) | |
7682 | return type0; | |
7683 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7684 | dval); | |
7685 | } | |
14f9c5c9 AS |
7686 | else |
7687 | { | |
876cecd0 | 7688 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7689 | return type0; |
7690 | } | |
7691 | ||
7692 | } | |
7693 | ||
7694 | /* An ordinary record type (with fixed-length fields) that describes | |
7695 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7696 | union type. Any necessary discriminants' values should be in DVAL, | |
7697 | a record value. That is, this routine selects the appropriate | |
7698 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7699 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7700 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7701 | |
d2e4a39e | 7702 | static struct type * |
fc1a4b47 | 7703 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7704 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7705 | { |
7706 | int which; | |
d2e4a39e AS |
7707 | struct type *templ_type; |
7708 | struct type *var_type; | |
14f9c5c9 AS |
7709 | |
7710 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7711 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7712 | else |
14f9c5c9 AS |
7713 | var_type = var_type0; |
7714 | ||
7715 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7716 | ||
7717 | if (templ_type != NULL) | |
7718 | var_type = templ_type; | |
7719 | ||
b1f33ddd JB |
7720 | if (is_unchecked_variant (var_type, value_type (dval))) |
7721 | return var_type0; | |
d2e4a39e AS |
7722 | which = |
7723 | ada_which_variant_applies (var_type, | |
0fd88904 | 7724 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7725 | |
7726 | if (which < 0) | |
e9bb382b | 7727 | return empty_record (var_type); |
14f9c5c9 | 7728 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7729 | return to_fixed_record_type |
d2e4a39e AS |
7730 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7731 | valaddr, address, dval); | |
4c4b4cd2 | 7732 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7733 | return |
7734 | to_fixed_record_type | |
7735 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7736 | else |
7737 | return TYPE_FIELD_TYPE (var_type, which); | |
7738 | } | |
7739 | ||
7740 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7741 | at ADDR, and that DVAL describes a record containing any | |
7742 | discriminants used in TYPE0, returns a type for the value that | |
7743 | contains no dynamic components (that is, no components whose sizes | |
7744 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7745 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7746 | varsize_limit. */ |
14f9c5c9 | 7747 | |
d2e4a39e AS |
7748 | static struct type * |
7749 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7750 | int ignore_too_big) |
14f9c5c9 | 7751 | { |
d2e4a39e AS |
7752 | struct type *index_type_desc; |
7753 | struct type *result; | |
ad82864c | 7754 | int constrained_packed_array_p; |
14f9c5c9 | 7755 | |
b0dd7688 | 7756 | type0 = ada_check_typedef (type0); |
284614f0 | 7757 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7758 | return type0; |
14f9c5c9 | 7759 | |
ad82864c JB |
7760 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7761 | if (constrained_packed_array_p) | |
7762 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7763 | |
14f9c5c9 | 7764 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7765 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7766 | if (index_type_desc == NULL) |
7767 | { | |
61ee279c | 7768 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7769 | |
14f9c5c9 | 7770 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7771 | depend on the contents of the array in properly constructed |
7772 | debugging data. */ | |
529cad9c PH |
7773 | /* Create a fixed version of the array element type. |
7774 | We're not providing the address of an element here, | |
e1d5a0d2 | 7775 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7776 | the conversion. This should not be a problem, since arrays of |
7777 | unconstrained objects are not allowed. In particular, all | |
7778 | the elements of an array of a tagged type should all be of | |
7779 | the same type specified in the debugging info. No need to | |
7780 | consult the object tag. */ | |
1ed6ede0 | 7781 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7782 | |
284614f0 JB |
7783 | /* Make sure we always create a new array type when dealing with |
7784 | packed array types, since we're going to fix-up the array | |
7785 | type length and element bitsize a little further down. */ | |
ad82864c | 7786 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7787 | result = type0; |
14f9c5c9 | 7788 | else |
e9bb382b | 7789 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7790 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7791 | } |
7792 | else | |
7793 | { | |
7794 | int i; | |
7795 | struct type *elt_type0; | |
7796 | ||
7797 | elt_type0 = type0; | |
7798 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7799 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7800 | |
7801 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7802 | depend on the contents of the array in properly constructed |
7803 | debugging data. */ | |
529cad9c PH |
7804 | /* Create a fixed version of the array element type. |
7805 | We're not providing the address of an element here, | |
e1d5a0d2 | 7806 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7807 | the conversion. This should not be a problem, since arrays of |
7808 | unconstrained objects are not allowed. In particular, all | |
7809 | the elements of an array of a tagged type should all be of | |
7810 | the same type specified in the debugging info. No need to | |
7811 | consult the object tag. */ | |
1ed6ede0 JB |
7812 | result = |
7813 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7814 | |
7815 | elt_type0 = type0; | |
14f9c5c9 | 7816 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7817 | { |
7818 | struct type *range_type = | |
28c85d6c | 7819 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7820 | |
e9bb382b | 7821 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7822 | result, range_type); |
1ce677a4 | 7823 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7824 | } |
d2e4a39e | 7825 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7826 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7827 | } |
7828 | ||
ad82864c | 7829 | if (constrained_packed_array_p) |
284614f0 JB |
7830 | { |
7831 | /* So far, the resulting type has been created as if the original | |
7832 | type was a regular (non-packed) array type. As a result, the | |
7833 | bitsize of the array elements needs to be set again, and the array | |
7834 | length needs to be recomputed based on that bitsize. */ | |
7835 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7836 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7837 | ||
7838 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7839 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7840 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7841 | TYPE_LENGTH (result)++; | |
7842 | } | |
7843 | ||
876cecd0 | 7844 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7845 | return result; |
d2e4a39e | 7846 | } |
14f9c5c9 AS |
7847 | |
7848 | ||
7849 | /* A standard type (containing no dynamically sized components) | |
7850 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7851 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7852 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7853 | ADDRESS or in VALADDR contains these discriminants. |
7854 | ||
1ed6ede0 JB |
7855 | If CHECK_TAG is not null, in the case of tagged types, this function |
7856 | attempts to locate the object's tag and use it to compute the actual | |
7857 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7858 | location of the tag, and therefore compute the tagged type's actual type. | |
7859 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7860 | |
f192137b JB |
7861 | static struct type * |
7862 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7863 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7864 | { |
61ee279c | 7865 | type = ada_check_typedef (type); |
d2e4a39e AS |
7866 | switch (TYPE_CODE (type)) |
7867 | { | |
7868 | default: | |
14f9c5c9 | 7869 | return type; |
d2e4a39e | 7870 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7871 | { |
76a01679 | 7872 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7873 | struct type *fixed_record_type = |
7874 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7875 | |
529cad9c PH |
7876 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7877 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7878 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7879 | type (the parent part of the record may have dynamic fields |
7880 | and the way the location of _tag is expressed may depend on | |
7881 | them). */ | |
529cad9c | 7882 | |
1ed6ede0 | 7883 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7884 | { |
7885 | struct type *real_type = | |
1ed6ede0 JB |
7886 | type_from_tag (value_tag_from_contents_and_address |
7887 | (fixed_record_type, | |
7888 | valaddr, | |
7889 | address)); | |
5b4ee69b | 7890 | |
76a01679 | 7891 | if (real_type != NULL) |
1ed6ede0 | 7892 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7893 | } |
4af88198 JB |
7894 | |
7895 | /* Check to see if there is a parallel ___XVZ variable. | |
7896 | If there is, then it provides the actual size of our type. */ | |
7897 | else if (ada_type_name (fixed_record_type) != NULL) | |
7898 | { | |
0d5cff50 | 7899 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
7900 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
7901 | int xvz_found = 0; | |
7902 | LONGEST size; | |
7903 | ||
88c15c34 | 7904 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7905 | size = get_int_var_value (xvz_name, &xvz_found); |
7906 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7907 | { | |
7908 | fixed_record_type = copy_type (fixed_record_type); | |
7909 | TYPE_LENGTH (fixed_record_type) = size; | |
7910 | ||
7911 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7912 | observed this when the debugging info is STABS, and | |
7913 | apparently it is something that is hard to fix. | |
7914 | ||
7915 | In practice, we don't need the actual type definition | |
7916 | at all, because the presence of the XVZ variable allows us | |
7917 | to assume that there must be a XVS type as well, which we | |
7918 | should be able to use later, when we need the actual type | |
7919 | definition. | |
7920 | ||
7921 | In the meantime, pretend that the "fixed" type we are | |
7922 | returning is NOT a stub, because this can cause trouble | |
7923 | when using this type to create new types targeting it. | |
7924 | Indeed, the associated creation routines often check | |
7925 | whether the target type is a stub and will try to replace | |
0963b4bd | 7926 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7927 | might cause the new type to have the wrong size too. |
7928 | Consider the case of an array, for instance, where the size | |
7929 | of the array is computed from the number of elements in | |
7930 | our array multiplied by the size of its element. */ | |
7931 | TYPE_STUB (fixed_record_type) = 0; | |
7932 | } | |
7933 | } | |
1ed6ede0 | 7934 | return fixed_record_type; |
4c4b4cd2 | 7935 | } |
d2e4a39e | 7936 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7937 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7938 | case TYPE_CODE_UNION: |
7939 | if (dval == NULL) | |
4c4b4cd2 | 7940 | return type; |
d2e4a39e | 7941 | else |
4c4b4cd2 | 7942 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7943 | } |
14f9c5c9 AS |
7944 | } |
7945 | ||
f192137b JB |
7946 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7947 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7948 | |
7949 | The typedef layer needs be preserved in order to differentiate between | |
7950 | arrays and array pointers when both types are implemented using the same | |
7951 | fat pointer. In the array pointer case, the pointer is encoded as | |
7952 | a typedef of the pointer type. For instance, considering: | |
7953 | ||
7954 | type String_Access is access String; | |
7955 | S1 : String_Access := null; | |
7956 | ||
7957 | To the debugger, S1 is defined as a typedef of type String. But | |
7958 | to the user, it is a pointer. So if the user tries to print S1, | |
7959 | we should not dereference the array, but print the array address | |
7960 | instead. | |
7961 | ||
7962 | If we didn't preserve the typedef layer, we would lose the fact that | |
7963 | the type is to be presented as a pointer (needs de-reference before | |
7964 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7965 | |
7966 | struct type * | |
7967 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7968 | CORE_ADDR address, struct value *dval, int check_tag) | |
7969 | ||
7970 | { | |
7971 | struct type *fixed_type = | |
7972 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7973 | ||
96dbd2c1 JB |
7974 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7975 | then preserve the typedef layer. | |
7976 | ||
7977 | Implementation note: We can only check the main-type portion of | |
7978 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7979 | from TYPE now returns a type that has the same instance flags | |
7980 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7981 | target type is a "struct", then the typedef elimination will return | |
7982 | a "const" version of the target type. See check_typedef for more | |
7983 | details about how the typedef layer elimination is done. | |
7984 | ||
7985 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7986 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7987 | Perhaps, we could add a check for that and preserve the typedef layer | |
7988 | only in that situation. But this seems unecessary so far, probably | |
7989 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7990 | */ | |
f192137b | 7991 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7992 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7993 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7994 | return type; |
7995 | ||
7996 | return fixed_type; | |
7997 | } | |
7998 | ||
14f9c5c9 | 7999 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8000 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8001 | |
d2e4a39e AS |
8002 | static struct type * |
8003 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8004 | { |
d2e4a39e | 8005 | struct type *type; |
14f9c5c9 AS |
8006 | |
8007 | if (type0 == NULL) | |
8008 | return NULL; | |
8009 | ||
876cecd0 | 8010 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8011 | return type0; |
8012 | ||
61ee279c | 8013 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8014 | |
14f9c5c9 AS |
8015 | switch (TYPE_CODE (type0)) |
8016 | { | |
8017 | default: | |
8018 | return type0; | |
8019 | case TYPE_CODE_STRUCT: | |
8020 | type = dynamic_template_type (type0); | |
d2e4a39e | 8021 | if (type != NULL) |
4c4b4cd2 PH |
8022 | return template_to_static_fixed_type (type); |
8023 | else | |
8024 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8025 | case TYPE_CODE_UNION: |
8026 | type = ada_find_parallel_type (type0, "___XVU"); | |
8027 | if (type != NULL) | |
4c4b4cd2 PH |
8028 | return template_to_static_fixed_type (type); |
8029 | else | |
8030 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8031 | } |
8032 | } | |
8033 | ||
4c4b4cd2 PH |
8034 | /* A static approximation of TYPE with all type wrappers removed. */ |
8035 | ||
d2e4a39e AS |
8036 | static struct type * |
8037 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8038 | { |
8039 | if (ada_is_aligner_type (type)) | |
8040 | { | |
61ee279c | 8041 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8042 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8043 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8044 | |
8045 | return static_unwrap_type (type1); | |
8046 | } | |
d2e4a39e | 8047 | else |
14f9c5c9 | 8048 | { |
d2e4a39e | 8049 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8050 | |
d2e4a39e | 8051 | if (raw_real_type == type) |
4c4b4cd2 | 8052 | return type; |
14f9c5c9 | 8053 | else |
4c4b4cd2 | 8054 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8055 | } |
8056 | } | |
8057 | ||
8058 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8059 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8060 | type Foo; |
8061 | type FooP is access Foo; | |
8062 | V: FooP; | |
8063 | type Foo is array ...; | |
4c4b4cd2 | 8064 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8065 | cross-references to such types, we instead substitute for FooP a |
8066 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8067 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8068 | |
8069 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8070 | exists, otherwise TYPE. */ |
8071 | ||
d2e4a39e | 8072 | struct type * |
61ee279c | 8073 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8074 | { |
727e3d2e JB |
8075 | if (type == NULL) |
8076 | return NULL; | |
8077 | ||
720d1a40 JB |
8078 | /* If our type is a typedef type of a fat pointer, then we're done. |
8079 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8080 | what allows us to distinguish between fat pointers that represent | |
8081 | array types, and fat pointers that represent array access types | |
8082 | (in both cases, the compiler implements them as fat pointers). */ | |
8083 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8084 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8085 | return type; | |
8086 | ||
14f9c5c9 AS |
8087 | CHECK_TYPEDEF (type); |
8088 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8089 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8090 | || TYPE_TAG_NAME (type) == NULL) |
8091 | return type; | |
d2e4a39e | 8092 | else |
14f9c5c9 | 8093 | { |
0d5cff50 | 8094 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8095 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8096 | |
05e522ef JB |
8097 | if (type1 == NULL) |
8098 | return type; | |
8099 | ||
8100 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8101 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8102 | types, only for the typedef-to-array types). If that's the case, |
8103 | strip the typedef layer. */ | |
8104 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8105 | type1 = ada_check_typedef (type1); | |
8106 | ||
8107 | return type1; | |
14f9c5c9 AS |
8108 | } |
8109 | } | |
8110 | ||
8111 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8112 | type TYPE0, but with a standard (static-sized) type that correctly | |
8113 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8114 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8115 | creation of struct values]. */ |
14f9c5c9 | 8116 | |
4c4b4cd2 PH |
8117 | static struct value * |
8118 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8119 | struct value *val0) | |
14f9c5c9 | 8120 | { |
1ed6ede0 | 8121 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8122 | |
14f9c5c9 AS |
8123 | if (type == type0 && val0 != NULL) |
8124 | return val0; | |
d2e4a39e | 8125 | else |
4c4b4cd2 PH |
8126 | return value_from_contents_and_address (type, 0, address); |
8127 | } | |
8128 | ||
8129 | /* A value representing VAL, but with a standard (static-sized) type | |
8130 | that correctly describes it. Does not necessarily create a new | |
8131 | value. */ | |
8132 | ||
0c3acc09 | 8133 | struct value * |
4c4b4cd2 PH |
8134 | ada_to_fixed_value (struct value *val) |
8135 | { | |
df407dfe | 8136 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 8137 | value_address (val), |
4c4b4cd2 | 8138 | val); |
14f9c5c9 | 8139 | } |
d2e4a39e | 8140 | \f |
14f9c5c9 | 8141 | |
14f9c5c9 AS |
8142 | /* Attributes */ |
8143 | ||
4c4b4cd2 PH |
8144 | /* Table mapping attribute numbers to names. |
8145 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8146 | |
d2e4a39e | 8147 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8148 | "<?>", |
8149 | ||
d2e4a39e | 8150 | "first", |
14f9c5c9 AS |
8151 | "last", |
8152 | "length", | |
8153 | "image", | |
14f9c5c9 AS |
8154 | "max", |
8155 | "min", | |
4c4b4cd2 PH |
8156 | "modulus", |
8157 | "pos", | |
8158 | "size", | |
8159 | "tag", | |
14f9c5c9 | 8160 | "val", |
14f9c5c9 AS |
8161 | 0 |
8162 | }; | |
8163 | ||
d2e4a39e | 8164 | const char * |
4c4b4cd2 | 8165 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8166 | { |
4c4b4cd2 PH |
8167 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8168 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8169 | else |
8170 | return attribute_names[0]; | |
8171 | } | |
8172 | ||
4c4b4cd2 | 8173 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8174 | |
4c4b4cd2 PH |
8175 | static LONGEST |
8176 | pos_atr (struct value *arg) | |
14f9c5c9 | 8177 | { |
24209737 PH |
8178 | struct value *val = coerce_ref (arg); |
8179 | struct type *type = value_type (val); | |
14f9c5c9 | 8180 | |
d2e4a39e | 8181 | if (!discrete_type_p (type)) |
323e0a4a | 8182 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8183 | |
8184 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8185 | { | |
8186 | int i; | |
24209737 | 8187 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8188 | |
d2e4a39e | 8189 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
8190 | { |
8191 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
8192 | return i; | |
8193 | } | |
323e0a4a | 8194 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8195 | } |
8196 | else | |
24209737 | 8197 | return value_as_long (val); |
4c4b4cd2 PH |
8198 | } |
8199 | ||
8200 | static struct value * | |
3cb382c9 | 8201 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8202 | { |
3cb382c9 | 8203 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8204 | } |
8205 | ||
4c4b4cd2 | 8206 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8207 | |
d2e4a39e AS |
8208 | static struct value * |
8209 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8210 | { |
d2e4a39e | 8211 | if (!discrete_type_p (type)) |
323e0a4a | 8212 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8213 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8214 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8215 | |
8216 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8217 | { | |
8218 | long pos = value_as_long (arg); | |
5b4ee69b | 8219 | |
14f9c5c9 | 8220 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8221 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8222 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8223 | } |
8224 | else | |
8225 | return value_from_longest (type, value_as_long (arg)); | |
8226 | } | |
14f9c5c9 | 8227 | \f |
d2e4a39e | 8228 | |
4c4b4cd2 | 8229 | /* Evaluation */ |
14f9c5c9 | 8230 | |
4c4b4cd2 PH |
8231 | /* True if TYPE appears to be an Ada character type. |
8232 | [At the moment, this is true only for Character and Wide_Character; | |
8233 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8234 | |
d2e4a39e AS |
8235 | int |
8236 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8237 | { |
7b9f71f2 JB |
8238 | const char *name; |
8239 | ||
8240 | /* If the type code says it's a character, then assume it really is, | |
8241 | and don't check any further. */ | |
8242 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8243 | return 1; | |
8244 | ||
8245 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8246 | with a known character type name. */ | |
8247 | name = ada_type_name (type); | |
8248 | return (name != NULL | |
8249 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8250 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8251 | && (strcmp (name, "character") == 0 | |
8252 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8253 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8254 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8255 | } |
8256 | ||
4c4b4cd2 | 8257 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8258 | |
8259 | int | |
ebf56fd3 | 8260 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8261 | { |
61ee279c | 8262 | type = ada_check_typedef (type); |
d2e4a39e | 8263 | if (type != NULL |
14f9c5c9 | 8264 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8265 | && (ada_is_simple_array_type (type) |
8266 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8267 | && ada_array_arity (type) == 1) |
8268 | { | |
8269 | struct type *elttype = ada_array_element_type (type, 1); | |
8270 | ||
8271 | return ada_is_character_type (elttype); | |
8272 | } | |
d2e4a39e | 8273 | else |
14f9c5c9 AS |
8274 | return 0; |
8275 | } | |
8276 | ||
5bf03f13 JB |
8277 | /* The compiler sometimes provides a parallel XVS type for a given |
8278 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8279 | but older versions of the compiler have a bug that causes the offset | |
8280 | of its "F" field to be wrong. Following that field in that case | |
8281 | would lead to incorrect results, but this can be worked around | |
8282 | by ignoring the PAD type and using the associated XVS type instead. | |
8283 | ||
8284 | Set to True if the debugger should trust the contents of PAD types. | |
8285 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8286 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8287 | |
8288 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8289 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8290 | distinctive name. */ |
14f9c5c9 AS |
8291 | |
8292 | int | |
ebf56fd3 | 8293 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8294 | { |
61ee279c | 8295 | type = ada_check_typedef (type); |
714e53ab | 8296 | |
5bf03f13 | 8297 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8298 | return 0; |
8299 | ||
14f9c5c9 | 8300 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8301 | && TYPE_NFIELDS (type) == 1 |
8302 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8303 | } |
8304 | ||
8305 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8306 | the parallel type. */ |
14f9c5c9 | 8307 | |
d2e4a39e AS |
8308 | struct type * |
8309 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8310 | { |
d2e4a39e AS |
8311 | struct type *real_type_namer; |
8312 | struct type *raw_real_type; | |
14f9c5c9 AS |
8313 | |
8314 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8315 | return raw_type; | |
8316 | ||
284614f0 JB |
8317 | if (ada_is_aligner_type (raw_type)) |
8318 | /* The encoding specifies that we should always use the aligner type. | |
8319 | So, even if this aligner type has an associated XVS type, we should | |
8320 | simply ignore it. | |
8321 | ||
8322 | According to the compiler gurus, an XVS type parallel to an aligner | |
8323 | type may exist because of a stabs limitation. In stabs, aligner | |
8324 | types are empty because the field has a variable-sized type, and | |
8325 | thus cannot actually be used as an aligner type. As a result, | |
8326 | we need the associated parallel XVS type to decode the type. | |
8327 | Since the policy in the compiler is to not change the internal | |
8328 | representation based on the debugging info format, we sometimes | |
8329 | end up having a redundant XVS type parallel to the aligner type. */ | |
8330 | return raw_type; | |
8331 | ||
14f9c5c9 | 8332 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8333 | if (real_type_namer == NULL |
14f9c5c9 AS |
8334 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8335 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8336 | return raw_type; | |
8337 | ||
f80d3ff2 JB |
8338 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8339 | { | |
8340 | /* This is an older encoding form where the base type needs to be | |
8341 | looked up by name. We prefer the newer enconding because it is | |
8342 | more efficient. */ | |
8343 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8344 | if (raw_real_type == NULL) | |
8345 | return raw_type; | |
8346 | else | |
8347 | return raw_real_type; | |
8348 | } | |
8349 | ||
8350 | /* The field in our XVS type is a reference to the base type. */ | |
8351 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8352 | } |
14f9c5c9 | 8353 | |
4c4b4cd2 | 8354 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8355 | |
d2e4a39e AS |
8356 | struct type * |
8357 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8358 | { |
8359 | if (ada_is_aligner_type (type)) | |
8360 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8361 | else | |
8362 | return ada_get_base_type (type); | |
8363 | } | |
8364 | ||
8365 | ||
8366 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8367 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8368 | |
fc1a4b47 AC |
8369 | const gdb_byte * |
8370 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8371 | { |
d2e4a39e | 8372 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8373 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8374 | valaddr + |
8375 | TYPE_FIELD_BITPOS (type, | |
8376 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8377 | else |
8378 | return valaddr; | |
8379 | } | |
8380 | ||
4c4b4cd2 PH |
8381 | |
8382 | ||
14f9c5c9 | 8383 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8384 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8385 | const char * |
8386 | ada_enum_name (const char *name) | |
14f9c5c9 | 8387 | { |
4c4b4cd2 PH |
8388 | static char *result; |
8389 | static size_t result_len = 0; | |
d2e4a39e | 8390 | char *tmp; |
14f9c5c9 | 8391 | |
4c4b4cd2 PH |
8392 | /* First, unqualify the enumeration name: |
8393 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8394 | all the preceding characters, the unqualified name starts |
76a01679 | 8395 | right after that dot. |
4c4b4cd2 | 8396 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8397 | translates dots into "__". Search forward for double underscores, |
8398 | but stop searching when we hit an overloading suffix, which is | |
8399 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8400 | |
c3e5cd34 PH |
8401 | tmp = strrchr (name, '.'); |
8402 | if (tmp != NULL) | |
4c4b4cd2 PH |
8403 | name = tmp + 1; |
8404 | else | |
14f9c5c9 | 8405 | { |
4c4b4cd2 PH |
8406 | while ((tmp = strstr (name, "__")) != NULL) |
8407 | { | |
8408 | if (isdigit (tmp[2])) | |
8409 | break; | |
8410 | else | |
8411 | name = tmp + 2; | |
8412 | } | |
14f9c5c9 AS |
8413 | } |
8414 | ||
8415 | if (name[0] == 'Q') | |
8416 | { | |
14f9c5c9 | 8417 | int v; |
5b4ee69b | 8418 | |
14f9c5c9 | 8419 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8420 | { |
8421 | if (sscanf (name + 2, "%x", &v) != 1) | |
8422 | return name; | |
8423 | } | |
14f9c5c9 | 8424 | else |
4c4b4cd2 | 8425 | return name; |
14f9c5c9 | 8426 | |
4c4b4cd2 | 8427 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8428 | if (isascii (v) && isprint (v)) |
88c15c34 | 8429 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8430 | else if (name[1] == 'U') |
88c15c34 | 8431 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8432 | else |
88c15c34 | 8433 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8434 | |
8435 | return result; | |
8436 | } | |
d2e4a39e | 8437 | else |
4c4b4cd2 | 8438 | { |
c3e5cd34 PH |
8439 | tmp = strstr (name, "__"); |
8440 | if (tmp == NULL) | |
8441 | tmp = strstr (name, "$"); | |
8442 | if (tmp != NULL) | |
4c4b4cd2 PH |
8443 | { |
8444 | GROW_VECT (result, result_len, tmp - name + 1); | |
8445 | strncpy (result, name, tmp - name); | |
8446 | result[tmp - name] = '\0'; | |
8447 | return result; | |
8448 | } | |
8449 | ||
8450 | return name; | |
8451 | } | |
14f9c5c9 AS |
8452 | } |
8453 | ||
14f9c5c9 AS |
8454 | /* Evaluate the subexpression of EXP starting at *POS as for |
8455 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8456 | expression. */ |
14f9c5c9 | 8457 | |
d2e4a39e AS |
8458 | static struct value * |
8459 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8460 | { |
4b27a620 | 8461 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8462 | } |
8463 | ||
8464 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8465 | value it wraps. */ |
14f9c5c9 | 8466 | |
d2e4a39e AS |
8467 | static struct value * |
8468 | unwrap_value (struct value *val) | |
14f9c5c9 | 8469 | { |
df407dfe | 8470 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8471 | |
14f9c5c9 AS |
8472 | if (ada_is_aligner_type (type)) |
8473 | { | |
de4d072f | 8474 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8475 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8476 | |
14f9c5c9 | 8477 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8478 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8479 | |
8480 | return unwrap_value (v); | |
8481 | } | |
d2e4a39e | 8482 | else |
14f9c5c9 | 8483 | { |
d2e4a39e | 8484 | struct type *raw_real_type = |
61ee279c | 8485 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8486 | |
5bf03f13 JB |
8487 | /* If there is no parallel XVS or XVE type, then the value is |
8488 | already unwrapped. Return it without further modification. */ | |
8489 | if ((type == raw_real_type) | |
8490 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8491 | return val; | |
14f9c5c9 | 8492 | |
d2e4a39e | 8493 | return |
4c4b4cd2 PH |
8494 | coerce_unspec_val_to_type |
8495 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8496 | value_address (val), |
1ed6ede0 | 8497 | NULL, 1)); |
14f9c5c9 AS |
8498 | } |
8499 | } | |
d2e4a39e AS |
8500 | |
8501 | static struct value * | |
8502 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8503 | { |
8504 | LONGEST val; | |
8505 | ||
df407dfe | 8506 | if (type == value_type (arg)) |
14f9c5c9 | 8507 | return arg; |
df407dfe | 8508 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8509 | val = ada_float_to_fixed (type, |
df407dfe | 8510 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8511 | value_as_long (arg))); |
d2e4a39e | 8512 | else |
14f9c5c9 | 8513 | { |
a53b7a21 | 8514 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8515 | |
14f9c5c9 AS |
8516 | val = ada_float_to_fixed (type, argd); |
8517 | } | |
8518 | ||
8519 | return value_from_longest (type, val); | |
8520 | } | |
8521 | ||
d2e4a39e | 8522 | static struct value * |
a53b7a21 | 8523 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8524 | { |
df407dfe | 8525 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8526 | value_as_long (arg)); |
5b4ee69b | 8527 | |
a53b7a21 | 8528 | return value_from_double (type, val); |
14f9c5c9 AS |
8529 | } |
8530 | ||
4c4b4cd2 PH |
8531 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8532 | return the converted value. */ | |
8533 | ||
d2e4a39e AS |
8534 | static struct value * |
8535 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8536 | { |
df407dfe | 8537 | struct type *type2 = value_type (val); |
5b4ee69b | 8538 | |
14f9c5c9 AS |
8539 | if (type == type2) |
8540 | return val; | |
8541 | ||
61ee279c PH |
8542 | type2 = ada_check_typedef (type2); |
8543 | type = ada_check_typedef (type); | |
14f9c5c9 | 8544 | |
d2e4a39e AS |
8545 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8546 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8547 | { |
8548 | val = ada_value_ind (val); | |
df407dfe | 8549 | type2 = value_type (val); |
14f9c5c9 AS |
8550 | } |
8551 | ||
d2e4a39e | 8552 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8553 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8554 | { | |
8555 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8556 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8557 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8558 | error (_("Incompatible types in assignment")); |
04624583 | 8559 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8560 | } |
d2e4a39e | 8561 | return val; |
14f9c5c9 AS |
8562 | } |
8563 | ||
4c4b4cd2 PH |
8564 | static struct value * |
8565 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8566 | { | |
8567 | struct value *val; | |
8568 | struct type *type1, *type2; | |
8569 | LONGEST v, v1, v2; | |
8570 | ||
994b9211 AC |
8571 | arg1 = coerce_ref (arg1); |
8572 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8573 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8574 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8575 | |
76a01679 JB |
8576 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8577 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8578 | return value_binop (arg1, arg2, op); |
8579 | ||
76a01679 | 8580 | switch (op) |
4c4b4cd2 PH |
8581 | { |
8582 | case BINOP_MOD: | |
8583 | case BINOP_DIV: | |
8584 | case BINOP_REM: | |
8585 | break; | |
8586 | default: | |
8587 | return value_binop (arg1, arg2, op); | |
8588 | } | |
8589 | ||
8590 | v2 = value_as_long (arg2); | |
8591 | if (v2 == 0) | |
323e0a4a | 8592 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8593 | |
8594 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8595 | return value_binop (arg1, arg2, op); | |
8596 | ||
8597 | v1 = value_as_long (arg1); | |
8598 | switch (op) | |
8599 | { | |
8600 | case BINOP_DIV: | |
8601 | v = v1 / v2; | |
76a01679 JB |
8602 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8603 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8604 | break; |
8605 | case BINOP_REM: | |
8606 | v = v1 % v2; | |
76a01679 JB |
8607 | if (v * v1 < 0) |
8608 | v -= v2; | |
4c4b4cd2 PH |
8609 | break; |
8610 | default: | |
8611 | /* Should not reach this point. */ | |
8612 | v = 0; | |
8613 | } | |
8614 | ||
8615 | val = allocate_value (type1); | |
990a07ab | 8616 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8617 | TYPE_LENGTH (value_type (val)), |
8618 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8619 | return val; |
8620 | } | |
8621 | ||
8622 | static int | |
8623 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8624 | { | |
df407dfe AC |
8625 | if (ada_is_direct_array_type (value_type (arg1)) |
8626 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8627 | { |
f58b38bf JB |
8628 | /* Automatically dereference any array reference before |
8629 | we attempt to perform the comparison. */ | |
8630 | arg1 = ada_coerce_ref (arg1); | |
8631 | arg2 = ada_coerce_ref (arg2); | |
8632 | ||
4c4b4cd2 PH |
8633 | arg1 = ada_coerce_to_simple_array (arg1); |
8634 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8635 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8636 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8637 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8638 | /* FIXME: The following works only for types whose |
76a01679 JB |
8639 | representations use all bits (no padding or undefined bits) |
8640 | and do not have user-defined equality. */ | |
8641 | return | |
df407dfe | 8642 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8643 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8644 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8645 | } |
8646 | return value_equal (arg1, arg2); | |
8647 | } | |
8648 | ||
52ce6436 PH |
8649 | /* Total number of component associations in the aggregate starting at |
8650 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8651 | OP_AGGREGATE. */ |
52ce6436 PH |
8652 | |
8653 | static int | |
8654 | num_component_specs (struct expression *exp, int pc) | |
8655 | { | |
8656 | int n, m, i; | |
5b4ee69b | 8657 | |
52ce6436 PH |
8658 | m = exp->elts[pc + 1].longconst; |
8659 | pc += 3; | |
8660 | n = 0; | |
8661 | for (i = 0; i < m; i += 1) | |
8662 | { | |
8663 | switch (exp->elts[pc].opcode) | |
8664 | { | |
8665 | default: | |
8666 | n += 1; | |
8667 | break; | |
8668 | case OP_CHOICES: | |
8669 | n += exp->elts[pc + 1].longconst; | |
8670 | break; | |
8671 | } | |
8672 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8673 | } | |
8674 | return n; | |
8675 | } | |
8676 | ||
8677 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8678 | component of LHS (a simple array or a record), updating *POS past | |
8679 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8680 | not modify the inferior's memory, nor does it modify LHS (unless | |
8681 | LHS == CONTAINER). */ | |
8682 | ||
8683 | static void | |
8684 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8685 | struct expression *exp, int *pos) | |
8686 | { | |
8687 | struct value *mark = value_mark (); | |
8688 | struct value *elt; | |
5b4ee69b | 8689 | |
52ce6436 PH |
8690 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8691 | { | |
22601c15 UW |
8692 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8693 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8694 | |
52ce6436 PH |
8695 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8696 | } | |
8697 | else | |
8698 | { | |
8699 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8700 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8701 | } | |
8702 | ||
8703 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8704 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8705 | else | |
8706 | value_assign_to_component (container, elt, | |
8707 | ada_evaluate_subexp (NULL, exp, pos, | |
8708 | EVAL_NORMAL)); | |
8709 | ||
8710 | value_free_to_mark (mark); | |
8711 | } | |
8712 | ||
8713 | /* Assuming that LHS represents an lvalue having a record or array | |
8714 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8715 | of that aggregate's value to LHS, advancing *POS past the | |
8716 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8717 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8718 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8719 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8720 | |
8721 | static struct value * | |
8722 | assign_aggregate (struct value *container, | |
8723 | struct value *lhs, struct expression *exp, | |
8724 | int *pos, enum noside noside) | |
8725 | { | |
8726 | struct type *lhs_type; | |
8727 | int n = exp->elts[*pos+1].longconst; | |
8728 | LONGEST low_index, high_index; | |
8729 | int num_specs; | |
8730 | LONGEST *indices; | |
8731 | int max_indices, num_indices; | |
8732 | int is_array_aggregate; | |
8733 | int i; | |
52ce6436 PH |
8734 | |
8735 | *pos += 3; | |
8736 | if (noside != EVAL_NORMAL) | |
8737 | { | |
52ce6436 PH |
8738 | for (i = 0; i < n; i += 1) |
8739 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8740 | return container; | |
8741 | } | |
8742 | ||
8743 | container = ada_coerce_ref (container); | |
8744 | if (ada_is_direct_array_type (value_type (container))) | |
8745 | container = ada_coerce_to_simple_array (container); | |
8746 | lhs = ada_coerce_ref (lhs); | |
8747 | if (!deprecated_value_modifiable (lhs)) | |
8748 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8749 | ||
8750 | lhs_type = value_type (lhs); | |
8751 | if (ada_is_direct_array_type (lhs_type)) | |
8752 | { | |
8753 | lhs = ada_coerce_to_simple_array (lhs); | |
8754 | lhs_type = value_type (lhs); | |
8755 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8756 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8757 | is_array_aggregate = 1; | |
8758 | } | |
8759 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8760 | { | |
8761 | low_index = 0; | |
8762 | high_index = num_visible_fields (lhs_type) - 1; | |
8763 | is_array_aggregate = 0; | |
8764 | } | |
8765 | else | |
8766 | error (_("Left-hand side must be array or record.")); | |
8767 | ||
8768 | num_specs = num_component_specs (exp, *pos - 3); | |
8769 | max_indices = 4 * num_specs + 4; | |
8770 | indices = alloca (max_indices * sizeof (indices[0])); | |
8771 | indices[0] = indices[1] = low_index - 1; | |
8772 | indices[2] = indices[3] = high_index + 1; | |
8773 | num_indices = 4; | |
8774 | ||
8775 | for (i = 0; i < n; i += 1) | |
8776 | { | |
8777 | switch (exp->elts[*pos].opcode) | |
8778 | { | |
1fbf5ada JB |
8779 | case OP_CHOICES: |
8780 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8781 | &num_indices, max_indices, | |
8782 | low_index, high_index); | |
8783 | break; | |
8784 | case OP_POSITIONAL: | |
8785 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
8786 | &num_indices, max_indices, |
8787 | low_index, high_index); | |
1fbf5ada JB |
8788 | break; |
8789 | case OP_OTHERS: | |
8790 | if (i != n-1) | |
8791 | error (_("Misplaced 'others' clause")); | |
8792 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8793 | num_indices, low_index, high_index); | |
8794 | break; | |
8795 | default: | |
8796 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
8797 | } |
8798 | } | |
8799 | ||
8800 | return container; | |
8801 | } | |
8802 | ||
8803 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8804 | construct at *POS, updating *POS past the construct, given that | |
8805 | the positions are relative to lower bound LOW, where HIGH is the | |
8806 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8807 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8808 | assign_aggregate. */ |
52ce6436 PH |
8809 | static void |
8810 | aggregate_assign_positional (struct value *container, | |
8811 | struct value *lhs, struct expression *exp, | |
8812 | int *pos, LONGEST *indices, int *num_indices, | |
8813 | int max_indices, LONGEST low, LONGEST high) | |
8814 | { | |
8815 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8816 | ||
8817 | if (ind - 1 == high) | |
e1d5a0d2 | 8818 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8819 | if (ind <= high) |
8820 | { | |
8821 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8822 | *pos += 3; | |
8823 | assign_component (container, lhs, ind, exp, pos); | |
8824 | } | |
8825 | else | |
8826 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8827 | } | |
8828 | ||
8829 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8830 | construct at *POS, updating *POS past the construct, given that | |
8831 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8832 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8833 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8834 | static void |
8835 | aggregate_assign_from_choices (struct value *container, | |
8836 | struct value *lhs, struct expression *exp, | |
8837 | int *pos, LONGEST *indices, int *num_indices, | |
8838 | int max_indices, LONGEST low, LONGEST high) | |
8839 | { | |
8840 | int j; | |
8841 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8842 | int choice_pos, expr_pc; | |
8843 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8844 | ||
8845 | choice_pos = *pos += 3; | |
8846 | ||
8847 | for (j = 0; j < n_choices; j += 1) | |
8848 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8849 | expr_pc = *pos; | |
8850 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8851 | ||
8852 | for (j = 0; j < n_choices; j += 1) | |
8853 | { | |
8854 | LONGEST lower, upper; | |
8855 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8856 | |
52ce6436 PH |
8857 | if (op == OP_DISCRETE_RANGE) |
8858 | { | |
8859 | choice_pos += 1; | |
8860 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8861 | EVAL_NORMAL)); | |
8862 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8863 | EVAL_NORMAL)); | |
8864 | } | |
8865 | else if (is_array) | |
8866 | { | |
8867 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8868 | EVAL_NORMAL)); | |
8869 | upper = lower; | |
8870 | } | |
8871 | else | |
8872 | { | |
8873 | int ind; | |
0d5cff50 | 8874 | const char *name; |
5b4ee69b | 8875 | |
52ce6436 PH |
8876 | switch (op) |
8877 | { | |
8878 | case OP_NAME: | |
8879 | name = &exp->elts[choice_pos + 2].string; | |
8880 | break; | |
8881 | case OP_VAR_VALUE: | |
8882 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8883 | break; | |
8884 | default: | |
8885 | error (_("Invalid record component association.")); | |
8886 | } | |
8887 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8888 | ind = 0; | |
8889 | if (! find_struct_field (name, value_type (lhs), 0, | |
8890 | NULL, NULL, NULL, NULL, &ind)) | |
8891 | error (_("Unknown component name: %s."), name); | |
8892 | lower = upper = ind; | |
8893 | } | |
8894 | ||
8895 | if (lower <= upper && (lower < low || upper > high)) | |
8896 | error (_("Index in component association out of bounds.")); | |
8897 | ||
8898 | add_component_interval (lower, upper, indices, num_indices, | |
8899 | max_indices); | |
8900 | while (lower <= upper) | |
8901 | { | |
8902 | int pos1; | |
5b4ee69b | 8903 | |
52ce6436 PH |
8904 | pos1 = expr_pc; |
8905 | assign_component (container, lhs, lower, exp, &pos1); | |
8906 | lower += 1; | |
8907 | } | |
8908 | } | |
8909 | } | |
8910 | ||
8911 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8912 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8913 | have not been previously assigned. The index intervals already assigned | |
8914 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8915 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8916 | static void |
8917 | aggregate_assign_others (struct value *container, | |
8918 | struct value *lhs, struct expression *exp, | |
8919 | int *pos, LONGEST *indices, int num_indices, | |
8920 | LONGEST low, LONGEST high) | |
8921 | { | |
8922 | int i; | |
5ce64950 | 8923 | int expr_pc = *pos + 1; |
52ce6436 PH |
8924 | |
8925 | for (i = 0; i < num_indices - 2; i += 2) | |
8926 | { | |
8927 | LONGEST ind; | |
5b4ee69b | 8928 | |
52ce6436 PH |
8929 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8930 | { | |
5ce64950 | 8931 | int localpos; |
5b4ee69b | 8932 | |
5ce64950 MS |
8933 | localpos = expr_pc; |
8934 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8935 | } |
8936 | } | |
8937 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8938 | } | |
8939 | ||
8940 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8941 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8942 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8943 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8944 | static void | |
8945 | add_component_interval (LONGEST low, LONGEST high, | |
8946 | LONGEST* indices, int *size, int max_size) | |
8947 | { | |
8948 | int i, j; | |
5b4ee69b | 8949 | |
52ce6436 PH |
8950 | for (i = 0; i < *size; i += 2) { |
8951 | if (high >= indices[i] && low <= indices[i + 1]) | |
8952 | { | |
8953 | int kh; | |
5b4ee69b | 8954 | |
52ce6436 PH |
8955 | for (kh = i + 2; kh < *size; kh += 2) |
8956 | if (high < indices[kh]) | |
8957 | break; | |
8958 | if (low < indices[i]) | |
8959 | indices[i] = low; | |
8960 | indices[i + 1] = indices[kh - 1]; | |
8961 | if (high > indices[i + 1]) | |
8962 | indices[i + 1] = high; | |
8963 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8964 | *size -= kh - i - 2; | |
8965 | return; | |
8966 | } | |
8967 | else if (high < indices[i]) | |
8968 | break; | |
8969 | } | |
8970 | ||
8971 | if (*size == max_size) | |
8972 | error (_("Internal error: miscounted aggregate components.")); | |
8973 | *size += 2; | |
8974 | for (j = *size-1; j >= i+2; j -= 1) | |
8975 | indices[j] = indices[j - 2]; | |
8976 | indices[i] = low; | |
8977 | indices[i + 1] = high; | |
8978 | } | |
8979 | ||
6e48bd2c JB |
8980 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8981 | is different. */ | |
8982 | ||
8983 | static struct value * | |
8984 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8985 | { | |
8986 | if (type == ada_check_typedef (value_type (arg2))) | |
8987 | return arg2; | |
8988 | ||
8989 | if (ada_is_fixed_point_type (type)) | |
8990 | return (cast_to_fixed (type, arg2)); | |
8991 | ||
8992 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8993 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8994 | |
8995 | return value_cast (type, arg2); | |
8996 | } | |
8997 | ||
284614f0 JB |
8998 | /* Evaluating Ada expressions, and printing their result. |
8999 | ------------------------------------------------------ | |
9000 | ||
21649b50 JB |
9001 | 1. Introduction: |
9002 | ---------------- | |
9003 | ||
284614f0 JB |
9004 | We usually evaluate an Ada expression in order to print its value. |
9005 | We also evaluate an expression in order to print its type, which | |
9006 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9007 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9008 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9009 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9010 | similar. | |
9011 | ||
9012 | Evaluating expressions is a little more complicated for Ada entities | |
9013 | than it is for entities in languages such as C. The main reason for | |
9014 | this is that Ada provides types whose definition might be dynamic. | |
9015 | One example of such types is variant records. Or another example | |
9016 | would be an array whose bounds can only be known at run time. | |
9017 | ||
9018 | The following description is a general guide as to what should be | |
9019 | done (and what should NOT be done) in order to evaluate an expression | |
9020 | involving such types, and when. This does not cover how the semantic | |
9021 | information is encoded by GNAT as this is covered separatly. For the | |
9022 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9023 | in the GNAT sources. | |
9024 | ||
9025 | Ideally, we should embed each part of this description next to its | |
9026 | associated code. Unfortunately, the amount of code is so vast right | |
9027 | now that it's hard to see whether the code handling a particular | |
9028 | situation might be duplicated or not. One day, when the code is | |
9029 | cleaned up, this guide might become redundant with the comments | |
9030 | inserted in the code, and we might want to remove it. | |
9031 | ||
21649b50 JB |
9032 | 2. ``Fixing'' an Entity, the Simple Case: |
9033 | ----------------------------------------- | |
9034 | ||
284614f0 JB |
9035 | When evaluating Ada expressions, the tricky issue is that they may |
9036 | reference entities whose type contents and size are not statically | |
9037 | known. Consider for instance a variant record: | |
9038 | ||
9039 | type Rec (Empty : Boolean := True) is record | |
9040 | case Empty is | |
9041 | when True => null; | |
9042 | when False => Value : Integer; | |
9043 | end case; | |
9044 | end record; | |
9045 | Yes : Rec := (Empty => False, Value => 1); | |
9046 | No : Rec := (empty => True); | |
9047 | ||
9048 | The size and contents of that record depends on the value of the | |
9049 | descriminant (Rec.Empty). At this point, neither the debugging | |
9050 | information nor the associated type structure in GDB are able to | |
9051 | express such dynamic types. So what the debugger does is to create | |
9052 | "fixed" versions of the type that applies to the specific object. | |
9053 | We also informally refer to this opperation as "fixing" an object, | |
9054 | which means creating its associated fixed type. | |
9055 | ||
9056 | Example: when printing the value of variable "Yes" above, its fixed | |
9057 | type would look like this: | |
9058 | ||
9059 | type Rec is record | |
9060 | Empty : Boolean; | |
9061 | Value : Integer; | |
9062 | end record; | |
9063 | ||
9064 | On the other hand, if we printed the value of "No", its fixed type | |
9065 | would become: | |
9066 | ||
9067 | type Rec is record | |
9068 | Empty : Boolean; | |
9069 | end record; | |
9070 | ||
9071 | Things become a little more complicated when trying to fix an entity | |
9072 | with a dynamic type that directly contains another dynamic type, | |
9073 | such as an array of variant records, for instance. There are | |
9074 | two possible cases: Arrays, and records. | |
9075 | ||
21649b50 JB |
9076 | 3. ``Fixing'' Arrays: |
9077 | --------------------- | |
9078 | ||
9079 | The type structure in GDB describes an array in terms of its bounds, | |
9080 | and the type of its elements. By design, all elements in the array | |
9081 | have the same type and we cannot represent an array of variant elements | |
9082 | using the current type structure in GDB. When fixing an array, | |
9083 | we cannot fix the array element, as we would potentially need one | |
9084 | fixed type per element of the array. As a result, the best we can do | |
9085 | when fixing an array is to produce an array whose bounds and size | |
9086 | are correct (allowing us to read it from memory), but without having | |
9087 | touched its element type. Fixing each element will be done later, | |
9088 | when (if) necessary. | |
9089 | ||
9090 | Arrays are a little simpler to handle than records, because the same | |
9091 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9092 | the amount of space actually used by each element differs from element |
21649b50 | 9093 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9094 | |
9095 | type Rec_Array is array (1 .. 2) of Rec; | |
9096 | ||
1b536f04 JB |
9097 | The actual amount of memory occupied by each element might be different |
9098 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9099 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9100 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9101 | the debugging information available, from which we can then determine |
9102 | the array size (we multiply the number of elements of the array by | |
9103 | the size of each element). | |
9104 | ||
9105 | The simplest case is when we have an array of a constrained element | |
9106 | type. For instance, consider the following type declarations: | |
9107 | ||
9108 | type Bounded_String (Max_Size : Integer) is | |
9109 | Length : Integer; | |
9110 | Buffer : String (1 .. Max_Size); | |
9111 | end record; | |
9112 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9113 | ||
9114 | In this case, the compiler describes the array as an array of | |
9115 | variable-size elements (identified by its XVS suffix) for which | |
9116 | the size can be read in the parallel XVZ variable. | |
9117 | ||
9118 | In the case of an array of an unconstrained element type, the compiler | |
9119 | wraps the array element inside a private PAD type. This type should not | |
9120 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9121 | that we also use the adjective "aligner" in our code to designate |
9122 | these wrapper types. | |
9123 | ||
1b536f04 | 9124 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9125 | known. In that case, the PAD type already has the correct size, |
9126 | and the array element should remain unfixed. | |
9127 | ||
9128 | But there are cases when this size is not statically known. | |
9129 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9130 | |
9131 | type Dynamic is array (1 .. Five) of Integer; | |
9132 | type Wrapper (Has_Length : Boolean := False) is record | |
9133 | Data : Dynamic; | |
9134 | case Has_Length is | |
9135 | when True => Length : Integer; | |
9136 | when False => null; | |
9137 | end case; | |
9138 | end record; | |
9139 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9140 | ||
9141 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9142 | Data => (others => 17), | |
9143 | Length => 1)); | |
9144 | ||
9145 | ||
9146 | The debugging info would describe variable Hello as being an | |
9147 | array of a PAD type. The size of that PAD type is not statically | |
9148 | known, but can be determined using a parallel XVZ variable. | |
9149 | In that case, a copy of the PAD type with the correct size should | |
9150 | be used for the fixed array. | |
9151 | ||
21649b50 JB |
9152 | 3. ``Fixing'' record type objects: |
9153 | ---------------------------------- | |
9154 | ||
9155 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9156 | record types. In this case, in order to compute the associated |
9157 | fixed type, we need to determine the size and offset of each of | |
9158 | its components. This, in turn, requires us to compute the fixed | |
9159 | type of each of these components. | |
9160 | ||
9161 | Consider for instance the example: | |
9162 | ||
9163 | type Bounded_String (Max_Size : Natural) is record | |
9164 | Str : String (1 .. Max_Size); | |
9165 | Length : Natural; | |
9166 | end record; | |
9167 | My_String : Bounded_String (Max_Size => 10); | |
9168 | ||
9169 | In that case, the position of field "Length" depends on the size | |
9170 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9171 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9172 | we need to fix the type of field Str. Therefore, fixing a variant |
9173 | record requires us to fix each of its components. | |
9174 | ||
9175 | However, if a component does not have a dynamic size, the component | |
9176 | should not be fixed. In particular, fields that use a PAD type | |
9177 | should not fixed. Here is an example where this might happen | |
9178 | (assuming type Rec above): | |
9179 | ||
9180 | type Container (Big : Boolean) is record | |
9181 | First : Rec; | |
9182 | After : Integer; | |
9183 | case Big is | |
9184 | when True => Another : Integer; | |
9185 | when False => null; | |
9186 | end case; | |
9187 | end record; | |
9188 | My_Container : Container := (Big => False, | |
9189 | First => (Empty => True), | |
9190 | After => 42); | |
9191 | ||
9192 | In that example, the compiler creates a PAD type for component First, | |
9193 | whose size is constant, and then positions the component After just | |
9194 | right after it. The offset of component After is therefore constant | |
9195 | in this case. | |
9196 | ||
9197 | The debugger computes the position of each field based on an algorithm | |
9198 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9199 | preceding it. Let's now imagine that the user is trying to print |
9200 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9201 | end up computing the offset of field After based on the size of the |
9202 | fixed version of field First. And since in our example First has | |
9203 | only one actual field, the size of the fixed type is actually smaller | |
9204 | than the amount of space allocated to that field, and thus we would | |
9205 | compute the wrong offset of field After. | |
9206 | ||
21649b50 JB |
9207 | To make things more complicated, we need to watch out for dynamic |
9208 | components of variant records (identified by the ___XVL suffix in | |
9209 | the component name). Even if the target type is a PAD type, the size | |
9210 | of that type might not be statically known. So the PAD type needs | |
9211 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9212 | we might end up with the wrong size for our component. This can be | |
9213 | observed with the following type declarations: | |
284614f0 JB |
9214 | |
9215 | type Octal is new Integer range 0 .. 7; | |
9216 | type Octal_Array is array (Positive range <>) of Octal; | |
9217 | pragma Pack (Octal_Array); | |
9218 | ||
9219 | type Octal_Buffer (Size : Positive) is record | |
9220 | Buffer : Octal_Array (1 .. Size); | |
9221 | Length : Integer; | |
9222 | end record; | |
9223 | ||
9224 | In that case, Buffer is a PAD type whose size is unset and needs | |
9225 | to be computed by fixing the unwrapped type. | |
9226 | ||
21649b50 JB |
9227 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9228 | ---------------------------------------------------------- | |
9229 | ||
9230 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9231 | thus far, be actually fixed? |
9232 | ||
9233 | The answer is: Only when referencing that element. For instance | |
9234 | when selecting one component of a record, this specific component | |
9235 | should be fixed at that point in time. Or when printing the value | |
9236 | of a record, each component should be fixed before its value gets | |
9237 | printed. Similarly for arrays, the element of the array should be | |
9238 | fixed when printing each element of the array, or when extracting | |
9239 | one element out of that array. On the other hand, fixing should | |
9240 | not be performed on the elements when taking a slice of an array! | |
9241 | ||
9242 | Note that one of the side-effects of miscomputing the offset and | |
9243 | size of each field is that we end up also miscomputing the size | |
9244 | of the containing type. This can have adverse results when computing | |
9245 | the value of an entity. GDB fetches the value of an entity based | |
9246 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9247 | the wrong amount of memory. In the case where the computed size is | |
9248 | too small, GDB fetches too little data to print the value of our | |
9249 | entiry. Results in this case as unpredicatble, as we usually read | |
9250 | past the buffer containing the data =:-o. */ | |
9251 | ||
9252 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9253 | for the Ada language. */ | |
9254 | ||
52ce6436 | 9255 | static struct value * |
ebf56fd3 | 9256 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9257 | int *pos, enum noside noside) |
14f9c5c9 AS |
9258 | { |
9259 | enum exp_opcode op; | |
b5385fc0 | 9260 | int tem; |
14f9c5c9 AS |
9261 | int pc; |
9262 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9263 | struct type *type; | |
52ce6436 | 9264 | int nargs, oplen; |
d2e4a39e | 9265 | struct value **argvec; |
14f9c5c9 | 9266 | |
d2e4a39e AS |
9267 | pc = *pos; |
9268 | *pos += 1; | |
14f9c5c9 AS |
9269 | op = exp->elts[pc].opcode; |
9270 | ||
d2e4a39e | 9271 | switch (op) |
14f9c5c9 AS |
9272 | { |
9273 | default: | |
9274 | *pos -= 1; | |
6e48bd2c JB |
9275 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9276 | arg1 = unwrap_value (arg1); | |
9277 | ||
9278 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9279 | then we need to perform the conversion manually, because | |
9280 | evaluate_subexp_standard doesn't do it. This conversion is | |
9281 | necessary in Ada because the different kinds of float/fixed | |
9282 | types in Ada have different representations. | |
9283 | ||
9284 | Similarly, we need to perform the conversion from OP_LONG | |
9285 | ourselves. */ | |
9286 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9287 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9288 | ||
9289 | return arg1; | |
4c4b4cd2 PH |
9290 | |
9291 | case OP_STRING: | |
9292 | { | |
76a01679 | 9293 | struct value *result; |
5b4ee69b | 9294 | |
76a01679 JB |
9295 | *pos -= 1; |
9296 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9297 | /* The result type will have code OP_STRING, bashed there from | |
9298 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9299 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9300 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9301 | return result; |
4c4b4cd2 | 9302 | } |
14f9c5c9 AS |
9303 | |
9304 | case UNOP_CAST: | |
9305 | (*pos) += 2; | |
9306 | type = exp->elts[pc + 1].type; | |
9307 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9308 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9309 | goto nosideret; |
6e48bd2c | 9310 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9311 | return arg1; |
9312 | ||
4c4b4cd2 PH |
9313 | case UNOP_QUAL: |
9314 | (*pos) += 2; | |
9315 | type = exp->elts[pc + 1].type; | |
9316 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9317 | ||
14f9c5c9 AS |
9318 | case BINOP_ASSIGN: |
9319 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9320 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9321 | { | |
9322 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9323 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9324 | return arg1; | |
9325 | return ada_value_assign (arg1, arg1); | |
9326 | } | |
003f3813 JB |
9327 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9328 | except if the lhs of our assignment is a convenience variable. | |
9329 | In the case of assigning to a convenience variable, the lhs | |
9330 | should be exactly the result of the evaluation of the rhs. */ | |
9331 | type = value_type (arg1); | |
9332 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9333 | type = NULL; | |
9334 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9335 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9336 | return arg1; |
df407dfe AC |
9337 | if (ada_is_fixed_point_type (value_type (arg1))) |
9338 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9339 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9340 | error |
323e0a4a | 9341 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9342 | else |
df407dfe | 9343 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9344 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9345 | |
9346 | case BINOP_ADD: | |
9347 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9348 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9349 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9350 | goto nosideret; |
2ac8a782 JB |
9351 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9352 | return (value_from_longest | |
9353 | (value_type (arg1), | |
9354 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9355 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9356 | || ada_is_fixed_point_type (value_type (arg2))) | |
9357 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9358 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9359 | /* Do the addition, and cast the result to the type of the first |
9360 | argument. We cannot cast the result to a reference type, so if | |
9361 | ARG1 is a reference type, find its underlying type. */ | |
9362 | type = value_type (arg1); | |
9363 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9364 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9365 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9366 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9367 | |
9368 | case BINOP_SUB: | |
9369 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9370 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9371 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9372 | goto nosideret; |
2ac8a782 JB |
9373 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9374 | return (value_from_longest | |
9375 | (value_type (arg1), | |
9376 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9377 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9378 | || ada_is_fixed_point_type (value_type (arg2))) | |
9379 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9380 | error (_("Operands of fixed-point subtraction " |
9381 | "must have the same type")); | |
b7789565 JB |
9382 | /* Do the substraction, and cast the result to the type of the first |
9383 | argument. We cannot cast the result to a reference type, so if | |
9384 | ARG1 is a reference type, find its underlying type. */ | |
9385 | type = value_type (arg1); | |
9386 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9387 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9388 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9389 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9390 | |
9391 | case BINOP_MUL: | |
9392 | case BINOP_DIV: | |
e1578042 JB |
9393 | case BINOP_REM: |
9394 | case BINOP_MOD: | |
14f9c5c9 AS |
9395 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9396 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9397 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9398 | goto nosideret; |
e1578042 | 9399 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9400 | { |
9401 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9402 | return value_zero (value_type (arg1), not_lval); | |
9403 | } | |
14f9c5c9 | 9404 | else |
4c4b4cd2 | 9405 | { |
a53b7a21 | 9406 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9407 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9408 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9409 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9410 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9411 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9412 | return ada_value_binop (arg1, arg2, op); |
9413 | } | |
9414 | ||
4c4b4cd2 PH |
9415 | case BINOP_EQUAL: |
9416 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9417 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9418 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9419 | if (noside == EVAL_SKIP) |
76a01679 | 9420 | goto nosideret; |
4c4b4cd2 | 9421 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9422 | tem = 0; |
4c4b4cd2 | 9423 | else |
f44316fa UW |
9424 | { |
9425 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9426 | tem = ada_value_equal (arg1, arg2); | |
9427 | } | |
4c4b4cd2 | 9428 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9429 | tem = !tem; |
fbb06eb1 UW |
9430 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9431 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9432 | |
9433 | case UNOP_NEG: | |
9434 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9435 | if (noside == EVAL_SKIP) | |
9436 | goto nosideret; | |
df407dfe AC |
9437 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9438 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9439 | else |
f44316fa UW |
9440 | { |
9441 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9442 | return value_neg (arg1); | |
9443 | } | |
4c4b4cd2 | 9444 | |
2330c6c6 JB |
9445 | case BINOP_LOGICAL_AND: |
9446 | case BINOP_LOGICAL_OR: | |
9447 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9448 | { |
9449 | struct value *val; | |
9450 | ||
9451 | *pos -= 1; | |
9452 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9453 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9454 | return value_cast (type, val); | |
000d5124 | 9455 | } |
2330c6c6 JB |
9456 | |
9457 | case BINOP_BITWISE_AND: | |
9458 | case BINOP_BITWISE_IOR: | |
9459 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9460 | { |
9461 | struct value *val; | |
9462 | ||
9463 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9464 | *pos = pc; | |
9465 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9466 | ||
9467 | return value_cast (value_type (arg1), val); | |
9468 | } | |
2330c6c6 | 9469 | |
14f9c5c9 AS |
9470 | case OP_VAR_VALUE: |
9471 | *pos -= 1; | |
6799def4 | 9472 | |
14f9c5c9 | 9473 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9474 | { |
9475 | *pos += 4; | |
9476 | goto nosideret; | |
9477 | } | |
9478 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9479 | /* Only encountered when an unresolved symbol occurs in a |
9480 | context other than a function call, in which case, it is | |
52ce6436 | 9481 | invalid. */ |
323e0a4a | 9482 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9483 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9484 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9485 | { |
0c1f74cf | 9486 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9487 | /* Check to see if this is a tagged type. We also need to handle |
9488 | the case where the type is a reference to a tagged type, but | |
9489 | we have to be careful to exclude pointers to tagged types. | |
9490 | The latter should be shown as usual (as a pointer), whereas | |
9491 | a reference should mostly be transparent to the user. */ | |
9492 | if (ada_is_tagged_type (type, 0) | |
9493 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9494 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9495 | { |
9496 | /* Tagged types are a little special in the fact that the real | |
9497 | type is dynamic and can only be determined by inspecting the | |
9498 | object's tag. This means that we need to get the object's | |
9499 | value first (EVAL_NORMAL) and then extract the actual object | |
9500 | type from its tag. | |
9501 | ||
9502 | Note that we cannot skip the final step where we extract | |
9503 | the object type from its tag, because the EVAL_NORMAL phase | |
9504 | results in dynamic components being resolved into fixed ones. | |
9505 | This can cause problems when trying to print the type | |
9506 | description of tagged types whose parent has a dynamic size: | |
9507 | We use the type name of the "_parent" component in order | |
9508 | to print the name of the ancestor type in the type description. | |
9509 | If that component had a dynamic size, the resolution into | |
9510 | a fixed type would result in the loss of that type name, | |
9511 | thus preventing us from printing the name of the ancestor | |
9512 | type in the type description. */ | |
b79819ba JB |
9513 | struct type *actual_type; |
9514 | ||
0c1f74cf | 9515 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9516 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9517 | if (actual_type == NULL) | |
9518 | /* If, for some reason, we were unable to determine | |
9519 | the actual type from the tag, then use the static | |
9520 | approximation that we just computed as a fallback. | |
9521 | This can happen if the debugging information is | |
9522 | incomplete, for instance. */ | |
9523 | actual_type = type; | |
9524 | ||
9525 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9526 | } |
9527 | ||
4c4b4cd2 PH |
9528 | *pos += 4; |
9529 | return value_zero | |
9530 | (to_static_fixed_type | |
9531 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9532 | not_lval); | |
9533 | } | |
d2e4a39e | 9534 | else |
4c4b4cd2 | 9535 | { |
284614f0 JB |
9536 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9537 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9538 | return ada_to_fixed_value (arg1); |
9539 | } | |
9540 | ||
9541 | case OP_FUNCALL: | |
9542 | (*pos) += 2; | |
9543 | ||
9544 | /* Allocate arg vector, including space for the function to be | |
9545 | called in argvec[0] and a terminating NULL. */ | |
9546 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9547 | argvec = | |
9548 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9549 | ||
9550 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9551 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9552 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9553 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9554 | else | |
9555 | { | |
9556 | for (tem = 0; tem <= nargs; tem += 1) | |
9557 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9558 | argvec[tem] = 0; | |
9559 | ||
9560 | if (noside == EVAL_SKIP) | |
9561 | goto nosideret; | |
9562 | } | |
9563 | ||
ad82864c JB |
9564 | if (ada_is_constrained_packed_array_type |
9565 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9566 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9567 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9568 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9569 | /* This is a packed array that has already been fixed, and | |
9570 | therefore already coerced to a simple array. Nothing further | |
9571 | to do. */ | |
9572 | ; | |
df407dfe AC |
9573 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9574 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9575 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9576 | argvec[0] = value_addr (argvec[0]); |
9577 | ||
df407dfe | 9578 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9579 | |
9580 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9581 | them. So, if this is an array typedef (encoding use for array |
9582 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9583 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9584 | type = ada_typedef_target_type (type); | |
9585 | ||
4c4b4cd2 PH |
9586 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9587 | { | |
61ee279c | 9588 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9589 | { |
9590 | case TYPE_CODE_FUNC: | |
61ee279c | 9591 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9592 | break; |
9593 | case TYPE_CODE_ARRAY: | |
9594 | break; | |
9595 | case TYPE_CODE_STRUCT: | |
9596 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9597 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9598 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9599 | break; |
9600 | default: | |
323e0a4a | 9601 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9602 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9603 | break; |
9604 | } | |
9605 | } | |
9606 | ||
9607 | switch (TYPE_CODE (type)) | |
9608 | { | |
9609 | case TYPE_CODE_FUNC: | |
9610 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9611 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9612 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9613 | case TYPE_CODE_STRUCT: | |
9614 | { | |
9615 | int arity; | |
9616 | ||
4c4b4cd2 PH |
9617 | arity = ada_array_arity (type); |
9618 | type = ada_array_element_type (type, nargs); | |
9619 | if (type == NULL) | |
323e0a4a | 9620 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9621 | if (arity != nargs) |
323e0a4a | 9622 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9623 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9624 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9625 | return |
9626 | unwrap_value (ada_value_subscript | |
9627 | (argvec[0], nargs, argvec + 1)); | |
9628 | } | |
9629 | case TYPE_CODE_ARRAY: | |
9630 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9631 | { | |
9632 | type = ada_array_element_type (type, nargs); | |
9633 | if (type == NULL) | |
323e0a4a | 9634 | error (_("element type of array unknown")); |
4c4b4cd2 | 9635 | else |
0a07e705 | 9636 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9637 | } |
9638 | return | |
9639 | unwrap_value (ada_value_subscript | |
9640 | (ada_coerce_to_simple_array (argvec[0]), | |
9641 | nargs, argvec + 1)); | |
9642 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9643 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9644 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9645 | { | |
9646 | type = ada_array_element_type (type, nargs); | |
9647 | if (type == NULL) | |
323e0a4a | 9648 | error (_("element type of array unknown")); |
4c4b4cd2 | 9649 | else |
0a07e705 | 9650 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9651 | } |
9652 | return | |
9653 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9654 | nargs, argvec + 1)); | |
9655 | ||
9656 | default: | |
e1d5a0d2 PH |
9657 | error (_("Attempt to index or call something other than an " |
9658 | "array or function")); | |
4c4b4cd2 PH |
9659 | } |
9660 | ||
9661 | case TERNOP_SLICE: | |
9662 | { | |
9663 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9664 | struct value *low_bound_val = | |
9665 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9666 | struct value *high_bound_val = |
9667 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9668 | LONGEST low_bound; | |
9669 | LONGEST high_bound; | |
5b4ee69b | 9670 | |
994b9211 AC |
9671 | low_bound_val = coerce_ref (low_bound_val); |
9672 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9673 | low_bound = pos_atr (low_bound_val); |
9674 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9675 | |
4c4b4cd2 PH |
9676 | if (noside == EVAL_SKIP) |
9677 | goto nosideret; | |
9678 | ||
4c4b4cd2 PH |
9679 | /* If this is a reference to an aligner type, then remove all |
9680 | the aligners. */ | |
df407dfe AC |
9681 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9682 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9683 | TYPE_TARGET_TYPE (value_type (array)) = | |
9684 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9685 | |
ad82864c | 9686 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9687 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9688 | |
9689 | /* If this is a reference to an array or an array lvalue, | |
9690 | convert to a pointer. */ | |
df407dfe AC |
9691 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9692 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9693 | && VALUE_LVAL (array) == lval_memory)) |
9694 | array = value_addr (array); | |
9695 | ||
1265e4aa | 9696 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9697 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9698 | (value_type (array)))) |
0b5d8877 | 9699 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9700 | |
9701 | array = ada_coerce_to_simple_array_ptr (array); | |
9702 | ||
714e53ab PH |
9703 | /* If we have more than one level of pointer indirection, |
9704 | dereference the value until we get only one level. */ | |
df407dfe AC |
9705 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9706 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9707 | == TYPE_CODE_PTR)) |
9708 | array = value_ind (array); | |
9709 | ||
9710 | /* Make sure we really do have an array type before going further, | |
9711 | to avoid a SEGV when trying to get the index type or the target | |
9712 | type later down the road if the debug info generated by | |
9713 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9714 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9715 | error (_("cannot take slice of non-array")); |
714e53ab | 9716 | |
828292f2 JB |
9717 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
9718 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 9719 | { |
828292f2 JB |
9720 | struct type *type0 = ada_check_typedef (value_type (array)); |
9721 | ||
0b5d8877 | 9722 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 9723 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
9724 | else |
9725 | { | |
9726 | struct type *arr_type0 = | |
828292f2 | 9727 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 9728 | |
f5938064 JG |
9729 | return ada_value_slice_from_ptr (array, arr_type0, |
9730 | longest_to_int (low_bound), | |
9731 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9732 | } |
9733 | } | |
9734 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9735 | return array; | |
9736 | else if (high_bound < low_bound) | |
df407dfe | 9737 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9738 | else |
529cad9c PH |
9739 | return ada_value_slice (array, longest_to_int (low_bound), |
9740 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9741 | } |
14f9c5c9 | 9742 | |
4c4b4cd2 PH |
9743 | case UNOP_IN_RANGE: |
9744 | (*pos) += 2; | |
9745 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9746 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9747 | |
14f9c5c9 | 9748 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9749 | goto nosideret; |
14f9c5c9 | 9750 | |
4c4b4cd2 PH |
9751 | switch (TYPE_CODE (type)) |
9752 | { | |
9753 | default: | |
e1d5a0d2 PH |
9754 | lim_warning (_("Membership test incompletely implemented; " |
9755 | "always returns true")); | |
fbb06eb1 UW |
9756 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9757 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9758 | |
9759 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9760 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9761 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9762 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9763 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9764 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9765 | return | |
9766 | value_from_longest (type, | |
4c4b4cd2 PH |
9767 | (value_less (arg1, arg3) |
9768 | || value_equal (arg1, arg3)) | |
9769 | && (value_less (arg2, arg1) | |
9770 | || value_equal (arg2, arg1))); | |
9771 | } | |
9772 | ||
9773 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9774 | (*pos) += 2; |
4c4b4cd2 PH |
9775 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9776 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9777 | |
4c4b4cd2 PH |
9778 | if (noside == EVAL_SKIP) |
9779 | goto nosideret; | |
14f9c5c9 | 9780 | |
4c4b4cd2 | 9781 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9782 | { |
9783 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9784 | return value_zero (type, not_lval); | |
9785 | } | |
14f9c5c9 | 9786 | |
4c4b4cd2 | 9787 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9788 | |
1eea4ebd UW |
9789 | type = ada_index_type (value_type (arg2), tem, "range"); |
9790 | if (!type) | |
9791 | type = value_type (arg1); | |
14f9c5c9 | 9792 | |
1eea4ebd UW |
9793 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9794 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9795 | |
f44316fa UW |
9796 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9797 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9798 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9799 | return |
fbb06eb1 | 9800 | value_from_longest (type, |
4c4b4cd2 PH |
9801 | (value_less (arg1, arg3) |
9802 | || value_equal (arg1, arg3)) | |
9803 | && (value_less (arg2, arg1) | |
9804 | || value_equal (arg2, arg1))); | |
9805 | ||
9806 | case TERNOP_IN_RANGE: | |
9807 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9808 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9809 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9810 | ||
9811 | if (noside == EVAL_SKIP) | |
9812 | goto nosideret; | |
9813 | ||
f44316fa UW |
9814 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9815 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9816 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9817 | return |
fbb06eb1 | 9818 | value_from_longest (type, |
4c4b4cd2 PH |
9819 | (value_less (arg1, arg3) |
9820 | || value_equal (arg1, arg3)) | |
9821 | && (value_less (arg2, arg1) | |
9822 | || value_equal (arg2, arg1))); | |
9823 | ||
9824 | case OP_ATR_FIRST: | |
9825 | case OP_ATR_LAST: | |
9826 | case OP_ATR_LENGTH: | |
9827 | { | |
76a01679 | 9828 | struct type *type_arg; |
5b4ee69b | 9829 | |
76a01679 JB |
9830 | if (exp->elts[*pos].opcode == OP_TYPE) |
9831 | { | |
9832 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9833 | arg1 = NULL; | |
5bc23cb3 | 9834 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9835 | } |
9836 | else | |
9837 | { | |
9838 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9839 | type_arg = NULL; | |
9840 | } | |
9841 | ||
9842 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9843 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9844 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9845 | *pos += 4; | |
9846 | ||
9847 | if (noside == EVAL_SKIP) | |
9848 | goto nosideret; | |
9849 | ||
9850 | if (type_arg == NULL) | |
9851 | { | |
9852 | arg1 = ada_coerce_ref (arg1); | |
9853 | ||
ad82864c | 9854 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9855 | arg1 = ada_coerce_to_simple_array (arg1); |
9856 | ||
1eea4ebd UW |
9857 | type = ada_index_type (value_type (arg1), tem, |
9858 | ada_attribute_name (op)); | |
9859 | if (type == NULL) | |
9860 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9861 | |
9862 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9863 | return allocate_value (type); |
76a01679 JB |
9864 | |
9865 | switch (op) | |
9866 | { | |
9867 | default: /* Should never happen. */ | |
323e0a4a | 9868 | error (_("unexpected attribute encountered")); |
76a01679 | 9869 | case OP_ATR_FIRST: |
1eea4ebd UW |
9870 | return value_from_longest |
9871 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9872 | case OP_ATR_LAST: |
1eea4ebd UW |
9873 | return value_from_longest |
9874 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9875 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9876 | return value_from_longest |
9877 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9878 | } |
9879 | } | |
9880 | else if (discrete_type_p (type_arg)) | |
9881 | { | |
9882 | struct type *range_type; | |
0d5cff50 | 9883 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 9884 | |
76a01679 JB |
9885 | range_type = NULL; |
9886 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9887 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9888 | if (range_type == NULL) |
9889 | range_type = type_arg; | |
9890 | switch (op) | |
9891 | { | |
9892 | default: | |
323e0a4a | 9893 | error (_("unexpected attribute encountered")); |
76a01679 | 9894 | case OP_ATR_FIRST: |
690cc4eb | 9895 | return value_from_longest |
43bbcdc2 | 9896 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9897 | case OP_ATR_LAST: |
690cc4eb | 9898 | return value_from_longest |
43bbcdc2 | 9899 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9900 | case OP_ATR_LENGTH: |
323e0a4a | 9901 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9902 | } |
9903 | } | |
9904 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9905 | error (_("unimplemented type attribute")); |
76a01679 JB |
9906 | else |
9907 | { | |
9908 | LONGEST low, high; | |
9909 | ||
ad82864c JB |
9910 | if (ada_is_constrained_packed_array_type (type_arg)) |
9911 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9912 | |
1eea4ebd | 9913 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9914 | if (type == NULL) |
1eea4ebd UW |
9915 | type = builtin_type (exp->gdbarch)->builtin_int; |
9916 | ||
76a01679 JB |
9917 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9918 | return allocate_value (type); | |
9919 | ||
9920 | switch (op) | |
9921 | { | |
9922 | default: | |
323e0a4a | 9923 | error (_("unexpected attribute encountered")); |
76a01679 | 9924 | case OP_ATR_FIRST: |
1eea4ebd | 9925 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9926 | return value_from_longest (type, low); |
9927 | case OP_ATR_LAST: | |
1eea4ebd | 9928 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9929 | return value_from_longest (type, high); |
9930 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9931 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9932 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9933 | return value_from_longest (type, high - low + 1); |
9934 | } | |
9935 | } | |
14f9c5c9 AS |
9936 | } |
9937 | ||
4c4b4cd2 PH |
9938 | case OP_ATR_TAG: |
9939 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9940 | if (noside == EVAL_SKIP) | |
76a01679 | 9941 | goto nosideret; |
4c4b4cd2 PH |
9942 | |
9943 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9944 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9945 | |
9946 | return ada_value_tag (arg1); | |
9947 | ||
9948 | case OP_ATR_MIN: | |
9949 | case OP_ATR_MAX: | |
9950 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9951 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9952 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9953 | if (noside == EVAL_SKIP) | |
76a01679 | 9954 | goto nosideret; |
d2e4a39e | 9955 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9956 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9957 | else |
f44316fa UW |
9958 | { |
9959 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9960 | return value_binop (arg1, arg2, | |
9961 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9962 | } | |
14f9c5c9 | 9963 | |
4c4b4cd2 PH |
9964 | case OP_ATR_MODULUS: |
9965 | { | |
31dedfee | 9966 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9967 | |
5b4ee69b | 9968 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9969 | if (noside == EVAL_SKIP) |
9970 | goto nosideret; | |
4c4b4cd2 | 9971 | |
76a01679 | 9972 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9973 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9974 | |
76a01679 JB |
9975 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9976 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9977 | } |
9978 | ||
9979 | ||
9980 | case OP_ATR_POS: | |
9981 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9982 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9983 | if (noside == EVAL_SKIP) | |
76a01679 | 9984 | goto nosideret; |
3cb382c9 UW |
9985 | type = builtin_type (exp->gdbarch)->builtin_int; |
9986 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9987 | return value_zero (type, not_lval); | |
14f9c5c9 | 9988 | else |
3cb382c9 | 9989 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9990 | |
4c4b4cd2 PH |
9991 | case OP_ATR_SIZE: |
9992 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9993 | type = value_type (arg1); |
9994 | ||
9995 | /* If the argument is a reference, then dereference its type, since | |
9996 | the user is really asking for the size of the actual object, | |
9997 | not the size of the pointer. */ | |
9998 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9999 | type = TYPE_TARGET_TYPE (type); | |
10000 | ||
4c4b4cd2 | 10001 | if (noside == EVAL_SKIP) |
76a01679 | 10002 | goto nosideret; |
4c4b4cd2 | 10003 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10004 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10005 | else |
22601c15 | 10006 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10007 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10008 | |
10009 | case OP_ATR_VAL: | |
10010 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10011 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10012 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10013 | if (noside == EVAL_SKIP) |
76a01679 | 10014 | goto nosideret; |
4c4b4cd2 | 10015 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10016 | return value_zero (type, not_lval); |
4c4b4cd2 | 10017 | else |
76a01679 | 10018 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10019 | |
10020 | case BINOP_EXP: | |
10021 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10022 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10023 | if (noside == EVAL_SKIP) | |
10024 | goto nosideret; | |
10025 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10026 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10027 | else |
f44316fa UW |
10028 | { |
10029 | /* For integer exponentiation operations, | |
10030 | only promote the first argument. */ | |
10031 | if (is_integral_type (value_type (arg2))) | |
10032 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10033 | else | |
10034 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10035 | ||
10036 | return value_binop (arg1, arg2, op); | |
10037 | } | |
4c4b4cd2 PH |
10038 | |
10039 | case UNOP_PLUS: | |
10040 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10041 | if (noside == EVAL_SKIP) | |
10042 | goto nosideret; | |
10043 | else | |
10044 | return arg1; | |
10045 | ||
10046 | case UNOP_ABS: | |
10047 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10048 | if (noside == EVAL_SKIP) | |
10049 | goto nosideret; | |
f44316fa | 10050 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10051 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10052 | return value_neg (arg1); |
14f9c5c9 | 10053 | else |
4c4b4cd2 | 10054 | return arg1; |
14f9c5c9 AS |
10055 | |
10056 | case UNOP_IND: | |
6b0d7253 | 10057 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10058 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10059 | goto nosideret; |
df407dfe | 10060 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10061 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10062 | { |
10063 | if (ada_is_array_descriptor_type (type)) | |
10064 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10065 | { | |
10066 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10067 | |
4c4b4cd2 | 10068 | if (arrType == NULL) |
323e0a4a | 10069 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10070 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10071 | } |
10072 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10073 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10074 | /* In C you can dereference an array to get the 1st elt. */ | |
10075 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10076 | { |
10077 | type = to_static_fixed_type | |
10078 | (ada_aligned_type | |
10079 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10080 | check_size (type); | |
10081 | return value_zero (type, lval_memory); | |
10082 | } | |
4c4b4cd2 | 10083 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10084 | { |
10085 | /* GDB allows dereferencing an int. */ | |
10086 | if (expect_type == NULL) | |
10087 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10088 | lval_memory); | |
10089 | else | |
10090 | { | |
10091 | expect_type = | |
10092 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10093 | return value_zero (expect_type, lval_memory); | |
10094 | } | |
10095 | } | |
4c4b4cd2 | 10096 | else |
323e0a4a | 10097 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10098 | } |
0963b4bd | 10099 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10100 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10101 | |
96967637 JB |
10102 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10103 | /* GDB allows dereferencing an int. If we were given | |
10104 | the expect_type, then use that as the target type. | |
10105 | Otherwise, assume that the target type is an int. */ | |
10106 | { | |
10107 | if (expect_type != NULL) | |
10108 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10109 | arg1)); | |
10110 | else | |
10111 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10112 | (CORE_ADDR) value_as_address (arg1)); | |
10113 | } | |
6b0d7253 | 10114 | |
4c4b4cd2 PH |
10115 | if (ada_is_array_descriptor_type (type)) |
10116 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10117 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10118 | else |
4c4b4cd2 | 10119 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10120 | |
10121 | case STRUCTOP_STRUCT: | |
10122 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10123 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10124 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10125 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10126 | goto nosideret; |
14f9c5c9 | 10127 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10128 | { |
df407dfe | 10129 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10130 | |
76a01679 JB |
10131 | if (ada_is_tagged_type (type1, 1)) |
10132 | { | |
10133 | type = ada_lookup_struct_elt_type (type1, | |
10134 | &exp->elts[pc + 2].string, | |
10135 | 1, 1, NULL); | |
10136 | if (type == NULL) | |
10137 | /* In this case, we assume that the field COULD exist | |
10138 | in some extension of the type. Return an object of | |
10139 | "type" void, which will match any formal | |
0963b4bd | 10140 | (see ada_type_match). */ |
30b15541 UW |
10141 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10142 | lval_memory); | |
76a01679 JB |
10143 | } |
10144 | else | |
10145 | type = | |
10146 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10147 | 0, NULL); | |
10148 | ||
10149 | return value_zero (ada_aligned_type (type), lval_memory); | |
10150 | } | |
14f9c5c9 | 10151 | else |
284614f0 JB |
10152 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10153 | arg1 = unwrap_value (arg1); | |
10154 | return ada_to_fixed_value (arg1); | |
10155 | ||
14f9c5c9 | 10156 | case OP_TYPE: |
4c4b4cd2 PH |
10157 | /* The value is not supposed to be used. This is here to make it |
10158 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10159 | (*pos) += 2; |
10160 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10161 | goto nosideret; |
14f9c5c9 | 10162 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10163 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10164 | else |
323e0a4a | 10165 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10166 | |
10167 | case OP_AGGREGATE: | |
10168 | case OP_CHOICES: | |
10169 | case OP_OTHERS: | |
10170 | case OP_DISCRETE_RANGE: | |
10171 | case OP_POSITIONAL: | |
10172 | case OP_NAME: | |
10173 | if (noside == EVAL_NORMAL) | |
10174 | switch (op) | |
10175 | { | |
10176 | case OP_NAME: | |
10177 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10178 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10179 | case OP_AGGREGATE: |
10180 | error (_("Aggregates only allowed on the right of an assignment")); | |
10181 | default: | |
0963b4bd MS |
10182 | internal_error (__FILE__, __LINE__, |
10183 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10184 | } |
10185 | ||
10186 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10187 | *pos += oplen - 1; | |
10188 | for (tem = 0; tem < nargs; tem += 1) | |
10189 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10190 | goto nosideret; | |
14f9c5c9 AS |
10191 | } |
10192 | ||
10193 | nosideret: | |
22601c15 | 10194 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10195 | } |
14f9c5c9 | 10196 | \f |
d2e4a39e | 10197 | |
4c4b4cd2 | 10198 | /* Fixed point */ |
14f9c5c9 AS |
10199 | |
10200 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10201 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10202 | Otherwise, return NULL. */ |
14f9c5c9 | 10203 | |
d2e4a39e | 10204 | static const char * |
ebf56fd3 | 10205 | fixed_type_info (struct type *type) |
14f9c5c9 | 10206 | { |
d2e4a39e | 10207 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10208 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10209 | ||
d2e4a39e AS |
10210 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10211 | { | |
14f9c5c9 | 10212 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10213 | |
14f9c5c9 | 10214 | if (tail == NULL) |
4c4b4cd2 | 10215 | return NULL; |
d2e4a39e | 10216 | else |
4c4b4cd2 | 10217 | return tail + 5; |
14f9c5c9 AS |
10218 | } |
10219 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10220 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10221 | else | |
10222 | return NULL; | |
10223 | } | |
10224 | ||
4c4b4cd2 | 10225 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10226 | |
10227 | int | |
ebf56fd3 | 10228 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10229 | { |
10230 | return fixed_type_info (type) != NULL; | |
10231 | } | |
10232 | ||
4c4b4cd2 PH |
10233 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10234 | ||
10235 | int | |
10236 | ada_is_system_address_type (struct type *type) | |
10237 | { | |
10238 | return (TYPE_NAME (type) | |
10239 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10240 | } | |
10241 | ||
14f9c5c9 AS |
10242 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10243 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10244 | delta cannot be determined. */ |
14f9c5c9 AS |
10245 | |
10246 | DOUBLEST | |
ebf56fd3 | 10247 | ada_delta (struct type *type) |
14f9c5c9 AS |
10248 | { |
10249 | const char *encoding = fixed_type_info (type); | |
facc390f | 10250 | DOUBLEST num, den; |
14f9c5c9 | 10251 | |
facc390f JB |
10252 | /* Strictly speaking, num and den are encoded as integer. However, |
10253 | they may not fit into a long, and they will have to be converted | |
10254 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10255 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10256 | &num, &den) < 2) | |
14f9c5c9 | 10257 | return -1.0; |
d2e4a39e | 10258 | else |
facc390f | 10259 | return num / den; |
14f9c5c9 AS |
10260 | } |
10261 | ||
10262 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10263 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10264 | |
10265 | static DOUBLEST | |
ebf56fd3 | 10266 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10267 | { |
10268 | const char *encoding = fixed_type_info (type); | |
facc390f | 10269 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10270 | int n; |
d2e4a39e | 10271 | |
facc390f JB |
10272 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10273 | they may not fit into a long, and they will have to be converted | |
10274 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10275 | n = sscanf (encoding, | |
10276 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10277 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10278 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10279 | |
10280 | if (n < 2) | |
10281 | return 1.0; | |
10282 | else if (n == 4) | |
facc390f | 10283 | return num1 / den1; |
d2e4a39e | 10284 | else |
facc390f | 10285 | return num0 / den0; |
14f9c5c9 AS |
10286 | } |
10287 | ||
10288 | ||
10289 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10290 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10291 | |
10292 | DOUBLEST | |
ebf56fd3 | 10293 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10294 | { |
d2e4a39e | 10295 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10296 | } |
10297 | ||
4c4b4cd2 PH |
10298 | /* The representation of a fixed-point value of type TYPE |
10299 | corresponding to the value X. */ | |
14f9c5c9 AS |
10300 | |
10301 | LONGEST | |
ebf56fd3 | 10302 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10303 | { |
10304 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10305 | } | |
10306 | ||
14f9c5c9 | 10307 | \f |
d2e4a39e | 10308 | |
4c4b4cd2 | 10309 | /* Range types */ |
14f9c5c9 AS |
10310 | |
10311 | /* Scan STR beginning at position K for a discriminant name, and | |
10312 | return the value of that discriminant field of DVAL in *PX. If | |
10313 | PNEW_K is not null, put the position of the character beyond the | |
10314 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10315 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10316 | |
10317 | static int | |
07d8f827 | 10318 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10319 | int *pnew_k) |
14f9c5c9 AS |
10320 | { |
10321 | static char *bound_buffer = NULL; | |
10322 | static size_t bound_buffer_len = 0; | |
10323 | char *bound; | |
10324 | char *pend; | |
d2e4a39e | 10325 | struct value *bound_val; |
14f9c5c9 AS |
10326 | |
10327 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10328 | return 0; | |
10329 | ||
d2e4a39e | 10330 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10331 | if (pend == NULL) |
10332 | { | |
d2e4a39e | 10333 | bound = str + k; |
14f9c5c9 AS |
10334 | k += strlen (bound); |
10335 | } | |
d2e4a39e | 10336 | else |
14f9c5c9 | 10337 | { |
d2e4a39e | 10338 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10339 | bound = bound_buffer; |
d2e4a39e AS |
10340 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10341 | bound[pend - (str + k)] = '\0'; | |
10342 | k = pend - str; | |
14f9c5c9 | 10343 | } |
d2e4a39e | 10344 | |
df407dfe | 10345 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10346 | if (bound_val == NULL) |
10347 | return 0; | |
10348 | ||
10349 | *px = value_as_long (bound_val); | |
10350 | if (pnew_k != NULL) | |
10351 | *pnew_k = k; | |
10352 | return 1; | |
10353 | } | |
10354 | ||
10355 | /* Value of variable named NAME in the current environment. If | |
10356 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10357 | otherwise causes an error with message ERR_MSG. */ |
10358 | ||
d2e4a39e AS |
10359 | static struct value * |
10360 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10361 | { |
4c4b4cd2 | 10362 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10363 | int nsyms; |
10364 | ||
4c4b4cd2 | 10365 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
d9680e73 | 10366 | &syms, 1); |
14f9c5c9 AS |
10367 | |
10368 | if (nsyms != 1) | |
10369 | { | |
10370 | if (err_msg == NULL) | |
4c4b4cd2 | 10371 | return 0; |
14f9c5c9 | 10372 | else |
8a3fe4f8 | 10373 | error (("%s"), err_msg); |
14f9c5c9 AS |
10374 | } |
10375 | ||
4c4b4cd2 | 10376 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10377 | } |
d2e4a39e | 10378 | |
14f9c5c9 | 10379 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10380 | no such variable found, returns 0, and sets *FLAG to 0. If |
10381 | successful, sets *FLAG to 1. */ | |
10382 | ||
14f9c5c9 | 10383 | LONGEST |
4c4b4cd2 | 10384 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10385 | { |
4c4b4cd2 | 10386 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10387 | |
14f9c5c9 AS |
10388 | if (var_val == 0) |
10389 | { | |
10390 | if (flag != NULL) | |
4c4b4cd2 | 10391 | *flag = 0; |
14f9c5c9 AS |
10392 | return 0; |
10393 | } | |
10394 | else | |
10395 | { | |
10396 | if (flag != NULL) | |
4c4b4cd2 | 10397 | *flag = 1; |
14f9c5c9 AS |
10398 | return value_as_long (var_val); |
10399 | } | |
10400 | } | |
d2e4a39e | 10401 | |
14f9c5c9 AS |
10402 | |
10403 | /* Return a range type whose base type is that of the range type named | |
10404 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10405 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10406 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10407 | corresponding range type from debug information; fall back to using it | |
10408 | if symbol lookup fails. If a new type must be created, allocate it | |
10409 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10410 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10411 | |
d2e4a39e | 10412 | static struct type * |
28c85d6c | 10413 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10414 | { |
0d5cff50 | 10415 | const char *name; |
14f9c5c9 | 10416 | struct type *base_type; |
d2e4a39e | 10417 | char *subtype_info; |
14f9c5c9 | 10418 | |
28c85d6c JB |
10419 | gdb_assert (raw_type != NULL); |
10420 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10421 | |
1ce677a4 | 10422 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10423 | base_type = TYPE_TARGET_TYPE (raw_type); |
10424 | else | |
10425 | base_type = raw_type; | |
10426 | ||
28c85d6c | 10427 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10428 | subtype_info = strstr (name, "___XD"); |
10429 | if (subtype_info == NULL) | |
690cc4eb | 10430 | { |
43bbcdc2 PH |
10431 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10432 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10433 | |
690cc4eb PH |
10434 | if (L < INT_MIN || U > INT_MAX) |
10435 | return raw_type; | |
10436 | else | |
28c85d6c | 10437 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10438 | ada_discrete_type_low_bound (raw_type), |
10439 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10440 | } |
14f9c5c9 AS |
10441 | else |
10442 | { | |
10443 | static char *name_buf = NULL; | |
10444 | static size_t name_len = 0; | |
10445 | int prefix_len = subtype_info - name; | |
10446 | LONGEST L, U; | |
10447 | struct type *type; | |
10448 | char *bounds_str; | |
10449 | int n; | |
10450 | ||
10451 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10452 | strncpy (name_buf, name, prefix_len); | |
10453 | name_buf[prefix_len] = '\0'; | |
10454 | ||
10455 | subtype_info += 5; | |
10456 | bounds_str = strchr (subtype_info, '_'); | |
10457 | n = 1; | |
10458 | ||
d2e4a39e | 10459 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10460 | { |
10461 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10462 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10463 | return raw_type; | |
10464 | if (bounds_str[n] == '_') | |
10465 | n += 2; | |
0963b4bd | 10466 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10467 | n += 1; |
10468 | subtype_info += 1; | |
10469 | } | |
d2e4a39e | 10470 | else |
4c4b4cd2 PH |
10471 | { |
10472 | int ok; | |
5b4ee69b | 10473 | |
4c4b4cd2 PH |
10474 | strcpy (name_buf + prefix_len, "___L"); |
10475 | L = get_int_var_value (name_buf, &ok); | |
10476 | if (!ok) | |
10477 | { | |
323e0a4a | 10478 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10479 | L = 1; |
10480 | } | |
10481 | } | |
14f9c5c9 | 10482 | |
d2e4a39e | 10483 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10484 | { |
10485 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10486 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10487 | return raw_type; | |
10488 | } | |
d2e4a39e | 10489 | else |
4c4b4cd2 PH |
10490 | { |
10491 | int ok; | |
5b4ee69b | 10492 | |
4c4b4cd2 PH |
10493 | strcpy (name_buf + prefix_len, "___U"); |
10494 | U = get_int_var_value (name_buf, &ok); | |
10495 | if (!ok) | |
10496 | { | |
323e0a4a | 10497 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10498 | U = L; |
10499 | } | |
10500 | } | |
14f9c5c9 | 10501 | |
28c85d6c | 10502 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10503 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10504 | return type; |
10505 | } | |
10506 | } | |
10507 | ||
4c4b4cd2 PH |
10508 | /* True iff NAME is the name of a range type. */ |
10509 | ||
14f9c5c9 | 10510 | int |
d2e4a39e | 10511 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10512 | { |
10513 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10514 | } |
14f9c5c9 | 10515 | \f |
d2e4a39e | 10516 | |
4c4b4cd2 PH |
10517 | /* Modular types */ |
10518 | ||
10519 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10520 | |
14f9c5c9 | 10521 | int |
d2e4a39e | 10522 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10523 | { |
18af8284 | 10524 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10525 | |
10526 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10527 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10528 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10529 | } |
10530 | ||
0056e4d5 JB |
10531 | /* Try to determine the lower and upper bounds of the given modular type |
10532 | using the type name only. Return non-zero and set L and U as the lower | |
10533 | and upper bounds (respectively) if successful. */ | |
10534 | ||
10535 | int | |
10536 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10537 | { | |
0d5cff50 DE |
10538 | const char *name = ada_type_name (type); |
10539 | const char *suffix; | |
0056e4d5 JB |
10540 | int k; |
10541 | LONGEST U; | |
10542 | ||
10543 | if (name == NULL) | |
10544 | return 0; | |
10545 | ||
10546 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10547 | we are looking for static bounds, which means an __XDLU suffix. | |
10548 | Moreover, we know that the lower bound of modular types is always | |
10549 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10550 | then be followed by the upper bound value. */ | |
10551 | suffix = strstr (name, "__XDLU_0__"); | |
10552 | if (suffix == NULL) | |
10553 | return 0; | |
10554 | k = 10; | |
10555 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10556 | return 0; | |
10557 | ||
10558 | *modulus = (ULONGEST) U + 1; | |
10559 | return 1; | |
10560 | } | |
10561 | ||
4c4b4cd2 PH |
10562 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10563 | ||
61ee279c | 10564 | ULONGEST |
0056e4d5 | 10565 | ada_modulus (struct type *type) |
14f9c5c9 | 10566 | { |
43bbcdc2 | 10567 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10568 | } |
d2e4a39e | 10569 | \f |
f7f9143b JB |
10570 | |
10571 | /* Ada exception catchpoint support: | |
10572 | --------------------------------- | |
10573 | ||
10574 | We support 3 kinds of exception catchpoints: | |
10575 | . catchpoints on Ada exceptions | |
10576 | . catchpoints on unhandled Ada exceptions | |
10577 | . catchpoints on failed assertions | |
10578 | ||
10579 | Exceptions raised during failed assertions, or unhandled exceptions | |
10580 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10581 | However, we can easily differentiate these two special cases, and having | |
10582 | the option to distinguish these two cases from the rest can be useful | |
10583 | to zero-in on certain situations. | |
10584 | ||
10585 | Exception catchpoints are a specialized form of breakpoint, | |
10586 | since they rely on inserting breakpoints inside known routines | |
10587 | of the GNAT runtime. The implementation therefore uses a standard | |
10588 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10589 | of breakpoint_ops. | |
10590 | ||
0259addd JB |
10591 | Support in the runtime for exception catchpoints have been changed |
10592 | a few times already, and these changes affect the implementation | |
10593 | of these catchpoints. In order to be able to support several | |
10594 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10595 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10596 | |
10597 | /* The different types of catchpoints that we introduced for catching | |
10598 | Ada exceptions. */ | |
10599 | ||
10600 | enum exception_catchpoint_kind | |
10601 | { | |
10602 | ex_catch_exception, | |
10603 | ex_catch_exception_unhandled, | |
10604 | ex_catch_assert | |
10605 | }; | |
10606 | ||
3d0b0fa3 JB |
10607 | /* Ada's standard exceptions. */ |
10608 | ||
10609 | static char *standard_exc[] = { | |
10610 | "constraint_error", | |
10611 | "program_error", | |
10612 | "storage_error", | |
10613 | "tasking_error" | |
10614 | }; | |
10615 | ||
0259addd JB |
10616 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10617 | ||
10618 | /* A structure that describes how to support exception catchpoints | |
10619 | for a given executable. */ | |
10620 | ||
10621 | struct exception_support_info | |
10622 | { | |
10623 | /* The name of the symbol to break on in order to insert | |
10624 | a catchpoint on exceptions. */ | |
10625 | const char *catch_exception_sym; | |
10626 | ||
10627 | /* The name of the symbol to break on in order to insert | |
10628 | a catchpoint on unhandled exceptions. */ | |
10629 | const char *catch_exception_unhandled_sym; | |
10630 | ||
10631 | /* The name of the symbol to break on in order to insert | |
10632 | a catchpoint on failed assertions. */ | |
10633 | const char *catch_assert_sym; | |
10634 | ||
10635 | /* Assuming that the inferior just triggered an unhandled exception | |
10636 | catchpoint, this function is responsible for returning the address | |
10637 | in inferior memory where the name of that exception is stored. | |
10638 | Return zero if the address could not be computed. */ | |
10639 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10640 | }; | |
10641 | ||
10642 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10643 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10644 | ||
10645 | /* The following exception support info structure describes how to | |
10646 | implement exception catchpoints with the latest version of the | |
10647 | Ada runtime (as of 2007-03-06). */ | |
10648 | ||
10649 | static const struct exception_support_info default_exception_support_info = | |
10650 | { | |
10651 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10652 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10653 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10654 | ada_unhandled_exception_name_addr | |
10655 | }; | |
10656 | ||
10657 | /* The following exception support info structure describes how to | |
10658 | implement exception catchpoints with a slightly older version | |
10659 | of the Ada runtime. */ | |
10660 | ||
10661 | static const struct exception_support_info exception_support_info_fallback = | |
10662 | { | |
10663 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10664 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10665 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10666 | ada_unhandled_exception_name_addr_from_raise | |
10667 | }; | |
10668 | ||
f17011e0 JB |
10669 | /* Return nonzero if we can detect the exception support routines |
10670 | described in EINFO. | |
10671 | ||
10672 | This function errors out if an abnormal situation is detected | |
10673 | (for instance, if we find the exception support routines, but | |
10674 | that support is found to be incomplete). */ | |
10675 | ||
10676 | static int | |
10677 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
10678 | { | |
10679 | struct symbol *sym; | |
10680 | ||
10681 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10682 | that should be compiled with debugging information. As a result, we | |
10683 | expect to find that symbol in the symtabs. */ | |
10684 | ||
10685 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
10686 | if (sym == NULL) | |
a6af7abe JB |
10687 | { |
10688 | /* Perhaps we did not find our symbol because the Ada runtime was | |
10689 | compiled without debugging info, or simply stripped of it. | |
10690 | It happens on some GNU/Linux distributions for instance, where | |
10691 | users have to install a separate debug package in order to get | |
10692 | the runtime's debugging info. In that situation, let the user | |
10693 | know why we cannot insert an Ada exception catchpoint. | |
10694 | ||
10695 | Note: Just for the purpose of inserting our Ada exception | |
10696 | catchpoint, we could rely purely on the associated minimal symbol. | |
10697 | But we would be operating in degraded mode anyway, since we are | |
10698 | still lacking the debugging info needed later on to extract | |
10699 | the name of the exception being raised (this name is printed in | |
10700 | the catchpoint message, and is also used when trying to catch | |
10701 | a specific exception). We do not handle this case for now. */ | |
10702 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
10703 | error (_("Your Ada runtime appears to be missing some debugging " | |
10704 | "information.\nCannot insert Ada exception catchpoint " | |
10705 | "in this configuration.")); | |
10706 | ||
10707 | return 0; | |
10708 | } | |
f17011e0 JB |
10709 | |
10710 | /* Make sure that the symbol we found corresponds to a function. */ | |
10711 | ||
10712 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10713 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10714 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
10715 | ||
10716 | return 1; | |
10717 | } | |
10718 | ||
0259addd JB |
10719 | /* Inspect the Ada runtime and determine which exception info structure |
10720 | should be used to provide support for exception catchpoints. | |
10721 | ||
3eecfa55 JB |
10722 | This function will always set the per-inferior exception_info, |
10723 | or raise an error. */ | |
0259addd JB |
10724 | |
10725 | static void | |
10726 | ada_exception_support_info_sniffer (void) | |
10727 | { | |
3eecfa55 | 10728 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
10729 | struct symbol *sym; |
10730 | ||
10731 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 10732 | if (data->exception_info != NULL) |
0259addd JB |
10733 | return; |
10734 | ||
10735 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 10736 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 10737 | { |
3eecfa55 | 10738 | data->exception_info = &default_exception_support_info; |
0259addd JB |
10739 | return; |
10740 | } | |
10741 | ||
10742 | /* Try our fallback exception suport info. */ | |
f17011e0 | 10743 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 10744 | { |
3eecfa55 | 10745 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
10746 | return; |
10747 | } | |
10748 | ||
10749 | /* Sometimes, it is normal for us to not be able to find the routine | |
10750 | we are looking for. This happens when the program is linked with | |
10751 | the shared version of the GNAT runtime, and the program has not been | |
10752 | started yet. Inform the user of these two possible causes if | |
10753 | applicable. */ | |
10754 | ||
ccefe4c4 | 10755 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10756 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10757 | ||
10758 | /* If the symbol does not exist, then check that the program is | |
10759 | already started, to make sure that shared libraries have been | |
10760 | loaded. If it is not started, this may mean that the symbol is | |
10761 | in a shared library. */ | |
10762 | ||
10763 | if (ptid_get_pid (inferior_ptid) == 0) | |
10764 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10765 | ||
10766 | /* At this point, we know that we are debugging an Ada program and | |
10767 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10768 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10769 | configurable run time mode, or that a-except as been optimized |
10770 | out by the linker... In any case, at this point it is not worth | |
10771 | supporting this feature. */ | |
10772 | ||
7dda8cff | 10773 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
10774 | } |
10775 | ||
f7f9143b JB |
10776 | /* True iff FRAME is very likely to be that of a function that is |
10777 | part of the runtime system. This is all very heuristic, but is | |
10778 | intended to be used as advice as to what frames are uninteresting | |
10779 | to most users. */ | |
10780 | ||
10781 | static int | |
10782 | is_known_support_routine (struct frame_info *frame) | |
10783 | { | |
4ed6b5be | 10784 | struct symtab_and_line sal; |
0d5cff50 | 10785 | const char *func_name; |
692465f1 | 10786 | enum language func_lang; |
f7f9143b | 10787 | int i; |
f7f9143b | 10788 | |
4ed6b5be JB |
10789 | /* If this code does not have any debugging information (no symtab), |
10790 | This cannot be any user code. */ | |
f7f9143b | 10791 | |
4ed6b5be | 10792 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10793 | if (sal.symtab == NULL) |
10794 | return 1; | |
10795 | ||
4ed6b5be JB |
10796 | /* If there is a symtab, but the associated source file cannot be |
10797 | located, then assume this is not user code: Selecting a frame | |
10798 | for which we cannot display the code would not be very helpful | |
10799 | for the user. This should also take care of case such as VxWorks | |
10800 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10801 | |
9bbc9174 | 10802 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10803 | return 1; |
10804 | ||
4ed6b5be JB |
10805 | /* Check the unit filename againt the Ada runtime file naming. |
10806 | We also check the name of the objfile against the name of some | |
10807 | known system libraries that sometimes come with debugging info | |
10808 | too. */ | |
10809 | ||
f7f9143b JB |
10810 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10811 | { | |
10812 | re_comp (known_runtime_file_name_patterns[i]); | |
10813 | if (re_exec (sal.symtab->filename)) | |
10814 | return 1; | |
4ed6b5be JB |
10815 | if (sal.symtab->objfile != NULL |
10816 | && re_exec (sal.symtab->objfile->name)) | |
10817 | return 1; | |
f7f9143b JB |
10818 | } |
10819 | ||
4ed6b5be | 10820 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10821 | |
e9e07ba6 | 10822 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10823 | if (func_name == NULL) |
10824 | return 1; | |
10825 | ||
10826 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10827 | { | |
10828 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10829 | if (re_exec (func_name)) | |
10830 | return 1; | |
10831 | } | |
10832 | ||
10833 | return 0; | |
10834 | } | |
10835 | ||
10836 | /* Find the first frame that contains debugging information and that is not | |
10837 | part of the Ada run-time, starting from FI and moving upward. */ | |
10838 | ||
0ef643c8 | 10839 | void |
f7f9143b JB |
10840 | ada_find_printable_frame (struct frame_info *fi) |
10841 | { | |
10842 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10843 | { | |
10844 | if (!is_known_support_routine (fi)) | |
10845 | { | |
10846 | select_frame (fi); | |
10847 | break; | |
10848 | } | |
10849 | } | |
10850 | ||
10851 | } | |
10852 | ||
10853 | /* Assuming that the inferior just triggered an unhandled exception | |
10854 | catchpoint, return the address in inferior memory where the name | |
10855 | of the exception is stored. | |
10856 | ||
10857 | Return zero if the address could not be computed. */ | |
10858 | ||
10859 | static CORE_ADDR | |
10860 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10861 | { |
10862 | return parse_and_eval_address ("e.full_name"); | |
10863 | } | |
10864 | ||
10865 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10866 | should be used when the inferior uses an older version of the runtime, | |
10867 | where the exception name needs to be extracted from a specific frame | |
10868 | several frames up in the callstack. */ | |
10869 | ||
10870 | static CORE_ADDR | |
10871 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10872 | { |
10873 | int frame_level; | |
10874 | struct frame_info *fi; | |
3eecfa55 | 10875 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
10876 | |
10877 | /* To determine the name of this exception, we need to select | |
10878 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10879 | at least 3 levels up, so we simply skip the first 3 frames | |
10880 | without checking the name of their associated function. */ | |
10881 | fi = get_current_frame (); | |
10882 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10883 | if (fi != NULL) | |
10884 | fi = get_prev_frame (fi); | |
10885 | ||
10886 | while (fi != NULL) | |
10887 | { | |
0d5cff50 | 10888 | const char *func_name; |
692465f1 JB |
10889 | enum language func_lang; |
10890 | ||
e9e07ba6 | 10891 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10892 | if (func_name != NULL |
3eecfa55 | 10893 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10894 | break; /* We found the frame we were looking for... */ |
10895 | fi = get_prev_frame (fi); | |
10896 | } | |
10897 | ||
10898 | if (fi == NULL) | |
10899 | return 0; | |
10900 | ||
10901 | select_frame (fi); | |
10902 | return parse_and_eval_address ("id.full_name"); | |
10903 | } | |
10904 | ||
10905 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10906 | (of any type), return the address in inferior memory where the name | |
10907 | of the exception is stored, if applicable. | |
10908 | ||
10909 | Return zero if the address could not be computed, or if not relevant. */ | |
10910 | ||
10911 | static CORE_ADDR | |
10912 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10913 | struct breakpoint *b) | |
10914 | { | |
3eecfa55 JB |
10915 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
10916 | ||
f7f9143b JB |
10917 | switch (ex) |
10918 | { | |
10919 | case ex_catch_exception: | |
10920 | return (parse_and_eval_address ("e.full_name")); | |
10921 | break; | |
10922 | ||
10923 | case ex_catch_exception_unhandled: | |
3eecfa55 | 10924 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10925 | break; |
10926 | ||
10927 | case ex_catch_assert: | |
10928 | return 0; /* Exception name is not relevant in this case. */ | |
10929 | break; | |
10930 | ||
10931 | default: | |
10932 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10933 | break; | |
10934 | } | |
10935 | ||
10936 | return 0; /* Should never be reached. */ | |
10937 | } | |
10938 | ||
10939 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10940 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10941 | When an error is intercepted, a warning with the error message is printed, | |
10942 | and zero is returned. */ | |
10943 | ||
10944 | static CORE_ADDR | |
10945 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10946 | struct breakpoint *b) | |
10947 | { | |
bfd189b1 | 10948 | volatile struct gdb_exception e; |
f7f9143b JB |
10949 | CORE_ADDR result = 0; |
10950 | ||
10951 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10952 | { | |
10953 | result = ada_exception_name_addr_1 (ex, b); | |
10954 | } | |
10955 | ||
10956 | if (e.reason < 0) | |
10957 | { | |
10958 | warning (_("failed to get exception name: %s"), e.message); | |
10959 | return 0; | |
10960 | } | |
10961 | ||
10962 | return result; | |
10963 | } | |
10964 | ||
28010a5d PA |
10965 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
10966 | char *, char **, | |
c0a91b2b | 10967 | const struct breakpoint_ops **); |
28010a5d PA |
10968 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
10969 | ||
10970 | /* Ada catchpoints. | |
10971 | ||
10972 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
10973 | stop the target on every exception the program throws. When a user | |
10974 | specifies the name of a specific exception, we translate this | |
10975 | request into a condition expression (in text form), and then parse | |
10976 | it into an expression stored in each of the catchpoint's locations. | |
10977 | We then use this condition to check whether the exception that was | |
10978 | raised is the one the user is interested in. If not, then the | |
10979 | target is resumed again. We store the name of the requested | |
10980 | exception, in order to be able to re-set the condition expression | |
10981 | when symbols change. */ | |
10982 | ||
10983 | /* An instance of this type is used to represent an Ada catchpoint | |
10984 | breakpoint location. It includes a "struct bp_location" as a kind | |
10985 | of base class; users downcast to "struct bp_location *" when | |
10986 | needed. */ | |
10987 | ||
10988 | struct ada_catchpoint_location | |
10989 | { | |
10990 | /* The base class. */ | |
10991 | struct bp_location base; | |
10992 | ||
10993 | /* The condition that checks whether the exception that was raised | |
10994 | is the specific exception the user specified on catchpoint | |
10995 | creation. */ | |
10996 | struct expression *excep_cond_expr; | |
10997 | }; | |
10998 | ||
10999 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11000 | Ada exception catchpoint kinds. */ | |
11001 | ||
11002 | static void | |
11003 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11004 | { | |
11005 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11006 | ||
11007 | xfree (al->excep_cond_expr); | |
11008 | } | |
11009 | ||
11010 | /* The vtable to be used in Ada catchpoint locations. */ | |
11011 | ||
11012 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11013 | { | |
11014 | ada_catchpoint_location_dtor | |
11015 | }; | |
11016 | ||
11017 | /* An instance of this type is used to represent an Ada catchpoint. | |
11018 | It includes a "struct breakpoint" as a kind of base class; users | |
11019 | downcast to "struct breakpoint *" when needed. */ | |
11020 | ||
11021 | struct ada_catchpoint | |
11022 | { | |
11023 | /* The base class. */ | |
11024 | struct breakpoint base; | |
11025 | ||
11026 | /* The name of the specific exception the user specified. */ | |
11027 | char *excep_string; | |
11028 | }; | |
11029 | ||
11030 | /* Parse the exception condition string in the context of each of the | |
11031 | catchpoint's locations, and store them for later evaluation. */ | |
11032 | ||
11033 | static void | |
11034 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11035 | { | |
11036 | struct cleanup *old_chain; | |
11037 | struct bp_location *bl; | |
11038 | char *cond_string; | |
11039 | ||
11040 | /* Nothing to do if there's no specific exception to catch. */ | |
11041 | if (c->excep_string == NULL) | |
11042 | return; | |
11043 | ||
11044 | /* Same if there are no locations... */ | |
11045 | if (c->base.loc == NULL) | |
11046 | return; | |
11047 | ||
11048 | /* Compute the condition expression in text form, from the specific | |
11049 | expection we want to catch. */ | |
11050 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11051 | old_chain = make_cleanup (xfree, cond_string); | |
11052 | ||
11053 | /* Iterate over all the catchpoint's locations, and parse an | |
11054 | expression for each. */ | |
11055 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11056 | { | |
11057 | struct ada_catchpoint_location *ada_loc | |
11058 | = (struct ada_catchpoint_location *) bl; | |
11059 | struct expression *exp = NULL; | |
11060 | ||
11061 | if (!bl->shlib_disabled) | |
11062 | { | |
11063 | volatile struct gdb_exception e; | |
11064 | char *s; | |
11065 | ||
11066 | s = cond_string; | |
11067 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11068 | { | |
11069 | exp = parse_exp_1 (&s, block_for_pc (bl->address), 0); | |
11070 | } | |
11071 | if (e.reason < 0) | |
11072 | warning (_("failed to reevaluate internal exception condition " | |
11073 | "for catchpoint %d: %s"), | |
11074 | c->base.number, e.message); | |
11075 | } | |
11076 | ||
11077 | ada_loc->excep_cond_expr = exp; | |
11078 | } | |
11079 | ||
11080 | do_cleanups (old_chain); | |
11081 | } | |
11082 | ||
11083 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11084 | exception catchpoint kinds. */ | |
11085 | ||
11086 | static void | |
11087 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11088 | { | |
11089 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11090 | ||
11091 | xfree (c->excep_string); | |
348d480f | 11092 | |
2060206e | 11093 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11094 | } |
11095 | ||
11096 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11097 | structure for all exception catchpoint kinds. */ | |
11098 | ||
11099 | static struct bp_location * | |
11100 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11101 | struct breakpoint *self) | |
11102 | { | |
11103 | struct ada_catchpoint_location *loc; | |
11104 | ||
11105 | loc = XNEW (struct ada_catchpoint_location); | |
11106 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11107 | loc->excep_cond_expr = NULL; | |
11108 | return &loc->base; | |
11109 | } | |
11110 | ||
11111 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11112 | exception catchpoint kinds. */ | |
11113 | ||
11114 | static void | |
11115 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11116 | { | |
11117 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11118 | ||
11119 | /* Call the base class's method. This updates the catchpoint's | |
11120 | locations. */ | |
2060206e | 11121 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11122 | |
11123 | /* Reparse the exception conditional expressions. One for each | |
11124 | location. */ | |
11125 | create_excep_cond_exprs (c); | |
11126 | } | |
11127 | ||
11128 | /* Returns true if we should stop for this breakpoint hit. If the | |
11129 | user specified a specific exception, we only want to cause a stop | |
11130 | if the program thrown that exception. */ | |
11131 | ||
11132 | static int | |
11133 | should_stop_exception (const struct bp_location *bl) | |
11134 | { | |
11135 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11136 | const struct ada_catchpoint_location *ada_loc | |
11137 | = (const struct ada_catchpoint_location *) bl; | |
11138 | volatile struct gdb_exception ex; | |
11139 | int stop; | |
11140 | ||
11141 | /* With no specific exception, should always stop. */ | |
11142 | if (c->excep_string == NULL) | |
11143 | return 1; | |
11144 | ||
11145 | if (ada_loc->excep_cond_expr == NULL) | |
11146 | { | |
11147 | /* We will have a NULL expression if back when we were creating | |
11148 | the expressions, this location's had failed to parse. */ | |
11149 | return 1; | |
11150 | } | |
11151 | ||
11152 | stop = 1; | |
11153 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11154 | { | |
11155 | struct value *mark; | |
11156 | ||
11157 | mark = value_mark (); | |
11158 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11159 | value_free_to_mark (mark); | |
11160 | } | |
11161 | if (ex.reason < 0) | |
11162 | exception_fprintf (gdb_stderr, ex, | |
11163 | _("Error in testing exception condition:\n")); | |
11164 | return stop; | |
11165 | } | |
11166 | ||
11167 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11168 | for all exception catchpoint kinds. */ | |
11169 | ||
11170 | static void | |
11171 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11172 | { | |
11173 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11174 | } | |
11175 | ||
f7f9143b JB |
11176 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11177 | for all exception catchpoint kinds. */ | |
11178 | ||
11179 | static enum print_stop_action | |
348d480f | 11180 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11181 | { |
79a45e25 | 11182 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11183 | struct breakpoint *b = bs->breakpoint_at; |
11184 | ||
956a9fb9 | 11185 | annotate_catchpoint (b->number); |
f7f9143b | 11186 | |
956a9fb9 | 11187 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11188 | { |
956a9fb9 JB |
11189 | ui_out_field_string (uiout, "reason", |
11190 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11191 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11192 | } |
11193 | ||
00eb2c4a JB |
11194 | ui_out_text (uiout, |
11195 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11196 | : "\nCatchpoint "); | |
956a9fb9 JB |
11197 | ui_out_field_int (uiout, "bkptno", b->number); |
11198 | ui_out_text (uiout, ", "); | |
f7f9143b | 11199 | |
f7f9143b JB |
11200 | switch (ex) |
11201 | { | |
11202 | case ex_catch_exception: | |
f7f9143b | 11203 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11204 | { |
11205 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11206 | char exception_name[256]; | |
11207 | ||
11208 | if (addr != 0) | |
11209 | { | |
11210 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11211 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11212 | } | |
11213 | else | |
11214 | { | |
11215 | /* For some reason, we were unable to read the exception | |
11216 | name. This could happen if the Runtime was compiled | |
11217 | without debugging info, for instance. In that case, | |
11218 | just replace the exception name by the generic string | |
11219 | "exception" - it will read as "an exception" in the | |
11220 | notification we are about to print. */ | |
967cff16 | 11221 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11222 | } |
11223 | /* In the case of unhandled exception breakpoints, we print | |
11224 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11225 | it clearer to the user which kind of catchpoint just got | |
11226 | hit. We used ui_out_text to make sure that this extra | |
11227 | info does not pollute the exception name in the MI case. */ | |
11228 | if (ex == ex_catch_exception_unhandled) | |
11229 | ui_out_text (uiout, "unhandled "); | |
11230 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11231 | } | |
11232 | break; | |
f7f9143b | 11233 | case ex_catch_assert: |
956a9fb9 JB |
11234 | /* In this case, the name of the exception is not really |
11235 | important. Just print "failed assertion" to make it clearer | |
11236 | that his program just hit an assertion-failure catchpoint. | |
11237 | We used ui_out_text because this info does not belong in | |
11238 | the MI output. */ | |
11239 | ui_out_text (uiout, "failed assertion"); | |
11240 | break; | |
f7f9143b | 11241 | } |
956a9fb9 JB |
11242 | ui_out_text (uiout, " at "); |
11243 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11244 | |
11245 | return PRINT_SRC_AND_LOC; | |
11246 | } | |
11247 | ||
11248 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11249 | for all exception catchpoint kinds. */ | |
11250 | ||
11251 | static void | |
11252 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11253 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11254 | { |
79a45e25 | 11255 | struct ui_out *uiout = current_uiout; |
28010a5d | 11256 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11257 | struct value_print_options opts; |
11258 | ||
11259 | get_user_print_options (&opts); | |
11260 | if (opts.addressprint) | |
f7f9143b JB |
11261 | { |
11262 | annotate_field (4); | |
5af949e3 | 11263 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11264 | } |
11265 | ||
11266 | annotate_field (5); | |
a6d9a66e | 11267 | *last_loc = b->loc; |
f7f9143b JB |
11268 | switch (ex) |
11269 | { | |
11270 | case ex_catch_exception: | |
28010a5d | 11271 | if (c->excep_string != NULL) |
f7f9143b | 11272 | { |
28010a5d PA |
11273 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11274 | ||
f7f9143b JB |
11275 | ui_out_field_string (uiout, "what", msg); |
11276 | xfree (msg); | |
11277 | } | |
11278 | else | |
11279 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11280 | ||
11281 | break; | |
11282 | ||
11283 | case ex_catch_exception_unhandled: | |
11284 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11285 | break; | |
11286 | ||
11287 | case ex_catch_assert: | |
11288 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11289 | break; | |
11290 | ||
11291 | default: | |
11292 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11293 | break; | |
11294 | } | |
11295 | } | |
11296 | ||
11297 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11298 | for all exception catchpoint kinds. */ | |
11299 | ||
11300 | static void | |
11301 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11302 | struct breakpoint *b) | |
11303 | { | |
28010a5d | 11304 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11305 | struct ui_out *uiout = current_uiout; |
28010a5d | 11306 | |
00eb2c4a JB |
11307 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11308 | : _("Catchpoint ")); | |
11309 | ui_out_field_int (uiout, "bkptno", b->number); | |
11310 | ui_out_text (uiout, ": "); | |
11311 | ||
f7f9143b JB |
11312 | switch (ex) |
11313 | { | |
11314 | case ex_catch_exception: | |
28010a5d | 11315 | if (c->excep_string != NULL) |
00eb2c4a JB |
11316 | { |
11317 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11318 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11319 | ||
11320 | ui_out_text (uiout, info); | |
11321 | do_cleanups (old_chain); | |
11322 | } | |
f7f9143b | 11323 | else |
00eb2c4a | 11324 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11325 | break; |
11326 | ||
11327 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11328 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11329 | break; |
11330 | ||
11331 | case ex_catch_assert: | |
00eb2c4a | 11332 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11333 | break; |
11334 | ||
11335 | default: | |
11336 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11337 | break; | |
11338 | } | |
11339 | } | |
11340 | ||
6149aea9 PA |
11341 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11342 | for all exception catchpoint kinds. */ | |
11343 | ||
11344 | static void | |
11345 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11346 | struct breakpoint *b, struct ui_file *fp) | |
11347 | { | |
28010a5d PA |
11348 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11349 | ||
6149aea9 PA |
11350 | switch (ex) |
11351 | { | |
11352 | case ex_catch_exception: | |
11353 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11354 | if (c->excep_string != NULL) |
11355 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11356 | break; |
11357 | ||
11358 | case ex_catch_exception_unhandled: | |
78076abc | 11359 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11360 | break; |
11361 | ||
11362 | case ex_catch_assert: | |
11363 | fprintf_filtered (fp, "catch assert"); | |
11364 | break; | |
11365 | ||
11366 | default: | |
11367 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11368 | } | |
d9b3f62e | 11369 | print_recreate_thread (b, fp); |
6149aea9 PA |
11370 | } |
11371 | ||
f7f9143b JB |
11372 | /* Virtual table for "catch exception" breakpoints. */ |
11373 | ||
28010a5d PA |
11374 | static void |
11375 | dtor_catch_exception (struct breakpoint *b) | |
11376 | { | |
11377 | dtor_exception (ex_catch_exception, b); | |
11378 | } | |
11379 | ||
11380 | static struct bp_location * | |
11381 | allocate_location_catch_exception (struct breakpoint *self) | |
11382 | { | |
11383 | return allocate_location_exception (ex_catch_exception, self); | |
11384 | } | |
11385 | ||
11386 | static void | |
11387 | re_set_catch_exception (struct breakpoint *b) | |
11388 | { | |
11389 | re_set_exception (ex_catch_exception, b); | |
11390 | } | |
11391 | ||
11392 | static void | |
11393 | check_status_catch_exception (bpstat bs) | |
11394 | { | |
11395 | check_status_exception (ex_catch_exception, bs); | |
11396 | } | |
11397 | ||
f7f9143b | 11398 | static enum print_stop_action |
348d480f | 11399 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11400 | { |
348d480f | 11401 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11402 | } |
11403 | ||
11404 | static void | |
a6d9a66e | 11405 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11406 | { |
a6d9a66e | 11407 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11408 | } |
11409 | ||
11410 | static void | |
11411 | print_mention_catch_exception (struct breakpoint *b) | |
11412 | { | |
11413 | print_mention_exception (ex_catch_exception, b); | |
11414 | } | |
11415 | ||
6149aea9 PA |
11416 | static void |
11417 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11418 | { | |
11419 | print_recreate_exception (ex_catch_exception, b, fp); | |
11420 | } | |
11421 | ||
2060206e | 11422 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11423 | |
11424 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11425 | ||
28010a5d PA |
11426 | static void |
11427 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11428 | { | |
11429 | dtor_exception (ex_catch_exception_unhandled, b); | |
11430 | } | |
11431 | ||
11432 | static struct bp_location * | |
11433 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11434 | { | |
11435 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11436 | } | |
11437 | ||
11438 | static void | |
11439 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11440 | { | |
11441 | re_set_exception (ex_catch_exception_unhandled, b); | |
11442 | } | |
11443 | ||
11444 | static void | |
11445 | check_status_catch_exception_unhandled (bpstat bs) | |
11446 | { | |
11447 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11448 | } | |
11449 | ||
f7f9143b | 11450 | static enum print_stop_action |
348d480f | 11451 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11452 | { |
348d480f | 11453 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11454 | } |
11455 | ||
11456 | static void | |
a6d9a66e UW |
11457 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11458 | struct bp_location **last_loc) | |
f7f9143b | 11459 | { |
a6d9a66e | 11460 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11461 | } |
11462 | ||
11463 | static void | |
11464 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11465 | { | |
11466 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11467 | } | |
11468 | ||
6149aea9 PA |
11469 | static void |
11470 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11471 | struct ui_file *fp) | |
11472 | { | |
11473 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11474 | } | |
11475 | ||
2060206e | 11476 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11477 | |
11478 | /* Virtual table for "catch assert" breakpoints. */ | |
11479 | ||
28010a5d PA |
11480 | static void |
11481 | dtor_catch_assert (struct breakpoint *b) | |
11482 | { | |
11483 | dtor_exception (ex_catch_assert, b); | |
11484 | } | |
11485 | ||
11486 | static struct bp_location * | |
11487 | allocate_location_catch_assert (struct breakpoint *self) | |
11488 | { | |
11489 | return allocate_location_exception (ex_catch_assert, self); | |
11490 | } | |
11491 | ||
11492 | static void | |
11493 | re_set_catch_assert (struct breakpoint *b) | |
11494 | { | |
11495 | return re_set_exception (ex_catch_assert, b); | |
11496 | } | |
11497 | ||
11498 | static void | |
11499 | check_status_catch_assert (bpstat bs) | |
11500 | { | |
11501 | check_status_exception (ex_catch_assert, bs); | |
11502 | } | |
11503 | ||
f7f9143b | 11504 | static enum print_stop_action |
348d480f | 11505 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11506 | { |
348d480f | 11507 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11508 | } |
11509 | ||
11510 | static void | |
a6d9a66e | 11511 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11512 | { |
a6d9a66e | 11513 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11514 | } |
11515 | ||
11516 | static void | |
11517 | print_mention_catch_assert (struct breakpoint *b) | |
11518 | { | |
11519 | print_mention_exception (ex_catch_assert, b); | |
11520 | } | |
11521 | ||
6149aea9 PA |
11522 | static void |
11523 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11524 | { | |
11525 | print_recreate_exception (ex_catch_assert, b, fp); | |
11526 | } | |
11527 | ||
2060206e | 11528 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11529 | |
f7f9143b JB |
11530 | /* Return a newly allocated copy of the first space-separated token |
11531 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11532 | token. | |
11533 | ||
11534 | Return NULL if ARGPS does not contain any more tokens. */ | |
11535 | ||
11536 | static char * | |
11537 | ada_get_next_arg (char **argsp) | |
11538 | { | |
11539 | char *args = *argsp; | |
11540 | char *end; | |
11541 | char *result; | |
11542 | ||
0fcd72ba | 11543 | args = skip_spaces (args); |
f7f9143b JB |
11544 | if (args[0] == '\0') |
11545 | return NULL; /* No more arguments. */ | |
11546 | ||
11547 | /* Find the end of the current argument. */ | |
11548 | ||
0fcd72ba | 11549 | end = skip_to_space (args); |
f7f9143b JB |
11550 | |
11551 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11552 | ||
11553 | *argsp = end; | |
11554 | ||
11555 | /* Make a copy of the current argument and return it. */ | |
11556 | ||
11557 | result = xmalloc (end - args + 1); | |
11558 | strncpy (result, args, end - args); | |
11559 | result[end - args] = '\0'; | |
11560 | ||
11561 | return result; | |
11562 | } | |
11563 | ||
11564 | /* Split the arguments specified in a "catch exception" command. | |
11565 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11566 | Set EXCEP_STRING to the name of the specific exception if |
f7f9143b JB |
11567 | specified by the user. */ |
11568 | ||
11569 | static void | |
11570 | catch_ada_exception_command_split (char *args, | |
11571 | enum exception_catchpoint_kind *ex, | |
28010a5d | 11572 | char **excep_string) |
f7f9143b JB |
11573 | { |
11574 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11575 | char *exception_name; | |
11576 | ||
11577 | exception_name = ada_get_next_arg (&args); | |
11578 | make_cleanup (xfree, exception_name); | |
11579 | ||
11580 | /* Check that we do not have any more arguments. Anything else | |
11581 | is unexpected. */ | |
11582 | ||
0fcd72ba | 11583 | args = skip_spaces (args); |
f7f9143b JB |
11584 | |
11585 | if (args[0] != '\0') | |
11586 | error (_("Junk at end of expression")); | |
11587 | ||
11588 | discard_cleanups (old_chain); | |
11589 | ||
11590 | if (exception_name == NULL) | |
11591 | { | |
11592 | /* Catch all exceptions. */ | |
11593 | *ex = ex_catch_exception; | |
28010a5d | 11594 | *excep_string = NULL; |
f7f9143b JB |
11595 | } |
11596 | else if (strcmp (exception_name, "unhandled") == 0) | |
11597 | { | |
11598 | /* Catch unhandled exceptions. */ | |
11599 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11600 | *excep_string = NULL; |
f7f9143b JB |
11601 | } |
11602 | else | |
11603 | { | |
11604 | /* Catch a specific exception. */ | |
11605 | *ex = ex_catch_exception; | |
28010a5d | 11606 | *excep_string = exception_name; |
f7f9143b JB |
11607 | } |
11608 | } | |
11609 | ||
11610 | /* Return the name of the symbol on which we should break in order to | |
11611 | implement a catchpoint of the EX kind. */ | |
11612 | ||
11613 | static const char * | |
11614 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11615 | { | |
3eecfa55 JB |
11616 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11617 | ||
11618 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11619 | |
f7f9143b JB |
11620 | switch (ex) |
11621 | { | |
11622 | case ex_catch_exception: | |
3eecfa55 | 11623 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11624 | break; |
11625 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11626 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11627 | break; |
11628 | case ex_catch_assert: | |
3eecfa55 | 11629 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11630 | break; |
11631 | default: | |
11632 | internal_error (__FILE__, __LINE__, | |
11633 | _("unexpected catchpoint kind (%d)"), ex); | |
11634 | } | |
11635 | } | |
11636 | ||
11637 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11638 | of the EX kind. */ | |
11639 | ||
c0a91b2b | 11640 | static const struct breakpoint_ops * |
4b9eee8c | 11641 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11642 | { |
11643 | switch (ex) | |
11644 | { | |
11645 | case ex_catch_exception: | |
11646 | return (&catch_exception_breakpoint_ops); | |
11647 | break; | |
11648 | case ex_catch_exception_unhandled: | |
11649 | return (&catch_exception_unhandled_breakpoint_ops); | |
11650 | break; | |
11651 | case ex_catch_assert: | |
11652 | return (&catch_assert_breakpoint_ops); | |
11653 | break; | |
11654 | default: | |
11655 | internal_error (__FILE__, __LINE__, | |
11656 | _("unexpected catchpoint kind (%d)"), ex); | |
11657 | } | |
11658 | } | |
11659 | ||
11660 | /* Return the condition that will be used to match the current exception | |
11661 | being raised with the exception that the user wants to catch. This | |
11662 | assumes that this condition is used when the inferior just triggered | |
11663 | an exception catchpoint. | |
11664 | ||
11665 | The string returned is a newly allocated string that needs to be | |
11666 | deallocated later. */ | |
11667 | ||
11668 | static char * | |
28010a5d | 11669 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11670 | { |
3d0b0fa3 JB |
11671 | int i; |
11672 | ||
0963b4bd | 11673 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11674 | runtime units that have been compiled without debugging info; if |
28010a5d | 11675 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11676 | exception (e.g. "constraint_error") then, during the evaluation |
11677 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11678 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11679 | may then be set only on user-defined exceptions which have the |
11680 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11681 | ||
11682 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11683 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11684 | exception constraint_error" is rewritten into "catch exception |
11685 | standard.constraint_error". | |
11686 | ||
11687 | If an exception named contraint_error is defined in another package of | |
11688 | the inferior program, then the only way to specify this exception as a | |
11689 | breakpoint condition is to use its fully-qualified named: | |
11690 | e.g. my_package.constraint_error. */ | |
11691 | ||
11692 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11693 | { | |
28010a5d | 11694 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11695 | { |
11696 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11697 | excep_string); |
3d0b0fa3 JB |
11698 | } |
11699 | } | |
28010a5d | 11700 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11701 | } |
11702 | ||
11703 | /* Return the symtab_and_line that should be used to insert an exception | |
11704 | catchpoint of the TYPE kind. | |
11705 | ||
28010a5d PA |
11706 | EXCEP_STRING should contain the name of a specific exception that |
11707 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11708 | |
28010a5d PA |
11709 | ADDR_STRING returns the name of the function where the real |
11710 | breakpoint that implements the catchpoints is set, depending on the | |
11711 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11712 | |
11713 | static struct symtab_and_line | |
28010a5d | 11714 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 11715 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
11716 | { |
11717 | const char *sym_name; | |
11718 | struct symbol *sym; | |
f7f9143b | 11719 | |
0259addd JB |
11720 | /* First, find out which exception support info to use. */ |
11721 | ada_exception_support_info_sniffer (); | |
11722 | ||
11723 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 11724 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
11725 | sym_name = ada_exception_sym_name (ex); |
11726 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11727 | ||
f17011e0 JB |
11728 | /* We can assume that SYM is not NULL at this stage. If the symbol |
11729 | did not exist, ada_exception_support_info_sniffer would have | |
11730 | raised an exception. | |
f7f9143b | 11731 | |
f17011e0 JB |
11732 | Also, ada_exception_support_info_sniffer should have already |
11733 | verified that SYM is a function symbol. */ | |
11734 | gdb_assert (sym != NULL); | |
11735 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
11736 | |
11737 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
11738 | *addr_string = xstrdup (sym_name); |
11739 | ||
f7f9143b | 11740 | /* Set OPS. */ |
4b9eee8c | 11741 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 11742 | |
f17011e0 | 11743 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
11744 | } |
11745 | ||
11746 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11747 | ||
f7f9143b JB |
11748 | If the user asked the catchpoint to catch only a specific |
11749 | exception, then save the exception name in ADDR_STRING. | |
11750 | ||
11751 | See ada_exception_sal for a description of all the remaining | |
11752 | function arguments of this function. */ | |
11753 | ||
9ac4176b | 11754 | static struct symtab_and_line |
f7f9143b | 11755 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11756 | char **excep_string, |
c0a91b2b | 11757 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11758 | { |
11759 | enum exception_catchpoint_kind ex; | |
11760 | ||
28010a5d PA |
11761 | catch_ada_exception_command_split (args, &ex, excep_string); |
11762 | return ada_exception_sal (ex, *excep_string, addr_string, ops); | |
11763 | } | |
11764 | ||
11765 | /* Create an Ada exception catchpoint. */ | |
11766 | ||
11767 | static void | |
11768 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11769 | struct symtab_and_line sal, | |
11770 | char *addr_string, | |
11771 | char *excep_string, | |
c0a91b2b | 11772 | const struct breakpoint_ops *ops, |
28010a5d PA |
11773 | int tempflag, |
11774 | int from_tty) | |
11775 | { | |
11776 | struct ada_catchpoint *c; | |
11777 | ||
11778 | c = XNEW (struct ada_catchpoint); | |
11779 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11780 | ops, tempflag, from_tty); | |
11781 | c->excep_string = excep_string; | |
11782 | create_excep_cond_exprs (c); | |
3ea46bff | 11783 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
11784 | } |
11785 | ||
9ac4176b PA |
11786 | /* Implement the "catch exception" command. */ |
11787 | ||
11788 | static void | |
11789 | catch_ada_exception_command (char *arg, int from_tty, | |
11790 | struct cmd_list_element *command) | |
11791 | { | |
11792 | struct gdbarch *gdbarch = get_current_arch (); | |
11793 | int tempflag; | |
11794 | struct symtab_and_line sal; | |
11795 | char *addr_string = NULL; | |
28010a5d | 11796 | char *excep_string = NULL; |
c0a91b2b | 11797 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11798 | |
11799 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11800 | ||
11801 | if (!arg) | |
11802 | arg = ""; | |
28010a5d PA |
11803 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops); |
11804 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, | |
11805 | excep_string, ops, tempflag, from_tty); | |
9ac4176b PA |
11806 | } |
11807 | ||
11808 | static struct symtab_and_line | |
f7f9143b | 11809 | ada_decode_assert_location (char *args, char **addr_string, |
c0a91b2b | 11810 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11811 | { |
11812 | /* Check that no argument where provided at the end of the command. */ | |
11813 | ||
11814 | if (args != NULL) | |
11815 | { | |
0fcd72ba | 11816 | args = skip_spaces (args); |
f7f9143b JB |
11817 | if (*args != '\0') |
11818 | error (_("Junk at end of arguments.")); | |
11819 | } | |
11820 | ||
28010a5d | 11821 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11822 | } |
11823 | ||
9ac4176b PA |
11824 | /* Implement the "catch assert" command. */ |
11825 | ||
11826 | static void | |
11827 | catch_assert_command (char *arg, int from_tty, | |
11828 | struct cmd_list_element *command) | |
11829 | { | |
11830 | struct gdbarch *gdbarch = get_current_arch (); | |
11831 | int tempflag; | |
11832 | struct symtab_and_line sal; | |
11833 | char *addr_string = NULL; | |
c0a91b2b | 11834 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11835 | |
11836 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11837 | ||
11838 | if (!arg) | |
11839 | arg = ""; | |
11840 | sal = ada_decode_assert_location (arg, &addr_string, &ops); | |
28010a5d PA |
11841 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
11842 | NULL, ops, tempflag, from_tty); | |
9ac4176b | 11843 | } |
4c4b4cd2 PH |
11844 | /* Operators */ |
11845 | /* Information about operators given special treatment in functions | |
11846 | below. */ | |
11847 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11848 | ||
11849 | #define ADA_OPERATORS \ | |
11850 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11851 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11852 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11853 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11854 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11855 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11856 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11857 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11858 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11859 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11860 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11861 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11862 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11863 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11864 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11865 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11866 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11867 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11868 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11869 | |
11870 | static void | |
554794dc SDJ |
11871 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11872 | int *argsp) | |
4c4b4cd2 PH |
11873 | { |
11874 | switch (exp->elts[pc - 1].opcode) | |
11875 | { | |
76a01679 | 11876 | default: |
4c4b4cd2 PH |
11877 | operator_length_standard (exp, pc, oplenp, argsp); |
11878 | break; | |
11879 | ||
11880 | #define OP_DEFN(op, len, args, binop) \ | |
11881 | case op: *oplenp = len; *argsp = args; break; | |
11882 | ADA_OPERATORS; | |
11883 | #undef OP_DEFN | |
52ce6436 PH |
11884 | |
11885 | case OP_AGGREGATE: | |
11886 | *oplenp = 3; | |
11887 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11888 | break; | |
11889 | ||
11890 | case OP_CHOICES: | |
11891 | *oplenp = 3; | |
11892 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11893 | break; | |
4c4b4cd2 PH |
11894 | } |
11895 | } | |
11896 | ||
c0201579 JK |
11897 | /* Implementation of the exp_descriptor method operator_check. */ |
11898 | ||
11899 | static int | |
11900 | ada_operator_check (struct expression *exp, int pos, | |
11901 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11902 | void *data) | |
11903 | { | |
11904 | const union exp_element *const elts = exp->elts; | |
11905 | struct type *type = NULL; | |
11906 | ||
11907 | switch (elts[pos].opcode) | |
11908 | { | |
11909 | case UNOP_IN_RANGE: | |
11910 | case UNOP_QUAL: | |
11911 | type = elts[pos + 1].type; | |
11912 | break; | |
11913 | ||
11914 | default: | |
11915 | return operator_check_standard (exp, pos, objfile_func, data); | |
11916 | } | |
11917 | ||
11918 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11919 | ||
11920 | if (type && TYPE_OBJFILE (type) | |
11921 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11922 | return 1; | |
11923 | ||
11924 | return 0; | |
11925 | } | |
11926 | ||
4c4b4cd2 PH |
11927 | static char * |
11928 | ada_op_name (enum exp_opcode opcode) | |
11929 | { | |
11930 | switch (opcode) | |
11931 | { | |
76a01679 | 11932 | default: |
4c4b4cd2 | 11933 | return op_name_standard (opcode); |
52ce6436 | 11934 | |
4c4b4cd2 PH |
11935 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11936 | ADA_OPERATORS; | |
11937 | #undef OP_DEFN | |
52ce6436 PH |
11938 | |
11939 | case OP_AGGREGATE: | |
11940 | return "OP_AGGREGATE"; | |
11941 | case OP_CHOICES: | |
11942 | return "OP_CHOICES"; | |
11943 | case OP_NAME: | |
11944 | return "OP_NAME"; | |
4c4b4cd2 PH |
11945 | } |
11946 | } | |
11947 | ||
11948 | /* As for operator_length, but assumes PC is pointing at the first | |
11949 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11950 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11951 | |
11952 | static void | |
76a01679 JB |
11953 | ada_forward_operator_length (struct expression *exp, int pc, |
11954 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11955 | { |
76a01679 | 11956 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11957 | { |
11958 | default: | |
11959 | *oplenp = *argsp = 0; | |
11960 | break; | |
52ce6436 | 11961 | |
4c4b4cd2 PH |
11962 | #define OP_DEFN(op, len, args, binop) \ |
11963 | case op: *oplenp = len; *argsp = args; break; | |
11964 | ADA_OPERATORS; | |
11965 | #undef OP_DEFN | |
52ce6436 PH |
11966 | |
11967 | case OP_AGGREGATE: | |
11968 | *oplenp = 3; | |
11969 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11970 | break; | |
11971 | ||
11972 | case OP_CHOICES: | |
11973 | *oplenp = 3; | |
11974 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11975 | break; | |
11976 | ||
11977 | case OP_STRING: | |
11978 | case OP_NAME: | |
11979 | { | |
11980 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11981 | |
52ce6436 PH |
11982 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11983 | *argsp = 0; | |
11984 | break; | |
11985 | } | |
4c4b4cd2 PH |
11986 | } |
11987 | } | |
11988 | ||
11989 | static int | |
11990 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11991 | { | |
11992 | enum exp_opcode op = exp->elts[elt].opcode; | |
11993 | int oplen, nargs; | |
11994 | int pc = elt; | |
11995 | int i; | |
76a01679 | 11996 | |
4c4b4cd2 PH |
11997 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11998 | ||
76a01679 | 11999 | switch (op) |
4c4b4cd2 | 12000 | { |
76a01679 | 12001 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12002 | case OP_ATR_FIRST: |
12003 | case OP_ATR_LAST: | |
12004 | case OP_ATR_LENGTH: | |
12005 | case OP_ATR_IMAGE: | |
12006 | case OP_ATR_MAX: | |
12007 | case OP_ATR_MIN: | |
12008 | case OP_ATR_MODULUS: | |
12009 | case OP_ATR_POS: | |
12010 | case OP_ATR_SIZE: | |
12011 | case OP_ATR_TAG: | |
12012 | case OP_ATR_VAL: | |
12013 | break; | |
12014 | ||
12015 | case UNOP_IN_RANGE: | |
12016 | case UNOP_QUAL: | |
323e0a4a AC |
12017 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12018 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12019 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12020 | fprintf_filtered (stream, " ("); | |
12021 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12022 | fprintf_filtered (stream, ")"); | |
12023 | break; | |
12024 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12025 | fprintf_filtered (stream, " (%d)", |
12026 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12027 | break; |
12028 | case TERNOP_IN_RANGE: | |
12029 | break; | |
12030 | ||
52ce6436 PH |
12031 | case OP_AGGREGATE: |
12032 | case OP_OTHERS: | |
12033 | case OP_DISCRETE_RANGE: | |
12034 | case OP_POSITIONAL: | |
12035 | case OP_CHOICES: | |
12036 | break; | |
12037 | ||
12038 | case OP_NAME: | |
12039 | case OP_STRING: | |
12040 | { | |
12041 | char *name = &exp->elts[elt + 2].string; | |
12042 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12043 | |
52ce6436 PH |
12044 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12045 | break; | |
12046 | } | |
12047 | ||
4c4b4cd2 PH |
12048 | default: |
12049 | return dump_subexp_body_standard (exp, stream, elt); | |
12050 | } | |
12051 | ||
12052 | elt += oplen; | |
12053 | for (i = 0; i < nargs; i += 1) | |
12054 | elt = dump_subexp (exp, stream, elt); | |
12055 | ||
12056 | return elt; | |
12057 | } | |
12058 | ||
12059 | /* The Ada extension of print_subexp (q.v.). */ | |
12060 | ||
76a01679 JB |
12061 | static void |
12062 | ada_print_subexp (struct expression *exp, int *pos, | |
12063 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12064 | { |
52ce6436 | 12065 | int oplen, nargs, i; |
4c4b4cd2 PH |
12066 | int pc = *pos; |
12067 | enum exp_opcode op = exp->elts[pc].opcode; | |
12068 | ||
12069 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12070 | ||
52ce6436 | 12071 | *pos += oplen; |
4c4b4cd2 PH |
12072 | switch (op) |
12073 | { | |
12074 | default: | |
52ce6436 | 12075 | *pos -= oplen; |
4c4b4cd2 PH |
12076 | print_subexp_standard (exp, pos, stream, prec); |
12077 | return; | |
12078 | ||
12079 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12080 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12081 | return; | |
12082 | ||
12083 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12084 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12085 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12086 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12087 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12088 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12089 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12090 | fprintf_filtered (stream, "(%ld)", |
12091 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12092 | return; |
12093 | ||
12094 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12095 | if (prec >= PREC_EQUAL) |
76a01679 | 12096 | fputs_filtered ("(", stream); |
323e0a4a | 12097 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12098 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12099 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12100 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12101 | fputs_filtered (" .. ", stream); | |
12102 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12103 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12104 | fputs_filtered (")", stream); |
12105 | return; | |
4c4b4cd2 PH |
12106 | |
12107 | case OP_ATR_FIRST: | |
12108 | case OP_ATR_LAST: | |
12109 | case OP_ATR_LENGTH: | |
12110 | case OP_ATR_IMAGE: | |
12111 | case OP_ATR_MAX: | |
12112 | case OP_ATR_MIN: | |
12113 | case OP_ATR_MODULUS: | |
12114 | case OP_ATR_POS: | |
12115 | case OP_ATR_SIZE: | |
12116 | case OP_ATR_TAG: | |
12117 | case OP_ATR_VAL: | |
4c4b4cd2 | 12118 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12119 | { |
12120 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
12121 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
12122 | *pos += 3; | |
12123 | } | |
4c4b4cd2 | 12124 | else |
76a01679 | 12125 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12126 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12127 | if (nargs > 1) | |
76a01679 JB |
12128 | { |
12129 | int tem; | |
5b4ee69b | 12130 | |
76a01679 JB |
12131 | for (tem = 1; tem < nargs; tem += 1) |
12132 | { | |
12133 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12134 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12135 | } | |
12136 | fputs_filtered (")", stream); | |
12137 | } | |
4c4b4cd2 | 12138 | return; |
14f9c5c9 | 12139 | |
4c4b4cd2 | 12140 | case UNOP_QUAL: |
4c4b4cd2 PH |
12141 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12142 | fputs_filtered ("'(", stream); | |
12143 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12144 | fputs_filtered (")", stream); | |
12145 | return; | |
14f9c5c9 | 12146 | |
4c4b4cd2 | 12147 | case UNOP_IN_RANGE: |
323e0a4a | 12148 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12149 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12150 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12151 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
12152 | return; | |
52ce6436 PH |
12153 | |
12154 | case OP_DISCRETE_RANGE: | |
12155 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12156 | fputs_filtered ("..", stream); | |
12157 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12158 | return; | |
12159 | ||
12160 | case OP_OTHERS: | |
12161 | fputs_filtered ("others => ", stream); | |
12162 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12163 | return; | |
12164 | ||
12165 | case OP_CHOICES: | |
12166 | for (i = 0; i < nargs-1; i += 1) | |
12167 | { | |
12168 | if (i > 0) | |
12169 | fputs_filtered ("|", stream); | |
12170 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12171 | } | |
12172 | fputs_filtered (" => ", stream); | |
12173 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12174 | return; | |
12175 | ||
12176 | case OP_POSITIONAL: | |
12177 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12178 | return; | |
12179 | ||
12180 | case OP_AGGREGATE: | |
12181 | fputs_filtered ("(", stream); | |
12182 | for (i = 0; i < nargs; i += 1) | |
12183 | { | |
12184 | if (i > 0) | |
12185 | fputs_filtered (", ", stream); | |
12186 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12187 | } | |
12188 | fputs_filtered (")", stream); | |
12189 | return; | |
4c4b4cd2 PH |
12190 | } |
12191 | } | |
14f9c5c9 AS |
12192 | |
12193 | /* Table mapping opcodes into strings for printing operators | |
12194 | and precedences of the operators. */ | |
12195 | ||
d2e4a39e AS |
12196 | static const struct op_print ada_op_print_tab[] = { |
12197 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12198 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12199 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12200 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12201 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12202 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12203 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12204 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12205 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12206 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12207 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12208 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12209 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12210 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12211 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12212 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12213 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12214 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12215 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12216 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12217 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12218 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12219 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12220 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12221 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12222 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12223 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12224 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12225 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12226 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12227 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12228 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12229 | }; |
12230 | \f | |
72d5681a PH |
12231 | enum ada_primitive_types { |
12232 | ada_primitive_type_int, | |
12233 | ada_primitive_type_long, | |
12234 | ada_primitive_type_short, | |
12235 | ada_primitive_type_char, | |
12236 | ada_primitive_type_float, | |
12237 | ada_primitive_type_double, | |
12238 | ada_primitive_type_void, | |
12239 | ada_primitive_type_long_long, | |
12240 | ada_primitive_type_long_double, | |
12241 | ada_primitive_type_natural, | |
12242 | ada_primitive_type_positive, | |
12243 | ada_primitive_type_system_address, | |
12244 | nr_ada_primitive_types | |
12245 | }; | |
6c038f32 PH |
12246 | |
12247 | static void | |
d4a9a881 | 12248 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12249 | struct language_arch_info *lai) |
12250 | { | |
d4a9a881 | 12251 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12252 | |
72d5681a | 12253 | lai->primitive_type_vector |
d4a9a881 | 12254 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12255 | struct type *); |
e9bb382b UW |
12256 | |
12257 | lai->primitive_type_vector [ada_primitive_type_int] | |
12258 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12259 | 0, "integer"); | |
12260 | lai->primitive_type_vector [ada_primitive_type_long] | |
12261 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12262 | 0, "long_integer"); | |
12263 | lai->primitive_type_vector [ada_primitive_type_short] | |
12264 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12265 | 0, "short_integer"); | |
12266 | lai->string_char_type | |
12267 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12268 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12269 | lai->primitive_type_vector [ada_primitive_type_float] | |
12270 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12271 | "float", NULL); | |
12272 | lai->primitive_type_vector [ada_primitive_type_double] | |
12273 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12274 | "long_float", NULL); | |
12275 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12276 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12277 | 0, "long_long_integer"); | |
12278 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12279 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12280 | "long_long_float", NULL); | |
12281 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12282 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12283 | 0, "natural"); | |
12284 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12285 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12286 | 0, "positive"); | |
12287 | lai->primitive_type_vector [ada_primitive_type_void] | |
12288 | = builtin->builtin_void; | |
12289 | ||
12290 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12291 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12292 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12293 | = "system__address"; | |
fbb06eb1 | 12294 | |
47e729a8 | 12295 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12296 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12297 | } |
6c038f32 PH |
12298 | \f |
12299 | /* Language vector */ | |
12300 | ||
12301 | /* Not really used, but needed in the ada_language_defn. */ | |
12302 | ||
12303 | static void | |
6c7a06a3 | 12304 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12305 | { |
6c7a06a3 | 12306 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12307 | } |
12308 | ||
12309 | static int | |
12310 | parse (void) | |
12311 | { | |
12312 | warnings_issued = 0; | |
12313 | return ada_parse (); | |
12314 | } | |
12315 | ||
12316 | static const struct exp_descriptor ada_exp_descriptor = { | |
12317 | ada_print_subexp, | |
12318 | ada_operator_length, | |
c0201579 | 12319 | ada_operator_check, |
6c038f32 PH |
12320 | ada_op_name, |
12321 | ada_dump_subexp_body, | |
12322 | ada_evaluate_subexp | |
12323 | }; | |
12324 | ||
1a119f36 | 12325 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
12326 | for Ada. */ |
12327 | ||
1a119f36 JB |
12328 | static symbol_name_cmp_ftype |
12329 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
12330 | { |
12331 | if (should_use_wild_match (lookup_name)) | |
12332 | return wild_match; | |
12333 | else | |
12334 | return compare_names; | |
12335 | } | |
12336 | ||
6c038f32 PH |
12337 | const struct language_defn ada_language_defn = { |
12338 | "ada", /* Language name */ | |
12339 | language_ada, | |
6c038f32 PH |
12340 | range_check_off, |
12341 | type_check_off, | |
12342 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
12343 | that's not quite what this means. */ | |
6c038f32 | 12344 | array_row_major, |
9a044a89 | 12345 | macro_expansion_no, |
6c038f32 PH |
12346 | &ada_exp_descriptor, |
12347 | parse, | |
12348 | ada_error, | |
12349 | resolve, | |
12350 | ada_printchar, /* Print a character constant */ | |
12351 | ada_printstr, /* Function to print string constant */ | |
12352 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12353 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12354 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12355 | ada_val_print, /* Print a value using appropriate syntax */ |
12356 | ada_value_print, /* Print a top-level value */ | |
12357 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 12358 | NULL, /* name_of_this */ |
6c038f32 PH |
12359 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12360 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12361 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12362 | NULL, /* Language specific |
12363 | class_name_from_physname */ | |
6c038f32 PH |
12364 | ada_op_print_tab, /* expression operators for printing */ |
12365 | 0, /* c-style arrays */ | |
12366 | 1, /* String lower bound */ | |
6c038f32 | 12367 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12368 | ada_make_symbol_completion_list, |
72d5681a | 12369 | ada_language_arch_info, |
e79af960 | 12370 | ada_print_array_index, |
41f1b697 | 12371 | default_pass_by_reference, |
ae6a3a4c | 12372 | c_get_string, |
1a119f36 | 12373 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 12374 | ada_iterate_over_symbols, |
6c038f32 PH |
12375 | LANG_MAGIC |
12376 | }; | |
12377 | ||
2c0b251b PA |
12378 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12379 | extern initialize_file_ftype _initialize_ada_language; | |
12380 | ||
5bf03f13 JB |
12381 | /* Command-list for the "set/show ada" prefix command. */ |
12382 | static struct cmd_list_element *set_ada_list; | |
12383 | static struct cmd_list_element *show_ada_list; | |
12384 | ||
12385 | /* Implement the "set ada" prefix command. */ | |
12386 | ||
12387 | static void | |
12388 | set_ada_command (char *arg, int from_tty) | |
12389 | { | |
12390 | printf_unfiltered (_(\ | |
12391 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12392 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12393 | } | |
12394 | ||
12395 | /* Implement the "show ada" prefix command. */ | |
12396 | ||
12397 | static void | |
12398 | show_ada_command (char *args, int from_tty) | |
12399 | { | |
12400 | cmd_show_list (show_ada_list, from_tty, ""); | |
12401 | } | |
12402 | ||
2060206e PA |
12403 | static void |
12404 | initialize_ada_catchpoint_ops (void) | |
12405 | { | |
12406 | struct breakpoint_ops *ops; | |
12407 | ||
12408 | initialize_breakpoint_ops (); | |
12409 | ||
12410 | ops = &catch_exception_breakpoint_ops; | |
12411 | *ops = bkpt_breakpoint_ops; | |
12412 | ops->dtor = dtor_catch_exception; | |
12413 | ops->allocate_location = allocate_location_catch_exception; | |
12414 | ops->re_set = re_set_catch_exception; | |
12415 | ops->check_status = check_status_catch_exception; | |
12416 | ops->print_it = print_it_catch_exception; | |
12417 | ops->print_one = print_one_catch_exception; | |
12418 | ops->print_mention = print_mention_catch_exception; | |
12419 | ops->print_recreate = print_recreate_catch_exception; | |
12420 | ||
12421 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12422 | *ops = bkpt_breakpoint_ops; | |
12423 | ops->dtor = dtor_catch_exception_unhandled; | |
12424 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12425 | ops->re_set = re_set_catch_exception_unhandled; | |
12426 | ops->check_status = check_status_catch_exception_unhandled; | |
12427 | ops->print_it = print_it_catch_exception_unhandled; | |
12428 | ops->print_one = print_one_catch_exception_unhandled; | |
12429 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12430 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12431 | ||
12432 | ops = &catch_assert_breakpoint_ops; | |
12433 | *ops = bkpt_breakpoint_ops; | |
12434 | ops->dtor = dtor_catch_assert; | |
12435 | ops->allocate_location = allocate_location_catch_assert; | |
12436 | ops->re_set = re_set_catch_assert; | |
12437 | ops->check_status = check_status_catch_assert; | |
12438 | ops->print_it = print_it_catch_assert; | |
12439 | ops->print_one = print_one_catch_assert; | |
12440 | ops->print_mention = print_mention_catch_assert; | |
12441 | ops->print_recreate = print_recreate_catch_assert; | |
12442 | } | |
12443 | ||
d2e4a39e | 12444 | void |
6c038f32 | 12445 | _initialize_ada_language (void) |
14f9c5c9 | 12446 | { |
6c038f32 PH |
12447 | add_language (&ada_language_defn); |
12448 | ||
2060206e PA |
12449 | initialize_ada_catchpoint_ops (); |
12450 | ||
5bf03f13 JB |
12451 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12452 | _("Prefix command for changing Ada-specfic settings"), | |
12453 | &set_ada_list, "set ada ", 0, &setlist); | |
12454 | ||
12455 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12456 | _("Generic command for showing Ada-specific settings."), | |
12457 | &show_ada_list, "show ada ", 0, &showlist); | |
12458 | ||
12459 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12460 | &trust_pad_over_xvs, _("\ | |
12461 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12462 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12463 | _("\ | |
12464 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12465 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12466 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12467 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12468 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12469 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12470 | this option to \"off\" unless necessary."), | |
12471 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12472 | ||
9ac4176b PA |
12473 | add_catch_command ("exception", _("\ |
12474 | Catch Ada exceptions, when raised.\n\ | |
12475 | With an argument, catch only exceptions with the given name."), | |
12476 | catch_ada_exception_command, | |
12477 | NULL, | |
12478 | CATCH_PERMANENT, | |
12479 | CATCH_TEMPORARY); | |
12480 | add_catch_command ("assert", _("\ | |
12481 | Catch failed Ada assertions, when raised.\n\ | |
12482 | With an argument, catch only exceptions with the given name."), | |
12483 | catch_assert_command, | |
12484 | NULL, | |
12485 | CATCH_PERMANENT, | |
12486 | CATCH_TEMPORARY); | |
12487 | ||
6c038f32 | 12488 | varsize_limit = 65536; |
6c038f32 PH |
12489 | |
12490 | obstack_init (&symbol_list_obstack); | |
12491 | ||
12492 | decoded_names_store = htab_create_alloc | |
12493 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12494 | NULL, xcalloc, xfree); | |
6b69afc4 | 12495 | |
e802dbe0 JB |
12496 | /* Setup per-inferior data. */ |
12497 | observer_attach_inferior_exit (ada_inferior_exit); | |
12498 | ada_inferior_data | |
12499 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 12500 | } |