]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
f7f9143b JB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007 |
4 | Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | #ifndef ADA_RETAIN_DOTS |
61 | #define ADA_RETAIN_DOTS 0 | |
62 | #endif | |
63 | ||
64 | /* Define whether or not the C operator '/' truncates towards zero for | |
65 | differently signed operands (truncation direction is undefined in C). | |
66 | Copied from valarith.c. */ | |
67 | ||
68 | #ifndef TRUNCATION_TOWARDS_ZERO | |
69 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
70 | #endif | |
71 | ||
4c4b4cd2 | 72 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 73 | |
14f9c5c9 AS |
74 | static void modify_general_field (char *, LONGEST, int, int); |
75 | ||
d2e4a39e | 76 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 81 | |
d2e4a39e | 82 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static struct type *desc_data_type (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static struct value *desc_data (struct value *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int desc_arity (struct type *); |
14f9c5c9 | 103 | |
d2e4a39e | 104 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 105 | |
d2e4a39e | 106 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 107 | |
4c4b4cd2 | 108 | static struct value *ensure_lval (struct value *, CORE_ADDR *); |
14f9c5c9 | 109 | |
d2e4a39e | 110 | static struct value *convert_actual (struct value *, struct type *, |
4c4b4cd2 | 111 | CORE_ADDR *); |
14f9c5c9 | 112 | |
d2e4a39e | 113 | static struct value *make_array_descriptor (struct type *, struct value *, |
4c4b4cd2 | 114 | CORE_ADDR *); |
14f9c5c9 | 115 | |
4c4b4cd2 | 116 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 117 | struct block *, const char *, |
2570f2b7 | 118 | domain_enum, struct objfile *, int); |
14f9c5c9 | 119 | |
4c4b4cd2 | 120 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 121 | |
76a01679 | 122 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 123 | struct block *); |
14f9c5c9 | 124 | |
4c4b4cd2 PH |
125 | static int num_defns_collected (struct obstack *); |
126 | ||
127 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
130 | *, const char *, int, |
131 | domain_enum, int); | |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static struct symtab *symtab_for_sym (struct symbol *); |
14f9c5c9 | 134 | |
4c4b4cd2 | 135 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 136 | struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 139 | struct symbol *, struct block *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 142 | |
4c4b4cd2 PH |
143 | static char *ada_op_name (enum exp_opcode); |
144 | ||
145 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 146 | |
d2e4a39e | 147 | static int numeric_type_p (struct type *); |
14f9c5c9 | 148 | |
d2e4a39e | 149 | static int integer_type_p (struct type *); |
14f9c5c9 | 150 | |
d2e4a39e | 151 | static int scalar_type_p (struct type *); |
14f9c5c9 | 152 | |
d2e4a39e | 153 | static int discrete_type_p (struct type *); |
14f9c5c9 | 154 | |
aeb5907d JB |
155 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
156 | const char **, | |
157 | int *, | |
158 | const char **); | |
159 | ||
160 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
161 | struct block *); | |
162 | ||
4c4b4cd2 | 163 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 164 | int, int, int *); |
4c4b4cd2 | 165 | |
d2e4a39e | 166 | static struct value *evaluate_subexp (struct type *, struct expression *, |
4c4b4cd2 | 167 | int *, enum noside); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 172 | |
10a2c479 | 173 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 174 | const gdb_byte *, |
4c4b4cd2 PH |
175 | CORE_ADDR, struct value *); |
176 | ||
177 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 178 | |
d2e4a39e | 179 | static struct type *to_fixed_range_type (char *, struct value *, |
4c4b4cd2 | 180 | struct objfile *); |
14f9c5c9 | 181 | |
d2e4a39e | 182 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 183 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 184 | |
d2e4a39e | 185 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct type *packed_array_type (struct type *, long *); |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct type *decode_packed_array_type (struct type *); |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *decode_packed_array (struct value *); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 194 | struct value **); |
14f9c5c9 | 195 | |
52ce6436 PH |
196 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int); |
197 | ||
4c4b4cd2 PH |
198 | static struct value *coerce_unspec_val_to_type (struct value *, |
199 | struct type *); | |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 204 | |
d2e4a39e | 205 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static int is_name_suffix (const char *); |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 210 | |
d2e4a39e | 211 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 212 | |
4c4b4cd2 PH |
213 | static LONGEST pos_atr (struct value *); |
214 | ||
d2e4a39e | 215 | static struct value *value_pos_atr (struct value *); |
14f9c5c9 | 216 | |
d2e4a39e | 217 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 218 | |
4c4b4cd2 PH |
219 | static struct symbol *standard_lookup (const char *, const struct block *, |
220 | domain_enum); | |
14f9c5c9 | 221 | |
4c4b4cd2 PH |
222 | static struct value *ada_search_struct_field (char *, struct value *, int, |
223 | struct type *); | |
224 | ||
225 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
226 | struct type *); | |
227 | ||
76a01679 | 228 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 229 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
230 | |
231 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
232 | struct value *); | |
233 | ||
234 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 235 | |
4c4b4cd2 PH |
236 | static int ada_resolve_function (struct ada_symbol_info *, int, |
237 | struct value **, int, const char *, | |
238 | struct type *); | |
239 | ||
240 | static struct value *ada_coerce_to_simple_array (struct value *); | |
241 | ||
242 | static int ada_is_direct_array_type (struct type *); | |
243 | ||
72d5681a PH |
244 | static void ada_language_arch_info (struct gdbarch *, |
245 | struct language_arch_info *); | |
714e53ab PH |
246 | |
247 | static void check_size (const struct type *); | |
52ce6436 PH |
248 | |
249 | static struct value *ada_index_struct_field (int, struct value *, int, | |
250 | struct type *); | |
251 | ||
252 | static struct value *assign_aggregate (struct value *, struct value *, | |
253 | struct expression *, int *, enum noside); | |
254 | ||
255 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, | |
258 | int, LONGEST, LONGEST); | |
259 | ||
260 | static void aggregate_assign_positional (struct value *, struct value *, | |
261 | struct expression *, | |
262 | int *, LONGEST *, int *, int, | |
263 | LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void aggregate_assign_others (struct value *, struct value *, | |
267 | struct expression *, | |
268 | int *, LONGEST *, int, LONGEST, LONGEST); | |
269 | ||
270 | ||
271 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
272 | ||
273 | ||
274 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
275 | int *, enum noside); | |
276 | ||
277 | static void ada_forward_operator_length (struct expression *, int, int *, | |
278 | int *); | |
4c4b4cd2 PH |
279 | \f |
280 | ||
76a01679 | 281 | |
4c4b4cd2 | 282 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
283 | static unsigned int varsize_limit; |
284 | ||
4c4b4cd2 PH |
285 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
286 | returned by a function that does not return a const char *. */ | |
287 | static char *ada_completer_word_break_characters = | |
288 | #ifdef VMS | |
289 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
290 | #else | |
14f9c5c9 | 291 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 292 | #endif |
14f9c5c9 | 293 | |
4c4b4cd2 | 294 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 295 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 296 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 297 | |
4c4b4cd2 PH |
298 | /* Limit on the number of warnings to raise per expression evaluation. */ |
299 | static int warning_limit = 2; | |
300 | ||
301 | /* Number of warning messages issued; reset to 0 by cleanups after | |
302 | expression evaluation. */ | |
303 | static int warnings_issued = 0; | |
304 | ||
305 | static const char *known_runtime_file_name_patterns[] = { | |
306 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
307 | }; | |
308 | ||
309 | static const char *known_auxiliary_function_name_patterns[] = { | |
310 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
311 | }; | |
312 | ||
313 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
314 | static struct obstack symbol_list_obstack; | |
315 | ||
316 | /* Utilities */ | |
317 | ||
41d27058 JB |
318 | /* Given DECODED_NAME a string holding a symbol name in its |
319 | decoded form (ie using the Ada dotted notation), returns | |
320 | its unqualified name. */ | |
321 | ||
322 | static const char * | |
323 | ada_unqualified_name (const char *decoded_name) | |
324 | { | |
325 | const char *result = strrchr (decoded_name, '.'); | |
326 | ||
327 | if (result != NULL) | |
328 | result++; /* Skip the dot... */ | |
329 | else | |
330 | result = decoded_name; | |
331 | ||
332 | return result; | |
333 | } | |
334 | ||
335 | /* Return a string starting with '<', followed by STR, and '>'. | |
336 | The result is good until the next call. */ | |
337 | ||
338 | static char * | |
339 | add_angle_brackets (const char *str) | |
340 | { | |
341 | static char *result = NULL; | |
342 | ||
343 | xfree (result); | |
344 | result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char)); | |
345 | ||
346 | sprintf (result, "<%s>", str); | |
347 | return result; | |
348 | } | |
96d887e8 | 349 | |
4c4b4cd2 PH |
350 | static char * |
351 | ada_get_gdb_completer_word_break_characters (void) | |
352 | { | |
353 | return ada_completer_word_break_characters; | |
354 | } | |
355 | ||
e79af960 JB |
356 | /* Print an array element index using the Ada syntax. */ |
357 | ||
358 | static void | |
359 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
360 | int format, enum val_prettyprint pretty) | |
361 | { | |
362 | LA_VALUE_PRINT (index_value, stream, format, pretty); | |
363 | fprintf_filtered (stream, " => "); | |
364 | } | |
365 | ||
4c4b4cd2 PH |
366 | /* Read the string located at ADDR from the inferior and store the |
367 | result into BUF. */ | |
368 | ||
369 | static void | |
14f9c5c9 AS |
370 | extract_string (CORE_ADDR addr, char *buf) |
371 | { | |
d2e4a39e | 372 | int char_index = 0; |
14f9c5c9 | 373 | |
4c4b4cd2 PH |
374 | /* Loop, reading one byte at a time, until we reach the '\000' |
375 | end-of-string marker. */ | |
d2e4a39e AS |
376 | do |
377 | { | |
378 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 379 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
380 | char_index++; |
381 | } | |
382 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
383 | } |
384 | ||
f27cf670 | 385 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 386 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 387 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 388 | |
f27cf670 AS |
389 | void * |
390 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 391 | { |
d2e4a39e AS |
392 | if (*size < min_size) |
393 | { | |
394 | *size *= 2; | |
395 | if (*size < min_size) | |
4c4b4cd2 | 396 | *size = min_size; |
f27cf670 | 397 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 398 | } |
f27cf670 | 399 | return vect; |
14f9c5c9 AS |
400 | } |
401 | ||
402 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 403 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
404 | |
405 | static int | |
ebf56fd3 | 406 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
407 | { |
408 | int len = strlen (target); | |
d2e4a39e | 409 | return |
4c4b4cd2 PH |
410 | (strncmp (field_name, target, len) == 0 |
411 | && (field_name[len] == '\0' | |
412 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
413 | && strcmp (field_name + strlen (field_name) - 6, |
414 | "___XVN") != 0))); | |
14f9c5c9 AS |
415 | } |
416 | ||
417 | ||
4c4b4cd2 PH |
418 | /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches |
419 | FIELD_NAME, and return its index. This function also handles fields | |
420 | whose name have ___ suffixes because the compiler sometimes alters | |
421 | their name by adding such a suffix to represent fields with certain | |
422 | constraints. If the field could not be found, return a negative | |
423 | number if MAYBE_MISSING is set. Otherwise raise an error. */ | |
424 | ||
425 | int | |
426 | ada_get_field_index (const struct type *type, const char *field_name, | |
427 | int maybe_missing) | |
428 | { | |
429 | int fieldno; | |
430 | for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++) | |
431 | if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name)) | |
432 | return fieldno; | |
433 | ||
434 | if (!maybe_missing) | |
323e0a4a | 435 | error (_("Unable to find field %s in struct %s. Aborting"), |
4c4b4cd2 PH |
436 | field_name, TYPE_NAME (type)); |
437 | ||
438 | return -1; | |
439 | } | |
440 | ||
441 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
442 | |
443 | int | |
d2e4a39e | 444 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
445 | { |
446 | if (name == NULL) | |
447 | return 0; | |
d2e4a39e | 448 | else |
14f9c5c9 | 449 | { |
d2e4a39e | 450 | const char *p = strstr (name, "___"); |
14f9c5c9 | 451 | if (p == NULL) |
4c4b4cd2 | 452 | return strlen (name); |
14f9c5c9 | 453 | else |
4c4b4cd2 | 454 | return p - name; |
14f9c5c9 AS |
455 | } |
456 | } | |
457 | ||
4c4b4cd2 PH |
458 | /* Return non-zero if SUFFIX is a suffix of STR. |
459 | Return zero if STR is null. */ | |
460 | ||
14f9c5c9 | 461 | static int |
d2e4a39e | 462 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
463 | { |
464 | int len1, len2; | |
465 | if (str == NULL) | |
466 | return 0; | |
467 | len1 = strlen (str); | |
468 | len2 = strlen (suffix); | |
4c4b4cd2 | 469 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
470 | } |
471 | ||
472 | /* Create a value of type TYPE whose contents come from VALADDR, if it | |
4c4b4cd2 PH |
473 | is non-null, and whose memory address (in the inferior) is |
474 | ADDRESS. */ | |
475 | ||
d2e4a39e | 476 | struct value * |
10a2c479 | 477 | value_from_contents_and_address (struct type *type, |
fc1a4b47 | 478 | const gdb_byte *valaddr, |
4c4b4cd2 | 479 | CORE_ADDR address) |
14f9c5c9 | 480 | { |
d2e4a39e AS |
481 | struct value *v = allocate_value (type); |
482 | if (valaddr == NULL) | |
dfa52d88 | 483 | set_value_lazy (v, 1); |
14f9c5c9 | 484 | else |
990a07ab | 485 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); |
14f9c5c9 AS |
486 | VALUE_ADDRESS (v) = address; |
487 | if (address != 0) | |
488 | VALUE_LVAL (v) = lval_memory; | |
489 | return v; | |
490 | } | |
491 | ||
4c4b4cd2 PH |
492 | /* The contents of value VAL, treated as a value of type TYPE. The |
493 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 494 | |
d2e4a39e | 495 | static struct value * |
4c4b4cd2 | 496 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 497 | { |
61ee279c | 498 | type = ada_check_typedef (type); |
df407dfe | 499 | if (value_type (val) == type) |
4c4b4cd2 | 500 | return val; |
d2e4a39e | 501 | else |
14f9c5c9 | 502 | { |
4c4b4cd2 PH |
503 | struct value *result; |
504 | ||
505 | /* Make sure that the object size is not unreasonable before | |
506 | trying to allocate some memory for it. */ | |
714e53ab | 507 | check_size (type); |
4c4b4cd2 PH |
508 | |
509 | result = allocate_value (type); | |
510 | VALUE_LVAL (result) = VALUE_LVAL (val); | |
9bbda503 AC |
511 | set_value_bitsize (result, value_bitsize (val)); |
512 | set_value_bitpos (result, value_bitpos (val)); | |
df407dfe | 513 | VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val); |
d69fe07e | 514 | if (value_lazy (val) |
df407dfe | 515 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 516 | set_value_lazy (result, 1); |
d2e4a39e | 517 | else |
0fd88904 | 518 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 519 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
520 | return result; |
521 | } | |
522 | } | |
523 | ||
fc1a4b47 AC |
524 | static const gdb_byte * |
525 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
526 | { |
527 | if (valaddr == NULL) | |
528 | return NULL; | |
529 | else | |
530 | return valaddr + offset; | |
531 | } | |
532 | ||
533 | static CORE_ADDR | |
ebf56fd3 | 534 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
535 | { |
536 | if (address == 0) | |
537 | return 0; | |
d2e4a39e | 538 | else |
14f9c5c9 AS |
539 | return address + offset; |
540 | } | |
541 | ||
4c4b4cd2 PH |
542 | /* Issue a warning (as for the definition of warning in utils.c, but |
543 | with exactly one argument rather than ...), unless the limit on the | |
544 | number of warnings has passed during the evaluation of the current | |
545 | expression. */ | |
a2249542 | 546 | |
77109804 AC |
547 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
548 | provided by "complaint". */ | |
549 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
550 | ||
14f9c5c9 | 551 | static void |
a2249542 | 552 | lim_warning (const char *format, ...) |
14f9c5c9 | 553 | { |
a2249542 MK |
554 | va_list args; |
555 | va_start (args, format); | |
556 | ||
4c4b4cd2 PH |
557 | warnings_issued += 1; |
558 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
559 | vwarning (format, args); |
560 | ||
561 | va_end (args); | |
4c4b4cd2 PH |
562 | } |
563 | ||
714e53ab PH |
564 | /* Issue an error if the size of an object of type T is unreasonable, |
565 | i.e. if it would be a bad idea to allocate a value of this type in | |
566 | GDB. */ | |
567 | ||
568 | static void | |
569 | check_size (const struct type *type) | |
570 | { | |
571 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 572 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
573 | } |
574 | ||
575 | ||
c3e5cd34 PH |
576 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
577 | gdbtypes.h, but some of the necessary definitions in that file | |
578 | seem to have gone missing. */ | |
579 | ||
580 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 581 | static LONGEST |
c3e5cd34 | 582 | max_of_size (int size) |
4c4b4cd2 | 583 | { |
76a01679 JB |
584 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
585 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
586 | } |
587 | ||
c3e5cd34 | 588 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 589 | static LONGEST |
c3e5cd34 | 590 | min_of_size (int size) |
4c4b4cd2 | 591 | { |
c3e5cd34 | 592 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
593 | } |
594 | ||
c3e5cd34 | 595 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 596 | static ULONGEST |
c3e5cd34 | 597 | umax_of_size (int size) |
4c4b4cd2 | 598 | { |
76a01679 JB |
599 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
600 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
601 | } |
602 | ||
c3e5cd34 PH |
603 | /* Maximum value of integral type T, as a signed quantity. */ |
604 | static LONGEST | |
605 | max_of_type (struct type *t) | |
4c4b4cd2 | 606 | { |
c3e5cd34 PH |
607 | if (TYPE_UNSIGNED (t)) |
608 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
609 | else | |
610 | return max_of_size (TYPE_LENGTH (t)); | |
611 | } | |
612 | ||
613 | /* Minimum value of integral type T, as a signed quantity. */ | |
614 | static LONGEST | |
615 | min_of_type (struct type *t) | |
616 | { | |
617 | if (TYPE_UNSIGNED (t)) | |
618 | return 0; | |
619 | else | |
620 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
621 | } |
622 | ||
623 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
624 | static struct value * | |
625 | discrete_type_high_bound (struct type *type) | |
626 | { | |
76a01679 | 627 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
628 | { |
629 | case TYPE_CODE_RANGE: | |
630 | return value_from_longest (TYPE_TARGET_TYPE (type), | |
76a01679 | 631 | TYPE_HIGH_BOUND (type)); |
4c4b4cd2 | 632 | case TYPE_CODE_ENUM: |
76a01679 JB |
633 | return |
634 | value_from_longest (type, | |
635 | TYPE_FIELD_BITPOS (type, | |
636 | TYPE_NFIELDS (type) - 1)); | |
637 | case TYPE_CODE_INT: | |
c3e5cd34 | 638 | return value_from_longest (type, max_of_type (type)); |
4c4b4cd2 | 639 | default: |
323e0a4a | 640 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
641 | } |
642 | } | |
643 | ||
644 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
645 | static struct value * | |
646 | discrete_type_low_bound (struct type *type) | |
647 | { | |
76a01679 | 648 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
649 | { |
650 | case TYPE_CODE_RANGE: | |
651 | return value_from_longest (TYPE_TARGET_TYPE (type), | |
76a01679 | 652 | TYPE_LOW_BOUND (type)); |
4c4b4cd2 | 653 | case TYPE_CODE_ENUM: |
76a01679 JB |
654 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0)); |
655 | case TYPE_CODE_INT: | |
c3e5cd34 | 656 | return value_from_longest (type, min_of_type (type)); |
4c4b4cd2 | 657 | default: |
323e0a4a | 658 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
659 | } |
660 | } | |
661 | ||
662 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 663 | non-range scalar type. */ |
4c4b4cd2 PH |
664 | |
665 | static struct type * | |
666 | base_type (struct type *type) | |
667 | { | |
668 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
669 | { | |
76a01679 JB |
670 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
671 | return type; | |
4c4b4cd2 PH |
672 | type = TYPE_TARGET_TYPE (type); |
673 | } | |
674 | return type; | |
14f9c5c9 | 675 | } |
4c4b4cd2 | 676 | \f |
76a01679 | 677 | |
4c4b4cd2 | 678 | /* Language Selection */ |
14f9c5c9 AS |
679 | |
680 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
681 | (the main program is in Ada iif the adainit symbol is found). | |
682 | ||
4c4b4cd2 | 683 | MAIN_PST is not used. */ |
d2e4a39e | 684 | |
14f9c5c9 | 685 | enum language |
d2e4a39e | 686 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 687 | struct partial_symtab *main_pst) |
14f9c5c9 | 688 | { |
d2e4a39e | 689 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
690 | (struct objfile *) NULL) != NULL) |
691 | return language_ada; | |
14f9c5c9 AS |
692 | |
693 | return lang; | |
694 | } | |
96d887e8 PH |
695 | |
696 | /* If the main procedure is written in Ada, then return its name. | |
697 | The result is good until the next call. Return NULL if the main | |
698 | procedure doesn't appear to be in Ada. */ | |
699 | ||
700 | char * | |
701 | ada_main_name (void) | |
702 | { | |
703 | struct minimal_symbol *msym; | |
704 | CORE_ADDR main_program_name_addr; | |
705 | static char main_program_name[1024]; | |
6c038f32 | 706 | |
96d887e8 PH |
707 | /* For Ada, the name of the main procedure is stored in a specific |
708 | string constant, generated by the binder. Look for that symbol, | |
709 | extract its address, and then read that string. If we didn't find | |
710 | that string, then most probably the main procedure is not written | |
711 | in Ada. */ | |
712 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
713 | ||
714 | if (msym != NULL) | |
715 | { | |
716 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); | |
717 | if (main_program_name_addr == 0) | |
323e0a4a | 718 | error (_("Invalid address for Ada main program name.")); |
96d887e8 PH |
719 | |
720 | extract_string (main_program_name_addr, main_program_name); | |
721 | return main_program_name; | |
722 | } | |
723 | ||
724 | /* The main procedure doesn't seem to be in Ada. */ | |
725 | return NULL; | |
726 | } | |
14f9c5c9 | 727 | \f |
4c4b4cd2 | 728 | /* Symbols */ |
d2e4a39e | 729 | |
4c4b4cd2 PH |
730 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
731 | of NULLs. */ | |
14f9c5c9 | 732 | |
d2e4a39e AS |
733 | const struct ada_opname_map ada_opname_table[] = { |
734 | {"Oadd", "\"+\"", BINOP_ADD}, | |
735 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
736 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
737 | {"Odivide", "\"/\"", BINOP_DIV}, | |
738 | {"Omod", "\"mod\"", BINOP_MOD}, | |
739 | {"Orem", "\"rem\"", BINOP_REM}, | |
740 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
741 | {"Olt", "\"<\"", BINOP_LESS}, | |
742 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
743 | {"Ogt", "\">\"", BINOP_GTR}, | |
744 | {"Oge", "\">=\"", BINOP_GEQ}, | |
745 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
746 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
747 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
748 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
749 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
750 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
751 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
752 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
753 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
754 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
755 | {NULL, NULL} | |
14f9c5c9 AS |
756 | }; |
757 | ||
4c4b4cd2 PH |
758 | /* Return non-zero if STR should be suppressed in info listings. */ |
759 | ||
14f9c5c9 | 760 | static int |
d2e4a39e | 761 | is_suppressed_name (const char *str) |
14f9c5c9 | 762 | { |
4c4b4cd2 | 763 | if (strncmp (str, "_ada_", 5) == 0) |
14f9c5c9 AS |
764 | str += 5; |
765 | if (str[0] == '_' || str[0] == '\000') | |
766 | return 1; | |
767 | else | |
768 | { | |
d2e4a39e AS |
769 | const char *p; |
770 | const char *suffix = strstr (str, "___"); | |
14f9c5c9 | 771 | if (suffix != NULL && suffix[3] != 'X') |
4c4b4cd2 | 772 | return 1; |
14f9c5c9 | 773 | if (suffix == NULL) |
4c4b4cd2 | 774 | suffix = str + strlen (str); |
d2e4a39e | 775 | for (p = suffix - 1; p != str; p -= 1) |
4c4b4cd2 PH |
776 | if (isupper (*p)) |
777 | { | |
778 | int i; | |
779 | if (p[0] == 'X' && p[-1] != '_') | |
780 | goto OK; | |
781 | if (*p != 'O') | |
782 | return 1; | |
783 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) | |
784 | if (strncmp (ada_opname_table[i].encoded, p, | |
785 | strlen (ada_opname_table[i].encoded)) == 0) | |
786 | goto OK; | |
787 | return 1; | |
788 | OK:; | |
789 | } | |
14f9c5c9 AS |
790 | return 0; |
791 | } | |
792 | } | |
793 | ||
4c4b4cd2 PH |
794 | /* The "encoded" form of DECODED, according to GNAT conventions. |
795 | The result is valid until the next call to ada_encode. */ | |
796 | ||
14f9c5c9 | 797 | char * |
4c4b4cd2 | 798 | ada_encode (const char *decoded) |
14f9c5c9 | 799 | { |
4c4b4cd2 PH |
800 | static char *encoding_buffer = NULL; |
801 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 802 | const char *p; |
14f9c5c9 | 803 | int k; |
d2e4a39e | 804 | |
4c4b4cd2 | 805 | if (decoded == NULL) |
14f9c5c9 AS |
806 | return NULL; |
807 | ||
4c4b4cd2 PH |
808 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
809 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
810 | |
811 | k = 0; | |
4c4b4cd2 | 812 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 813 | { |
4c4b4cd2 PH |
814 | if (!ADA_RETAIN_DOTS && *p == '.') |
815 | { | |
816 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
817 | k += 2; | |
818 | } | |
14f9c5c9 | 819 | else if (*p == '"') |
4c4b4cd2 PH |
820 | { |
821 | const struct ada_opname_map *mapping; | |
822 | ||
823 | for (mapping = ada_opname_table; | |
1265e4aa JB |
824 | mapping->encoded != NULL |
825 | && strncmp (mapping->decoded, p, | |
826 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
827 | ; |
828 | if (mapping->encoded == NULL) | |
323e0a4a | 829 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
830 | strcpy (encoding_buffer + k, mapping->encoded); |
831 | k += strlen (mapping->encoded); | |
832 | break; | |
833 | } | |
d2e4a39e | 834 | else |
4c4b4cd2 PH |
835 | { |
836 | encoding_buffer[k] = *p; | |
837 | k += 1; | |
838 | } | |
14f9c5c9 AS |
839 | } |
840 | ||
4c4b4cd2 PH |
841 | encoding_buffer[k] = '\0'; |
842 | return encoding_buffer; | |
14f9c5c9 AS |
843 | } |
844 | ||
845 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
846 | quotes, unfolded, but with the quotes stripped away. Result good |
847 | to next call. */ | |
848 | ||
d2e4a39e AS |
849 | char * |
850 | ada_fold_name (const char *name) | |
14f9c5c9 | 851 | { |
d2e4a39e | 852 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
853 | static size_t fold_buffer_size = 0; |
854 | ||
855 | int len = strlen (name); | |
d2e4a39e | 856 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
857 | |
858 | if (name[0] == '\'') | |
859 | { | |
d2e4a39e AS |
860 | strncpy (fold_buffer, name + 1, len - 2); |
861 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
862 | } |
863 | else | |
864 | { | |
865 | int i; | |
866 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 867 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
868 | } |
869 | ||
870 | return fold_buffer; | |
871 | } | |
872 | ||
529cad9c PH |
873 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
874 | ||
875 | static int | |
876 | is_lower_alphanum (const char c) | |
877 | { | |
878 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
879 | } | |
880 | ||
29480c32 JB |
881 | /* Remove either of these suffixes: |
882 | . .{DIGIT}+ | |
883 | . ${DIGIT}+ | |
884 | . ___{DIGIT}+ | |
885 | . __{DIGIT}+. | |
886 | These are suffixes introduced by the compiler for entities such as | |
887 | nested subprogram for instance, in order to avoid name clashes. | |
888 | They do not serve any purpose for the debugger. */ | |
889 | ||
890 | static void | |
891 | ada_remove_trailing_digits (const char *encoded, int *len) | |
892 | { | |
893 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
894 | { | |
895 | int i = *len - 2; | |
896 | while (i > 0 && isdigit (encoded[i])) | |
897 | i--; | |
898 | if (i >= 0 && encoded[i] == '.') | |
899 | *len = i; | |
900 | else if (i >= 0 && encoded[i] == '$') | |
901 | *len = i; | |
902 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
903 | *len = i - 2; | |
904 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
905 | *len = i - 1; | |
906 | } | |
907 | } | |
908 | ||
909 | /* Remove the suffix introduced by the compiler for protected object | |
910 | subprograms. */ | |
911 | ||
912 | static void | |
913 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
914 | { | |
915 | /* Remove trailing N. */ | |
916 | ||
917 | /* Protected entry subprograms are broken into two | |
918 | separate subprograms: The first one is unprotected, and has | |
919 | a 'N' suffix; the second is the protected version, and has | |
920 | the 'P' suffix. The second calls the first one after handling | |
921 | the protection. Since the P subprograms are internally generated, | |
922 | we leave these names undecoded, giving the user a clue that this | |
923 | entity is internal. */ | |
924 | ||
925 | if (*len > 1 | |
926 | && encoded[*len - 1] == 'N' | |
927 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
928 | *len = *len - 1; | |
929 | } | |
930 | ||
931 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
932 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
933 | replaced by ENCODED. | |
14f9c5c9 | 934 | |
4c4b4cd2 | 935 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 936 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
937 | is returned. */ |
938 | ||
939 | const char * | |
940 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
941 | { |
942 | int i, j; | |
943 | int len0; | |
d2e4a39e | 944 | const char *p; |
4c4b4cd2 | 945 | char *decoded; |
14f9c5c9 | 946 | int at_start_name; |
4c4b4cd2 PH |
947 | static char *decoding_buffer = NULL; |
948 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 949 | |
29480c32 JB |
950 | /* The name of the Ada main procedure starts with "_ada_". |
951 | This prefix is not part of the decoded name, so skip this part | |
952 | if we see this prefix. */ | |
4c4b4cd2 PH |
953 | if (strncmp (encoded, "_ada_", 5) == 0) |
954 | encoded += 5; | |
14f9c5c9 | 955 | |
29480c32 JB |
956 | /* If the name starts with '_', then it is not a properly encoded |
957 | name, so do not attempt to decode it. Similarly, if the name | |
958 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 959 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
960 | goto Suppress; |
961 | ||
4c4b4cd2 | 962 | len0 = strlen (encoded); |
4c4b4cd2 | 963 | |
29480c32 JB |
964 | ada_remove_trailing_digits (encoded, &len0); |
965 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 966 | |
4c4b4cd2 PH |
967 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
968 | the suffix is located before the current "end" of ENCODED. We want | |
969 | to avoid re-matching parts of ENCODED that have previously been | |
970 | marked as discarded (by decrementing LEN0). */ | |
971 | p = strstr (encoded, "___"); | |
972 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
973 | { |
974 | if (p[3] == 'X') | |
4c4b4cd2 | 975 | len0 = p - encoded; |
14f9c5c9 | 976 | else |
4c4b4cd2 | 977 | goto Suppress; |
14f9c5c9 | 978 | } |
4c4b4cd2 | 979 | |
29480c32 JB |
980 | /* Remove any trailing TKB suffix. It tells us that this symbol |
981 | is for the body of a task, but that information does not actually | |
982 | appear in the decoded name. */ | |
983 | ||
4c4b4cd2 | 984 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 985 | len0 -= 3; |
76a01679 | 986 | |
29480c32 JB |
987 | /* Remove trailing "B" suffixes. */ |
988 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
989 | ||
4c4b4cd2 | 990 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
991 | len0 -= 1; |
992 | ||
4c4b4cd2 | 993 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 994 | |
4c4b4cd2 PH |
995 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
996 | decoded = decoding_buffer; | |
14f9c5c9 | 997 | |
29480c32 JB |
998 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
999 | ||
4c4b4cd2 | 1000 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1001 | { |
4c4b4cd2 PH |
1002 | i = len0 - 2; |
1003 | while ((i >= 0 && isdigit (encoded[i])) | |
1004 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1005 | i -= 1; | |
1006 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1007 | len0 = i - 1; | |
1008 | else if (encoded[i] == '$') | |
1009 | len0 = i; | |
d2e4a39e | 1010 | } |
14f9c5c9 | 1011 | |
29480c32 JB |
1012 | /* The first few characters that are not alphabetic are not part |
1013 | of any encoding we use, so we can copy them over verbatim. */ | |
1014 | ||
4c4b4cd2 PH |
1015 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1016 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1017 | |
1018 | at_start_name = 1; | |
1019 | while (i < len0) | |
1020 | { | |
29480c32 | 1021 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1022 | if (at_start_name && encoded[i] == 'O') |
1023 | { | |
1024 | int k; | |
1025 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
1026 | { | |
1027 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1028 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1029 | op_len - 1) == 0) | |
1030 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1031 | { |
1032 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1033 | at_start_name = 0; | |
1034 | i += op_len; | |
1035 | j += strlen (ada_opname_table[k].decoded); | |
1036 | break; | |
1037 | } | |
1038 | } | |
1039 | if (ada_opname_table[k].encoded != NULL) | |
1040 | continue; | |
1041 | } | |
14f9c5c9 AS |
1042 | at_start_name = 0; |
1043 | ||
529cad9c PH |
1044 | /* Replace "TK__" with "__", which will eventually be translated |
1045 | into "." (just below). */ | |
1046 | ||
4c4b4cd2 PH |
1047 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1048 | i += 2; | |
529cad9c | 1049 | |
29480c32 JB |
1050 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1051 | be translated into "." (just below). These are internal names | |
1052 | generated for anonymous blocks inside which our symbol is nested. */ | |
1053 | ||
1054 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1055 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1056 | && isdigit (encoded [i+4])) | |
1057 | { | |
1058 | int k = i + 5; | |
1059 | ||
1060 | while (k < len0 && isdigit (encoded[k])) | |
1061 | k++; /* Skip any extra digit. */ | |
1062 | ||
1063 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1064 | is indeed followed by "__". */ | |
1065 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1066 | i = k; | |
1067 | } | |
1068 | ||
529cad9c PH |
1069 | /* Remove _E{DIGITS}+[sb] */ |
1070 | ||
1071 | /* Just as for protected object subprograms, there are 2 categories | |
1072 | of subprograms created by the compiler for each entry. The first | |
1073 | one implements the actual entry code, and has a suffix following | |
1074 | the convention above; the second one implements the barrier and | |
1075 | uses the same convention as above, except that the 'E' is replaced | |
1076 | by a 'B'. | |
1077 | ||
1078 | Just as above, we do not decode the name of barrier functions | |
1079 | to give the user a clue that the code he is debugging has been | |
1080 | internally generated. */ | |
1081 | ||
1082 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1083 | && isdigit (encoded[i+2])) | |
1084 | { | |
1085 | int k = i + 3; | |
1086 | ||
1087 | while (k < len0 && isdigit (encoded[k])) | |
1088 | k++; | |
1089 | ||
1090 | if (k < len0 | |
1091 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1092 | { | |
1093 | k++; | |
1094 | /* Just as an extra precaution, make sure that if this | |
1095 | suffix is followed by anything else, it is a '_'. | |
1096 | Otherwise, we matched this sequence by accident. */ | |
1097 | if (k == len0 | |
1098 | || (k < len0 && encoded[k] == '_')) | |
1099 | i = k; | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1104 | the GNAT front-end in protected object subprograms. */ | |
1105 | ||
1106 | if (i < len0 + 3 | |
1107 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1108 | { | |
1109 | /* Backtrack a bit up until we reach either the begining of | |
1110 | the encoded name, or "__". Make sure that we only find | |
1111 | digits or lowercase characters. */ | |
1112 | const char *ptr = encoded + i - 1; | |
1113 | ||
1114 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1115 | ptr--; | |
1116 | if (ptr < encoded | |
1117 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1118 | i++; | |
1119 | } | |
1120 | ||
4c4b4cd2 PH |
1121 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1122 | { | |
29480c32 JB |
1123 | /* This is a X[bn]* sequence not separated from the previous |
1124 | part of the name with a non-alpha-numeric character (in other | |
1125 | words, immediately following an alpha-numeric character), then | |
1126 | verify that it is placed at the end of the encoded name. If | |
1127 | not, then the encoding is not valid and we should abort the | |
1128 | decoding. Otherwise, just skip it, it is used in body-nested | |
1129 | package names. */ | |
4c4b4cd2 PH |
1130 | do |
1131 | i += 1; | |
1132 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1133 | if (i < len0) | |
1134 | goto Suppress; | |
1135 | } | |
1136 | else if (!ADA_RETAIN_DOTS | |
1137 | && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') | |
1138 | { | |
29480c32 | 1139 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1140 | decoded[j] = '.'; |
1141 | at_start_name = 1; | |
1142 | i += 2; | |
1143 | j += 1; | |
1144 | } | |
14f9c5c9 | 1145 | else |
4c4b4cd2 | 1146 | { |
29480c32 JB |
1147 | /* It's a character part of the decoded name, so just copy it |
1148 | over. */ | |
4c4b4cd2 PH |
1149 | decoded[j] = encoded[i]; |
1150 | i += 1; | |
1151 | j += 1; | |
1152 | } | |
14f9c5c9 | 1153 | } |
4c4b4cd2 | 1154 | decoded[j] = '\000'; |
14f9c5c9 | 1155 | |
29480c32 JB |
1156 | /* Decoded names should never contain any uppercase character. |
1157 | Double-check this, and abort the decoding if we find one. */ | |
1158 | ||
4c4b4cd2 PH |
1159 | for (i = 0; decoded[i] != '\0'; i += 1) |
1160 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1161 | goto Suppress; |
1162 | ||
4c4b4cd2 PH |
1163 | if (strcmp (decoded, encoded) == 0) |
1164 | return encoded; | |
1165 | else | |
1166 | return decoded; | |
14f9c5c9 AS |
1167 | |
1168 | Suppress: | |
4c4b4cd2 PH |
1169 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1170 | decoded = decoding_buffer; | |
1171 | if (encoded[0] == '<') | |
1172 | strcpy (decoded, encoded); | |
14f9c5c9 | 1173 | else |
4c4b4cd2 PH |
1174 | sprintf (decoded, "<%s>", encoded); |
1175 | return decoded; | |
1176 | ||
1177 | } | |
1178 | ||
1179 | /* Table for keeping permanent unique copies of decoded names. Once | |
1180 | allocated, names in this table are never released. While this is a | |
1181 | storage leak, it should not be significant unless there are massive | |
1182 | changes in the set of decoded names in successive versions of a | |
1183 | symbol table loaded during a single session. */ | |
1184 | static struct htab *decoded_names_store; | |
1185 | ||
1186 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1187 | in the language-specific part of GSYMBOL, if it has not been | |
1188 | previously computed. Tries to save the decoded name in the same | |
1189 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1190 | in any case, the decoded symbol has a lifetime at least that of | |
1191 | GSYMBOL). | |
1192 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1193 | const, but nevertheless modified to a semantically equivalent form | |
1194 | when a decoded name is cached in it. | |
76a01679 | 1195 | */ |
4c4b4cd2 | 1196 | |
76a01679 JB |
1197 | char * |
1198 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1199 | { |
76a01679 | 1200 | char **resultp = |
4c4b4cd2 PH |
1201 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1202 | if (*resultp == NULL) | |
1203 | { | |
1204 | const char *decoded = ada_decode (gsymbol->name); | |
1205 | if (gsymbol->bfd_section != NULL) | |
76a01679 JB |
1206 | { |
1207 | bfd *obfd = gsymbol->bfd_section->owner; | |
1208 | if (obfd != NULL) | |
1209 | { | |
1210 | struct objfile *objf; | |
1211 | ALL_OBJFILES (objf) | |
1212 | { | |
1213 | if (obfd == objf->obfd) | |
1214 | { | |
1215 | *resultp = obsavestring (decoded, strlen (decoded), | |
1216 | &objf->objfile_obstack); | |
1217 | break; | |
1218 | } | |
1219 | } | |
1220 | } | |
1221 | } | |
4c4b4cd2 | 1222 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1223 | case, we put the result on the heap. Since we only decode |
1224 | when needed, we hope this usually does not cause a | |
1225 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1226 | if (*resultp == NULL) |
76a01679 JB |
1227 | { |
1228 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1229 | decoded, INSERT); | |
1230 | if (*slot == NULL) | |
1231 | *slot = xstrdup (decoded); | |
1232 | *resultp = *slot; | |
1233 | } | |
4c4b4cd2 | 1234 | } |
14f9c5c9 | 1235 | |
4c4b4cd2 PH |
1236 | return *resultp; |
1237 | } | |
76a01679 JB |
1238 | |
1239 | char * | |
1240 | ada_la_decode (const char *encoded, int options) | |
4c4b4cd2 PH |
1241 | { |
1242 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1243 | } |
1244 | ||
1245 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1246 | suffixes that encode debugging information or leading _ada_ on |
1247 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1248 | information that is ignored). If WILD, then NAME need only match a | |
1249 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1250 | either argument is NULL. */ | |
14f9c5c9 AS |
1251 | |
1252 | int | |
d2e4a39e | 1253 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1254 | { |
1255 | if (sym_name == NULL || name == NULL) | |
1256 | return 0; | |
1257 | else if (wild) | |
1258 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1259 | else |
1260 | { | |
1261 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1262 | return (strncmp (sym_name, name, len_name) == 0 |
1263 | && is_name_suffix (sym_name + len_name)) | |
1264 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1265 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1266 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1267 | } |
14f9c5c9 AS |
1268 | } |
1269 | ||
4c4b4cd2 PH |
1270 | /* True (non-zero) iff, in Ada mode, the symbol SYM should be |
1271 | suppressed in info listings. */ | |
14f9c5c9 AS |
1272 | |
1273 | int | |
ebf56fd3 | 1274 | ada_suppress_symbol_printing (struct symbol *sym) |
14f9c5c9 | 1275 | { |
176620f1 | 1276 | if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN) |
14f9c5c9 | 1277 | return 1; |
d2e4a39e | 1278 | else |
4c4b4cd2 | 1279 | return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym)); |
14f9c5c9 | 1280 | } |
14f9c5c9 | 1281 | \f |
d2e4a39e | 1282 | |
4c4b4cd2 | 1283 | /* Arrays */ |
14f9c5c9 | 1284 | |
4c4b4cd2 | 1285 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1286 | |
d2e4a39e AS |
1287 | static char *bound_name[] = { |
1288 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1289 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1290 | }; | |
1291 | ||
1292 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1293 | ||
4c4b4cd2 | 1294 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1295 | |
4c4b4cd2 | 1296 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1297 | |
1298 | static void | |
ebf56fd3 | 1299 | modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
14f9c5c9 | 1300 | { |
4c4b4cd2 | 1301 | modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1302 | } |
1303 | ||
1304 | ||
4c4b4cd2 PH |
1305 | /* The desc_* routines return primitive portions of array descriptors |
1306 | (fat pointers). */ | |
14f9c5c9 AS |
1307 | |
1308 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1309 | level of indirection, if needed. */ |
1310 | ||
d2e4a39e AS |
1311 | static struct type * |
1312 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1313 | { |
1314 | if (type == NULL) | |
1315 | return NULL; | |
61ee279c | 1316 | type = ada_check_typedef (type); |
1265e4aa JB |
1317 | if (type != NULL |
1318 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1319 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1320 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1321 | else |
1322 | return type; | |
1323 | } | |
1324 | ||
4c4b4cd2 PH |
1325 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1326 | ||
14f9c5c9 | 1327 | static int |
d2e4a39e | 1328 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1329 | { |
d2e4a39e | 1330 | return |
14f9c5c9 AS |
1331 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1332 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1333 | } | |
1334 | ||
4c4b4cd2 PH |
1335 | /* The descriptor type for thin pointer type TYPE. */ |
1336 | ||
d2e4a39e AS |
1337 | static struct type * |
1338 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1339 | { |
d2e4a39e | 1340 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1341 | if (base_type == NULL) |
1342 | return NULL; | |
1343 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1344 | return base_type; | |
d2e4a39e | 1345 | else |
14f9c5c9 | 1346 | { |
d2e4a39e | 1347 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1348 | if (alt_type == NULL) |
4c4b4cd2 | 1349 | return base_type; |
14f9c5c9 | 1350 | else |
4c4b4cd2 | 1351 | return alt_type; |
14f9c5c9 AS |
1352 | } |
1353 | } | |
1354 | ||
4c4b4cd2 PH |
1355 | /* A pointer to the array data for thin-pointer value VAL. */ |
1356 | ||
d2e4a39e AS |
1357 | static struct value * |
1358 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1359 | { |
df407dfe | 1360 | struct type *type = value_type (val); |
14f9c5c9 | 1361 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
d2e4a39e | 1362 | return value_cast (desc_data_type (thin_descriptor_type (type)), |
4c4b4cd2 | 1363 | value_copy (val)); |
d2e4a39e | 1364 | else |
14f9c5c9 | 1365 | return value_from_longest (desc_data_type (thin_descriptor_type (type)), |
df407dfe | 1366 | VALUE_ADDRESS (val) + value_offset (val)); |
14f9c5c9 AS |
1367 | } |
1368 | ||
4c4b4cd2 PH |
1369 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1370 | ||
14f9c5c9 | 1371 | static int |
d2e4a39e | 1372 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1373 | { |
1374 | type = desc_base_type (type); | |
1375 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1376 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1377 | } |
1378 | ||
4c4b4cd2 PH |
1379 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1380 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1381 | |
d2e4a39e AS |
1382 | static struct type * |
1383 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1384 | { |
d2e4a39e | 1385 | struct type *r; |
14f9c5c9 AS |
1386 | |
1387 | type = desc_base_type (type); | |
1388 | ||
1389 | if (type == NULL) | |
1390 | return NULL; | |
1391 | else if (is_thin_pntr (type)) | |
1392 | { | |
1393 | type = thin_descriptor_type (type); | |
1394 | if (type == NULL) | |
4c4b4cd2 | 1395 | return NULL; |
14f9c5c9 AS |
1396 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1397 | if (r != NULL) | |
61ee279c | 1398 | return ada_check_typedef (r); |
14f9c5c9 AS |
1399 | } |
1400 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1401 | { | |
1402 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1403 | if (r != NULL) | |
61ee279c | 1404 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1405 | } |
1406 | return NULL; | |
1407 | } | |
1408 | ||
1409 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1410 | one, a pointer to its bounds data. Otherwise NULL. */ |
1411 | ||
d2e4a39e AS |
1412 | static struct value * |
1413 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1414 | { |
df407dfe | 1415 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1416 | if (is_thin_pntr (type)) |
14f9c5c9 | 1417 | { |
d2e4a39e | 1418 | struct type *bounds_type = |
4c4b4cd2 | 1419 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1420 | LONGEST addr; |
1421 | ||
4cdfadb1 | 1422 | if (bounds_type == NULL) |
323e0a4a | 1423 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1424 | |
1425 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1426 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1427 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1428 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1429 | addr = value_as_long (arr); |
d2e4a39e | 1430 | else |
df407dfe | 1431 | addr = VALUE_ADDRESS (arr) + value_offset (arr); |
14f9c5c9 | 1432 | |
d2e4a39e | 1433 | return |
4c4b4cd2 PH |
1434 | value_from_longest (lookup_pointer_type (bounds_type), |
1435 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1436 | } |
1437 | ||
1438 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1439 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1440 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1441 | else |
1442 | return NULL; | |
1443 | } | |
1444 | ||
4c4b4cd2 PH |
1445 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1446 | position of the field containing the address of the bounds data. */ | |
1447 | ||
14f9c5c9 | 1448 | static int |
d2e4a39e | 1449 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1450 | { |
1451 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1452 | } | |
1453 | ||
1454 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1455 | size of the field containing the address of the bounds data. */ |
1456 | ||
14f9c5c9 | 1457 | static int |
d2e4a39e | 1458 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1459 | { |
1460 | type = desc_base_type (type); | |
1461 | ||
d2e4a39e | 1462 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1463 | return TYPE_FIELD_BITSIZE (type, 1); |
1464 | else | |
61ee279c | 1465 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1466 | } |
1467 | ||
4c4b4cd2 | 1468 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
14f9c5c9 | 1469 | pointer to one, the type of its array data (a |
4c4b4cd2 PH |
1470 | pointer-to-array-with-no-bounds type); otherwise, NULL. Use |
1471 | ada_type_of_array to get an array type with bounds data. */ | |
1472 | ||
d2e4a39e AS |
1473 | static struct type * |
1474 | desc_data_type (struct type *type) | |
14f9c5c9 AS |
1475 | { |
1476 | type = desc_base_type (type); | |
1477 | ||
4c4b4cd2 | 1478 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1479 | if (is_thin_pntr (type)) |
d2e4a39e AS |
1480 | return lookup_pointer_type |
1481 | (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1))); | |
14f9c5c9 AS |
1482 | else if (is_thick_pntr (type)) |
1483 | return lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1484 | else | |
1485 | return NULL; | |
1486 | } | |
1487 | ||
1488 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1489 | its array data. */ | |
4c4b4cd2 | 1490 | |
d2e4a39e AS |
1491 | static struct value * |
1492 | desc_data (struct value *arr) | |
14f9c5c9 | 1493 | { |
df407dfe | 1494 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1495 | if (is_thin_pntr (type)) |
1496 | return thin_data_pntr (arr); | |
1497 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1498 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1499 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1500 | else |
1501 | return NULL; | |
1502 | } | |
1503 | ||
1504 | ||
1505 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1506 | position of the field containing the address of the data. */ |
1507 | ||
14f9c5c9 | 1508 | static int |
d2e4a39e | 1509 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1510 | { |
1511 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1512 | } | |
1513 | ||
1514 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1515 | size of the field containing the address of the data. */ |
1516 | ||
14f9c5c9 | 1517 | static int |
d2e4a39e | 1518 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1519 | { |
1520 | type = desc_base_type (type); | |
1521 | ||
1522 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1523 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1524 | else |
14f9c5c9 AS |
1525 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1526 | } | |
1527 | ||
4c4b4cd2 | 1528 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1529 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1530 | bound, if WHICH is 1. The first bound is I=1. */ |
1531 | ||
d2e4a39e AS |
1532 | static struct value * |
1533 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1534 | { |
d2e4a39e | 1535 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1536 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1537 | } |
1538 | ||
1539 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1540 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1541 | bound, if WHICH is 1. The first bound is I=1. */ |
1542 | ||
14f9c5c9 | 1543 | static int |
d2e4a39e | 1544 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1545 | { |
d2e4a39e | 1546 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1547 | } |
1548 | ||
1549 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1550 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1551 | bound, if WHICH is 1. The first bound is I=1. */ |
1552 | ||
76a01679 | 1553 | static int |
d2e4a39e | 1554 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1555 | { |
1556 | type = desc_base_type (type); | |
1557 | ||
d2e4a39e AS |
1558 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1559 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1560 | else | |
1561 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1562 | } |
1563 | ||
1564 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1565 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1566 | ||
d2e4a39e AS |
1567 | static struct type * |
1568 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1569 | { |
1570 | type = desc_base_type (type); | |
1571 | ||
1572 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1573 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1574 | else | |
14f9c5c9 AS |
1575 | return NULL; |
1576 | } | |
1577 | ||
4c4b4cd2 PH |
1578 | /* The number of index positions in the array-bounds type TYPE. |
1579 | Return 0 if TYPE is NULL. */ | |
1580 | ||
14f9c5c9 | 1581 | static int |
d2e4a39e | 1582 | desc_arity (struct type *type) |
14f9c5c9 AS |
1583 | { |
1584 | type = desc_base_type (type); | |
1585 | ||
1586 | if (type != NULL) | |
1587 | return TYPE_NFIELDS (type) / 2; | |
1588 | return 0; | |
1589 | } | |
1590 | ||
4c4b4cd2 PH |
1591 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1592 | an array descriptor type (representing an unconstrained array | |
1593 | type). */ | |
1594 | ||
76a01679 JB |
1595 | static int |
1596 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1597 | { |
1598 | if (type == NULL) | |
1599 | return 0; | |
61ee279c | 1600 | type = ada_check_typedef (type); |
4c4b4cd2 | 1601 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1602 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1603 | } |
1604 | ||
52ce6436 PH |
1605 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1606 | * to one. */ | |
1607 | ||
1608 | int | |
1609 | ada_is_array_type (struct type *type) | |
1610 | { | |
1611 | while (type != NULL | |
1612 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1613 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1614 | type = TYPE_TARGET_TYPE (type); | |
1615 | return ada_is_direct_array_type (type); | |
1616 | } | |
1617 | ||
4c4b4cd2 | 1618 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1619 | |
14f9c5c9 | 1620 | int |
4c4b4cd2 | 1621 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1622 | { |
1623 | if (type == NULL) | |
1624 | return 0; | |
61ee279c | 1625 | type = ada_check_typedef (type); |
14f9c5c9 | 1626 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1627 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1628 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1629 | } |
1630 | ||
4c4b4cd2 PH |
1631 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1632 | ||
14f9c5c9 | 1633 | int |
4c4b4cd2 | 1634 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1635 | { |
d2e4a39e | 1636 | struct type *data_type = desc_data_type (type); |
14f9c5c9 AS |
1637 | |
1638 | if (type == NULL) | |
1639 | return 0; | |
61ee279c | 1640 | type = ada_check_typedef (type); |
d2e4a39e | 1641 | return |
14f9c5c9 AS |
1642 | data_type != NULL |
1643 | && ((TYPE_CODE (data_type) == TYPE_CODE_PTR | |
4c4b4cd2 PH |
1644 | && TYPE_TARGET_TYPE (data_type) != NULL |
1645 | && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY) | |
1265e4aa | 1646 | || TYPE_CODE (data_type) == TYPE_CODE_ARRAY) |
14f9c5c9 AS |
1647 | && desc_arity (desc_bounds_type (type)) > 0; |
1648 | } | |
1649 | ||
1650 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1651 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1652 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1653 | is still needed. */ |
1654 | ||
14f9c5c9 | 1655 | int |
ebf56fd3 | 1656 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1657 | { |
d2e4a39e | 1658 | return |
14f9c5c9 AS |
1659 | type != NULL |
1660 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1661 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1662 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1663 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1664 | } |
1665 | ||
1666 | ||
4c4b4cd2 | 1667 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1668 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1669 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1670 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1671 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1672 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1673 | a descriptor. */ |
d2e4a39e AS |
1674 | struct type * |
1675 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1676 | { |
df407dfe AC |
1677 | if (ada_is_packed_array_type (value_type (arr))) |
1678 | return decode_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1679 | |
df407dfe AC |
1680 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1681 | return value_type (arr); | |
d2e4a39e AS |
1682 | |
1683 | if (!bounds) | |
1684 | return | |
df407dfe | 1685 | ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr)))); |
14f9c5c9 AS |
1686 | else |
1687 | { | |
d2e4a39e | 1688 | struct type *elt_type; |
14f9c5c9 | 1689 | int arity; |
d2e4a39e | 1690 | struct value *descriptor; |
df407dfe | 1691 | struct objfile *objf = TYPE_OBJFILE (value_type (arr)); |
14f9c5c9 | 1692 | |
df407dfe AC |
1693 | elt_type = ada_array_element_type (value_type (arr), -1); |
1694 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1695 | |
d2e4a39e | 1696 | if (elt_type == NULL || arity == 0) |
df407dfe | 1697 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1698 | |
1699 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1700 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1701 | return NULL; |
d2e4a39e | 1702 | while (arity > 0) |
4c4b4cd2 PH |
1703 | { |
1704 | struct type *range_type = alloc_type (objf); | |
1705 | struct type *array_type = alloc_type (objf); | |
1706 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1707 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1708 | arity -= 1; | |
1709 | ||
df407dfe | 1710 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1711 | longest_to_int (value_as_long (low)), |
1712 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 PH |
1713 | elt_type = create_array_type (array_type, elt_type, range_type); |
1714 | } | |
14f9c5c9 AS |
1715 | |
1716 | return lookup_pointer_type (elt_type); | |
1717 | } | |
1718 | } | |
1719 | ||
1720 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1721 | Otherwise, returns either a standard GDB array with bounds set |
1722 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1723 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1724 | ||
d2e4a39e AS |
1725 | struct value * |
1726 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1727 | { |
df407dfe | 1728 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1729 | { |
d2e4a39e | 1730 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1731 | if (arrType == NULL) |
4c4b4cd2 | 1732 | return NULL; |
14f9c5c9 AS |
1733 | return value_cast (arrType, value_copy (desc_data (arr))); |
1734 | } | |
df407dfe | 1735 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 AS |
1736 | return decode_packed_array (arr); |
1737 | else | |
1738 | return arr; | |
1739 | } | |
1740 | ||
1741 | /* If ARR does not represent an array, returns ARR unchanged. | |
1742 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1743 | be ARR itself if it already is in the proper form). */ |
1744 | ||
1745 | static struct value * | |
d2e4a39e | 1746 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1747 | { |
df407dfe | 1748 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1749 | { |
d2e4a39e | 1750 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1751 | if (arrVal == NULL) |
323e0a4a | 1752 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1753 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1754 | return value_ind (arrVal); |
1755 | } | |
df407dfe | 1756 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 | 1757 | return decode_packed_array (arr); |
d2e4a39e | 1758 | else |
14f9c5c9 AS |
1759 | return arr; |
1760 | } | |
1761 | ||
1762 | /* If TYPE represents a GNAT array type, return it translated to an | |
1763 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1764 | packing). For other types, is the identity. */ |
1765 | ||
d2e4a39e AS |
1766 | struct type * |
1767 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1768 | { |
d2e4a39e AS |
1769 | struct value *mark = value_mark (); |
1770 | struct value *dummy = value_from_longest (builtin_type_long, 0); | |
1771 | struct type *result; | |
04624583 | 1772 | deprecated_set_value_type (dummy, type); |
14f9c5c9 | 1773 | result = ada_type_of_array (dummy, 0); |
4c4b4cd2 | 1774 | value_free_to_mark (mark); |
14f9c5c9 AS |
1775 | return result; |
1776 | } | |
1777 | ||
4c4b4cd2 PH |
1778 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1779 | ||
14f9c5c9 | 1780 | int |
d2e4a39e | 1781 | ada_is_packed_array_type (struct type *type) |
14f9c5c9 AS |
1782 | { |
1783 | if (type == NULL) | |
1784 | return 0; | |
4c4b4cd2 | 1785 | type = desc_base_type (type); |
61ee279c | 1786 | type = ada_check_typedef (type); |
d2e4a39e | 1787 | return |
14f9c5c9 AS |
1788 | ada_type_name (type) != NULL |
1789 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1790 | } | |
1791 | ||
1792 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1793 | in, and that the element size of its ultimate scalar constituents | |
1794 | (that is, either its elements, or, if it is an array of arrays, its | |
1795 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1796 | but with the bit sizes of its elements (and those of any | |
1797 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1798 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1799 | in bits. */ | |
1800 | ||
d2e4a39e AS |
1801 | static struct type * |
1802 | packed_array_type (struct type *type, long *elt_bits) | |
14f9c5c9 | 1803 | { |
d2e4a39e AS |
1804 | struct type *new_elt_type; |
1805 | struct type *new_type; | |
14f9c5c9 AS |
1806 | LONGEST low_bound, high_bound; |
1807 | ||
61ee279c | 1808 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1809 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1810 | return type; | |
1811 | ||
1812 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
61ee279c | 1813 | new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 1814 | elt_bits); |
14f9c5c9 AS |
1815 | create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0)); |
1816 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; | |
1817 | TYPE_NAME (new_type) = ada_type_name (type); | |
1818 | ||
d2e4a39e | 1819 | if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 | 1820 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1821 | low_bound = high_bound = 0; |
1822 | if (high_bound < low_bound) | |
1823 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1824 | else |
14f9c5c9 AS |
1825 | { |
1826 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1827 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1828 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1829 | } |
1830 | ||
4c4b4cd2 | 1831 | TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; |
14f9c5c9 AS |
1832 | return new_type; |
1833 | } | |
1834 | ||
4c4b4cd2 PH |
1835 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */ |
1836 | ||
d2e4a39e AS |
1837 | static struct type * |
1838 | decode_packed_array_type (struct type *type) | |
1839 | { | |
4c4b4cd2 | 1840 | struct symbol *sym; |
d2e4a39e | 1841 | struct block **blocks; |
727e3d2e JB |
1842 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1843 | char *name; | |
1844 | char *tail; | |
d2e4a39e | 1845 | struct type *shadow_type; |
14f9c5c9 AS |
1846 | long bits; |
1847 | int i, n; | |
1848 | ||
727e3d2e JB |
1849 | if (!raw_name) |
1850 | raw_name = ada_type_name (desc_base_type (type)); | |
1851 | ||
1852 | if (!raw_name) | |
1853 | return NULL; | |
1854 | ||
1855 | name = (char *) alloca (strlen (raw_name) + 1); | |
1856 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1857 | type = desc_base_type (type); |
1858 | ||
14f9c5c9 AS |
1859 | memcpy (name, raw_name, tail - raw_name); |
1860 | name[tail - raw_name] = '\000'; | |
1861 | ||
4c4b4cd2 PH |
1862 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1863 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1864 | { |
323e0a4a | 1865 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1866 | return NULL; |
1867 | } | |
4c4b4cd2 | 1868 | shadow_type = SYMBOL_TYPE (sym); |
14f9c5c9 AS |
1869 | |
1870 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1871 | { | |
323e0a4a | 1872 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1873 | return NULL; |
1874 | } | |
d2e4a39e | 1875 | |
14f9c5c9 AS |
1876 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
1877 | { | |
4c4b4cd2 | 1878 | lim_warning |
323e0a4a | 1879 | (_("could not understand bit size information on packed array")); |
14f9c5c9 AS |
1880 | return NULL; |
1881 | } | |
d2e4a39e | 1882 | |
14f9c5c9 AS |
1883 | return packed_array_type (shadow_type, &bits); |
1884 | } | |
1885 | ||
4c4b4cd2 | 1886 | /* Given that ARR is a struct value *indicating a GNAT packed array, |
14f9c5c9 AS |
1887 | returns a simple array that denotes that array. Its type is a |
1888 | standard GDB array type except that the BITSIZEs of the array | |
1889 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1890 | type length is set appropriately. */ |
14f9c5c9 | 1891 | |
d2e4a39e AS |
1892 | static struct value * |
1893 | decode_packed_array (struct value *arr) | |
14f9c5c9 | 1894 | { |
4c4b4cd2 | 1895 | struct type *type; |
14f9c5c9 | 1896 | |
4c4b4cd2 | 1897 | arr = ada_coerce_ref (arr); |
df407dfe | 1898 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
4c4b4cd2 PH |
1899 | arr = ada_value_ind (arr); |
1900 | ||
df407dfe | 1901 | type = decode_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1902 | if (type == NULL) |
1903 | { | |
323e0a4a | 1904 | error (_("can't unpack array")); |
14f9c5c9 AS |
1905 | return NULL; |
1906 | } | |
61ee279c | 1907 | |
32c9a795 MD |
1908 | if (gdbarch_bits_big_endian (current_gdbarch) |
1909 | && ada_is_modular_type (value_type (arr))) | |
61ee279c PH |
1910 | { |
1911 | /* This is a (right-justified) modular type representing a packed | |
1912 | array with no wrapper. In order to interpret the value through | |
1913 | the (left-justified) packed array type we just built, we must | |
1914 | first left-justify it. */ | |
1915 | int bit_size, bit_pos; | |
1916 | ULONGEST mod; | |
1917 | ||
df407dfe | 1918 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1919 | bit_size = 0; |
1920 | while (mod > 0) | |
1921 | { | |
1922 | bit_size += 1; | |
1923 | mod >>= 1; | |
1924 | } | |
df407dfe | 1925 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1926 | arr = ada_value_primitive_packed_val (arr, NULL, |
1927 | bit_pos / HOST_CHAR_BIT, | |
1928 | bit_pos % HOST_CHAR_BIT, | |
1929 | bit_size, | |
1930 | type); | |
1931 | } | |
1932 | ||
4c4b4cd2 | 1933 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1934 | } |
1935 | ||
1936 | ||
1937 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1938 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1939 | |
d2e4a39e AS |
1940 | static struct value * |
1941 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1942 | { |
1943 | int i; | |
1944 | int bits, elt_off, bit_off; | |
1945 | long elt_total_bit_offset; | |
d2e4a39e AS |
1946 | struct type *elt_type; |
1947 | struct value *v; | |
14f9c5c9 AS |
1948 | |
1949 | bits = 0; | |
1950 | elt_total_bit_offset = 0; | |
df407dfe | 1951 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1952 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1953 | { |
d2e4a39e | 1954 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1955 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1956 | error | |
323e0a4a | 1957 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1958 | else |
4c4b4cd2 PH |
1959 | { |
1960 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1961 | LONGEST lowerbound, upperbound; | |
1962 | LONGEST idx; | |
1963 | ||
1964 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1965 | { | |
323e0a4a | 1966 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1967 | lowerbound = upperbound = 0; |
1968 | } | |
1969 | ||
1970 | idx = value_as_long (value_pos_atr (ind[i])); | |
1971 | if (idx < lowerbound || idx > upperbound) | |
323e0a4a | 1972 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1973 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1974 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1975 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1976 | } |
14f9c5c9 AS |
1977 | } |
1978 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1979 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1980 | |
1981 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1982 | bits, elt_type); |
14f9c5c9 AS |
1983 | return v; |
1984 | } | |
1985 | ||
4c4b4cd2 | 1986 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1987 | |
1988 | static int | |
d2e4a39e | 1989 | has_negatives (struct type *type) |
14f9c5c9 | 1990 | { |
d2e4a39e AS |
1991 | switch (TYPE_CODE (type)) |
1992 | { | |
1993 | default: | |
1994 | return 0; | |
1995 | case TYPE_CODE_INT: | |
1996 | return !TYPE_UNSIGNED (type); | |
1997 | case TYPE_CODE_RANGE: | |
1998 | return TYPE_LOW_BOUND (type) < 0; | |
1999 | } | |
14f9c5c9 | 2000 | } |
d2e4a39e | 2001 | |
14f9c5c9 AS |
2002 | |
2003 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2004 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2005 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
2006 | assigning through the result will set the field fetched from. |
2007 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2008 | VALADDR+OFFSET must address the start of storage containing the | |
2009 | packed value. The value returned in this case is never an lval. | |
2010 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2011 | |
d2e4a39e | 2012 | struct value * |
fc1a4b47 | 2013 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2014 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2015 | struct type *type) |
14f9c5c9 | 2016 | { |
d2e4a39e | 2017 | struct value *v; |
4c4b4cd2 PH |
2018 | int src, /* Index into the source area */ |
2019 | targ, /* Index into the target area */ | |
2020 | srcBitsLeft, /* Number of source bits left to move */ | |
2021 | nsrc, ntarg, /* Number of source and target bytes */ | |
2022 | unusedLS, /* Number of bits in next significant | |
2023 | byte of source that are unused */ | |
2024 | accumSize; /* Number of meaningful bits in accum */ | |
2025 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2026 | unsigned char *unpacked; |
4c4b4cd2 | 2027 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2028 | unsigned char sign; |
2029 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2030 | /* Transmit bytes from least to most significant; delta is the direction |
2031 | the indices move. */ | |
32c9a795 | 2032 | int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1; |
14f9c5c9 | 2033 | |
61ee279c | 2034 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2035 | |
2036 | if (obj == NULL) | |
2037 | { | |
2038 | v = allocate_value (type); | |
d2e4a39e | 2039 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2040 | } |
9214ee5f | 2041 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2042 | { |
2043 | v = value_at (type, | |
df407dfe | 2044 | VALUE_ADDRESS (obj) + value_offset (obj) + offset); |
d2e4a39e | 2045 | bytes = (unsigned char *) alloca (len); |
14f9c5c9 AS |
2046 | read_memory (VALUE_ADDRESS (v), bytes, len); |
2047 | } | |
d2e4a39e | 2048 | else |
14f9c5c9 AS |
2049 | { |
2050 | v = allocate_value (type); | |
0fd88904 | 2051 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2052 | } |
d2e4a39e AS |
2053 | |
2054 | if (obj != NULL) | |
14f9c5c9 AS |
2055 | { |
2056 | VALUE_LVAL (v) = VALUE_LVAL (obj); | |
2057 | if (VALUE_LVAL (obj) == lval_internalvar) | |
4c4b4cd2 | 2058 | VALUE_LVAL (v) = lval_internalvar_component; |
df407dfe | 2059 | VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset; |
9bbda503 AC |
2060 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2061 | set_value_bitsize (v, bit_size); | |
df407dfe | 2062 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2063 | { |
2064 | VALUE_ADDRESS (v) += 1; | |
9bbda503 | 2065 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2066 | } |
14f9c5c9 AS |
2067 | } |
2068 | else | |
9bbda503 | 2069 | set_value_bitsize (v, bit_size); |
0fd88904 | 2070 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2071 | |
2072 | srcBitsLeft = bit_size; | |
2073 | nsrc = len; | |
2074 | ntarg = TYPE_LENGTH (type); | |
2075 | sign = 0; | |
2076 | if (bit_size == 0) | |
2077 | { | |
2078 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2079 | return v; | |
2080 | } | |
32c9a795 | 2081 | else if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 | 2082 | { |
d2e4a39e | 2083 | src = len - 1; |
1265e4aa JB |
2084 | if (has_negatives (type) |
2085 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2086 | sign = ~0; |
d2e4a39e AS |
2087 | |
2088 | unusedLS = | |
4c4b4cd2 PH |
2089 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2090 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2091 | |
2092 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2093 | { |
2094 | case TYPE_CODE_ARRAY: | |
2095 | case TYPE_CODE_UNION: | |
2096 | case TYPE_CODE_STRUCT: | |
2097 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2098 | accumSize = | |
2099 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2100 | /* ... And are placed at the beginning (most-significant) bytes | |
2101 | of the target. */ | |
529cad9c | 2102 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
4c4b4cd2 PH |
2103 | break; |
2104 | default: | |
2105 | accumSize = 0; | |
2106 | targ = TYPE_LENGTH (type) - 1; | |
2107 | break; | |
2108 | } | |
14f9c5c9 | 2109 | } |
d2e4a39e | 2110 | else |
14f9c5c9 AS |
2111 | { |
2112 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2113 | ||
2114 | src = targ = 0; | |
2115 | unusedLS = bit_offset; | |
2116 | accumSize = 0; | |
2117 | ||
d2e4a39e | 2118 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2119 | sign = ~0; |
14f9c5c9 | 2120 | } |
d2e4a39e | 2121 | |
14f9c5c9 AS |
2122 | accum = 0; |
2123 | while (nsrc > 0) | |
2124 | { | |
2125 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2126 | part of the value. */ |
d2e4a39e | 2127 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2128 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2129 | 1; | |
2130 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2131 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2132 | accum |= |
4c4b4cd2 | 2133 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2134 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2135 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2136 | { |
2137 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2138 | accumSize -= HOST_CHAR_BIT; | |
2139 | accum >>= HOST_CHAR_BIT; | |
2140 | ntarg -= 1; | |
2141 | targ += delta; | |
2142 | } | |
14f9c5c9 AS |
2143 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2144 | unusedLS = 0; | |
2145 | nsrc -= 1; | |
2146 | src += delta; | |
2147 | } | |
2148 | while (ntarg > 0) | |
2149 | { | |
2150 | accum |= sign << accumSize; | |
2151 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2152 | accumSize -= HOST_CHAR_BIT; | |
2153 | accum >>= HOST_CHAR_BIT; | |
2154 | ntarg -= 1; | |
2155 | targ += delta; | |
2156 | } | |
2157 | ||
2158 | return v; | |
2159 | } | |
d2e4a39e | 2160 | |
14f9c5c9 AS |
2161 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2162 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2163 | not overlap. */ |
14f9c5c9 | 2164 | static void |
fc1a4b47 | 2165 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
0fd88904 | 2166 | int src_offset, int n) |
14f9c5c9 AS |
2167 | { |
2168 | unsigned int accum, mask; | |
2169 | int accum_bits, chunk_size; | |
2170 | ||
2171 | target += targ_offset / HOST_CHAR_BIT; | |
2172 | targ_offset %= HOST_CHAR_BIT; | |
2173 | source += src_offset / HOST_CHAR_BIT; | |
2174 | src_offset %= HOST_CHAR_BIT; | |
32c9a795 | 2175 | if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 AS |
2176 | { |
2177 | accum = (unsigned char) *source; | |
2178 | source += 1; | |
2179 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2180 | ||
d2e4a39e | 2181 | while (n > 0) |
4c4b4cd2 PH |
2182 | { |
2183 | int unused_right; | |
2184 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2185 | accum_bits += HOST_CHAR_BIT; | |
2186 | source += 1; | |
2187 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2188 | if (chunk_size > n) | |
2189 | chunk_size = n; | |
2190 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2191 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2192 | *target = | |
2193 | (*target & ~mask) | |
2194 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2195 | n -= chunk_size; | |
2196 | accum_bits -= chunk_size; | |
2197 | target += 1; | |
2198 | targ_offset = 0; | |
2199 | } | |
14f9c5c9 AS |
2200 | } |
2201 | else | |
2202 | { | |
2203 | accum = (unsigned char) *source >> src_offset; | |
2204 | source += 1; | |
2205 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2206 | ||
d2e4a39e | 2207 | while (n > 0) |
4c4b4cd2 PH |
2208 | { |
2209 | accum = accum + ((unsigned char) *source << accum_bits); | |
2210 | accum_bits += HOST_CHAR_BIT; | |
2211 | source += 1; | |
2212 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2213 | if (chunk_size > n) | |
2214 | chunk_size = n; | |
2215 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2216 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2217 | n -= chunk_size; | |
2218 | accum_bits -= chunk_size; | |
2219 | accum >>= chunk_size; | |
2220 | target += 1; | |
2221 | targ_offset = 0; | |
2222 | } | |
14f9c5c9 AS |
2223 | } |
2224 | } | |
2225 | ||
14f9c5c9 AS |
2226 | /* Store the contents of FROMVAL into the location of TOVAL. |
2227 | Return a new value with the location of TOVAL and contents of | |
2228 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2229 | floating-point or non-scalar types. */ |
14f9c5c9 | 2230 | |
d2e4a39e AS |
2231 | static struct value * |
2232 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2233 | { |
df407dfe AC |
2234 | struct type *type = value_type (toval); |
2235 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2236 | |
52ce6436 PH |
2237 | toval = ada_coerce_ref (toval); |
2238 | fromval = ada_coerce_ref (fromval); | |
2239 | ||
2240 | if (ada_is_direct_array_type (value_type (toval))) | |
2241 | toval = ada_coerce_to_simple_array (toval); | |
2242 | if (ada_is_direct_array_type (value_type (fromval))) | |
2243 | fromval = ada_coerce_to_simple_array (fromval); | |
2244 | ||
88e3b34b | 2245 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2246 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2247 | |
d2e4a39e | 2248 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2249 | && bits > 0 |
d2e4a39e | 2250 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2251 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2252 | { |
df407dfe AC |
2253 | int len = (value_bitpos (toval) |
2254 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2255 | int from_size; |
d2e4a39e AS |
2256 | char *buffer = (char *) alloca (len); |
2257 | struct value *val; | |
52ce6436 | 2258 | CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
14f9c5c9 AS |
2259 | |
2260 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2261 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2262 | |
52ce6436 | 2263 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2264 | from_size = value_bitsize (fromval); |
2265 | if (from_size == 0) | |
2266 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
32c9a795 | 2267 | if (gdbarch_bits_big_endian (current_gdbarch)) |
df407dfe | 2268 | move_bits (buffer, value_bitpos (toval), |
aced2898 | 2269 | value_contents (fromval), from_size - bits, bits); |
14f9c5c9 | 2270 | else |
0fd88904 | 2271 | move_bits (buffer, value_bitpos (toval), value_contents (fromval), |
4c4b4cd2 | 2272 | 0, bits); |
52ce6436 PH |
2273 | write_memory (to_addr, buffer, len); |
2274 | if (deprecated_memory_changed_hook) | |
2275 | deprecated_memory_changed_hook (to_addr, len); | |
2276 | ||
14f9c5c9 | 2277 | val = value_copy (toval); |
0fd88904 | 2278 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2279 | TYPE_LENGTH (type)); |
04624583 | 2280 | deprecated_set_value_type (val, type); |
d2e4a39e | 2281 | |
14f9c5c9 AS |
2282 | return val; |
2283 | } | |
2284 | ||
2285 | return value_assign (toval, fromval); | |
2286 | } | |
2287 | ||
2288 | ||
52ce6436 PH |
2289 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2290 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2291 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2292 | * COMPONENT, and not the inferior's memory. The current contents | |
2293 | * of COMPONENT are ignored. */ | |
2294 | static void | |
2295 | value_assign_to_component (struct value *container, struct value *component, | |
2296 | struct value *val) | |
2297 | { | |
2298 | LONGEST offset_in_container = | |
2299 | (LONGEST) (VALUE_ADDRESS (component) + value_offset (component) | |
2300 | - VALUE_ADDRESS (container) - value_offset (container)); | |
2301 | int bit_offset_in_container = | |
2302 | value_bitpos (component) - value_bitpos (container); | |
2303 | int bits; | |
2304 | ||
2305 | val = value_cast (value_type (component), val); | |
2306 | ||
2307 | if (value_bitsize (component) == 0) | |
2308 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2309 | else | |
2310 | bits = value_bitsize (component); | |
2311 | ||
32c9a795 | 2312 | if (gdbarch_bits_big_endian (current_gdbarch)) |
52ce6436 PH |
2313 | move_bits (value_contents_writeable (container) + offset_in_container, |
2314 | value_bitpos (container) + bit_offset_in_container, | |
2315 | value_contents (val), | |
2316 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
2317 | bits); | |
2318 | else | |
2319 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2320 | value_bitpos (container) + bit_offset_in_container, | |
2321 | value_contents (val), 0, bits); | |
2322 | } | |
2323 | ||
4c4b4cd2 PH |
2324 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2325 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2326 | thereto. */ |
2327 | ||
d2e4a39e AS |
2328 | struct value * |
2329 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2330 | { |
2331 | int k; | |
d2e4a39e AS |
2332 | struct value *elt; |
2333 | struct type *elt_type; | |
14f9c5c9 AS |
2334 | |
2335 | elt = ada_coerce_to_simple_array (arr); | |
2336 | ||
df407dfe | 2337 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2338 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2339 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2340 | return value_subscript_packed (elt, arity, ind); | |
2341 | ||
2342 | for (k = 0; k < arity; k += 1) | |
2343 | { | |
2344 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2345 | error (_("too many subscripts (%d expected)"), k); |
14f9c5c9 AS |
2346 | elt = value_subscript (elt, value_pos_atr (ind[k])); |
2347 | } | |
2348 | return elt; | |
2349 | } | |
2350 | ||
2351 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2352 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2353 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2354 | |
d2e4a39e AS |
2355 | struct value * |
2356 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, | |
4c4b4cd2 | 2357 | struct value **ind) |
14f9c5c9 AS |
2358 | { |
2359 | int k; | |
2360 | ||
2361 | for (k = 0; k < arity; k += 1) | |
2362 | { | |
2363 | LONGEST lwb, upb; | |
d2e4a39e | 2364 | struct value *idx; |
14f9c5c9 AS |
2365 | |
2366 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2367 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2368 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2369 | value_copy (arr)); |
14f9c5c9 | 2370 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
4c4b4cd2 PH |
2371 | idx = value_pos_atr (ind[k]); |
2372 | if (lwb != 0) | |
2373 | idx = value_sub (idx, value_from_longest (builtin_type_int, lwb)); | |
14f9c5c9 AS |
2374 | arr = value_add (arr, idx); |
2375 | type = TYPE_TARGET_TYPE (type); | |
2376 | } | |
2377 | ||
2378 | return value_ind (arr); | |
2379 | } | |
2380 | ||
0b5d8877 PH |
2381 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
2382 | actual type of ARRAY_PTR is ignored), returns a reference to | |
2383 | the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower | |
2384 | bound of this array is LOW, as per Ada rules. */ | |
2385 | static struct value * | |
6c038f32 | 2386 | ada_value_slice_ptr (struct value *array_ptr, struct type *type, |
0b5d8877 PH |
2387 | int low, int high) |
2388 | { | |
6c038f32 | 2389 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2390 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2391 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2392 | struct type *index_type = |
2393 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2394 | low, high); |
6c038f32 | 2395 | struct type *slice_type = |
0b5d8877 PH |
2396 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
2397 | return value_from_pointer (lookup_reference_type (slice_type), base); | |
2398 | } | |
2399 | ||
2400 | ||
2401 | static struct value * | |
2402 | ada_value_slice (struct value *array, int low, int high) | |
2403 | { | |
df407dfe | 2404 | struct type *type = value_type (array); |
6c038f32 | 2405 | struct type *index_type = |
0b5d8877 | 2406 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2407 | struct type *slice_type = |
0b5d8877 | 2408 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2409 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2410 | } |
2411 | ||
14f9c5c9 AS |
2412 | /* If type is a record type in the form of a standard GNAT array |
2413 | descriptor, returns the number of dimensions for type. If arr is a | |
2414 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2415 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2416 | |
2417 | int | |
d2e4a39e | 2418 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2419 | { |
2420 | int arity; | |
2421 | ||
2422 | if (type == NULL) | |
2423 | return 0; | |
2424 | ||
2425 | type = desc_base_type (type); | |
2426 | ||
2427 | arity = 0; | |
d2e4a39e | 2428 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2429 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2430 | else |
2431 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2432 | { |
4c4b4cd2 | 2433 | arity += 1; |
61ee279c | 2434 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2435 | } |
d2e4a39e | 2436 | |
14f9c5c9 AS |
2437 | return arity; |
2438 | } | |
2439 | ||
2440 | /* If TYPE is a record type in the form of a standard GNAT array | |
2441 | descriptor or a simple array type, returns the element type for | |
2442 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2443 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2444 | |
d2e4a39e AS |
2445 | struct type * |
2446 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2447 | { |
2448 | type = desc_base_type (type); | |
2449 | ||
d2e4a39e | 2450 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2451 | { |
2452 | int k; | |
d2e4a39e | 2453 | struct type *p_array_type; |
14f9c5c9 AS |
2454 | |
2455 | p_array_type = desc_data_type (type); | |
2456 | ||
2457 | k = ada_array_arity (type); | |
2458 | if (k == 0) | |
4c4b4cd2 | 2459 | return NULL; |
d2e4a39e | 2460 | |
4c4b4cd2 | 2461 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2462 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2463 | k = nindices; |
14f9c5c9 | 2464 | p_array_type = TYPE_TARGET_TYPE (p_array_type); |
d2e4a39e | 2465 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2466 | { |
61ee279c | 2467 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2468 | k -= 1; |
2469 | } | |
14f9c5c9 AS |
2470 | return p_array_type; |
2471 | } | |
2472 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2473 | { | |
2474 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2475 | { |
2476 | type = TYPE_TARGET_TYPE (type); | |
2477 | nindices -= 1; | |
2478 | } | |
14f9c5c9 AS |
2479 | return type; |
2480 | } | |
2481 | ||
2482 | return NULL; | |
2483 | } | |
2484 | ||
4c4b4cd2 PH |
2485 | /* The type of nth index in arrays of given type (n numbering from 1). |
2486 | Does not examine memory. */ | |
14f9c5c9 | 2487 | |
d2e4a39e AS |
2488 | struct type * |
2489 | ada_index_type (struct type *type, int n) | |
14f9c5c9 | 2490 | { |
4c4b4cd2 PH |
2491 | struct type *result_type; |
2492 | ||
14f9c5c9 AS |
2493 | type = desc_base_type (type); |
2494 | ||
2495 | if (n > ada_array_arity (type)) | |
2496 | return NULL; | |
2497 | ||
4c4b4cd2 | 2498 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2499 | { |
2500 | int i; | |
2501 | ||
2502 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 PH |
2503 | type = TYPE_TARGET_TYPE (type); |
2504 | result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0)); | |
2505 | /* FIXME: The stabs type r(0,0);bound;bound in an array type | |
2506 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 JB |
2507 | perhaps stabsread.c would make more sense. */ |
2508 | if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF) | |
2509 | result_type = builtin_type_int; | |
14f9c5c9 | 2510 | |
4c4b4cd2 | 2511 | return result_type; |
14f9c5c9 | 2512 | } |
d2e4a39e | 2513 | else |
14f9c5c9 AS |
2514 | return desc_index_type (desc_bounds_type (type), n); |
2515 | } | |
2516 | ||
2517 | /* Given that arr is an array type, returns the lower bound of the | |
2518 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 PH |
2519 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
2520 | array-descriptor type. If TYPEP is non-null, *TYPEP is set to the | |
2521 | bounds type. It works for other arrays with bounds supplied by | |
2522 | run-time quantities other than discriminants. */ | |
14f9c5c9 | 2523 | |
abb68b3e | 2524 | static LONGEST |
d2e4a39e | 2525 | ada_array_bound_from_type (struct type * arr_type, int n, int which, |
4c4b4cd2 | 2526 | struct type ** typep) |
14f9c5c9 | 2527 | { |
d2e4a39e AS |
2528 | struct type *type; |
2529 | struct type *index_type_desc; | |
14f9c5c9 AS |
2530 | |
2531 | if (ada_is_packed_array_type (arr_type)) | |
2532 | arr_type = decode_packed_array_type (arr_type); | |
2533 | ||
4c4b4cd2 | 2534 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
14f9c5c9 AS |
2535 | { |
2536 | if (typep != NULL) | |
4c4b4cd2 | 2537 | *typep = builtin_type_int; |
d2e4a39e | 2538 | return (LONGEST) - which; |
14f9c5c9 AS |
2539 | } |
2540 | ||
2541 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2542 | type = TYPE_TARGET_TYPE (arr_type); | |
2543 | else | |
2544 | type = arr_type; | |
2545 | ||
2546 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
d2e4a39e | 2547 | if (index_type_desc == NULL) |
14f9c5c9 | 2548 | { |
d2e4a39e | 2549 | struct type *index_type; |
14f9c5c9 | 2550 | |
d2e4a39e | 2551 | while (n > 1) |
4c4b4cd2 PH |
2552 | { |
2553 | type = TYPE_TARGET_TYPE (type); | |
2554 | n -= 1; | |
2555 | } | |
14f9c5c9 | 2556 | |
abb68b3e | 2557 | index_type = TYPE_INDEX_TYPE (type); |
14f9c5c9 | 2558 | if (typep != NULL) |
4c4b4cd2 | 2559 | *typep = index_type; |
abb68b3e JB |
2560 | |
2561 | /* The index type is either a range type or an enumerated type. | |
2562 | For the range type, we have some macros that allow us to | |
2563 | extract the value of the low and high bounds. But they | |
2564 | do now work for enumerated types. The expressions used | |
2565 | below work for both range and enum types. */ | |
d2e4a39e | 2566 | return |
4c4b4cd2 | 2567 | (LONGEST) (which == 0 |
abb68b3e JB |
2568 | ? TYPE_FIELD_BITPOS (index_type, 0) |
2569 | : TYPE_FIELD_BITPOS (index_type, | |
2570 | TYPE_NFIELDS (index_type) - 1)); | |
14f9c5c9 | 2571 | } |
d2e4a39e | 2572 | else |
14f9c5c9 | 2573 | { |
d2e4a39e | 2574 | struct type *index_type = |
4c4b4cd2 PH |
2575 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), |
2576 | NULL, TYPE_OBJFILE (arr_type)); | |
abb68b3e | 2577 | |
14f9c5c9 | 2578 | if (typep != NULL) |
abb68b3e JB |
2579 | *typep = index_type; |
2580 | ||
d2e4a39e | 2581 | return |
4c4b4cd2 PH |
2582 | (LONGEST) (which == 0 |
2583 | ? TYPE_LOW_BOUND (index_type) | |
2584 | : TYPE_HIGH_BOUND (index_type)); | |
14f9c5c9 AS |
2585 | } |
2586 | } | |
2587 | ||
2588 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2589 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2590 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2591 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2592 | |
d2e4a39e | 2593 | struct value * |
4dc81987 | 2594 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2595 | { |
df407dfe | 2596 | struct type *arr_type = value_type (arr); |
14f9c5c9 AS |
2597 | |
2598 | if (ada_is_packed_array_type (arr_type)) | |
2599 | return ada_array_bound (decode_packed_array (arr), n, which); | |
4c4b4cd2 | 2600 | else if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2601 | { |
d2e4a39e | 2602 | struct type *type; |
14f9c5c9 AS |
2603 | LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); |
2604 | return value_from_longest (type, v); | |
2605 | } | |
2606 | else | |
2607 | return desc_one_bound (desc_bounds (arr), n, which); | |
2608 | } | |
2609 | ||
2610 | /* Given that arr is an array value, returns the length of the | |
2611 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2612 | supplied by run-time quantities other than discriminants. |
2613 | Does not work for arrays indexed by enumeration types with representation | |
2614 | clauses at the moment. */ | |
14f9c5c9 | 2615 | |
d2e4a39e AS |
2616 | struct value * |
2617 | ada_array_length (struct value *arr, int n) | |
14f9c5c9 | 2618 | { |
df407dfe | 2619 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2620 | |
2621 | if (ada_is_packed_array_type (arr_type)) | |
2622 | return ada_array_length (decode_packed_array (arr), n); | |
2623 | ||
4c4b4cd2 | 2624 | if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2625 | { |
d2e4a39e | 2626 | struct type *type; |
14f9c5c9 | 2627 | LONGEST v = |
4c4b4cd2 PH |
2628 | ada_array_bound_from_type (arr_type, n, 1, &type) - |
2629 | ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; | |
14f9c5c9 AS |
2630 | return value_from_longest (type, v); |
2631 | } | |
2632 | else | |
d2e4a39e | 2633 | return |
72d5681a | 2634 | value_from_longest (builtin_type_int, |
4c4b4cd2 PH |
2635 | value_as_long (desc_one_bound (desc_bounds (arr), |
2636 | n, 1)) | |
2637 | - value_as_long (desc_one_bound (desc_bounds (arr), | |
2638 | n, 0)) + 1); | |
2639 | } | |
2640 | ||
2641 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2642 | with bounds LOW to LOW-1. */ | |
2643 | ||
2644 | static struct value * | |
2645 | empty_array (struct type *arr_type, int low) | |
2646 | { | |
6c038f32 | 2647 | struct type *index_type = |
0b5d8877 PH |
2648 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2649 | low, low - 1); | |
2650 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2651 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2652 | } |
14f9c5c9 | 2653 | \f |
d2e4a39e | 2654 | |
4c4b4cd2 | 2655 | /* Name resolution */ |
14f9c5c9 | 2656 | |
4c4b4cd2 PH |
2657 | /* The "decoded" name for the user-definable Ada operator corresponding |
2658 | to OP. */ | |
14f9c5c9 | 2659 | |
d2e4a39e | 2660 | static const char * |
4c4b4cd2 | 2661 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2662 | { |
2663 | int i; | |
2664 | ||
4c4b4cd2 | 2665 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2666 | { |
2667 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2668 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2669 | } |
323e0a4a | 2670 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2671 | } |
2672 | ||
2673 | ||
4c4b4cd2 PH |
2674 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2675 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2676 | undefined namespace) and converts operators that are | |
2677 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2678 | non-null, it provides a preferred result type [at the moment, only |
2679 | type void has any effect---causing procedures to be preferred over | |
2680 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2681 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2682 | |
4c4b4cd2 PH |
2683 | static void |
2684 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 AS |
2685 | { |
2686 | int pc; | |
2687 | pc = 0; | |
4c4b4cd2 | 2688 | resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL); |
14f9c5c9 AS |
2689 | } |
2690 | ||
4c4b4cd2 PH |
2691 | /* Resolve the operator of the subexpression beginning at |
2692 | position *POS of *EXPP. "Resolving" consists of replacing | |
2693 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2694 | with their resolutions, replacing built-in operators with | |
2695 | function calls to user-defined operators, where appropriate, and, | |
2696 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2697 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2698 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2699 | |
d2e4a39e | 2700 | static struct value * |
4c4b4cd2 | 2701 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2702 | struct type *context_type) |
14f9c5c9 AS |
2703 | { |
2704 | int pc = *pos; | |
2705 | int i; | |
4c4b4cd2 | 2706 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2707 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2708 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2709 | int nargs; /* Number of operands. */ | |
52ce6436 | 2710 | int oplen; |
14f9c5c9 AS |
2711 | |
2712 | argvec = NULL; | |
2713 | nargs = 0; | |
2714 | exp = *expp; | |
2715 | ||
52ce6436 PH |
2716 | /* Pass one: resolve operands, saving their types and updating *pos, |
2717 | if needed. */ | |
14f9c5c9 AS |
2718 | switch (op) |
2719 | { | |
4c4b4cd2 PH |
2720 | case OP_FUNCALL: |
2721 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2722 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2723 | *pos += 7; | |
4c4b4cd2 PH |
2724 | else |
2725 | { | |
2726 | *pos += 3; | |
2727 | resolve_subexp (expp, pos, 0, NULL); | |
2728 | } | |
2729 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2730 | break; |
2731 | ||
14f9c5c9 | 2732 | case UNOP_ADDR: |
4c4b4cd2 PH |
2733 | *pos += 1; |
2734 | resolve_subexp (expp, pos, 0, NULL); | |
2735 | break; | |
2736 | ||
52ce6436 PH |
2737 | case UNOP_QUAL: |
2738 | *pos += 3; | |
2739 | resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type); | |
4c4b4cd2 PH |
2740 | break; |
2741 | ||
52ce6436 | 2742 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2743 | case OP_ATR_SIZE: |
2744 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2745 | case OP_ATR_FIRST: |
2746 | case OP_ATR_LAST: | |
2747 | case OP_ATR_LENGTH: | |
2748 | case OP_ATR_POS: | |
2749 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2750 | case OP_ATR_MIN: |
2751 | case OP_ATR_MAX: | |
52ce6436 PH |
2752 | case TERNOP_IN_RANGE: |
2753 | case BINOP_IN_BOUNDS: | |
2754 | case UNOP_IN_RANGE: | |
2755 | case OP_AGGREGATE: | |
2756 | case OP_OTHERS: | |
2757 | case OP_CHOICES: | |
2758 | case OP_POSITIONAL: | |
2759 | case OP_DISCRETE_RANGE: | |
2760 | case OP_NAME: | |
2761 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2762 | *pos += oplen; | |
14f9c5c9 AS |
2763 | break; |
2764 | ||
2765 | case BINOP_ASSIGN: | |
2766 | { | |
4c4b4cd2 PH |
2767 | struct value *arg1; |
2768 | ||
2769 | *pos += 1; | |
2770 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2771 | if (arg1 == NULL) | |
2772 | resolve_subexp (expp, pos, 1, NULL); | |
2773 | else | |
df407dfe | 2774 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2775 | break; |
14f9c5c9 AS |
2776 | } |
2777 | ||
4c4b4cd2 | 2778 | case UNOP_CAST: |
4c4b4cd2 PH |
2779 | *pos += 3; |
2780 | nargs = 1; | |
2781 | break; | |
14f9c5c9 | 2782 | |
4c4b4cd2 PH |
2783 | case BINOP_ADD: |
2784 | case BINOP_SUB: | |
2785 | case BINOP_MUL: | |
2786 | case BINOP_DIV: | |
2787 | case BINOP_REM: | |
2788 | case BINOP_MOD: | |
2789 | case BINOP_EXP: | |
2790 | case BINOP_CONCAT: | |
2791 | case BINOP_LOGICAL_AND: | |
2792 | case BINOP_LOGICAL_OR: | |
2793 | case BINOP_BITWISE_AND: | |
2794 | case BINOP_BITWISE_IOR: | |
2795 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2796 | |
4c4b4cd2 PH |
2797 | case BINOP_EQUAL: |
2798 | case BINOP_NOTEQUAL: | |
2799 | case BINOP_LESS: | |
2800 | case BINOP_GTR: | |
2801 | case BINOP_LEQ: | |
2802 | case BINOP_GEQ: | |
14f9c5c9 | 2803 | |
4c4b4cd2 PH |
2804 | case BINOP_REPEAT: |
2805 | case BINOP_SUBSCRIPT: | |
2806 | case BINOP_COMMA: | |
40c8aaa9 JB |
2807 | *pos += 1; |
2808 | nargs = 2; | |
2809 | break; | |
14f9c5c9 | 2810 | |
4c4b4cd2 PH |
2811 | case UNOP_NEG: |
2812 | case UNOP_PLUS: | |
2813 | case UNOP_LOGICAL_NOT: | |
2814 | case UNOP_ABS: | |
2815 | case UNOP_IND: | |
2816 | *pos += 1; | |
2817 | nargs = 1; | |
2818 | break; | |
14f9c5c9 | 2819 | |
4c4b4cd2 PH |
2820 | case OP_LONG: |
2821 | case OP_DOUBLE: | |
2822 | case OP_VAR_VALUE: | |
2823 | *pos += 4; | |
2824 | break; | |
14f9c5c9 | 2825 | |
4c4b4cd2 PH |
2826 | case OP_TYPE: |
2827 | case OP_BOOL: | |
2828 | case OP_LAST: | |
4c4b4cd2 PH |
2829 | case OP_INTERNALVAR: |
2830 | *pos += 3; | |
2831 | break; | |
14f9c5c9 | 2832 | |
4c4b4cd2 PH |
2833 | case UNOP_MEMVAL: |
2834 | *pos += 3; | |
2835 | nargs = 1; | |
2836 | break; | |
2837 | ||
67f3407f DJ |
2838 | case OP_REGISTER: |
2839 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2840 | break; | |
2841 | ||
4c4b4cd2 PH |
2842 | case STRUCTOP_STRUCT: |
2843 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2844 | nargs = 1; | |
2845 | break; | |
2846 | ||
4c4b4cd2 | 2847 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2848 | *pos += 1; |
2849 | nargs = 3; | |
2850 | break; | |
2851 | ||
52ce6436 | 2852 | case OP_STRING: |
14f9c5c9 | 2853 | break; |
4c4b4cd2 PH |
2854 | |
2855 | default: | |
323e0a4a | 2856 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2857 | } |
2858 | ||
76a01679 | 2859 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2860 | for (i = 0; i < nargs; i += 1) |
2861 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2862 | argvec[i] = NULL; | |
2863 | exp = *expp; | |
2864 | ||
2865 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2866 | switch (op) |
2867 | { | |
2868 | default: | |
2869 | break; | |
2870 | ||
14f9c5c9 | 2871 | case OP_VAR_VALUE: |
4c4b4cd2 | 2872 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2873 | { |
2874 | struct ada_symbol_info *candidates; | |
2875 | int n_candidates; | |
2876 | ||
2877 | n_candidates = | |
2878 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2879 | (exp->elts[pc + 2].symbol), | |
2880 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2881 | &candidates); | |
2882 | ||
2883 | if (n_candidates > 1) | |
2884 | { | |
2885 | /* Types tend to get re-introduced locally, so if there | |
2886 | are any local symbols that are not types, first filter | |
2887 | out all types. */ | |
2888 | int j; | |
2889 | for (j = 0; j < n_candidates; j += 1) | |
2890 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2891 | { | |
2892 | case LOC_REGISTER: | |
2893 | case LOC_ARG: | |
2894 | case LOC_REF_ARG: | |
76a01679 JB |
2895 | case LOC_REGPARM_ADDR: |
2896 | case LOC_LOCAL: | |
76a01679 | 2897 | case LOC_COMPUTED: |
76a01679 JB |
2898 | goto FoundNonType; |
2899 | default: | |
2900 | break; | |
2901 | } | |
2902 | FoundNonType: | |
2903 | if (j < n_candidates) | |
2904 | { | |
2905 | j = 0; | |
2906 | while (j < n_candidates) | |
2907 | { | |
2908 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2909 | { | |
2910 | candidates[j] = candidates[n_candidates - 1]; | |
2911 | n_candidates -= 1; | |
2912 | } | |
2913 | else | |
2914 | j += 1; | |
2915 | } | |
2916 | } | |
2917 | } | |
2918 | ||
2919 | if (n_candidates == 0) | |
323e0a4a | 2920 | error (_("No definition found for %s"), |
76a01679 JB |
2921 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2922 | else if (n_candidates == 1) | |
2923 | i = 0; | |
2924 | else if (deprocedure_p | |
2925 | && !is_nonfunction (candidates, n_candidates)) | |
2926 | { | |
06d5cf63 JB |
2927 | i = ada_resolve_function |
2928 | (candidates, n_candidates, NULL, 0, | |
2929 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2930 | context_type); | |
76a01679 | 2931 | if (i < 0) |
323e0a4a | 2932 | error (_("Could not find a match for %s"), |
76a01679 JB |
2933 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2934 | } | |
2935 | else | |
2936 | { | |
323e0a4a | 2937 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2938 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2939 | user_select_syms (candidates, n_candidates, 1); | |
2940 | i = 0; | |
2941 | } | |
2942 | ||
2943 | exp->elts[pc + 1].block = candidates[i].block; | |
2944 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2945 | if (innermost_block == NULL |
2946 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2947 | innermost_block = candidates[i].block; |
2948 | } | |
2949 | ||
2950 | if (deprocedure_p | |
2951 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2952 | == TYPE_CODE_FUNC)) | |
2953 | { | |
2954 | replace_operator_with_call (expp, pc, 0, 0, | |
2955 | exp->elts[pc + 2].symbol, | |
2956 | exp->elts[pc + 1].block); | |
2957 | exp = *expp; | |
2958 | } | |
14f9c5c9 AS |
2959 | break; |
2960 | ||
2961 | case OP_FUNCALL: | |
2962 | { | |
4c4b4cd2 | 2963 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2964 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2965 | { |
2966 | struct ada_symbol_info *candidates; | |
2967 | int n_candidates; | |
2968 | ||
2969 | n_candidates = | |
76a01679 JB |
2970 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2971 | (exp->elts[pc + 5].symbol), | |
2972 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2973 | &candidates); | |
4c4b4cd2 PH |
2974 | if (n_candidates == 1) |
2975 | i = 0; | |
2976 | else | |
2977 | { | |
06d5cf63 JB |
2978 | i = ada_resolve_function |
2979 | (candidates, n_candidates, | |
2980 | argvec, nargs, | |
2981 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2982 | context_type); | |
4c4b4cd2 | 2983 | if (i < 0) |
323e0a4a | 2984 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2985 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2986 | } | |
2987 | ||
2988 | exp->elts[pc + 4].block = candidates[i].block; | |
2989 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2990 | if (innermost_block == NULL |
2991 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2992 | innermost_block = candidates[i].block; |
2993 | } | |
14f9c5c9 AS |
2994 | } |
2995 | break; | |
2996 | case BINOP_ADD: | |
2997 | case BINOP_SUB: | |
2998 | case BINOP_MUL: | |
2999 | case BINOP_DIV: | |
3000 | case BINOP_REM: | |
3001 | case BINOP_MOD: | |
3002 | case BINOP_CONCAT: | |
3003 | case BINOP_BITWISE_AND: | |
3004 | case BINOP_BITWISE_IOR: | |
3005 | case BINOP_BITWISE_XOR: | |
3006 | case BINOP_EQUAL: | |
3007 | case BINOP_NOTEQUAL: | |
3008 | case BINOP_LESS: | |
3009 | case BINOP_GTR: | |
3010 | case BINOP_LEQ: | |
3011 | case BINOP_GEQ: | |
3012 | case BINOP_EXP: | |
3013 | case UNOP_NEG: | |
3014 | case UNOP_PLUS: | |
3015 | case UNOP_LOGICAL_NOT: | |
3016 | case UNOP_ABS: | |
3017 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3018 | { |
3019 | struct ada_symbol_info *candidates; | |
3020 | int n_candidates; | |
3021 | ||
3022 | n_candidates = | |
3023 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3024 | (struct block *) NULL, VAR_DOMAIN, | |
3025 | &candidates); | |
3026 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3027 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3028 | if (i < 0) |
3029 | break; | |
3030 | ||
76a01679 JB |
3031 | replace_operator_with_call (expp, pc, nargs, 1, |
3032 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3033 | exp = *expp; |
3034 | } | |
14f9c5c9 | 3035 | break; |
4c4b4cd2 PH |
3036 | |
3037 | case OP_TYPE: | |
b3dbf008 | 3038 | case OP_REGISTER: |
4c4b4cd2 | 3039 | return NULL; |
14f9c5c9 AS |
3040 | } |
3041 | ||
3042 | *pos = pc; | |
3043 | return evaluate_subexp_type (exp, pos); | |
3044 | } | |
3045 | ||
3046 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 PH |
3047 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
3048 | a non-pointer. A type of 'void' (which is never a valid expression type) | |
3049 | by convention matches anything. */ | |
14f9c5c9 | 3050 | /* The term "match" here is rather loose. The match is heuristic and |
4c4b4cd2 | 3051 | liberal. FIXME: TOO liberal, in fact. */ |
14f9c5c9 AS |
3052 | |
3053 | static int | |
4dc81987 | 3054 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3055 | { |
61ee279c PH |
3056 | ftype = ada_check_typedef (ftype); |
3057 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3058 | |
3059 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3060 | ftype = TYPE_TARGET_TYPE (ftype); | |
3061 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3062 | atype = TYPE_TARGET_TYPE (atype); | |
3063 | ||
d2e4a39e | 3064 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID |
14f9c5c9 AS |
3065 | || TYPE_CODE (atype) == TYPE_CODE_VOID) |
3066 | return 1; | |
3067 | ||
d2e4a39e | 3068 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3069 | { |
3070 | default: | |
3071 | return 1; | |
3072 | case TYPE_CODE_PTR: | |
3073 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3074 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3075 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3076 | else |
1265e4aa JB |
3077 | return (may_deref |
3078 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3079 | case TYPE_CODE_INT: |
3080 | case TYPE_CODE_ENUM: | |
3081 | case TYPE_CODE_RANGE: | |
3082 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3083 | { |
3084 | case TYPE_CODE_INT: | |
3085 | case TYPE_CODE_ENUM: | |
3086 | case TYPE_CODE_RANGE: | |
3087 | return 1; | |
3088 | default: | |
3089 | return 0; | |
3090 | } | |
14f9c5c9 AS |
3091 | |
3092 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3093 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3094 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3095 | |
3096 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3097 | if (ada_is_array_descriptor_type (ftype)) |
3098 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3099 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3100 | else |
4c4b4cd2 PH |
3101 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3102 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3103 | |
3104 | case TYPE_CODE_UNION: | |
3105 | case TYPE_CODE_FLT: | |
3106 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3107 | } | |
3108 | } | |
3109 | ||
3110 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3111 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3112 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3113 | argument function. */ |
14f9c5c9 AS |
3114 | |
3115 | static int | |
d2e4a39e | 3116 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3117 | { |
3118 | int i; | |
d2e4a39e | 3119 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3120 | |
1265e4aa JB |
3121 | if (SYMBOL_CLASS (func) == LOC_CONST |
3122 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3123 | return (n_actuals == 0); |
3124 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3125 | return 0; | |
3126 | ||
3127 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3128 | return 0; | |
3129 | ||
3130 | for (i = 0; i < n_actuals; i += 1) | |
3131 | { | |
4c4b4cd2 | 3132 | if (actuals[i] == NULL) |
76a01679 JB |
3133 | return 0; |
3134 | else | |
3135 | { | |
61ee279c | 3136 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3137 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3138 | |
76a01679 JB |
3139 | if (!ada_type_match (ftype, atype, 1)) |
3140 | return 0; | |
3141 | } | |
14f9c5c9 AS |
3142 | } |
3143 | return 1; | |
3144 | } | |
3145 | ||
3146 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3147 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3148 | FUNC_TYPE is not a valid function type with a non-null return type | |
3149 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3150 | ||
3151 | static int | |
d2e4a39e | 3152 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3153 | { |
d2e4a39e | 3154 | struct type *return_type; |
14f9c5c9 AS |
3155 | |
3156 | if (func_type == NULL) | |
3157 | return 1; | |
3158 | ||
4c4b4cd2 PH |
3159 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3160 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3161 | else | |
3162 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3163 | if (return_type == NULL) |
3164 | return 1; | |
3165 | ||
4c4b4cd2 | 3166 | context_type = base_type (context_type); |
14f9c5c9 AS |
3167 | |
3168 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3169 | return context_type == NULL || return_type == context_type; | |
3170 | else if (context_type == NULL) | |
3171 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3172 | else | |
3173 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3174 | } | |
3175 | ||
3176 | ||
4c4b4cd2 | 3177 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3178 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3179 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3180 | that returns that type, then eliminate matches that don't. If | |
3181 | CONTEXT_TYPE is void and there is at least one match that does not | |
3182 | return void, eliminate all matches that do. | |
3183 | ||
14f9c5c9 AS |
3184 | Asks the user if there is more than one match remaining. Returns -1 |
3185 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3186 | solely for messages. May re-arrange and modify SYMS in |
3187 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3188 | |
4c4b4cd2 PH |
3189 | static int |
3190 | ada_resolve_function (struct ada_symbol_info syms[], | |
3191 | int nsyms, struct value **args, int nargs, | |
3192 | const char *name, struct type *context_type) | |
14f9c5c9 AS |
3193 | { |
3194 | int k; | |
4c4b4cd2 | 3195 | int m; /* Number of hits */ |
d2e4a39e AS |
3196 | struct type *fallback; |
3197 | struct type *return_type; | |
14f9c5c9 AS |
3198 | |
3199 | return_type = context_type; | |
3200 | if (context_type == NULL) | |
3201 | fallback = builtin_type_void; | |
3202 | else | |
3203 | fallback = NULL; | |
3204 | ||
d2e4a39e | 3205 | m = 0; |
14f9c5c9 AS |
3206 | while (1) |
3207 | { | |
3208 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3209 | { |
61ee279c | 3210 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3211 | |
3212 | if (ada_args_match (syms[k].sym, args, nargs) | |
3213 | && return_match (type, return_type)) | |
3214 | { | |
3215 | syms[m] = syms[k]; | |
3216 | m += 1; | |
3217 | } | |
3218 | } | |
14f9c5c9 | 3219 | if (m > 0 || return_type == fallback) |
4c4b4cd2 | 3220 | break; |
14f9c5c9 | 3221 | else |
4c4b4cd2 | 3222 | return_type = fallback; |
14f9c5c9 AS |
3223 | } |
3224 | ||
3225 | if (m == 0) | |
3226 | return -1; | |
3227 | else if (m > 1) | |
3228 | { | |
323e0a4a | 3229 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3230 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3231 | return 0; |
3232 | } | |
3233 | return 0; | |
3234 | } | |
3235 | ||
4c4b4cd2 PH |
3236 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3237 | in a listing of choices during disambiguation (see sort_choices, below). | |
3238 | The idea is that overloadings of a subprogram name from the | |
3239 | same package should sort in their source order. We settle for ordering | |
3240 | such symbols by their trailing number (__N or $N). */ | |
3241 | ||
14f9c5c9 | 3242 | static int |
4c4b4cd2 | 3243 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3244 | { |
3245 | if (N1 == NULL) | |
3246 | return 0; | |
3247 | else if (N0 == NULL) | |
3248 | return 1; | |
3249 | else | |
3250 | { | |
3251 | int k0, k1; | |
d2e4a39e | 3252 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3253 | ; |
d2e4a39e | 3254 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3255 | ; |
d2e4a39e | 3256 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3257 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3258 | { | |
3259 | int n0, n1; | |
3260 | n0 = k0; | |
3261 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3262 | n0 -= 1; | |
3263 | n1 = k1; | |
3264 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3265 | n1 -= 1; | |
3266 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3267 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3268 | } | |
14f9c5c9 AS |
3269 | return (strcmp (N0, N1) < 0); |
3270 | } | |
3271 | } | |
d2e4a39e | 3272 | |
4c4b4cd2 PH |
3273 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3274 | encoded names. */ | |
3275 | ||
d2e4a39e | 3276 | static void |
4c4b4cd2 | 3277 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3278 | { |
4c4b4cd2 | 3279 | int i; |
d2e4a39e | 3280 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3281 | { |
4c4b4cd2 | 3282 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3283 | int j; |
3284 | ||
d2e4a39e | 3285 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3286 | { |
3287 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3288 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3289 | break; | |
3290 | syms[j + 1] = syms[j]; | |
3291 | } | |
d2e4a39e | 3292 | syms[j + 1] = sym; |
14f9c5c9 AS |
3293 | } |
3294 | } | |
3295 | ||
4c4b4cd2 PH |
3296 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3297 | by asking the user (if necessary), returning the number selected, | |
3298 | and setting the first elements of SYMS items. Error if no symbols | |
3299 | selected. */ | |
14f9c5c9 AS |
3300 | |
3301 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3302 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3303 | |
3304 | int | |
4c4b4cd2 | 3305 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3306 | { |
3307 | int i; | |
d2e4a39e | 3308 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3309 | int n_chosen; |
3310 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3311 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3312 | |
3313 | if (max_results < 1) | |
323e0a4a | 3314 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3315 | if (nsyms <= 1) |
3316 | return nsyms; | |
3317 | ||
717d2f5a JB |
3318 | if (select_mode == multiple_symbols_cancel) |
3319 | error (_("\ | |
3320 | canceled because the command is ambiguous\n\ | |
3321 | See set/show multiple-symbol.")); | |
3322 | ||
3323 | /* If select_mode is "all", then return all possible symbols. | |
3324 | Only do that if more than one symbol can be selected, of course. | |
3325 | Otherwise, display the menu as usual. */ | |
3326 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3327 | return nsyms; | |
3328 | ||
323e0a4a | 3329 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3330 | if (max_results > 1) |
323e0a4a | 3331 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3332 | |
4c4b4cd2 | 3333 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3334 | |
3335 | for (i = 0; i < nsyms; i += 1) | |
3336 | { | |
4c4b4cd2 PH |
3337 | if (syms[i].sym == NULL) |
3338 | continue; | |
3339 | ||
3340 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3341 | { | |
76a01679 JB |
3342 | struct symtab_and_line sal = |
3343 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3344 | if (sal.symtab == NULL) |
3345 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3346 | i + first_choice, | |
3347 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3348 | sal.line); | |
3349 | else | |
3350 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3351 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3352 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3353 | continue; |
3354 | } | |
d2e4a39e | 3355 | else |
4c4b4cd2 PH |
3356 | { |
3357 | int is_enumeral = | |
3358 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3359 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3360 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
3361 | struct symtab *symtab = symtab_for_sym (syms[i].sym); | |
3362 | ||
3363 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3364 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3365 | i + first_choice, |
3366 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3367 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3368 | else if (is_enumeral |
3369 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3370 | { |
a3f17187 | 3371 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3372 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3373 | gdb_stdout, -1, 0); | |
323e0a4a | 3374 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3375 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3376 | } | |
3377 | else if (symtab != NULL) | |
3378 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3379 | ? _("[%d] %s in %s (enumeral)\n") |
3380 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3381 | i + first_choice, |
3382 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3383 | symtab->filename); | |
3384 | else | |
3385 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3386 | ? _("[%d] %s (enumeral)\n") |
3387 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3388 | i + first_choice, |
3389 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3390 | } | |
14f9c5c9 | 3391 | } |
d2e4a39e | 3392 | |
14f9c5c9 | 3393 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3394 | "overload-choice"); |
14f9c5c9 AS |
3395 | |
3396 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3397 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3398 | |
3399 | return n_chosen; | |
3400 | } | |
3401 | ||
3402 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3403 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3404 | order in CHOICES[0 .. N-1], and return N. |
3405 | ||
3406 | The user types choices as a sequence of numbers on one line | |
3407 | separated by blanks, encoding them as follows: | |
3408 | ||
4c4b4cd2 | 3409 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3410 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3411 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3412 | ||
4c4b4cd2 | 3413 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3414 | |
3415 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3416 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3417 | |
3418 | int | |
d2e4a39e | 3419 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3420 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3421 | { |
d2e4a39e | 3422 | char *args; |
0bcd0149 | 3423 | char *prompt; |
14f9c5c9 AS |
3424 | int n_chosen; |
3425 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3426 | |
14f9c5c9 AS |
3427 | prompt = getenv ("PS2"); |
3428 | if (prompt == NULL) | |
0bcd0149 | 3429 | prompt = "> "; |
14f9c5c9 | 3430 | |
0bcd0149 | 3431 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3432 | |
14f9c5c9 | 3433 | if (args == NULL) |
323e0a4a | 3434 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3435 | |
3436 | n_chosen = 0; | |
76a01679 | 3437 | |
4c4b4cd2 PH |
3438 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3439 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3440 | while (1) |
3441 | { | |
d2e4a39e | 3442 | char *args2; |
14f9c5c9 AS |
3443 | int choice, j; |
3444 | ||
3445 | while (isspace (*args)) | |
4c4b4cd2 | 3446 | args += 1; |
14f9c5c9 | 3447 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3448 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3449 | else if (*args == '\0') |
4c4b4cd2 | 3450 | break; |
14f9c5c9 AS |
3451 | |
3452 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3453 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3454 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3455 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3456 | args = args2; |
3457 | ||
d2e4a39e | 3458 | if (choice == 0) |
323e0a4a | 3459 | error (_("cancelled")); |
14f9c5c9 AS |
3460 | |
3461 | if (choice < first_choice) | |
4c4b4cd2 PH |
3462 | { |
3463 | n_chosen = n_choices; | |
3464 | for (j = 0; j < n_choices; j += 1) | |
3465 | choices[j] = j; | |
3466 | break; | |
3467 | } | |
14f9c5c9 AS |
3468 | choice -= first_choice; |
3469 | ||
d2e4a39e | 3470 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3471 | { |
3472 | } | |
14f9c5c9 AS |
3473 | |
3474 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3475 | { |
3476 | int k; | |
3477 | for (k = n_chosen - 1; k > j; k -= 1) | |
3478 | choices[k + 1] = choices[k]; | |
3479 | choices[j + 1] = choice; | |
3480 | n_chosen += 1; | |
3481 | } | |
14f9c5c9 AS |
3482 | } |
3483 | ||
3484 | if (n_chosen > max_results) | |
323e0a4a | 3485 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3486 | |
14f9c5c9 AS |
3487 | return n_chosen; |
3488 | } | |
3489 | ||
4c4b4cd2 PH |
3490 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3491 | on the function identified by SYM and BLOCK, and taking NARGS | |
3492 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3493 | |
3494 | static void | |
d2e4a39e | 3495 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3496 | int oplen, struct symbol *sym, |
3497 | struct block *block) | |
14f9c5c9 AS |
3498 | { |
3499 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3500 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3501 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3502 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3503 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3504 | struct expression *exp = *expp; |
14f9c5c9 AS |
3505 | |
3506 | newexp->nelts = exp->nelts + 7 - oplen; | |
3507 | newexp->language_defn = exp->language_defn; | |
3508 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3509 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3510 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3511 | |
3512 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3513 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3514 | ||
3515 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3516 | newexp->elts[pc + 4].block = block; | |
3517 | newexp->elts[pc + 5].symbol = sym; | |
3518 | ||
3519 | *expp = newexp; | |
aacb1f0a | 3520 | xfree (exp); |
d2e4a39e | 3521 | } |
14f9c5c9 AS |
3522 | |
3523 | /* Type-class predicates */ | |
3524 | ||
4c4b4cd2 PH |
3525 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3526 | or FLOAT). */ | |
14f9c5c9 AS |
3527 | |
3528 | static int | |
d2e4a39e | 3529 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3530 | { |
3531 | if (type == NULL) | |
3532 | return 0; | |
d2e4a39e AS |
3533 | else |
3534 | { | |
3535 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3536 | { |
3537 | case TYPE_CODE_INT: | |
3538 | case TYPE_CODE_FLT: | |
3539 | return 1; | |
3540 | case TYPE_CODE_RANGE: | |
3541 | return (type == TYPE_TARGET_TYPE (type) | |
3542 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3543 | default: | |
3544 | return 0; | |
3545 | } | |
d2e4a39e | 3546 | } |
14f9c5c9 AS |
3547 | } |
3548 | ||
4c4b4cd2 | 3549 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3550 | |
3551 | static int | |
d2e4a39e | 3552 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3553 | { |
3554 | if (type == NULL) | |
3555 | return 0; | |
d2e4a39e AS |
3556 | else |
3557 | { | |
3558 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3559 | { |
3560 | case TYPE_CODE_INT: | |
3561 | return 1; | |
3562 | case TYPE_CODE_RANGE: | |
3563 | return (type == TYPE_TARGET_TYPE (type) | |
3564 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3565 | default: | |
3566 | return 0; | |
3567 | } | |
d2e4a39e | 3568 | } |
14f9c5c9 AS |
3569 | } |
3570 | ||
4c4b4cd2 | 3571 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3572 | |
3573 | static int | |
d2e4a39e | 3574 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3575 | { |
3576 | if (type == NULL) | |
3577 | return 0; | |
d2e4a39e AS |
3578 | else |
3579 | { | |
3580 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3581 | { |
3582 | case TYPE_CODE_INT: | |
3583 | case TYPE_CODE_RANGE: | |
3584 | case TYPE_CODE_ENUM: | |
3585 | case TYPE_CODE_FLT: | |
3586 | return 1; | |
3587 | default: | |
3588 | return 0; | |
3589 | } | |
d2e4a39e | 3590 | } |
14f9c5c9 AS |
3591 | } |
3592 | ||
4c4b4cd2 | 3593 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3594 | |
3595 | static int | |
d2e4a39e | 3596 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3597 | { |
3598 | if (type == NULL) | |
3599 | return 0; | |
d2e4a39e AS |
3600 | else |
3601 | { | |
3602 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3603 | { |
3604 | case TYPE_CODE_INT: | |
3605 | case TYPE_CODE_RANGE: | |
3606 | case TYPE_CODE_ENUM: | |
3607 | return 1; | |
3608 | default: | |
3609 | return 0; | |
3610 | } | |
d2e4a39e | 3611 | } |
14f9c5c9 AS |
3612 | } |
3613 | ||
4c4b4cd2 PH |
3614 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3615 | a user-defined function. Errs on the side of pre-defined operators | |
3616 | (i.e., result 0). */ | |
14f9c5c9 AS |
3617 | |
3618 | static int | |
d2e4a39e | 3619 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3620 | { |
76a01679 | 3621 | struct type *type0 = |
df407dfe | 3622 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3623 | struct type *type1 = |
df407dfe | 3624 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3625 | |
4c4b4cd2 PH |
3626 | if (type0 == NULL) |
3627 | return 0; | |
3628 | ||
14f9c5c9 AS |
3629 | switch (op) |
3630 | { | |
3631 | default: | |
3632 | return 0; | |
3633 | ||
3634 | case BINOP_ADD: | |
3635 | case BINOP_SUB: | |
3636 | case BINOP_MUL: | |
3637 | case BINOP_DIV: | |
d2e4a39e | 3638 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3639 | |
3640 | case BINOP_REM: | |
3641 | case BINOP_MOD: | |
3642 | case BINOP_BITWISE_AND: | |
3643 | case BINOP_BITWISE_IOR: | |
3644 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3645 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3646 | |
3647 | case BINOP_EQUAL: | |
3648 | case BINOP_NOTEQUAL: | |
3649 | case BINOP_LESS: | |
3650 | case BINOP_GTR: | |
3651 | case BINOP_LEQ: | |
3652 | case BINOP_GEQ: | |
d2e4a39e | 3653 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3654 | |
3655 | case BINOP_CONCAT: | |
ee90b9ab | 3656 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3657 | |
3658 | case BINOP_EXP: | |
d2e4a39e | 3659 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3660 | |
3661 | case UNOP_NEG: | |
3662 | case UNOP_PLUS: | |
3663 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3664 | case UNOP_ABS: |
3665 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3666 | |
3667 | } | |
3668 | } | |
3669 | \f | |
4c4b4cd2 | 3670 | /* Renaming */ |
14f9c5c9 | 3671 | |
aeb5907d JB |
3672 | /* NOTES: |
3673 | ||
3674 | 1. In the following, we assume that a renaming type's name may | |
3675 | have an ___XD suffix. It would be nice if this went away at some | |
3676 | point. | |
3677 | 2. We handle both the (old) purely type-based representation of | |
3678 | renamings and the (new) variable-based encoding. At some point, | |
3679 | it is devoutly to be hoped that the former goes away | |
3680 | (FIXME: hilfinger-2007-07-09). | |
3681 | 3. Subprogram renamings are not implemented, although the XRS | |
3682 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3683 | ||
3684 | /* If SYM encodes a renaming, | |
3685 | ||
3686 | <renaming> renames <renamed entity>, | |
3687 | ||
3688 | sets *LEN to the length of the renamed entity's name, | |
3689 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3690 | the string describing the subcomponent selected from the renamed | |
3691 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3692 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3693 | are undefined). Otherwise, returns a value indicating the category | |
3694 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3695 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3696 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3697 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3698 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3699 | may be NULL, in which case they are not assigned. | |
3700 | ||
3701 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3702 | ||
3703 | enum ada_renaming_category | |
3704 | ada_parse_renaming (struct symbol *sym, | |
3705 | const char **renamed_entity, int *len, | |
3706 | const char **renaming_expr) | |
3707 | { | |
3708 | enum ada_renaming_category kind; | |
3709 | const char *info; | |
3710 | const char *suffix; | |
3711 | ||
3712 | if (sym == NULL) | |
3713 | return ADA_NOT_RENAMING; | |
3714 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3715 | { |
aeb5907d JB |
3716 | default: |
3717 | return ADA_NOT_RENAMING; | |
3718 | case LOC_TYPEDEF: | |
3719 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3720 | renamed_entity, len, renaming_expr); | |
3721 | case LOC_LOCAL: | |
3722 | case LOC_STATIC: | |
3723 | case LOC_COMPUTED: | |
3724 | case LOC_OPTIMIZED_OUT: | |
3725 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3726 | if (info == NULL) | |
3727 | return ADA_NOT_RENAMING; | |
3728 | switch (info[5]) | |
3729 | { | |
3730 | case '_': | |
3731 | kind = ADA_OBJECT_RENAMING; | |
3732 | info += 6; | |
3733 | break; | |
3734 | case 'E': | |
3735 | kind = ADA_EXCEPTION_RENAMING; | |
3736 | info += 7; | |
3737 | break; | |
3738 | case 'P': | |
3739 | kind = ADA_PACKAGE_RENAMING; | |
3740 | info += 7; | |
3741 | break; | |
3742 | case 'S': | |
3743 | kind = ADA_SUBPROGRAM_RENAMING; | |
3744 | info += 7; | |
3745 | break; | |
3746 | default: | |
3747 | return ADA_NOT_RENAMING; | |
3748 | } | |
14f9c5c9 | 3749 | } |
4c4b4cd2 | 3750 | |
aeb5907d JB |
3751 | if (renamed_entity != NULL) |
3752 | *renamed_entity = info; | |
3753 | suffix = strstr (info, "___XE"); | |
3754 | if (suffix == NULL || suffix == info) | |
3755 | return ADA_NOT_RENAMING; | |
3756 | if (len != NULL) | |
3757 | *len = strlen (info) - strlen (suffix); | |
3758 | suffix += 5; | |
3759 | if (renaming_expr != NULL) | |
3760 | *renaming_expr = suffix; | |
3761 | return kind; | |
3762 | } | |
3763 | ||
3764 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3765 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3766 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3767 | ADA_NOT_RENAMING otherwise. */ | |
3768 | static enum ada_renaming_category | |
3769 | parse_old_style_renaming (struct type *type, | |
3770 | const char **renamed_entity, int *len, | |
3771 | const char **renaming_expr) | |
3772 | { | |
3773 | enum ada_renaming_category kind; | |
3774 | const char *name; | |
3775 | const char *info; | |
3776 | const char *suffix; | |
14f9c5c9 | 3777 | |
aeb5907d JB |
3778 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3779 | || TYPE_NFIELDS (type) != 1) | |
3780 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3781 | |
aeb5907d JB |
3782 | name = type_name_no_tag (type); |
3783 | if (name == NULL) | |
3784 | return ADA_NOT_RENAMING; | |
3785 | ||
3786 | name = strstr (name, "___XR"); | |
3787 | if (name == NULL) | |
3788 | return ADA_NOT_RENAMING; | |
3789 | switch (name[5]) | |
3790 | { | |
3791 | case '\0': | |
3792 | case '_': | |
3793 | kind = ADA_OBJECT_RENAMING; | |
3794 | break; | |
3795 | case 'E': | |
3796 | kind = ADA_EXCEPTION_RENAMING; | |
3797 | break; | |
3798 | case 'P': | |
3799 | kind = ADA_PACKAGE_RENAMING; | |
3800 | break; | |
3801 | case 'S': | |
3802 | kind = ADA_SUBPROGRAM_RENAMING; | |
3803 | break; | |
3804 | default: | |
3805 | return ADA_NOT_RENAMING; | |
3806 | } | |
14f9c5c9 | 3807 | |
aeb5907d JB |
3808 | info = TYPE_FIELD_NAME (type, 0); |
3809 | if (info == NULL) | |
3810 | return ADA_NOT_RENAMING; | |
3811 | if (renamed_entity != NULL) | |
3812 | *renamed_entity = info; | |
3813 | suffix = strstr (info, "___XE"); | |
3814 | if (renaming_expr != NULL) | |
3815 | *renaming_expr = suffix + 5; | |
3816 | if (suffix == NULL || suffix == info) | |
3817 | return ADA_NOT_RENAMING; | |
3818 | if (len != NULL) | |
3819 | *len = suffix - info; | |
3820 | return kind; | |
3821 | } | |
52ce6436 | 3822 | |
14f9c5c9 | 3823 | \f |
d2e4a39e | 3824 | |
4c4b4cd2 | 3825 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3826 | |
4c4b4cd2 PH |
3827 | /* Return an lvalue containing the value VAL. This is the identity on |
3828 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3829 | on the stack, using and updating *SP as the stack pointer, and | |
3830 | returning an lvalue whose VALUE_ADDRESS points to the copy. */ | |
14f9c5c9 | 3831 | |
d2e4a39e | 3832 | static struct value * |
4c4b4cd2 | 3833 | ensure_lval (struct value *val, CORE_ADDR *sp) |
14f9c5c9 | 3834 | { |
c3e5cd34 PH |
3835 | if (! VALUE_LVAL (val)) |
3836 | { | |
df407dfe | 3837 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3838 | |
3839 | /* The following is taken from the structure-return code in | |
3840 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3841 | indicated. */ | |
4d1e7dd1 | 3842 | if (gdbarch_inner_than (current_gdbarch, 1, 2)) |
c3e5cd34 PH |
3843 | { |
3844 | /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after | |
3845 | reserving sufficient space. */ | |
3846 | *sp -= len; | |
3847 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3848 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3849 | VALUE_ADDRESS (val) = *sp; | |
3850 | } | |
3851 | else | |
3852 | { | |
3853 | /* Stack grows upward. Align the frame, allocate space, and | |
3854 | then again, re-align the frame. */ | |
3855 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3856 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3857 | VALUE_ADDRESS (val) = *sp; | |
3858 | *sp += len; | |
3859 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3860 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3861 | } | |
a84a8a0d | 3862 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3863 | |
990a07ab | 3864 | write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len); |
c3e5cd34 | 3865 | } |
14f9c5c9 AS |
3866 | |
3867 | return val; | |
3868 | } | |
3869 | ||
3870 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3871 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3872 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3873 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3874 | |
a93c0eb6 JB |
3875 | struct value * |
3876 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
3877 | CORE_ADDR *sp) | |
14f9c5c9 | 3878 | { |
df407dfe | 3879 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3880 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3881 | struct type *formal_target = |
3882 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3883 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3884 | struct type *actual_target = |
3885 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3886 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3887 | |
4c4b4cd2 | 3888 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 AS |
3889 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
3890 | return make_array_descriptor (formal_type, actual, sp); | |
a84a8a0d JB |
3891 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3892 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3893 | { |
a84a8a0d | 3894 | struct value *result; |
14f9c5c9 | 3895 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3896 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3897 | result = desc_data (actual); |
14f9c5c9 | 3898 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3899 | { |
3900 | if (VALUE_LVAL (actual) != lval_memory) | |
3901 | { | |
3902 | struct value *val; | |
df407dfe | 3903 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3904 | val = allocate_value (actual_type); |
990a07ab | 3905 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3906 | (char *) value_contents (actual), |
4c4b4cd2 PH |
3907 | TYPE_LENGTH (actual_type)); |
3908 | actual = ensure_lval (val, sp); | |
3909 | } | |
a84a8a0d | 3910 | result = value_addr (actual); |
4c4b4cd2 | 3911 | } |
a84a8a0d JB |
3912 | else |
3913 | return actual; | |
3914 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3915 | } |
3916 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3917 | return ada_value_ind (actual); | |
3918 | ||
3919 | return actual; | |
3920 | } | |
3921 | ||
3922 | ||
4c4b4cd2 PH |
3923 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3924 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3925 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3926 | to-descriptor type rather than a descriptor type), a struct value * |
3927 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3928 | |
d2e4a39e AS |
3929 | static struct value * |
3930 | make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp) | |
14f9c5c9 | 3931 | { |
d2e4a39e AS |
3932 | struct type *bounds_type = desc_bounds_type (type); |
3933 | struct type *desc_type = desc_base_type (type); | |
3934 | struct value *descriptor = allocate_value (desc_type); | |
3935 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3936 | int i; |
d2e4a39e | 3937 | |
df407dfe | 3938 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3939 | { |
0fd88904 | 3940 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3941 | value_as_long (ada_array_bound (arr, i, 0)), |
3942 | desc_bound_bitpos (bounds_type, i, 0), | |
3943 | desc_bound_bitsize (bounds_type, i, 0)); | |
0fd88904 | 3944 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3945 | value_as_long (ada_array_bound (arr, i, 1)), |
3946 | desc_bound_bitpos (bounds_type, i, 1), | |
3947 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3948 | } |
d2e4a39e | 3949 | |
4c4b4cd2 | 3950 | bounds = ensure_lval (bounds, sp); |
d2e4a39e | 3951 | |
0fd88904 | 3952 | modify_general_field (value_contents_writeable (descriptor), |
76a01679 JB |
3953 | VALUE_ADDRESS (ensure_lval (arr, sp)), |
3954 | fat_pntr_data_bitpos (desc_type), | |
3955 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3956 | |
0fd88904 | 3957 | modify_general_field (value_contents_writeable (descriptor), |
4c4b4cd2 PH |
3958 | VALUE_ADDRESS (bounds), |
3959 | fat_pntr_bounds_bitpos (desc_type), | |
3960 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3961 | |
4c4b4cd2 | 3962 | descriptor = ensure_lval (descriptor, sp); |
14f9c5c9 AS |
3963 | |
3964 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3965 | return value_addr (descriptor); | |
3966 | else | |
3967 | return descriptor; | |
3968 | } | |
14f9c5c9 | 3969 | \f |
963a6417 PH |
3970 | /* Dummy definitions for an experimental caching module that is not |
3971 | * used in the public sources. */ | |
96d887e8 | 3972 | |
96d887e8 PH |
3973 | static int |
3974 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3975 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3976 | { |
3977 | return 0; | |
3978 | } | |
3979 | ||
3980 | static void | |
3981 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3982 | struct block *block) |
96d887e8 PH |
3983 | { |
3984 | } | |
4c4b4cd2 PH |
3985 | \f |
3986 | /* Symbol Lookup */ | |
3987 | ||
3988 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3989 | given DOMAIN, visible from lexical block BLOCK. */ | |
3990 | ||
3991 | static struct symbol * | |
3992 | standard_lookup (const char *name, const struct block *block, | |
3993 | domain_enum domain) | |
3994 | { | |
3995 | struct symbol *sym; | |
4c4b4cd2 | 3996 | |
2570f2b7 | 3997 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3998 | return sym; |
2570f2b7 UW |
3999 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4000 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4001 | return sym; |
4002 | } | |
4003 | ||
4004 | ||
4005 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4006 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4007 | since they contend in overloading in the same way. */ | |
4008 | static int | |
4009 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4010 | { | |
4011 | int i; | |
4012 | ||
4013 | for (i = 0; i < n; i += 1) | |
4014 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4015 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4016 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4017 | return 1; |
4018 | ||
4019 | return 0; | |
4020 | } | |
4021 | ||
4022 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4023 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4024 | |
4025 | static int | |
d2e4a39e | 4026 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4027 | { |
d2e4a39e | 4028 | if (type0 == type1) |
14f9c5c9 | 4029 | return 1; |
d2e4a39e | 4030 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4031 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4032 | return 0; | |
d2e4a39e | 4033 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4034 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4035 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4036 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4037 | return 1; |
d2e4a39e | 4038 | |
14f9c5c9 AS |
4039 | return 0; |
4040 | } | |
4041 | ||
4042 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4043 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4044 | |
4045 | static int | |
d2e4a39e | 4046 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4047 | { |
4048 | if (sym0 == sym1) | |
4049 | return 1; | |
176620f1 | 4050 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4051 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4052 | return 0; | |
4053 | ||
d2e4a39e | 4054 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4055 | { |
4056 | case LOC_UNDEF: | |
4057 | return 1; | |
4058 | case LOC_TYPEDEF: | |
4059 | { | |
4c4b4cd2 PH |
4060 | struct type *type0 = SYMBOL_TYPE (sym0); |
4061 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4062 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4063 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4064 | int len0 = strlen (name0); | |
4065 | return | |
4066 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4067 | && (equiv_types (type0, type1) | |
4068 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4069 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4070 | } |
4071 | case LOC_CONST: | |
4072 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4073 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4074 | default: |
4075 | return 0; | |
14f9c5c9 AS |
4076 | } |
4077 | } | |
4078 | ||
4c4b4cd2 PH |
4079 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4080 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4081 | |
4082 | static void | |
76a01679 JB |
4083 | add_defn_to_vec (struct obstack *obstackp, |
4084 | struct symbol *sym, | |
2570f2b7 | 4085 | struct block *block) |
14f9c5c9 AS |
4086 | { |
4087 | int i; | |
4088 | size_t tmp; | |
4c4b4cd2 | 4089 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4090 | |
529cad9c PH |
4091 | /* Do not try to complete stub types, as the debugger is probably |
4092 | already scanning all symbols matching a certain name at the | |
4093 | time when this function is called. Trying to replace the stub | |
4094 | type by its associated full type will cause us to restart a scan | |
4095 | which may lead to an infinite recursion. Instead, the client | |
4096 | collecting the matching symbols will end up collecting several | |
4097 | matches, with at least one of them complete. It can then filter | |
4098 | out the stub ones if needed. */ | |
4099 | ||
4c4b4cd2 PH |
4100 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4101 | { | |
4102 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4103 | return; | |
4104 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4105 | { | |
4106 | prevDefns[i].sym = sym; | |
4107 | prevDefns[i].block = block; | |
4c4b4cd2 | 4108 | return; |
76a01679 | 4109 | } |
4c4b4cd2 PH |
4110 | } |
4111 | ||
4112 | { | |
4113 | struct ada_symbol_info info; | |
4114 | ||
4115 | info.sym = sym; | |
4116 | info.block = block; | |
4c4b4cd2 PH |
4117 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4118 | } | |
4119 | } | |
4120 | ||
4121 | /* Number of ada_symbol_info structures currently collected in | |
4122 | current vector in *OBSTACKP. */ | |
4123 | ||
76a01679 JB |
4124 | static int |
4125 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4126 | { |
4127 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4128 | } | |
4129 | ||
4130 | /* Vector of ada_symbol_info structures currently collected in current | |
4131 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4132 | its final address. */ | |
4133 | ||
76a01679 | 4134 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4135 | defns_collected (struct obstack *obstackp, int finish) |
4136 | { | |
4137 | if (finish) | |
4138 | return obstack_finish (obstackp); | |
4139 | else | |
4140 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4141 | } | |
4142 | ||
96d887e8 PH |
4143 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4144 | Check the global symbols if GLOBAL, the static symbols if not. | |
4145 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4146 | |
96d887e8 PH |
4147 | static struct partial_symbol * |
4148 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4149 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4150 | { |
96d887e8 PH |
4151 | struct partial_symbol **start; |
4152 | int name_len = strlen (name); | |
4153 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4154 | int i; | |
4c4b4cd2 | 4155 | |
96d887e8 | 4156 | if (length == 0) |
4c4b4cd2 | 4157 | { |
96d887e8 | 4158 | return (NULL); |
4c4b4cd2 PH |
4159 | } |
4160 | ||
96d887e8 PH |
4161 | start = (global ? |
4162 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4163 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4164 | |
96d887e8 | 4165 | if (wild) |
4c4b4cd2 | 4166 | { |
96d887e8 PH |
4167 | for (i = 0; i < length; i += 1) |
4168 | { | |
4169 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4170 | |
5eeb2539 AR |
4171 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4172 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4173 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4174 | return psym; |
4175 | } | |
4176 | return NULL; | |
4c4b4cd2 | 4177 | } |
96d887e8 PH |
4178 | else |
4179 | { | |
4180 | if (global) | |
4181 | { | |
4182 | int U; | |
4183 | i = 0; | |
4184 | U = length - 1; | |
4185 | while (U - i > 4) | |
4186 | { | |
4187 | int M = (U + i) >> 1; | |
4188 | struct partial_symbol *psym = start[M]; | |
4189 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4190 | i = M + 1; | |
4191 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4192 | U = M - 1; | |
4193 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4194 | i = M + 1; | |
4195 | else | |
4196 | U = M; | |
4197 | } | |
4198 | } | |
4199 | else | |
4200 | i = 0; | |
4c4b4cd2 | 4201 | |
96d887e8 PH |
4202 | while (i < length) |
4203 | { | |
4204 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4205 | |
5eeb2539 AR |
4206 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4207 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4208 | { |
4209 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4210 | |
96d887e8 PH |
4211 | if (cmp < 0) |
4212 | { | |
4213 | if (global) | |
4214 | break; | |
4215 | } | |
4216 | else if (cmp == 0 | |
4217 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4218 | + name_len)) |
96d887e8 PH |
4219 | return psym; |
4220 | } | |
4221 | i += 1; | |
4222 | } | |
4c4b4cd2 | 4223 | |
96d887e8 PH |
4224 | if (global) |
4225 | { | |
4226 | int U; | |
4227 | i = 0; | |
4228 | U = length - 1; | |
4229 | while (U - i > 4) | |
4230 | { | |
4231 | int M = (U + i) >> 1; | |
4232 | struct partial_symbol *psym = start[M]; | |
4233 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4234 | i = M + 1; | |
4235 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4236 | U = M - 1; | |
4237 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4238 | i = M + 1; | |
4239 | else | |
4240 | U = M; | |
4241 | } | |
4242 | } | |
4243 | else | |
4244 | i = 0; | |
4c4b4cd2 | 4245 | |
96d887e8 PH |
4246 | while (i < length) |
4247 | { | |
4248 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4249 | |
5eeb2539 AR |
4250 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4251 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4252 | { |
4253 | int cmp; | |
4c4b4cd2 | 4254 | |
96d887e8 PH |
4255 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4256 | if (cmp == 0) | |
4257 | { | |
4258 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4259 | if (cmp == 0) | |
4260 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4261 | name_len); |
96d887e8 | 4262 | } |
4c4b4cd2 | 4263 | |
96d887e8 PH |
4264 | if (cmp < 0) |
4265 | { | |
4266 | if (global) | |
4267 | break; | |
4268 | } | |
4269 | else if (cmp == 0 | |
4270 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4271 | + name_len + 5)) |
96d887e8 PH |
4272 | return psym; |
4273 | } | |
4274 | i += 1; | |
4275 | } | |
4276 | } | |
4277 | return NULL; | |
4c4b4cd2 PH |
4278 | } |
4279 | ||
96d887e8 | 4280 | /* Find a symbol table containing symbol SYM or NULL if none. */ |
4c4b4cd2 | 4281 | |
96d887e8 PH |
4282 | static struct symtab * |
4283 | symtab_for_sym (struct symbol *sym) | |
4c4b4cd2 | 4284 | { |
96d887e8 PH |
4285 | struct symtab *s; |
4286 | struct objfile *objfile; | |
4287 | struct block *b; | |
4288 | struct symbol *tmp_sym; | |
4289 | struct dict_iterator iter; | |
4290 | int j; | |
4c4b4cd2 | 4291 | |
11309657 | 4292 | ALL_PRIMARY_SYMTABS (objfile, s) |
96d887e8 PH |
4293 | { |
4294 | switch (SYMBOL_CLASS (sym)) | |
4295 | { | |
4296 | case LOC_CONST: | |
4297 | case LOC_STATIC: | |
4298 | case LOC_TYPEDEF: | |
4299 | case LOC_REGISTER: | |
4300 | case LOC_LABEL: | |
4301 | case LOC_BLOCK: | |
4302 | case LOC_CONST_BYTES: | |
76a01679 JB |
4303 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); |
4304 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4305 | return s; | |
4306 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
4307 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4308 | return s; | |
96d887e8 PH |
4309 | break; |
4310 | default: | |
4311 | break; | |
4312 | } | |
4313 | switch (SYMBOL_CLASS (sym)) | |
4314 | { | |
4315 | case LOC_REGISTER: | |
4316 | case LOC_ARG: | |
4317 | case LOC_REF_ARG: | |
96d887e8 PH |
4318 | case LOC_REGPARM_ADDR: |
4319 | case LOC_LOCAL: | |
4320 | case LOC_TYPEDEF: | |
96d887e8 | 4321 | case LOC_COMPUTED: |
76a01679 JB |
4322 | for (j = FIRST_LOCAL_BLOCK; |
4323 | j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1) | |
4324 | { | |
4325 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j); | |
4326 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4327 | return s; | |
4328 | } | |
4329 | break; | |
96d887e8 PH |
4330 | default: |
4331 | break; | |
4332 | } | |
4333 | } | |
4334 | return NULL; | |
4c4b4cd2 PH |
4335 | } |
4336 | ||
96d887e8 PH |
4337 | /* Return a minimal symbol matching NAME according to Ada decoding |
4338 | rules. Returns NULL if there is no such minimal symbol. Names | |
4339 | prefixed with "standard__" are handled specially: "standard__" is | |
4340 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4341 | |
96d887e8 PH |
4342 | struct minimal_symbol * |
4343 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4344 | { |
4c4b4cd2 | 4345 | struct objfile *objfile; |
96d887e8 PH |
4346 | struct minimal_symbol *msymbol; |
4347 | int wild_match; | |
4c4b4cd2 | 4348 | |
96d887e8 | 4349 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4350 | { |
96d887e8 | 4351 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4352 | wild_match = 0; |
4c4b4cd2 PH |
4353 | } |
4354 | else | |
96d887e8 | 4355 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4356 | |
96d887e8 PH |
4357 | ALL_MSYMBOLS (objfile, msymbol) |
4358 | { | |
4359 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4360 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4361 | return msymbol; | |
4362 | } | |
4c4b4cd2 | 4363 | |
96d887e8 PH |
4364 | return NULL; |
4365 | } | |
4c4b4cd2 | 4366 | |
96d887e8 PH |
4367 | /* For all subprograms that statically enclose the subprogram of the |
4368 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4369 | and their blocks to the list of data in OBSTACKP, as for | |
4370 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4371 | wildcard prefix. */ | |
4c4b4cd2 | 4372 | |
96d887e8 PH |
4373 | static void |
4374 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4375 | const char *name, domain_enum namespace, |
96d887e8 PH |
4376 | int wild_match) |
4377 | { | |
96d887e8 | 4378 | } |
14f9c5c9 | 4379 | |
96d887e8 PH |
4380 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4381 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4382 | |
96d887e8 PH |
4383 | static int |
4384 | is_nondebugging_type (struct type *type) | |
4385 | { | |
4386 | char *name = ada_type_name (type); | |
4387 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4388 | } | |
4c4b4cd2 | 4389 | |
96d887e8 PH |
4390 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4391 | duplicate other symbols in the list (The only case I know of where | |
4392 | this happens is when object files containing stabs-in-ecoff are | |
4393 | linked with files containing ordinary ecoff debugging symbols (or no | |
4394 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4395 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4396 | |
96d887e8 PH |
4397 | static int |
4398 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4399 | { | |
4400 | int i, j; | |
4c4b4cd2 | 4401 | |
96d887e8 PH |
4402 | i = 0; |
4403 | while (i < nsyms) | |
4404 | { | |
4405 | if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
4406 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC | |
4407 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4408 | { | |
4409 | for (j = 0; j < nsyms; j += 1) | |
4410 | { | |
4411 | if (i != j | |
4412 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4413 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4414 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4415 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4416 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4417 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
4c4b4cd2 | 4418 | { |
96d887e8 PH |
4419 | int k; |
4420 | for (k = i + 1; k < nsyms; k += 1) | |
76a01679 | 4421 | syms[k - 1] = syms[k]; |
96d887e8 PH |
4422 | nsyms -= 1; |
4423 | goto NextSymbol; | |
4c4b4cd2 | 4424 | } |
4c4b4cd2 | 4425 | } |
4c4b4cd2 | 4426 | } |
96d887e8 PH |
4427 | i += 1; |
4428 | NextSymbol: | |
4429 | ; | |
14f9c5c9 | 4430 | } |
96d887e8 | 4431 | return nsyms; |
14f9c5c9 AS |
4432 | } |
4433 | ||
96d887e8 PH |
4434 | /* Given a type that corresponds to a renaming entity, use the type name |
4435 | to extract the scope (package name or function name, fully qualified, | |
4436 | and following the GNAT encoding convention) where this renaming has been | |
4437 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4438 | |
96d887e8 PH |
4439 | static char * |
4440 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4441 | { |
96d887e8 PH |
4442 | /* The renaming types adhere to the following convention: |
4443 | <scope>__<rename>___<XR extension>. | |
4444 | So, to extract the scope, we search for the "___XR" extension, | |
4445 | and then backtrack until we find the first "__". */ | |
76a01679 | 4446 | |
96d887e8 PH |
4447 | const char *name = type_name_no_tag (renaming_type); |
4448 | char *suffix = strstr (name, "___XR"); | |
4449 | char *last; | |
4450 | int scope_len; | |
4451 | char *scope; | |
14f9c5c9 | 4452 | |
96d887e8 PH |
4453 | /* Now, backtrack a bit until we find the first "__". Start looking |
4454 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4455 | |
96d887e8 PH |
4456 | for (last = suffix - 3; last > name; last--) |
4457 | if (last[0] == '_' && last[1] == '_') | |
4458 | break; | |
76a01679 | 4459 | |
96d887e8 | 4460 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4461 | |
96d887e8 PH |
4462 | scope_len = last - name; |
4463 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4464 | |
96d887e8 PH |
4465 | strncpy (scope, name, scope_len); |
4466 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4467 | |
96d887e8 | 4468 | return scope; |
4c4b4cd2 PH |
4469 | } |
4470 | ||
96d887e8 | 4471 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4472 | |
96d887e8 PH |
4473 | static int |
4474 | is_package_name (const char *name) | |
4c4b4cd2 | 4475 | { |
96d887e8 PH |
4476 | /* Here, We take advantage of the fact that no symbols are generated |
4477 | for packages, while symbols are generated for each function. | |
4478 | So the condition for NAME represent a package becomes equivalent | |
4479 | to NAME not existing in our list of symbols. There is only one | |
4480 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4481 | |
96d887e8 | 4482 | char *fun_name; |
76a01679 | 4483 | |
96d887e8 PH |
4484 | /* If it is a function that has not been defined at library level, |
4485 | then we should be able to look it up in the symbols. */ | |
4486 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4487 | return 0; | |
14f9c5c9 | 4488 | |
96d887e8 PH |
4489 | /* Library-level function names start with "_ada_". See if function |
4490 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4491 | |
96d887e8 | 4492 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4493 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4494 | if (strstr (name, "__") != NULL) |
4495 | return 0; | |
4c4b4cd2 | 4496 | |
b435e160 | 4497 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4498 | |
96d887e8 PH |
4499 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4500 | } | |
14f9c5c9 | 4501 | |
96d887e8 | 4502 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4503 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4504 | |
96d887e8 | 4505 | static int |
aeb5907d | 4506 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4507 | { |
aeb5907d JB |
4508 | char *scope; |
4509 | ||
4510 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4511 | return 0; | |
4512 | ||
4513 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4514 | |
96d887e8 | 4515 | make_cleanup (xfree, scope); |
14f9c5c9 | 4516 | |
96d887e8 PH |
4517 | /* If the rename has been defined in a package, then it is visible. */ |
4518 | if (is_package_name (scope)) | |
aeb5907d | 4519 | return 0; |
14f9c5c9 | 4520 | |
96d887e8 PH |
4521 | /* Check that the rename is in the current function scope by checking |
4522 | that its name starts with SCOPE. */ | |
76a01679 | 4523 | |
96d887e8 PH |
4524 | /* If the function name starts with "_ada_", it means that it is |
4525 | a library-level function. Strip this prefix before doing the | |
4526 | comparison, as the encoding for the renaming does not contain | |
4527 | this prefix. */ | |
4528 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4529 | function_name += 5; | |
f26caa11 | 4530 | |
aeb5907d | 4531 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4532 | } |
4533 | ||
aeb5907d JB |
4534 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4535 | is not visible from the function associated with CURRENT_BLOCK or | |
4536 | that is superfluous due to the presence of more specific renaming | |
4537 | information. Places surviving symbols in the initial entries of | |
4538 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4539 | |
4540 | Rationale: | |
aeb5907d JB |
4541 | First, in cases where an object renaming is implemented as a |
4542 | reference variable, GNAT may produce both the actual reference | |
4543 | variable and the renaming encoding. In this case, we discard the | |
4544 | latter. | |
4545 | ||
4546 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4547 | entity. Unfortunately, STABS currently does not support the definition |
4548 | of types that are local to a given lexical block, so all renamings types | |
4549 | are emitted at library level. As a consequence, if an application | |
4550 | contains two renaming entities using the same name, and a user tries to | |
4551 | print the value of one of these entities, the result of the ada symbol | |
4552 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4553 | |
96d887e8 PH |
4554 | This function partially covers for this limitation by attempting to |
4555 | remove from the SYMS list renaming symbols that should be visible | |
4556 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4557 | method with the current information available. The implementation | |
4558 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4559 | ||
4560 | - When the user tries to print a rename in a function while there | |
4561 | is another rename entity defined in a package: Normally, the | |
4562 | rename in the function has precedence over the rename in the | |
4563 | package, so the latter should be removed from the list. This is | |
4564 | currently not the case. | |
4565 | ||
4566 | - This function will incorrectly remove valid renames if | |
4567 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4568 | has been changed by an "Export" pragma. As a consequence, | |
4569 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4570 | |
14f9c5c9 | 4571 | static int |
aeb5907d JB |
4572 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4573 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4574 | { |
4575 | struct symbol *current_function; | |
4576 | char *current_function_name; | |
4577 | int i; | |
aeb5907d JB |
4578 | int is_new_style_renaming; |
4579 | ||
4580 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4581 | a simple variable foo in the same block, discard the latter. | |
4582 | First, zero out such symbols, then compress. */ | |
4583 | is_new_style_renaming = 0; | |
4584 | for (i = 0; i < nsyms; i += 1) | |
4585 | { | |
4586 | struct symbol *sym = syms[i].sym; | |
4587 | struct block *block = syms[i].block; | |
4588 | const char *name; | |
4589 | const char *suffix; | |
4590 | ||
4591 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4592 | continue; | |
4593 | name = SYMBOL_LINKAGE_NAME (sym); | |
4594 | suffix = strstr (name, "___XR"); | |
4595 | ||
4596 | if (suffix != NULL) | |
4597 | { | |
4598 | int name_len = suffix - name; | |
4599 | int j; | |
4600 | is_new_style_renaming = 1; | |
4601 | for (j = 0; j < nsyms; j += 1) | |
4602 | if (i != j && syms[j].sym != NULL | |
4603 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4604 | name_len) == 0 | |
4605 | && block == syms[j].block) | |
4606 | syms[j].sym = NULL; | |
4607 | } | |
4608 | } | |
4609 | if (is_new_style_renaming) | |
4610 | { | |
4611 | int j, k; | |
4612 | ||
4613 | for (j = k = 0; j < nsyms; j += 1) | |
4614 | if (syms[j].sym != NULL) | |
4615 | { | |
4616 | syms[k] = syms[j]; | |
4617 | k += 1; | |
4618 | } | |
4619 | return k; | |
4620 | } | |
4c4b4cd2 PH |
4621 | |
4622 | /* Extract the function name associated to CURRENT_BLOCK. | |
4623 | Abort if unable to do so. */ | |
76a01679 | 4624 | |
4c4b4cd2 PH |
4625 | if (current_block == NULL) |
4626 | return nsyms; | |
76a01679 | 4627 | |
7f0df278 | 4628 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4629 | if (current_function == NULL) |
4630 | return nsyms; | |
4631 | ||
4632 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4633 | if (current_function_name == NULL) | |
4634 | return nsyms; | |
4635 | ||
4636 | /* Check each of the symbols, and remove it from the list if it is | |
4637 | a type corresponding to a renaming that is out of the scope of | |
4638 | the current block. */ | |
4639 | ||
4640 | i = 0; | |
4641 | while (i < nsyms) | |
4642 | { | |
aeb5907d JB |
4643 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4644 | == ADA_OBJECT_RENAMING | |
4645 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4646 | { |
4647 | int j; | |
aeb5907d | 4648 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4649 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4650 | nsyms -= 1; |
4651 | } | |
4652 | else | |
4653 | i += 1; | |
4654 | } | |
4655 | ||
4656 | return nsyms; | |
4657 | } | |
4658 | ||
4659 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing | |
4660 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4661 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4662 | indicating the symbols found and the blocks and symbol tables (if |
4663 | any) in which they were found. This vector are transient---good only to | |
4664 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4665 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4666 | is the one match returned (no other matches in that or | |
4667 | enclosing blocks is returned). If there are any matches in or | |
4668 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4669 | search extends to global and file-scope (static) symbol tables. | |
4670 | Names prefixed with "standard__" are handled specially: "standard__" | |
4671 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4672 | |
4673 | int | |
4c4b4cd2 | 4674 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4675 | domain_enum namespace, |
4676 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4677 | { |
4678 | struct symbol *sym; | |
4679 | struct symtab *s; | |
4680 | struct partial_symtab *ps; | |
4681 | struct blockvector *bv; | |
4682 | struct objfile *objfile; | |
14f9c5c9 | 4683 | struct block *block; |
4c4b4cd2 | 4684 | const char *name; |
14f9c5c9 | 4685 | struct minimal_symbol *msymbol; |
4c4b4cd2 | 4686 | int wild_match; |
14f9c5c9 | 4687 | int cacheIfUnique; |
4c4b4cd2 PH |
4688 | int block_depth; |
4689 | int ndefns; | |
14f9c5c9 | 4690 | |
4c4b4cd2 PH |
4691 | obstack_free (&symbol_list_obstack, NULL); |
4692 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4693 | |
14f9c5c9 AS |
4694 | cacheIfUnique = 0; |
4695 | ||
4696 | /* Search specified block and its superiors. */ | |
4697 | ||
4c4b4cd2 PH |
4698 | wild_match = (strstr (name0, "__") == NULL); |
4699 | name = name0; | |
76a01679 JB |
4700 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4701 | needed, but adding const will | |
4702 | have a cascade effect. */ | |
4c4b4cd2 PH |
4703 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4704 | { | |
4705 | wild_match = 0; | |
4706 | block = NULL; | |
4707 | name = name0 + sizeof ("standard__") - 1; | |
4708 | } | |
4709 | ||
4710 | block_depth = 0; | |
14f9c5c9 AS |
4711 | while (block != NULL) |
4712 | { | |
4c4b4cd2 | 4713 | block_depth += 1; |
76a01679 | 4714 | ada_add_block_symbols (&symbol_list_obstack, block, name, |
2570f2b7 | 4715 | namespace, NULL, wild_match); |
14f9c5c9 | 4716 | |
4c4b4cd2 PH |
4717 | /* If we found a non-function match, assume that's the one. */ |
4718 | if (is_nonfunction (defns_collected (&symbol_list_obstack, 0), | |
76a01679 | 4719 | num_defns_collected (&symbol_list_obstack))) |
4c4b4cd2 | 4720 | goto done; |
14f9c5c9 AS |
4721 | |
4722 | block = BLOCK_SUPERBLOCK (block); | |
4723 | } | |
4724 | ||
4c4b4cd2 PH |
4725 | /* If no luck so far, try to find NAME as a local symbol in some lexically |
4726 | enclosing subprogram. */ | |
4727 | if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2) | |
4728 | add_symbols_from_enclosing_procs (&symbol_list_obstack, | |
76a01679 | 4729 | name, namespace, wild_match); |
4c4b4cd2 PH |
4730 | |
4731 | /* If we found ANY matches among non-global symbols, we're done. */ | |
14f9c5c9 | 4732 | |
4c4b4cd2 | 4733 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4734 | goto done; |
d2e4a39e | 4735 | |
14f9c5c9 | 4736 | cacheIfUnique = 1; |
2570f2b7 | 4737 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4738 | { |
4739 | if (sym != NULL) | |
2570f2b7 | 4740 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4741 | goto done; |
4742 | } | |
14f9c5c9 AS |
4743 | |
4744 | /* Now add symbols from all global blocks: symbol tables, minimal symbol | |
4c4b4cd2 | 4745 | tables, and psymtab's. */ |
14f9c5c9 | 4746 | |
11309657 | 4747 | ALL_PRIMARY_SYMTABS (objfile, s) |
d2e4a39e AS |
4748 | { |
4749 | QUIT; | |
d2e4a39e AS |
4750 | bv = BLOCKVECTOR (s); |
4751 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
76a01679 | 4752 | ada_add_block_symbols (&symbol_list_obstack, block, name, namespace, |
2570f2b7 | 4753 | objfile, wild_match); |
d2e4a39e | 4754 | } |
14f9c5c9 | 4755 | |
4c4b4cd2 | 4756 | if (namespace == VAR_DOMAIN) |
14f9c5c9 AS |
4757 | { |
4758 | ALL_MSYMBOLS (objfile, msymbol) | |
d2e4a39e | 4759 | { |
4c4b4cd2 PH |
4760 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)) |
4761 | { | |
4762 | switch (MSYMBOL_TYPE (msymbol)) | |
4763 | { | |
4764 | case mst_solib_trampoline: | |
4765 | break; | |
4766 | default: | |
4767 | s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)); | |
4768 | if (s != NULL) | |
4769 | { | |
4770 | int ndefns0 = num_defns_collected (&symbol_list_obstack); | |
4771 | QUIT; | |
4772 | bv = BLOCKVECTOR (s); | |
4773 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
4774 | ada_add_block_symbols (&symbol_list_obstack, block, | |
4775 | SYMBOL_LINKAGE_NAME (msymbol), | |
2570f2b7 | 4776 | namespace, objfile, wild_match); |
76a01679 | 4777 | |
4c4b4cd2 PH |
4778 | if (num_defns_collected (&symbol_list_obstack) == ndefns0) |
4779 | { | |
4780 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
4781 | ada_add_block_symbols (&symbol_list_obstack, block, | |
4782 | SYMBOL_LINKAGE_NAME (msymbol), | |
2570f2b7 | 4783 | namespace, objfile, |
4c4b4cd2 PH |
4784 | wild_match); |
4785 | } | |
4786 | } | |
4787 | } | |
4788 | } | |
d2e4a39e | 4789 | } |
14f9c5c9 | 4790 | } |
d2e4a39e | 4791 | |
14f9c5c9 | 4792 | ALL_PSYMTABS (objfile, ps) |
d2e4a39e AS |
4793 | { |
4794 | QUIT; | |
4795 | if (!ps->readin | |
4c4b4cd2 | 4796 | && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match)) |
d2e4a39e | 4797 | { |
4c4b4cd2 PH |
4798 | s = PSYMTAB_TO_SYMTAB (ps); |
4799 | if (!s->primary) | |
4800 | continue; | |
4801 | bv = BLOCKVECTOR (s); | |
4802 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
4803 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
2570f2b7 | 4804 | namespace, objfile, wild_match); |
d2e4a39e AS |
4805 | } |
4806 | } | |
4807 | ||
4c4b4cd2 | 4808 | /* Now add symbols from all per-file blocks if we've gotten no hits |
14f9c5c9 | 4809 | (Not strictly correct, but perhaps better than an error). |
4c4b4cd2 | 4810 | Do the symtabs first, then check the psymtabs. */ |
d2e4a39e | 4811 | |
4c4b4cd2 | 4812 | if (num_defns_collected (&symbol_list_obstack) == 0) |
14f9c5c9 AS |
4813 | { |
4814 | ||
11309657 | 4815 | ALL_PRIMARY_SYMTABS (objfile, s) |
d2e4a39e | 4816 | { |
4c4b4cd2 | 4817 | QUIT; |
4c4b4cd2 PH |
4818 | bv = BLOCKVECTOR (s); |
4819 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
76a01679 | 4820 | ada_add_block_symbols (&symbol_list_obstack, block, name, namespace, |
2570f2b7 | 4821 | objfile, wild_match); |
d2e4a39e AS |
4822 | } |
4823 | ||
14f9c5c9 | 4824 | ALL_PSYMTABS (objfile, ps) |
d2e4a39e | 4825 | { |
4c4b4cd2 PH |
4826 | QUIT; |
4827 | if (!ps->readin | |
4828 | && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match)) | |
4829 | { | |
4830 | s = PSYMTAB_TO_SYMTAB (ps); | |
4831 | bv = BLOCKVECTOR (s); | |
4832 | if (!s->primary) | |
4833 | continue; | |
4834 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
76a01679 | 4835 | ada_add_block_symbols (&symbol_list_obstack, block, name, |
2570f2b7 | 4836 | namespace, objfile, wild_match); |
4c4b4cd2 | 4837 | } |
d2e4a39e AS |
4838 | } |
4839 | } | |
14f9c5c9 | 4840 | |
4c4b4cd2 PH |
4841 | done: |
4842 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4843 | *results = defns_collected (&symbol_list_obstack, 1); | |
4844 | ||
4845 | ndefns = remove_extra_symbols (*results, ndefns); | |
4846 | ||
d2e4a39e | 4847 | if (ndefns == 0) |
2570f2b7 | 4848 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4849 | |
4c4b4cd2 | 4850 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4851 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4852 | |
aeb5907d | 4853 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4854 | |
14f9c5c9 AS |
4855 | return ndefns; |
4856 | } | |
4857 | ||
d2e4a39e | 4858 | struct symbol * |
aeb5907d | 4859 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4860 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4861 | { |
4c4b4cd2 | 4862 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4863 | int n_candidates; |
4864 | ||
aeb5907d | 4865 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4866 | |
4867 | if (n_candidates == 0) | |
4868 | return NULL; | |
4c4b4cd2 | 4869 | |
aeb5907d JB |
4870 | if (block_found != NULL) |
4871 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4872 | |
21b556f4 | 4873 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4874 | } |
4875 | ||
4876 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4877 | scope and in global scopes, or NULL if none. NAME is folded and | |
4878 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4879 | choosing the first symbol if there are multiple choices. | |
4880 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4881 | table in which the symbol was found (in both cases, these | |
4882 | assignments occur only if the pointers are non-null). */ | |
4883 | struct symbol * | |
4884 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4885 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4886 | { |
4887 | if (is_a_field_of_this != NULL) | |
4888 | *is_a_field_of_this = 0; | |
4889 | ||
4890 | return | |
4891 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4892 | block0, namespace, NULL); |
4c4b4cd2 | 4893 | } |
14f9c5c9 | 4894 | |
4c4b4cd2 PH |
4895 | static struct symbol * |
4896 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4897 | const char *linkage_name, |
4898 | const struct block *block, | |
21b556f4 | 4899 | const domain_enum domain) |
4c4b4cd2 PH |
4900 | { |
4901 | if (linkage_name == NULL) | |
4902 | linkage_name = name; | |
76a01679 | 4903 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4904 | NULL); |
14f9c5c9 AS |
4905 | } |
4906 | ||
4907 | ||
4c4b4cd2 PH |
4908 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4909 | that is to be ignored for matching purposes. Suffixes of parallel | |
4910 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
4911 | are given by either of the regular expression: | |
4912 | ||
babe1480 JB |
4913 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4914 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4915 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4916 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4917 | |
4918 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4919 | match is performed. This sequence is used to differentiate homonyms, | |
4920 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4921 | |
14f9c5c9 | 4922 | static int |
d2e4a39e | 4923 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4924 | { |
4925 | int k; | |
4c4b4cd2 PH |
4926 | const char *matching; |
4927 | const int len = strlen (str); | |
4928 | ||
babe1480 JB |
4929 | /* Skip optional leading __[0-9]+. */ |
4930 | ||
4c4b4cd2 PH |
4931 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4932 | { | |
babe1480 JB |
4933 | str += 3; |
4934 | while (isdigit (str[0])) | |
4935 | str += 1; | |
4c4b4cd2 | 4936 | } |
babe1480 JB |
4937 | |
4938 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4939 | |
babe1480 | 4940 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4941 | { |
babe1480 | 4942 | matching = str + 1; |
4c4b4cd2 PH |
4943 | while (isdigit (matching[0])) |
4944 | matching += 1; | |
4945 | if (matching[0] == '\0') | |
4946 | return 1; | |
4947 | } | |
4948 | ||
4949 | /* ___[0-9]+ */ | |
babe1480 | 4950 | |
4c4b4cd2 PH |
4951 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4952 | { | |
4953 | matching = str + 3; | |
4954 | while (isdigit (matching[0])) | |
4955 | matching += 1; | |
4956 | if (matching[0] == '\0') | |
4957 | return 1; | |
4958 | } | |
4959 | ||
529cad9c PH |
4960 | #if 0 |
4961 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4962 | with a N at the end. Unfortunately, the compiler uses the same | |
4963 | convention for other internal types it creates. So treating | |
4964 | all entity names that end with an "N" as a name suffix causes | |
4965 | some regressions. For instance, consider the case of an enumerated | |
4966 | type. To support the 'Image attribute, it creates an array whose | |
4967 | name ends with N. | |
4968 | Having a single character like this as a suffix carrying some | |
4969 | information is a bit risky. Perhaps we should change the encoding | |
4970 | to be something like "_N" instead. In the meantime, do not do | |
4971 | the following check. */ | |
4972 | /* Protected Object Subprograms */ | |
4973 | if (len == 1 && str [0] == 'N') | |
4974 | return 1; | |
4975 | #endif | |
4976 | ||
4977 | /* _E[0-9]+[bs]$ */ | |
4978 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4979 | { | |
4980 | matching = str + 3; | |
4981 | while (isdigit (matching[0])) | |
4982 | matching += 1; | |
4983 | if ((matching[0] == 'b' || matching[0] == 's') | |
4984 | && matching [1] == '\0') | |
4985 | return 1; | |
4986 | } | |
4987 | ||
4c4b4cd2 PH |
4988 | /* ??? We should not modify STR directly, as we are doing below. This |
4989 | is fine in this case, but may become problematic later if we find | |
4990 | that this alternative did not work, and want to try matching | |
4991 | another one from the begining of STR. Since we modified it, we | |
4992 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4993 | if (str[0] == 'X') |
4994 | { | |
4995 | str += 1; | |
d2e4a39e | 4996 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4997 | { |
4998 | if (str[0] != 'n' && str[0] != 'b') | |
4999 | return 0; | |
5000 | str += 1; | |
5001 | } | |
14f9c5c9 | 5002 | } |
babe1480 | 5003 | |
14f9c5c9 AS |
5004 | if (str[0] == '\000') |
5005 | return 1; | |
babe1480 | 5006 | |
d2e4a39e | 5007 | if (str[0] == '_') |
14f9c5c9 AS |
5008 | { |
5009 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5010 | return 0; |
d2e4a39e | 5011 | if (str[2] == '_') |
4c4b4cd2 | 5012 | { |
61ee279c PH |
5013 | if (strcmp (str + 3, "JM") == 0) |
5014 | return 1; | |
5015 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5016 | the LJM suffix in favor of the JM one. But we will | |
5017 | still accept LJM as a valid suffix for a reasonable | |
5018 | amount of time, just to allow ourselves to debug programs | |
5019 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5020 | if (strcmp (str + 3, "LJM") == 0) |
5021 | return 1; | |
5022 | if (str[3] != 'X') | |
5023 | return 0; | |
1265e4aa JB |
5024 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5025 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5026 | return 1; |
5027 | if (str[4] == 'R' && str[5] != 'T') | |
5028 | return 1; | |
5029 | return 0; | |
5030 | } | |
5031 | if (!isdigit (str[2])) | |
5032 | return 0; | |
5033 | for (k = 3; str[k] != '\0'; k += 1) | |
5034 | if (!isdigit (str[k]) && str[k] != '_') | |
5035 | return 0; | |
14f9c5c9 AS |
5036 | return 1; |
5037 | } | |
4c4b4cd2 | 5038 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5039 | { |
4c4b4cd2 PH |
5040 | for (k = 2; str[k] != '\0'; k += 1) |
5041 | if (!isdigit (str[k]) && str[k] != '_') | |
5042 | return 0; | |
14f9c5c9 AS |
5043 | return 1; |
5044 | } | |
5045 | return 0; | |
5046 | } | |
d2e4a39e | 5047 | |
4c4b4cd2 PH |
5048 | /* Return nonzero if the given string starts with a dot ('.') |
5049 | followed by zero or more digits. | |
5050 | ||
5051 | Note: brobecker/2003-11-10: A forward declaration has not been | |
5052 | added at the begining of this file yet, because this function | |
5053 | is only used to work around a problem found during wild matching | |
5054 | when trying to match minimal symbol names against symbol names | |
5055 | obtained from dwarf-2 data. This function is therefore currently | |
5056 | only used in wild_match() and is likely to be deleted when the | |
5057 | problem in dwarf-2 is fixed. */ | |
5058 | ||
5059 | static int | |
5060 | is_dot_digits_suffix (const char *str) | |
5061 | { | |
5062 | if (str[0] != '.') | |
5063 | return 0; | |
5064 | ||
5065 | str++; | |
5066 | while (isdigit (str[0])) | |
5067 | str++; | |
5068 | return (str[0] == '\0'); | |
5069 | } | |
5070 | ||
aeb5907d JB |
5071 | /* Return non-zero if the string starting at NAME and ending before |
5072 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5073 | |
5074 | static int | |
5075 | is_valid_name_for_wild_match (const char *name0) | |
5076 | { | |
5077 | const char *decoded_name = ada_decode (name0); | |
5078 | int i; | |
5079 | ||
5080 | for (i=0; decoded_name[i] != '\0'; i++) | |
5081 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5082 | return 0; | |
5083 | ||
5084 | return 1; | |
5085 | } | |
5086 | ||
4c4b4cd2 PH |
5087 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
5088 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
5089 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5090 | true). */ | |
5091 | ||
14f9c5c9 | 5092 | static int |
4c4b4cd2 | 5093 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 AS |
5094 | { |
5095 | int name_len; | |
4c4b4cd2 | 5096 | char *name; |
aeb5907d | 5097 | char *name_start; |
4c4b4cd2 PH |
5098 | char *patn; |
5099 | ||
5100 | /* FIXME: brobecker/2003-11-10: For some reason, the symbol name | |
5101 | stored in the symbol table for nested function names is sometimes | |
5102 | different from the name of the associated entity stored in | |
5103 | the dwarf-2 data: This is the case for nested subprograms, where | |
5104 | the minimal symbol name contains a trailing ".[:digit:]+" suffix, | |
5105 | while the symbol name from the dwarf-2 data does not. | |
5106 | ||
5107 | Although the DWARF-2 standard documents that entity names stored | |
5108 | in the dwarf-2 data should be identical to the name as seen in | |
5109 | the source code, GNAT takes a different approach as we already use | |
5110 | a special encoding mechanism to convey the information so that | |
5111 | a C debugger can still use the information generated to debug | |
5112 | Ada programs. A corollary is that the symbol names in the dwarf-2 | |
5113 | data should match the names found in the symbol table. I therefore | |
5114 | consider this issue as a compiler defect. | |
76a01679 | 5115 | |
4c4b4cd2 PH |
5116 | Until the compiler is properly fixed, we work-around the problem |
5117 | by ignoring such suffixes during the match. We do so by making | |
5118 | a copy of PATN0 and NAME0, and then by stripping such a suffix | |
5119 | if present. We then perform the match on the resulting strings. */ | |
5120 | { | |
5121 | char *dot; | |
5122 | name_len = strlen (name0); | |
5123 | ||
aeb5907d | 5124 | name = name_start = (char *) alloca ((name_len + 1) * sizeof (char)); |
4c4b4cd2 PH |
5125 | strcpy (name, name0); |
5126 | dot = strrchr (name, '.'); | |
5127 | if (dot != NULL && is_dot_digits_suffix (dot)) | |
5128 | *dot = '\0'; | |
5129 | ||
5130 | patn = (char *) alloca ((patn_len + 1) * sizeof (char)); | |
5131 | strncpy (patn, patn0, patn_len); | |
5132 | patn[patn_len] = '\0'; | |
5133 | dot = strrchr (patn, '.'); | |
5134 | if (dot != NULL && is_dot_digits_suffix (dot)) | |
5135 | { | |
5136 | *dot = '\0'; | |
5137 | patn_len = dot - patn; | |
5138 | } | |
5139 | } | |
5140 | ||
5141 | /* Now perform the wild match. */ | |
14f9c5c9 AS |
5142 | |
5143 | name_len = strlen (name); | |
4c4b4cd2 PH |
5144 | if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0 |
5145 | && strncmp (patn, name + 5, patn_len) == 0 | |
d2e4a39e | 5146 | && is_name_suffix (name + patn_len + 5)) |
14f9c5c9 AS |
5147 | return 1; |
5148 | ||
d2e4a39e | 5149 | while (name_len >= patn_len) |
14f9c5c9 | 5150 | { |
4c4b4cd2 PH |
5151 | if (strncmp (patn, name, patn_len) == 0 |
5152 | && is_name_suffix (name + patn_len)) | |
aeb5907d | 5153 | return (name == name_start || is_valid_name_for_wild_match (name0)); |
4c4b4cd2 PH |
5154 | do |
5155 | { | |
5156 | name += 1; | |
5157 | name_len -= 1; | |
5158 | } | |
d2e4a39e | 5159 | while (name_len > 0 |
4c4b4cd2 | 5160 | && name[0] != '.' && (name[0] != '_' || name[1] != '_')); |
14f9c5c9 | 5161 | if (name_len <= 0) |
4c4b4cd2 | 5162 | return 0; |
14f9c5c9 | 5163 | if (name[0] == '_') |
4c4b4cd2 PH |
5164 | { |
5165 | if (!islower (name[2])) | |
5166 | return 0; | |
5167 | name += 2; | |
5168 | name_len -= 2; | |
5169 | } | |
14f9c5c9 | 5170 | else |
4c4b4cd2 PH |
5171 | { |
5172 | if (!islower (name[1])) | |
5173 | return 0; | |
5174 | name += 1; | |
5175 | name_len -= 1; | |
5176 | } | |
96d887e8 PH |
5177 | } |
5178 | ||
5179 | return 0; | |
5180 | } | |
5181 | ||
5182 | ||
5183 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to | |
5184 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
5185 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
5186 | OBJFILE is the section containing BLOCK. | |
5187 | SYMTAB is recorded with each symbol added. */ | |
5188 | ||
5189 | static void | |
5190 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5191 | struct block *block, const char *name, |
96d887e8 | 5192 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5193 | int wild) |
96d887e8 PH |
5194 | { |
5195 | struct dict_iterator iter; | |
5196 | int name_len = strlen (name); | |
5197 | /* A matching argument symbol, if any. */ | |
5198 | struct symbol *arg_sym; | |
5199 | /* Set true when we find a matching non-argument symbol. */ | |
5200 | int found_sym; | |
5201 | struct symbol *sym; | |
5202 | ||
5203 | arg_sym = NULL; | |
5204 | found_sym = 0; | |
5205 | if (wild) | |
5206 | { | |
5207 | struct symbol *sym; | |
5208 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5209 | { |
5eeb2539 AR |
5210 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5211 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 5212 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 5213 | { |
2a2d4dc3 AS |
5214 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5215 | continue; | |
5216 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5217 | arg_sym = sym; | |
5218 | else | |
5219 | { | |
76a01679 JB |
5220 | found_sym = 1; |
5221 | add_defn_to_vec (obstackp, | |
5222 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5223 | block); |
76a01679 JB |
5224 | } |
5225 | } | |
5226 | } | |
96d887e8 PH |
5227 | } |
5228 | else | |
5229 | { | |
5230 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5231 | { |
5eeb2539 AR |
5232 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5233 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5234 | { |
5235 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5236 | if (cmp == 0 | |
5237 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5238 | { | |
2a2d4dc3 AS |
5239 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5240 | { | |
5241 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5242 | arg_sym = sym; | |
5243 | else | |
5244 | { | |
5245 | found_sym = 1; | |
5246 | add_defn_to_vec (obstackp, | |
5247 | fixup_symbol_section (sym, objfile), | |
5248 | block); | |
5249 | } | |
5250 | } | |
76a01679 JB |
5251 | } |
5252 | } | |
5253 | } | |
96d887e8 PH |
5254 | } |
5255 | ||
5256 | if (!found_sym && arg_sym != NULL) | |
5257 | { | |
76a01679 JB |
5258 | add_defn_to_vec (obstackp, |
5259 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5260 | block); |
96d887e8 PH |
5261 | } |
5262 | ||
5263 | if (!wild) | |
5264 | { | |
5265 | arg_sym = NULL; | |
5266 | found_sym = 0; | |
5267 | ||
5268 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5269 | { |
5eeb2539 AR |
5270 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5271 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5272 | { |
5273 | int cmp; | |
5274 | ||
5275 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5276 | if (cmp == 0) | |
5277 | { | |
5278 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5279 | if (cmp == 0) | |
5280 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5281 | name_len); | |
5282 | } | |
5283 | ||
5284 | if (cmp == 0 | |
5285 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5286 | { | |
2a2d4dc3 AS |
5287 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5288 | { | |
5289 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5290 | arg_sym = sym; | |
5291 | else | |
5292 | { | |
5293 | found_sym = 1; | |
5294 | add_defn_to_vec (obstackp, | |
5295 | fixup_symbol_section (sym, objfile), | |
5296 | block); | |
5297 | } | |
5298 | } | |
76a01679 JB |
5299 | } |
5300 | } | |
76a01679 | 5301 | } |
96d887e8 PH |
5302 | |
5303 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5304 | They aren't parameters, right? */ | |
5305 | if (!found_sym && arg_sym != NULL) | |
5306 | { | |
5307 | add_defn_to_vec (obstackp, | |
76a01679 | 5308 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5309 | block); |
96d887e8 PH |
5310 | } |
5311 | } | |
5312 | } | |
5313 | \f | |
41d27058 JB |
5314 | |
5315 | /* Symbol Completion */ | |
5316 | ||
5317 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5318 | name in a form that's appropriate for the completion. The result | |
5319 | does not need to be deallocated, but is only good until the next call. | |
5320 | ||
5321 | TEXT_LEN is equal to the length of TEXT. | |
5322 | Perform a wild match if WILD_MATCH is set. | |
5323 | ENCODED should be set if TEXT represents the start of a symbol name | |
5324 | in its encoded form. */ | |
5325 | ||
5326 | static const char * | |
5327 | symbol_completion_match (const char *sym_name, | |
5328 | const char *text, int text_len, | |
5329 | int wild_match, int encoded) | |
5330 | { | |
5331 | char *result; | |
5332 | const int verbatim_match = (text[0] == '<'); | |
5333 | int match = 0; | |
5334 | ||
5335 | if (verbatim_match) | |
5336 | { | |
5337 | /* Strip the leading angle bracket. */ | |
5338 | text = text + 1; | |
5339 | text_len--; | |
5340 | } | |
5341 | ||
5342 | /* First, test against the fully qualified name of the symbol. */ | |
5343 | ||
5344 | if (strncmp (sym_name, text, text_len) == 0) | |
5345 | match = 1; | |
5346 | ||
5347 | if (match && !encoded) | |
5348 | { | |
5349 | /* One needed check before declaring a positive match is to verify | |
5350 | that iff we are doing a verbatim match, the decoded version | |
5351 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5352 | is not a suitable completion. */ | |
5353 | const char *sym_name_copy = sym_name; | |
5354 | int has_angle_bracket; | |
5355 | ||
5356 | sym_name = ada_decode (sym_name); | |
5357 | has_angle_bracket = (sym_name[0] == '<'); | |
5358 | match = (has_angle_bracket == verbatim_match); | |
5359 | sym_name = sym_name_copy; | |
5360 | } | |
5361 | ||
5362 | if (match && !verbatim_match) | |
5363 | { | |
5364 | /* When doing non-verbatim match, another check that needs to | |
5365 | be done is to verify that the potentially matching symbol name | |
5366 | does not include capital letters, because the ada-mode would | |
5367 | not be able to understand these symbol names without the | |
5368 | angle bracket notation. */ | |
5369 | const char *tmp; | |
5370 | ||
5371 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5372 | if (*tmp != '\0') | |
5373 | match = 0; | |
5374 | } | |
5375 | ||
5376 | /* Second: Try wild matching... */ | |
5377 | ||
5378 | if (!match && wild_match) | |
5379 | { | |
5380 | /* Since we are doing wild matching, this means that TEXT | |
5381 | may represent an unqualified symbol name. We therefore must | |
5382 | also compare TEXT against the unqualified name of the symbol. */ | |
5383 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5384 | ||
5385 | if (strncmp (sym_name, text, text_len) == 0) | |
5386 | match = 1; | |
5387 | } | |
5388 | ||
5389 | /* Finally: If we found a mach, prepare the result to return. */ | |
5390 | ||
5391 | if (!match) | |
5392 | return NULL; | |
5393 | ||
5394 | if (verbatim_match) | |
5395 | sym_name = add_angle_brackets (sym_name); | |
5396 | ||
5397 | if (!encoded) | |
5398 | sym_name = ada_decode (sym_name); | |
5399 | ||
5400 | return sym_name; | |
5401 | } | |
5402 | ||
2ba95b9b JB |
5403 | typedef char *char_ptr; |
5404 | DEF_VEC_P (char_ptr); | |
5405 | ||
41d27058 JB |
5406 | /* A companion function to ada_make_symbol_completion_list(). |
5407 | Check if SYM_NAME represents a symbol which name would be suitable | |
5408 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5409 | it is appended at the end of the given string vector SV. | |
5410 | ||
5411 | ORIG_TEXT is the string original string from the user command | |
5412 | that needs to be completed. WORD is the entire command on which | |
5413 | completion should be performed. These two parameters are used to | |
5414 | determine which part of the symbol name should be added to the | |
5415 | completion vector. | |
5416 | if WILD_MATCH is set, then wild matching is performed. | |
5417 | ENCODED should be set if TEXT represents a symbol name in its | |
5418 | encoded formed (in which case the completion should also be | |
5419 | encoded). */ | |
5420 | ||
5421 | static void | |
d6565258 | 5422 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5423 | const char *sym_name, |
5424 | const char *text, int text_len, | |
5425 | const char *orig_text, const char *word, | |
5426 | int wild_match, int encoded) | |
5427 | { | |
5428 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5429 | wild_match, encoded); | |
5430 | char *completion; | |
5431 | ||
5432 | if (match == NULL) | |
5433 | return; | |
5434 | ||
5435 | /* We found a match, so add the appropriate completion to the given | |
5436 | string vector. */ | |
5437 | ||
5438 | if (word == orig_text) | |
5439 | { | |
5440 | completion = xmalloc (strlen (match) + 5); | |
5441 | strcpy (completion, match); | |
5442 | } | |
5443 | else if (word > orig_text) | |
5444 | { | |
5445 | /* Return some portion of sym_name. */ | |
5446 | completion = xmalloc (strlen (match) + 5); | |
5447 | strcpy (completion, match + (word - orig_text)); | |
5448 | } | |
5449 | else | |
5450 | { | |
5451 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5452 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5453 | strncpy (completion, word, orig_text - word); | |
5454 | completion[orig_text - word] = '\0'; | |
5455 | strcat (completion, match); | |
5456 | } | |
5457 | ||
d6565258 | 5458 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5459 | } |
5460 | ||
5461 | /* Return a list of possible symbol names completing TEXT0. The list | |
5462 | is NULL terminated. WORD is the entire command on which completion | |
5463 | is made. */ | |
5464 | ||
5465 | static char ** | |
5466 | ada_make_symbol_completion_list (char *text0, char *word) | |
5467 | { | |
5468 | char *text; | |
5469 | int text_len; | |
5470 | int wild_match; | |
5471 | int encoded; | |
2ba95b9b | 5472 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5473 | struct symbol *sym; |
5474 | struct symtab *s; | |
5475 | struct partial_symtab *ps; | |
5476 | struct minimal_symbol *msymbol; | |
5477 | struct objfile *objfile; | |
5478 | struct block *b, *surrounding_static_block = 0; | |
5479 | int i; | |
5480 | struct dict_iterator iter; | |
5481 | ||
5482 | if (text0[0] == '<') | |
5483 | { | |
5484 | text = xstrdup (text0); | |
5485 | make_cleanup (xfree, text); | |
5486 | text_len = strlen (text); | |
5487 | wild_match = 0; | |
5488 | encoded = 1; | |
5489 | } | |
5490 | else | |
5491 | { | |
5492 | text = xstrdup (ada_encode (text0)); | |
5493 | make_cleanup (xfree, text); | |
5494 | text_len = strlen (text); | |
5495 | for (i = 0; i < text_len; i++) | |
5496 | text[i] = tolower (text[i]); | |
5497 | ||
5498 | encoded = (strstr (text0, "__") != NULL); | |
5499 | /* If the name contains a ".", then the user is entering a fully | |
5500 | qualified entity name, and the match must not be done in wild | |
5501 | mode. Similarly, if the user wants to complete what looks like | |
5502 | an encoded name, the match must not be done in wild mode. */ | |
5503 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5504 | } | |
5505 | ||
5506 | /* First, look at the partial symtab symbols. */ | |
5507 | ALL_PSYMTABS (objfile, ps) | |
5508 | { | |
5509 | struct partial_symbol **psym; | |
5510 | ||
5511 | /* If the psymtab's been read in we'll get it when we search | |
5512 | through the blockvector. */ | |
5513 | if (ps->readin) | |
5514 | continue; | |
5515 | ||
5516 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5517 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5518 | + ps->n_global_syms); psym++) | |
5519 | { | |
5520 | QUIT; | |
d6565258 | 5521 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5522 | text, text_len, text0, word, |
5523 | wild_match, encoded); | |
5524 | } | |
5525 | ||
5526 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5527 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5528 | + ps->n_static_syms); psym++) | |
5529 | { | |
5530 | QUIT; | |
d6565258 | 5531 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5532 | text, text_len, text0, word, |
5533 | wild_match, encoded); | |
5534 | } | |
5535 | } | |
5536 | ||
5537 | /* At this point scan through the misc symbol vectors and add each | |
5538 | symbol you find to the list. Eventually we want to ignore | |
5539 | anything that isn't a text symbol (everything else will be | |
5540 | handled by the psymtab code above). */ | |
5541 | ||
5542 | ALL_MSYMBOLS (objfile, msymbol) | |
5543 | { | |
5544 | QUIT; | |
d6565258 | 5545 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5546 | text, text_len, text0, word, wild_match, encoded); |
5547 | } | |
5548 | ||
5549 | /* Search upwards from currently selected frame (so that we can | |
5550 | complete on local vars. */ | |
5551 | ||
5552 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5553 | { | |
5554 | if (!BLOCK_SUPERBLOCK (b)) | |
5555 | surrounding_static_block = b; /* For elmin of dups */ | |
5556 | ||
5557 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5558 | { | |
d6565258 | 5559 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5560 | text, text_len, text0, word, |
5561 | wild_match, encoded); | |
5562 | } | |
5563 | } | |
5564 | ||
5565 | /* Go through the symtabs and check the externs and statics for | |
5566 | symbols which match. */ | |
5567 | ||
5568 | ALL_SYMTABS (objfile, s) | |
5569 | { | |
5570 | QUIT; | |
5571 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5572 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5573 | { | |
d6565258 | 5574 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5575 | text, text_len, text0, word, |
5576 | wild_match, encoded); | |
5577 | } | |
5578 | } | |
5579 | ||
5580 | ALL_SYMTABS (objfile, s) | |
5581 | { | |
5582 | QUIT; | |
5583 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5584 | /* Don't do this block twice. */ | |
5585 | if (b == surrounding_static_block) | |
5586 | continue; | |
5587 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5588 | { | |
d6565258 | 5589 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5590 | text, text_len, text0, word, |
5591 | wild_match, encoded); | |
5592 | } | |
5593 | } | |
5594 | ||
5595 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5596 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5597 | |
2ba95b9b JB |
5598 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5599 | return the copy. It's unfortunate that we have to make a copy | |
5600 | of an array that we're about to destroy, but there is nothing much | |
5601 | we can do about it. Fortunately, it's typically not a very large | |
5602 | array. */ | |
5603 | { | |
5604 | const size_t completions_size = | |
5605 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5606 | char **result = malloc (completions_size); | |
5607 | ||
5608 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5609 | ||
5610 | VEC_free (char_ptr, completions); | |
5611 | return result; | |
5612 | } | |
41d27058 JB |
5613 | } |
5614 | ||
963a6417 | 5615 | /* Field Access */ |
96d887e8 | 5616 | |
73fb9985 JB |
5617 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5618 | for tagged types. */ | |
5619 | ||
5620 | static int | |
5621 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5622 | { | |
5623 | char *name; | |
5624 | ||
5625 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5626 | return 0; | |
5627 | ||
5628 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5629 | if (name == NULL) | |
5630 | return 0; | |
5631 | ||
5632 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5633 | } | |
5634 | ||
963a6417 PH |
5635 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5636 | to be invisible to users. */ | |
96d887e8 | 5637 | |
963a6417 PH |
5638 | int |
5639 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5640 | { |
963a6417 PH |
5641 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5642 | return 1; | |
73fb9985 JB |
5643 | |
5644 | /* Check the name of that field. */ | |
5645 | { | |
5646 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5647 | ||
5648 | /* Anonymous field names should not be printed. | |
5649 | brobecker/2007-02-20: I don't think this can actually happen | |
5650 | but we don't want to print the value of annonymous fields anyway. */ | |
5651 | if (name == NULL) | |
5652 | return 1; | |
5653 | ||
5654 | /* A field named "_parent" is internally generated by GNAT for | |
5655 | tagged types, and should not be printed either. */ | |
5656 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5657 | return 1; | |
5658 | } | |
5659 | ||
5660 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5661 | if (ada_is_tagged_type (type, 1) | |
5662 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5663 | return 1; | |
5664 | ||
5665 | /* Not a special field, so it should not be ignored. */ | |
5666 | return 0; | |
963a6417 | 5667 | } |
96d887e8 | 5668 | |
963a6417 PH |
5669 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5670 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5671 | |
963a6417 PH |
5672 | int |
5673 | ada_is_tagged_type (struct type *type, int refok) | |
5674 | { | |
5675 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5676 | } | |
96d887e8 | 5677 | |
963a6417 | 5678 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5679 | |
963a6417 PH |
5680 | int |
5681 | ada_is_tag_type (struct type *type) | |
5682 | { | |
5683 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5684 | return 0; | |
5685 | else | |
96d887e8 | 5686 | { |
963a6417 PH |
5687 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5688 | return (name != NULL | |
5689 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5690 | } |
96d887e8 PH |
5691 | } |
5692 | ||
963a6417 | 5693 | /* The type of the tag on VAL. */ |
76a01679 | 5694 | |
963a6417 PH |
5695 | struct type * |
5696 | ada_tag_type (struct value *val) | |
96d887e8 | 5697 | { |
df407dfe | 5698 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5699 | } |
96d887e8 | 5700 | |
963a6417 | 5701 | /* The value of the tag on VAL. */ |
96d887e8 | 5702 | |
963a6417 PH |
5703 | struct value * |
5704 | ada_value_tag (struct value *val) | |
5705 | { | |
03ee6b2e | 5706 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5707 | } |
5708 | ||
963a6417 PH |
5709 | /* The value of the tag on the object of type TYPE whose contents are |
5710 | saved at VALADDR, if it is non-null, or is at memory address | |
5711 | ADDRESS. */ | |
96d887e8 | 5712 | |
963a6417 | 5713 | static struct value * |
10a2c479 | 5714 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5715 | const gdb_byte *valaddr, |
963a6417 | 5716 | CORE_ADDR address) |
96d887e8 | 5717 | { |
963a6417 PH |
5718 | int tag_byte_offset, dummy1, dummy2; |
5719 | struct type *tag_type; | |
5720 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5721 | NULL, NULL, NULL)) |
96d887e8 | 5722 | { |
fc1a4b47 | 5723 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5724 | ? NULL |
5725 | : valaddr + tag_byte_offset); | |
963a6417 | 5726 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5727 | |
963a6417 | 5728 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5729 | } |
963a6417 PH |
5730 | return NULL; |
5731 | } | |
96d887e8 | 5732 | |
963a6417 PH |
5733 | static struct type * |
5734 | type_from_tag (struct value *tag) | |
5735 | { | |
5736 | const char *type_name = ada_tag_name (tag); | |
5737 | if (type_name != NULL) | |
5738 | return ada_find_any_type (ada_encode (type_name)); | |
5739 | return NULL; | |
5740 | } | |
96d887e8 | 5741 | |
963a6417 PH |
5742 | struct tag_args |
5743 | { | |
5744 | struct value *tag; | |
5745 | char *name; | |
5746 | }; | |
4c4b4cd2 | 5747 | |
529cad9c PH |
5748 | |
5749 | static int ada_tag_name_1 (void *); | |
5750 | static int ada_tag_name_2 (struct tag_args *); | |
5751 | ||
4c4b4cd2 PH |
5752 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5753 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5754 | The value stored in ARGS->name is valid until the next call to | |
5755 | ada_tag_name_1. */ | |
5756 | ||
5757 | static int | |
5758 | ada_tag_name_1 (void *args0) | |
5759 | { | |
5760 | struct tag_args *args = (struct tag_args *) args0; | |
5761 | static char name[1024]; | |
76a01679 | 5762 | char *p; |
4c4b4cd2 PH |
5763 | struct value *val; |
5764 | args->name = NULL; | |
03ee6b2e | 5765 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5766 | if (val == NULL) |
5767 | return ada_tag_name_2 (args); | |
03ee6b2e | 5768 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5769 | if (val == NULL) |
5770 | return 0; | |
5771 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5772 | for (p = name; *p != '\0'; p += 1) | |
5773 | if (isalpha (*p)) | |
5774 | *p = tolower (*p); | |
5775 | args->name = name; | |
5776 | return 0; | |
5777 | } | |
5778 | ||
5779 | /* Utility function for ada_tag_name_1 that tries the second | |
5780 | representation for the dispatch table (in which there is no | |
5781 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5782 | the tsd pointer is stored just before the dispatch table. */ | |
5783 | ||
5784 | static int | |
5785 | ada_tag_name_2 (struct tag_args *args) | |
5786 | { | |
5787 | struct type *info_type; | |
5788 | static char name[1024]; | |
5789 | char *p; | |
5790 | struct value *val, *valp; | |
5791 | ||
5792 | args->name = NULL; | |
5793 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5794 | if (info_type == NULL) | |
5795 | return 0; | |
5796 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5797 | valp = value_cast (info_type, args->tag); | |
5798 | if (valp == NULL) | |
5799 | return 0; | |
5800 | val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1))); | |
4c4b4cd2 PH |
5801 | if (val == NULL) |
5802 | return 0; | |
03ee6b2e | 5803 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5804 | if (val == NULL) |
5805 | return 0; | |
5806 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5807 | for (p = name; *p != '\0'; p += 1) | |
5808 | if (isalpha (*p)) | |
5809 | *p = tolower (*p); | |
5810 | args->name = name; | |
5811 | return 0; | |
5812 | } | |
5813 | ||
5814 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5815 | * a C string. */ | |
5816 | ||
5817 | const char * | |
5818 | ada_tag_name (struct value *tag) | |
5819 | { | |
5820 | struct tag_args args; | |
df407dfe | 5821 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5822 | return NULL; |
76a01679 | 5823 | args.tag = tag; |
4c4b4cd2 PH |
5824 | args.name = NULL; |
5825 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5826 | return args.name; | |
5827 | } | |
5828 | ||
5829 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5830 | |
d2e4a39e | 5831 | struct type * |
ebf56fd3 | 5832 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5833 | { |
5834 | int i; | |
5835 | ||
61ee279c | 5836 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5837 | |
5838 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5839 | return NULL; | |
5840 | ||
5841 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5842 | if (ada_is_parent_field (type, i)) | |
61ee279c | 5843 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
14f9c5c9 AS |
5844 | |
5845 | return NULL; | |
5846 | } | |
5847 | ||
4c4b4cd2 PH |
5848 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5849 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5850 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5851 | |
5852 | int | |
ebf56fd3 | 5853 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5854 | { |
61ee279c | 5855 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5856 | return (name != NULL |
5857 | && (strncmp (name, "PARENT", 6) == 0 | |
5858 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5859 | } |
5860 | ||
4c4b4cd2 | 5861 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5862 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5863 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5864 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5865 | structures. */ |
14f9c5c9 AS |
5866 | |
5867 | int | |
ebf56fd3 | 5868 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5869 | { |
d2e4a39e AS |
5870 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5871 | return (name != NULL | |
4c4b4cd2 PH |
5872 | && (strncmp (name, "PARENT", 6) == 0 |
5873 | || strcmp (name, "REP") == 0 | |
5874 | || strncmp (name, "_parent", 7) == 0 | |
5875 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5876 | } |
5877 | ||
4c4b4cd2 PH |
5878 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5879 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5880 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5881 | |
5882 | int | |
ebf56fd3 | 5883 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5884 | { |
d2e4a39e | 5885 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5886 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5887 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5888 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5889 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5890 | } |
5891 | ||
5892 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5893 | whose discriminants are contained in the record type OUTER_TYPE, |
14f9c5c9 AS |
5894 | returns the type of the controlling discriminant for the variant. */ |
5895 | ||
d2e4a39e | 5896 | struct type * |
ebf56fd3 | 5897 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5898 | { |
d2e4a39e | 5899 | char *name = ada_variant_discrim_name (var_type); |
76a01679 | 5900 | struct type *type = |
4c4b4cd2 | 5901 | ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5902 | if (type == NULL) |
5903 | return builtin_type_int; | |
5904 | else | |
5905 | return type; | |
5906 | } | |
5907 | ||
4c4b4cd2 | 5908 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5909 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5910 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5911 | |
5912 | int | |
ebf56fd3 | 5913 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5914 | { |
d2e4a39e | 5915 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5916 | return (name != NULL && name[0] == 'O'); |
5917 | } | |
5918 | ||
5919 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5920 | returns the name of the discriminant controlling the variant. |
5921 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5922 | |
d2e4a39e | 5923 | char * |
ebf56fd3 | 5924 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5925 | { |
d2e4a39e | 5926 | static char *result = NULL; |
14f9c5c9 | 5927 | static size_t result_len = 0; |
d2e4a39e AS |
5928 | struct type *type; |
5929 | const char *name; | |
5930 | const char *discrim_end; | |
5931 | const char *discrim_start; | |
14f9c5c9 AS |
5932 | |
5933 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5934 | type = TYPE_TARGET_TYPE (type0); | |
5935 | else | |
5936 | type = type0; | |
5937 | ||
5938 | name = ada_type_name (type); | |
5939 | ||
5940 | if (name == NULL || name[0] == '\000') | |
5941 | return ""; | |
5942 | ||
5943 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5944 | discrim_end -= 1) | |
5945 | { | |
4c4b4cd2 PH |
5946 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5947 | break; | |
14f9c5c9 AS |
5948 | } |
5949 | if (discrim_end == name) | |
5950 | return ""; | |
5951 | ||
d2e4a39e | 5952 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5953 | discrim_start -= 1) |
5954 | { | |
d2e4a39e | 5955 | if (discrim_start == name + 1) |
4c4b4cd2 | 5956 | return ""; |
76a01679 | 5957 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5958 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5959 | || discrim_start[-1] == '.') | |
5960 | break; | |
14f9c5c9 AS |
5961 | } |
5962 | ||
5963 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5964 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5965 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5966 | return result; |
5967 | } | |
5968 | ||
4c4b4cd2 PH |
5969 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5970 | Put the position of the character just past the number scanned in | |
5971 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5972 | Return 1 if there was a valid number at the given position, and 0 | |
5973 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5974 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5975 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5976 | |
5977 | int | |
d2e4a39e | 5978 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5979 | { |
5980 | ULONGEST RU; | |
5981 | ||
d2e4a39e | 5982 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5983 | return 0; |
5984 | ||
4c4b4cd2 | 5985 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5986 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5987 | LONGEST. */ |
14f9c5c9 AS |
5988 | RU = 0; |
5989 | while (isdigit (str[k])) | |
5990 | { | |
d2e4a39e | 5991 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5992 | k += 1; |
5993 | } | |
5994 | ||
d2e4a39e | 5995 | if (str[k] == 'm') |
14f9c5c9 AS |
5996 | { |
5997 | if (R != NULL) | |
4c4b4cd2 | 5998 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5999 | k += 1; |
6000 | } | |
6001 | else if (R != NULL) | |
6002 | *R = (LONGEST) RU; | |
6003 | ||
4c4b4cd2 | 6004 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6005 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6006 | number representable as a LONGEST (although either would probably work | |
6007 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6008 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6009 | |
6010 | if (new_k != NULL) | |
6011 | *new_k = k; | |
6012 | return 1; | |
6013 | } | |
6014 | ||
4c4b4cd2 PH |
6015 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6016 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6017 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6018 | |
d2e4a39e | 6019 | int |
ebf56fd3 | 6020 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6021 | { |
d2e4a39e | 6022 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6023 | int p; |
6024 | ||
6025 | p = 0; | |
6026 | while (1) | |
6027 | { | |
d2e4a39e | 6028 | switch (name[p]) |
4c4b4cd2 PH |
6029 | { |
6030 | case '\0': | |
6031 | return 0; | |
6032 | case 'S': | |
6033 | { | |
6034 | LONGEST W; | |
6035 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
6036 | return 0; | |
6037 | if (val == W) | |
6038 | return 1; | |
6039 | break; | |
6040 | } | |
6041 | case 'R': | |
6042 | { | |
6043 | LONGEST L, U; | |
6044 | if (!ada_scan_number (name, p + 1, &L, &p) | |
6045 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6046 | return 0; | |
6047 | if (val >= L && val <= U) | |
6048 | return 1; | |
6049 | break; | |
6050 | } | |
6051 | case 'O': | |
6052 | return 1; | |
6053 | default: | |
6054 | return 0; | |
6055 | } | |
6056 | } | |
6057 | } | |
6058 | ||
6059 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
6060 | ||
6061 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6062 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6063 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6064 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6065 | |
4c4b4cd2 | 6066 | static struct value * |
d2e4a39e | 6067 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6068 | struct type *arg_type) |
14f9c5c9 | 6069 | { |
14f9c5c9 AS |
6070 | struct type *type; |
6071 | ||
61ee279c | 6072 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6073 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6074 | ||
4c4b4cd2 | 6075 | /* Handle packed fields. */ |
14f9c5c9 AS |
6076 | |
6077 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6078 | { | |
6079 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6080 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6081 | |
0fd88904 | 6082 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6083 | offset + bit_pos / 8, |
6084 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6085 | } |
6086 | else | |
6087 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6088 | } | |
6089 | ||
52ce6436 PH |
6090 | /* Find field with name NAME in object of type TYPE. If found, |
6091 | set the following for each argument that is non-null: | |
6092 | - *FIELD_TYPE_P to the field's type; | |
6093 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6094 | an object of that type; | |
6095 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6096 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6097 | 0 otherwise; | |
6098 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6099 | fields up to but not including the desired field, or by the total | |
6100 | number of fields if not found. A NULL value of NAME never | |
6101 | matches; the function just counts visible fields in this case. | |
6102 | ||
6103 | Returns 1 if found, 0 otherwise. */ | |
6104 | ||
4c4b4cd2 | 6105 | static int |
76a01679 JB |
6106 | find_struct_field (char *name, struct type *type, int offset, |
6107 | struct type **field_type_p, | |
52ce6436 PH |
6108 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6109 | int *index_p) | |
4c4b4cd2 PH |
6110 | { |
6111 | int i; | |
6112 | ||
61ee279c | 6113 | type = ada_check_typedef (type); |
76a01679 | 6114 | |
52ce6436 PH |
6115 | if (field_type_p != NULL) |
6116 | *field_type_p = NULL; | |
6117 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6118 | *byte_offset_p = 0; |
52ce6436 PH |
6119 | if (bit_offset_p != NULL) |
6120 | *bit_offset_p = 0; | |
6121 | if (bit_size_p != NULL) | |
6122 | *bit_size_p = 0; | |
6123 | ||
6124 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6125 | { |
6126 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6127 | int fld_offset = offset + bit_pos / 8; | |
6128 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6129 | |
4c4b4cd2 PH |
6130 | if (t_field_name == NULL) |
6131 | continue; | |
6132 | ||
52ce6436 | 6133 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6134 | { |
6135 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
6136 | if (field_type_p != NULL) |
6137 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6138 | if (byte_offset_p != NULL) | |
6139 | *byte_offset_p = fld_offset; | |
6140 | if (bit_offset_p != NULL) | |
6141 | *bit_offset_p = bit_pos % 8; | |
6142 | if (bit_size_p != NULL) | |
6143 | *bit_size_p = bit_size; | |
76a01679 JB |
6144 | return 1; |
6145 | } | |
4c4b4cd2 PH |
6146 | else if (ada_is_wrapper_field (type, i)) |
6147 | { | |
52ce6436 PH |
6148 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6149 | field_type_p, byte_offset_p, bit_offset_p, | |
6150 | bit_size_p, index_p)) | |
76a01679 JB |
6151 | return 1; |
6152 | } | |
4c4b4cd2 PH |
6153 | else if (ada_is_variant_part (type, i)) |
6154 | { | |
52ce6436 PH |
6155 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6156 | fixed type?? */ | |
4c4b4cd2 | 6157 | int j; |
52ce6436 PH |
6158 | struct type *field_type |
6159 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6160 | |
52ce6436 | 6161 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6162 | { |
76a01679 JB |
6163 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6164 | fld_offset | |
6165 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6166 | field_type_p, byte_offset_p, | |
52ce6436 | 6167 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6168 | return 1; |
4c4b4cd2 PH |
6169 | } |
6170 | } | |
52ce6436 PH |
6171 | else if (index_p != NULL) |
6172 | *index_p += 1; | |
4c4b4cd2 PH |
6173 | } |
6174 | return 0; | |
6175 | } | |
6176 | ||
52ce6436 | 6177 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6178 | |
52ce6436 PH |
6179 | static int |
6180 | num_visible_fields (struct type *type) | |
6181 | { | |
6182 | int n; | |
6183 | n = 0; | |
6184 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6185 | return n; | |
6186 | } | |
14f9c5c9 | 6187 | |
4c4b4cd2 | 6188 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6189 | and search in it assuming it has (class) type TYPE. |
6190 | If found, return value, else return NULL. | |
6191 | ||
4c4b4cd2 | 6192 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6193 | |
4c4b4cd2 | 6194 | static struct value * |
d2e4a39e | 6195 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6196 | struct type *type) |
14f9c5c9 AS |
6197 | { |
6198 | int i; | |
61ee279c | 6199 | type = ada_check_typedef (type); |
14f9c5c9 | 6200 | |
52ce6436 | 6201 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6202 | { |
6203 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6204 | ||
6205 | if (t_field_name == NULL) | |
4c4b4cd2 | 6206 | continue; |
14f9c5c9 AS |
6207 | |
6208 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6209 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6210 | |
6211 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6212 | { |
06d5cf63 JB |
6213 | struct value *v = /* Do not let indent join lines here. */ |
6214 | ada_search_struct_field (name, arg, | |
6215 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6216 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
6217 | if (v != NULL) |
6218 | return v; | |
6219 | } | |
14f9c5c9 AS |
6220 | |
6221 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6222 | { |
52ce6436 | 6223 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6224 | int j; |
61ee279c | 6225 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6226 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6227 | ||
52ce6436 | 6228 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6229 | { |
06d5cf63 JB |
6230 | struct value *v = ada_search_struct_field /* Force line break. */ |
6231 | (name, arg, | |
6232 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6233 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
6234 | if (v != NULL) |
6235 | return v; | |
6236 | } | |
6237 | } | |
14f9c5c9 AS |
6238 | } |
6239 | return NULL; | |
6240 | } | |
d2e4a39e | 6241 | |
52ce6436 PH |
6242 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6243 | int, struct type *); | |
6244 | ||
6245 | ||
6246 | /* Return field #INDEX in ARG, where the index is that returned by | |
6247 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6248 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6249 | * If found, return value, else return NULL. */ | |
6250 | ||
6251 | static struct value * | |
6252 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6253 | struct type *type) | |
6254 | { | |
6255 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6256 | } | |
6257 | ||
6258 | ||
6259 | /* Auxiliary function for ada_index_struct_field. Like | |
6260 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6261 | * *INDEX_P. */ | |
6262 | ||
6263 | static struct value * | |
6264 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6265 | struct type *type) | |
6266 | { | |
6267 | int i; | |
6268 | type = ada_check_typedef (type); | |
6269 | ||
6270 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6271 | { | |
6272 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6273 | continue; | |
6274 | else if (ada_is_wrapper_field (type, i)) | |
6275 | { | |
6276 | struct value *v = /* Do not let indent join lines here. */ | |
6277 | ada_index_struct_field_1 (index_p, arg, | |
6278 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6279 | TYPE_FIELD_TYPE (type, i)); | |
6280 | if (v != NULL) | |
6281 | return v; | |
6282 | } | |
6283 | ||
6284 | else if (ada_is_variant_part (type, i)) | |
6285 | { | |
6286 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6287 | find_struct_field. */ | |
6288 | error (_("Cannot assign this kind of variant record")); | |
6289 | } | |
6290 | else if (*index_p == 0) | |
6291 | return ada_value_primitive_field (arg, offset, i, type); | |
6292 | else | |
6293 | *index_p -= 1; | |
6294 | } | |
6295 | return NULL; | |
6296 | } | |
6297 | ||
4c4b4cd2 PH |
6298 | /* Given ARG, a value of type (pointer or reference to a)* |
6299 | structure/union, extract the component named NAME from the ultimate | |
6300 | target structure/union and return it as a value with its | |
6301 | appropriate type. If ARG is a pointer or reference and the field | |
6302 | is not packed, returns a reference to the field, otherwise the | |
6303 | value of the field (an lvalue if ARG is an lvalue). | |
14f9c5c9 | 6304 | |
4c4b4cd2 PH |
6305 | The routine searches for NAME among all members of the structure itself |
6306 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6307 | (e.g., '_parent'). |
6308 | ||
03ee6b2e PH |
6309 | If NO_ERR, then simply return NULL in case of error, rather than |
6310 | calling error. */ | |
14f9c5c9 | 6311 | |
d2e4a39e | 6312 | struct value * |
03ee6b2e | 6313 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6314 | { |
4c4b4cd2 | 6315 | struct type *t, *t1; |
d2e4a39e | 6316 | struct value *v; |
14f9c5c9 | 6317 | |
4c4b4cd2 | 6318 | v = NULL; |
df407dfe | 6319 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6320 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6321 | { | |
6322 | t1 = TYPE_TARGET_TYPE (t); | |
6323 | if (t1 == NULL) | |
03ee6b2e | 6324 | goto BadValue; |
61ee279c | 6325 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6326 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6327 | { |
994b9211 | 6328 | arg = coerce_ref (arg); |
76a01679 JB |
6329 | t = t1; |
6330 | } | |
4c4b4cd2 | 6331 | } |
14f9c5c9 | 6332 | |
4c4b4cd2 PH |
6333 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6334 | { | |
6335 | t1 = TYPE_TARGET_TYPE (t); | |
6336 | if (t1 == NULL) | |
03ee6b2e | 6337 | goto BadValue; |
61ee279c | 6338 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6339 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6340 | { |
6341 | arg = value_ind (arg); | |
6342 | t = t1; | |
6343 | } | |
4c4b4cd2 | 6344 | else |
76a01679 | 6345 | break; |
4c4b4cd2 | 6346 | } |
14f9c5c9 | 6347 | |
4c4b4cd2 | 6348 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6349 | goto BadValue; |
14f9c5c9 | 6350 | |
4c4b4cd2 PH |
6351 | if (t1 == t) |
6352 | v = ada_search_struct_field (name, arg, 0, t); | |
6353 | else | |
6354 | { | |
6355 | int bit_offset, bit_size, byte_offset; | |
6356 | struct type *field_type; | |
6357 | CORE_ADDR address; | |
6358 | ||
76a01679 JB |
6359 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6360 | address = value_as_address (arg); | |
4c4b4cd2 | 6361 | else |
0fd88904 | 6362 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6363 | |
1ed6ede0 | 6364 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6365 | if (find_struct_field (name, t1, 0, |
6366 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6367 | &bit_size, NULL)) |
76a01679 JB |
6368 | { |
6369 | if (bit_size != 0) | |
6370 | { | |
714e53ab PH |
6371 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6372 | arg = ada_coerce_ref (arg); | |
6373 | else | |
6374 | arg = ada_value_ind (arg); | |
76a01679 JB |
6375 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6376 | bit_offset, bit_size, | |
6377 | field_type); | |
6378 | } | |
6379 | else | |
6380 | v = value_from_pointer (lookup_reference_type (field_type), | |
6381 | address + byte_offset); | |
6382 | } | |
6383 | } | |
6384 | ||
03ee6b2e PH |
6385 | if (v != NULL || no_err) |
6386 | return v; | |
6387 | else | |
323e0a4a | 6388 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6389 | |
03ee6b2e PH |
6390 | BadValue: |
6391 | if (no_err) | |
6392 | return NULL; | |
6393 | else | |
6394 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6395 | } |
6396 | ||
6397 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6398 | If DISPP is non-null, add its byte displacement from the beginning of a |
6399 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6400 | work for packed fields). |
6401 | ||
6402 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6403 | followed by "___". |
14f9c5c9 | 6404 | |
4c4b4cd2 PH |
6405 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6406 | be a (pointer or reference)+ to a struct or union, and the | |
6407 | ultimate target type will be searched. | |
14f9c5c9 AS |
6408 | |
6409 | Looks recursively into variant clauses and parent types. | |
6410 | ||
4c4b4cd2 PH |
6411 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6412 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6413 | |
4c4b4cd2 | 6414 | static struct type * |
76a01679 JB |
6415 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6416 | int noerr, int *dispp) | |
14f9c5c9 AS |
6417 | { |
6418 | int i; | |
6419 | ||
6420 | if (name == NULL) | |
6421 | goto BadName; | |
6422 | ||
76a01679 | 6423 | if (refok && type != NULL) |
4c4b4cd2 PH |
6424 | while (1) |
6425 | { | |
61ee279c | 6426 | type = ada_check_typedef (type); |
76a01679 JB |
6427 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6428 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6429 | break; | |
6430 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6431 | } |
14f9c5c9 | 6432 | |
76a01679 | 6433 | if (type == NULL |
1265e4aa JB |
6434 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6435 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6436 | { |
4c4b4cd2 | 6437 | if (noerr) |
76a01679 | 6438 | return NULL; |
4c4b4cd2 | 6439 | else |
76a01679 JB |
6440 | { |
6441 | target_terminal_ours (); | |
6442 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6443 | if (type == NULL) |
6444 | error (_("Type (null) is not a structure or union type")); | |
6445 | else | |
6446 | { | |
6447 | /* XXX: type_sprint */ | |
6448 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6449 | type_print (type, "", gdb_stderr, -1); | |
6450 | error (_(" is not a structure or union type")); | |
6451 | } | |
76a01679 | 6452 | } |
14f9c5c9 AS |
6453 | } |
6454 | ||
6455 | type = to_static_fixed_type (type); | |
6456 | ||
6457 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6458 | { | |
6459 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6460 | struct type *t; | |
6461 | int disp; | |
d2e4a39e | 6462 | |
14f9c5c9 | 6463 | if (t_field_name == NULL) |
4c4b4cd2 | 6464 | continue; |
14f9c5c9 AS |
6465 | |
6466 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6467 | { |
6468 | if (dispp != NULL) | |
6469 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6470 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6471 | } |
14f9c5c9 AS |
6472 | |
6473 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6474 | { |
6475 | disp = 0; | |
6476 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6477 | 0, 1, &disp); | |
6478 | if (t != NULL) | |
6479 | { | |
6480 | if (dispp != NULL) | |
6481 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6482 | return t; | |
6483 | } | |
6484 | } | |
14f9c5c9 AS |
6485 | |
6486 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6487 | { |
6488 | int j; | |
61ee279c | 6489 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6490 | |
6491 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6492 | { | |
6493 | disp = 0; | |
6494 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6495 | name, 0, 1, &disp); | |
6496 | if (t != NULL) | |
6497 | { | |
6498 | if (dispp != NULL) | |
6499 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6500 | return t; | |
6501 | } | |
6502 | } | |
6503 | } | |
14f9c5c9 AS |
6504 | |
6505 | } | |
6506 | ||
6507 | BadName: | |
d2e4a39e | 6508 | if (!noerr) |
14f9c5c9 AS |
6509 | { |
6510 | target_terminal_ours (); | |
6511 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6512 | if (name == NULL) |
6513 | { | |
6514 | /* XXX: type_sprint */ | |
6515 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6516 | type_print (type, "", gdb_stderr, -1); | |
6517 | error (_(" has no component named <null>")); | |
6518 | } | |
6519 | else | |
6520 | { | |
6521 | /* XXX: type_sprint */ | |
6522 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6523 | type_print (type, "", gdb_stderr, -1); | |
6524 | error (_(" has no component named %s"), name); | |
6525 | } | |
14f9c5c9 AS |
6526 | } |
6527 | ||
6528 | return NULL; | |
6529 | } | |
6530 | ||
6531 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), | |
6532 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6533 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6534 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6535 | |
d2e4a39e | 6536 | int |
ebf56fd3 | 6537 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6538 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6539 | { |
6540 | int others_clause; | |
6541 | int i; | |
d2e4a39e | 6542 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6543 | struct value *outer; |
6544 | struct value *discrim; | |
14f9c5c9 AS |
6545 | LONGEST discrim_val; |
6546 | ||
0c281816 JB |
6547 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6548 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6549 | if (discrim == NULL) | |
14f9c5c9 | 6550 | return -1; |
0c281816 | 6551 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6552 | |
6553 | others_clause = -1; | |
6554 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6555 | { | |
6556 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6557 | others_clause = i; |
14f9c5c9 | 6558 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6559 | return i; |
14f9c5c9 AS |
6560 | } |
6561 | ||
6562 | return others_clause; | |
6563 | } | |
d2e4a39e | 6564 | \f |
14f9c5c9 AS |
6565 | |
6566 | ||
4c4b4cd2 | 6567 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6568 | |
6569 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6570 | (i.e., a size that is not statically recorded in the debugging | |
6571 | data) does not accurately reflect the size or layout of the value. | |
6572 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6573 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6574 | |
6575 | /* There is a subtle and tricky problem here. In general, we cannot | |
6576 | determine the size of dynamic records without its data. However, | |
6577 | the 'struct value' data structure, which GDB uses to represent | |
6578 | quantities in the inferior process (the target), requires the size | |
6579 | of the type at the time of its allocation in order to reserve space | |
6580 | for GDB's internal copy of the data. That's why the | |
6581 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6582 | rather than struct value*s. |
14f9c5c9 AS |
6583 | |
6584 | However, GDB's internal history variables ($1, $2, etc.) are | |
6585 | struct value*s containing internal copies of the data that are not, in | |
6586 | general, the same as the data at their corresponding addresses in | |
6587 | the target. Fortunately, the types we give to these values are all | |
6588 | conventional, fixed-size types (as per the strategy described | |
6589 | above), so that we don't usually have to perform the | |
6590 | 'to_fixed_xxx_type' conversions to look at their values. | |
6591 | Unfortunately, there is one exception: if one of the internal | |
6592 | history variables is an array whose elements are unconstrained | |
6593 | records, then we will need to create distinct fixed types for each | |
6594 | element selected. */ | |
6595 | ||
6596 | /* The upshot of all of this is that many routines take a (type, host | |
6597 | address, target address) triple as arguments to represent a value. | |
6598 | The host address, if non-null, is supposed to contain an internal | |
6599 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6600 | target at the target address. */ |
14f9c5c9 AS |
6601 | |
6602 | /* Assuming that VAL0 represents a pointer value, the result of | |
6603 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6604 | dynamic-sized types. */ |
14f9c5c9 | 6605 | |
d2e4a39e AS |
6606 | struct value * |
6607 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6608 | { |
d2e4a39e | 6609 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6610 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6611 | } |
6612 | ||
6613 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6614 | qualifiers on VAL0. */ |
6615 | ||
d2e4a39e AS |
6616 | static struct value * |
6617 | ada_coerce_ref (struct value *val0) | |
6618 | { | |
df407dfe | 6619 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6620 | { |
6621 | struct value *val = val0; | |
994b9211 | 6622 | val = coerce_ref (val); |
d2e4a39e | 6623 | val = unwrap_value (val); |
4c4b4cd2 | 6624 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6625 | } |
6626 | else | |
14f9c5c9 AS |
6627 | return val0; |
6628 | } | |
6629 | ||
6630 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6631 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6632 | |
6633 | static unsigned int | |
ebf56fd3 | 6634 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6635 | { |
6636 | return (off + alignment - 1) & ~(alignment - 1); | |
6637 | } | |
6638 | ||
4c4b4cd2 | 6639 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6640 | |
6641 | static unsigned int | |
ebf56fd3 | 6642 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6643 | { |
d2e4a39e | 6644 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6645 | int len; |
14f9c5c9 AS |
6646 | int align_offset; |
6647 | ||
64a1bf19 JB |
6648 | /* The field name should never be null, unless the debugging information |
6649 | is somehow malformed. In this case, we assume the field does not | |
6650 | require any alignment. */ | |
6651 | if (name == NULL) | |
6652 | return 1; | |
6653 | ||
6654 | len = strlen (name); | |
6655 | ||
4c4b4cd2 PH |
6656 | if (!isdigit (name[len - 1])) |
6657 | return 1; | |
14f9c5c9 | 6658 | |
d2e4a39e | 6659 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6660 | align_offset = len - 2; |
6661 | else | |
6662 | align_offset = len - 1; | |
6663 | ||
4c4b4cd2 | 6664 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6665 | return TARGET_CHAR_BIT; |
6666 | ||
4c4b4cd2 PH |
6667 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6668 | } | |
6669 | ||
6670 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6671 | ||
6672 | struct symbol * | |
6673 | ada_find_any_symbol (const char *name) | |
6674 | { | |
6675 | struct symbol *sym; | |
6676 | ||
6677 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6678 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6679 | return sym; | |
6680 | ||
6681 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6682 | return sym; | |
14f9c5c9 AS |
6683 | } |
6684 | ||
6685 | /* Find a type named NAME. Ignores ambiguity. */ | |
4c4b4cd2 | 6686 | |
d2e4a39e | 6687 | struct type * |
ebf56fd3 | 6688 | ada_find_any_type (const char *name) |
14f9c5c9 | 6689 | { |
4c4b4cd2 | 6690 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6691 | |
14f9c5c9 AS |
6692 | if (sym != NULL) |
6693 | return SYMBOL_TYPE (sym); | |
6694 | ||
6695 | return NULL; | |
6696 | } | |
6697 | ||
aeb5907d JB |
6698 | /* Given NAME and an associated BLOCK, search all symbols for |
6699 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6700 | associated to NAME. Return this symbol if found, return |
6701 | NULL otherwise. */ | |
6702 | ||
6703 | struct symbol * | |
6704 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6705 | { |
6706 | struct symbol *sym; | |
6707 | ||
6708 | sym = find_old_style_renaming_symbol (name, block); | |
6709 | ||
6710 | if (sym != NULL) | |
6711 | return sym; | |
6712 | ||
6713 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6714 | sym = ada_find_any_symbol (name); | |
6715 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6716 | return sym; | |
6717 | else | |
6718 | return NULL; | |
6719 | } | |
6720 | ||
6721 | static struct symbol * | |
6722 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6723 | { |
7f0df278 | 6724 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6725 | char *rename; |
6726 | ||
6727 | if (function_sym != NULL) | |
6728 | { | |
6729 | /* If the symbol is defined inside a function, NAME is not fully | |
6730 | qualified. This means we need to prepend the function name | |
6731 | as well as adding the ``___XR'' suffix to build the name of | |
6732 | the associated renaming symbol. */ | |
6733 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6734 | /* Function names sometimes contain suffixes used |
6735 | for instance to qualify nested subprograms. When building | |
6736 | the XR type name, we need to make sure that this suffix is | |
6737 | not included. So do not include any suffix in the function | |
6738 | name length below. */ | |
6739 | const int function_name_len = ada_name_prefix_len (function_name); | |
76a01679 JB |
6740 | const int rename_len = function_name_len + 2 /* "__" */ |
6741 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6742 | |
529cad9c PH |
6743 | /* Strip the suffix if necessary. */ |
6744 | function_name[function_name_len] = '\0'; | |
6745 | ||
4c4b4cd2 PH |
6746 | /* Library-level functions are a special case, as GNAT adds |
6747 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6748 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6749 | have this prefix, so we need to skip this prefix if present. */ |
6750 | if (function_name_len > 5 /* "_ada_" */ | |
6751 | && strstr (function_name, "_ada_") == function_name) | |
6752 | function_name = function_name + 5; | |
6753 | ||
6754 | rename = (char *) alloca (rename_len * sizeof (char)); | |
6755 | sprintf (rename, "%s__%s___XR", function_name, name); | |
6756 | } | |
6757 | else | |
6758 | { | |
6759 | const int rename_len = strlen (name) + 6; | |
6760 | rename = (char *) alloca (rename_len * sizeof (char)); | |
6761 | sprintf (rename, "%s___XR", name); | |
6762 | } | |
6763 | ||
6764 | return ada_find_any_symbol (rename); | |
6765 | } | |
6766 | ||
14f9c5c9 | 6767 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6768 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6769 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6770 | otherwise return 0. */ |
6771 | ||
14f9c5c9 | 6772 | int |
d2e4a39e | 6773 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6774 | { |
6775 | if (type1 == NULL) | |
6776 | return 1; | |
6777 | else if (type0 == NULL) | |
6778 | return 0; | |
6779 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6780 | return 1; | |
6781 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6782 | return 0; | |
4c4b4cd2 PH |
6783 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6784 | return 1; | |
14f9c5c9 AS |
6785 | else if (ada_is_packed_array_type (type0)) |
6786 | return 1; | |
4c4b4cd2 PH |
6787 | else if (ada_is_array_descriptor_type (type0) |
6788 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6789 | return 1; |
aeb5907d JB |
6790 | else |
6791 | { | |
6792 | const char *type0_name = type_name_no_tag (type0); | |
6793 | const char *type1_name = type_name_no_tag (type1); | |
6794 | ||
6795 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6796 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6797 | return 1; | |
6798 | } | |
14f9c5c9 AS |
6799 | return 0; |
6800 | } | |
6801 | ||
6802 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6803 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6804 | ||
d2e4a39e AS |
6805 | char * |
6806 | ada_type_name (struct type *type) | |
14f9c5c9 | 6807 | { |
d2e4a39e | 6808 | if (type == NULL) |
14f9c5c9 AS |
6809 | return NULL; |
6810 | else if (TYPE_NAME (type) != NULL) | |
6811 | return TYPE_NAME (type); | |
6812 | else | |
6813 | return TYPE_TAG_NAME (type); | |
6814 | } | |
6815 | ||
6816 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6817 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6818 | |
d2e4a39e | 6819 | struct type * |
ebf56fd3 | 6820 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6821 | { |
d2e4a39e | 6822 | static char *name; |
14f9c5c9 | 6823 | static size_t name_len = 0; |
14f9c5c9 | 6824 | int len; |
d2e4a39e AS |
6825 | char *typename = ada_type_name (type); |
6826 | ||
14f9c5c9 AS |
6827 | if (typename == NULL) |
6828 | return NULL; | |
6829 | ||
6830 | len = strlen (typename); | |
6831 | ||
d2e4a39e | 6832 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6833 | |
6834 | strcpy (name, typename); | |
6835 | strcpy (name + len, suffix); | |
6836 | ||
6837 | return ada_find_any_type (name); | |
6838 | } | |
6839 | ||
6840 | ||
6841 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6842 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6843 | |
d2e4a39e AS |
6844 | static struct type * |
6845 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6846 | { |
61ee279c | 6847 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6848 | |
6849 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6850 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6851 | return NULL; |
d2e4a39e | 6852 | else |
14f9c5c9 AS |
6853 | { |
6854 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6855 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6856 | return type; | |
14f9c5c9 | 6857 | else |
4c4b4cd2 | 6858 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6859 | } |
6860 | } | |
6861 | ||
6862 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6863 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6864 | |
d2e4a39e AS |
6865 | static int |
6866 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6867 | { |
6868 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6869 | return name != NULL |
14f9c5c9 AS |
6870 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6871 | && strstr (name, "___XVL") != NULL; | |
6872 | } | |
6873 | ||
4c4b4cd2 PH |
6874 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6875 | represent a variant record type. */ | |
14f9c5c9 | 6876 | |
d2e4a39e | 6877 | static int |
4c4b4cd2 | 6878 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6879 | { |
6880 | int f; | |
6881 | ||
4c4b4cd2 PH |
6882 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6883 | return -1; | |
6884 | ||
6885 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6886 | { | |
6887 | if (ada_is_variant_part (type, f)) | |
6888 | return f; | |
6889 | } | |
6890 | return -1; | |
14f9c5c9 AS |
6891 | } |
6892 | ||
4c4b4cd2 PH |
6893 | /* A record type with no fields. */ |
6894 | ||
d2e4a39e AS |
6895 | static struct type * |
6896 | empty_record (struct objfile *objfile) | |
14f9c5c9 | 6897 | { |
d2e4a39e | 6898 | struct type *type = alloc_type (objfile); |
14f9c5c9 AS |
6899 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6900 | TYPE_NFIELDS (type) = 0; | |
6901 | TYPE_FIELDS (type) = NULL; | |
6902 | TYPE_NAME (type) = "<empty>"; | |
6903 | TYPE_TAG_NAME (type) = NULL; | |
6904 | TYPE_FLAGS (type) = 0; | |
6905 | TYPE_LENGTH (type) = 0; | |
6906 | return type; | |
6907 | } | |
6908 | ||
6909 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6910 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6911 | the beginning of this section) VAL according to GNAT conventions. | |
6912 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6913 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6914 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6915 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6916 | of the variant. |
14f9c5c9 | 6917 | |
4c4b4cd2 PH |
6918 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6919 | length are not statically known are discarded. As a consequence, | |
6920 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6921 | ||
6922 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6923 | variants occupy whole numbers of bytes. However, they need not be | |
6924 | byte-aligned. */ | |
6925 | ||
6926 | struct type * | |
10a2c479 | 6927 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6928 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6929 | CORE_ADDR address, struct value *dval0, |
6930 | int keep_dynamic_fields) | |
14f9c5c9 | 6931 | { |
d2e4a39e AS |
6932 | struct value *mark = value_mark (); |
6933 | struct value *dval; | |
6934 | struct type *rtype; | |
14f9c5c9 | 6935 | int nfields, bit_len; |
4c4b4cd2 | 6936 | int variant_field; |
14f9c5c9 | 6937 | long off; |
4c4b4cd2 | 6938 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6939 | int f; |
6940 | ||
4c4b4cd2 PH |
6941 | /* Compute the number of fields in this record type that are going |
6942 | to be processed: unless keep_dynamic_fields, this includes only | |
6943 | fields whose position and length are static will be processed. */ | |
6944 | if (keep_dynamic_fields) | |
6945 | nfields = TYPE_NFIELDS (type); | |
6946 | else | |
6947 | { | |
6948 | nfields = 0; | |
76a01679 | 6949 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6950 | && !ada_is_variant_part (type, nfields) |
6951 | && !is_dynamic_field (type, nfields)) | |
6952 | nfields++; | |
6953 | } | |
6954 | ||
14f9c5c9 AS |
6955 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6956 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6957 | INIT_CPLUS_SPECIFIC (rtype); | |
6958 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6959 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6960 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6961 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6962 | TYPE_NAME (rtype) = ada_type_name (type); | |
6963 | TYPE_TAG_NAME (rtype) = NULL; | |
4c4b4cd2 | 6964 | TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; |
14f9c5c9 | 6965 | |
d2e4a39e AS |
6966 | off = 0; |
6967 | bit_len = 0; | |
4c4b4cd2 PH |
6968 | variant_field = -1; |
6969 | ||
14f9c5c9 AS |
6970 | for (f = 0; f < nfields; f += 1) |
6971 | { | |
6c038f32 PH |
6972 | off = align_value (off, field_alignment (type, f)) |
6973 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6974 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6975 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6976 | |
d2e4a39e | 6977 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6978 | { |
6979 | variant_field = f; | |
6980 | fld_bit_len = bit_incr = 0; | |
6981 | } | |
14f9c5c9 | 6982 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 PH |
6983 | { |
6984 | if (dval0 == NULL) | |
6985 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6986 | else | |
6987 | dval = dval0; | |
6988 | ||
1ed6ede0 JB |
6989 | /* Get the fixed type of the field. Note that, in this case, we |
6990 | do not want to get the real type out of the tag: if the current | |
6991 | field is the parent part of a tagged record, we will get the | |
6992 | tag of the object. Clearly wrong: the real type of the parent | |
6993 | is not the real type of the child. We would end up in an infinite | |
6994 | loop. */ | |
4c4b4cd2 PH |
6995 | TYPE_FIELD_TYPE (rtype, f) = |
6996 | ada_to_fixed_type | |
6997 | (ada_get_base_type | |
6998 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))), | |
6999 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
1ed6ede0 | 7000 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0); |
4c4b4cd2 PH |
7001 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7002 | bit_incr = fld_bit_len = | |
7003 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
7004 | } | |
14f9c5c9 | 7005 | else |
4c4b4cd2 PH |
7006 | { |
7007 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
7008 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
7009 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
7010 | bit_incr = fld_bit_len = | |
7011 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
7012 | else | |
7013 | bit_incr = fld_bit_len = | |
7014 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
7015 | } | |
14f9c5c9 | 7016 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7017 | bit_len = off + fld_bit_len; |
14f9c5c9 | 7018 | off += bit_incr; |
4c4b4cd2 PH |
7019 | TYPE_LENGTH (rtype) = |
7020 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7021 | } |
4c4b4cd2 PH |
7022 | |
7023 | /* We handle the variant part, if any, at the end because of certain | |
7024 | odd cases in which it is re-ordered so as NOT the last field of | |
7025 | the record. This can happen in the presence of representation | |
7026 | clauses. */ | |
7027 | if (variant_field >= 0) | |
7028 | { | |
7029 | struct type *branch_type; | |
7030 | ||
7031 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7032 | ||
7033 | if (dval0 == NULL) | |
7034 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7035 | else | |
7036 | dval = dval0; | |
7037 | ||
7038 | branch_type = | |
7039 | to_fixed_variant_branch_type | |
7040 | (TYPE_FIELD_TYPE (type, variant_field), | |
7041 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7042 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7043 | if (branch_type == NULL) | |
7044 | { | |
7045 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7046 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7047 | TYPE_NFIELDS (rtype) -= 1; | |
7048 | } | |
7049 | else | |
7050 | { | |
7051 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7052 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7053 | fld_bit_len = | |
7054 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7055 | TARGET_CHAR_BIT; | |
7056 | if (off + fld_bit_len > bit_len) | |
7057 | bit_len = off + fld_bit_len; | |
7058 | TYPE_LENGTH (rtype) = | |
7059 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7060 | } | |
7061 | } | |
7062 | ||
714e53ab PH |
7063 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7064 | should contain the alignment of that record, which should be a strictly | |
7065 | positive value. If null or negative, then something is wrong, most | |
7066 | probably in the debug info. In that case, we don't round up the size | |
7067 | of the resulting type. If this record is not part of another structure, | |
7068 | the current RTYPE length might be good enough for our purposes. */ | |
7069 | if (TYPE_LENGTH (type) <= 0) | |
7070 | { | |
323e0a4a AC |
7071 | if (TYPE_NAME (rtype)) |
7072 | warning (_("Invalid type size for `%s' detected: %d."), | |
7073 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7074 | else | |
7075 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7076 | TYPE_LENGTH (type)); | |
714e53ab PH |
7077 | } |
7078 | else | |
7079 | { | |
7080 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7081 | TYPE_LENGTH (type)); | |
7082 | } | |
14f9c5c9 AS |
7083 | |
7084 | value_free_to_mark (mark); | |
d2e4a39e | 7085 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7086 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7087 | return rtype; |
7088 | } | |
7089 | ||
4c4b4cd2 PH |
7090 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7091 | of 1. */ | |
14f9c5c9 | 7092 | |
d2e4a39e | 7093 | static struct type * |
fc1a4b47 | 7094 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7095 | CORE_ADDR address, struct value *dval0) |
7096 | { | |
7097 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7098 | address, dval0, 1); | |
7099 | } | |
7100 | ||
7101 | /* An ordinary record type in which ___XVL-convention fields and | |
7102 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7103 | static approximations, containing all possible fields. Uses | |
7104 | no runtime values. Useless for use in values, but that's OK, | |
7105 | since the results are used only for type determinations. Works on both | |
7106 | structs and unions. Representation note: to save space, we memorize | |
7107 | the result of this function in the TYPE_TARGET_TYPE of the | |
7108 | template type. */ | |
7109 | ||
7110 | static struct type * | |
7111 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7112 | { |
7113 | struct type *type; | |
7114 | int nfields; | |
7115 | int f; | |
7116 | ||
4c4b4cd2 PH |
7117 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7118 | return TYPE_TARGET_TYPE (type0); | |
7119 | ||
7120 | nfields = TYPE_NFIELDS (type0); | |
7121 | type = type0; | |
14f9c5c9 AS |
7122 | |
7123 | for (f = 0; f < nfields; f += 1) | |
7124 | { | |
61ee279c | 7125 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7126 | struct type *new_type; |
14f9c5c9 | 7127 | |
4c4b4cd2 PH |
7128 | if (is_dynamic_field (type0, f)) |
7129 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7130 | else |
f192137b | 7131 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7132 | if (type == type0 && new_type != field_type) |
7133 | { | |
7134 | TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0)); | |
7135 | TYPE_CODE (type) = TYPE_CODE (type0); | |
7136 | INIT_CPLUS_SPECIFIC (type); | |
7137 | TYPE_NFIELDS (type) = nfields; | |
7138 | TYPE_FIELDS (type) = (struct field *) | |
7139 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7140 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7141 | sizeof (struct field) * nfields); | |
7142 | TYPE_NAME (type) = ada_type_name (type0); | |
7143 | TYPE_TAG_NAME (type) = NULL; | |
7144 | TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; | |
7145 | TYPE_LENGTH (type) = 0; | |
7146 | } | |
7147 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7148 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7149 | } |
14f9c5c9 AS |
7150 | return type; |
7151 | } | |
7152 | ||
4c4b4cd2 PH |
7153 | /* Given an object of type TYPE whose contents are at VALADDR and |
7154 | whose address in memory is ADDRESS, returns a revision of TYPE -- | |
7155 | a non-dynamic-sized record with a variant part -- in which | |
7156 | the variant part is replaced with the appropriate branch. Looks | |
7157 | for discriminant values in DVAL0, which can be NULL if the record | |
7158 | contains the necessary discriminant values. */ | |
7159 | ||
d2e4a39e | 7160 | static struct type * |
fc1a4b47 | 7161 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7162 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7163 | { |
d2e4a39e | 7164 | struct value *mark = value_mark (); |
4c4b4cd2 | 7165 | struct value *dval; |
d2e4a39e | 7166 | struct type *rtype; |
14f9c5c9 AS |
7167 | struct type *branch_type; |
7168 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7169 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7170 | |
4c4b4cd2 | 7171 | if (variant_field == -1) |
14f9c5c9 AS |
7172 | return type; |
7173 | ||
4c4b4cd2 PH |
7174 | if (dval0 == NULL) |
7175 | dval = value_from_contents_and_address (type, valaddr, address); | |
7176 | else | |
7177 | dval = dval0; | |
7178 | ||
14f9c5c9 AS |
7179 | rtype = alloc_type (TYPE_OBJFILE (type)); |
7180 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
4c4b4cd2 PH |
7181 | INIT_CPLUS_SPECIFIC (rtype); |
7182 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7183 | TYPE_FIELDS (rtype) = |
7184 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7185 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7186 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7187 | TYPE_NAME (rtype) = ada_type_name (type); |
7188 | TYPE_TAG_NAME (rtype) = NULL; | |
4c4b4cd2 | 7189 | TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; |
14f9c5c9 AS |
7190 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7191 | ||
4c4b4cd2 PH |
7192 | branch_type = to_fixed_variant_branch_type |
7193 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7194 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7195 | TYPE_FIELD_BITPOS (type, variant_field) |
7196 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7197 | cond_offset_target (address, |
4c4b4cd2 PH |
7198 | TYPE_FIELD_BITPOS (type, variant_field) |
7199 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7200 | if (branch_type == NULL) |
14f9c5c9 | 7201 | { |
4c4b4cd2 PH |
7202 | int f; |
7203 | for (f = variant_field + 1; f < nfields; f += 1) | |
7204 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7205 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7206 | } |
7207 | else | |
7208 | { | |
4c4b4cd2 PH |
7209 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7210 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7211 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7212 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7213 | } |
4c4b4cd2 | 7214 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7215 | |
4c4b4cd2 | 7216 | value_free_to_mark (mark); |
14f9c5c9 AS |
7217 | return rtype; |
7218 | } | |
7219 | ||
7220 | /* An ordinary record type (with fixed-length fields) that describes | |
7221 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7222 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7223 | should be in DVAL, a record value; it may be NULL if the object |
7224 | at ADDR itself contains any necessary discriminant values. | |
7225 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7226 | values from the record are needed. Except in the case that DVAL, | |
7227 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7228 | unchecked) is replaced by a particular branch of the variant. | |
7229 | ||
7230 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7231 | is questionable and may be removed. It can arise during the | |
7232 | processing of an unconstrained-array-of-record type where all the | |
7233 | variant branches have exactly the same size. This is because in | |
7234 | such cases, the compiler does not bother to use the XVS convention | |
7235 | when encoding the record. I am currently dubious of this | |
7236 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7237 | |
d2e4a39e | 7238 | static struct type * |
fc1a4b47 | 7239 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7240 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7241 | { |
d2e4a39e | 7242 | struct type *templ_type; |
14f9c5c9 | 7243 | |
4c4b4cd2 PH |
7244 | if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) |
7245 | return type0; | |
7246 | ||
d2e4a39e | 7247 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7248 | |
7249 | if (templ_type != NULL) | |
7250 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7251 | else if (variant_field_index (type0) >= 0) |
7252 | { | |
7253 | if (dval == NULL && valaddr == NULL && address == 0) | |
7254 | return type0; | |
7255 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7256 | dval); | |
7257 | } | |
14f9c5c9 AS |
7258 | else |
7259 | { | |
4c4b4cd2 | 7260 | TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; |
14f9c5c9 AS |
7261 | return type0; |
7262 | } | |
7263 | ||
7264 | } | |
7265 | ||
7266 | /* An ordinary record type (with fixed-length fields) that describes | |
7267 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7268 | union type. Any necessary discriminants' values should be in DVAL, | |
7269 | a record value. That is, this routine selects the appropriate | |
7270 | branch of the union at ADDR according to the discriminant value | |
4c4b4cd2 | 7271 | indicated in the union's type name. */ |
14f9c5c9 | 7272 | |
d2e4a39e | 7273 | static struct type * |
fc1a4b47 | 7274 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7275 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7276 | { |
7277 | int which; | |
d2e4a39e AS |
7278 | struct type *templ_type; |
7279 | struct type *var_type; | |
14f9c5c9 AS |
7280 | |
7281 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7282 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7283 | else |
14f9c5c9 AS |
7284 | var_type = var_type0; |
7285 | ||
7286 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7287 | ||
7288 | if (templ_type != NULL) | |
7289 | var_type = templ_type; | |
7290 | ||
d2e4a39e AS |
7291 | which = |
7292 | ada_which_variant_applies (var_type, | |
0fd88904 | 7293 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7294 | |
7295 | if (which < 0) | |
7296 | return empty_record (TYPE_OBJFILE (var_type)); | |
7297 | else if (is_dynamic_field (var_type, which)) | |
4c4b4cd2 | 7298 | return to_fixed_record_type |
d2e4a39e AS |
7299 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7300 | valaddr, address, dval); | |
4c4b4cd2 | 7301 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7302 | return |
7303 | to_fixed_record_type | |
7304 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7305 | else |
7306 | return TYPE_FIELD_TYPE (var_type, which); | |
7307 | } | |
7308 | ||
7309 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7310 | at ADDR, and that DVAL describes a record containing any | |
7311 | discriminants used in TYPE0, returns a type for the value that | |
7312 | contains no dynamic components (that is, no components whose sizes | |
7313 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7314 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7315 | varsize_limit. */ |
14f9c5c9 | 7316 | |
d2e4a39e AS |
7317 | static struct type * |
7318 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7319 | int ignore_too_big) |
14f9c5c9 | 7320 | { |
d2e4a39e AS |
7321 | struct type *index_type_desc; |
7322 | struct type *result; | |
14f9c5c9 | 7323 | |
4c4b4cd2 PH |
7324 | if (ada_is_packed_array_type (type0) /* revisit? */ |
7325 | || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)) | |
7326 | return type0; | |
14f9c5c9 AS |
7327 | |
7328 | index_type_desc = ada_find_parallel_type (type0, "___XA"); | |
7329 | if (index_type_desc == NULL) | |
7330 | { | |
61ee279c | 7331 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7332 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7333 | depend on the contents of the array in properly constructed |
7334 | debugging data. */ | |
529cad9c PH |
7335 | /* Create a fixed version of the array element type. |
7336 | We're not providing the address of an element here, | |
e1d5a0d2 | 7337 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7338 | the conversion. This should not be a problem, since arrays of |
7339 | unconstrained objects are not allowed. In particular, all | |
7340 | the elements of an array of a tagged type should all be of | |
7341 | the same type specified in the debugging info. No need to | |
7342 | consult the object tag. */ | |
1ed6ede0 | 7343 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 AS |
7344 | |
7345 | if (elt_type0 == elt_type) | |
4c4b4cd2 | 7346 | result = type0; |
14f9c5c9 | 7347 | else |
4c4b4cd2 PH |
7348 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), |
7349 | elt_type, TYPE_INDEX_TYPE (type0)); | |
14f9c5c9 AS |
7350 | } |
7351 | else | |
7352 | { | |
7353 | int i; | |
7354 | struct type *elt_type0; | |
7355 | ||
7356 | elt_type0 = type0; | |
7357 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7358 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7359 | |
7360 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7361 | depend on the contents of the array in properly constructed |
7362 | debugging data. */ | |
529cad9c PH |
7363 | /* Create a fixed version of the array element type. |
7364 | We're not providing the address of an element here, | |
e1d5a0d2 | 7365 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7366 | the conversion. This should not be a problem, since arrays of |
7367 | unconstrained objects are not allowed. In particular, all | |
7368 | the elements of an array of a tagged type should all be of | |
7369 | the same type specified in the debugging info. No need to | |
7370 | consult the object tag. */ | |
1ed6ede0 JB |
7371 | result = |
7372 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
14f9c5c9 | 7373 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7374 | { |
7375 | struct type *range_type = | |
7376 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
7377 | dval, TYPE_OBJFILE (type0)); | |
7378 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
7379 | result, range_type); | |
7380 | } | |
d2e4a39e | 7381 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7382 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7383 | } |
7384 | ||
4c4b4cd2 | 7385 | TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; |
14f9c5c9 | 7386 | return result; |
d2e4a39e | 7387 | } |
14f9c5c9 AS |
7388 | |
7389 | ||
7390 | /* A standard type (containing no dynamically sized components) | |
7391 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7392 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7393 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7394 | ADDRESS or in VALADDR contains these discriminants. |
7395 | ||
1ed6ede0 JB |
7396 | If CHECK_TAG is not null, in the case of tagged types, this function |
7397 | attempts to locate the object's tag and use it to compute the actual | |
7398 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7399 | location of the tag, and therefore compute the tagged type's actual type. | |
7400 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7401 | |
f192137b JB |
7402 | static struct type * |
7403 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7404 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7405 | { |
61ee279c | 7406 | type = ada_check_typedef (type); |
d2e4a39e AS |
7407 | switch (TYPE_CODE (type)) |
7408 | { | |
7409 | default: | |
14f9c5c9 | 7410 | return type; |
d2e4a39e | 7411 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7412 | { |
76a01679 | 7413 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7414 | struct type *fixed_record_type = |
7415 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7416 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7417 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7418 | type from there. Note that we have to use the fixed record |
7419 | type (the parent part of the record may have dynamic fields | |
7420 | and the way the location of _tag is expressed may depend on | |
7421 | them). */ | |
529cad9c | 7422 | |
1ed6ede0 | 7423 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7424 | { |
7425 | struct type *real_type = | |
1ed6ede0 JB |
7426 | type_from_tag (value_tag_from_contents_and_address |
7427 | (fixed_record_type, | |
7428 | valaddr, | |
7429 | address)); | |
76a01679 | 7430 | if (real_type != NULL) |
1ed6ede0 | 7431 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7432 | } |
1ed6ede0 | 7433 | return fixed_record_type; |
4c4b4cd2 | 7434 | } |
d2e4a39e | 7435 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7436 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7437 | case TYPE_CODE_UNION: |
7438 | if (dval == NULL) | |
4c4b4cd2 | 7439 | return type; |
d2e4a39e | 7440 | else |
4c4b4cd2 | 7441 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7442 | } |
14f9c5c9 AS |
7443 | } |
7444 | ||
f192137b JB |
7445 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7446 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7447 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7448 | ||
7449 | struct type * | |
7450 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7451 | CORE_ADDR address, struct value *dval, int check_tag) | |
7452 | ||
7453 | { | |
7454 | struct type *fixed_type = | |
7455 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7456 | ||
7457 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7458 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7459 | return type; | |
7460 | ||
7461 | return fixed_type; | |
7462 | } | |
7463 | ||
14f9c5c9 | 7464 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7465 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7466 | |
d2e4a39e AS |
7467 | static struct type * |
7468 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7469 | { |
d2e4a39e | 7470 | struct type *type; |
14f9c5c9 AS |
7471 | |
7472 | if (type0 == NULL) | |
7473 | return NULL; | |
7474 | ||
4c4b4cd2 PH |
7475 | if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) |
7476 | return type0; | |
7477 | ||
61ee279c | 7478 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7479 | |
14f9c5c9 AS |
7480 | switch (TYPE_CODE (type0)) |
7481 | { | |
7482 | default: | |
7483 | return type0; | |
7484 | case TYPE_CODE_STRUCT: | |
7485 | type = dynamic_template_type (type0); | |
d2e4a39e | 7486 | if (type != NULL) |
4c4b4cd2 PH |
7487 | return template_to_static_fixed_type (type); |
7488 | else | |
7489 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7490 | case TYPE_CODE_UNION: |
7491 | type = ada_find_parallel_type (type0, "___XVU"); | |
7492 | if (type != NULL) | |
4c4b4cd2 PH |
7493 | return template_to_static_fixed_type (type); |
7494 | else | |
7495 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7496 | } |
7497 | } | |
7498 | ||
4c4b4cd2 PH |
7499 | /* A static approximation of TYPE with all type wrappers removed. */ |
7500 | ||
d2e4a39e AS |
7501 | static struct type * |
7502 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7503 | { |
7504 | if (ada_is_aligner_type (type)) | |
7505 | { | |
61ee279c | 7506 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7507 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7508 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7509 | |
7510 | return static_unwrap_type (type1); | |
7511 | } | |
d2e4a39e | 7512 | else |
14f9c5c9 | 7513 | { |
d2e4a39e AS |
7514 | struct type *raw_real_type = ada_get_base_type (type); |
7515 | if (raw_real_type == type) | |
4c4b4cd2 | 7516 | return type; |
14f9c5c9 | 7517 | else |
4c4b4cd2 | 7518 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7519 | } |
7520 | } | |
7521 | ||
7522 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7523 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7524 | type Foo; |
7525 | type FooP is access Foo; | |
7526 | V: FooP; | |
7527 | type Foo is array ...; | |
4c4b4cd2 | 7528 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7529 | cross-references to such types, we instead substitute for FooP a |
7530 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7531 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7532 | |
7533 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7534 | exists, otherwise TYPE. */ |
7535 | ||
d2e4a39e | 7536 | struct type * |
61ee279c | 7537 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7538 | { |
727e3d2e JB |
7539 | if (type == NULL) |
7540 | return NULL; | |
7541 | ||
14f9c5c9 AS |
7542 | CHECK_TYPEDEF (type); |
7543 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7544 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7545 | || TYPE_TAG_NAME (type) == NULL) |
7546 | return type; | |
d2e4a39e | 7547 | else |
14f9c5c9 | 7548 | { |
d2e4a39e AS |
7549 | char *name = TYPE_TAG_NAME (type); |
7550 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7551 | return (type1 == NULL) ? type : type1; |
7552 | } | |
7553 | } | |
7554 | ||
7555 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7556 | type TYPE0, but with a standard (static-sized) type that correctly | |
7557 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7558 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7559 | creation of struct values]. */ |
14f9c5c9 | 7560 | |
4c4b4cd2 PH |
7561 | static struct value * |
7562 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7563 | struct value *val0) | |
14f9c5c9 | 7564 | { |
1ed6ede0 | 7565 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7566 | if (type == type0 && val0 != NULL) |
7567 | return val0; | |
d2e4a39e | 7568 | else |
4c4b4cd2 PH |
7569 | return value_from_contents_and_address (type, 0, address); |
7570 | } | |
7571 | ||
7572 | /* A value representing VAL, but with a standard (static-sized) type | |
7573 | that correctly describes it. Does not necessarily create a new | |
7574 | value. */ | |
7575 | ||
7576 | static struct value * | |
7577 | ada_to_fixed_value (struct value *val) | |
7578 | { | |
df407dfe AC |
7579 | return ada_to_fixed_value_create (value_type (val), |
7580 | VALUE_ADDRESS (val) + value_offset (val), | |
4c4b4cd2 | 7581 | val); |
14f9c5c9 AS |
7582 | } |
7583 | ||
4c4b4cd2 | 7584 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7585 | chosen to approximate the real type of VAL as well as possible, but |
7586 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7587 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7588 | |
d2e4a39e AS |
7589 | struct value * |
7590 | ada_to_static_fixed_value (struct value *val) | |
14f9c5c9 | 7591 | { |
d2e4a39e | 7592 | struct type *type = |
df407dfe AC |
7593 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7594 | if (type == value_type (val)) | |
14f9c5c9 AS |
7595 | return val; |
7596 | else | |
4c4b4cd2 | 7597 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7598 | } |
d2e4a39e | 7599 | \f |
14f9c5c9 | 7600 | |
14f9c5c9 AS |
7601 | /* Attributes */ |
7602 | ||
4c4b4cd2 PH |
7603 | /* Table mapping attribute numbers to names. |
7604 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7605 | |
d2e4a39e | 7606 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7607 | "<?>", |
7608 | ||
d2e4a39e | 7609 | "first", |
14f9c5c9 AS |
7610 | "last", |
7611 | "length", | |
7612 | "image", | |
14f9c5c9 AS |
7613 | "max", |
7614 | "min", | |
4c4b4cd2 PH |
7615 | "modulus", |
7616 | "pos", | |
7617 | "size", | |
7618 | "tag", | |
14f9c5c9 | 7619 | "val", |
14f9c5c9 AS |
7620 | 0 |
7621 | }; | |
7622 | ||
d2e4a39e | 7623 | const char * |
4c4b4cd2 | 7624 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7625 | { |
4c4b4cd2 PH |
7626 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7627 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7628 | else |
7629 | return attribute_names[0]; | |
7630 | } | |
7631 | ||
4c4b4cd2 | 7632 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7633 | |
4c4b4cd2 PH |
7634 | static LONGEST |
7635 | pos_atr (struct value *arg) | |
14f9c5c9 | 7636 | { |
df407dfe | 7637 | struct type *type = value_type (arg); |
14f9c5c9 | 7638 | |
d2e4a39e | 7639 | if (!discrete_type_p (type)) |
323e0a4a | 7640 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7641 | |
7642 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7643 | { | |
7644 | int i; | |
7645 | LONGEST v = value_as_long (arg); | |
7646 | ||
d2e4a39e | 7647 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7648 | { |
7649 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7650 | return i; | |
7651 | } | |
323e0a4a | 7652 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7653 | } |
7654 | else | |
4c4b4cd2 PH |
7655 | return value_as_long (arg); |
7656 | } | |
7657 | ||
7658 | static struct value * | |
7659 | value_pos_atr (struct value *arg) | |
7660 | { | |
72d5681a | 7661 | return value_from_longest (builtin_type_int, pos_atr (arg)); |
14f9c5c9 AS |
7662 | } |
7663 | ||
4c4b4cd2 | 7664 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7665 | |
d2e4a39e AS |
7666 | static struct value * |
7667 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7668 | { |
d2e4a39e | 7669 | if (!discrete_type_p (type)) |
323e0a4a | 7670 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7671 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7672 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7673 | |
7674 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7675 | { | |
7676 | long pos = value_as_long (arg); | |
7677 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7678 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7679 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7680 | } |
7681 | else | |
7682 | return value_from_longest (type, value_as_long (arg)); | |
7683 | } | |
14f9c5c9 | 7684 | \f |
d2e4a39e | 7685 | |
4c4b4cd2 | 7686 | /* Evaluation */ |
14f9c5c9 | 7687 | |
4c4b4cd2 PH |
7688 | /* True if TYPE appears to be an Ada character type. |
7689 | [At the moment, this is true only for Character and Wide_Character; | |
7690 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7691 | |
d2e4a39e AS |
7692 | int |
7693 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7694 | { |
7b9f71f2 JB |
7695 | const char *name; |
7696 | ||
7697 | /* If the type code says it's a character, then assume it really is, | |
7698 | and don't check any further. */ | |
7699 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7700 | return 1; | |
7701 | ||
7702 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7703 | with a known character type name. */ | |
7704 | name = ada_type_name (type); | |
7705 | return (name != NULL | |
7706 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7707 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7708 | && (strcmp (name, "character") == 0 | |
7709 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7710 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7711 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7712 | } |
7713 | ||
4c4b4cd2 | 7714 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7715 | |
7716 | int | |
ebf56fd3 | 7717 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7718 | { |
61ee279c | 7719 | type = ada_check_typedef (type); |
d2e4a39e | 7720 | if (type != NULL |
14f9c5c9 | 7721 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7722 | && (ada_is_simple_array_type (type) |
7723 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7724 | && ada_array_arity (type) == 1) |
7725 | { | |
7726 | struct type *elttype = ada_array_element_type (type, 1); | |
7727 | ||
7728 | return ada_is_character_type (elttype); | |
7729 | } | |
d2e4a39e | 7730 | else |
14f9c5c9 AS |
7731 | return 0; |
7732 | } | |
7733 | ||
7734 | ||
7735 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7736 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7737 | distinctive name. */ |
14f9c5c9 AS |
7738 | |
7739 | int | |
ebf56fd3 | 7740 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7741 | { |
61ee279c | 7742 | type = ada_check_typedef (type); |
714e53ab PH |
7743 | |
7744 | /* If we can find a parallel XVS type, then the XVS type should | |
7745 | be used instead of this type. And hence, this is not an aligner | |
7746 | type. */ | |
7747 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7748 | return 0; | |
7749 | ||
14f9c5c9 | 7750 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7751 | && TYPE_NFIELDS (type) == 1 |
7752 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7753 | } |
7754 | ||
7755 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7756 | the parallel type. */ |
14f9c5c9 | 7757 | |
d2e4a39e AS |
7758 | struct type * |
7759 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7760 | { |
d2e4a39e AS |
7761 | struct type *real_type_namer; |
7762 | struct type *raw_real_type; | |
14f9c5c9 AS |
7763 | |
7764 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7765 | return raw_type; | |
7766 | ||
7767 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); | |
d2e4a39e | 7768 | if (real_type_namer == NULL |
14f9c5c9 AS |
7769 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7770 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7771 | return raw_type; | |
7772 | ||
7773 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7774 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7775 | return raw_type; |
7776 | else | |
7777 | return raw_real_type; | |
d2e4a39e | 7778 | } |
14f9c5c9 | 7779 | |
4c4b4cd2 | 7780 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7781 | |
d2e4a39e AS |
7782 | struct type * |
7783 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7784 | { |
7785 | if (ada_is_aligner_type (type)) | |
7786 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7787 | else | |
7788 | return ada_get_base_type (type); | |
7789 | } | |
7790 | ||
7791 | ||
7792 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7793 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7794 | |
fc1a4b47 AC |
7795 | const gdb_byte * |
7796 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7797 | { |
d2e4a39e | 7798 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7799 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7800 | valaddr + |
7801 | TYPE_FIELD_BITPOS (type, | |
7802 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7803 | else |
7804 | return valaddr; | |
7805 | } | |
7806 | ||
4c4b4cd2 PH |
7807 | |
7808 | ||
14f9c5c9 | 7809 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7810 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7811 | const char * |
7812 | ada_enum_name (const char *name) | |
14f9c5c9 | 7813 | { |
4c4b4cd2 PH |
7814 | static char *result; |
7815 | static size_t result_len = 0; | |
d2e4a39e | 7816 | char *tmp; |
14f9c5c9 | 7817 | |
4c4b4cd2 PH |
7818 | /* First, unqualify the enumeration name: |
7819 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7820 | all the preceeding characters, the unqualified name starts |
7821 | right after that dot. | |
4c4b4cd2 | 7822 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7823 | translates dots into "__". Search forward for double underscores, |
7824 | but stop searching when we hit an overloading suffix, which is | |
7825 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7826 | |
c3e5cd34 PH |
7827 | tmp = strrchr (name, '.'); |
7828 | if (tmp != NULL) | |
4c4b4cd2 PH |
7829 | name = tmp + 1; |
7830 | else | |
14f9c5c9 | 7831 | { |
4c4b4cd2 PH |
7832 | while ((tmp = strstr (name, "__")) != NULL) |
7833 | { | |
7834 | if (isdigit (tmp[2])) | |
7835 | break; | |
7836 | else | |
7837 | name = tmp + 2; | |
7838 | } | |
14f9c5c9 AS |
7839 | } |
7840 | ||
7841 | if (name[0] == 'Q') | |
7842 | { | |
14f9c5c9 AS |
7843 | int v; |
7844 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7845 | { |
7846 | if (sscanf (name + 2, "%x", &v) != 1) | |
7847 | return name; | |
7848 | } | |
14f9c5c9 | 7849 | else |
4c4b4cd2 | 7850 | return name; |
14f9c5c9 | 7851 | |
4c4b4cd2 | 7852 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7853 | if (isascii (v) && isprint (v)) |
4c4b4cd2 | 7854 | sprintf (result, "'%c'", v); |
14f9c5c9 | 7855 | else if (name[1] == 'U') |
4c4b4cd2 | 7856 | sprintf (result, "[\"%02x\"]", v); |
14f9c5c9 | 7857 | else |
4c4b4cd2 | 7858 | sprintf (result, "[\"%04x\"]", v); |
14f9c5c9 AS |
7859 | |
7860 | return result; | |
7861 | } | |
d2e4a39e | 7862 | else |
4c4b4cd2 | 7863 | { |
c3e5cd34 PH |
7864 | tmp = strstr (name, "__"); |
7865 | if (tmp == NULL) | |
7866 | tmp = strstr (name, "$"); | |
7867 | if (tmp != NULL) | |
4c4b4cd2 PH |
7868 | { |
7869 | GROW_VECT (result, result_len, tmp - name + 1); | |
7870 | strncpy (result, name, tmp - name); | |
7871 | result[tmp - name] = '\0'; | |
7872 | return result; | |
7873 | } | |
7874 | ||
7875 | return name; | |
7876 | } | |
14f9c5c9 AS |
7877 | } |
7878 | ||
d2e4a39e | 7879 | static struct value * |
ebf56fd3 | 7880 | evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos, |
4c4b4cd2 | 7881 | enum noside noside) |
14f9c5c9 | 7882 | { |
76a01679 | 7883 | return (*exp->language_defn->la_exp_desc->evaluate_exp) |
4c4b4cd2 | 7884 | (expect_type, exp, pos, noside); |
14f9c5c9 AS |
7885 | } |
7886 | ||
7887 | /* Evaluate the subexpression of EXP starting at *POS as for | |
7888 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7889 | expression. */ |
14f9c5c9 | 7890 | |
d2e4a39e AS |
7891 | static struct value * |
7892 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7893 | { |
4c4b4cd2 | 7894 | return (*exp->language_defn->la_exp_desc->evaluate_exp) |
14f9c5c9 AS |
7895 | (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
7896 | } | |
7897 | ||
7898 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7899 | value it wraps. */ |
14f9c5c9 | 7900 | |
d2e4a39e AS |
7901 | static struct value * |
7902 | unwrap_value (struct value *val) | |
14f9c5c9 | 7903 | { |
df407dfe | 7904 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7905 | if (ada_is_aligner_type (type)) |
7906 | { | |
de4d072f | 7907 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7908 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7909 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7910 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7911 | |
7912 | return unwrap_value (v); | |
7913 | } | |
d2e4a39e | 7914 | else |
14f9c5c9 | 7915 | { |
d2e4a39e | 7916 | struct type *raw_real_type = |
61ee279c | 7917 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7918 | |
14f9c5c9 | 7919 | if (type == raw_real_type) |
4c4b4cd2 | 7920 | return val; |
14f9c5c9 | 7921 | |
d2e4a39e | 7922 | return |
4c4b4cd2 PH |
7923 | coerce_unspec_val_to_type |
7924 | (val, ada_to_fixed_type (raw_real_type, 0, | |
df407dfe | 7925 | VALUE_ADDRESS (val) + value_offset (val), |
1ed6ede0 | 7926 | NULL, 1)); |
14f9c5c9 AS |
7927 | } |
7928 | } | |
d2e4a39e AS |
7929 | |
7930 | static struct value * | |
7931 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7932 | { |
7933 | LONGEST val; | |
7934 | ||
df407dfe | 7935 | if (type == value_type (arg)) |
14f9c5c9 | 7936 | return arg; |
df407dfe | 7937 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7938 | val = ada_float_to_fixed (type, |
df407dfe | 7939 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7940 | value_as_long (arg))); |
d2e4a39e | 7941 | else |
14f9c5c9 | 7942 | { |
d2e4a39e | 7943 | DOUBLEST argd = |
4c4b4cd2 | 7944 | value_as_double (value_cast (builtin_type_double, value_copy (arg))); |
14f9c5c9 AS |
7945 | val = ada_float_to_fixed (type, argd); |
7946 | } | |
7947 | ||
7948 | return value_from_longest (type, val); | |
7949 | } | |
7950 | ||
d2e4a39e AS |
7951 | static struct value * |
7952 | cast_from_fixed_to_double (struct value *arg) | |
14f9c5c9 | 7953 | { |
df407dfe | 7954 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7955 | value_as_long (arg)); |
14f9c5c9 AS |
7956 | return value_from_double (builtin_type_double, val); |
7957 | } | |
7958 | ||
4c4b4cd2 PH |
7959 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7960 | return the converted value. */ | |
7961 | ||
d2e4a39e AS |
7962 | static struct value * |
7963 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7964 | { |
df407dfe | 7965 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7966 | if (type == type2) |
7967 | return val; | |
7968 | ||
61ee279c PH |
7969 | type2 = ada_check_typedef (type2); |
7970 | type = ada_check_typedef (type); | |
14f9c5c9 | 7971 | |
d2e4a39e AS |
7972 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7973 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7974 | { |
7975 | val = ada_value_ind (val); | |
df407dfe | 7976 | type2 = value_type (val); |
14f9c5c9 AS |
7977 | } |
7978 | ||
d2e4a39e | 7979 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7980 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7981 | { | |
7982 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7983 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7984 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7985 | error (_("Incompatible types in assignment")); |
04624583 | 7986 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7987 | } |
d2e4a39e | 7988 | return val; |
14f9c5c9 AS |
7989 | } |
7990 | ||
4c4b4cd2 PH |
7991 | static struct value * |
7992 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7993 | { | |
7994 | struct value *val; | |
7995 | struct type *type1, *type2; | |
7996 | LONGEST v, v1, v2; | |
7997 | ||
994b9211 AC |
7998 | arg1 = coerce_ref (arg1); |
7999 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
8000 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
8001 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8002 | |
76a01679 JB |
8003 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8004 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8005 | return value_binop (arg1, arg2, op); |
8006 | ||
76a01679 | 8007 | switch (op) |
4c4b4cd2 PH |
8008 | { |
8009 | case BINOP_MOD: | |
8010 | case BINOP_DIV: | |
8011 | case BINOP_REM: | |
8012 | break; | |
8013 | default: | |
8014 | return value_binop (arg1, arg2, op); | |
8015 | } | |
8016 | ||
8017 | v2 = value_as_long (arg2); | |
8018 | if (v2 == 0) | |
323e0a4a | 8019 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8020 | |
8021 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8022 | return value_binop (arg1, arg2, op); | |
8023 | ||
8024 | v1 = value_as_long (arg1); | |
8025 | switch (op) | |
8026 | { | |
8027 | case BINOP_DIV: | |
8028 | v = v1 / v2; | |
76a01679 JB |
8029 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8030 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8031 | break; |
8032 | case BINOP_REM: | |
8033 | v = v1 % v2; | |
76a01679 JB |
8034 | if (v * v1 < 0) |
8035 | v -= v2; | |
4c4b4cd2 PH |
8036 | break; |
8037 | default: | |
8038 | /* Should not reach this point. */ | |
8039 | v = 0; | |
8040 | } | |
8041 | ||
8042 | val = allocate_value (type1); | |
990a07ab | 8043 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 8044 | TYPE_LENGTH (value_type (val)), v); |
4c4b4cd2 PH |
8045 | return val; |
8046 | } | |
8047 | ||
8048 | static int | |
8049 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8050 | { | |
df407dfe AC |
8051 | if (ada_is_direct_array_type (value_type (arg1)) |
8052 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8053 | { |
f58b38bf JB |
8054 | /* Automatically dereference any array reference before |
8055 | we attempt to perform the comparison. */ | |
8056 | arg1 = ada_coerce_ref (arg1); | |
8057 | arg2 = ada_coerce_ref (arg2); | |
8058 | ||
4c4b4cd2 PH |
8059 | arg1 = ada_coerce_to_simple_array (arg1); |
8060 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8061 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8062 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8063 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8064 | /* FIXME: The following works only for types whose |
76a01679 JB |
8065 | representations use all bits (no padding or undefined bits) |
8066 | and do not have user-defined equality. */ | |
8067 | return | |
df407dfe | 8068 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8069 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8070 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8071 | } |
8072 | return value_equal (arg1, arg2); | |
8073 | } | |
8074 | ||
52ce6436 PH |
8075 | /* Total number of component associations in the aggregate starting at |
8076 | index PC in EXP. Assumes that index PC is the start of an | |
8077 | OP_AGGREGATE. */ | |
8078 | ||
8079 | static int | |
8080 | num_component_specs (struct expression *exp, int pc) | |
8081 | { | |
8082 | int n, m, i; | |
8083 | m = exp->elts[pc + 1].longconst; | |
8084 | pc += 3; | |
8085 | n = 0; | |
8086 | for (i = 0; i < m; i += 1) | |
8087 | { | |
8088 | switch (exp->elts[pc].opcode) | |
8089 | { | |
8090 | default: | |
8091 | n += 1; | |
8092 | break; | |
8093 | case OP_CHOICES: | |
8094 | n += exp->elts[pc + 1].longconst; | |
8095 | break; | |
8096 | } | |
8097 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8098 | } | |
8099 | return n; | |
8100 | } | |
8101 | ||
8102 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8103 | component of LHS (a simple array or a record), updating *POS past | |
8104 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8105 | not modify the inferior's memory, nor does it modify LHS (unless | |
8106 | LHS == CONTAINER). */ | |
8107 | ||
8108 | static void | |
8109 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8110 | struct expression *exp, int *pos) | |
8111 | { | |
8112 | struct value *mark = value_mark (); | |
8113 | struct value *elt; | |
8114 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8115 | { | |
8116 | struct value *index_val = value_from_longest (builtin_type_int, index); | |
8117 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); | |
8118 | } | |
8119 | else | |
8120 | { | |
8121 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8122 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8123 | } | |
8124 | ||
8125 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8126 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8127 | else | |
8128 | value_assign_to_component (container, elt, | |
8129 | ada_evaluate_subexp (NULL, exp, pos, | |
8130 | EVAL_NORMAL)); | |
8131 | ||
8132 | value_free_to_mark (mark); | |
8133 | } | |
8134 | ||
8135 | /* Assuming that LHS represents an lvalue having a record or array | |
8136 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8137 | of that aggregate's value to LHS, advancing *POS past the | |
8138 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8139 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8140 | the inferior's memory, nor does it modify the contents of | |
8141 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8142 | ||
8143 | static struct value * | |
8144 | assign_aggregate (struct value *container, | |
8145 | struct value *lhs, struct expression *exp, | |
8146 | int *pos, enum noside noside) | |
8147 | { | |
8148 | struct type *lhs_type; | |
8149 | int n = exp->elts[*pos+1].longconst; | |
8150 | LONGEST low_index, high_index; | |
8151 | int num_specs; | |
8152 | LONGEST *indices; | |
8153 | int max_indices, num_indices; | |
8154 | int is_array_aggregate; | |
8155 | int i; | |
8156 | struct value *mark = value_mark (); | |
8157 | ||
8158 | *pos += 3; | |
8159 | if (noside != EVAL_NORMAL) | |
8160 | { | |
8161 | int i; | |
8162 | for (i = 0; i < n; i += 1) | |
8163 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8164 | return container; | |
8165 | } | |
8166 | ||
8167 | container = ada_coerce_ref (container); | |
8168 | if (ada_is_direct_array_type (value_type (container))) | |
8169 | container = ada_coerce_to_simple_array (container); | |
8170 | lhs = ada_coerce_ref (lhs); | |
8171 | if (!deprecated_value_modifiable (lhs)) | |
8172 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8173 | ||
8174 | lhs_type = value_type (lhs); | |
8175 | if (ada_is_direct_array_type (lhs_type)) | |
8176 | { | |
8177 | lhs = ada_coerce_to_simple_array (lhs); | |
8178 | lhs_type = value_type (lhs); | |
8179 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8180 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8181 | is_array_aggregate = 1; | |
8182 | } | |
8183 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8184 | { | |
8185 | low_index = 0; | |
8186 | high_index = num_visible_fields (lhs_type) - 1; | |
8187 | is_array_aggregate = 0; | |
8188 | } | |
8189 | else | |
8190 | error (_("Left-hand side must be array or record.")); | |
8191 | ||
8192 | num_specs = num_component_specs (exp, *pos - 3); | |
8193 | max_indices = 4 * num_specs + 4; | |
8194 | indices = alloca (max_indices * sizeof (indices[0])); | |
8195 | indices[0] = indices[1] = low_index - 1; | |
8196 | indices[2] = indices[3] = high_index + 1; | |
8197 | num_indices = 4; | |
8198 | ||
8199 | for (i = 0; i < n; i += 1) | |
8200 | { | |
8201 | switch (exp->elts[*pos].opcode) | |
8202 | { | |
8203 | case OP_CHOICES: | |
8204 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8205 | &num_indices, max_indices, | |
8206 | low_index, high_index); | |
8207 | break; | |
8208 | case OP_POSITIONAL: | |
8209 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8210 | &num_indices, max_indices, | |
8211 | low_index, high_index); | |
8212 | break; | |
8213 | case OP_OTHERS: | |
8214 | if (i != n-1) | |
8215 | error (_("Misplaced 'others' clause")); | |
8216 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8217 | num_indices, low_index, high_index); | |
8218 | break; | |
8219 | default: | |
8220 | error (_("Internal error: bad aggregate clause")); | |
8221 | } | |
8222 | } | |
8223 | ||
8224 | return container; | |
8225 | } | |
8226 | ||
8227 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8228 | construct at *POS, updating *POS past the construct, given that | |
8229 | the positions are relative to lower bound LOW, where HIGH is the | |
8230 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8231 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8232 | assign_aggregate. */ | |
8233 | static void | |
8234 | aggregate_assign_positional (struct value *container, | |
8235 | struct value *lhs, struct expression *exp, | |
8236 | int *pos, LONGEST *indices, int *num_indices, | |
8237 | int max_indices, LONGEST low, LONGEST high) | |
8238 | { | |
8239 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8240 | ||
8241 | if (ind - 1 == high) | |
e1d5a0d2 | 8242 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8243 | if (ind <= high) |
8244 | { | |
8245 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8246 | *pos += 3; | |
8247 | assign_component (container, lhs, ind, exp, pos); | |
8248 | } | |
8249 | else | |
8250 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8251 | } | |
8252 | ||
8253 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8254 | construct at *POS, updating *POS past the construct, given that | |
8255 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8256 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8257 | needed. CONTAINER is as for assign_aggregate. */ | |
8258 | static void | |
8259 | aggregate_assign_from_choices (struct value *container, | |
8260 | struct value *lhs, struct expression *exp, | |
8261 | int *pos, LONGEST *indices, int *num_indices, | |
8262 | int max_indices, LONGEST low, LONGEST high) | |
8263 | { | |
8264 | int j; | |
8265 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8266 | int choice_pos, expr_pc; | |
8267 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8268 | ||
8269 | choice_pos = *pos += 3; | |
8270 | ||
8271 | for (j = 0; j < n_choices; j += 1) | |
8272 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8273 | expr_pc = *pos; | |
8274 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8275 | ||
8276 | for (j = 0; j < n_choices; j += 1) | |
8277 | { | |
8278 | LONGEST lower, upper; | |
8279 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8280 | if (op == OP_DISCRETE_RANGE) | |
8281 | { | |
8282 | choice_pos += 1; | |
8283 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8284 | EVAL_NORMAL)); | |
8285 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8286 | EVAL_NORMAL)); | |
8287 | } | |
8288 | else if (is_array) | |
8289 | { | |
8290 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8291 | EVAL_NORMAL)); | |
8292 | upper = lower; | |
8293 | } | |
8294 | else | |
8295 | { | |
8296 | int ind; | |
8297 | char *name; | |
8298 | switch (op) | |
8299 | { | |
8300 | case OP_NAME: | |
8301 | name = &exp->elts[choice_pos + 2].string; | |
8302 | break; | |
8303 | case OP_VAR_VALUE: | |
8304 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8305 | break; | |
8306 | default: | |
8307 | error (_("Invalid record component association.")); | |
8308 | } | |
8309 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8310 | ind = 0; | |
8311 | if (! find_struct_field (name, value_type (lhs), 0, | |
8312 | NULL, NULL, NULL, NULL, &ind)) | |
8313 | error (_("Unknown component name: %s."), name); | |
8314 | lower = upper = ind; | |
8315 | } | |
8316 | ||
8317 | if (lower <= upper && (lower < low || upper > high)) | |
8318 | error (_("Index in component association out of bounds.")); | |
8319 | ||
8320 | add_component_interval (lower, upper, indices, num_indices, | |
8321 | max_indices); | |
8322 | while (lower <= upper) | |
8323 | { | |
8324 | int pos1; | |
8325 | pos1 = expr_pc; | |
8326 | assign_component (container, lhs, lower, exp, &pos1); | |
8327 | lower += 1; | |
8328 | } | |
8329 | } | |
8330 | } | |
8331 | ||
8332 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8333 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8334 | have not been previously assigned. The index intervals already assigned | |
8335 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8336 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8337 | static void | |
8338 | aggregate_assign_others (struct value *container, | |
8339 | struct value *lhs, struct expression *exp, | |
8340 | int *pos, LONGEST *indices, int num_indices, | |
8341 | LONGEST low, LONGEST high) | |
8342 | { | |
8343 | int i; | |
8344 | int expr_pc = *pos+1; | |
8345 | ||
8346 | for (i = 0; i < num_indices - 2; i += 2) | |
8347 | { | |
8348 | LONGEST ind; | |
8349 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8350 | { | |
8351 | int pos; | |
8352 | pos = expr_pc; | |
8353 | assign_component (container, lhs, ind, exp, &pos); | |
8354 | } | |
8355 | } | |
8356 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8357 | } | |
8358 | ||
8359 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8360 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8361 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8362 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8363 | static void | |
8364 | add_component_interval (LONGEST low, LONGEST high, | |
8365 | LONGEST* indices, int *size, int max_size) | |
8366 | { | |
8367 | int i, j; | |
8368 | for (i = 0; i < *size; i += 2) { | |
8369 | if (high >= indices[i] && low <= indices[i + 1]) | |
8370 | { | |
8371 | int kh; | |
8372 | for (kh = i + 2; kh < *size; kh += 2) | |
8373 | if (high < indices[kh]) | |
8374 | break; | |
8375 | if (low < indices[i]) | |
8376 | indices[i] = low; | |
8377 | indices[i + 1] = indices[kh - 1]; | |
8378 | if (high > indices[i + 1]) | |
8379 | indices[i + 1] = high; | |
8380 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8381 | *size -= kh - i - 2; | |
8382 | return; | |
8383 | } | |
8384 | else if (high < indices[i]) | |
8385 | break; | |
8386 | } | |
8387 | ||
8388 | if (*size == max_size) | |
8389 | error (_("Internal error: miscounted aggregate components.")); | |
8390 | *size += 2; | |
8391 | for (j = *size-1; j >= i+2; j -= 1) | |
8392 | indices[j] = indices[j - 2]; | |
8393 | indices[i] = low; | |
8394 | indices[i + 1] = high; | |
8395 | } | |
8396 | ||
6e48bd2c JB |
8397 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8398 | is different. */ | |
8399 | ||
8400 | static struct value * | |
8401 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8402 | { | |
8403 | if (type == ada_check_typedef (value_type (arg2))) | |
8404 | return arg2; | |
8405 | ||
8406 | if (ada_is_fixed_point_type (type)) | |
8407 | return (cast_to_fixed (type, arg2)); | |
8408 | ||
8409 | if (ada_is_fixed_point_type (value_type (arg2))) | |
8410 | return value_cast (type, cast_from_fixed_to_double (arg2)); | |
8411 | ||
8412 | return value_cast (type, arg2); | |
8413 | } | |
8414 | ||
52ce6436 | 8415 | static struct value * |
ebf56fd3 | 8416 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8417 | int *pos, enum noside noside) |
14f9c5c9 AS |
8418 | { |
8419 | enum exp_opcode op; | |
14f9c5c9 AS |
8420 | int tem, tem2, tem3; |
8421 | int pc; | |
8422 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8423 | struct type *type; | |
52ce6436 | 8424 | int nargs, oplen; |
d2e4a39e | 8425 | struct value **argvec; |
14f9c5c9 | 8426 | |
d2e4a39e AS |
8427 | pc = *pos; |
8428 | *pos += 1; | |
14f9c5c9 AS |
8429 | op = exp->elts[pc].opcode; |
8430 | ||
d2e4a39e | 8431 | switch (op) |
14f9c5c9 AS |
8432 | { |
8433 | default: | |
8434 | *pos -= 1; | |
6e48bd2c JB |
8435 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8436 | arg1 = unwrap_value (arg1); | |
8437 | ||
8438 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8439 | then we need to perform the conversion manually, because | |
8440 | evaluate_subexp_standard doesn't do it. This conversion is | |
8441 | necessary in Ada because the different kinds of float/fixed | |
8442 | types in Ada have different representations. | |
8443 | ||
8444 | Similarly, we need to perform the conversion from OP_LONG | |
8445 | ourselves. */ | |
8446 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8447 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8448 | ||
8449 | return arg1; | |
4c4b4cd2 PH |
8450 | |
8451 | case OP_STRING: | |
8452 | { | |
76a01679 JB |
8453 | struct value *result; |
8454 | *pos -= 1; | |
8455 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8456 | /* The result type will have code OP_STRING, bashed there from | |
8457 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8458 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8459 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8460 | return result; |
4c4b4cd2 | 8461 | } |
14f9c5c9 AS |
8462 | |
8463 | case UNOP_CAST: | |
8464 | (*pos) += 2; | |
8465 | type = exp->elts[pc + 1].type; | |
8466 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8467 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8468 | goto nosideret; |
6e48bd2c | 8469 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8470 | return arg1; |
8471 | ||
4c4b4cd2 PH |
8472 | case UNOP_QUAL: |
8473 | (*pos) += 2; | |
8474 | type = exp->elts[pc + 1].type; | |
8475 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8476 | ||
14f9c5c9 AS |
8477 | case BINOP_ASSIGN: |
8478 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8479 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8480 | { | |
8481 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8482 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8483 | return arg1; | |
8484 | return ada_value_assign (arg1, arg1); | |
8485 | } | |
003f3813 JB |
8486 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8487 | except if the lhs of our assignment is a convenience variable. | |
8488 | In the case of assigning to a convenience variable, the lhs | |
8489 | should be exactly the result of the evaluation of the rhs. */ | |
8490 | type = value_type (arg1); | |
8491 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8492 | type = NULL; | |
8493 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8494 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8495 | return arg1; |
df407dfe AC |
8496 | if (ada_is_fixed_point_type (value_type (arg1))) |
8497 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8498 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8499 | error |
323e0a4a | 8500 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8501 | else |
df407dfe | 8502 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8503 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8504 | |
8505 | case BINOP_ADD: | |
8506 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8507 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8508 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8509 | goto nosideret; |
df407dfe AC |
8510 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8511 | || ada_is_fixed_point_type (value_type (arg2))) | |
8512 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8513 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8514 | /* Do the addition, and cast the result to the type of the first |
8515 | argument. We cannot cast the result to a reference type, so if | |
8516 | ARG1 is a reference type, find its underlying type. */ | |
8517 | type = value_type (arg1); | |
8518 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8519 | type = TYPE_TARGET_TYPE (type); | |
8520 | return value_cast (type, value_add (arg1, arg2)); | |
14f9c5c9 AS |
8521 | |
8522 | case BINOP_SUB: | |
8523 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8524 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8525 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8526 | goto nosideret; |
df407dfe AC |
8527 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8528 | || ada_is_fixed_point_type (value_type (arg2))) | |
8529 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8530 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8531 | /* Do the substraction, and cast the result to the type of the first |
8532 | argument. We cannot cast the result to a reference type, so if | |
8533 | ARG1 is a reference type, find its underlying type. */ | |
8534 | type = value_type (arg1); | |
8535 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8536 | type = TYPE_TARGET_TYPE (type); | |
8537 | return value_cast (type, value_sub (arg1, arg2)); | |
14f9c5c9 AS |
8538 | |
8539 | case BINOP_MUL: | |
8540 | case BINOP_DIV: | |
8541 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8542 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8543 | if (noside == EVAL_SKIP) | |
4c4b4cd2 PH |
8544 | goto nosideret; |
8545 | else if (noside == EVAL_AVOID_SIDE_EFFECTS | |
76a01679 | 8546 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) |
df407dfe | 8547 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 8548 | else |
4c4b4cd2 | 8549 | { |
df407dfe | 8550 | if (ada_is_fixed_point_type (value_type (arg1))) |
4c4b4cd2 | 8551 | arg1 = cast_from_fixed_to_double (arg1); |
df407dfe | 8552 | if (ada_is_fixed_point_type (value_type (arg2))) |
4c4b4cd2 PH |
8553 | arg2 = cast_from_fixed_to_double (arg2); |
8554 | return ada_value_binop (arg1, arg2, op); | |
8555 | } | |
8556 | ||
8557 | case BINOP_REM: | |
8558 | case BINOP_MOD: | |
8559 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8560 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8561 | if (noside == EVAL_SKIP) | |
76a01679 | 8562 | goto nosideret; |
4c4b4cd2 | 8563 | else if (noside == EVAL_AVOID_SIDE_EFFECTS |
76a01679 | 8564 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) |
df407dfe | 8565 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 8566 | else |
76a01679 | 8567 | return ada_value_binop (arg1, arg2, op); |
14f9c5c9 | 8568 | |
4c4b4cd2 PH |
8569 | case BINOP_EQUAL: |
8570 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8571 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8572 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8573 | if (noside == EVAL_SKIP) |
76a01679 | 8574 | goto nosideret; |
4c4b4cd2 | 8575 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8576 | tem = 0; |
4c4b4cd2 | 8577 | else |
76a01679 | 8578 | tem = ada_value_equal (arg1, arg2); |
4c4b4cd2 | 8579 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8580 | tem = !tem; |
4c4b4cd2 PH |
8581 | return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); |
8582 | ||
8583 | case UNOP_NEG: | |
8584 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8585 | if (noside == EVAL_SKIP) | |
8586 | goto nosideret; | |
df407dfe AC |
8587 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8588 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8589 | else |
4c4b4cd2 PH |
8590 | return value_neg (arg1); |
8591 | ||
2330c6c6 JB |
8592 | case BINOP_LOGICAL_AND: |
8593 | case BINOP_LOGICAL_OR: | |
8594 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8595 | { |
8596 | struct value *val; | |
8597 | ||
8598 | *pos -= 1; | |
8599 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8600 | return value_cast (LA_BOOL_TYPE, val); | |
8601 | } | |
2330c6c6 JB |
8602 | |
8603 | case BINOP_BITWISE_AND: | |
8604 | case BINOP_BITWISE_IOR: | |
8605 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8606 | { |
8607 | struct value *val; | |
8608 | ||
8609 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8610 | *pos = pc; | |
8611 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8612 | ||
8613 | return value_cast (value_type (arg1), val); | |
8614 | } | |
2330c6c6 | 8615 | |
14f9c5c9 AS |
8616 | case OP_VAR_VALUE: |
8617 | *pos -= 1; | |
6799def4 JB |
8618 | |
8619 | /* Tagged types are a little special in the fact that the real type | |
8620 | is dynamic and can only be determined by inspecting the object | |
8621 | value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS | |
8622 | evaluation, we force an EVAL_NORMAL evaluation for tagged types. */ | |
8623 | if (noside == EVAL_AVOID_SIDE_EFFECTS | |
8624 | && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1)) | |
8625 | noside = EVAL_NORMAL; | |
8626 | ||
14f9c5c9 | 8627 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8628 | { |
8629 | *pos += 4; | |
8630 | goto nosideret; | |
8631 | } | |
8632 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8633 | /* Only encountered when an unresolved symbol occurs in a |
8634 | context other than a function call, in which case, it is | |
52ce6436 | 8635 | invalid. */ |
323e0a4a | 8636 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8637 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8638 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
8639 | { |
8640 | *pos += 4; | |
8641 | return value_zero | |
8642 | (to_static_fixed_type | |
8643 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8644 | not_lval); | |
8645 | } | |
d2e4a39e | 8646 | else |
4c4b4cd2 PH |
8647 | { |
8648 | arg1 = | |
8649 | unwrap_value (evaluate_subexp_standard | |
8650 | (expect_type, exp, pos, noside)); | |
8651 | return ada_to_fixed_value (arg1); | |
8652 | } | |
8653 | ||
8654 | case OP_FUNCALL: | |
8655 | (*pos) += 2; | |
8656 | ||
8657 | /* Allocate arg vector, including space for the function to be | |
8658 | called in argvec[0] and a terminating NULL. */ | |
8659 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8660 | argvec = | |
8661 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8662 | ||
8663 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8664 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8665 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8666 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8667 | else | |
8668 | { | |
8669 | for (tem = 0; tem <= nargs; tem += 1) | |
8670 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8671 | argvec[tem] = 0; | |
8672 | ||
8673 | if (noside == EVAL_SKIP) | |
8674 | goto nosideret; | |
8675 | } | |
8676 | ||
df407dfe | 8677 | if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0])))) |
4c4b4cd2 | 8678 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
df407dfe AC |
8679 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8680 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8681 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8682 | argvec[0] = value_addr (argvec[0]); |
8683 | ||
df407dfe | 8684 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8685 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8686 | { | |
61ee279c | 8687 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8688 | { |
8689 | case TYPE_CODE_FUNC: | |
61ee279c | 8690 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8691 | break; |
8692 | case TYPE_CODE_ARRAY: | |
8693 | break; | |
8694 | case TYPE_CODE_STRUCT: | |
8695 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8696 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8697 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8698 | break; |
8699 | default: | |
323e0a4a | 8700 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8701 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8702 | break; |
8703 | } | |
8704 | } | |
8705 | ||
8706 | switch (TYPE_CODE (type)) | |
8707 | { | |
8708 | case TYPE_CODE_FUNC: | |
8709 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8710 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8711 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8712 | case TYPE_CODE_STRUCT: | |
8713 | { | |
8714 | int arity; | |
8715 | ||
4c4b4cd2 PH |
8716 | arity = ada_array_arity (type); |
8717 | type = ada_array_element_type (type, nargs); | |
8718 | if (type == NULL) | |
323e0a4a | 8719 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8720 | if (arity != nargs) |
323e0a4a | 8721 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8722 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8723 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8724 | return |
8725 | unwrap_value (ada_value_subscript | |
8726 | (argvec[0], nargs, argvec + 1)); | |
8727 | } | |
8728 | case TYPE_CODE_ARRAY: | |
8729 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8730 | { | |
8731 | type = ada_array_element_type (type, nargs); | |
8732 | if (type == NULL) | |
323e0a4a | 8733 | error (_("element type of array unknown")); |
4c4b4cd2 | 8734 | else |
0a07e705 | 8735 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8736 | } |
8737 | return | |
8738 | unwrap_value (ada_value_subscript | |
8739 | (ada_coerce_to_simple_array (argvec[0]), | |
8740 | nargs, argvec + 1)); | |
8741 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8742 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8743 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8744 | { | |
8745 | type = ada_array_element_type (type, nargs); | |
8746 | if (type == NULL) | |
323e0a4a | 8747 | error (_("element type of array unknown")); |
4c4b4cd2 | 8748 | else |
0a07e705 | 8749 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8750 | } |
8751 | return | |
8752 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8753 | nargs, argvec + 1)); | |
8754 | ||
8755 | default: | |
e1d5a0d2 PH |
8756 | error (_("Attempt to index or call something other than an " |
8757 | "array or function")); | |
4c4b4cd2 PH |
8758 | } |
8759 | ||
8760 | case TERNOP_SLICE: | |
8761 | { | |
8762 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8763 | struct value *low_bound_val = | |
8764 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8765 | struct value *high_bound_val = |
8766 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8767 | LONGEST low_bound; | |
8768 | LONGEST high_bound; | |
994b9211 AC |
8769 | low_bound_val = coerce_ref (low_bound_val); |
8770 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8771 | low_bound = pos_atr (low_bound_val); |
8772 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8773 | |
4c4b4cd2 PH |
8774 | if (noside == EVAL_SKIP) |
8775 | goto nosideret; | |
8776 | ||
4c4b4cd2 PH |
8777 | /* If this is a reference to an aligner type, then remove all |
8778 | the aligners. */ | |
df407dfe AC |
8779 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8780 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8781 | TYPE_TARGET_TYPE (value_type (array)) = | |
8782 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8783 | |
df407dfe | 8784 | if (ada_is_packed_array_type (value_type (array))) |
323e0a4a | 8785 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8786 | |
8787 | /* If this is a reference to an array or an array lvalue, | |
8788 | convert to a pointer. */ | |
df407dfe AC |
8789 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8790 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8791 | && VALUE_LVAL (array) == lval_memory)) |
8792 | array = value_addr (array); | |
8793 | ||
1265e4aa | 8794 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8795 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8796 | (value_type (array)))) |
0b5d8877 | 8797 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8798 | |
8799 | array = ada_coerce_to_simple_array_ptr (array); | |
8800 | ||
714e53ab PH |
8801 | /* If we have more than one level of pointer indirection, |
8802 | dereference the value until we get only one level. */ | |
df407dfe AC |
8803 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
8804 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
8805 | == TYPE_CODE_PTR)) |
8806 | array = value_ind (array); | |
8807 | ||
8808 | /* Make sure we really do have an array type before going further, | |
8809 | to avoid a SEGV when trying to get the index type or the target | |
8810 | type later down the road if the debug info generated by | |
8811 | the compiler is incorrect or incomplete. */ | |
df407dfe | 8812 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 8813 | error (_("cannot take slice of non-array")); |
714e53ab | 8814 | |
df407dfe | 8815 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 8816 | { |
0b5d8877 | 8817 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 8818 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
8819 | low_bound); |
8820 | else | |
8821 | { | |
8822 | struct type *arr_type0 = | |
df407dfe | 8823 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 8824 | NULL, 1); |
0b5d8877 | 8825 | return ada_value_slice_ptr (array, arr_type0, |
529cad9c PH |
8826 | longest_to_int (low_bound), |
8827 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
8828 | } |
8829 | } | |
8830 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8831 | return array; | |
8832 | else if (high_bound < low_bound) | |
df407dfe | 8833 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 8834 | else |
529cad9c PH |
8835 | return ada_value_slice (array, longest_to_int (low_bound), |
8836 | longest_to_int (high_bound)); | |
4c4b4cd2 | 8837 | } |
14f9c5c9 | 8838 | |
4c4b4cd2 PH |
8839 | case UNOP_IN_RANGE: |
8840 | (*pos) += 2; | |
8841 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8842 | type = exp->elts[pc + 1].type; | |
14f9c5c9 | 8843 | |
14f9c5c9 | 8844 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 8845 | goto nosideret; |
14f9c5c9 | 8846 | |
4c4b4cd2 PH |
8847 | switch (TYPE_CODE (type)) |
8848 | { | |
8849 | default: | |
e1d5a0d2 PH |
8850 | lim_warning (_("Membership test incompletely implemented; " |
8851 | "always returns true")); | |
4c4b4cd2 PH |
8852 | return value_from_longest (builtin_type_int, (LONGEST) 1); |
8853 | ||
8854 | case TYPE_CODE_RANGE: | |
76a01679 | 8855 | arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type)); |
4c4b4cd2 PH |
8856 | arg3 = value_from_longest (builtin_type_int, |
8857 | TYPE_HIGH_BOUND (type)); | |
8858 | return | |
8859 | value_from_longest (builtin_type_int, | |
8860 | (value_less (arg1, arg3) | |
8861 | || value_equal (arg1, arg3)) | |
8862 | && (value_less (arg2, arg1) | |
8863 | || value_equal (arg2, arg1))); | |
8864 | } | |
8865 | ||
8866 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 8867 | (*pos) += 2; |
4c4b4cd2 PH |
8868 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8869 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 8870 | |
4c4b4cd2 PH |
8871 | if (noside == EVAL_SKIP) |
8872 | goto nosideret; | |
14f9c5c9 | 8873 | |
4c4b4cd2 PH |
8874 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
8875 | return value_zero (builtin_type_int, not_lval); | |
14f9c5c9 | 8876 | |
4c4b4cd2 | 8877 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 8878 | |
df407dfe | 8879 | if (tem < 1 || tem > ada_array_arity (value_type (arg2))) |
323e0a4a | 8880 | error (_("invalid dimension number to 'range")); |
14f9c5c9 | 8881 | |
4c4b4cd2 PH |
8882 | arg3 = ada_array_bound (arg2, tem, 1); |
8883 | arg2 = ada_array_bound (arg2, tem, 0); | |
d2e4a39e | 8884 | |
4c4b4cd2 PH |
8885 | return |
8886 | value_from_longest (builtin_type_int, | |
8887 | (value_less (arg1, arg3) | |
8888 | || value_equal (arg1, arg3)) | |
8889 | && (value_less (arg2, arg1) | |
8890 | || value_equal (arg2, arg1))); | |
8891 | ||
8892 | case TERNOP_IN_RANGE: | |
8893 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8894 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8895 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8896 | ||
8897 | if (noside == EVAL_SKIP) | |
8898 | goto nosideret; | |
8899 | ||
8900 | return | |
8901 | value_from_longest (builtin_type_int, | |
8902 | (value_less (arg1, arg3) | |
8903 | || value_equal (arg1, arg3)) | |
8904 | && (value_less (arg2, arg1) | |
8905 | || value_equal (arg2, arg1))); | |
8906 | ||
8907 | case OP_ATR_FIRST: | |
8908 | case OP_ATR_LAST: | |
8909 | case OP_ATR_LENGTH: | |
8910 | { | |
76a01679 JB |
8911 | struct type *type_arg; |
8912 | if (exp->elts[*pos].opcode == OP_TYPE) | |
8913 | { | |
8914 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
8915 | arg1 = NULL; | |
8916 | type_arg = exp->elts[pc + 2].type; | |
8917 | } | |
8918 | else | |
8919 | { | |
8920 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8921 | type_arg = NULL; | |
8922 | } | |
8923 | ||
8924 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 8925 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
8926 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
8927 | *pos += 4; | |
8928 | ||
8929 | if (noside == EVAL_SKIP) | |
8930 | goto nosideret; | |
8931 | ||
8932 | if (type_arg == NULL) | |
8933 | { | |
8934 | arg1 = ada_coerce_ref (arg1); | |
8935 | ||
df407dfe | 8936 | if (ada_is_packed_array_type (value_type (arg1))) |
76a01679 JB |
8937 | arg1 = ada_coerce_to_simple_array (arg1); |
8938 | ||
df407dfe | 8939 | if (tem < 1 || tem > ada_array_arity (value_type (arg1))) |
323e0a4a | 8940 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
8941 | ada_attribute_name (op)); |
8942 | ||
8943 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8944 | { | |
df407dfe | 8945 | type = ada_index_type (value_type (arg1), tem); |
76a01679 JB |
8946 | if (type == NULL) |
8947 | error | |
323e0a4a | 8948 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
8949 | return allocate_value (type); |
8950 | } | |
8951 | ||
8952 | switch (op) | |
8953 | { | |
8954 | default: /* Should never happen. */ | |
323e0a4a | 8955 | error (_("unexpected attribute encountered")); |
76a01679 JB |
8956 | case OP_ATR_FIRST: |
8957 | return ada_array_bound (arg1, tem, 0); | |
8958 | case OP_ATR_LAST: | |
8959 | return ada_array_bound (arg1, tem, 1); | |
8960 | case OP_ATR_LENGTH: | |
8961 | return ada_array_length (arg1, tem); | |
8962 | } | |
8963 | } | |
8964 | else if (discrete_type_p (type_arg)) | |
8965 | { | |
8966 | struct type *range_type; | |
8967 | char *name = ada_type_name (type_arg); | |
8968 | range_type = NULL; | |
8969 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
8970 | range_type = | |
8971 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
8972 | if (range_type == NULL) | |
8973 | range_type = type_arg; | |
8974 | switch (op) | |
8975 | { | |
8976 | default: | |
323e0a4a | 8977 | error (_("unexpected attribute encountered")); |
76a01679 JB |
8978 | case OP_ATR_FIRST: |
8979 | return discrete_type_low_bound (range_type); | |
8980 | case OP_ATR_LAST: | |
8981 | return discrete_type_high_bound (range_type); | |
8982 | case OP_ATR_LENGTH: | |
323e0a4a | 8983 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
8984 | } |
8985 | } | |
8986 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 8987 | error (_("unimplemented type attribute")); |
76a01679 JB |
8988 | else |
8989 | { | |
8990 | LONGEST low, high; | |
8991 | ||
8992 | if (ada_is_packed_array_type (type_arg)) | |
8993 | type_arg = decode_packed_array_type (type_arg); | |
8994 | ||
8995 | if (tem < 1 || tem > ada_array_arity (type_arg)) | |
323e0a4a | 8996 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
8997 | ada_attribute_name (op)); |
8998 | ||
8999 | type = ada_index_type (type_arg, tem); | |
9000 | if (type == NULL) | |
9001 | error | |
323e0a4a | 9002 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
9003 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9004 | return allocate_value (type); | |
9005 | ||
9006 | switch (op) | |
9007 | { | |
9008 | default: | |
323e0a4a | 9009 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9010 | case OP_ATR_FIRST: |
9011 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9012 | return value_from_longest (type, low); | |
9013 | case OP_ATR_LAST: | |
9014 | high = ada_array_bound_from_type (type_arg, tem, 1, &type); | |
9015 | return value_from_longest (type, high); | |
9016 | case OP_ATR_LENGTH: | |
9017 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9018 | high = ada_array_bound_from_type (type_arg, tem, 1, NULL); | |
9019 | return value_from_longest (type, high - low + 1); | |
9020 | } | |
9021 | } | |
14f9c5c9 AS |
9022 | } |
9023 | ||
4c4b4cd2 PH |
9024 | case OP_ATR_TAG: |
9025 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9026 | if (noside == EVAL_SKIP) | |
76a01679 | 9027 | goto nosideret; |
4c4b4cd2 PH |
9028 | |
9029 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9030 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9031 | |
9032 | return ada_value_tag (arg1); | |
9033 | ||
9034 | case OP_ATR_MIN: | |
9035 | case OP_ATR_MAX: | |
9036 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9037 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9038 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9039 | if (noside == EVAL_SKIP) | |
76a01679 | 9040 | goto nosideret; |
d2e4a39e | 9041 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9042 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9043 | else |
76a01679 JB |
9044 | return value_binop (arg1, arg2, |
9045 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
14f9c5c9 | 9046 | |
4c4b4cd2 PH |
9047 | case OP_ATR_MODULUS: |
9048 | { | |
76a01679 JB |
9049 | struct type *type_arg = exp->elts[pc + 2].type; |
9050 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
4c4b4cd2 | 9051 | |
76a01679 JB |
9052 | if (noside == EVAL_SKIP) |
9053 | goto nosideret; | |
4c4b4cd2 | 9054 | |
76a01679 | 9055 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9056 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9057 | |
76a01679 JB |
9058 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9059 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9060 | } |
9061 | ||
9062 | ||
9063 | case OP_ATR_POS: | |
9064 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9065 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9066 | if (noside == EVAL_SKIP) | |
76a01679 | 9067 | goto nosideret; |
4c4b4cd2 | 9068 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
72d5681a | 9069 | return value_zero (builtin_type_int, not_lval); |
14f9c5c9 | 9070 | else |
76a01679 | 9071 | return value_pos_atr (arg1); |
14f9c5c9 | 9072 | |
4c4b4cd2 PH |
9073 | case OP_ATR_SIZE: |
9074 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9075 | if (noside == EVAL_SKIP) | |
76a01679 | 9076 | goto nosideret; |
4c4b4cd2 | 9077 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
72d5681a | 9078 | return value_zero (builtin_type_int, not_lval); |
4c4b4cd2 | 9079 | else |
72d5681a | 9080 | return value_from_longest (builtin_type_int, |
76a01679 | 9081 | TARGET_CHAR_BIT |
df407dfe | 9082 | * TYPE_LENGTH (value_type (arg1))); |
4c4b4cd2 PH |
9083 | |
9084 | case OP_ATR_VAL: | |
9085 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9086 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9087 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9088 | if (noside == EVAL_SKIP) |
76a01679 | 9089 | goto nosideret; |
4c4b4cd2 | 9090 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9091 | return value_zero (type, not_lval); |
4c4b4cd2 | 9092 | else |
76a01679 | 9093 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9094 | |
9095 | case BINOP_EXP: | |
9096 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9097 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9098 | if (noside == EVAL_SKIP) | |
9099 | goto nosideret; | |
9100 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9101 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 PH |
9102 | else |
9103 | return value_binop (arg1, arg2, op); | |
9104 | ||
9105 | case UNOP_PLUS: | |
9106 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9107 | if (noside == EVAL_SKIP) | |
9108 | goto nosideret; | |
9109 | else | |
9110 | return arg1; | |
9111 | ||
9112 | case UNOP_ABS: | |
9113 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9114 | if (noside == EVAL_SKIP) | |
9115 | goto nosideret; | |
df407dfe | 9116 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9117 | return value_neg (arg1); |
14f9c5c9 | 9118 | else |
4c4b4cd2 | 9119 | return arg1; |
14f9c5c9 AS |
9120 | |
9121 | case UNOP_IND: | |
9122 | if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) | |
61ee279c | 9123 | expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type)); |
14f9c5c9 AS |
9124 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
9125 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9126 | goto nosideret; |
df407dfe | 9127 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9128 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9129 | { |
9130 | if (ada_is_array_descriptor_type (type)) | |
9131 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9132 | { | |
9133 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9134 | if (arrType == NULL) | |
323e0a4a | 9135 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9136 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9137 | } |
9138 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9139 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9140 | /* In C you can dereference an array to get the 1st elt. */ | |
9141 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9142 | { |
9143 | type = to_static_fixed_type | |
9144 | (ada_aligned_type | |
9145 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9146 | check_size (type); | |
9147 | return value_zero (type, lval_memory); | |
9148 | } | |
4c4b4cd2 PH |
9149 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
9150 | /* GDB allows dereferencing an int. */ | |
9151 | return value_zero (builtin_type_int, lval_memory); | |
9152 | else | |
323e0a4a | 9153 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9154 | } |
76a01679 | 9155 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9156 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9157 | |
4c4b4cd2 PH |
9158 | if (ada_is_array_descriptor_type (type)) |
9159 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9160 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9161 | else |
4c4b4cd2 | 9162 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9163 | |
9164 | case STRUCTOP_STRUCT: | |
9165 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9166 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9167 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9168 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9169 | goto nosideret; |
14f9c5c9 | 9170 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9171 | { |
df407dfe | 9172 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9173 | if (ada_is_tagged_type (type1, 1)) |
9174 | { | |
9175 | type = ada_lookup_struct_elt_type (type1, | |
9176 | &exp->elts[pc + 2].string, | |
9177 | 1, 1, NULL); | |
9178 | if (type == NULL) | |
9179 | /* In this case, we assume that the field COULD exist | |
9180 | in some extension of the type. Return an object of | |
9181 | "type" void, which will match any formal | |
9182 | (see ada_type_match). */ | |
9183 | return value_zero (builtin_type_void, lval_memory); | |
9184 | } | |
9185 | else | |
9186 | type = | |
9187 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9188 | 0, NULL); | |
9189 | ||
9190 | return value_zero (ada_aligned_type (type), lval_memory); | |
9191 | } | |
14f9c5c9 | 9192 | else |
76a01679 JB |
9193 | return |
9194 | ada_to_fixed_value (unwrap_value | |
9195 | (ada_value_struct_elt | |
03ee6b2e | 9196 | (arg1, &exp->elts[pc + 2].string, 0))); |
14f9c5c9 | 9197 | case OP_TYPE: |
4c4b4cd2 PH |
9198 | /* The value is not supposed to be used. This is here to make it |
9199 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9200 | (*pos) += 2; |
9201 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9202 | goto nosideret; |
14f9c5c9 | 9203 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9204 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9205 | else |
323e0a4a | 9206 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9207 | |
9208 | case OP_AGGREGATE: | |
9209 | case OP_CHOICES: | |
9210 | case OP_OTHERS: | |
9211 | case OP_DISCRETE_RANGE: | |
9212 | case OP_POSITIONAL: | |
9213 | case OP_NAME: | |
9214 | if (noside == EVAL_NORMAL) | |
9215 | switch (op) | |
9216 | { | |
9217 | case OP_NAME: | |
9218 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9219 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9220 | case OP_AGGREGATE: |
9221 | error (_("Aggregates only allowed on the right of an assignment")); | |
9222 | default: | |
e1d5a0d2 | 9223 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9224 | } |
9225 | ||
9226 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9227 | *pos += oplen - 1; | |
9228 | for (tem = 0; tem < nargs; tem += 1) | |
9229 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9230 | goto nosideret; | |
14f9c5c9 AS |
9231 | } |
9232 | ||
9233 | nosideret: | |
9234 | return value_from_longest (builtin_type_long, (LONGEST) 1); | |
9235 | } | |
14f9c5c9 | 9236 | \f |
d2e4a39e | 9237 | |
4c4b4cd2 | 9238 | /* Fixed point */ |
14f9c5c9 AS |
9239 | |
9240 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9241 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9242 | Otherwise, return NULL. */ |
14f9c5c9 | 9243 | |
d2e4a39e | 9244 | static const char * |
ebf56fd3 | 9245 | fixed_type_info (struct type *type) |
14f9c5c9 | 9246 | { |
d2e4a39e | 9247 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9248 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9249 | ||
d2e4a39e AS |
9250 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9251 | { | |
14f9c5c9 AS |
9252 | const char *tail = strstr (name, "___XF_"); |
9253 | if (tail == NULL) | |
4c4b4cd2 | 9254 | return NULL; |
d2e4a39e | 9255 | else |
4c4b4cd2 | 9256 | return tail + 5; |
14f9c5c9 AS |
9257 | } |
9258 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9259 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9260 | else | |
9261 | return NULL; | |
9262 | } | |
9263 | ||
4c4b4cd2 | 9264 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9265 | |
9266 | int | |
ebf56fd3 | 9267 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9268 | { |
9269 | return fixed_type_info (type) != NULL; | |
9270 | } | |
9271 | ||
4c4b4cd2 PH |
9272 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9273 | ||
9274 | int | |
9275 | ada_is_system_address_type (struct type *type) | |
9276 | { | |
9277 | return (TYPE_NAME (type) | |
9278 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9279 | } | |
9280 | ||
14f9c5c9 AS |
9281 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9282 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9283 | delta cannot be determined. */ |
14f9c5c9 AS |
9284 | |
9285 | DOUBLEST | |
ebf56fd3 | 9286 | ada_delta (struct type *type) |
14f9c5c9 AS |
9287 | { |
9288 | const char *encoding = fixed_type_info (type); | |
9289 | long num, den; | |
9290 | ||
9291 | if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2) | |
9292 | return -1.0; | |
d2e4a39e | 9293 | else |
14f9c5c9 AS |
9294 | return (DOUBLEST) num / (DOUBLEST) den; |
9295 | } | |
9296 | ||
9297 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9298 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9299 | |
9300 | static DOUBLEST | |
ebf56fd3 | 9301 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9302 | { |
9303 | const char *encoding = fixed_type_info (type); | |
9304 | unsigned long num0, den0, num1, den1; | |
9305 | int n; | |
d2e4a39e | 9306 | |
14f9c5c9 AS |
9307 | n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1); |
9308 | ||
9309 | if (n < 2) | |
9310 | return 1.0; | |
9311 | else if (n == 4) | |
9312 | return (DOUBLEST) num1 / (DOUBLEST) den1; | |
d2e4a39e | 9313 | else |
14f9c5c9 AS |
9314 | return (DOUBLEST) num0 / (DOUBLEST) den0; |
9315 | } | |
9316 | ||
9317 | ||
9318 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9319 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9320 | |
9321 | DOUBLEST | |
ebf56fd3 | 9322 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9323 | { |
d2e4a39e | 9324 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9325 | } |
9326 | ||
4c4b4cd2 PH |
9327 | /* The representation of a fixed-point value of type TYPE |
9328 | corresponding to the value X. */ | |
14f9c5c9 AS |
9329 | |
9330 | LONGEST | |
ebf56fd3 | 9331 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9332 | { |
9333 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9334 | } | |
9335 | ||
9336 | ||
4c4b4cd2 | 9337 | /* VAX floating formats */ |
14f9c5c9 AS |
9338 | |
9339 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9340 | types. */ |
9341 | ||
14f9c5c9 | 9342 | int |
d2e4a39e | 9343 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9344 | { |
d2e4a39e | 9345 | int name_len = |
14f9c5c9 | 9346 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9347 | return |
14f9c5c9 | 9348 | name_len > 6 |
d2e4a39e | 9349 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9350 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9351 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9352 | } |
9353 | ||
9354 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9355 | ada_is_vax_floating_point. */ |
9356 | ||
14f9c5c9 | 9357 | int |
d2e4a39e | 9358 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9359 | { |
d2e4a39e | 9360 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9361 | } |
9362 | ||
4c4b4cd2 | 9363 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9364 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9365 | ada_is_vax_floating_type (TYPE). */ |
9366 | ||
d2e4a39e AS |
9367 | struct value * |
9368 | ada_vax_float_print_function (struct type *type) | |
9369 | { | |
9370 | switch (ada_vax_float_type_suffix (type)) | |
9371 | { | |
9372 | case 'F': | |
9373 | return get_var_value ("DEBUG_STRING_F", 0); | |
9374 | case 'D': | |
9375 | return get_var_value ("DEBUG_STRING_D", 0); | |
9376 | case 'G': | |
9377 | return get_var_value ("DEBUG_STRING_G", 0); | |
9378 | default: | |
323e0a4a | 9379 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9380 | } |
14f9c5c9 | 9381 | } |
14f9c5c9 | 9382 | \f |
d2e4a39e | 9383 | |
4c4b4cd2 | 9384 | /* Range types */ |
14f9c5c9 AS |
9385 | |
9386 | /* Scan STR beginning at position K for a discriminant name, and | |
9387 | return the value of that discriminant field of DVAL in *PX. If | |
9388 | PNEW_K is not null, put the position of the character beyond the | |
9389 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9390 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9391 | |
9392 | static int | |
07d8f827 | 9393 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9394 | int *pnew_k) |
14f9c5c9 AS |
9395 | { |
9396 | static char *bound_buffer = NULL; | |
9397 | static size_t bound_buffer_len = 0; | |
9398 | char *bound; | |
9399 | char *pend; | |
d2e4a39e | 9400 | struct value *bound_val; |
14f9c5c9 AS |
9401 | |
9402 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9403 | return 0; | |
9404 | ||
d2e4a39e | 9405 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9406 | if (pend == NULL) |
9407 | { | |
d2e4a39e | 9408 | bound = str + k; |
14f9c5c9 AS |
9409 | k += strlen (bound); |
9410 | } | |
d2e4a39e | 9411 | else |
14f9c5c9 | 9412 | { |
d2e4a39e | 9413 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9414 | bound = bound_buffer; |
d2e4a39e AS |
9415 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9416 | bound[pend - (str + k)] = '\0'; | |
9417 | k = pend - str; | |
14f9c5c9 | 9418 | } |
d2e4a39e | 9419 | |
df407dfe | 9420 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9421 | if (bound_val == NULL) |
9422 | return 0; | |
9423 | ||
9424 | *px = value_as_long (bound_val); | |
9425 | if (pnew_k != NULL) | |
9426 | *pnew_k = k; | |
9427 | return 1; | |
9428 | } | |
9429 | ||
9430 | /* Value of variable named NAME in the current environment. If | |
9431 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9432 | otherwise causes an error with message ERR_MSG. */ |
9433 | ||
d2e4a39e AS |
9434 | static struct value * |
9435 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9436 | { |
4c4b4cd2 | 9437 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9438 | int nsyms; |
9439 | ||
4c4b4cd2 PH |
9440 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9441 | &syms); | |
14f9c5c9 AS |
9442 | |
9443 | if (nsyms != 1) | |
9444 | { | |
9445 | if (err_msg == NULL) | |
4c4b4cd2 | 9446 | return 0; |
14f9c5c9 | 9447 | else |
8a3fe4f8 | 9448 | error (("%s"), err_msg); |
14f9c5c9 AS |
9449 | } |
9450 | ||
4c4b4cd2 | 9451 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9452 | } |
d2e4a39e | 9453 | |
14f9c5c9 | 9454 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9455 | no such variable found, returns 0, and sets *FLAG to 0. If |
9456 | successful, sets *FLAG to 1. */ | |
9457 | ||
14f9c5c9 | 9458 | LONGEST |
4c4b4cd2 | 9459 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9460 | { |
4c4b4cd2 | 9461 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9462 | |
14f9c5c9 AS |
9463 | if (var_val == 0) |
9464 | { | |
9465 | if (flag != NULL) | |
4c4b4cd2 | 9466 | *flag = 0; |
14f9c5c9 AS |
9467 | return 0; |
9468 | } | |
9469 | else | |
9470 | { | |
9471 | if (flag != NULL) | |
4c4b4cd2 | 9472 | *flag = 1; |
14f9c5c9 AS |
9473 | return value_as_long (var_val); |
9474 | } | |
9475 | } | |
d2e4a39e | 9476 | |
14f9c5c9 AS |
9477 | |
9478 | /* Return a range type whose base type is that of the range type named | |
9479 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9480 | from NAME according to the GNAT range encoding conventions. |
14f9c5c9 AS |
9481 | Extract discriminant values, if needed, from DVAL. If a new type |
9482 | must be created, allocate in OBJFILE's space. The bounds | |
9483 | information, in general, is encoded in NAME, the base type given in | |
4c4b4cd2 | 9484 | the named range type. */ |
14f9c5c9 | 9485 | |
d2e4a39e | 9486 | static struct type * |
ebf56fd3 | 9487 | to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile) |
14f9c5c9 AS |
9488 | { |
9489 | struct type *raw_type = ada_find_any_type (name); | |
9490 | struct type *base_type; | |
d2e4a39e | 9491 | char *subtype_info; |
14f9c5c9 AS |
9492 | |
9493 | if (raw_type == NULL) | |
9494 | base_type = builtin_type_int; | |
9495 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) | |
9496 | base_type = TYPE_TARGET_TYPE (raw_type); | |
9497 | else | |
9498 | base_type = raw_type; | |
9499 | ||
9500 | subtype_info = strstr (name, "___XD"); | |
9501 | if (subtype_info == NULL) | |
9502 | return raw_type; | |
9503 | else | |
9504 | { | |
9505 | static char *name_buf = NULL; | |
9506 | static size_t name_len = 0; | |
9507 | int prefix_len = subtype_info - name; | |
9508 | LONGEST L, U; | |
9509 | struct type *type; | |
9510 | char *bounds_str; | |
9511 | int n; | |
9512 | ||
9513 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9514 | strncpy (name_buf, name, prefix_len); | |
9515 | name_buf[prefix_len] = '\0'; | |
9516 | ||
9517 | subtype_info += 5; | |
9518 | bounds_str = strchr (subtype_info, '_'); | |
9519 | n = 1; | |
9520 | ||
d2e4a39e | 9521 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9522 | { |
9523 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9524 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9525 | return raw_type; | |
9526 | if (bounds_str[n] == '_') | |
9527 | n += 2; | |
9528 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9529 | n += 1; | |
9530 | subtype_info += 1; | |
9531 | } | |
d2e4a39e | 9532 | else |
4c4b4cd2 PH |
9533 | { |
9534 | int ok; | |
9535 | strcpy (name_buf + prefix_len, "___L"); | |
9536 | L = get_int_var_value (name_buf, &ok); | |
9537 | if (!ok) | |
9538 | { | |
323e0a4a | 9539 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9540 | L = 1; |
9541 | } | |
9542 | } | |
14f9c5c9 | 9543 | |
d2e4a39e | 9544 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9545 | { |
9546 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9547 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9548 | return raw_type; | |
9549 | } | |
d2e4a39e | 9550 | else |
4c4b4cd2 PH |
9551 | { |
9552 | int ok; | |
9553 | strcpy (name_buf + prefix_len, "___U"); | |
9554 | U = get_int_var_value (name_buf, &ok); | |
9555 | if (!ok) | |
9556 | { | |
323e0a4a | 9557 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9558 | U = L; |
9559 | } | |
9560 | } | |
14f9c5c9 | 9561 | |
d2e4a39e | 9562 | if (objfile == NULL) |
4c4b4cd2 | 9563 | objfile = TYPE_OBJFILE (base_type); |
14f9c5c9 | 9564 | type = create_range_type (alloc_type (objfile), base_type, L, U); |
d2e4a39e | 9565 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9566 | return type; |
9567 | } | |
9568 | } | |
9569 | ||
4c4b4cd2 PH |
9570 | /* True iff NAME is the name of a range type. */ |
9571 | ||
14f9c5c9 | 9572 | int |
d2e4a39e | 9573 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9574 | { |
9575 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9576 | } |
14f9c5c9 | 9577 | \f |
d2e4a39e | 9578 | |
4c4b4cd2 PH |
9579 | /* Modular types */ |
9580 | ||
9581 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9582 | |
14f9c5c9 | 9583 | int |
d2e4a39e | 9584 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9585 | { |
4c4b4cd2 | 9586 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9587 | |
9588 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
4c4b4cd2 PH |
9589 | && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM |
9590 | && TYPE_UNSIGNED (subranged_type)); | |
14f9c5c9 AS |
9591 | } |
9592 | ||
4c4b4cd2 PH |
9593 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9594 | ||
61ee279c | 9595 | ULONGEST |
d2e4a39e | 9596 | ada_modulus (struct type * type) |
14f9c5c9 | 9597 | { |
61ee279c | 9598 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9599 | } |
d2e4a39e | 9600 | \f |
f7f9143b JB |
9601 | |
9602 | /* Ada exception catchpoint support: | |
9603 | --------------------------------- | |
9604 | ||
9605 | We support 3 kinds of exception catchpoints: | |
9606 | . catchpoints on Ada exceptions | |
9607 | . catchpoints on unhandled Ada exceptions | |
9608 | . catchpoints on failed assertions | |
9609 | ||
9610 | Exceptions raised during failed assertions, or unhandled exceptions | |
9611 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9612 | However, we can easily differentiate these two special cases, and having | |
9613 | the option to distinguish these two cases from the rest can be useful | |
9614 | to zero-in on certain situations. | |
9615 | ||
9616 | Exception catchpoints are a specialized form of breakpoint, | |
9617 | since they rely on inserting breakpoints inside known routines | |
9618 | of the GNAT runtime. The implementation therefore uses a standard | |
9619 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9620 | of breakpoint_ops. | |
9621 | ||
0259addd JB |
9622 | Support in the runtime for exception catchpoints have been changed |
9623 | a few times already, and these changes affect the implementation | |
9624 | of these catchpoints. In order to be able to support several | |
9625 | variants of the runtime, we use a sniffer that will determine | |
9626 | the runtime variant used by the program being debugged. | |
9627 | ||
f7f9143b JB |
9628 | At this time, we do not support the use of conditions on Ada exception |
9629 | catchpoints. The COND and COND_STRING fields are therefore set | |
9630 | to NULL (most of the time, see below). | |
9631 | ||
9632 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9633 | ||
9634 | When a user specifies the name of a specific exception in the case | |
9635 | of catchpoints on Ada exceptions, we store the name of that exception | |
9636 | in the EXP_STRING. We then translate this request into an actual | |
9637 | condition stored in COND_STRING, and then parse it into an expression | |
9638 | stored in COND. */ | |
9639 | ||
9640 | /* The different types of catchpoints that we introduced for catching | |
9641 | Ada exceptions. */ | |
9642 | ||
9643 | enum exception_catchpoint_kind | |
9644 | { | |
9645 | ex_catch_exception, | |
9646 | ex_catch_exception_unhandled, | |
9647 | ex_catch_assert | |
9648 | }; | |
9649 | ||
0259addd JB |
9650 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9651 | ||
9652 | /* A structure that describes how to support exception catchpoints | |
9653 | for a given executable. */ | |
9654 | ||
9655 | struct exception_support_info | |
9656 | { | |
9657 | /* The name of the symbol to break on in order to insert | |
9658 | a catchpoint on exceptions. */ | |
9659 | const char *catch_exception_sym; | |
9660 | ||
9661 | /* The name of the symbol to break on in order to insert | |
9662 | a catchpoint on unhandled exceptions. */ | |
9663 | const char *catch_exception_unhandled_sym; | |
9664 | ||
9665 | /* The name of the symbol to break on in order to insert | |
9666 | a catchpoint on failed assertions. */ | |
9667 | const char *catch_assert_sym; | |
9668 | ||
9669 | /* Assuming that the inferior just triggered an unhandled exception | |
9670 | catchpoint, this function is responsible for returning the address | |
9671 | in inferior memory where the name of that exception is stored. | |
9672 | Return zero if the address could not be computed. */ | |
9673 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9674 | }; | |
9675 | ||
9676 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9677 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9678 | ||
9679 | /* The following exception support info structure describes how to | |
9680 | implement exception catchpoints with the latest version of the | |
9681 | Ada runtime (as of 2007-03-06). */ | |
9682 | ||
9683 | static const struct exception_support_info default_exception_support_info = | |
9684 | { | |
9685 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9686 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9687 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9688 | ada_unhandled_exception_name_addr | |
9689 | }; | |
9690 | ||
9691 | /* The following exception support info structure describes how to | |
9692 | implement exception catchpoints with a slightly older version | |
9693 | of the Ada runtime. */ | |
9694 | ||
9695 | static const struct exception_support_info exception_support_info_fallback = | |
9696 | { | |
9697 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
9698 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9699 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9700 | ada_unhandled_exception_name_addr_from_raise | |
9701 | }; | |
9702 | ||
9703 | /* For each executable, we sniff which exception info structure to use | |
9704 | and cache it in the following global variable. */ | |
9705 | ||
9706 | static const struct exception_support_info *exception_info = NULL; | |
9707 | ||
9708 | /* Inspect the Ada runtime and determine which exception info structure | |
9709 | should be used to provide support for exception catchpoints. | |
9710 | ||
9711 | This function will always set exception_info, or raise an error. */ | |
9712 | ||
9713 | static void | |
9714 | ada_exception_support_info_sniffer (void) | |
9715 | { | |
9716 | struct symbol *sym; | |
9717 | ||
9718 | /* If the exception info is already known, then no need to recompute it. */ | |
9719 | if (exception_info != NULL) | |
9720 | return; | |
9721 | ||
9722 | /* Check the latest (default) exception support info. */ | |
9723 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
9724 | NULL, VAR_DOMAIN); | |
9725 | if (sym != NULL) | |
9726 | { | |
9727 | exception_info = &default_exception_support_info; | |
9728 | return; | |
9729 | } | |
9730 | ||
9731 | /* Try our fallback exception suport info. */ | |
9732 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
9733 | NULL, VAR_DOMAIN); | |
9734 | if (sym != NULL) | |
9735 | { | |
9736 | exception_info = &exception_support_info_fallback; | |
9737 | return; | |
9738 | } | |
9739 | ||
9740 | /* Sometimes, it is normal for us to not be able to find the routine | |
9741 | we are looking for. This happens when the program is linked with | |
9742 | the shared version of the GNAT runtime, and the program has not been | |
9743 | started yet. Inform the user of these two possible causes if | |
9744 | applicable. */ | |
9745 | ||
9746 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
9747 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
9748 | ||
9749 | /* If the symbol does not exist, then check that the program is | |
9750 | already started, to make sure that shared libraries have been | |
9751 | loaded. If it is not started, this may mean that the symbol is | |
9752 | in a shared library. */ | |
9753 | ||
9754 | if (ptid_get_pid (inferior_ptid) == 0) | |
9755 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
9756 | ||
9757 | /* At this point, we know that we are debugging an Ada program and | |
9758 | that the inferior has been started, but we still are not able to | |
9759 | find the run-time symbols. That can mean that we are in | |
9760 | configurable run time mode, or that a-except as been optimized | |
9761 | out by the linker... In any case, at this point it is not worth | |
9762 | supporting this feature. */ | |
9763 | ||
9764 | error (_("Cannot insert catchpoints in this configuration.")); | |
9765 | } | |
9766 | ||
9767 | /* An observer of "executable_changed" events. | |
9768 | Its role is to clear certain cached values that need to be recomputed | |
9769 | each time a new executable is loaded by GDB. */ | |
9770 | ||
9771 | static void | |
781b42b0 | 9772 | ada_executable_changed_observer (void) |
0259addd JB |
9773 | { |
9774 | /* If the executable changed, then it is possible that the Ada runtime | |
9775 | is different. So we need to invalidate the exception support info | |
9776 | cache. */ | |
9777 | exception_info = NULL; | |
9778 | } | |
9779 | ||
f7f9143b JB |
9780 | /* Return the name of the function at PC, NULL if could not find it. |
9781 | This function only checks the debugging information, not the symbol | |
9782 | table. */ | |
9783 | ||
9784 | static char * | |
9785 | function_name_from_pc (CORE_ADDR pc) | |
9786 | { | |
9787 | char *func_name; | |
9788 | ||
9789 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
9790 | return NULL; | |
9791 | ||
9792 | return func_name; | |
9793 | } | |
9794 | ||
9795 | /* True iff FRAME is very likely to be that of a function that is | |
9796 | part of the runtime system. This is all very heuristic, but is | |
9797 | intended to be used as advice as to what frames are uninteresting | |
9798 | to most users. */ | |
9799 | ||
9800 | static int | |
9801 | is_known_support_routine (struct frame_info *frame) | |
9802 | { | |
4ed6b5be | 9803 | struct symtab_and_line sal; |
f7f9143b JB |
9804 | char *func_name; |
9805 | int i; | |
f7f9143b | 9806 | |
4ed6b5be JB |
9807 | /* If this code does not have any debugging information (no symtab), |
9808 | This cannot be any user code. */ | |
f7f9143b | 9809 | |
4ed6b5be | 9810 | find_frame_sal (frame, &sal); |
f7f9143b JB |
9811 | if (sal.symtab == NULL) |
9812 | return 1; | |
9813 | ||
4ed6b5be JB |
9814 | /* If there is a symtab, but the associated source file cannot be |
9815 | located, then assume this is not user code: Selecting a frame | |
9816 | for which we cannot display the code would not be very helpful | |
9817 | for the user. This should also take care of case such as VxWorks | |
9818 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 9819 | |
9bbc9174 | 9820 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
9821 | return 1; |
9822 | ||
4ed6b5be JB |
9823 | /* Check the unit filename againt the Ada runtime file naming. |
9824 | We also check the name of the objfile against the name of some | |
9825 | known system libraries that sometimes come with debugging info | |
9826 | too. */ | |
9827 | ||
f7f9143b JB |
9828 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
9829 | { | |
9830 | re_comp (known_runtime_file_name_patterns[i]); | |
9831 | if (re_exec (sal.symtab->filename)) | |
9832 | return 1; | |
4ed6b5be JB |
9833 | if (sal.symtab->objfile != NULL |
9834 | && re_exec (sal.symtab->objfile->name)) | |
9835 | return 1; | |
f7f9143b JB |
9836 | } |
9837 | ||
4ed6b5be | 9838 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 9839 | |
4ed6b5be | 9840 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
9841 | if (func_name == NULL) |
9842 | return 1; | |
9843 | ||
9844 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
9845 | { | |
9846 | re_comp (known_auxiliary_function_name_patterns[i]); | |
9847 | if (re_exec (func_name)) | |
9848 | return 1; | |
9849 | } | |
9850 | ||
9851 | return 0; | |
9852 | } | |
9853 | ||
9854 | /* Find the first frame that contains debugging information and that is not | |
9855 | part of the Ada run-time, starting from FI and moving upward. */ | |
9856 | ||
9857 | static void | |
9858 | ada_find_printable_frame (struct frame_info *fi) | |
9859 | { | |
9860 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
9861 | { | |
9862 | if (!is_known_support_routine (fi)) | |
9863 | { | |
9864 | select_frame (fi); | |
9865 | break; | |
9866 | } | |
9867 | } | |
9868 | ||
9869 | } | |
9870 | ||
9871 | /* Assuming that the inferior just triggered an unhandled exception | |
9872 | catchpoint, return the address in inferior memory where the name | |
9873 | of the exception is stored. | |
9874 | ||
9875 | Return zero if the address could not be computed. */ | |
9876 | ||
9877 | static CORE_ADDR | |
9878 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
9879 | { |
9880 | return parse_and_eval_address ("e.full_name"); | |
9881 | } | |
9882 | ||
9883 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
9884 | should be used when the inferior uses an older version of the runtime, | |
9885 | where the exception name needs to be extracted from a specific frame | |
9886 | several frames up in the callstack. */ | |
9887 | ||
9888 | static CORE_ADDR | |
9889 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
9890 | { |
9891 | int frame_level; | |
9892 | struct frame_info *fi; | |
9893 | ||
9894 | /* To determine the name of this exception, we need to select | |
9895 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
9896 | at least 3 levels up, so we simply skip the first 3 frames | |
9897 | without checking the name of their associated function. */ | |
9898 | fi = get_current_frame (); | |
9899 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
9900 | if (fi != NULL) | |
9901 | fi = get_prev_frame (fi); | |
9902 | ||
9903 | while (fi != NULL) | |
9904 | { | |
9905 | const char *func_name = | |
9906 | function_name_from_pc (get_frame_address_in_block (fi)); | |
9907 | if (func_name != NULL | |
0259addd | 9908 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
9909 | break; /* We found the frame we were looking for... */ |
9910 | fi = get_prev_frame (fi); | |
9911 | } | |
9912 | ||
9913 | if (fi == NULL) | |
9914 | return 0; | |
9915 | ||
9916 | select_frame (fi); | |
9917 | return parse_and_eval_address ("id.full_name"); | |
9918 | } | |
9919 | ||
9920 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
9921 | (of any type), return the address in inferior memory where the name | |
9922 | of the exception is stored, if applicable. | |
9923 | ||
9924 | Return zero if the address could not be computed, or if not relevant. */ | |
9925 | ||
9926 | static CORE_ADDR | |
9927 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
9928 | struct breakpoint *b) | |
9929 | { | |
9930 | switch (ex) | |
9931 | { | |
9932 | case ex_catch_exception: | |
9933 | return (parse_and_eval_address ("e.full_name")); | |
9934 | break; | |
9935 | ||
9936 | case ex_catch_exception_unhandled: | |
0259addd | 9937 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
9938 | break; |
9939 | ||
9940 | case ex_catch_assert: | |
9941 | return 0; /* Exception name is not relevant in this case. */ | |
9942 | break; | |
9943 | ||
9944 | default: | |
9945 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
9946 | break; | |
9947 | } | |
9948 | ||
9949 | return 0; /* Should never be reached. */ | |
9950 | } | |
9951 | ||
9952 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
9953 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
9954 | When an error is intercepted, a warning with the error message is printed, | |
9955 | and zero is returned. */ | |
9956 | ||
9957 | static CORE_ADDR | |
9958 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
9959 | struct breakpoint *b) | |
9960 | { | |
9961 | struct gdb_exception e; | |
9962 | CORE_ADDR result = 0; | |
9963 | ||
9964 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
9965 | { | |
9966 | result = ada_exception_name_addr_1 (ex, b); | |
9967 | } | |
9968 | ||
9969 | if (e.reason < 0) | |
9970 | { | |
9971 | warning (_("failed to get exception name: %s"), e.message); | |
9972 | return 0; | |
9973 | } | |
9974 | ||
9975 | return result; | |
9976 | } | |
9977 | ||
9978 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
9979 | for all exception catchpoint kinds. */ | |
9980 | ||
9981 | static enum print_stop_action | |
9982 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
9983 | { | |
9984 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
9985 | char exception_name[256]; | |
9986 | ||
9987 | if (addr != 0) | |
9988 | { | |
9989 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
9990 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
9991 | } | |
9992 | ||
9993 | ada_find_printable_frame (get_current_frame ()); | |
9994 | ||
9995 | annotate_catchpoint (b->number); | |
9996 | switch (ex) | |
9997 | { | |
9998 | case ex_catch_exception: | |
9999 | if (addr != 0) | |
10000 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10001 | b->number, exception_name); | |
10002 | else | |
10003 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10004 | break; | |
10005 | case ex_catch_exception_unhandled: | |
10006 | if (addr != 0) | |
10007 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10008 | b->number, exception_name); | |
10009 | else | |
10010 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10011 | b->number); | |
10012 | break; | |
10013 | case ex_catch_assert: | |
10014 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10015 | b->number); | |
10016 | break; | |
10017 | } | |
10018 | ||
10019 | return PRINT_SRC_AND_LOC; | |
10020 | } | |
10021 | ||
10022 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10023 | for all exception catchpoint kinds. */ | |
10024 | ||
10025 | static void | |
10026 | print_one_exception (enum exception_catchpoint_kind ex, | |
10027 | struct breakpoint *b, CORE_ADDR *last_addr) | |
10028 | { | |
10029 | if (addressprint) | |
10030 | { | |
10031 | annotate_field (4); | |
10032 | ui_out_field_core_addr (uiout, "addr", b->loc->address); | |
10033 | } | |
10034 | ||
10035 | annotate_field (5); | |
10036 | *last_addr = b->loc->address; | |
10037 | switch (ex) | |
10038 | { | |
10039 | case ex_catch_exception: | |
10040 | if (b->exp_string != NULL) | |
10041 | { | |
10042 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10043 | ||
10044 | ui_out_field_string (uiout, "what", msg); | |
10045 | xfree (msg); | |
10046 | } | |
10047 | else | |
10048 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10049 | ||
10050 | break; | |
10051 | ||
10052 | case ex_catch_exception_unhandled: | |
10053 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10054 | break; | |
10055 | ||
10056 | case ex_catch_assert: | |
10057 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10058 | break; | |
10059 | ||
10060 | default: | |
10061 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10062 | break; | |
10063 | } | |
10064 | } | |
10065 | ||
10066 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10067 | for all exception catchpoint kinds. */ | |
10068 | ||
10069 | static void | |
10070 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10071 | struct breakpoint *b) | |
10072 | { | |
10073 | switch (ex) | |
10074 | { | |
10075 | case ex_catch_exception: | |
10076 | if (b->exp_string != NULL) | |
10077 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10078 | b->number, b->exp_string); | |
10079 | else | |
10080 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10081 | ||
10082 | break; | |
10083 | ||
10084 | case ex_catch_exception_unhandled: | |
10085 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10086 | b->number); | |
10087 | break; | |
10088 | ||
10089 | case ex_catch_assert: | |
10090 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10091 | break; | |
10092 | ||
10093 | default: | |
10094 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10095 | break; | |
10096 | } | |
10097 | } | |
10098 | ||
10099 | /* Virtual table for "catch exception" breakpoints. */ | |
10100 | ||
10101 | static enum print_stop_action | |
10102 | print_it_catch_exception (struct breakpoint *b) | |
10103 | { | |
10104 | return print_it_exception (ex_catch_exception, b); | |
10105 | } | |
10106 | ||
10107 | static void | |
10108 | print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr) | |
10109 | { | |
10110 | print_one_exception (ex_catch_exception, b, last_addr); | |
10111 | } | |
10112 | ||
10113 | static void | |
10114 | print_mention_catch_exception (struct breakpoint *b) | |
10115 | { | |
10116 | print_mention_exception (ex_catch_exception, b); | |
10117 | } | |
10118 | ||
10119 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10120 | { | |
10121 | print_it_catch_exception, | |
10122 | print_one_catch_exception, | |
10123 | print_mention_catch_exception | |
10124 | }; | |
10125 | ||
10126 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10127 | ||
10128 | static enum print_stop_action | |
10129 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10130 | { | |
10131 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10132 | } | |
10133 | ||
10134 | static void | |
10135 | print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr) | |
10136 | { | |
10137 | print_one_exception (ex_catch_exception_unhandled, b, last_addr); | |
10138 | } | |
10139 | ||
10140 | static void | |
10141 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10142 | { | |
10143 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10144 | } | |
10145 | ||
10146 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
10147 | print_it_catch_exception_unhandled, | |
10148 | print_one_catch_exception_unhandled, | |
10149 | print_mention_catch_exception_unhandled | |
10150 | }; | |
10151 | ||
10152 | /* Virtual table for "catch assert" breakpoints. */ | |
10153 | ||
10154 | static enum print_stop_action | |
10155 | print_it_catch_assert (struct breakpoint *b) | |
10156 | { | |
10157 | return print_it_exception (ex_catch_assert, b); | |
10158 | } | |
10159 | ||
10160 | static void | |
10161 | print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr) | |
10162 | { | |
10163 | print_one_exception (ex_catch_assert, b, last_addr); | |
10164 | } | |
10165 | ||
10166 | static void | |
10167 | print_mention_catch_assert (struct breakpoint *b) | |
10168 | { | |
10169 | print_mention_exception (ex_catch_assert, b); | |
10170 | } | |
10171 | ||
10172 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
10173 | print_it_catch_assert, | |
10174 | print_one_catch_assert, | |
10175 | print_mention_catch_assert | |
10176 | }; | |
10177 | ||
10178 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10179 | ||
10180 | int | |
10181 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10182 | { | |
10183 | return (b->ops == &catch_exception_breakpoint_ops | |
10184 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10185 | || b->ops == &catch_assert_breakpoint_ops); | |
10186 | } | |
10187 | ||
f7f9143b JB |
10188 | /* Return a newly allocated copy of the first space-separated token |
10189 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10190 | token. | |
10191 | ||
10192 | Return NULL if ARGPS does not contain any more tokens. */ | |
10193 | ||
10194 | static char * | |
10195 | ada_get_next_arg (char **argsp) | |
10196 | { | |
10197 | char *args = *argsp; | |
10198 | char *end; | |
10199 | char *result; | |
10200 | ||
10201 | /* Skip any leading white space. */ | |
10202 | ||
10203 | while (isspace (*args)) | |
10204 | args++; | |
10205 | ||
10206 | if (args[0] == '\0') | |
10207 | return NULL; /* No more arguments. */ | |
10208 | ||
10209 | /* Find the end of the current argument. */ | |
10210 | ||
10211 | end = args; | |
10212 | while (*end != '\0' && !isspace (*end)) | |
10213 | end++; | |
10214 | ||
10215 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10216 | ||
10217 | *argsp = end; | |
10218 | ||
10219 | /* Make a copy of the current argument and return it. */ | |
10220 | ||
10221 | result = xmalloc (end - args + 1); | |
10222 | strncpy (result, args, end - args); | |
10223 | result[end - args] = '\0'; | |
10224 | ||
10225 | return result; | |
10226 | } | |
10227 | ||
10228 | /* Split the arguments specified in a "catch exception" command. | |
10229 | Set EX to the appropriate catchpoint type. | |
10230 | Set EXP_STRING to the name of the specific exception if | |
10231 | specified by the user. */ | |
10232 | ||
10233 | static void | |
10234 | catch_ada_exception_command_split (char *args, | |
10235 | enum exception_catchpoint_kind *ex, | |
10236 | char **exp_string) | |
10237 | { | |
10238 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10239 | char *exception_name; | |
10240 | ||
10241 | exception_name = ada_get_next_arg (&args); | |
10242 | make_cleanup (xfree, exception_name); | |
10243 | ||
10244 | /* Check that we do not have any more arguments. Anything else | |
10245 | is unexpected. */ | |
10246 | ||
10247 | while (isspace (*args)) | |
10248 | args++; | |
10249 | ||
10250 | if (args[0] != '\0') | |
10251 | error (_("Junk at end of expression")); | |
10252 | ||
10253 | discard_cleanups (old_chain); | |
10254 | ||
10255 | if (exception_name == NULL) | |
10256 | { | |
10257 | /* Catch all exceptions. */ | |
10258 | *ex = ex_catch_exception; | |
10259 | *exp_string = NULL; | |
10260 | } | |
10261 | else if (strcmp (exception_name, "unhandled") == 0) | |
10262 | { | |
10263 | /* Catch unhandled exceptions. */ | |
10264 | *ex = ex_catch_exception_unhandled; | |
10265 | *exp_string = NULL; | |
10266 | } | |
10267 | else | |
10268 | { | |
10269 | /* Catch a specific exception. */ | |
10270 | *ex = ex_catch_exception; | |
10271 | *exp_string = exception_name; | |
10272 | } | |
10273 | } | |
10274 | ||
10275 | /* Return the name of the symbol on which we should break in order to | |
10276 | implement a catchpoint of the EX kind. */ | |
10277 | ||
10278 | static const char * | |
10279 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10280 | { | |
0259addd JB |
10281 | gdb_assert (exception_info != NULL); |
10282 | ||
f7f9143b JB |
10283 | switch (ex) |
10284 | { | |
10285 | case ex_catch_exception: | |
0259addd | 10286 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10287 | break; |
10288 | case ex_catch_exception_unhandled: | |
0259addd | 10289 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10290 | break; |
10291 | case ex_catch_assert: | |
0259addd | 10292 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10293 | break; |
10294 | default: | |
10295 | internal_error (__FILE__, __LINE__, | |
10296 | _("unexpected catchpoint kind (%d)"), ex); | |
10297 | } | |
10298 | } | |
10299 | ||
10300 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10301 | of the EX kind. */ | |
10302 | ||
10303 | static struct breakpoint_ops * | |
4b9eee8c | 10304 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10305 | { |
10306 | switch (ex) | |
10307 | { | |
10308 | case ex_catch_exception: | |
10309 | return (&catch_exception_breakpoint_ops); | |
10310 | break; | |
10311 | case ex_catch_exception_unhandled: | |
10312 | return (&catch_exception_unhandled_breakpoint_ops); | |
10313 | break; | |
10314 | case ex_catch_assert: | |
10315 | return (&catch_assert_breakpoint_ops); | |
10316 | break; | |
10317 | default: | |
10318 | internal_error (__FILE__, __LINE__, | |
10319 | _("unexpected catchpoint kind (%d)"), ex); | |
10320 | } | |
10321 | } | |
10322 | ||
10323 | /* Return the condition that will be used to match the current exception | |
10324 | being raised with the exception that the user wants to catch. This | |
10325 | assumes that this condition is used when the inferior just triggered | |
10326 | an exception catchpoint. | |
10327 | ||
10328 | The string returned is a newly allocated string that needs to be | |
10329 | deallocated later. */ | |
10330 | ||
10331 | static char * | |
10332 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10333 | { | |
10334 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); | |
10335 | } | |
10336 | ||
10337 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10338 | ||
10339 | static struct expression * | |
10340 | ada_parse_catchpoint_condition (char *cond_string, | |
10341 | struct symtab_and_line sal) | |
10342 | { | |
10343 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10344 | } | |
10345 | ||
10346 | /* Return the symtab_and_line that should be used to insert an exception | |
10347 | catchpoint of the TYPE kind. | |
10348 | ||
10349 | EX_STRING should contain the name of a specific exception | |
10350 | that the catchpoint should catch, or NULL otherwise. | |
10351 | ||
10352 | The idea behind all the remaining parameters is that their names match | |
10353 | the name of certain fields in the breakpoint structure that are used to | |
10354 | handle exception catchpoints. This function returns the value to which | |
10355 | these fields should be set, depending on the type of catchpoint we need | |
10356 | to create. | |
10357 | ||
10358 | If COND and COND_STRING are both non-NULL, any value they might | |
10359 | hold will be free'ed, and then replaced by newly allocated ones. | |
10360 | These parameters are left untouched otherwise. */ | |
10361 | ||
10362 | static struct symtab_and_line | |
10363 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10364 | char **addr_string, char **cond_string, | |
10365 | struct expression **cond, struct breakpoint_ops **ops) | |
10366 | { | |
10367 | const char *sym_name; | |
10368 | struct symbol *sym; | |
10369 | struct symtab_and_line sal; | |
10370 | ||
0259addd JB |
10371 | /* First, find out which exception support info to use. */ |
10372 | ada_exception_support_info_sniffer (); | |
10373 | ||
10374 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10375 | the Ada exceptions requested by the user. */ |
10376 | ||
10377 | sym_name = ada_exception_sym_name (ex); | |
10378 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10379 | ||
10380 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10381 | that should be compiled with debugging information. As a result, we | |
10382 | expect to find that symbol in the symtabs. If we don't find it, then | |
10383 | the target most likely does not support Ada exceptions, or we cannot | |
10384 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10385 | loaded yet. */ | |
10386 | ||
10387 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10388 | in such a way that no debugging information is produced for the symbol | |
10389 | we are looking for. In this case, we could search the minimal symbols | |
10390 | as a fall-back mechanism. This would still be operating in degraded | |
10391 | mode, however, as we would still be missing the debugging information | |
10392 | that is needed in order to extract the name of the exception being | |
10393 | raised (this name is printed in the catchpoint message, and is also | |
10394 | used when trying to catch a specific exception). We do not handle | |
10395 | this case for now. */ | |
10396 | ||
10397 | if (sym == NULL) | |
0259addd | 10398 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10399 | |
10400 | /* Make sure that the symbol we found corresponds to a function. */ | |
10401 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10402 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10403 | sym_name, SYMBOL_CLASS (sym)); | |
10404 | ||
10405 | sal = find_function_start_sal (sym, 1); | |
10406 | ||
10407 | /* Set ADDR_STRING. */ | |
10408 | ||
10409 | *addr_string = xstrdup (sym_name); | |
10410 | ||
10411 | /* Set the COND and COND_STRING (if not NULL). */ | |
10412 | ||
10413 | if (cond_string != NULL && cond != NULL) | |
10414 | { | |
10415 | if (*cond_string != NULL) | |
10416 | { | |
10417 | xfree (*cond_string); | |
10418 | *cond_string = NULL; | |
10419 | } | |
10420 | if (*cond != NULL) | |
10421 | { | |
10422 | xfree (*cond); | |
10423 | *cond = NULL; | |
10424 | } | |
10425 | if (exp_string != NULL) | |
10426 | { | |
10427 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10428 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10429 | } | |
10430 | } | |
10431 | ||
10432 | /* Set OPS. */ | |
4b9eee8c | 10433 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10434 | |
10435 | return sal; | |
10436 | } | |
10437 | ||
10438 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10439 | ||
10440 | Set TYPE to the appropriate exception catchpoint type. | |
10441 | If the user asked the catchpoint to catch only a specific | |
10442 | exception, then save the exception name in ADDR_STRING. | |
10443 | ||
10444 | See ada_exception_sal for a description of all the remaining | |
10445 | function arguments of this function. */ | |
10446 | ||
10447 | struct symtab_and_line | |
10448 | ada_decode_exception_location (char *args, char **addr_string, | |
10449 | char **exp_string, char **cond_string, | |
10450 | struct expression **cond, | |
10451 | struct breakpoint_ops **ops) | |
10452 | { | |
10453 | enum exception_catchpoint_kind ex; | |
10454 | ||
10455 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10456 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10457 | cond, ops); | |
10458 | } | |
10459 | ||
10460 | struct symtab_and_line | |
10461 | ada_decode_assert_location (char *args, char **addr_string, | |
10462 | struct breakpoint_ops **ops) | |
10463 | { | |
10464 | /* Check that no argument where provided at the end of the command. */ | |
10465 | ||
10466 | if (args != NULL) | |
10467 | { | |
10468 | while (isspace (*args)) | |
10469 | args++; | |
10470 | if (*args != '\0') | |
10471 | error (_("Junk at end of arguments.")); | |
10472 | } | |
10473 | ||
10474 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10475 | ops); | |
10476 | } | |
10477 | ||
4c4b4cd2 PH |
10478 | /* Operators */ |
10479 | /* Information about operators given special treatment in functions | |
10480 | below. */ | |
10481 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10482 | ||
10483 | #define ADA_OPERATORS \ | |
10484 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10485 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10486 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10487 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10488 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10489 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10490 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10491 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10492 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10493 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10494 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10495 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10496 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10497 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10498 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10499 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10500 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10501 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10502 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10503 | |
10504 | static void | |
10505 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10506 | { | |
10507 | switch (exp->elts[pc - 1].opcode) | |
10508 | { | |
76a01679 | 10509 | default: |
4c4b4cd2 PH |
10510 | operator_length_standard (exp, pc, oplenp, argsp); |
10511 | break; | |
10512 | ||
10513 | #define OP_DEFN(op, len, args, binop) \ | |
10514 | case op: *oplenp = len; *argsp = args; break; | |
10515 | ADA_OPERATORS; | |
10516 | #undef OP_DEFN | |
52ce6436 PH |
10517 | |
10518 | case OP_AGGREGATE: | |
10519 | *oplenp = 3; | |
10520 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10521 | break; | |
10522 | ||
10523 | case OP_CHOICES: | |
10524 | *oplenp = 3; | |
10525 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10526 | break; | |
4c4b4cd2 PH |
10527 | } |
10528 | } | |
10529 | ||
10530 | static char * | |
10531 | ada_op_name (enum exp_opcode opcode) | |
10532 | { | |
10533 | switch (opcode) | |
10534 | { | |
76a01679 | 10535 | default: |
4c4b4cd2 | 10536 | return op_name_standard (opcode); |
52ce6436 | 10537 | |
4c4b4cd2 PH |
10538 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10539 | ADA_OPERATORS; | |
10540 | #undef OP_DEFN | |
52ce6436 PH |
10541 | |
10542 | case OP_AGGREGATE: | |
10543 | return "OP_AGGREGATE"; | |
10544 | case OP_CHOICES: | |
10545 | return "OP_CHOICES"; | |
10546 | case OP_NAME: | |
10547 | return "OP_NAME"; | |
4c4b4cd2 PH |
10548 | } |
10549 | } | |
10550 | ||
10551 | /* As for operator_length, but assumes PC is pointing at the first | |
10552 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10553 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10554 | |
10555 | static void | |
76a01679 JB |
10556 | ada_forward_operator_length (struct expression *exp, int pc, |
10557 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10558 | { |
76a01679 | 10559 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10560 | { |
10561 | default: | |
10562 | *oplenp = *argsp = 0; | |
10563 | break; | |
52ce6436 | 10564 | |
4c4b4cd2 PH |
10565 | #define OP_DEFN(op, len, args, binop) \ |
10566 | case op: *oplenp = len; *argsp = args; break; | |
10567 | ADA_OPERATORS; | |
10568 | #undef OP_DEFN | |
52ce6436 PH |
10569 | |
10570 | case OP_AGGREGATE: | |
10571 | *oplenp = 3; | |
10572 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10573 | break; | |
10574 | ||
10575 | case OP_CHOICES: | |
10576 | *oplenp = 3; | |
10577 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10578 | break; | |
10579 | ||
10580 | case OP_STRING: | |
10581 | case OP_NAME: | |
10582 | { | |
10583 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10584 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10585 | *argsp = 0; | |
10586 | break; | |
10587 | } | |
4c4b4cd2 PH |
10588 | } |
10589 | } | |
10590 | ||
10591 | static int | |
10592 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10593 | { | |
10594 | enum exp_opcode op = exp->elts[elt].opcode; | |
10595 | int oplen, nargs; | |
10596 | int pc = elt; | |
10597 | int i; | |
76a01679 | 10598 | |
4c4b4cd2 PH |
10599 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10600 | ||
76a01679 | 10601 | switch (op) |
4c4b4cd2 | 10602 | { |
76a01679 | 10603 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10604 | case OP_ATR_FIRST: |
10605 | case OP_ATR_LAST: | |
10606 | case OP_ATR_LENGTH: | |
10607 | case OP_ATR_IMAGE: | |
10608 | case OP_ATR_MAX: | |
10609 | case OP_ATR_MIN: | |
10610 | case OP_ATR_MODULUS: | |
10611 | case OP_ATR_POS: | |
10612 | case OP_ATR_SIZE: | |
10613 | case OP_ATR_TAG: | |
10614 | case OP_ATR_VAL: | |
10615 | break; | |
10616 | ||
10617 | case UNOP_IN_RANGE: | |
10618 | case UNOP_QUAL: | |
323e0a4a AC |
10619 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10620 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10621 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10622 | fprintf_filtered (stream, " ("); | |
10623 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10624 | fprintf_filtered (stream, ")"); | |
10625 | break; | |
10626 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10627 | fprintf_filtered (stream, " (%d)", |
10628 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10629 | break; |
10630 | case TERNOP_IN_RANGE: | |
10631 | break; | |
10632 | ||
52ce6436 PH |
10633 | case OP_AGGREGATE: |
10634 | case OP_OTHERS: | |
10635 | case OP_DISCRETE_RANGE: | |
10636 | case OP_POSITIONAL: | |
10637 | case OP_CHOICES: | |
10638 | break; | |
10639 | ||
10640 | case OP_NAME: | |
10641 | case OP_STRING: | |
10642 | { | |
10643 | char *name = &exp->elts[elt + 2].string; | |
10644 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10645 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10646 | break; | |
10647 | } | |
10648 | ||
4c4b4cd2 PH |
10649 | default: |
10650 | return dump_subexp_body_standard (exp, stream, elt); | |
10651 | } | |
10652 | ||
10653 | elt += oplen; | |
10654 | for (i = 0; i < nargs; i += 1) | |
10655 | elt = dump_subexp (exp, stream, elt); | |
10656 | ||
10657 | return elt; | |
10658 | } | |
10659 | ||
10660 | /* The Ada extension of print_subexp (q.v.). */ | |
10661 | ||
76a01679 JB |
10662 | static void |
10663 | ada_print_subexp (struct expression *exp, int *pos, | |
10664 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 10665 | { |
52ce6436 | 10666 | int oplen, nargs, i; |
4c4b4cd2 PH |
10667 | int pc = *pos; |
10668 | enum exp_opcode op = exp->elts[pc].opcode; | |
10669 | ||
10670 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10671 | ||
52ce6436 | 10672 | *pos += oplen; |
4c4b4cd2 PH |
10673 | switch (op) |
10674 | { | |
10675 | default: | |
52ce6436 | 10676 | *pos -= oplen; |
4c4b4cd2 PH |
10677 | print_subexp_standard (exp, pos, stream, prec); |
10678 | return; | |
10679 | ||
10680 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
10681 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
10682 | return; | |
10683 | ||
10684 | case BINOP_IN_BOUNDS: | |
323e0a4a | 10685 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10686 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10687 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 10688 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10689 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 10690 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
10691 | fprintf_filtered (stream, "(%ld)", |
10692 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
10693 | return; |
10694 | ||
10695 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 10696 | if (prec >= PREC_EQUAL) |
76a01679 | 10697 | fputs_filtered ("(", stream); |
323e0a4a | 10698 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10699 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10700 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
10701 | print_subexp (exp, pos, stream, PREC_EQUAL); |
10702 | fputs_filtered (" .. ", stream); | |
10703 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
10704 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
10705 | fputs_filtered (")", stream); |
10706 | return; | |
4c4b4cd2 PH |
10707 | |
10708 | case OP_ATR_FIRST: | |
10709 | case OP_ATR_LAST: | |
10710 | case OP_ATR_LENGTH: | |
10711 | case OP_ATR_IMAGE: | |
10712 | case OP_ATR_MAX: | |
10713 | case OP_ATR_MIN: | |
10714 | case OP_ATR_MODULUS: | |
10715 | case OP_ATR_POS: | |
10716 | case OP_ATR_SIZE: | |
10717 | case OP_ATR_TAG: | |
10718 | case OP_ATR_VAL: | |
4c4b4cd2 | 10719 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
10720 | { |
10721 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
10722 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
10723 | *pos += 3; | |
10724 | } | |
4c4b4cd2 | 10725 | else |
76a01679 | 10726 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
10727 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
10728 | if (nargs > 1) | |
76a01679 JB |
10729 | { |
10730 | int tem; | |
10731 | for (tem = 1; tem < nargs; tem += 1) | |
10732 | { | |
10733 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
10734 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
10735 | } | |
10736 | fputs_filtered (")", stream); | |
10737 | } | |
4c4b4cd2 | 10738 | return; |
14f9c5c9 | 10739 | |
4c4b4cd2 | 10740 | case UNOP_QUAL: |
4c4b4cd2 PH |
10741 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
10742 | fputs_filtered ("'(", stream); | |
10743 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
10744 | fputs_filtered (")", stream); | |
10745 | return; | |
14f9c5c9 | 10746 | |
4c4b4cd2 | 10747 | case UNOP_IN_RANGE: |
323e0a4a | 10748 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10749 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10750 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
10751 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
10752 | return; | |
52ce6436 PH |
10753 | |
10754 | case OP_DISCRETE_RANGE: | |
10755 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10756 | fputs_filtered ("..", stream); | |
10757 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10758 | return; | |
10759 | ||
10760 | case OP_OTHERS: | |
10761 | fputs_filtered ("others => ", stream); | |
10762 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10763 | return; | |
10764 | ||
10765 | case OP_CHOICES: | |
10766 | for (i = 0; i < nargs-1; i += 1) | |
10767 | { | |
10768 | if (i > 0) | |
10769 | fputs_filtered ("|", stream); | |
10770 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10771 | } | |
10772 | fputs_filtered (" => ", stream); | |
10773 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10774 | return; | |
10775 | ||
10776 | case OP_POSITIONAL: | |
10777 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10778 | return; | |
10779 | ||
10780 | case OP_AGGREGATE: | |
10781 | fputs_filtered ("(", stream); | |
10782 | for (i = 0; i < nargs; i += 1) | |
10783 | { | |
10784 | if (i > 0) | |
10785 | fputs_filtered (", ", stream); | |
10786 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10787 | } | |
10788 | fputs_filtered (")", stream); | |
10789 | return; | |
4c4b4cd2 PH |
10790 | } |
10791 | } | |
14f9c5c9 AS |
10792 | |
10793 | /* Table mapping opcodes into strings for printing operators | |
10794 | and precedences of the operators. */ | |
10795 | ||
d2e4a39e AS |
10796 | static const struct op_print ada_op_print_tab[] = { |
10797 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
10798 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
10799 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
10800 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
10801 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
10802 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
10803 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
10804 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
10805 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
10806 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
10807 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
10808 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
10809 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
10810 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
10811 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
10812 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
10813 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
10814 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
10815 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
10816 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
10817 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
10818 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
10819 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
10820 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
10821 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
10822 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
10823 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
10824 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
10825 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
10826 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
10827 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 10828 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
10829 | }; |
10830 | \f | |
72d5681a PH |
10831 | enum ada_primitive_types { |
10832 | ada_primitive_type_int, | |
10833 | ada_primitive_type_long, | |
10834 | ada_primitive_type_short, | |
10835 | ada_primitive_type_char, | |
10836 | ada_primitive_type_float, | |
10837 | ada_primitive_type_double, | |
10838 | ada_primitive_type_void, | |
10839 | ada_primitive_type_long_long, | |
10840 | ada_primitive_type_long_double, | |
10841 | ada_primitive_type_natural, | |
10842 | ada_primitive_type_positive, | |
10843 | ada_primitive_type_system_address, | |
10844 | nr_ada_primitive_types | |
10845 | }; | |
6c038f32 PH |
10846 | |
10847 | static void | |
d4a9a881 | 10848 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
10849 | struct language_arch_info *lai) |
10850 | { | |
d4a9a881 | 10851 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 10852 | lai->primitive_type_vector |
d4a9a881 | 10853 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a PH |
10854 | struct type *); |
10855 | lai->primitive_type_vector [ada_primitive_type_int] = | |
9a76efb6 | 10856 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10857 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10858 | 0, "integer", (struct objfile *) NULL); |
72d5681a | 10859 | lai->primitive_type_vector [ada_primitive_type_long] = |
9a76efb6 | 10860 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10861 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10862 | 0, "long_integer", (struct objfile *) NULL); |
72d5681a | 10863 | lai->primitive_type_vector [ada_primitive_type_short] = |
9a76efb6 | 10864 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10865 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10866 | 0, "short_integer", (struct objfile *) NULL); |
61ee279c PH |
10867 | lai->string_char_type = |
10868 | lai->primitive_type_vector [ada_primitive_type_char] = | |
6c038f32 PH |
10869 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, |
10870 | 0, "character", (struct objfile *) NULL); | |
72d5681a | 10871 | lai->primitive_type_vector [ada_primitive_type_float] = |
ea06eb3d | 10872 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10873 | gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT, |
6c038f32 | 10874 | 0, "float", (struct objfile *) NULL); |
72d5681a | 10875 | lai->primitive_type_vector [ada_primitive_type_double] = |
ea06eb3d | 10876 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10877 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10878 | 0, "long_float", (struct objfile *) NULL); |
72d5681a | 10879 | lai->primitive_type_vector [ada_primitive_type_long_long] = |
9a76efb6 | 10880 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10881 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10882 | 0, "long_long_integer", (struct objfile *) NULL); |
72d5681a | 10883 | lai->primitive_type_vector [ada_primitive_type_long_double] = |
ea06eb3d | 10884 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10885 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10886 | 0, "long_long_float", (struct objfile *) NULL); |
72d5681a | 10887 | lai->primitive_type_vector [ada_primitive_type_natural] = |
9a76efb6 | 10888 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10889 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10890 | 0, "natural", (struct objfile *) NULL); |
72d5681a | 10891 | lai->primitive_type_vector [ada_primitive_type_positive] = |
9a76efb6 | 10892 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10893 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10894 | 0, "positive", (struct objfile *) NULL); |
72d5681a | 10895 | lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void; |
6c038f32 | 10896 | |
72d5681a | 10897 | lai->primitive_type_vector [ada_primitive_type_system_address] = |
6c038f32 PH |
10898 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", |
10899 | (struct objfile *) NULL)); | |
72d5681a PH |
10900 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
10901 | = "system__address"; | |
6c038f32 | 10902 | } |
6c038f32 PH |
10903 | \f |
10904 | /* Language vector */ | |
10905 | ||
10906 | /* Not really used, but needed in the ada_language_defn. */ | |
10907 | ||
10908 | static void | |
10909 | emit_char (int c, struct ui_file *stream, int quoter) | |
10910 | { | |
10911 | ada_emit_char (c, stream, quoter, 1); | |
10912 | } | |
10913 | ||
10914 | static int | |
10915 | parse (void) | |
10916 | { | |
10917 | warnings_issued = 0; | |
10918 | return ada_parse (); | |
10919 | } | |
10920 | ||
10921 | static const struct exp_descriptor ada_exp_descriptor = { | |
10922 | ada_print_subexp, | |
10923 | ada_operator_length, | |
10924 | ada_op_name, | |
10925 | ada_dump_subexp_body, | |
10926 | ada_evaluate_subexp | |
10927 | }; | |
10928 | ||
10929 | const struct language_defn ada_language_defn = { | |
10930 | "ada", /* Language name */ | |
10931 | language_ada, | |
6c038f32 PH |
10932 | range_check_off, |
10933 | type_check_off, | |
10934 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
10935 | that's not quite what this means. */ | |
6c038f32 PH |
10936 | array_row_major, |
10937 | &ada_exp_descriptor, | |
10938 | parse, | |
10939 | ada_error, | |
10940 | resolve, | |
10941 | ada_printchar, /* Print a character constant */ | |
10942 | ada_printstr, /* Function to print string constant */ | |
10943 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 PH |
10944 | ada_print_type, /* Print a type using appropriate syntax */ |
10945 | ada_val_print, /* Print a value using appropriate syntax */ | |
10946 | ada_value_print, /* Print a top-level value */ | |
10947 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 10948 | NULL, /* name_of_this */ |
6c038f32 PH |
10949 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
10950 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
10951 | ada_la_decode, /* Language specific symbol demangler */ | |
10952 | NULL, /* Language specific class_name_from_physname */ | |
10953 | ada_op_print_tab, /* expression operators for printing */ | |
10954 | 0, /* c-style arrays */ | |
10955 | 1, /* String lower bound */ | |
6c038f32 | 10956 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 10957 | ada_make_symbol_completion_list, |
72d5681a | 10958 | ada_language_arch_info, |
e79af960 | 10959 | ada_print_array_index, |
41f1b697 | 10960 | default_pass_by_reference, |
6c038f32 PH |
10961 | LANG_MAGIC |
10962 | }; | |
10963 | ||
d2e4a39e | 10964 | void |
6c038f32 | 10965 | _initialize_ada_language (void) |
14f9c5c9 | 10966 | { |
6c038f32 PH |
10967 | add_language (&ada_language_defn); |
10968 | ||
10969 | varsize_limit = 65536; | |
6c038f32 PH |
10970 | |
10971 | obstack_init (&symbol_list_obstack); | |
10972 | ||
10973 | decoded_names_store = htab_create_alloc | |
10974 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
10975 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
10976 | |
10977 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 10978 | } |