]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
32d0add0 | 3 | Copyright (C) 1992-2015 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
14f9c5c9 | 56 | |
ccefe4c4 | 57 | #include "psymtab.h" |
40bc484c | 58 | #include "value.h" |
956a9fb9 | 59 | #include "mi/mi-common.h" |
9ac4176b | 60 | #include "arch-utils.h" |
0fcd72ba | 61 | #include "cli/cli-utils.h" |
ccefe4c4 | 62 | |
4c4b4cd2 | 63 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 64 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
65 | Copied from valarith.c. */ |
66 | ||
67 | #ifndef TRUNCATION_TOWARDS_ZERO | |
68 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
69 | #endif | |
70 | ||
d2e4a39e | 71 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 72 | |
d2e4a39e | 73 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 80 | |
556bdfd4 | 81 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static struct value *desc_data (struct value *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_arity (struct type *); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 102 | |
40658b94 PH |
103 | static int full_match (const char *, const char *); |
104 | ||
40bc484c | 105 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 106 | |
4c4b4cd2 | 107 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 108 | const struct block *, const char *, |
2570f2b7 | 109 | domain_enum, struct objfile *, int); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 112 | |
76a01679 | 113 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 114 | const struct block *); |
14f9c5c9 | 115 | |
4c4b4cd2 PH |
116 | static int num_defns_collected (struct obstack *); |
117 | ||
118 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 119 | |
4c4b4cd2 | 120 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 121 | struct type *); |
14f9c5c9 | 122 | |
d2e4a39e | 123 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 124 | struct symbol *, const struct block *); |
14f9c5c9 | 125 | |
d2e4a39e | 126 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 127 | |
4c4b4cd2 PH |
128 | static char *ada_op_name (enum exp_opcode); |
129 | ||
130 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int numeric_type_p (struct type *); |
14f9c5c9 | 133 | |
d2e4a39e | 134 | static int integer_type_p (struct type *); |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int scalar_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int discrete_type_p (struct type *); |
14f9c5c9 | 139 | |
aeb5907d JB |
140 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
141 | const char **, | |
142 | int *, | |
143 | const char **); | |
144 | ||
145 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 146 | const struct block *); |
aeb5907d | 147 | |
4c4b4cd2 | 148 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 149 | int, int, int *); |
4c4b4cd2 | 150 | |
d2e4a39e | 151 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 152 | |
b4ba55a1 JB |
153 | static struct type *ada_find_parallel_type_with_name (struct type *, |
154 | const char *); | |
155 | ||
d2e4a39e | 156 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 157 | |
10a2c479 | 158 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 159 | const gdb_byte *, |
4c4b4cd2 PH |
160 | CORE_ADDR, struct value *); |
161 | ||
162 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 163 | |
28c85d6c | 164 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 165 | |
d2e4a39e | 166 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 167 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 170 | |
ad82864c | 171 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 172 | |
ad82864c | 173 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 174 | |
ad82864c JB |
175 | static long decode_packed_array_bitsize (struct type *); |
176 | ||
177 | static struct value *decode_constrained_packed_array (struct value *); | |
178 | ||
179 | static int ada_is_packed_array_type (struct type *); | |
180 | ||
181 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 182 | |
d2e4a39e | 183 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 184 | struct value **); |
14f9c5c9 | 185 | |
50810684 | 186 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 187 | |
4c4b4cd2 PH |
188 | static struct value *coerce_unspec_val_to_type (struct value *, |
189 | struct type *); | |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int is_name_suffix (const char *); |
14f9c5c9 | 198 | |
73589123 PH |
199 | static int advance_wild_match (const char **, const char *, int); |
200 | ||
201 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 204 | |
4c4b4cd2 PH |
205 | static LONGEST pos_atr (struct value *); |
206 | ||
3cb382c9 | 207 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static struct symbol *standard_lookup (const char *, const struct block *, |
212 | domain_enum); | |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct value *ada_search_struct_field (char *, struct value *, int, |
215 | struct type *); | |
216 | ||
217 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
218 | struct type *); | |
219 | ||
0d5cff50 | 220 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 221 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
222 | |
223 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
224 | struct value *); | |
225 | ||
4c4b4cd2 PH |
226 | static int ada_resolve_function (struct ada_symbol_info *, int, |
227 | struct value **, int, const char *, | |
228 | struct type *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_is_direct_array_type (struct type *); |
231 | ||
72d5681a PH |
232 | static void ada_language_arch_info (struct gdbarch *, |
233 | struct language_arch_info *); | |
714e53ab | 234 | |
52ce6436 PH |
235 | static struct value *ada_index_struct_field (int, struct value *, int, |
236 | struct type *); | |
237 | ||
238 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
239 | struct expression *, |
240 | int *, enum noside); | |
52ce6436 PH |
241 | |
242 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
243 | struct expression *, | |
244 | int *, LONGEST *, int *, | |
245 | int, LONGEST, LONGEST); | |
246 | ||
247 | static void aggregate_assign_positional (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, int, | |
250 | LONGEST, LONGEST); | |
251 | ||
252 | ||
253 | static void aggregate_assign_others (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int, LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
259 | ||
260 | ||
261 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
262 | int *, enum noside); | |
263 | ||
264 | static void ada_forward_operator_length (struct expression *, int, int *, | |
265 | int *); | |
852dff6c JB |
266 | |
267 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
268 | \f |
269 | ||
ee01b665 JB |
270 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
271 | ||
272 | struct cache_entry | |
273 | { | |
274 | /* The name used to perform the lookup. */ | |
275 | const char *name; | |
276 | /* The namespace used during the lookup. */ | |
277 | domain_enum namespace; | |
278 | /* The symbol returned by the lookup, or NULL if no matching symbol | |
279 | was found. */ | |
280 | struct symbol *sym; | |
281 | /* The block where the symbol was found, or NULL if no matching | |
282 | symbol was found. */ | |
283 | const struct block *block; | |
284 | /* A pointer to the next entry with the same hash. */ | |
285 | struct cache_entry *next; | |
286 | }; | |
287 | ||
288 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
289 | lookups in the course of executing the user's commands. | |
290 | ||
291 | The cache is implemented using a simple, fixed-sized hash. | |
292 | The size is fixed on the grounds that there are not likely to be | |
293 | all that many symbols looked up during any given session, regardless | |
294 | of the size of the symbol table. If we decide to go to a resizable | |
295 | table, let's just use the stuff from libiberty instead. */ | |
296 | ||
297 | #define HASH_SIZE 1009 | |
298 | ||
299 | struct ada_symbol_cache | |
300 | { | |
301 | /* An obstack used to store the entries in our cache. */ | |
302 | struct obstack cache_space; | |
303 | ||
304 | /* The root of the hash table used to implement our symbol cache. */ | |
305 | struct cache_entry *root[HASH_SIZE]; | |
306 | }; | |
307 | ||
308 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 309 | |
4c4b4cd2 | 310 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
311 | static unsigned int varsize_limit; |
312 | ||
4c4b4cd2 PH |
313 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
314 | returned by a function that does not return a const char *. */ | |
315 | static char *ada_completer_word_break_characters = | |
316 | #ifdef VMS | |
317 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
318 | #else | |
14f9c5c9 | 319 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 320 | #endif |
14f9c5c9 | 321 | |
4c4b4cd2 | 322 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 323 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 324 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 325 | |
4c4b4cd2 PH |
326 | /* Limit on the number of warnings to raise per expression evaluation. */ |
327 | static int warning_limit = 2; | |
328 | ||
329 | /* Number of warning messages issued; reset to 0 by cleanups after | |
330 | expression evaluation. */ | |
331 | static int warnings_issued = 0; | |
332 | ||
333 | static const char *known_runtime_file_name_patterns[] = { | |
334 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
335 | }; | |
336 | ||
337 | static const char *known_auxiliary_function_name_patterns[] = { | |
338 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
339 | }; | |
340 | ||
341 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
342 | static struct obstack symbol_list_obstack; | |
343 | ||
c6044dd1 JB |
344 | /* Maintenance-related settings for this module. */ |
345 | ||
346 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
347 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
348 | ||
349 | /* Implement the "maintenance set ada" (prefix) command. */ | |
350 | ||
351 | static void | |
352 | maint_set_ada_cmd (char *args, int from_tty) | |
353 | { | |
635c7e8a TT |
354 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
355 | gdb_stdout); | |
c6044dd1 JB |
356 | } |
357 | ||
358 | /* Implement the "maintenance show ada" (prefix) command. */ | |
359 | ||
360 | static void | |
361 | maint_show_ada_cmd (char *args, int from_tty) | |
362 | { | |
363 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
364 | } | |
365 | ||
366 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
367 | ||
368 | static int ada_ignore_descriptive_types_p = 0; | |
369 | ||
e802dbe0 JB |
370 | /* Inferior-specific data. */ |
371 | ||
372 | /* Per-inferior data for this module. */ | |
373 | ||
374 | struct ada_inferior_data | |
375 | { | |
376 | /* The ada__tags__type_specific_data type, which is used when decoding | |
377 | tagged types. With older versions of GNAT, this type was directly | |
378 | accessible through a component ("tsd") in the object tag. But this | |
379 | is no longer the case, so we cache it for each inferior. */ | |
380 | struct type *tsd_type; | |
3eecfa55 JB |
381 | |
382 | /* The exception_support_info data. This data is used to determine | |
383 | how to implement support for Ada exception catchpoints in a given | |
384 | inferior. */ | |
385 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
386 | }; |
387 | ||
388 | /* Our key to this module's inferior data. */ | |
389 | static const struct inferior_data *ada_inferior_data; | |
390 | ||
391 | /* A cleanup routine for our inferior data. */ | |
392 | static void | |
393 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
394 | { | |
395 | struct ada_inferior_data *data; | |
396 | ||
397 | data = inferior_data (inf, ada_inferior_data); | |
398 | if (data != NULL) | |
399 | xfree (data); | |
400 | } | |
401 | ||
402 | /* Return our inferior data for the given inferior (INF). | |
403 | ||
404 | This function always returns a valid pointer to an allocated | |
405 | ada_inferior_data structure. If INF's inferior data has not | |
406 | been previously set, this functions creates a new one with all | |
407 | fields set to zero, sets INF's inferior to it, and then returns | |
408 | a pointer to that newly allocated ada_inferior_data. */ | |
409 | ||
410 | static struct ada_inferior_data * | |
411 | get_ada_inferior_data (struct inferior *inf) | |
412 | { | |
413 | struct ada_inferior_data *data; | |
414 | ||
415 | data = inferior_data (inf, ada_inferior_data); | |
416 | if (data == NULL) | |
417 | { | |
41bf6aca | 418 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
419 | set_inferior_data (inf, ada_inferior_data, data); |
420 | } | |
421 | ||
422 | return data; | |
423 | } | |
424 | ||
425 | /* Perform all necessary cleanups regarding our module's inferior data | |
426 | that is required after the inferior INF just exited. */ | |
427 | ||
428 | static void | |
429 | ada_inferior_exit (struct inferior *inf) | |
430 | { | |
431 | ada_inferior_data_cleanup (inf, NULL); | |
432 | set_inferior_data (inf, ada_inferior_data, NULL); | |
433 | } | |
434 | ||
ee01b665 JB |
435 | |
436 | /* program-space-specific data. */ | |
437 | ||
438 | /* This module's per-program-space data. */ | |
439 | struct ada_pspace_data | |
440 | { | |
441 | /* The Ada symbol cache. */ | |
442 | struct ada_symbol_cache *sym_cache; | |
443 | }; | |
444 | ||
445 | /* Key to our per-program-space data. */ | |
446 | static const struct program_space_data *ada_pspace_data_handle; | |
447 | ||
448 | /* Return this module's data for the given program space (PSPACE). | |
449 | If not is found, add a zero'ed one now. | |
450 | ||
451 | This function always returns a valid object. */ | |
452 | ||
453 | static struct ada_pspace_data * | |
454 | get_ada_pspace_data (struct program_space *pspace) | |
455 | { | |
456 | struct ada_pspace_data *data; | |
457 | ||
458 | data = program_space_data (pspace, ada_pspace_data_handle); | |
459 | if (data == NULL) | |
460 | { | |
461 | data = XCNEW (struct ada_pspace_data); | |
462 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
463 | } | |
464 | ||
465 | return data; | |
466 | } | |
467 | ||
468 | /* The cleanup callback for this module's per-program-space data. */ | |
469 | ||
470 | static void | |
471 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
472 | { | |
473 | struct ada_pspace_data *pspace_data = data; | |
474 | ||
475 | if (pspace_data->sym_cache != NULL) | |
476 | ada_free_symbol_cache (pspace_data->sym_cache); | |
477 | xfree (pspace_data); | |
478 | } | |
479 | ||
4c4b4cd2 PH |
480 | /* Utilities */ |
481 | ||
720d1a40 | 482 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 483 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
484 | |
485 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
486 | In other words, we really expect the target type of a typedef type to be | |
487 | a non-typedef type. This is particularly true for Ada units, because | |
488 | the language does not have a typedef vs not-typedef distinction. | |
489 | In that respect, the Ada compiler has been trying to eliminate as many | |
490 | typedef definitions in the debugging information, since they generally | |
491 | do not bring any extra information (we still use typedef under certain | |
492 | circumstances related mostly to the GNAT encoding). | |
493 | ||
494 | Unfortunately, we have seen situations where the debugging information | |
495 | generated by the compiler leads to such multiple typedef layers. For | |
496 | instance, consider the following example with stabs: | |
497 | ||
498 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
499 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
500 | ||
501 | This is an error in the debugging information which causes type | |
502 | pck__float_array___XUP to be defined twice, and the second time, | |
503 | it is defined as a typedef of a typedef. | |
504 | ||
505 | This is on the fringe of legality as far as debugging information is | |
506 | concerned, and certainly unexpected. But it is easy to handle these | |
507 | situations correctly, so we can afford to be lenient in this case. */ | |
508 | ||
509 | static struct type * | |
510 | ada_typedef_target_type (struct type *type) | |
511 | { | |
512 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
513 | type = TYPE_TARGET_TYPE (type); | |
514 | return type; | |
515 | } | |
516 | ||
41d27058 JB |
517 | /* Given DECODED_NAME a string holding a symbol name in its |
518 | decoded form (ie using the Ada dotted notation), returns | |
519 | its unqualified name. */ | |
520 | ||
521 | static const char * | |
522 | ada_unqualified_name (const char *decoded_name) | |
523 | { | |
2b0f535a JB |
524 | const char *result; |
525 | ||
526 | /* If the decoded name starts with '<', it means that the encoded | |
527 | name does not follow standard naming conventions, and thus that | |
528 | it is not your typical Ada symbol name. Trying to unqualify it | |
529 | is therefore pointless and possibly erroneous. */ | |
530 | if (decoded_name[0] == '<') | |
531 | return decoded_name; | |
532 | ||
533 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
534 | if (result != NULL) |
535 | result++; /* Skip the dot... */ | |
536 | else | |
537 | result = decoded_name; | |
538 | ||
539 | return result; | |
540 | } | |
541 | ||
542 | /* Return a string starting with '<', followed by STR, and '>'. | |
543 | The result is good until the next call. */ | |
544 | ||
545 | static char * | |
546 | add_angle_brackets (const char *str) | |
547 | { | |
548 | static char *result = NULL; | |
549 | ||
550 | xfree (result); | |
88c15c34 | 551 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
552 | return result; |
553 | } | |
96d887e8 | 554 | |
4c4b4cd2 PH |
555 | static char * |
556 | ada_get_gdb_completer_word_break_characters (void) | |
557 | { | |
558 | return ada_completer_word_break_characters; | |
559 | } | |
560 | ||
e79af960 JB |
561 | /* Print an array element index using the Ada syntax. */ |
562 | ||
563 | static void | |
564 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 565 | const struct value_print_options *options) |
e79af960 | 566 | { |
79a45b7d | 567 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
568 | fprintf_filtered (stream, " => "); |
569 | } | |
570 | ||
f27cf670 | 571 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 572 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 573 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 574 | |
f27cf670 AS |
575 | void * |
576 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 577 | { |
d2e4a39e AS |
578 | if (*size < min_size) |
579 | { | |
580 | *size *= 2; | |
581 | if (*size < min_size) | |
4c4b4cd2 | 582 | *size = min_size; |
f27cf670 | 583 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 584 | } |
f27cf670 | 585 | return vect; |
14f9c5c9 AS |
586 | } |
587 | ||
588 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 589 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
590 | |
591 | static int | |
ebf56fd3 | 592 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
593 | { |
594 | int len = strlen (target); | |
5b4ee69b | 595 | |
d2e4a39e | 596 | return |
4c4b4cd2 PH |
597 | (strncmp (field_name, target, len) == 0 |
598 | && (field_name[len] == '\0' | |
599 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
600 | && strcmp (field_name + strlen (field_name) - 6, |
601 | "___XVN") != 0))); | |
14f9c5c9 AS |
602 | } |
603 | ||
604 | ||
872c8b51 JB |
605 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
606 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
607 | and return its index. This function also handles fields whose name | |
608 | have ___ suffixes because the compiler sometimes alters their name | |
609 | by adding such a suffix to represent fields with certain constraints. | |
610 | If the field could not be found, return a negative number if | |
611 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
612 | |
613 | int | |
614 | ada_get_field_index (const struct type *type, const char *field_name, | |
615 | int maybe_missing) | |
616 | { | |
617 | int fieldno; | |
872c8b51 JB |
618 | struct type *struct_type = check_typedef ((struct type *) type); |
619 | ||
620 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
621 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
622 | return fieldno; |
623 | ||
624 | if (!maybe_missing) | |
323e0a4a | 625 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 626 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
627 | |
628 | return -1; | |
629 | } | |
630 | ||
631 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
632 | |
633 | int | |
d2e4a39e | 634 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
635 | { |
636 | if (name == NULL) | |
637 | return 0; | |
d2e4a39e | 638 | else |
14f9c5c9 | 639 | { |
d2e4a39e | 640 | const char *p = strstr (name, "___"); |
5b4ee69b | 641 | |
14f9c5c9 | 642 | if (p == NULL) |
4c4b4cd2 | 643 | return strlen (name); |
14f9c5c9 | 644 | else |
4c4b4cd2 | 645 | return p - name; |
14f9c5c9 AS |
646 | } |
647 | } | |
648 | ||
4c4b4cd2 PH |
649 | /* Return non-zero if SUFFIX is a suffix of STR. |
650 | Return zero if STR is null. */ | |
651 | ||
14f9c5c9 | 652 | static int |
d2e4a39e | 653 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
654 | { |
655 | int len1, len2; | |
5b4ee69b | 656 | |
14f9c5c9 AS |
657 | if (str == NULL) |
658 | return 0; | |
659 | len1 = strlen (str); | |
660 | len2 = strlen (suffix); | |
4c4b4cd2 | 661 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
662 | } |
663 | ||
4c4b4cd2 PH |
664 | /* The contents of value VAL, treated as a value of type TYPE. The |
665 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 666 | |
d2e4a39e | 667 | static struct value * |
4c4b4cd2 | 668 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 669 | { |
61ee279c | 670 | type = ada_check_typedef (type); |
df407dfe | 671 | if (value_type (val) == type) |
4c4b4cd2 | 672 | return val; |
d2e4a39e | 673 | else |
14f9c5c9 | 674 | { |
4c4b4cd2 PH |
675 | struct value *result; |
676 | ||
677 | /* Make sure that the object size is not unreasonable before | |
678 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 679 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 680 | |
41e8491f JK |
681 | if (value_lazy (val) |
682 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
683 | result = allocate_value_lazy (type); | |
684 | else | |
685 | { | |
686 | result = allocate_value (type); | |
9a0dc9e3 | 687 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 688 | } |
74bcbdf3 | 689 | set_value_component_location (result, val); |
9bbda503 AC |
690 | set_value_bitsize (result, value_bitsize (val)); |
691 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 692 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
693 | return result; |
694 | } | |
695 | } | |
696 | ||
fc1a4b47 AC |
697 | static const gdb_byte * |
698 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
699 | { |
700 | if (valaddr == NULL) | |
701 | return NULL; | |
702 | else | |
703 | return valaddr + offset; | |
704 | } | |
705 | ||
706 | static CORE_ADDR | |
ebf56fd3 | 707 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
708 | { |
709 | if (address == 0) | |
710 | return 0; | |
d2e4a39e | 711 | else |
14f9c5c9 AS |
712 | return address + offset; |
713 | } | |
714 | ||
4c4b4cd2 PH |
715 | /* Issue a warning (as for the definition of warning in utils.c, but |
716 | with exactly one argument rather than ...), unless the limit on the | |
717 | number of warnings has passed during the evaluation of the current | |
718 | expression. */ | |
a2249542 | 719 | |
77109804 AC |
720 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
721 | provided by "complaint". */ | |
a0b31db1 | 722 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 723 | |
14f9c5c9 | 724 | static void |
a2249542 | 725 | lim_warning (const char *format, ...) |
14f9c5c9 | 726 | { |
a2249542 | 727 | va_list args; |
a2249542 | 728 | |
5b4ee69b | 729 | va_start (args, format); |
4c4b4cd2 PH |
730 | warnings_issued += 1; |
731 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
732 | vwarning (format, args); |
733 | ||
734 | va_end (args); | |
4c4b4cd2 PH |
735 | } |
736 | ||
714e53ab PH |
737 | /* Issue an error if the size of an object of type T is unreasonable, |
738 | i.e. if it would be a bad idea to allocate a value of this type in | |
739 | GDB. */ | |
740 | ||
c1b5a1a6 JB |
741 | void |
742 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
743 | { |
744 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 745 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
746 | } |
747 | ||
0963b4bd | 748 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 749 | static LONGEST |
c3e5cd34 | 750 | max_of_size (int size) |
4c4b4cd2 | 751 | { |
76a01679 | 752 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 753 | |
76a01679 | 754 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
755 | } |
756 | ||
0963b4bd | 757 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 758 | static LONGEST |
c3e5cd34 | 759 | min_of_size (int size) |
4c4b4cd2 | 760 | { |
c3e5cd34 | 761 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
762 | } |
763 | ||
0963b4bd | 764 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 765 | static ULONGEST |
c3e5cd34 | 766 | umax_of_size (int size) |
4c4b4cd2 | 767 | { |
76a01679 | 768 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 769 | |
76a01679 | 770 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
771 | } |
772 | ||
0963b4bd | 773 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
774 | static LONGEST |
775 | max_of_type (struct type *t) | |
4c4b4cd2 | 776 | { |
c3e5cd34 PH |
777 | if (TYPE_UNSIGNED (t)) |
778 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
779 | else | |
780 | return max_of_size (TYPE_LENGTH (t)); | |
781 | } | |
782 | ||
0963b4bd | 783 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
784 | static LONGEST |
785 | min_of_type (struct type *t) | |
786 | { | |
787 | if (TYPE_UNSIGNED (t)) | |
788 | return 0; | |
789 | else | |
790 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
791 | } |
792 | ||
793 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
794 | LONGEST |
795 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 796 | { |
8739bc53 | 797 | type = resolve_dynamic_type (type, 0); |
76a01679 | 798 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
799 | { |
800 | case TYPE_CODE_RANGE: | |
690cc4eb | 801 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 802 | case TYPE_CODE_ENUM: |
14e75d8e | 803 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
804 | case TYPE_CODE_BOOL: |
805 | return 1; | |
806 | case TYPE_CODE_CHAR: | |
76a01679 | 807 | case TYPE_CODE_INT: |
690cc4eb | 808 | return max_of_type (type); |
4c4b4cd2 | 809 | default: |
43bbcdc2 | 810 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
811 | } |
812 | } | |
813 | ||
14e75d8e | 814 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
815 | LONGEST |
816 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 817 | { |
8739bc53 | 818 | type = resolve_dynamic_type (type, 0); |
76a01679 | 819 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
820 | { |
821 | case TYPE_CODE_RANGE: | |
690cc4eb | 822 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 823 | case TYPE_CODE_ENUM: |
14e75d8e | 824 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
825 | case TYPE_CODE_BOOL: |
826 | return 0; | |
827 | case TYPE_CODE_CHAR: | |
76a01679 | 828 | case TYPE_CODE_INT: |
690cc4eb | 829 | return min_of_type (type); |
4c4b4cd2 | 830 | default: |
43bbcdc2 | 831 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
832 | } |
833 | } | |
834 | ||
835 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 836 | non-range scalar type. */ |
4c4b4cd2 PH |
837 | |
838 | static struct type * | |
18af8284 | 839 | get_base_type (struct type *type) |
4c4b4cd2 PH |
840 | { |
841 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
842 | { | |
76a01679 JB |
843 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
844 | return type; | |
4c4b4cd2 PH |
845 | type = TYPE_TARGET_TYPE (type); |
846 | } | |
847 | return type; | |
14f9c5c9 | 848 | } |
41246937 JB |
849 | |
850 | /* Return a decoded version of the given VALUE. This means returning | |
851 | a value whose type is obtained by applying all the GNAT-specific | |
852 | encondings, making the resulting type a static but standard description | |
853 | of the initial type. */ | |
854 | ||
855 | struct value * | |
856 | ada_get_decoded_value (struct value *value) | |
857 | { | |
858 | struct type *type = ada_check_typedef (value_type (value)); | |
859 | ||
860 | if (ada_is_array_descriptor_type (type) | |
861 | || (ada_is_constrained_packed_array_type (type) | |
862 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
863 | { | |
864 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
865 | value = ada_coerce_to_simple_array_ptr (value); | |
866 | else | |
867 | value = ada_coerce_to_simple_array (value); | |
868 | } | |
869 | else | |
870 | value = ada_to_fixed_value (value); | |
871 | ||
872 | return value; | |
873 | } | |
874 | ||
875 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
876 | Because there is no associated actual value for this type, | |
877 | the resulting type might be a best-effort approximation in | |
878 | the case of dynamic types. */ | |
879 | ||
880 | struct type * | |
881 | ada_get_decoded_type (struct type *type) | |
882 | { | |
883 | type = to_static_fixed_type (type); | |
884 | if (ada_is_constrained_packed_array_type (type)) | |
885 | type = ada_coerce_to_simple_array_type (type); | |
886 | return type; | |
887 | } | |
888 | ||
4c4b4cd2 | 889 | \f |
76a01679 | 890 | |
4c4b4cd2 | 891 | /* Language Selection */ |
14f9c5c9 AS |
892 | |
893 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 894 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 895 | |
14f9c5c9 | 896 | enum language |
ccefe4c4 | 897 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 898 | { |
d2e4a39e | 899 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 900 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 901 | return language_ada; |
14f9c5c9 AS |
902 | |
903 | return lang; | |
904 | } | |
96d887e8 PH |
905 | |
906 | /* If the main procedure is written in Ada, then return its name. | |
907 | The result is good until the next call. Return NULL if the main | |
908 | procedure doesn't appear to be in Ada. */ | |
909 | ||
910 | char * | |
911 | ada_main_name (void) | |
912 | { | |
3b7344d5 | 913 | struct bound_minimal_symbol msym; |
f9bc20b9 | 914 | static char *main_program_name = NULL; |
6c038f32 | 915 | |
96d887e8 PH |
916 | /* For Ada, the name of the main procedure is stored in a specific |
917 | string constant, generated by the binder. Look for that symbol, | |
918 | extract its address, and then read that string. If we didn't find | |
919 | that string, then most probably the main procedure is not written | |
920 | in Ada. */ | |
921 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
922 | ||
3b7344d5 | 923 | if (msym.minsym != NULL) |
96d887e8 | 924 | { |
f9bc20b9 JB |
925 | CORE_ADDR main_program_name_addr; |
926 | int err_code; | |
927 | ||
77e371c0 | 928 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 929 | if (main_program_name_addr == 0) |
323e0a4a | 930 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 931 | |
f9bc20b9 JB |
932 | xfree (main_program_name); |
933 | target_read_string (main_program_name_addr, &main_program_name, | |
934 | 1024, &err_code); | |
935 | ||
936 | if (err_code != 0) | |
937 | return NULL; | |
96d887e8 PH |
938 | return main_program_name; |
939 | } | |
940 | ||
941 | /* The main procedure doesn't seem to be in Ada. */ | |
942 | return NULL; | |
943 | } | |
14f9c5c9 | 944 | \f |
4c4b4cd2 | 945 | /* Symbols */ |
d2e4a39e | 946 | |
4c4b4cd2 PH |
947 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
948 | of NULLs. */ | |
14f9c5c9 | 949 | |
d2e4a39e AS |
950 | const struct ada_opname_map ada_opname_table[] = { |
951 | {"Oadd", "\"+\"", BINOP_ADD}, | |
952 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
953 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
954 | {"Odivide", "\"/\"", BINOP_DIV}, | |
955 | {"Omod", "\"mod\"", BINOP_MOD}, | |
956 | {"Orem", "\"rem\"", BINOP_REM}, | |
957 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
958 | {"Olt", "\"<\"", BINOP_LESS}, | |
959 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
960 | {"Ogt", "\">\"", BINOP_GTR}, | |
961 | {"Oge", "\">=\"", BINOP_GEQ}, | |
962 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
963 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
964 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
965 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
966 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
967 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
968 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
969 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
970 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
971 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
972 | {NULL, NULL} | |
14f9c5c9 AS |
973 | }; |
974 | ||
4c4b4cd2 PH |
975 | /* The "encoded" form of DECODED, according to GNAT conventions. |
976 | The result is valid until the next call to ada_encode. */ | |
977 | ||
14f9c5c9 | 978 | char * |
4c4b4cd2 | 979 | ada_encode (const char *decoded) |
14f9c5c9 | 980 | { |
4c4b4cd2 PH |
981 | static char *encoding_buffer = NULL; |
982 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 983 | const char *p; |
14f9c5c9 | 984 | int k; |
d2e4a39e | 985 | |
4c4b4cd2 | 986 | if (decoded == NULL) |
14f9c5c9 AS |
987 | return NULL; |
988 | ||
4c4b4cd2 PH |
989 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
990 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
991 | |
992 | k = 0; | |
4c4b4cd2 | 993 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 994 | { |
cdc7bb92 | 995 | if (*p == '.') |
4c4b4cd2 PH |
996 | { |
997 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
998 | k += 2; | |
999 | } | |
14f9c5c9 | 1000 | else if (*p == '"') |
4c4b4cd2 PH |
1001 | { |
1002 | const struct ada_opname_map *mapping; | |
1003 | ||
1004 | for (mapping = ada_opname_table; | |
1265e4aa JB |
1005 | mapping->encoded != NULL |
1006 | && strncmp (mapping->decoded, p, | |
1007 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
1008 | ; |
1009 | if (mapping->encoded == NULL) | |
323e0a4a | 1010 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1011 | strcpy (encoding_buffer + k, mapping->encoded); |
1012 | k += strlen (mapping->encoded); | |
1013 | break; | |
1014 | } | |
d2e4a39e | 1015 | else |
4c4b4cd2 PH |
1016 | { |
1017 | encoding_buffer[k] = *p; | |
1018 | k += 1; | |
1019 | } | |
14f9c5c9 AS |
1020 | } |
1021 | ||
4c4b4cd2 PH |
1022 | encoding_buffer[k] = '\0'; |
1023 | return encoding_buffer; | |
14f9c5c9 AS |
1024 | } |
1025 | ||
1026 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1027 | quotes, unfolded, but with the quotes stripped away. Result good |
1028 | to next call. */ | |
1029 | ||
d2e4a39e AS |
1030 | char * |
1031 | ada_fold_name (const char *name) | |
14f9c5c9 | 1032 | { |
d2e4a39e | 1033 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1034 | static size_t fold_buffer_size = 0; |
1035 | ||
1036 | int len = strlen (name); | |
d2e4a39e | 1037 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1038 | |
1039 | if (name[0] == '\'') | |
1040 | { | |
d2e4a39e AS |
1041 | strncpy (fold_buffer, name + 1, len - 2); |
1042 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1043 | } |
1044 | else | |
1045 | { | |
1046 | int i; | |
5b4ee69b | 1047 | |
14f9c5c9 | 1048 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1049 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1050 | } |
1051 | ||
1052 | return fold_buffer; | |
1053 | } | |
1054 | ||
529cad9c PH |
1055 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1056 | ||
1057 | static int | |
1058 | is_lower_alphanum (const char c) | |
1059 | { | |
1060 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1061 | } | |
1062 | ||
c90092fe JB |
1063 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1064 | This function saves in LEN the length of that same symbol name but | |
1065 | without either of these suffixes: | |
29480c32 JB |
1066 | . .{DIGIT}+ |
1067 | . ${DIGIT}+ | |
1068 | . ___{DIGIT}+ | |
1069 | . __{DIGIT}+. | |
c90092fe | 1070 | |
29480c32 JB |
1071 | These are suffixes introduced by the compiler for entities such as |
1072 | nested subprogram for instance, in order to avoid name clashes. | |
1073 | They do not serve any purpose for the debugger. */ | |
1074 | ||
1075 | static void | |
1076 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1077 | { | |
1078 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1079 | { | |
1080 | int i = *len - 2; | |
5b4ee69b | 1081 | |
29480c32 JB |
1082 | while (i > 0 && isdigit (encoded[i])) |
1083 | i--; | |
1084 | if (i >= 0 && encoded[i] == '.') | |
1085 | *len = i; | |
1086 | else if (i >= 0 && encoded[i] == '$') | |
1087 | *len = i; | |
1088 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
1089 | *len = i - 2; | |
1090 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
1091 | *len = i - 1; | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | /* Remove the suffix introduced by the compiler for protected object | |
1096 | subprograms. */ | |
1097 | ||
1098 | static void | |
1099 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1100 | { | |
1101 | /* Remove trailing N. */ | |
1102 | ||
1103 | /* Protected entry subprograms are broken into two | |
1104 | separate subprograms: The first one is unprotected, and has | |
1105 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1106 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1107 | the protection. Since the P subprograms are internally generated, |
1108 | we leave these names undecoded, giving the user a clue that this | |
1109 | entity is internal. */ | |
1110 | ||
1111 | if (*len > 1 | |
1112 | && encoded[*len - 1] == 'N' | |
1113 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1114 | *len = *len - 1; | |
1115 | } | |
1116 | ||
69fadcdf JB |
1117 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1118 | ||
1119 | static void | |
1120 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1121 | { | |
1122 | int i = *len - 1; | |
1123 | ||
1124 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1125 | i--; | |
1126 | ||
1127 | if (encoded[i] != 'X') | |
1128 | return; | |
1129 | ||
1130 | if (i == 0) | |
1131 | return; | |
1132 | ||
1133 | if (isalnum (encoded[i-1])) | |
1134 | *len = i; | |
1135 | } | |
1136 | ||
29480c32 JB |
1137 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1138 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1139 | replaced by ENCODED. | |
14f9c5c9 | 1140 | |
4c4b4cd2 | 1141 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1142 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1143 | is returned. */ |
1144 | ||
1145 | const char * | |
1146 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1147 | { |
1148 | int i, j; | |
1149 | int len0; | |
d2e4a39e | 1150 | const char *p; |
4c4b4cd2 | 1151 | char *decoded; |
14f9c5c9 | 1152 | int at_start_name; |
4c4b4cd2 PH |
1153 | static char *decoding_buffer = NULL; |
1154 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1155 | |
29480c32 JB |
1156 | /* The name of the Ada main procedure starts with "_ada_". |
1157 | This prefix is not part of the decoded name, so skip this part | |
1158 | if we see this prefix. */ | |
4c4b4cd2 PH |
1159 | if (strncmp (encoded, "_ada_", 5) == 0) |
1160 | encoded += 5; | |
14f9c5c9 | 1161 | |
29480c32 JB |
1162 | /* If the name starts with '_', then it is not a properly encoded |
1163 | name, so do not attempt to decode it. Similarly, if the name | |
1164 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1165 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1166 | goto Suppress; |
1167 | ||
4c4b4cd2 | 1168 | len0 = strlen (encoded); |
4c4b4cd2 | 1169 | |
29480c32 JB |
1170 | ada_remove_trailing_digits (encoded, &len0); |
1171 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1172 | |
4c4b4cd2 PH |
1173 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1174 | the suffix is located before the current "end" of ENCODED. We want | |
1175 | to avoid re-matching parts of ENCODED that have previously been | |
1176 | marked as discarded (by decrementing LEN0). */ | |
1177 | p = strstr (encoded, "___"); | |
1178 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1179 | { |
1180 | if (p[3] == 'X') | |
4c4b4cd2 | 1181 | len0 = p - encoded; |
14f9c5c9 | 1182 | else |
4c4b4cd2 | 1183 | goto Suppress; |
14f9c5c9 | 1184 | } |
4c4b4cd2 | 1185 | |
29480c32 JB |
1186 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1187 | is for the body of a task, but that information does not actually | |
1188 | appear in the decoded name. */ | |
1189 | ||
4c4b4cd2 | 1190 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1191 | len0 -= 3; |
76a01679 | 1192 | |
a10967fa JB |
1193 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1194 | from the TKB suffix because it is used for non-anonymous task | |
1195 | bodies. */ | |
1196 | ||
1197 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1198 | len0 -= 2; | |
1199 | ||
29480c32 JB |
1200 | /* Remove trailing "B" suffixes. */ |
1201 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1202 | ||
4c4b4cd2 | 1203 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1204 | len0 -= 1; |
1205 | ||
4c4b4cd2 | 1206 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1207 | |
4c4b4cd2 PH |
1208 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1209 | decoded = decoding_buffer; | |
14f9c5c9 | 1210 | |
29480c32 JB |
1211 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1212 | ||
4c4b4cd2 | 1213 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1214 | { |
4c4b4cd2 PH |
1215 | i = len0 - 2; |
1216 | while ((i >= 0 && isdigit (encoded[i])) | |
1217 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1218 | i -= 1; | |
1219 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1220 | len0 = i - 1; | |
1221 | else if (encoded[i] == '$') | |
1222 | len0 = i; | |
d2e4a39e | 1223 | } |
14f9c5c9 | 1224 | |
29480c32 JB |
1225 | /* The first few characters that are not alphabetic are not part |
1226 | of any encoding we use, so we can copy them over verbatim. */ | |
1227 | ||
4c4b4cd2 PH |
1228 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1229 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1230 | |
1231 | at_start_name = 1; | |
1232 | while (i < len0) | |
1233 | { | |
29480c32 | 1234 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1235 | if (at_start_name && encoded[i] == 'O') |
1236 | { | |
1237 | int k; | |
5b4ee69b | 1238 | |
4c4b4cd2 PH |
1239 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1240 | { | |
1241 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1242 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1243 | op_len - 1) == 0) | |
1244 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1245 | { |
1246 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1247 | at_start_name = 0; | |
1248 | i += op_len; | |
1249 | j += strlen (ada_opname_table[k].decoded); | |
1250 | break; | |
1251 | } | |
1252 | } | |
1253 | if (ada_opname_table[k].encoded != NULL) | |
1254 | continue; | |
1255 | } | |
14f9c5c9 AS |
1256 | at_start_name = 0; |
1257 | ||
529cad9c PH |
1258 | /* Replace "TK__" with "__", which will eventually be translated |
1259 | into "." (just below). */ | |
1260 | ||
4c4b4cd2 PH |
1261 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1262 | i += 2; | |
529cad9c | 1263 | |
29480c32 JB |
1264 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1265 | be translated into "." (just below). These are internal names | |
1266 | generated for anonymous blocks inside which our symbol is nested. */ | |
1267 | ||
1268 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1269 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1270 | && isdigit (encoded [i+4])) | |
1271 | { | |
1272 | int k = i + 5; | |
1273 | ||
1274 | while (k < len0 && isdigit (encoded[k])) | |
1275 | k++; /* Skip any extra digit. */ | |
1276 | ||
1277 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1278 | is indeed followed by "__". */ | |
1279 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1280 | i = k; | |
1281 | } | |
1282 | ||
529cad9c PH |
1283 | /* Remove _E{DIGITS}+[sb] */ |
1284 | ||
1285 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1286 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1287 | one implements the actual entry code, and has a suffix following |
1288 | the convention above; the second one implements the barrier and | |
1289 | uses the same convention as above, except that the 'E' is replaced | |
1290 | by a 'B'. | |
1291 | ||
1292 | Just as above, we do not decode the name of barrier functions | |
1293 | to give the user a clue that the code he is debugging has been | |
1294 | internally generated. */ | |
1295 | ||
1296 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1297 | && isdigit (encoded[i+2])) | |
1298 | { | |
1299 | int k = i + 3; | |
1300 | ||
1301 | while (k < len0 && isdigit (encoded[k])) | |
1302 | k++; | |
1303 | ||
1304 | if (k < len0 | |
1305 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1306 | { | |
1307 | k++; | |
1308 | /* Just as an extra precaution, make sure that if this | |
1309 | suffix is followed by anything else, it is a '_'. | |
1310 | Otherwise, we matched this sequence by accident. */ | |
1311 | if (k == len0 | |
1312 | || (k < len0 && encoded[k] == '_')) | |
1313 | i = k; | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1318 | the GNAT front-end in protected object subprograms. */ | |
1319 | ||
1320 | if (i < len0 + 3 | |
1321 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1322 | { | |
1323 | /* Backtrack a bit up until we reach either the begining of | |
1324 | the encoded name, or "__". Make sure that we only find | |
1325 | digits or lowercase characters. */ | |
1326 | const char *ptr = encoded + i - 1; | |
1327 | ||
1328 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1329 | ptr--; | |
1330 | if (ptr < encoded | |
1331 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1332 | i++; | |
1333 | } | |
1334 | ||
4c4b4cd2 PH |
1335 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1336 | { | |
29480c32 JB |
1337 | /* This is a X[bn]* sequence not separated from the previous |
1338 | part of the name with a non-alpha-numeric character (in other | |
1339 | words, immediately following an alpha-numeric character), then | |
1340 | verify that it is placed at the end of the encoded name. If | |
1341 | not, then the encoding is not valid and we should abort the | |
1342 | decoding. Otherwise, just skip it, it is used in body-nested | |
1343 | package names. */ | |
4c4b4cd2 PH |
1344 | do |
1345 | i += 1; | |
1346 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1347 | if (i < len0) | |
1348 | goto Suppress; | |
1349 | } | |
cdc7bb92 | 1350 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1351 | { |
29480c32 | 1352 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1353 | decoded[j] = '.'; |
1354 | at_start_name = 1; | |
1355 | i += 2; | |
1356 | j += 1; | |
1357 | } | |
14f9c5c9 | 1358 | else |
4c4b4cd2 | 1359 | { |
29480c32 JB |
1360 | /* It's a character part of the decoded name, so just copy it |
1361 | over. */ | |
4c4b4cd2 PH |
1362 | decoded[j] = encoded[i]; |
1363 | i += 1; | |
1364 | j += 1; | |
1365 | } | |
14f9c5c9 | 1366 | } |
4c4b4cd2 | 1367 | decoded[j] = '\000'; |
14f9c5c9 | 1368 | |
29480c32 JB |
1369 | /* Decoded names should never contain any uppercase character. |
1370 | Double-check this, and abort the decoding if we find one. */ | |
1371 | ||
4c4b4cd2 PH |
1372 | for (i = 0; decoded[i] != '\0'; i += 1) |
1373 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1374 | goto Suppress; |
1375 | ||
4c4b4cd2 PH |
1376 | if (strcmp (decoded, encoded) == 0) |
1377 | return encoded; | |
1378 | else | |
1379 | return decoded; | |
14f9c5c9 AS |
1380 | |
1381 | Suppress: | |
4c4b4cd2 PH |
1382 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1383 | decoded = decoding_buffer; | |
1384 | if (encoded[0] == '<') | |
1385 | strcpy (decoded, encoded); | |
14f9c5c9 | 1386 | else |
88c15c34 | 1387 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1388 | return decoded; |
1389 | ||
1390 | } | |
1391 | ||
1392 | /* Table for keeping permanent unique copies of decoded names. Once | |
1393 | allocated, names in this table are never released. While this is a | |
1394 | storage leak, it should not be significant unless there are massive | |
1395 | changes in the set of decoded names in successive versions of a | |
1396 | symbol table loaded during a single session. */ | |
1397 | static struct htab *decoded_names_store; | |
1398 | ||
1399 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1400 | in the language-specific part of GSYMBOL, if it has not been | |
1401 | previously computed. Tries to save the decoded name in the same | |
1402 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1403 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1404 | GSYMBOL). |
4c4b4cd2 PH |
1405 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1406 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1407 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1408 | |
45e6c716 | 1409 | const char * |
f85f34ed | 1410 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1411 | { |
f85f34ed TT |
1412 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1413 | const char **resultp = | |
1414 | &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1415 | |
f85f34ed | 1416 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1417 | { |
1418 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1419 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1420 | |
f85f34ed | 1421 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1422 | |
f85f34ed TT |
1423 | if (obstack != NULL) |
1424 | *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); | |
1425 | else | |
76a01679 | 1426 | { |
f85f34ed TT |
1427 | /* Sometimes, we can't find a corresponding objfile, in |
1428 | which case, we put the result on the heap. Since we only | |
1429 | decode when needed, we hope this usually does not cause a | |
1430 | significant memory leak (FIXME). */ | |
1431 | ||
76a01679 JB |
1432 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1433 | decoded, INSERT); | |
5b4ee69b | 1434 | |
76a01679 JB |
1435 | if (*slot == NULL) |
1436 | *slot = xstrdup (decoded); | |
1437 | *resultp = *slot; | |
1438 | } | |
4c4b4cd2 | 1439 | } |
14f9c5c9 | 1440 | |
4c4b4cd2 PH |
1441 | return *resultp; |
1442 | } | |
76a01679 | 1443 | |
2c0b251b | 1444 | static char * |
76a01679 | 1445 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1446 | { |
1447 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1448 | } |
1449 | ||
1450 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1451 | suffixes that encode debugging information or leading _ada_ on |
1452 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1453 | information that is ignored). If WILD, then NAME need only match a | |
1454 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1455 | either argument is NULL. */ | |
14f9c5c9 | 1456 | |
2c0b251b | 1457 | static int |
40658b94 | 1458 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1459 | { |
1460 | if (sym_name == NULL || name == NULL) | |
1461 | return 0; | |
1462 | else if (wild) | |
73589123 | 1463 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1464 | else |
1465 | { | |
1466 | int len_name = strlen (name); | |
5b4ee69b | 1467 | |
4c4b4cd2 PH |
1468 | return (strncmp (sym_name, name, len_name) == 0 |
1469 | && is_name_suffix (sym_name + len_name)) | |
1470 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1471 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1472 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1473 | } |
14f9c5c9 | 1474 | } |
14f9c5c9 | 1475 | \f |
d2e4a39e | 1476 | |
4c4b4cd2 | 1477 | /* Arrays */ |
14f9c5c9 | 1478 | |
28c85d6c JB |
1479 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1480 | generated by the GNAT compiler to describe the index type used | |
1481 | for each dimension of an array, check whether it follows the latest | |
1482 | known encoding. If not, fix it up to conform to the latest encoding. | |
1483 | Otherwise, do nothing. This function also does nothing if | |
1484 | INDEX_DESC_TYPE is NULL. | |
1485 | ||
1486 | The GNAT encoding used to describle the array index type evolved a bit. | |
1487 | Initially, the information would be provided through the name of each | |
1488 | field of the structure type only, while the type of these fields was | |
1489 | described as unspecified and irrelevant. The debugger was then expected | |
1490 | to perform a global type lookup using the name of that field in order | |
1491 | to get access to the full index type description. Because these global | |
1492 | lookups can be very expensive, the encoding was later enhanced to make | |
1493 | the global lookup unnecessary by defining the field type as being | |
1494 | the full index type description. | |
1495 | ||
1496 | The purpose of this routine is to allow us to support older versions | |
1497 | of the compiler by detecting the use of the older encoding, and by | |
1498 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1499 | we essentially replace each field's meaningless type by the associated | |
1500 | index subtype). */ | |
1501 | ||
1502 | void | |
1503 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1504 | { | |
1505 | int i; | |
1506 | ||
1507 | if (index_desc_type == NULL) | |
1508 | return; | |
1509 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1510 | ||
1511 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1512 | to check one field only, no need to check them all). If not, return | |
1513 | now. | |
1514 | ||
1515 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1516 | the field type should be a meaningless integer type whose name | |
1517 | is not equal to the field name. */ | |
1518 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1519 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1520 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1521 | return; | |
1522 | ||
1523 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1524 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1525 | { | |
0d5cff50 | 1526 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1527 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1528 | ||
1529 | if (raw_type) | |
1530 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1531 | } | |
1532 | } | |
1533 | ||
4c4b4cd2 | 1534 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1535 | |
d2e4a39e AS |
1536 | static char *bound_name[] = { |
1537 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1538 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1539 | }; | |
1540 | ||
1541 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1542 | ||
4c4b4cd2 | 1543 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1544 | |
14f9c5c9 | 1545 | |
4c4b4cd2 PH |
1546 | /* The desc_* routines return primitive portions of array descriptors |
1547 | (fat pointers). */ | |
14f9c5c9 AS |
1548 | |
1549 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1550 | level of indirection, if needed. */ |
1551 | ||
d2e4a39e AS |
1552 | static struct type * |
1553 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1554 | { |
1555 | if (type == NULL) | |
1556 | return NULL; | |
61ee279c | 1557 | type = ada_check_typedef (type); |
720d1a40 JB |
1558 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1559 | type = ada_typedef_target_type (type); | |
1560 | ||
1265e4aa JB |
1561 | if (type != NULL |
1562 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1563 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1564 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1565 | else |
1566 | return type; | |
1567 | } | |
1568 | ||
4c4b4cd2 PH |
1569 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1570 | ||
14f9c5c9 | 1571 | static int |
d2e4a39e | 1572 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1573 | { |
d2e4a39e | 1574 | return |
14f9c5c9 AS |
1575 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1576 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1577 | } | |
1578 | ||
4c4b4cd2 PH |
1579 | /* The descriptor type for thin pointer type TYPE. */ |
1580 | ||
d2e4a39e AS |
1581 | static struct type * |
1582 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1583 | { |
d2e4a39e | 1584 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1585 | |
14f9c5c9 AS |
1586 | if (base_type == NULL) |
1587 | return NULL; | |
1588 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1589 | return base_type; | |
d2e4a39e | 1590 | else |
14f9c5c9 | 1591 | { |
d2e4a39e | 1592 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1593 | |
14f9c5c9 | 1594 | if (alt_type == NULL) |
4c4b4cd2 | 1595 | return base_type; |
14f9c5c9 | 1596 | else |
4c4b4cd2 | 1597 | return alt_type; |
14f9c5c9 AS |
1598 | } |
1599 | } | |
1600 | ||
4c4b4cd2 PH |
1601 | /* A pointer to the array data for thin-pointer value VAL. */ |
1602 | ||
d2e4a39e AS |
1603 | static struct value * |
1604 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1605 | { |
828292f2 | 1606 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1607 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1608 | |
556bdfd4 UW |
1609 | data_type = lookup_pointer_type (data_type); |
1610 | ||
14f9c5c9 | 1611 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1612 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1613 | else |
42ae5230 | 1614 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1615 | } |
1616 | ||
4c4b4cd2 PH |
1617 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1618 | ||
14f9c5c9 | 1619 | static int |
d2e4a39e | 1620 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1621 | { |
1622 | type = desc_base_type (type); | |
1623 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1624 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1625 | } |
1626 | ||
4c4b4cd2 PH |
1627 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1628 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1629 | |
d2e4a39e AS |
1630 | static struct type * |
1631 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1632 | { |
d2e4a39e | 1633 | struct type *r; |
14f9c5c9 AS |
1634 | |
1635 | type = desc_base_type (type); | |
1636 | ||
1637 | if (type == NULL) | |
1638 | return NULL; | |
1639 | else if (is_thin_pntr (type)) | |
1640 | { | |
1641 | type = thin_descriptor_type (type); | |
1642 | if (type == NULL) | |
4c4b4cd2 | 1643 | return NULL; |
14f9c5c9 AS |
1644 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1645 | if (r != NULL) | |
61ee279c | 1646 | return ada_check_typedef (r); |
14f9c5c9 AS |
1647 | } |
1648 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1649 | { | |
1650 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1651 | if (r != NULL) | |
61ee279c | 1652 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1653 | } |
1654 | return NULL; | |
1655 | } | |
1656 | ||
1657 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1658 | one, a pointer to its bounds data. Otherwise NULL. */ |
1659 | ||
d2e4a39e AS |
1660 | static struct value * |
1661 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1662 | { |
df407dfe | 1663 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1664 | |
d2e4a39e | 1665 | if (is_thin_pntr (type)) |
14f9c5c9 | 1666 | { |
d2e4a39e | 1667 | struct type *bounds_type = |
4c4b4cd2 | 1668 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1669 | LONGEST addr; |
1670 | ||
4cdfadb1 | 1671 | if (bounds_type == NULL) |
323e0a4a | 1672 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1673 | |
1674 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1675 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1676 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1677 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1678 | addr = value_as_long (arr); |
d2e4a39e | 1679 | else |
42ae5230 | 1680 | addr = value_address (arr); |
14f9c5c9 | 1681 | |
d2e4a39e | 1682 | return |
4c4b4cd2 PH |
1683 | value_from_longest (lookup_pointer_type (bounds_type), |
1684 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1685 | } |
1686 | ||
1687 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1688 | { |
1689 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1690 | _("Bad GNAT array descriptor")); | |
1691 | struct type *p_bounds_type = value_type (p_bounds); | |
1692 | ||
1693 | if (p_bounds_type | |
1694 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1695 | { | |
1696 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1697 | ||
1698 | if (TYPE_STUB (target_type)) | |
1699 | p_bounds = value_cast (lookup_pointer_type | |
1700 | (ada_check_typedef (target_type)), | |
1701 | p_bounds); | |
1702 | } | |
1703 | else | |
1704 | error (_("Bad GNAT array descriptor")); | |
1705 | ||
1706 | return p_bounds; | |
1707 | } | |
14f9c5c9 AS |
1708 | else |
1709 | return NULL; | |
1710 | } | |
1711 | ||
4c4b4cd2 PH |
1712 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1713 | position of the field containing the address of the bounds data. */ | |
1714 | ||
14f9c5c9 | 1715 | static int |
d2e4a39e | 1716 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1717 | { |
1718 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1719 | } | |
1720 | ||
1721 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1722 | size of the field containing the address of the bounds data. */ |
1723 | ||
14f9c5c9 | 1724 | static int |
d2e4a39e | 1725 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1726 | { |
1727 | type = desc_base_type (type); | |
1728 | ||
d2e4a39e | 1729 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1730 | return TYPE_FIELD_BITSIZE (type, 1); |
1731 | else | |
61ee279c | 1732 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1733 | } |
1734 | ||
4c4b4cd2 | 1735 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1736 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1737 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1738 | data. */ | |
4c4b4cd2 | 1739 | |
d2e4a39e | 1740 | static struct type * |
556bdfd4 | 1741 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1742 | { |
1743 | type = desc_base_type (type); | |
1744 | ||
4c4b4cd2 | 1745 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1746 | if (is_thin_pntr (type)) |
556bdfd4 | 1747 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1748 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1749 | { |
1750 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1751 | ||
1752 | if (data_type | |
1753 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1754 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1755 | } |
1756 | ||
1757 | return NULL; | |
14f9c5c9 AS |
1758 | } |
1759 | ||
1760 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1761 | its array data. */ | |
4c4b4cd2 | 1762 | |
d2e4a39e AS |
1763 | static struct value * |
1764 | desc_data (struct value *arr) | |
14f9c5c9 | 1765 | { |
df407dfe | 1766 | struct type *type = value_type (arr); |
5b4ee69b | 1767 | |
14f9c5c9 AS |
1768 | if (is_thin_pntr (type)) |
1769 | return thin_data_pntr (arr); | |
1770 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1771 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1772 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1773 | else |
1774 | return NULL; | |
1775 | } | |
1776 | ||
1777 | ||
1778 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1779 | position of the field containing the address of the data. */ |
1780 | ||
14f9c5c9 | 1781 | static int |
d2e4a39e | 1782 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1783 | { |
1784 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1785 | } | |
1786 | ||
1787 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1788 | size of the field containing the address of the data. */ |
1789 | ||
14f9c5c9 | 1790 | static int |
d2e4a39e | 1791 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1792 | { |
1793 | type = desc_base_type (type); | |
1794 | ||
1795 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1796 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1797 | else |
14f9c5c9 AS |
1798 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1799 | } | |
1800 | ||
4c4b4cd2 | 1801 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1802 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1803 | bound, if WHICH is 1. The first bound is I=1. */ |
1804 | ||
d2e4a39e AS |
1805 | static struct value * |
1806 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1807 | { |
d2e4a39e | 1808 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1809 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1810 | } |
1811 | ||
1812 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1813 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1814 | bound, if WHICH is 1. The first bound is I=1. */ |
1815 | ||
14f9c5c9 | 1816 | static int |
d2e4a39e | 1817 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1818 | { |
d2e4a39e | 1819 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1820 | } |
1821 | ||
1822 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1823 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1824 | bound, if WHICH is 1. The first bound is I=1. */ |
1825 | ||
76a01679 | 1826 | static int |
d2e4a39e | 1827 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1828 | { |
1829 | type = desc_base_type (type); | |
1830 | ||
d2e4a39e AS |
1831 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1832 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1833 | else | |
1834 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1835 | } |
1836 | ||
1837 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1838 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1839 | ||
d2e4a39e AS |
1840 | static struct type * |
1841 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1842 | { |
1843 | type = desc_base_type (type); | |
1844 | ||
1845 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1846 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1847 | else | |
14f9c5c9 AS |
1848 | return NULL; |
1849 | } | |
1850 | ||
4c4b4cd2 PH |
1851 | /* The number of index positions in the array-bounds type TYPE. |
1852 | Return 0 if TYPE is NULL. */ | |
1853 | ||
14f9c5c9 | 1854 | static int |
d2e4a39e | 1855 | desc_arity (struct type *type) |
14f9c5c9 AS |
1856 | { |
1857 | type = desc_base_type (type); | |
1858 | ||
1859 | if (type != NULL) | |
1860 | return TYPE_NFIELDS (type) / 2; | |
1861 | return 0; | |
1862 | } | |
1863 | ||
4c4b4cd2 PH |
1864 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1865 | an array descriptor type (representing an unconstrained array | |
1866 | type). */ | |
1867 | ||
76a01679 JB |
1868 | static int |
1869 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1870 | { |
1871 | if (type == NULL) | |
1872 | return 0; | |
61ee279c | 1873 | type = ada_check_typedef (type); |
4c4b4cd2 | 1874 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1875 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1876 | } |
1877 | ||
52ce6436 | 1878 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1879 | * to one. */ |
52ce6436 | 1880 | |
2c0b251b | 1881 | static int |
52ce6436 PH |
1882 | ada_is_array_type (struct type *type) |
1883 | { | |
1884 | while (type != NULL | |
1885 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1886 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1887 | type = TYPE_TARGET_TYPE (type); | |
1888 | return ada_is_direct_array_type (type); | |
1889 | } | |
1890 | ||
4c4b4cd2 | 1891 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1892 | |
14f9c5c9 | 1893 | int |
4c4b4cd2 | 1894 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1895 | { |
1896 | if (type == NULL) | |
1897 | return 0; | |
61ee279c | 1898 | type = ada_check_typedef (type); |
14f9c5c9 | 1899 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1900 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1901 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1902 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1903 | } |
1904 | ||
4c4b4cd2 PH |
1905 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1906 | ||
14f9c5c9 | 1907 | int |
4c4b4cd2 | 1908 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1909 | { |
556bdfd4 | 1910 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1911 | |
1912 | if (type == NULL) | |
1913 | return 0; | |
61ee279c | 1914 | type = ada_check_typedef (type); |
556bdfd4 UW |
1915 | return (data_type != NULL |
1916 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1917 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1918 | } |
1919 | ||
1920 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1921 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1922 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1923 | is still needed. */ |
1924 | ||
14f9c5c9 | 1925 | int |
ebf56fd3 | 1926 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1927 | { |
d2e4a39e | 1928 | return |
14f9c5c9 AS |
1929 | type != NULL |
1930 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1931 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1932 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1933 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1934 | } |
1935 | ||
1936 | ||
4c4b4cd2 | 1937 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1938 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1939 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1940 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1941 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1942 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1943 | a descriptor. */ |
d2e4a39e AS |
1944 | struct type * |
1945 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1946 | { |
ad82864c JB |
1947 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1948 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1949 | |
df407dfe AC |
1950 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1951 | return value_type (arr); | |
d2e4a39e AS |
1952 | |
1953 | if (!bounds) | |
ad82864c JB |
1954 | { |
1955 | struct type *array_type = | |
1956 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1957 | ||
1958 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1959 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1960 | decode_packed_array_bitsize (value_type (arr)); | |
1961 | ||
1962 | return array_type; | |
1963 | } | |
14f9c5c9 AS |
1964 | else |
1965 | { | |
d2e4a39e | 1966 | struct type *elt_type; |
14f9c5c9 | 1967 | int arity; |
d2e4a39e | 1968 | struct value *descriptor; |
14f9c5c9 | 1969 | |
df407dfe AC |
1970 | elt_type = ada_array_element_type (value_type (arr), -1); |
1971 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1972 | |
d2e4a39e | 1973 | if (elt_type == NULL || arity == 0) |
df407dfe | 1974 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1975 | |
1976 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1977 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1978 | return NULL; |
d2e4a39e | 1979 | while (arity > 0) |
4c4b4cd2 | 1980 | { |
e9bb382b UW |
1981 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1982 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1983 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1984 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1985 | |
5b4ee69b | 1986 | arity -= 1; |
0c9c3474 SA |
1987 | create_static_range_type (range_type, value_type (low), |
1988 | longest_to_int (value_as_long (low)), | |
1989 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1990 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1991 | |
1992 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1993 | { |
1994 | /* We need to store the element packed bitsize, as well as | |
1995 | recompute the array size, because it was previously | |
1996 | computed based on the unpacked element size. */ | |
1997 | LONGEST lo = value_as_long (low); | |
1998 | LONGEST hi = value_as_long (high); | |
1999 | ||
2000 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2001 | decode_packed_array_bitsize (value_type (arr)); | |
2002 | /* If the array has no element, then the size is already | |
2003 | zero, and does not need to be recomputed. */ | |
2004 | if (lo < hi) | |
2005 | { | |
2006 | int array_bitsize = | |
2007 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2008 | ||
2009 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2010 | } | |
2011 | } | |
4c4b4cd2 | 2012 | } |
14f9c5c9 AS |
2013 | |
2014 | return lookup_pointer_type (elt_type); | |
2015 | } | |
2016 | } | |
2017 | ||
2018 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2019 | Otherwise, returns either a standard GDB array with bounds set |
2020 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2021 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2022 | ||
d2e4a39e AS |
2023 | struct value * |
2024 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2025 | { |
df407dfe | 2026 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2027 | { |
d2e4a39e | 2028 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2029 | |
14f9c5c9 | 2030 | if (arrType == NULL) |
4c4b4cd2 | 2031 | return NULL; |
14f9c5c9 AS |
2032 | return value_cast (arrType, value_copy (desc_data (arr))); |
2033 | } | |
ad82864c JB |
2034 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2035 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2036 | else |
2037 | return arr; | |
2038 | } | |
2039 | ||
2040 | /* If ARR does not represent an array, returns ARR unchanged. | |
2041 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2042 | be ARR itself if it already is in the proper form). */ |
2043 | ||
720d1a40 | 2044 | struct value * |
d2e4a39e | 2045 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2046 | { |
df407dfe | 2047 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2048 | { |
d2e4a39e | 2049 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2050 | |
14f9c5c9 | 2051 | if (arrVal == NULL) |
323e0a4a | 2052 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2053 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2054 | return value_ind (arrVal); |
2055 | } | |
ad82864c JB |
2056 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2057 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2058 | else |
14f9c5c9 AS |
2059 | return arr; |
2060 | } | |
2061 | ||
2062 | /* If TYPE represents a GNAT array type, return it translated to an | |
2063 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2064 | packing). For other types, is the identity. */ |
2065 | ||
d2e4a39e AS |
2066 | struct type * |
2067 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2068 | { |
ad82864c JB |
2069 | if (ada_is_constrained_packed_array_type (type)) |
2070 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2071 | |
2072 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2073 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2074 | |
2075 | return type; | |
14f9c5c9 AS |
2076 | } |
2077 | ||
4c4b4cd2 PH |
2078 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2079 | ||
ad82864c JB |
2080 | static int |
2081 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2082 | { |
2083 | if (type == NULL) | |
2084 | return 0; | |
4c4b4cd2 | 2085 | type = desc_base_type (type); |
61ee279c | 2086 | type = ada_check_typedef (type); |
d2e4a39e | 2087 | return |
14f9c5c9 AS |
2088 | ada_type_name (type) != NULL |
2089 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2090 | } | |
2091 | ||
ad82864c JB |
2092 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2093 | packed-array type. */ | |
2094 | ||
2095 | int | |
2096 | ada_is_constrained_packed_array_type (struct type *type) | |
2097 | { | |
2098 | return ada_is_packed_array_type (type) | |
2099 | && !ada_is_array_descriptor_type (type); | |
2100 | } | |
2101 | ||
2102 | /* Non-zero iff TYPE represents an array descriptor for a | |
2103 | unconstrained packed-array type. */ | |
2104 | ||
2105 | static int | |
2106 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2107 | { | |
2108 | return ada_is_packed_array_type (type) | |
2109 | && ada_is_array_descriptor_type (type); | |
2110 | } | |
2111 | ||
2112 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2113 | return the size of its elements in bits. */ | |
2114 | ||
2115 | static long | |
2116 | decode_packed_array_bitsize (struct type *type) | |
2117 | { | |
0d5cff50 DE |
2118 | const char *raw_name; |
2119 | const char *tail; | |
ad82864c JB |
2120 | long bits; |
2121 | ||
720d1a40 JB |
2122 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2123 | of the fat pointer type. We need the name of the fat pointer type | |
2124 | to do the decoding, so strip the typedef layer. */ | |
2125 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2126 | type = ada_typedef_target_type (type); | |
2127 | ||
2128 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2129 | if (!raw_name) |
2130 | raw_name = ada_type_name (desc_base_type (type)); | |
2131 | ||
2132 | if (!raw_name) | |
2133 | return 0; | |
2134 | ||
2135 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2136 | gdb_assert (tail != NULL); |
ad82864c JB |
2137 | |
2138 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2139 | { | |
2140 | lim_warning | |
2141 | (_("could not understand bit size information on packed array")); | |
2142 | return 0; | |
2143 | } | |
2144 | ||
2145 | return bits; | |
2146 | } | |
2147 | ||
14f9c5c9 AS |
2148 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2149 | in, and that the element size of its ultimate scalar constituents | |
2150 | (that is, either its elements, or, if it is an array of arrays, its | |
2151 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2152 | but with the bit sizes of its elements (and those of any | |
2153 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2154 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2155 | in bits. |
2156 | ||
2157 | Note that, for arrays whose index type has an XA encoding where | |
2158 | a bound references a record discriminant, getting that discriminant, | |
2159 | and therefore the actual value of that bound, is not possible | |
2160 | because none of the given parameters gives us access to the record. | |
2161 | This function assumes that it is OK in the context where it is being | |
2162 | used to return an array whose bounds are still dynamic and where | |
2163 | the length is arbitrary. */ | |
4c4b4cd2 | 2164 | |
d2e4a39e | 2165 | static struct type * |
ad82864c | 2166 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2167 | { |
d2e4a39e AS |
2168 | struct type *new_elt_type; |
2169 | struct type *new_type; | |
99b1c762 JB |
2170 | struct type *index_type_desc; |
2171 | struct type *index_type; | |
14f9c5c9 AS |
2172 | LONGEST low_bound, high_bound; |
2173 | ||
61ee279c | 2174 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2175 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2176 | return type; | |
2177 | ||
99b1c762 JB |
2178 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2179 | if (index_type_desc) | |
2180 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2181 | NULL); | |
2182 | else | |
2183 | index_type = TYPE_INDEX_TYPE (type); | |
2184 | ||
e9bb382b | 2185 | new_type = alloc_type_copy (type); |
ad82864c JB |
2186 | new_elt_type = |
2187 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2188 | elt_bits); | |
99b1c762 | 2189 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2190 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2191 | TYPE_NAME (new_type) = ada_type_name (type); | |
2192 | ||
4a46959e JB |
2193 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2194 | && is_dynamic_type (check_typedef (index_type))) | |
2195 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2196 | low_bound = high_bound = 0; |
2197 | if (high_bound < low_bound) | |
2198 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2199 | else |
14f9c5c9 AS |
2200 | { |
2201 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2202 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2203 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2204 | } |
2205 | ||
876cecd0 | 2206 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2207 | return new_type; |
2208 | } | |
2209 | ||
ad82864c JB |
2210 | /* The array type encoded by TYPE, where |
2211 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2212 | |
d2e4a39e | 2213 | static struct type * |
ad82864c | 2214 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2215 | { |
0d5cff50 | 2216 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2217 | char *name; |
0d5cff50 | 2218 | const char *tail; |
d2e4a39e | 2219 | struct type *shadow_type; |
14f9c5c9 | 2220 | long bits; |
14f9c5c9 | 2221 | |
727e3d2e JB |
2222 | if (!raw_name) |
2223 | raw_name = ada_type_name (desc_base_type (type)); | |
2224 | ||
2225 | if (!raw_name) | |
2226 | return NULL; | |
2227 | ||
2228 | name = (char *) alloca (strlen (raw_name) + 1); | |
2229 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2230 | type = desc_base_type (type); |
2231 | ||
14f9c5c9 AS |
2232 | memcpy (name, raw_name, tail - raw_name); |
2233 | name[tail - raw_name] = '\000'; | |
2234 | ||
b4ba55a1 JB |
2235 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2236 | ||
2237 | if (shadow_type == NULL) | |
14f9c5c9 | 2238 | { |
323e0a4a | 2239 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2240 | return NULL; |
2241 | } | |
cb249c71 | 2242 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2243 | |
2244 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2245 | { | |
0963b4bd MS |
2246 | lim_warning (_("could not understand bounds " |
2247 | "information on packed array")); | |
14f9c5c9 AS |
2248 | return NULL; |
2249 | } | |
d2e4a39e | 2250 | |
ad82864c JB |
2251 | bits = decode_packed_array_bitsize (type); |
2252 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2253 | } |
2254 | ||
ad82864c JB |
2255 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2256 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2257 | standard GDB array type except that the BITSIZEs of the array |
2258 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2259 | type length is set appropriately. */ |
14f9c5c9 | 2260 | |
d2e4a39e | 2261 | static struct value * |
ad82864c | 2262 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2263 | { |
4c4b4cd2 | 2264 | struct type *type; |
14f9c5c9 | 2265 | |
11aa919a PMR |
2266 | /* If our value is a pointer, then dereference it. Likewise if |
2267 | the value is a reference. Make sure that this operation does not | |
2268 | cause the target type to be fixed, as this would indirectly cause | |
2269 | this array to be decoded. The rest of the routine assumes that | |
2270 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2271 | and "value_ind" routines to perform the dereferencing, as opposed | |
2272 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2273 | arr = coerce_ref (arr); | |
828292f2 | 2274 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2275 | arr = value_ind (arr); |
4c4b4cd2 | 2276 | |
ad82864c | 2277 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2278 | if (type == NULL) |
2279 | { | |
323e0a4a | 2280 | error (_("can't unpack array")); |
14f9c5c9 AS |
2281 | return NULL; |
2282 | } | |
61ee279c | 2283 | |
50810684 | 2284 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2285 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2286 | { |
2287 | /* This is a (right-justified) modular type representing a packed | |
2288 | array with no wrapper. In order to interpret the value through | |
2289 | the (left-justified) packed array type we just built, we must | |
2290 | first left-justify it. */ | |
2291 | int bit_size, bit_pos; | |
2292 | ULONGEST mod; | |
2293 | ||
df407dfe | 2294 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2295 | bit_size = 0; |
2296 | while (mod > 0) | |
2297 | { | |
2298 | bit_size += 1; | |
2299 | mod >>= 1; | |
2300 | } | |
df407dfe | 2301 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2302 | arr = ada_value_primitive_packed_val (arr, NULL, |
2303 | bit_pos / HOST_CHAR_BIT, | |
2304 | bit_pos % HOST_CHAR_BIT, | |
2305 | bit_size, | |
2306 | type); | |
2307 | } | |
2308 | ||
4c4b4cd2 | 2309 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2310 | } |
2311 | ||
2312 | ||
2313 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2314 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2315 | |
d2e4a39e AS |
2316 | static struct value * |
2317 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2318 | { |
2319 | int i; | |
2320 | int bits, elt_off, bit_off; | |
2321 | long elt_total_bit_offset; | |
d2e4a39e AS |
2322 | struct type *elt_type; |
2323 | struct value *v; | |
14f9c5c9 AS |
2324 | |
2325 | bits = 0; | |
2326 | elt_total_bit_offset = 0; | |
df407dfe | 2327 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2328 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2329 | { |
d2e4a39e | 2330 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2331 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2332 | error | |
0963b4bd MS |
2333 | (_("attempt to do packed indexing of " |
2334 | "something other than a packed array")); | |
14f9c5c9 | 2335 | else |
4c4b4cd2 PH |
2336 | { |
2337 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2338 | LONGEST lowerbound, upperbound; | |
2339 | LONGEST idx; | |
2340 | ||
2341 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2342 | { | |
323e0a4a | 2343 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2344 | lowerbound = upperbound = 0; |
2345 | } | |
2346 | ||
3cb382c9 | 2347 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2348 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2349 | lim_warning (_("packed array index %ld out of bounds"), |
2350 | (long) idx); | |
4c4b4cd2 PH |
2351 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2352 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2353 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2354 | } |
14f9c5c9 AS |
2355 | } |
2356 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2357 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2358 | |
2359 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2360 | bits, elt_type); |
14f9c5c9 AS |
2361 | return v; |
2362 | } | |
2363 | ||
4c4b4cd2 | 2364 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2365 | |
2366 | static int | |
d2e4a39e | 2367 | has_negatives (struct type *type) |
14f9c5c9 | 2368 | { |
d2e4a39e AS |
2369 | switch (TYPE_CODE (type)) |
2370 | { | |
2371 | default: | |
2372 | return 0; | |
2373 | case TYPE_CODE_INT: | |
2374 | return !TYPE_UNSIGNED (type); | |
2375 | case TYPE_CODE_RANGE: | |
2376 | return TYPE_LOW_BOUND (type) < 0; | |
2377 | } | |
14f9c5c9 | 2378 | } |
d2e4a39e | 2379 | |
14f9c5c9 AS |
2380 | |
2381 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2382 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2383 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2384 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2385 | VALADDR is ignored unless OBJ is NULL, in which case, |
2386 | VALADDR+OFFSET must address the start of storage containing the | |
2387 | packed value. The value returned in this case is never an lval. | |
2388 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2389 | |
d2e4a39e | 2390 | struct value * |
fc1a4b47 | 2391 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2392 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2393 | struct type *type) |
14f9c5c9 | 2394 | { |
d2e4a39e | 2395 | struct value *v; |
4c4b4cd2 PH |
2396 | int src, /* Index into the source area */ |
2397 | targ, /* Index into the target area */ | |
2398 | srcBitsLeft, /* Number of source bits left to move */ | |
2399 | nsrc, ntarg, /* Number of source and target bytes */ | |
2400 | unusedLS, /* Number of bits in next significant | |
2401 | byte of source that are unused */ | |
2402 | accumSize; /* Number of meaningful bits in accum */ | |
2403 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2404 | unsigned char *unpacked; |
4c4b4cd2 | 2405 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2406 | unsigned char sign; |
2407 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2408 | /* Transmit bytes from least to most significant; delta is the direction |
2409 | the indices move. */ | |
50810684 | 2410 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2411 | |
61ee279c | 2412 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2413 | |
2414 | if (obj == NULL) | |
2415 | { | |
2416 | v = allocate_value (type); | |
d2e4a39e | 2417 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2418 | } |
9214ee5f | 2419 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2420 | { |
53ba8333 | 2421 | v = value_at (type, value_address (obj)); |
9f1f738a | 2422 | type = value_type (v); |
d2e4a39e | 2423 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2424 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2425 | } |
d2e4a39e | 2426 | else |
14f9c5c9 AS |
2427 | { |
2428 | v = allocate_value (type); | |
0fd88904 | 2429 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2430 | } |
d2e4a39e AS |
2431 | |
2432 | if (obj != NULL) | |
14f9c5c9 | 2433 | { |
53ba8333 | 2434 | long new_offset = offset; |
5b4ee69b | 2435 | |
74bcbdf3 | 2436 | set_value_component_location (v, obj); |
9bbda503 AC |
2437 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2438 | set_value_bitsize (v, bit_size); | |
df407dfe | 2439 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2440 | { |
53ba8333 | 2441 | ++new_offset; |
9bbda503 | 2442 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2443 | } |
53ba8333 JB |
2444 | set_value_offset (v, new_offset); |
2445 | ||
2446 | /* Also set the parent value. This is needed when trying to | |
2447 | assign a new value (in inferior memory). */ | |
2448 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2449 | } |
2450 | else | |
9bbda503 | 2451 | set_value_bitsize (v, bit_size); |
0fd88904 | 2452 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2453 | |
2454 | srcBitsLeft = bit_size; | |
2455 | nsrc = len; | |
2456 | ntarg = TYPE_LENGTH (type); | |
2457 | sign = 0; | |
2458 | if (bit_size == 0) | |
2459 | { | |
2460 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2461 | return v; | |
2462 | } | |
50810684 | 2463 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2464 | { |
d2e4a39e | 2465 | src = len - 1; |
1265e4aa JB |
2466 | if (has_negatives (type) |
2467 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2468 | sign = ~0; |
d2e4a39e AS |
2469 | |
2470 | unusedLS = | |
4c4b4cd2 PH |
2471 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2472 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2473 | |
2474 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2475 | { |
2476 | case TYPE_CODE_ARRAY: | |
2477 | case TYPE_CODE_UNION: | |
2478 | case TYPE_CODE_STRUCT: | |
2479 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2480 | accumSize = | |
2481 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2482 | /* ... And are placed at the beginning (most-significant) bytes | |
2483 | of the target. */ | |
529cad9c | 2484 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2485 | ntarg = targ + 1; |
4c4b4cd2 PH |
2486 | break; |
2487 | default: | |
2488 | accumSize = 0; | |
2489 | targ = TYPE_LENGTH (type) - 1; | |
2490 | break; | |
2491 | } | |
14f9c5c9 | 2492 | } |
d2e4a39e | 2493 | else |
14f9c5c9 AS |
2494 | { |
2495 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2496 | ||
2497 | src = targ = 0; | |
2498 | unusedLS = bit_offset; | |
2499 | accumSize = 0; | |
2500 | ||
d2e4a39e | 2501 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2502 | sign = ~0; |
14f9c5c9 | 2503 | } |
d2e4a39e | 2504 | |
14f9c5c9 AS |
2505 | accum = 0; |
2506 | while (nsrc > 0) | |
2507 | { | |
2508 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2509 | part of the value. */ |
d2e4a39e | 2510 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2511 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2512 | 1; | |
2513 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2514 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2515 | |
d2e4a39e | 2516 | accum |= |
4c4b4cd2 | 2517 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2518 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2519 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2520 | { |
2521 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2522 | accumSize -= HOST_CHAR_BIT; | |
2523 | accum >>= HOST_CHAR_BIT; | |
2524 | ntarg -= 1; | |
2525 | targ += delta; | |
2526 | } | |
14f9c5c9 AS |
2527 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2528 | unusedLS = 0; | |
2529 | nsrc -= 1; | |
2530 | src += delta; | |
2531 | } | |
2532 | while (ntarg > 0) | |
2533 | { | |
2534 | accum |= sign << accumSize; | |
2535 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2536 | accumSize -= HOST_CHAR_BIT; | |
2537 | accum >>= HOST_CHAR_BIT; | |
2538 | ntarg -= 1; | |
2539 | targ += delta; | |
2540 | } | |
2541 | ||
2542 | return v; | |
2543 | } | |
d2e4a39e | 2544 | |
14f9c5c9 AS |
2545 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2546 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2547 | not overlap. */ |
14f9c5c9 | 2548 | static void |
fc1a4b47 | 2549 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2550 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2551 | { |
2552 | unsigned int accum, mask; | |
2553 | int accum_bits, chunk_size; | |
2554 | ||
2555 | target += targ_offset / HOST_CHAR_BIT; | |
2556 | targ_offset %= HOST_CHAR_BIT; | |
2557 | source += src_offset / HOST_CHAR_BIT; | |
2558 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2559 | if (bits_big_endian_p) |
14f9c5c9 AS |
2560 | { |
2561 | accum = (unsigned char) *source; | |
2562 | source += 1; | |
2563 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2564 | ||
d2e4a39e | 2565 | while (n > 0) |
4c4b4cd2 PH |
2566 | { |
2567 | int unused_right; | |
5b4ee69b | 2568 | |
4c4b4cd2 PH |
2569 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2570 | accum_bits += HOST_CHAR_BIT; | |
2571 | source += 1; | |
2572 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2573 | if (chunk_size > n) | |
2574 | chunk_size = n; | |
2575 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2576 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2577 | *target = | |
2578 | (*target & ~mask) | |
2579 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2580 | n -= chunk_size; | |
2581 | accum_bits -= chunk_size; | |
2582 | target += 1; | |
2583 | targ_offset = 0; | |
2584 | } | |
14f9c5c9 AS |
2585 | } |
2586 | else | |
2587 | { | |
2588 | accum = (unsigned char) *source >> src_offset; | |
2589 | source += 1; | |
2590 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2591 | ||
d2e4a39e | 2592 | while (n > 0) |
4c4b4cd2 PH |
2593 | { |
2594 | accum = accum + ((unsigned char) *source << accum_bits); | |
2595 | accum_bits += HOST_CHAR_BIT; | |
2596 | source += 1; | |
2597 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2598 | if (chunk_size > n) | |
2599 | chunk_size = n; | |
2600 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2601 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2602 | n -= chunk_size; | |
2603 | accum_bits -= chunk_size; | |
2604 | accum >>= chunk_size; | |
2605 | target += 1; | |
2606 | targ_offset = 0; | |
2607 | } | |
14f9c5c9 AS |
2608 | } |
2609 | } | |
2610 | ||
14f9c5c9 AS |
2611 | /* Store the contents of FROMVAL into the location of TOVAL. |
2612 | Return a new value with the location of TOVAL and contents of | |
2613 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2614 | floating-point or non-scalar types. */ |
14f9c5c9 | 2615 | |
d2e4a39e AS |
2616 | static struct value * |
2617 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2618 | { |
df407dfe AC |
2619 | struct type *type = value_type (toval); |
2620 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2621 | |
52ce6436 PH |
2622 | toval = ada_coerce_ref (toval); |
2623 | fromval = ada_coerce_ref (fromval); | |
2624 | ||
2625 | if (ada_is_direct_array_type (value_type (toval))) | |
2626 | toval = ada_coerce_to_simple_array (toval); | |
2627 | if (ada_is_direct_array_type (value_type (fromval))) | |
2628 | fromval = ada_coerce_to_simple_array (fromval); | |
2629 | ||
88e3b34b | 2630 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2631 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2632 | |
d2e4a39e | 2633 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2634 | && bits > 0 |
d2e4a39e | 2635 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2636 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2637 | { |
df407dfe AC |
2638 | int len = (value_bitpos (toval) |
2639 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2640 | int from_size; |
948f8e3d | 2641 | gdb_byte *buffer = alloca (len); |
d2e4a39e | 2642 | struct value *val; |
42ae5230 | 2643 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2644 | |
2645 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2646 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2647 | |
52ce6436 | 2648 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2649 | from_size = value_bitsize (fromval); |
2650 | if (from_size == 0) | |
2651 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2652 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2653 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2654 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2655 | else |
50810684 UW |
2656 | move_bits (buffer, value_bitpos (toval), |
2657 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2658 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2659 | |
14f9c5c9 | 2660 | val = value_copy (toval); |
0fd88904 | 2661 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2662 | TYPE_LENGTH (type)); |
04624583 | 2663 | deprecated_set_value_type (val, type); |
d2e4a39e | 2664 | |
14f9c5c9 AS |
2665 | return val; |
2666 | } | |
2667 | ||
2668 | return value_assign (toval, fromval); | |
2669 | } | |
2670 | ||
2671 | ||
52ce6436 PH |
2672 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2673 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2674 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2675 | * COMPONENT, and not the inferior's memory. The current contents | |
2676 | * of COMPONENT are ignored. */ | |
2677 | static void | |
2678 | value_assign_to_component (struct value *container, struct value *component, | |
2679 | struct value *val) | |
2680 | { | |
2681 | LONGEST offset_in_container = | |
42ae5230 | 2682 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2683 | int bit_offset_in_container = |
2684 | value_bitpos (component) - value_bitpos (container); | |
2685 | int bits; | |
2686 | ||
2687 | val = value_cast (value_type (component), val); | |
2688 | ||
2689 | if (value_bitsize (component) == 0) | |
2690 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2691 | else | |
2692 | bits = value_bitsize (component); | |
2693 | ||
50810684 | 2694 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2695 | move_bits (value_contents_writeable (container) + offset_in_container, |
2696 | value_bitpos (container) + bit_offset_in_container, | |
2697 | value_contents (val), | |
2698 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2699 | bits, 1); |
52ce6436 PH |
2700 | else |
2701 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2702 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2703 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2704 | } |
2705 | ||
4c4b4cd2 PH |
2706 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2707 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2708 | thereto. */ |
2709 | ||
d2e4a39e AS |
2710 | struct value * |
2711 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2712 | { |
2713 | int k; | |
d2e4a39e AS |
2714 | struct value *elt; |
2715 | struct type *elt_type; | |
14f9c5c9 AS |
2716 | |
2717 | elt = ada_coerce_to_simple_array (arr); | |
2718 | ||
df407dfe | 2719 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2720 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2721 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2722 | return value_subscript_packed (elt, arity, ind); | |
2723 | ||
2724 | for (k = 0; k < arity; k += 1) | |
2725 | { | |
2726 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2727 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2728 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2729 | } |
2730 | return elt; | |
2731 | } | |
2732 | ||
deede10c JB |
2733 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2734 | of *ARR at the ARITY indices given in IND. | |
2735 | Does not read the entire array into memory. */ | |
14f9c5c9 | 2736 | |
2c0b251b | 2737 | static struct value * |
deede10c | 2738 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2739 | { |
2740 | int k; | |
deede10c JB |
2741 | struct type *type |
2742 | = check_typedef (value_enclosing_type (ada_value_ind (arr))); | |
14f9c5c9 AS |
2743 | |
2744 | for (k = 0; k < arity; k += 1) | |
2745 | { | |
2746 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2747 | |
2748 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2749 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2750 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2751 | value_copy (arr)); |
14f9c5c9 | 2752 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2753 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2754 | type = TYPE_TARGET_TYPE (type); |
2755 | } | |
2756 | ||
2757 | return value_ind (arr); | |
2758 | } | |
2759 | ||
0b5d8877 | 2760 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2761 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2762 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2763 | per Ada rules. */ |
0b5d8877 | 2764 | static struct value * |
f5938064 JG |
2765 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2766 | int low, int high) | |
0b5d8877 | 2767 | { |
b0dd7688 | 2768 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2769 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2770 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2771 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
0c9c3474 SA |
2772 | struct type *index_type |
2773 | = create_static_range_type (NULL, | |
2774 | TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), | |
2775 | low, high); | |
6c038f32 | 2776 | struct type *slice_type = |
b0dd7688 | 2777 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2778 | |
f5938064 | 2779 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2780 | } |
2781 | ||
2782 | ||
2783 | static struct value * | |
2784 | ada_value_slice (struct value *array, int low, int high) | |
2785 | { | |
b0dd7688 | 2786 | struct type *type = ada_check_typedef (value_type (array)); |
0c9c3474 SA |
2787 | struct type *index_type |
2788 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2789 | struct type *slice_type = |
0b5d8877 | 2790 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2791 | |
6c038f32 | 2792 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2793 | } |
2794 | ||
14f9c5c9 AS |
2795 | /* If type is a record type in the form of a standard GNAT array |
2796 | descriptor, returns the number of dimensions for type. If arr is a | |
2797 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2798 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2799 | |
2800 | int | |
d2e4a39e | 2801 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2802 | { |
2803 | int arity; | |
2804 | ||
2805 | if (type == NULL) | |
2806 | return 0; | |
2807 | ||
2808 | type = desc_base_type (type); | |
2809 | ||
2810 | arity = 0; | |
d2e4a39e | 2811 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2812 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2813 | else |
2814 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2815 | { |
4c4b4cd2 | 2816 | arity += 1; |
61ee279c | 2817 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2818 | } |
d2e4a39e | 2819 | |
14f9c5c9 AS |
2820 | return arity; |
2821 | } | |
2822 | ||
2823 | /* If TYPE is a record type in the form of a standard GNAT array | |
2824 | descriptor or a simple array type, returns the element type for | |
2825 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2826 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2827 | |
d2e4a39e AS |
2828 | struct type * |
2829 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2830 | { |
2831 | type = desc_base_type (type); | |
2832 | ||
d2e4a39e | 2833 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2834 | { |
2835 | int k; | |
d2e4a39e | 2836 | struct type *p_array_type; |
14f9c5c9 | 2837 | |
556bdfd4 | 2838 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2839 | |
2840 | k = ada_array_arity (type); | |
2841 | if (k == 0) | |
4c4b4cd2 | 2842 | return NULL; |
d2e4a39e | 2843 | |
4c4b4cd2 | 2844 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2845 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2846 | k = nindices; |
d2e4a39e | 2847 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2848 | { |
61ee279c | 2849 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2850 | k -= 1; |
2851 | } | |
14f9c5c9 AS |
2852 | return p_array_type; |
2853 | } | |
2854 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2855 | { | |
2856 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2857 | { |
2858 | type = TYPE_TARGET_TYPE (type); | |
2859 | nindices -= 1; | |
2860 | } | |
14f9c5c9 AS |
2861 | return type; |
2862 | } | |
2863 | ||
2864 | return NULL; | |
2865 | } | |
2866 | ||
4c4b4cd2 | 2867 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2868 | Does not examine memory. Throws an error if N is invalid or TYPE |
2869 | is not an array type. NAME is the name of the Ada attribute being | |
2870 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2871 | the error message. */ | |
14f9c5c9 | 2872 | |
1eea4ebd UW |
2873 | static struct type * |
2874 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2875 | { |
4c4b4cd2 PH |
2876 | struct type *result_type; |
2877 | ||
14f9c5c9 AS |
2878 | type = desc_base_type (type); |
2879 | ||
1eea4ebd UW |
2880 | if (n < 0 || n > ada_array_arity (type)) |
2881 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2882 | |
4c4b4cd2 | 2883 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2884 | { |
2885 | int i; | |
2886 | ||
2887 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2888 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2889 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2890 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2891 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2892 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2893 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2894 | result_type = NULL; | |
14f9c5c9 | 2895 | } |
d2e4a39e | 2896 | else |
1eea4ebd UW |
2897 | { |
2898 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2899 | if (result_type == NULL) | |
2900 | error (_("attempt to take bound of something that is not an array")); | |
2901 | } | |
2902 | ||
2903 | return result_type; | |
14f9c5c9 AS |
2904 | } |
2905 | ||
2906 | /* Given that arr is an array type, returns the lower bound of the | |
2907 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2908 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2909 | array-descriptor type. It works for other arrays with bounds supplied |
2910 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2911 | |
abb68b3e | 2912 | static LONGEST |
fb5e3d5c | 2913 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2914 | { |
8a48ac95 | 2915 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2916 | int i; |
262452ec JK |
2917 | |
2918 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2919 | |
ad82864c JB |
2920 | if (ada_is_constrained_packed_array_type (arr_type)) |
2921 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2922 | |
4c4b4cd2 | 2923 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2924 | return (LONGEST) - which; |
14f9c5c9 AS |
2925 | |
2926 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2927 | type = TYPE_TARGET_TYPE (arr_type); | |
2928 | else | |
2929 | type = arr_type; | |
2930 | ||
2931 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
28c85d6c | 2932 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2933 | if (index_type_desc != NULL) |
28c85d6c JB |
2934 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2935 | NULL); | |
262452ec | 2936 | else |
8a48ac95 JB |
2937 | { |
2938 | struct type *elt_type = check_typedef (type); | |
2939 | ||
2940 | for (i = 1; i < n; i++) | |
2941 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2942 | ||
2943 | index_type = TYPE_INDEX_TYPE (elt_type); | |
2944 | } | |
262452ec | 2945 | |
43bbcdc2 PH |
2946 | return |
2947 | (LONGEST) (which == 0 | |
2948 | ? ada_discrete_type_low_bound (index_type) | |
2949 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2950 | } |
2951 | ||
2952 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2953 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2954 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2955 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2956 | |
1eea4ebd | 2957 | static LONGEST |
4dc81987 | 2958 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2959 | { |
eb479039 JB |
2960 | struct type *arr_type; |
2961 | ||
2962 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
2963 | arr = value_ind (arr); | |
2964 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2965 | |
ad82864c JB |
2966 | if (ada_is_constrained_packed_array_type (arr_type)) |
2967 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2968 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2969 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2970 | else |
1eea4ebd | 2971 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2972 | } |
2973 | ||
2974 | /* Given that arr is an array value, returns the length of the | |
2975 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2976 | supplied by run-time quantities other than discriminants. |
2977 | Does not work for arrays indexed by enumeration types with representation | |
2978 | clauses at the moment. */ | |
14f9c5c9 | 2979 | |
1eea4ebd | 2980 | static LONGEST |
d2e4a39e | 2981 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2982 | { |
eb479039 JB |
2983 | struct type *arr_type; |
2984 | ||
2985 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
2986 | arr = value_ind (arr); | |
2987 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2988 | |
ad82864c JB |
2989 | if (ada_is_constrained_packed_array_type (arr_type)) |
2990 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2991 | |
4c4b4cd2 | 2992 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2993 | return (ada_array_bound_from_type (arr_type, n, 1) |
2994 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2995 | else |
1eea4ebd UW |
2996 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2997 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2998 | } |
2999 | ||
3000 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3001 | with bounds LOW to LOW-1. */ | |
3002 | ||
3003 | static struct value * | |
3004 | empty_array (struct type *arr_type, int low) | |
3005 | { | |
b0dd7688 | 3006 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3007 | struct type *index_type |
3008 | = create_static_range_type | |
3009 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3010 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3011 | |
0b5d8877 | 3012 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3013 | } |
14f9c5c9 | 3014 | \f |
d2e4a39e | 3015 | |
4c4b4cd2 | 3016 | /* Name resolution */ |
14f9c5c9 | 3017 | |
4c4b4cd2 PH |
3018 | /* The "decoded" name for the user-definable Ada operator corresponding |
3019 | to OP. */ | |
14f9c5c9 | 3020 | |
d2e4a39e | 3021 | static const char * |
4c4b4cd2 | 3022 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3023 | { |
3024 | int i; | |
3025 | ||
4c4b4cd2 | 3026 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3027 | { |
3028 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3029 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3030 | } |
323e0a4a | 3031 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3032 | } |
3033 | ||
3034 | ||
4c4b4cd2 PH |
3035 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3036 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3037 | undefined namespace) and converts operators that are | |
3038 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3039 | non-null, it provides a preferred result type [at the moment, only |
3040 | type void has any effect---causing procedures to be preferred over | |
3041 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3042 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3043 | |
4c4b4cd2 PH |
3044 | static void |
3045 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3046 | { |
30b15541 UW |
3047 | struct type *context_type = NULL; |
3048 | int pc = 0; | |
3049 | ||
3050 | if (void_context_p) | |
3051 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3052 | ||
3053 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3054 | } |
3055 | ||
4c4b4cd2 PH |
3056 | /* Resolve the operator of the subexpression beginning at |
3057 | position *POS of *EXPP. "Resolving" consists of replacing | |
3058 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3059 | with their resolutions, replacing built-in operators with | |
3060 | function calls to user-defined operators, where appropriate, and, | |
3061 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3062 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3063 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3064 | |
d2e4a39e | 3065 | static struct value * |
4c4b4cd2 | 3066 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3067 | struct type *context_type) |
14f9c5c9 AS |
3068 | { |
3069 | int pc = *pos; | |
3070 | int i; | |
4c4b4cd2 | 3071 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3072 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3073 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3074 | int nargs; /* Number of operands. */ | |
52ce6436 | 3075 | int oplen; |
14f9c5c9 AS |
3076 | |
3077 | argvec = NULL; | |
3078 | nargs = 0; | |
3079 | exp = *expp; | |
3080 | ||
52ce6436 PH |
3081 | /* Pass one: resolve operands, saving their types and updating *pos, |
3082 | if needed. */ | |
14f9c5c9 AS |
3083 | switch (op) |
3084 | { | |
4c4b4cd2 PH |
3085 | case OP_FUNCALL: |
3086 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3087 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3088 | *pos += 7; | |
4c4b4cd2 PH |
3089 | else |
3090 | { | |
3091 | *pos += 3; | |
3092 | resolve_subexp (expp, pos, 0, NULL); | |
3093 | } | |
3094 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3095 | break; |
3096 | ||
14f9c5c9 | 3097 | case UNOP_ADDR: |
4c4b4cd2 PH |
3098 | *pos += 1; |
3099 | resolve_subexp (expp, pos, 0, NULL); | |
3100 | break; | |
3101 | ||
52ce6436 PH |
3102 | case UNOP_QUAL: |
3103 | *pos += 3; | |
17466c1a | 3104 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3105 | break; |
3106 | ||
52ce6436 | 3107 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3108 | case OP_ATR_SIZE: |
3109 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3110 | case OP_ATR_FIRST: |
3111 | case OP_ATR_LAST: | |
3112 | case OP_ATR_LENGTH: | |
3113 | case OP_ATR_POS: | |
3114 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3115 | case OP_ATR_MIN: |
3116 | case OP_ATR_MAX: | |
52ce6436 PH |
3117 | case TERNOP_IN_RANGE: |
3118 | case BINOP_IN_BOUNDS: | |
3119 | case UNOP_IN_RANGE: | |
3120 | case OP_AGGREGATE: | |
3121 | case OP_OTHERS: | |
3122 | case OP_CHOICES: | |
3123 | case OP_POSITIONAL: | |
3124 | case OP_DISCRETE_RANGE: | |
3125 | case OP_NAME: | |
3126 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3127 | *pos += oplen; | |
14f9c5c9 AS |
3128 | break; |
3129 | ||
3130 | case BINOP_ASSIGN: | |
3131 | { | |
4c4b4cd2 PH |
3132 | struct value *arg1; |
3133 | ||
3134 | *pos += 1; | |
3135 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3136 | if (arg1 == NULL) | |
3137 | resolve_subexp (expp, pos, 1, NULL); | |
3138 | else | |
df407dfe | 3139 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3140 | break; |
14f9c5c9 AS |
3141 | } |
3142 | ||
4c4b4cd2 | 3143 | case UNOP_CAST: |
4c4b4cd2 PH |
3144 | *pos += 3; |
3145 | nargs = 1; | |
3146 | break; | |
14f9c5c9 | 3147 | |
4c4b4cd2 PH |
3148 | case BINOP_ADD: |
3149 | case BINOP_SUB: | |
3150 | case BINOP_MUL: | |
3151 | case BINOP_DIV: | |
3152 | case BINOP_REM: | |
3153 | case BINOP_MOD: | |
3154 | case BINOP_EXP: | |
3155 | case BINOP_CONCAT: | |
3156 | case BINOP_LOGICAL_AND: | |
3157 | case BINOP_LOGICAL_OR: | |
3158 | case BINOP_BITWISE_AND: | |
3159 | case BINOP_BITWISE_IOR: | |
3160 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3161 | |
4c4b4cd2 PH |
3162 | case BINOP_EQUAL: |
3163 | case BINOP_NOTEQUAL: | |
3164 | case BINOP_LESS: | |
3165 | case BINOP_GTR: | |
3166 | case BINOP_LEQ: | |
3167 | case BINOP_GEQ: | |
14f9c5c9 | 3168 | |
4c4b4cd2 PH |
3169 | case BINOP_REPEAT: |
3170 | case BINOP_SUBSCRIPT: | |
3171 | case BINOP_COMMA: | |
40c8aaa9 JB |
3172 | *pos += 1; |
3173 | nargs = 2; | |
3174 | break; | |
14f9c5c9 | 3175 | |
4c4b4cd2 PH |
3176 | case UNOP_NEG: |
3177 | case UNOP_PLUS: | |
3178 | case UNOP_LOGICAL_NOT: | |
3179 | case UNOP_ABS: | |
3180 | case UNOP_IND: | |
3181 | *pos += 1; | |
3182 | nargs = 1; | |
3183 | break; | |
14f9c5c9 | 3184 | |
4c4b4cd2 PH |
3185 | case OP_LONG: |
3186 | case OP_DOUBLE: | |
3187 | case OP_VAR_VALUE: | |
3188 | *pos += 4; | |
3189 | break; | |
14f9c5c9 | 3190 | |
4c4b4cd2 PH |
3191 | case OP_TYPE: |
3192 | case OP_BOOL: | |
3193 | case OP_LAST: | |
4c4b4cd2 PH |
3194 | case OP_INTERNALVAR: |
3195 | *pos += 3; | |
3196 | break; | |
14f9c5c9 | 3197 | |
4c4b4cd2 PH |
3198 | case UNOP_MEMVAL: |
3199 | *pos += 3; | |
3200 | nargs = 1; | |
3201 | break; | |
3202 | ||
67f3407f DJ |
3203 | case OP_REGISTER: |
3204 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3205 | break; | |
3206 | ||
4c4b4cd2 PH |
3207 | case STRUCTOP_STRUCT: |
3208 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3209 | nargs = 1; | |
3210 | break; | |
3211 | ||
4c4b4cd2 | 3212 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3213 | *pos += 1; |
3214 | nargs = 3; | |
3215 | break; | |
3216 | ||
52ce6436 | 3217 | case OP_STRING: |
14f9c5c9 | 3218 | break; |
4c4b4cd2 PH |
3219 | |
3220 | default: | |
323e0a4a | 3221 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3222 | } |
3223 | ||
76a01679 | 3224 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3225 | for (i = 0; i < nargs; i += 1) |
3226 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3227 | argvec[i] = NULL; | |
3228 | exp = *expp; | |
3229 | ||
3230 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3231 | switch (op) |
3232 | { | |
3233 | default: | |
3234 | break; | |
3235 | ||
14f9c5c9 | 3236 | case OP_VAR_VALUE: |
4c4b4cd2 | 3237 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3238 | { |
3239 | struct ada_symbol_info *candidates; | |
3240 | int n_candidates; | |
3241 | ||
3242 | n_candidates = | |
3243 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3244 | (exp->elts[pc + 2].symbol), | |
3245 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3246 | &candidates); |
76a01679 JB |
3247 | |
3248 | if (n_candidates > 1) | |
3249 | { | |
3250 | /* Types tend to get re-introduced locally, so if there | |
3251 | are any local symbols that are not types, first filter | |
3252 | out all types. */ | |
3253 | int j; | |
3254 | for (j = 0; j < n_candidates; j += 1) | |
3255 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3256 | { | |
3257 | case LOC_REGISTER: | |
3258 | case LOC_ARG: | |
3259 | case LOC_REF_ARG: | |
76a01679 JB |
3260 | case LOC_REGPARM_ADDR: |
3261 | case LOC_LOCAL: | |
76a01679 | 3262 | case LOC_COMPUTED: |
76a01679 JB |
3263 | goto FoundNonType; |
3264 | default: | |
3265 | break; | |
3266 | } | |
3267 | FoundNonType: | |
3268 | if (j < n_candidates) | |
3269 | { | |
3270 | j = 0; | |
3271 | while (j < n_candidates) | |
3272 | { | |
3273 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3274 | { | |
3275 | candidates[j] = candidates[n_candidates - 1]; | |
3276 | n_candidates -= 1; | |
3277 | } | |
3278 | else | |
3279 | j += 1; | |
3280 | } | |
3281 | } | |
3282 | } | |
3283 | ||
3284 | if (n_candidates == 0) | |
323e0a4a | 3285 | error (_("No definition found for %s"), |
76a01679 JB |
3286 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3287 | else if (n_candidates == 1) | |
3288 | i = 0; | |
3289 | else if (deprocedure_p | |
3290 | && !is_nonfunction (candidates, n_candidates)) | |
3291 | { | |
06d5cf63 JB |
3292 | i = ada_resolve_function |
3293 | (candidates, n_candidates, NULL, 0, | |
3294 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3295 | context_type); | |
76a01679 | 3296 | if (i < 0) |
323e0a4a | 3297 | error (_("Could not find a match for %s"), |
76a01679 JB |
3298 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3299 | } | |
3300 | else | |
3301 | { | |
323e0a4a | 3302 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3303 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3304 | user_select_syms (candidates, n_candidates, 1); | |
3305 | i = 0; | |
3306 | } | |
3307 | ||
3308 | exp->elts[pc + 1].block = candidates[i].block; | |
3309 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3310 | if (innermost_block == NULL |
3311 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3312 | innermost_block = candidates[i].block; |
3313 | } | |
3314 | ||
3315 | if (deprocedure_p | |
3316 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3317 | == TYPE_CODE_FUNC)) | |
3318 | { | |
3319 | replace_operator_with_call (expp, pc, 0, 0, | |
3320 | exp->elts[pc + 2].symbol, | |
3321 | exp->elts[pc + 1].block); | |
3322 | exp = *expp; | |
3323 | } | |
14f9c5c9 AS |
3324 | break; |
3325 | ||
3326 | case OP_FUNCALL: | |
3327 | { | |
4c4b4cd2 | 3328 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3329 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3330 | { |
3331 | struct ada_symbol_info *candidates; | |
3332 | int n_candidates; | |
3333 | ||
3334 | n_candidates = | |
76a01679 JB |
3335 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3336 | (exp->elts[pc + 5].symbol), | |
3337 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3338 | &candidates); |
4c4b4cd2 PH |
3339 | if (n_candidates == 1) |
3340 | i = 0; | |
3341 | else | |
3342 | { | |
06d5cf63 JB |
3343 | i = ada_resolve_function |
3344 | (candidates, n_candidates, | |
3345 | argvec, nargs, | |
3346 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3347 | context_type); | |
4c4b4cd2 | 3348 | if (i < 0) |
323e0a4a | 3349 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3350 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3351 | } | |
3352 | ||
3353 | exp->elts[pc + 4].block = candidates[i].block; | |
3354 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3355 | if (innermost_block == NULL |
3356 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3357 | innermost_block = candidates[i].block; |
3358 | } | |
14f9c5c9 AS |
3359 | } |
3360 | break; | |
3361 | case BINOP_ADD: | |
3362 | case BINOP_SUB: | |
3363 | case BINOP_MUL: | |
3364 | case BINOP_DIV: | |
3365 | case BINOP_REM: | |
3366 | case BINOP_MOD: | |
3367 | case BINOP_CONCAT: | |
3368 | case BINOP_BITWISE_AND: | |
3369 | case BINOP_BITWISE_IOR: | |
3370 | case BINOP_BITWISE_XOR: | |
3371 | case BINOP_EQUAL: | |
3372 | case BINOP_NOTEQUAL: | |
3373 | case BINOP_LESS: | |
3374 | case BINOP_GTR: | |
3375 | case BINOP_LEQ: | |
3376 | case BINOP_GEQ: | |
3377 | case BINOP_EXP: | |
3378 | case UNOP_NEG: | |
3379 | case UNOP_PLUS: | |
3380 | case UNOP_LOGICAL_NOT: | |
3381 | case UNOP_ABS: | |
3382 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3383 | { |
3384 | struct ada_symbol_info *candidates; | |
3385 | int n_candidates; | |
3386 | ||
3387 | n_candidates = | |
3388 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3389 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3390 | &candidates); |
4c4b4cd2 | 3391 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3392 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3393 | if (i < 0) |
3394 | break; | |
3395 | ||
76a01679 JB |
3396 | replace_operator_with_call (expp, pc, nargs, 1, |
3397 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3398 | exp = *expp; |
3399 | } | |
14f9c5c9 | 3400 | break; |
4c4b4cd2 PH |
3401 | |
3402 | case OP_TYPE: | |
b3dbf008 | 3403 | case OP_REGISTER: |
4c4b4cd2 | 3404 | return NULL; |
14f9c5c9 AS |
3405 | } |
3406 | ||
3407 | *pos = pc; | |
3408 | return evaluate_subexp_type (exp, pos); | |
3409 | } | |
3410 | ||
3411 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3412 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3413 | a non-pointer. */ |
14f9c5c9 | 3414 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3415 | liberal. */ |
14f9c5c9 AS |
3416 | |
3417 | static int | |
4dc81987 | 3418 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3419 | { |
61ee279c PH |
3420 | ftype = ada_check_typedef (ftype); |
3421 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3422 | |
3423 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3424 | ftype = TYPE_TARGET_TYPE (ftype); | |
3425 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3426 | atype = TYPE_TARGET_TYPE (atype); | |
3427 | ||
d2e4a39e | 3428 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3429 | { |
3430 | default: | |
5b3d5b7d | 3431 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3432 | case TYPE_CODE_PTR: |
3433 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3434 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3435 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3436 | else |
1265e4aa JB |
3437 | return (may_deref |
3438 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3439 | case TYPE_CODE_INT: |
3440 | case TYPE_CODE_ENUM: | |
3441 | case TYPE_CODE_RANGE: | |
3442 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3443 | { |
3444 | case TYPE_CODE_INT: | |
3445 | case TYPE_CODE_ENUM: | |
3446 | case TYPE_CODE_RANGE: | |
3447 | return 1; | |
3448 | default: | |
3449 | return 0; | |
3450 | } | |
14f9c5c9 AS |
3451 | |
3452 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3453 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3454 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3455 | |
3456 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3457 | if (ada_is_array_descriptor_type (ftype)) |
3458 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3459 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3460 | else |
4c4b4cd2 PH |
3461 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3462 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3463 | |
3464 | case TYPE_CODE_UNION: | |
3465 | case TYPE_CODE_FLT: | |
3466 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3467 | } | |
3468 | } | |
3469 | ||
3470 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3471 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3472 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3473 | argument function. */ |
14f9c5c9 AS |
3474 | |
3475 | static int | |
d2e4a39e | 3476 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3477 | { |
3478 | int i; | |
d2e4a39e | 3479 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3480 | |
1265e4aa JB |
3481 | if (SYMBOL_CLASS (func) == LOC_CONST |
3482 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3483 | return (n_actuals == 0); |
3484 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3485 | return 0; | |
3486 | ||
3487 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3488 | return 0; | |
3489 | ||
3490 | for (i = 0; i < n_actuals; i += 1) | |
3491 | { | |
4c4b4cd2 | 3492 | if (actuals[i] == NULL) |
76a01679 JB |
3493 | return 0; |
3494 | else | |
3495 | { | |
5b4ee69b MS |
3496 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3497 | i)); | |
df407dfe | 3498 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3499 | |
76a01679 JB |
3500 | if (!ada_type_match (ftype, atype, 1)) |
3501 | return 0; | |
3502 | } | |
14f9c5c9 AS |
3503 | } |
3504 | return 1; | |
3505 | } | |
3506 | ||
3507 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3508 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3509 | FUNC_TYPE is not a valid function type with a non-null return type | |
3510 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3511 | ||
3512 | static int | |
d2e4a39e | 3513 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3514 | { |
d2e4a39e | 3515 | struct type *return_type; |
14f9c5c9 AS |
3516 | |
3517 | if (func_type == NULL) | |
3518 | return 1; | |
3519 | ||
4c4b4cd2 | 3520 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3521 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3522 | else |
18af8284 | 3523 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3524 | if (return_type == NULL) |
3525 | return 1; | |
3526 | ||
18af8284 | 3527 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3528 | |
3529 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3530 | return context_type == NULL || return_type == context_type; | |
3531 | else if (context_type == NULL) | |
3532 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3533 | else | |
3534 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3535 | } | |
3536 | ||
3537 | ||
4c4b4cd2 | 3538 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3539 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3540 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3541 | that returns that type, then eliminate matches that don't. If | |
3542 | CONTEXT_TYPE is void and there is at least one match that does not | |
3543 | return void, eliminate all matches that do. | |
3544 | ||
14f9c5c9 AS |
3545 | Asks the user if there is more than one match remaining. Returns -1 |
3546 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3547 | solely for messages. May re-arrange and modify SYMS in |
3548 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3549 | |
4c4b4cd2 PH |
3550 | static int |
3551 | ada_resolve_function (struct ada_symbol_info syms[], | |
3552 | int nsyms, struct value **args, int nargs, | |
3553 | const char *name, struct type *context_type) | |
14f9c5c9 | 3554 | { |
30b15541 | 3555 | int fallback; |
14f9c5c9 | 3556 | int k; |
4c4b4cd2 | 3557 | int m; /* Number of hits */ |
14f9c5c9 | 3558 | |
d2e4a39e | 3559 | m = 0; |
30b15541 UW |
3560 | /* In the first pass of the loop, we only accept functions matching |
3561 | context_type. If none are found, we add a second pass of the loop | |
3562 | where every function is accepted. */ | |
3563 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3564 | { |
3565 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3566 | { |
61ee279c | 3567 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3568 | |
3569 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3570 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3571 | { |
3572 | syms[m] = syms[k]; | |
3573 | m += 1; | |
3574 | } | |
3575 | } | |
14f9c5c9 AS |
3576 | } |
3577 | ||
3578 | if (m == 0) | |
3579 | return -1; | |
3580 | else if (m > 1) | |
3581 | { | |
323e0a4a | 3582 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3583 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3584 | return 0; |
3585 | } | |
3586 | return 0; | |
3587 | } | |
3588 | ||
4c4b4cd2 PH |
3589 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3590 | in a listing of choices during disambiguation (see sort_choices, below). | |
3591 | The idea is that overloadings of a subprogram name from the | |
3592 | same package should sort in their source order. We settle for ordering | |
3593 | such symbols by their trailing number (__N or $N). */ | |
3594 | ||
14f9c5c9 | 3595 | static int |
0d5cff50 | 3596 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3597 | { |
3598 | if (N1 == NULL) | |
3599 | return 0; | |
3600 | else if (N0 == NULL) | |
3601 | return 1; | |
3602 | else | |
3603 | { | |
3604 | int k0, k1; | |
5b4ee69b | 3605 | |
d2e4a39e | 3606 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3607 | ; |
d2e4a39e | 3608 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3609 | ; |
d2e4a39e | 3610 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3611 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3612 | { | |
3613 | int n0, n1; | |
5b4ee69b | 3614 | |
4c4b4cd2 PH |
3615 | n0 = k0; |
3616 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3617 | n0 -= 1; | |
3618 | n1 = k1; | |
3619 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3620 | n1 -= 1; | |
3621 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3622 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3623 | } | |
14f9c5c9 AS |
3624 | return (strcmp (N0, N1) < 0); |
3625 | } | |
3626 | } | |
d2e4a39e | 3627 | |
4c4b4cd2 PH |
3628 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3629 | encoded names. */ | |
3630 | ||
d2e4a39e | 3631 | static void |
4c4b4cd2 | 3632 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3633 | { |
4c4b4cd2 | 3634 | int i; |
5b4ee69b | 3635 | |
d2e4a39e | 3636 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3637 | { |
4c4b4cd2 | 3638 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3639 | int j; |
3640 | ||
d2e4a39e | 3641 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3642 | { |
3643 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3644 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3645 | break; | |
3646 | syms[j + 1] = syms[j]; | |
3647 | } | |
d2e4a39e | 3648 | syms[j + 1] = sym; |
14f9c5c9 AS |
3649 | } |
3650 | } | |
3651 | ||
4c4b4cd2 PH |
3652 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3653 | by asking the user (if necessary), returning the number selected, | |
3654 | and setting the first elements of SYMS items. Error if no symbols | |
3655 | selected. */ | |
14f9c5c9 AS |
3656 | |
3657 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3658 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3659 | |
3660 | int | |
4c4b4cd2 | 3661 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3662 | { |
3663 | int i; | |
d2e4a39e | 3664 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3665 | int n_chosen; |
3666 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3667 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3668 | |
3669 | if (max_results < 1) | |
323e0a4a | 3670 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3671 | if (nsyms <= 1) |
3672 | return nsyms; | |
3673 | ||
717d2f5a JB |
3674 | if (select_mode == multiple_symbols_cancel) |
3675 | error (_("\ | |
3676 | canceled because the command is ambiguous\n\ | |
3677 | See set/show multiple-symbol.")); | |
3678 | ||
3679 | /* If select_mode is "all", then return all possible symbols. | |
3680 | Only do that if more than one symbol can be selected, of course. | |
3681 | Otherwise, display the menu as usual. */ | |
3682 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3683 | return nsyms; | |
3684 | ||
323e0a4a | 3685 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3686 | if (max_results > 1) |
323e0a4a | 3687 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3688 | |
4c4b4cd2 | 3689 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3690 | |
3691 | for (i = 0; i < nsyms; i += 1) | |
3692 | { | |
4c4b4cd2 PH |
3693 | if (syms[i].sym == NULL) |
3694 | continue; | |
3695 | ||
3696 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3697 | { | |
76a01679 JB |
3698 | struct symtab_and_line sal = |
3699 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3700 | |
323e0a4a AC |
3701 | if (sal.symtab == NULL) |
3702 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3703 | i + first_choice, | |
3704 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3705 | sal.line); | |
3706 | else | |
3707 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3708 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3709 | symtab_to_filename_for_display (sal.symtab), |
3710 | sal.line); | |
4c4b4cd2 PH |
3711 | continue; |
3712 | } | |
d2e4a39e | 3713 | else |
4c4b4cd2 PH |
3714 | { |
3715 | int is_enumeral = | |
3716 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3717 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3718 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3719 | struct symtab *symtab = NULL; |
3720 | ||
3721 | if (SYMBOL_OBJFILE_OWNED (syms[i].sym)) | |
3722 | symtab = symbol_symtab (syms[i].sym); | |
4c4b4cd2 PH |
3723 | |
3724 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3725 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3726 | i + first_choice, |
3727 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3728 | symtab_to_filename_for_display (symtab), |
3729 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3730 | else if (is_enumeral |
3731 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3732 | { |
a3f17187 | 3733 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3734 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3735 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3736 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3737 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3738 | } | |
3739 | else if (symtab != NULL) | |
3740 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3741 | ? _("[%d] %s in %s (enumeral)\n") |
3742 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3743 | i + first_choice, |
3744 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3745 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3746 | else |
3747 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3748 | ? _("[%d] %s (enumeral)\n") |
3749 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3750 | i + first_choice, |
3751 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3752 | } | |
14f9c5c9 | 3753 | } |
d2e4a39e | 3754 | |
14f9c5c9 | 3755 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3756 | "overload-choice"); |
14f9c5c9 AS |
3757 | |
3758 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3759 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3760 | |
3761 | return n_chosen; | |
3762 | } | |
3763 | ||
3764 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3765 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3766 | order in CHOICES[0 .. N-1], and return N. |
3767 | ||
3768 | The user types choices as a sequence of numbers on one line | |
3769 | separated by blanks, encoding them as follows: | |
3770 | ||
4c4b4cd2 | 3771 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3772 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3773 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3774 | ||
4c4b4cd2 | 3775 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3776 | |
3777 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3778 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3779 | |
3780 | int | |
d2e4a39e | 3781 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3782 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3783 | { |
d2e4a39e | 3784 | char *args; |
0bcd0149 | 3785 | char *prompt; |
14f9c5c9 AS |
3786 | int n_chosen; |
3787 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3788 | |
14f9c5c9 AS |
3789 | prompt = getenv ("PS2"); |
3790 | if (prompt == NULL) | |
0bcd0149 | 3791 | prompt = "> "; |
14f9c5c9 | 3792 | |
0bcd0149 | 3793 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3794 | |
14f9c5c9 | 3795 | if (args == NULL) |
323e0a4a | 3796 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3797 | |
3798 | n_chosen = 0; | |
76a01679 | 3799 | |
4c4b4cd2 PH |
3800 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3801 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3802 | while (1) |
3803 | { | |
d2e4a39e | 3804 | char *args2; |
14f9c5c9 AS |
3805 | int choice, j; |
3806 | ||
0fcd72ba | 3807 | args = skip_spaces (args); |
14f9c5c9 | 3808 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3809 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3810 | else if (*args == '\0') |
4c4b4cd2 | 3811 | break; |
14f9c5c9 AS |
3812 | |
3813 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3814 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3815 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3816 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3817 | args = args2; |
3818 | ||
d2e4a39e | 3819 | if (choice == 0) |
323e0a4a | 3820 | error (_("cancelled")); |
14f9c5c9 AS |
3821 | |
3822 | if (choice < first_choice) | |
4c4b4cd2 PH |
3823 | { |
3824 | n_chosen = n_choices; | |
3825 | for (j = 0; j < n_choices; j += 1) | |
3826 | choices[j] = j; | |
3827 | break; | |
3828 | } | |
14f9c5c9 AS |
3829 | choice -= first_choice; |
3830 | ||
d2e4a39e | 3831 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3832 | { |
3833 | } | |
14f9c5c9 AS |
3834 | |
3835 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3836 | { |
3837 | int k; | |
5b4ee69b | 3838 | |
4c4b4cd2 PH |
3839 | for (k = n_chosen - 1; k > j; k -= 1) |
3840 | choices[k + 1] = choices[k]; | |
3841 | choices[j + 1] = choice; | |
3842 | n_chosen += 1; | |
3843 | } | |
14f9c5c9 AS |
3844 | } |
3845 | ||
3846 | if (n_chosen > max_results) | |
323e0a4a | 3847 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3848 | |
14f9c5c9 AS |
3849 | return n_chosen; |
3850 | } | |
3851 | ||
4c4b4cd2 PH |
3852 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3853 | on the function identified by SYM and BLOCK, and taking NARGS | |
3854 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3855 | |
3856 | static void | |
d2e4a39e | 3857 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3858 | int oplen, struct symbol *sym, |
270140bd | 3859 | const struct block *block) |
14f9c5c9 AS |
3860 | { |
3861 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3862 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3863 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3864 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3865 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3866 | struct expression *exp = *expp; |
14f9c5c9 AS |
3867 | |
3868 | newexp->nelts = exp->nelts + 7 - oplen; | |
3869 | newexp->language_defn = exp->language_defn; | |
3489610d | 3870 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3871 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3872 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3873 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3874 | |
3875 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3876 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3877 | ||
3878 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3879 | newexp->elts[pc + 4].block = block; | |
3880 | newexp->elts[pc + 5].symbol = sym; | |
3881 | ||
3882 | *expp = newexp; | |
aacb1f0a | 3883 | xfree (exp); |
d2e4a39e | 3884 | } |
14f9c5c9 AS |
3885 | |
3886 | /* Type-class predicates */ | |
3887 | ||
4c4b4cd2 PH |
3888 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3889 | or FLOAT). */ | |
14f9c5c9 AS |
3890 | |
3891 | static int | |
d2e4a39e | 3892 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3893 | { |
3894 | if (type == NULL) | |
3895 | return 0; | |
d2e4a39e AS |
3896 | else |
3897 | { | |
3898 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3899 | { |
3900 | case TYPE_CODE_INT: | |
3901 | case TYPE_CODE_FLT: | |
3902 | return 1; | |
3903 | case TYPE_CODE_RANGE: | |
3904 | return (type == TYPE_TARGET_TYPE (type) | |
3905 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3906 | default: | |
3907 | return 0; | |
3908 | } | |
d2e4a39e | 3909 | } |
14f9c5c9 AS |
3910 | } |
3911 | ||
4c4b4cd2 | 3912 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3913 | |
3914 | static int | |
d2e4a39e | 3915 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3916 | { |
3917 | if (type == NULL) | |
3918 | return 0; | |
d2e4a39e AS |
3919 | else |
3920 | { | |
3921 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3922 | { |
3923 | case TYPE_CODE_INT: | |
3924 | return 1; | |
3925 | case TYPE_CODE_RANGE: | |
3926 | return (type == TYPE_TARGET_TYPE (type) | |
3927 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3928 | default: | |
3929 | return 0; | |
3930 | } | |
d2e4a39e | 3931 | } |
14f9c5c9 AS |
3932 | } |
3933 | ||
4c4b4cd2 | 3934 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3935 | |
3936 | static int | |
d2e4a39e | 3937 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3938 | { |
3939 | if (type == NULL) | |
3940 | return 0; | |
d2e4a39e AS |
3941 | else |
3942 | { | |
3943 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3944 | { |
3945 | case TYPE_CODE_INT: | |
3946 | case TYPE_CODE_RANGE: | |
3947 | case TYPE_CODE_ENUM: | |
3948 | case TYPE_CODE_FLT: | |
3949 | return 1; | |
3950 | default: | |
3951 | return 0; | |
3952 | } | |
d2e4a39e | 3953 | } |
14f9c5c9 AS |
3954 | } |
3955 | ||
4c4b4cd2 | 3956 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3957 | |
3958 | static int | |
d2e4a39e | 3959 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3960 | { |
3961 | if (type == NULL) | |
3962 | return 0; | |
d2e4a39e AS |
3963 | else |
3964 | { | |
3965 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3966 | { |
3967 | case TYPE_CODE_INT: | |
3968 | case TYPE_CODE_RANGE: | |
3969 | case TYPE_CODE_ENUM: | |
872f0337 | 3970 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3971 | return 1; |
3972 | default: | |
3973 | return 0; | |
3974 | } | |
d2e4a39e | 3975 | } |
14f9c5c9 AS |
3976 | } |
3977 | ||
4c4b4cd2 PH |
3978 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3979 | a user-defined function. Errs on the side of pre-defined operators | |
3980 | (i.e., result 0). */ | |
14f9c5c9 AS |
3981 | |
3982 | static int | |
d2e4a39e | 3983 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3984 | { |
76a01679 | 3985 | struct type *type0 = |
df407dfe | 3986 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3987 | struct type *type1 = |
df407dfe | 3988 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3989 | |
4c4b4cd2 PH |
3990 | if (type0 == NULL) |
3991 | return 0; | |
3992 | ||
14f9c5c9 AS |
3993 | switch (op) |
3994 | { | |
3995 | default: | |
3996 | return 0; | |
3997 | ||
3998 | case BINOP_ADD: | |
3999 | case BINOP_SUB: | |
4000 | case BINOP_MUL: | |
4001 | case BINOP_DIV: | |
d2e4a39e | 4002 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4003 | |
4004 | case BINOP_REM: | |
4005 | case BINOP_MOD: | |
4006 | case BINOP_BITWISE_AND: | |
4007 | case BINOP_BITWISE_IOR: | |
4008 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4009 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4010 | |
4011 | case BINOP_EQUAL: | |
4012 | case BINOP_NOTEQUAL: | |
4013 | case BINOP_LESS: | |
4014 | case BINOP_GTR: | |
4015 | case BINOP_LEQ: | |
4016 | case BINOP_GEQ: | |
d2e4a39e | 4017 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4018 | |
4019 | case BINOP_CONCAT: | |
ee90b9ab | 4020 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4021 | |
4022 | case BINOP_EXP: | |
d2e4a39e | 4023 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4024 | |
4025 | case UNOP_NEG: | |
4026 | case UNOP_PLUS: | |
4027 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4028 | case UNOP_ABS: |
4029 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4030 | |
4031 | } | |
4032 | } | |
4033 | \f | |
4c4b4cd2 | 4034 | /* Renaming */ |
14f9c5c9 | 4035 | |
aeb5907d JB |
4036 | /* NOTES: |
4037 | ||
4038 | 1. In the following, we assume that a renaming type's name may | |
4039 | have an ___XD suffix. It would be nice if this went away at some | |
4040 | point. | |
4041 | 2. We handle both the (old) purely type-based representation of | |
4042 | renamings and the (new) variable-based encoding. At some point, | |
4043 | it is devoutly to be hoped that the former goes away | |
4044 | (FIXME: hilfinger-2007-07-09). | |
4045 | 3. Subprogram renamings are not implemented, although the XRS | |
4046 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4047 | ||
4048 | /* If SYM encodes a renaming, | |
4049 | ||
4050 | <renaming> renames <renamed entity>, | |
4051 | ||
4052 | sets *LEN to the length of the renamed entity's name, | |
4053 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4054 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4055 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4056 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4057 | are undefined). Otherwise, returns a value indicating the category | |
4058 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4059 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4060 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4061 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4062 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4063 | may be NULL, in which case they are not assigned. | |
4064 | ||
4065 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4066 | ||
4067 | enum ada_renaming_category | |
4068 | ada_parse_renaming (struct symbol *sym, | |
4069 | const char **renamed_entity, int *len, | |
4070 | const char **renaming_expr) | |
4071 | { | |
4072 | enum ada_renaming_category kind; | |
4073 | const char *info; | |
4074 | const char *suffix; | |
4075 | ||
4076 | if (sym == NULL) | |
4077 | return ADA_NOT_RENAMING; | |
4078 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4079 | { |
aeb5907d JB |
4080 | default: |
4081 | return ADA_NOT_RENAMING; | |
4082 | case LOC_TYPEDEF: | |
4083 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4084 | renamed_entity, len, renaming_expr); | |
4085 | case LOC_LOCAL: | |
4086 | case LOC_STATIC: | |
4087 | case LOC_COMPUTED: | |
4088 | case LOC_OPTIMIZED_OUT: | |
4089 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4090 | if (info == NULL) | |
4091 | return ADA_NOT_RENAMING; | |
4092 | switch (info[5]) | |
4093 | { | |
4094 | case '_': | |
4095 | kind = ADA_OBJECT_RENAMING; | |
4096 | info += 6; | |
4097 | break; | |
4098 | case 'E': | |
4099 | kind = ADA_EXCEPTION_RENAMING; | |
4100 | info += 7; | |
4101 | break; | |
4102 | case 'P': | |
4103 | kind = ADA_PACKAGE_RENAMING; | |
4104 | info += 7; | |
4105 | break; | |
4106 | case 'S': | |
4107 | kind = ADA_SUBPROGRAM_RENAMING; | |
4108 | info += 7; | |
4109 | break; | |
4110 | default: | |
4111 | return ADA_NOT_RENAMING; | |
4112 | } | |
14f9c5c9 | 4113 | } |
4c4b4cd2 | 4114 | |
aeb5907d JB |
4115 | if (renamed_entity != NULL) |
4116 | *renamed_entity = info; | |
4117 | suffix = strstr (info, "___XE"); | |
4118 | if (suffix == NULL || suffix == info) | |
4119 | return ADA_NOT_RENAMING; | |
4120 | if (len != NULL) | |
4121 | *len = strlen (info) - strlen (suffix); | |
4122 | suffix += 5; | |
4123 | if (renaming_expr != NULL) | |
4124 | *renaming_expr = suffix; | |
4125 | return kind; | |
4126 | } | |
4127 | ||
4128 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4129 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4130 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4131 | ADA_NOT_RENAMING otherwise. */ | |
4132 | static enum ada_renaming_category | |
4133 | parse_old_style_renaming (struct type *type, | |
4134 | const char **renamed_entity, int *len, | |
4135 | const char **renaming_expr) | |
4136 | { | |
4137 | enum ada_renaming_category kind; | |
4138 | const char *name; | |
4139 | const char *info; | |
4140 | const char *suffix; | |
14f9c5c9 | 4141 | |
aeb5907d JB |
4142 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4143 | || TYPE_NFIELDS (type) != 1) | |
4144 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4145 | |
aeb5907d JB |
4146 | name = type_name_no_tag (type); |
4147 | if (name == NULL) | |
4148 | return ADA_NOT_RENAMING; | |
4149 | ||
4150 | name = strstr (name, "___XR"); | |
4151 | if (name == NULL) | |
4152 | return ADA_NOT_RENAMING; | |
4153 | switch (name[5]) | |
4154 | { | |
4155 | case '\0': | |
4156 | case '_': | |
4157 | kind = ADA_OBJECT_RENAMING; | |
4158 | break; | |
4159 | case 'E': | |
4160 | kind = ADA_EXCEPTION_RENAMING; | |
4161 | break; | |
4162 | case 'P': | |
4163 | kind = ADA_PACKAGE_RENAMING; | |
4164 | break; | |
4165 | case 'S': | |
4166 | kind = ADA_SUBPROGRAM_RENAMING; | |
4167 | break; | |
4168 | default: | |
4169 | return ADA_NOT_RENAMING; | |
4170 | } | |
14f9c5c9 | 4171 | |
aeb5907d JB |
4172 | info = TYPE_FIELD_NAME (type, 0); |
4173 | if (info == NULL) | |
4174 | return ADA_NOT_RENAMING; | |
4175 | if (renamed_entity != NULL) | |
4176 | *renamed_entity = info; | |
4177 | suffix = strstr (info, "___XE"); | |
4178 | if (renaming_expr != NULL) | |
4179 | *renaming_expr = suffix + 5; | |
4180 | if (suffix == NULL || suffix == info) | |
4181 | return ADA_NOT_RENAMING; | |
4182 | if (len != NULL) | |
4183 | *len = suffix - info; | |
4184 | return kind; | |
a5ee536b JB |
4185 | } |
4186 | ||
4187 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4188 | be a symbol encoding a renaming expression. BLOCK is the block | |
4189 | used to evaluate the renaming. */ | |
52ce6436 | 4190 | |
a5ee536b JB |
4191 | static struct value * |
4192 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4193 | const struct block *block) |
a5ee536b | 4194 | { |
bbc13ae3 | 4195 | const char *sym_name; |
a5ee536b JB |
4196 | struct expression *expr; |
4197 | struct value *value; | |
4198 | struct cleanup *old_chain = NULL; | |
4199 | ||
bbc13ae3 | 4200 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4201 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4202 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4203 | value = evaluate_expression (expr); |
4204 | ||
4205 | do_cleanups (old_chain); | |
4206 | return value; | |
4207 | } | |
14f9c5c9 | 4208 | \f |
d2e4a39e | 4209 | |
4c4b4cd2 | 4210 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4211 | |
4c4b4cd2 | 4212 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4213 | lvalues, and otherwise has the side-effect of allocating memory |
4214 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4215 | |
d2e4a39e | 4216 | static struct value * |
40bc484c | 4217 | ensure_lval (struct value *val) |
14f9c5c9 | 4218 | { |
40bc484c JB |
4219 | if (VALUE_LVAL (val) == not_lval |
4220 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4221 | { |
df407dfe | 4222 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4223 | const CORE_ADDR addr = |
4224 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4225 | |
40bc484c | 4226 | set_value_address (val, addr); |
a84a8a0d | 4227 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4228 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4229 | } |
14f9c5c9 AS |
4230 | |
4231 | return val; | |
4232 | } | |
4233 | ||
4234 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4235 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4236 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4237 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4238 | |
a93c0eb6 | 4239 | struct value * |
40bc484c | 4240 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4241 | { |
df407dfe | 4242 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4243 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4244 | struct type *formal_target = |
4245 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4246 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4247 | struct type *actual_target = |
4248 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4249 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4250 | |
4c4b4cd2 | 4251 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4252 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4253 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4254 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4255 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4256 | { |
a84a8a0d | 4257 | struct value *result; |
5b4ee69b | 4258 | |
14f9c5c9 | 4259 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4260 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4261 | result = desc_data (actual); |
14f9c5c9 | 4262 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4263 | { |
4264 | if (VALUE_LVAL (actual) != lval_memory) | |
4265 | { | |
4266 | struct value *val; | |
5b4ee69b | 4267 | |
df407dfe | 4268 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4269 | val = allocate_value (actual_type); |
990a07ab | 4270 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4271 | (char *) value_contents (actual), |
4c4b4cd2 | 4272 | TYPE_LENGTH (actual_type)); |
40bc484c | 4273 | actual = ensure_lval (val); |
4c4b4cd2 | 4274 | } |
a84a8a0d | 4275 | result = value_addr (actual); |
4c4b4cd2 | 4276 | } |
a84a8a0d JB |
4277 | else |
4278 | return actual; | |
b1af9e97 | 4279 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4280 | } |
4281 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4282 | return ada_value_ind (actual); | |
4283 | ||
4284 | return actual; | |
4285 | } | |
4286 | ||
438c98a1 JB |
4287 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4288 | type TYPE. This is usually an inefficient no-op except on some targets | |
4289 | (such as AVR) where the representation of a pointer and an address | |
4290 | differs. */ | |
4291 | ||
4292 | static CORE_ADDR | |
4293 | value_pointer (struct value *value, struct type *type) | |
4294 | { | |
4295 | struct gdbarch *gdbarch = get_type_arch (type); | |
4296 | unsigned len = TYPE_LENGTH (type); | |
4297 | gdb_byte *buf = alloca (len); | |
4298 | CORE_ADDR addr; | |
4299 | ||
4300 | addr = value_address (value); | |
4301 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4302 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4303 | return addr; | |
4304 | } | |
4305 | ||
14f9c5c9 | 4306 | |
4c4b4cd2 PH |
4307 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4308 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4309 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4310 | to-descriptor type rather than a descriptor type), a struct value * |
4311 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4312 | |
d2e4a39e | 4313 | static struct value * |
40bc484c | 4314 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4315 | { |
d2e4a39e AS |
4316 | struct type *bounds_type = desc_bounds_type (type); |
4317 | struct type *desc_type = desc_base_type (type); | |
4318 | struct value *descriptor = allocate_value (desc_type); | |
4319 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4320 | int i; |
d2e4a39e | 4321 | |
0963b4bd MS |
4322 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4323 | i > 0; i -= 1) | |
14f9c5c9 | 4324 | { |
19f220c3 JK |
4325 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4326 | ada_array_bound (arr, i, 0), | |
4327 | desc_bound_bitpos (bounds_type, i, 0), | |
4328 | desc_bound_bitsize (bounds_type, i, 0)); | |
4329 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4330 | ada_array_bound (arr, i, 1), | |
4331 | desc_bound_bitpos (bounds_type, i, 1), | |
4332 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4333 | } |
d2e4a39e | 4334 | |
40bc484c | 4335 | bounds = ensure_lval (bounds); |
d2e4a39e | 4336 | |
19f220c3 JK |
4337 | modify_field (value_type (descriptor), |
4338 | value_contents_writeable (descriptor), | |
4339 | value_pointer (ensure_lval (arr), | |
4340 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4341 | fat_pntr_data_bitpos (desc_type), | |
4342 | fat_pntr_data_bitsize (desc_type)); | |
4343 | ||
4344 | modify_field (value_type (descriptor), | |
4345 | value_contents_writeable (descriptor), | |
4346 | value_pointer (bounds, | |
4347 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4348 | fat_pntr_bounds_bitpos (desc_type), | |
4349 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4350 | |
40bc484c | 4351 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4352 | |
4353 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4354 | return value_addr (descriptor); | |
4355 | else | |
4356 | return descriptor; | |
4357 | } | |
14f9c5c9 | 4358 | \f |
3d9434b5 JB |
4359 | /* Symbol Cache Module */ |
4360 | ||
3d9434b5 | 4361 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4362 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4363 | on the type of entity being printed, the cache can make it as much |
4364 | as an order of magnitude faster than without it. | |
4365 | ||
4366 | The descriptive type DWARF extension has significantly reduced | |
4367 | the need for this cache, at least when DWARF is being used. However, | |
4368 | even in this case, some expensive name-based symbol searches are still | |
4369 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4370 | ||
ee01b665 | 4371 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4372 | |
ee01b665 JB |
4373 | static void |
4374 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4375 | { | |
4376 | obstack_init (&sym_cache->cache_space); | |
4377 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4378 | } | |
3d9434b5 | 4379 | |
ee01b665 JB |
4380 | /* Free the memory used by SYM_CACHE. */ |
4381 | ||
4382 | static void | |
4383 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4384 | { |
ee01b665 JB |
4385 | obstack_free (&sym_cache->cache_space, NULL); |
4386 | xfree (sym_cache); | |
4387 | } | |
3d9434b5 | 4388 | |
ee01b665 JB |
4389 | /* Return the symbol cache associated to the given program space PSPACE. |
4390 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4391 | |
ee01b665 JB |
4392 | static struct ada_symbol_cache * |
4393 | ada_get_symbol_cache (struct program_space *pspace) | |
4394 | { | |
4395 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
4396 | struct ada_symbol_cache *sym_cache = pspace_data->sym_cache; | |
4397 | ||
4398 | if (sym_cache == NULL) | |
4399 | { | |
4400 | sym_cache = XCNEW (struct ada_symbol_cache); | |
4401 | ada_init_symbol_cache (sym_cache); | |
4402 | } | |
4403 | ||
4404 | return sym_cache; | |
4405 | } | |
3d9434b5 JB |
4406 | |
4407 | /* Clear all entries from the symbol cache. */ | |
4408 | ||
4409 | static void | |
4410 | ada_clear_symbol_cache (void) | |
4411 | { | |
ee01b665 JB |
4412 | struct ada_symbol_cache *sym_cache |
4413 | = ada_get_symbol_cache (current_program_space); | |
4414 | ||
4415 | obstack_free (&sym_cache->cache_space, NULL); | |
4416 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4417 | } |
4418 | ||
4419 | /* Search our cache for an entry matching NAME and NAMESPACE. | |
4420 | Return it if found, or NULL otherwise. */ | |
4421 | ||
4422 | static struct cache_entry ** | |
4423 | find_entry (const char *name, domain_enum namespace) | |
4424 | { | |
ee01b665 JB |
4425 | struct ada_symbol_cache *sym_cache |
4426 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4427 | int h = msymbol_hash (name) % HASH_SIZE; |
4428 | struct cache_entry **e; | |
4429 | ||
ee01b665 | 4430 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 JB |
4431 | { |
4432 | if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0) | |
4433 | return e; | |
4434 | } | |
4435 | return NULL; | |
4436 | } | |
4437 | ||
4438 | /* Search the symbol cache for an entry matching NAME and NAMESPACE. | |
4439 | Return 1 if found, 0 otherwise. | |
4440 | ||
4441 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4442 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4443 | |
96d887e8 PH |
4444 | static int |
4445 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
f0c5f9b2 | 4446 | struct symbol **sym, const struct block **block) |
96d887e8 | 4447 | { |
3d9434b5 JB |
4448 | struct cache_entry **e = find_entry (name, namespace); |
4449 | ||
4450 | if (e == NULL) | |
4451 | return 0; | |
4452 | if (sym != NULL) | |
4453 | *sym = (*e)->sym; | |
4454 | if (block != NULL) | |
4455 | *block = (*e)->block; | |
4456 | return 1; | |
96d887e8 PH |
4457 | } |
4458 | ||
3d9434b5 JB |
4459 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
4460 | in domain NAMESPACE, save this result in our symbol cache. */ | |
4461 | ||
96d887e8 PH |
4462 | static void |
4463 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4464 | const struct block *block) |
96d887e8 | 4465 | { |
ee01b665 JB |
4466 | struct ada_symbol_cache *sym_cache |
4467 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4468 | int h; |
4469 | char *copy; | |
4470 | struct cache_entry *e; | |
4471 | ||
1994afbf DE |
4472 | /* Symbols for builtin types don't have a block. |
4473 | For now don't cache such symbols. */ | |
4474 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4475 | return; | |
4476 | ||
3d9434b5 JB |
4477 | /* If the symbol is a local symbol, then do not cache it, as a search |
4478 | for that symbol depends on the context. To determine whether | |
4479 | the symbol is local or not, we check the block where we found it | |
4480 | against the global and static blocks of its associated symtab. */ | |
4481 | if (sym | |
08be3fe3 | 4482 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4483 | GLOBAL_BLOCK) != block |
08be3fe3 | 4484 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4485 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4486 | return; |
4487 | ||
4488 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4489 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4490 | sizeof (*e)); | |
4491 | e->next = sym_cache->root[h]; | |
4492 | sym_cache->root[h] = e; | |
4493 | e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4494 | strcpy (copy, name); |
4495 | e->sym = sym; | |
4496 | e->namespace = namespace; | |
4497 | e->block = block; | |
96d887e8 | 4498 | } |
4c4b4cd2 PH |
4499 | \f |
4500 | /* Symbol Lookup */ | |
4501 | ||
c0431670 JB |
4502 | /* Return nonzero if wild matching should be used when searching for |
4503 | all symbols matching LOOKUP_NAME. | |
4504 | ||
4505 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4506 | for Ada lookups (see ada_name_for_lookup). */ | |
4507 | ||
4508 | static int | |
4509 | should_use_wild_match (const char *lookup_name) | |
4510 | { | |
4511 | return (strstr (lookup_name, "__") == NULL); | |
4512 | } | |
4513 | ||
4c4b4cd2 PH |
4514 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4515 | given DOMAIN, visible from lexical block BLOCK. */ | |
4516 | ||
4517 | static struct symbol * | |
4518 | standard_lookup (const char *name, const struct block *block, | |
4519 | domain_enum domain) | |
4520 | { | |
acbd605d MGD |
4521 | /* Initialize it just to avoid a GCC false warning. */ |
4522 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4523 | |
2570f2b7 | 4524 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4525 | return sym; |
2570f2b7 UW |
4526 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4527 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4528 | return sym; |
4529 | } | |
4530 | ||
4531 | ||
4532 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4533 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4534 | since they contend in overloading in the same way. */ | |
4535 | static int | |
4536 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4537 | { | |
4538 | int i; | |
4539 | ||
4540 | for (i = 0; i < n; i += 1) | |
4541 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4542 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4543 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4544 | return 1; |
4545 | ||
4546 | return 0; | |
4547 | } | |
4548 | ||
4549 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4550 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4551 | |
4552 | static int | |
d2e4a39e | 4553 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4554 | { |
d2e4a39e | 4555 | if (type0 == type1) |
14f9c5c9 | 4556 | return 1; |
d2e4a39e | 4557 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4558 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4559 | return 0; | |
d2e4a39e | 4560 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4561 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4562 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4563 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4564 | return 1; |
d2e4a39e | 4565 | |
14f9c5c9 AS |
4566 | return 0; |
4567 | } | |
4568 | ||
4569 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4570 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4571 | |
4572 | static int | |
d2e4a39e | 4573 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4574 | { |
4575 | if (sym0 == sym1) | |
4576 | return 1; | |
176620f1 | 4577 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4578 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4579 | return 0; | |
4580 | ||
d2e4a39e | 4581 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4582 | { |
4583 | case LOC_UNDEF: | |
4584 | return 1; | |
4585 | case LOC_TYPEDEF: | |
4586 | { | |
4c4b4cd2 PH |
4587 | struct type *type0 = SYMBOL_TYPE (sym0); |
4588 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4589 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4590 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4591 | int len0 = strlen (name0); |
5b4ee69b | 4592 | |
4c4b4cd2 PH |
4593 | return |
4594 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4595 | && (equiv_types (type0, type1) | |
4596 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4597 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4598 | } |
4599 | case LOC_CONST: | |
4600 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4601 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4602 | default: |
4603 | return 0; | |
14f9c5c9 AS |
4604 | } |
4605 | } | |
4606 | ||
4c4b4cd2 PH |
4607 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4608 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4609 | |
4610 | static void | |
76a01679 JB |
4611 | add_defn_to_vec (struct obstack *obstackp, |
4612 | struct symbol *sym, | |
f0c5f9b2 | 4613 | const struct block *block) |
14f9c5c9 AS |
4614 | { |
4615 | int i; | |
4c4b4cd2 | 4616 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4617 | |
529cad9c PH |
4618 | /* Do not try to complete stub types, as the debugger is probably |
4619 | already scanning all symbols matching a certain name at the | |
4620 | time when this function is called. Trying to replace the stub | |
4621 | type by its associated full type will cause us to restart a scan | |
4622 | which may lead to an infinite recursion. Instead, the client | |
4623 | collecting the matching symbols will end up collecting several | |
4624 | matches, with at least one of them complete. It can then filter | |
4625 | out the stub ones if needed. */ | |
4626 | ||
4c4b4cd2 PH |
4627 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4628 | { | |
4629 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4630 | return; | |
4631 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4632 | { | |
4633 | prevDefns[i].sym = sym; | |
4634 | prevDefns[i].block = block; | |
4c4b4cd2 | 4635 | return; |
76a01679 | 4636 | } |
4c4b4cd2 PH |
4637 | } |
4638 | ||
4639 | { | |
4640 | struct ada_symbol_info info; | |
4641 | ||
4642 | info.sym = sym; | |
4643 | info.block = block; | |
4c4b4cd2 PH |
4644 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4645 | } | |
4646 | } | |
4647 | ||
4648 | /* Number of ada_symbol_info structures currently collected in | |
4649 | current vector in *OBSTACKP. */ | |
4650 | ||
76a01679 JB |
4651 | static int |
4652 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4653 | { |
4654 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4655 | } | |
4656 | ||
4657 | /* Vector of ada_symbol_info structures currently collected in current | |
4658 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4659 | its final address. */ | |
4660 | ||
76a01679 | 4661 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4662 | defns_collected (struct obstack *obstackp, int finish) |
4663 | { | |
4664 | if (finish) | |
4665 | return obstack_finish (obstackp); | |
4666 | else | |
4667 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4668 | } | |
4669 | ||
7c7b6655 TT |
4670 | /* Return a bound minimal symbol matching NAME according to Ada |
4671 | decoding rules. Returns an invalid symbol if there is no such | |
4672 | minimal symbol. Names prefixed with "standard__" are handled | |
4673 | specially: "standard__" is first stripped off, and only static and | |
4674 | global symbols are searched. */ | |
4c4b4cd2 | 4675 | |
7c7b6655 | 4676 | struct bound_minimal_symbol |
96d887e8 | 4677 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4678 | { |
7c7b6655 | 4679 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4680 | struct objfile *objfile; |
96d887e8 | 4681 | struct minimal_symbol *msymbol; |
dc4024cd | 4682 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4683 | |
7c7b6655 TT |
4684 | memset (&result, 0, sizeof (result)); |
4685 | ||
c0431670 JB |
4686 | /* Special case: If the user specifies a symbol name inside package |
4687 | Standard, do a non-wild matching of the symbol name without | |
4688 | the "standard__" prefix. This was primarily introduced in order | |
4689 | to allow the user to specifically access the standard exceptions | |
4690 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4691 | is ambiguous (due to the user defining its own Constraint_Error | |
4692 | entity inside its program). */ | |
96d887e8 | 4693 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4694 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4695 | |
96d887e8 PH |
4696 | ALL_MSYMBOLS (objfile, msymbol) |
4697 | { | |
efd66ac6 | 4698 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4699 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4700 | { |
4701 | result.minsym = msymbol; | |
4702 | result.objfile = objfile; | |
4703 | break; | |
4704 | } | |
96d887e8 | 4705 | } |
4c4b4cd2 | 4706 | |
7c7b6655 | 4707 | return result; |
96d887e8 | 4708 | } |
4c4b4cd2 | 4709 | |
96d887e8 PH |
4710 | /* For all subprograms that statically enclose the subprogram of the |
4711 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4712 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4713 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4714 | with a wildcard prefix. */ | |
4c4b4cd2 | 4715 | |
96d887e8 PH |
4716 | static void |
4717 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4718 | const char *name, domain_enum namespace, |
48b78332 | 4719 | int wild_match_p) |
96d887e8 | 4720 | { |
96d887e8 | 4721 | } |
14f9c5c9 | 4722 | |
96d887e8 PH |
4723 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4724 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4725 | |
96d887e8 PH |
4726 | static int |
4727 | is_nondebugging_type (struct type *type) | |
4728 | { | |
0d5cff50 | 4729 | const char *name = ada_type_name (type); |
5b4ee69b | 4730 | |
96d887e8 PH |
4731 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4732 | } | |
4c4b4cd2 | 4733 | |
8f17729f JB |
4734 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4735 | that are deemed "identical" for practical purposes. | |
4736 | ||
4737 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4738 | types and that their number of enumerals is identical (in other | |
4739 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4740 | ||
4741 | static int | |
4742 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4743 | { | |
4744 | int i; | |
4745 | ||
4746 | /* The heuristic we use here is fairly conservative. We consider | |
4747 | that 2 enumerate types are identical if they have the same | |
4748 | number of enumerals and that all enumerals have the same | |
4749 | underlying value and name. */ | |
4750 | ||
4751 | /* All enums in the type should have an identical underlying value. */ | |
4752 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4753 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4754 | return 0; |
4755 | ||
4756 | /* All enumerals should also have the same name (modulo any numerical | |
4757 | suffix). */ | |
4758 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4759 | { | |
0d5cff50 DE |
4760 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4761 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4762 | int len_1 = strlen (name_1); |
4763 | int len_2 = strlen (name_2); | |
4764 | ||
4765 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4766 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4767 | if (len_1 != len_2 | |
4768 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4769 | TYPE_FIELD_NAME (type2, i), | |
4770 | len_1) != 0) | |
4771 | return 0; | |
4772 | } | |
4773 | ||
4774 | return 1; | |
4775 | } | |
4776 | ||
4777 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4778 | that are deemed "identical" for practical purposes. Sometimes, | |
4779 | enumerals are not strictly identical, but their types are so similar | |
4780 | that they can be considered identical. | |
4781 | ||
4782 | For instance, consider the following code: | |
4783 | ||
4784 | type Color is (Black, Red, Green, Blue, White); | |
4785 | type RGB_Color is new Color range Red .. Blue; | |
4786 | ||
4787 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4788 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4789 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4790 | As a result, when an expression references any of the enumeral | |
4791 | by name (Eg. "print green"), the expression is technically | |
4792 | ambiguous and the user should be asked to disambiguate. But | |
4793 | doing so would only hinder the user, since it wouldn't matter | |
4794 | what choice he makes, the outcome would always be the same. | |
4795 | So, for practical purposes, we consider them as the same. */ | |
4796 | ||
4797 | static int | |
4798 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4799 | { | |
4800 | int i; | |
4801 | ||
4802 | /* Before performing a thorough comparison check of each type, | |
4803 | we perform a series of inexpensive checks. We expect that these | |
4804 | checks will quickly fail in the vast majority of cases, and thus | |
4805 | help prevent the unnecessary use of a more expensive comparison. | |
4806 | Said comparison also expects us to make some of these checks | |
4807 | (see ada_identical_enum_types_p). */ | |
4808 | ||
4809 | /* Quick check: All symbols should have an enum type. */ | |
4810 | for (i = 0; i < nsyms; i++) | |
4811 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4812 | return 0; | |
4813 | ||
4814 | /* Quick check: They should all have the same value. */ | |
4815 | for (i = 1; i < nsyms; i++) | |
4816 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4817 | return 0; | |
4818 | ||
4819 | /* Quick check: They should all have the same number of enumerals. */ | |
4820 | for (i = 1; i < nsyms; i++) | |
4821 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4822 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4823 | return 0; | |
4824 | ||
4825 | /* All the sanity checks passed, so we might have a set of | |
4826 | identical enumeration types. Perform a more complete | |
4827 | comparison of the type of each symbol. */ | |
4828 | for (i = 1; i < nsyms; i++) | |
4829 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4830 | SYMBOL_TYPE (syms[0].sym))) | |
4831 | return 0; | |
4832 | ||
4833 | return 1; | |
4834 | } | |
4835 | ||
96d887e8 PH |
4836 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4837 | duplicate other symbols in the list (The only case I know of where | |
4838 | this happens is when object files containing stabs-in-ecoff are | |
4839 | linked with files containing ordinary ecoff debugging symbols (or no | |
4840 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4841 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4842 | |
96d887e8 PH |
4843 | static int |
4844 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4845 | { | |
4846 | int i, j; | |
4c4b4cd2 | 4847 | |
8f17729f JB |
4848 | /* We should never be called with less than 2 symbols, as there |
4849 | cannot be any extra symbol in that case. But it's easy to | |
4850 | handle, since we have nothing to do in that case. */ | |
4851 | if (nsyms < 2) | |
4852 | return nsyms; | |
4853 | ||
96d887e8 PH |
4854 | i = 0; |
4855 | while (i < nsyms) | |
4856 | { | |
a35ddb44 | 4857 | int remove_p = 0; |
339c13b6 JB |
4858 | |
4859 | /* If two symbols have the same name and one of them is a stub type, | |
4860 | the get rid of the stub. */ | |
4861 | ||
4862 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4863 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4864 | { | |
4865 | for (j = 0; j < nsyms; j++) | |
4866 | { | |
4867 | if (j != i | |
4868 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4869 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4870 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4871 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4872 | remove_p = 1; |
339c13b6 JB |
4873 | } |
4874 | } | |
4875 | ||
4876 | /* Two symbols with the same name, same class and same address | |
4877 | should be identical. */ | |
4878 | ||
4879 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4880 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4881 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4882 | { | |
4883 | for (j = 0; j < nsyms; j += 1) | |
4884 | { | |
4885 | if (i != j | |
4886 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4887 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4888 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4889 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4890 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4891 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4892 | remove_p = 1; |
4c4b4cd2 | 4893 | } |
4c4b4cd2 | 4894 | } |
339c13b6 | 4895 | |
a35ddb44 | 4896 | if (remove_p) |
339c13b6 JB |
4897 | { |
4898 | for (j = i + 1; j < nsyms; j += 1) | |
4899 | syms[j - 1] = syms[j]; | |
4900 | nsyms -= 1; | |
4901 | } | |
4902 | ||
96d887e8 | 4903 | i += 1; |
14f9c5c9 | 4904 | } |
8f17729f JB |
4905 | |
4906 | /* If all the remaining symbols are identical enumerals, then | |
4907 | just keep the first one and discard the rest. | |
4908 | ||
4909 | Unlike what we did previously, we do not discard any entry | |
4910 | unless they are ALL identical. This is because the symbol | |
4911 | comparison is not a strict comparison, but rather a practical | |
4912 | comparison. If all symbols are considered identical, then | |
4913 | we can just go ahead and use the first one and discard the rest. | |
4914 | But if we cannot reduce the list to a single element, we have | |
4915 | to ask the user to disambiguate anyways. And if we have to | |
4916 | present a multiple-choice menu, it's less confusing if the list | |
4917 | isn't missing some choices that were identical and yet distinct. */ | |
4918 | if (symbols_are_identical_enums (syms, nsyms)) | |
4919 | nsyms = 1; | |
4920 | ||
96d887e8 | 4921 | return nsyms; |
14f9c5c9 AS |
4922 | } |
4923 | ||
96d887e8 PH |
4924 | /* Given a type that corresponds to a renaming entity, use the type name |
4925 | to extract the scope (package name or function name, fully qualified, | |
4926 | and following the GNAT encoding convention) where this renaming has been | |
4927 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4928 | |
96d887e8 PH |
4929 | static char * |
4930 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4931 | { |
96d887e8 | 4932 | /* The renaming types adhere to the following convention: |
0963b4bd | 4933 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4934 | So, to extract the scope, we search for the "___XR" extension, |
4935 | and then backtrack until we find the first "__". */ | |
76a01679 | 4936 | |
96d887e8 PH |
4937 | const char *name = type_name_no_tag (renaming_type); |
4938 | char *suffix = strstr (name, "___XR"); | |
4939 | char *last; | |
4940 | int scope_len; | |
4941 | char *scope; | |
14f9c5c9 | 4942 | |
96d887e8 PH |
4943 | /* Now, backtrack a bit until we find the first "__". Start looking |
4944 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4945 | |
96d887e8 PH |
4946 | for (last = suffix - 3; last > name; last--) |
4947 | if (last[0] == '_' && last[1] == '_') | |
4948 | break; | |
76a01679 | 4949 | |
96d887e8 | 4950 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4951 | |
96d887e8 PH |
4952 | scope_len = last - name; |
4953 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4954 | |
96d887e8 PH |
4955 | strncpy (scope, name, scope_len); |
4956 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4957 | |
96d887e8 | 4958 | return scope; |
4c4b4cd2 PH |
4959 | } |
4960 | ||
96d887e8 | 4961 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4962 | |
96d887e8 PH |
4963 | static int |
4964 | is_package_name (const char *name) | |
4c4b4cd2 | 4965 | { |
96d887e8 PH |
4966 | /* Here, We take advantage of the fact that no symbols are generated |
4967 | for packages, while symbols are generated for each function. | |
4968 | So the condition for NAME represent a package becomes equivalent | |
4969 | to NAME not existing in our list of symbols. There is only one | |
4970 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4971 | |
96d887e8 | 4972 | char *fun_name; |
76a01679 | 4973 | |
96d887e8 PH |
4974 | /* If it is a function that has not been defined at library level, |
4975 | then we should be able to look it up in the symbols. */ | |
4976 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4977 | return 0; | |
14f9c5c9 | 4978 | |
96d887e8 PH |
4979 | /* Library-level function names start with "_ada_". See if function |
4980 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4981 | |
96d887e8 | 4982 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4983 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4984 | if (strstr (name, "__") != NULL) |
4985 | return 0; | |
4c4b4cd2 | 4986 | |
b435e160 | 4987 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4988 | |
96d887e8 PH |
4989 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4990 | } | |
14f9c5c9 | 4991 | |
96d887e8 | 4992 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4993 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4994 | |
96d887e8 | 4995 | static int |
0d5cff50 | 4996 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4997 | { |
aeb5907d | 4998 | char *scope; |
1509e573 | 4999 | struct cleanup *old_chain; |
aeb5907d JB |
5000 | |
5001 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5002 | return 0; | |
5003 | ||
5004 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5005 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5006 | |
96d887e8 PH |
5007 | /* If the rename has been defined in a package, then it is visible. */ |
5008 | if (is_package_name (scope)) | |
1509e573 JB |
5009 | { |
5010 | do_cleanups (old_chain); | |
5011 | return 0; | |
5012 | } | |
14f9c5c9 | 5013 | |
96d887e8 PH |
5014 | /* Check that the rename is in the current function scope by checking |
5015 | that its name starts with SCOPE. */ | |
76a01679 | 5016 | |
96d887e8 PH |
5017 | /* If the function name starts with "_ada_", it means that it is |
5018 | a library-level function. Strip this prefix before doing the | |
5019 | comparison, as the encoding for the renaming does not contain | |
5020 | this prefix. */ | |
5021 | if (strncmp (function_name, "_ada_", 5) == 0) | |
5022 | function_name += 5; | |
f26caa11 | 5023 | |
1509e573 JB |
5024 | { |
5025 | int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0; | |
5026 | ||
5027 | do_cleanups (old_chain); | |
5028 | return is_invisible; | |
5029 | } | |
f26caa11 PH |
5030 | } |
5031 | ||
aeb5907d JB |
5032 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5033 | is not visible from the function associated with CURRENT_BLOCK or | |
5034 | that is superfluous due to the presence of more specific renaming | |
5035 | information. Places surviving symbols in the initial entries of | |
5036 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5037 | |
5038 | Rationale: | |
aeb5907d JB |
5039 | First, in cases where an object renaming is implemented as a |
5040 | reference variable, GNAT may produce both the actual reference | |
5041 | variable and the renaming encoding. In this case, we discard the | |
5042 | latter. | |
5043 | ||
5044 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5045 | entity. Unfortunately, STABS currently does not support the definition |
5046 | of types that are local to a given lexical block, so all renamings types | |
5047 | are emitted at library level. As a consequence, if an application | |
5048 | contains two renaming entities using the same name, and a user tries to | |
5049 | print the value of one of these entities, the result of the ada symbol | |
5050 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5051 | |
96d887e8 PH |
5052 | This function partially covers for this limitation by attempting to |
5053 | remove from the SYMS list renaming symbols that should be visible | |
5054 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5055 | method with the current information available. The implementation | |
5056 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5057 | ||
5058 | - When the user tries to print a rename in a function while there | |
5059 | is another rename entity defined in a package: Normally, the | |
5060 | rename in the function has precedence over the rename in the | |
5061 | package, so the latter should be removed from the list. This is | |
5062 | currently not the case. | |
5063 | ||
5064 | - This function will incorrectly remove valid renames if | |
5065 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5066 | has been changed by an "Export" pragma. As a consequence, | |
5067 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5068 | |
14f9c5c9 | 5069 | static int |
aeb5907d JB |
5070 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
5071 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
5072 | { |
5073 | struct symbol *current_function; | |
0d5cff50 | 5074 | const char *current_function_name; |
4c4b4cd2 | 5075 | int i; |
aeb5907d JB |
5076 | int is_new_style_renaming; |
5077 | ||
5078 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5079 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5080 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5081 | is_new_style_renaming = 0; |
5082 | for (i = 0; i < nsyms; i += 1) | |
5083 | { | |
5084 | struct symbol *sym = syms[i].sym; | |
270140bd | 5085 | const struct block *block = syms[i].block; |
aeb5907d JB |
5086 | const char *name; |
5087 | const char *suffix; | |
5088 | ||
5089 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5090 | continue; | |
5091 | name = SYMBOL_LINKAGE_NAME (sym); | |
5092 | suffix = strstr (name, "___XR"); | |
5093 | ||
5094 | if (suffix != NULL) | |
5095 | { | |
5096 | int name_len = suffix - name; | |
5097 | int j; | |
5b4ee69b | 5098 | |
aeb5907d JB |
5099 | is_new_style_renaming = 1; |
5100 | for (j = 0; j < nsyms; j += 1) | |
5101 | if (i != j && syms[j].sym != NULL | |
5102 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
5103 | name_len) == 0 | |
5104 | && block == syms[j].block) | |
5105 | syms[j].sym = NULL; | |
5106 | } | |
5107 | } | |
5108 | if (is_new_style_renaming) | |
5109 | { | |
5110 | int j, k; | |
5111 | ||
5112 | for (j = k = 0; j < nsyms; j += 1) | |
5113 | if (syms[j].sym != NULL) | |
5114 | { | |
5115 | syms[k] = syms[j]; | |
5116 | k += 1; | |
5117 | } | |
5118 | return k; | |
5119 | } | |
4c4b4cd2 PH |
5120 | |
5121 | /* Extract the function name associated to CURRENT_BLOCK. | |
5122 | Abort if unable to do so. */ | |
76a01679 | 5123 | |
4c4b4cd2 PH |
5124 | if (current_block == NULL) |
5125 | return nsyms; | |
76a01679 | 5126 | |
7f0df278 | 5127 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5128 | if (current_function == NULL) |
5129 | return nsyms; | |
5130 | ||
5131 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5132 | if (current_function_name == NULL) | |
5133 | return nsyms; | |
5134 | ||
5135 | /* Check each of the symbols, and remove it from the list if it is | |
5136 | a type corresponding to a renaming that is out of the scope of | |
5137 | the current block. */ | |
5138 | ||
5139 | i = 0; | |
5140 | while (i < nsyms) | |
5141 | { | |
aeb5907d JB |
5142 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
5143 | == ADA_OBJECT_RENAMING | |
5144 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
5145 | { |
5146 | int j; | |
5b4ee69b | 5147 | |
aeb5907d | 5148 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5149 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5150 | nsyms -= 1; |
5151 | } | |
5152 | else | |
5153 | i += 1; | |
5154 | } | |
5155 | ||
5156 | return nsyms; | |
5157 | } | |
5158 | ||
339c13b6 JB |
5159 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5160 | whose name and domain match NAME and DOMAIN respectively. | |
5161 | If no match was found, then extend the search to "enclosing" | |
5162 | routines (in other words, if we're inside a nested function, | |
5163 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5164 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5165 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5166 | |
5167 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5168 | ||
5169 | static void | |
5170 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5171 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5172 | int wild_match_p) |
339c13b6 JB |
5173 | { |
5174 | int block_depth = 0; | |
5175 | ||
5176 | while (block != NULL) | |
5177 | { | |
5178 | block_depth += 1; | |
d0a8ab18 JB |
5179 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5180 | wild_match_p); | |
339c13b6 JB |
5181 | |
5182 | /* If we found a non-function match, assume that's the one. */ | |
5183 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5184 | num_defns_collected (obstackp))) | |
5185 | return; | |
5186 | ||
5187 | block = BLOCK_SUPERBLOCK (block); | |
5188 | } | |
5189 | ||
5190 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5191 | enclosing subprogram. */ | |
5192 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5193 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5194 | } |
5195 | ||
ccefe4c4 | 5196 | /* An object of this type is used as the user_data argument when |
40658b94 | 5197 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5198 | |
40658b94 | 5199 | struct match_data |
ccefe4c4 | 5200 | { |
40658b94 | 5201 | struct objfile *objfile; |
ccefe4c4 | 5202 | struct obstack *obstackp; |
40658b94 PH |
5203 | struct symbol *arg_sym; |
5204 | int found_sym; | |
ccefe4c4 TT |
5205 | }; |
5206 | ||
40658b94 PH |
5207 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
5208 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
5209 | containing the obstack that collects the symbol list, the file that SYM | |
5210 | must come from, a flag indicating whether a non-argument symbol has | |
5211 | been found in the current block, and the last argument symbol | |
5212 | passed in SYM within the current block (if any). When SYM is null, | |
5213 | marking the end of a block, the argument symbol is added if no | |
5214 | other has been found. */ | |
ccefe4c4 | 5215 | |
40658b94 PH |
5216 | static int |
5217 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5218 | { |
40658b94 PH |
5219 | struct match_data *data = (struct match_data *) data0; |
5220 | ||
5221 | if (sym == NULL) | |
5222 | { | |
5223 | if (!data->found_sym && data->arg_sym != NULL) | |
5224 | add_defn_to_vec (data->obstackp, | |
5225 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5226 | block); | |
5227 | data->found_sym = 0; | |
5228 | data->arg_sym = NULL; | |
5229 | } | |
5230 | else | |
5231 | { | |
5232 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5233 | return 0; | |
5234 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5235 | data->arg_sym = sym; | |
5236 | else | |
5237 | { | |
5238 | data->found_sym = 1; | |
5239 | add_defn_to_vec (data->obstackp, | |
5240 | fixup_symbol_section (sym, data->objfile), | |
5241 | block); | |
5242 | } | |
5243 | } | |
5244 | return 0; | |
5245 | } | |
5246 | ||
db230ce3 JB |
5247 | /* Implements compare_names, but only applying the comparision using |
5248 | the given CASING. */ | |
5b4ee69b | 5249 | |
40658b94 | 5250 | static int |
db230ce3 JB |
5251 | compare_names_with_case (const char *string1, const char *string2, |
5252 | enum case_sensitivity casing) | |
40658b94 PH |
5253 | { |
5254 | while (*string1 != '\0' && *string2 != '\0') | |
5255 | { | |
db230ce3 JB |
5256 | char c1, c2; |
5257 | ||
40658b94 PH |
5258 | if (isspace (*string1) || isspace (*string2)) |
5259 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5260 | |
5261 | if (casing == case_sensitive_off) | |
5262 | { | |
5263 | c1 = tolower (*string1); | |
5264 | c2 = tolower (*string2); | |
5265 | } | |
5266 | else | |
5267 | { | |
5268 | c1 = *string1; | |
5269 | c2 = *string2; | |
5270 | } | |
5271 | if (c1 != c2) | |
40658b94 | 5272 | break; |
db230ce3 | 5273 | |
40658b94 PH |
5274 | string1 += 1; |
5275 | string2 += 1; | |
5276 | } | |
db230ce3 | 5277 | |
40658b94 PH |
5278 | switch (*string1) |
5279 | { | |
5280 | case '(': | |
5281 | return strcmp_iw_ordered (string1, string2); | |
5282 | case '_': | |
5283 | if (*string2 == '\0') | |
5284 | { | |
052874e8 | 5285 | if (is_name_suffix (string1)) |
40658b94 PH |
5286 | return 0; |
5287 | else | |
1a1d5513 | 5288 | return 1; |
40658b94 | 5289 | } |
dbb8534f | 5290 | /* FALLTHROUGH */ |
40658b94 PH |
5291 | default: |
5292 | if (*string2 == '(') | |
5293 | return strcmp_iw_ordered (string1, string2); | |
5294 | else | |
db230ce3 JB |
5295 | { |
5296 | if (casing == case_sensitive_off) | |
5297 | return tolower (*string1) - tolower (*string2); | |
5298 | else | |
5299 | return *string1 - *string2; | |
5300 | } | |
40658b94 | 5301 | } |
ccefe4c4 TT |
5302 | } |
5303 | ||
db230ce3 JB |
5304 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5305 | Compatible with strcmp_iw_ordered in that... | |
5306 | ||
5307 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5308 | ||
5309 | ... implies... | |
5310 | ||
5311 | compare_names (STRING1, STRING2) <= 0 | |
5312 | ||
5313 | (they may differ as to what symbols compare equal). */ | |
5314 | ||
5315 | static int | |
5316 | compare_names (const char *string1, const char *string2) | |
5317 | { | |
5318 | int result; | |
5319 | ||
5320 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5321 | a case-insensitive comparison first, and only resort to | |
5322 | a second, case-sensitive, comparison if the first one was | |
5323 | not sufficient to differentiate the two strings. */ | |
5324 | ||
5325 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5326 | if (result == 0) | |
5327 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5328 | ||
5329 | return result; | |
5330 | } | |
5331 | ||
339c13b6 JB |
5332 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5333 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5334 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5335 | ||
5336 | static void | |
40658b94 PH |
5337 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5338 | domain_enum domain, int global, | |
5339 | int is_wild_match) | |
339c13b6 JB |
5340 | { |
5341 | struct objfile *objfile; | |
40658b94 | 5342 | struct match_data data; |
339c13b6 | 5343 | |
6475f2fe | 5344 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5345 | data.obstackp = obstackp; |
339c13b6 | 5346 | |
ccefe4c4 | 5347 | ALL_OBJFILES (objfile) |
40658b94 PH |
5348 | { |
5349 | data.objfile = objfile; | |
5350 | ||
5351 | if (is_wild_match) | |
4186eb54 KS |
5352 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5353 | aux_add_nonlocal_symbols, &data, | |
5354 | wild_match, NULL); | |
40658b94 | 5355 | else |
4186eb54 KS |
5356 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5357 | aux_add_nonlocal_symbols, &data, | |
5358 | full_match, compare_names); | |
40658b94 PH |
5359 | } |
5360 | ||
5361 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5362 | { | |
5363 | ALL_OBJFILES (objfile) | |
5364 | { | |
5365 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5366 | strcpy (name1, "_ada_"); | |
5367 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5368 | data.objfile = objfile; | |
ade7ed9e DE |
5369 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5370 | global, | |
0963b4bd MS |
5371 | aux_add_nonlocal_symbols, |
5372 | &data, | |
40658b94 PH |
5373 | full_match, compare_names); |
5374 | } | |
5375 | } | |
339c13b6 JB |
5376 | } |
5377 | ||
4eeaa230 DE |
5378 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5379 | non-zero, enclosing scope and in global scopes, returning the number of | |
5380 | matches. | |
9f88c959 | 5381 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5382 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5383 | any) in which they were found. This vector is transient---good only to |
5384 | the next call of ada_lookup_symbol_list. | |
5385 | ||
5386 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5387 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5388 | is the one match returned (no other matches in that or | |
d9680e73 | 5389 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5390 | surrounding BLOCK0, then these alone are returned. |
5391 | ||
9f88c959 | 5392 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5393 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5394 | |
4eeaa230 DE |
5395 | static int |
5396 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
5397 | domain_enum namespace, | |
5398 | struct ada_symbol_info **results, | |
5399 | int full_search) | |
14f9c5c9 AS |
5400 | { |
5401 | struct symbol *sym; | |
f0c5f9b2 | 5402 | const struct block *block; |
4c4b4cd2 | 5403 | const char *name; |
82ccd55e | 5404 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5405 | int cacheIfUnique; |
4c4b4cd2 | 5406 | int ndefns; |
14f9c5c9 | 5407 | |
4c4b4cd2 PH |
5408 | obstack_free (&symbol_list_obstack, NULL); |
5409 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5410 | |
14f9c5c9 AS |
5411 | cacheIfUnique = 0; |
5412 | ||
5413 | /* Search specified block and its superiors. */ | |
5414 | ||
4c4b4cd2 | 5415 | name = name0; |
f0c5f9b2 | 5416 | block = block0; |
339c13b6 JB |
5417 | |
5418 | /* Special case: If the user specifies a symbol name inside package | |
5419 | Standard, do a non-wild matching of the symbol name without | |
5420 | the "standard__" prefix. This was primarily introduced in order | |
5421 | to allow the user to specifically access the standard exceptions | |
5422 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5423 | is ambiguous (due to the user defining its own Constraint_Error | |
5424 | entity inside its program). */ | |
4c4b4cd2 PH |
5425 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5426 | { | |
4c4b4cd2 PH |
5427 | block = NULL; |
5428 | name = name0 + sizeof ("standard__") - 1; | |
5429 | } | |
5430 | ||
339c13b6 | 5431 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5432 | |
4eeaa230 DE |
5433 | if (block != NULL) |
5434 | { | |
5435 | if (full_search) | |
5436 | { | |
5437 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
5438 | namespace, wild_match_p); | |
5439 | } | |
5440 | else | |
5441 | { | |
5442 | /* In the !full_search case we're are being called by | |
5443 | ada_iterate_over_symbols, and we don't want to search | |
5444 | superblocks. */ | |
5445 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
5446 | namespace, NULL, wild_match_p); | |
5447 | } | |
5448 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5449 | goto done; | |
5450 | } | |
d2e4a39e | 5451 | |
339c13b6 JB |
5452 | /* No non-global symbols found. Check our cache to see if we have |
5453 | already performed this search before. If we have, then return | |
5454 | the same result. */ | |
5455 | ||
14f9c5c9 | 5456 | cacheIfUnique = 1; |
2570f2b7 | 5457 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5458 | { |
5459 | if (sym != NULL) | |
2570f2b7 | 5460 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5461 | goto done; |
5462 | } | |
14f9c5c9 | 5463 | |
339c13b6 JB |
5464 | /* Search symbols from all global blocks. */ |
5465 | ||
40658b94 | 5466 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5467 | wild_match_p); |
d2e4a39e | 5468 | |
4c4b4cd2 | 5469 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5470 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5471 | |
4c4b4cd2 | 5472 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5473 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5474 | wild_match_p); |
14f9c5c9 | 5475 | |
4c4b4cd2 PH |
5476 | done: |
5477 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5478 | *results = defns_collected (&symbol_list_obstack, 1); | |
5479 | ||
5480 | ndefns = remove_extra_symbols (*results, ndefns); | |
5481 | ||
2ad01556 | 5482 | if (ndefns == 0 && full_search) |
2570f2b7 | 5483 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5484 | |
2ad01556 | 5485 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5486 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5487 | |
aeb5907d | 5488 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5489 | |
14f9c5c9 AS |
5490 | return ndefns; |
5491 | } | |
5492 | ||
4eeaa230 DE |
5493 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5494 | in global scopes, returning the number of matches, and setting *RESULTS | |
5495 | to a vector of (SYM,BLOCK) tuples. | |
5496 | See ada_lookup_symbol_list_worker for further details. */ | |
5497 | ||
5498 | int | |
5499 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
5500 | domain_enum domain, struct ada_symbol_info **results) | |
5501 | { | |
5502 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5503 | } | |
5504 | ||
5505 | /* Implementation of the la_iterate_over_symbols method. */ | |
5506 | ||
5507 | static void | |
5508 | ada_iterate_over_symbols (const struct block *block, | |
5509 | const char *name, domain_enum domain, | |
5510 | symbol_found_callback_ftype *callback, | |
5511 | void *data) | |
5512 | { | |
5513 | int ndefs, i; | |
5514 | struct ada_symbol_info *results; | |
5515 | ||
5516 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5517 | for (i = 0; i < ndefs; ++i) | |
5518 | { | |
5519 | if (! (*callback) (results[i].sym, data)) | |
5520 | break; | |
5521 | } | |
5522 | } | |
5523 | ||
f8eba3c6 TT |
5524 | /* If NAME is the name of an entity, return a string that should |
5525 | be used to look that entity up in Ada units. This string should | |
5526 | be deallocated after use using xfree. | |
5527 | ||
5528 | NAME can have any form that the "break" or "print" commands might | |
5529 | recognize. In other words, it does not have to be the "natural" | |
5530 | name, or the "encoded" name. */ | |
5531 | ||
5532 | char * | |
5533 | ada_name_for_lookup (const char *name) | |
5534 | { | |
5535 | char *canon; | |
5536 | int nlen = strlen (name); | |
5537 | ||
5538 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5539 | { | |
5540 | canon = xmalloc (nlen - 1); | |
5541 | memcpy (canon, name + 1, nlen - 2); | |
5542 | canon[nlen - 2] = '\0'; | |
5543 | } | |
5544 | else | |
5545 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5546 | return canon; | |
5547 | } | |
5548 | ||
4e5c77fe JB |
5549 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5550 | to 1, but choosing the first symbol found if there are multiple | |
5551 | choices. | |
5552 | ||
5e2336be JB |
5553 | The result is stored in *INFO, which must be non-NULL. |
5554 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5555 | |
5556 | void | |
5557 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5558 | domain_enum namespace, | |
5e2336be | 5559 | struct ada_symbol_info *info) |
14f9c5c9 | 5560 | { |
4c4b4cd2 | 5561 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5562 | int n_candidates; |
5563 | ||
5e2336be JB |
5564 | gdb_assert (info != NULL); |
5565 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe | 5566 | |
4eeaa230 | 5567 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); |
14f9c5c9 | 5568 | if (n_candidates == 0) |
4e5c77fe | 5569 | return; |
4c4b4cd2 | 5570 | |
5e2336be JB |
5571 | *info = candidates[0]; |
5572 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5573 | } |
aeb5907d JB |
5574 | |
5575 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5576 | scope and in global scopes, or NULL if none. NAME is folded and | |
5577 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5578 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5579 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5580 | ||
aeb5907d JB |
5581 | struct symbol * |
5582 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5583 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5584 | { |
5e2336be | 5585 | struct ada_symbol_info info; |
4e5c77fe | 5586 | |
aeb5907d JB |
5587 | if (is_a_field_of_this != NULL) |
5588 | *is_a_field_of_this = 0; | |
5589 | ||
4e5c77fe | 5590 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5591 | block0, namespace, &info); |
5592 | return info.sym; | |
4c4b4cd2 | 5593 | } |
14f9c5c9 | 5594 | |
4c4b4cd2 | 5595 | static struct symbol * |
f606139a DE |
5596 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5597 | const char *name, | |
76a01679 | 5598 | const struct block *block, |
21b556f4 | 5599 | const domain_enum domain) |
4c4b4cd2 | 5600 | { |
04dccad0 JB |
5601 | struct symbol *sym; |
5602 | ||
5603 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
5604 | if (sym != NULL) | |
5605 | return sym; | |
5606 | ||
5607 | /* If we haven't found a match at this point, try the primitive | |
5608 | types. In other languages, this search is performed before | |
5609 | searching for global symbols in order to short-circuit that | |
5610 | global-symbol search if it happens that the name corresponds | |
5611 | to a primitive type. But we cannot do the same in Ada, because | |
5612 | it is perfectly legitimate for a program to declare a type which | |
5613 | has the same name as a standard type. If looking up a type in | |
5614 | that situation, we have traditionally ignored the primitive type | |
5615 | in favor of user-defined types. This is why, unlike most other | |
5616 | languages, we search the primitive types this late and only after | |
5617 | having searched the global symbols without success. */ | |
5618 | ||
5619 | if (domain == VAR_DOMAIN) | |
5620 | { | |
5621 | struct gdbarch *gdbarch; | |
5622 | ||
5623 | if (block == NULL) | |
5624 | gdbarch = target_gdbarch (); | |
5625 | else | |
5626 | gdbarch = block_gdbarch (block); | |
5627 | sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); | |
5628 | if (sym != NULL) | |
5629 | return sym; | |
5630 | } | |
5631 | ||
5632 | return NULL; | |
14f9c5c9 AS |
5633 | } |
5634 | ||
5635 | ||
4c4b4cd2 PH |
5636 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5637 | that is to be ignored for matching purposes. Suffixes of parallel | |
5638 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5639 | are given by any of the regular expressions: |
4c4b4cd2 | 5640 | |
babe1480 JB |
5641 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5642 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5643 | TKB [subprogram suffix for task bodies] |
babe1480 | 5644 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5645 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5646 | |
5647 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5648 | match is performed. This sequence is used to differentiate homonyms, | |
5649 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5650 | |
14f9c5c9 | 5651 | static int |
d2e4a39e | 5652 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5653 | { |
5654 | int k; | |
4c4b4cd2 PH |
5655 | const char *matching; |
5656 | const int len = strlen (str); | |
5657 | ||
babe1480 JB |
5658 | /* Skip optional leading __[0-9]+. */ |
5659 | ||
4c4b4cd2 PH |
5660 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5661 | { | |
babe1480 JB |
5662 | str += 3; |
5663 | while (isdigit (str[0])) | |
5664 | str += 1; | |
4c4b4cd2 | 5665 | } |
babe1480 JB |
5666 | |
5667 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5668 | |
babe1480 | 5669 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5670 | { |
babe1480 | 5671 | matching = str + 1; |
4c4b4cd2 PH |
5672 | while (isdigit (matching[0])) |
5673 | matching += 1; | |
5674 | if (matching[0] == '\0') | |
5675 | return 1; | |
5676 | } | |
5677 | ||
5678 | /* ___[0-9]+ */ | |
babe1480 | 5679 | |
4c4b4cd2 PH |
5680 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5681 | { | |
5682 | matching = str + 3; | |
5683 | while (isdigit (matching[0])) | |
5684 | matching += 1; | |
5685 | if (matching[0] == '\0') | |
5686 | return 1; | |
5687 | } | |
5688 | ||
9ac7f98e JB |
5689 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5690 | ||
5691 | if (strcmp (str, "TKB") == 0) | |
5692 | return 1; | |
5693 | ||
529cad9c PH |
5694 | #if 0 |
5695 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5696 | with a N at the end. Unfortunately, the compiler uses the same |
5697 | convention for other internal types it creates. So treating | |
529cad9c | 5698 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5699 | some regressions. For instance, consider the case of an enumerated |
5700 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5701 | name ends with N. |
5702 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5703 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5704 | to be something like "_N" instead. In the meantime, do not do |
5705 | the following check. */ | |
5706 | /* Protected Object Subprograms */ | |
5707 | if (len == 1 && str [0] == 'N') | |
5708 | return 1; | |
5709 | #endif | |
5710 | ||
5711 | /* _E[0-9]+[bs]$ */ | |
5712 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5713 | { | |
5714 | matching = str + 3; | |
5715 | while (isdigit (matching[0])) | |
5716 | matching += 1; | |
5717 | if ((matching[0] == 'b' || matching[0] == 's') | |
5718 | && matching [1] == '\0') | |
5719 | return 1; | |
5720 | } | |
5721 | ||
4c4b4cd2 PH |
5722 | /* ??? We should not modify STR directly, as we are doing below. This |
5723 | is fine in this case, but may become problematic later if we find | |
5724 | that this alternative did not work, and want to try matching | |
5725 | another one from the begining of STR. Since we modified it, we | |
5726 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5727 | if (str[0] == 'X') |
5728 | { | |
5729 | str += 1; | |
d2e4a39e | 5730 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5731 | { |
5732 | if (str[0] != 'n' && str[0] != 'b') | |
5733 | return 0; | |
5734 | str += 1; | |
5735 | } | |
14f9c5c9 | 5736 | } |
babe1480 | 5737 | |
14f9c5c9 AS |
5738 | if (str[0] == '\000') |
5739 | return 1; | |
babe1480 | 5740 | |
d2e4a39e | 5741 | if (str[0] == '_') |
14f9c5c9 AS |
5742 | { |
5743 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5744 | return 0; |
d2e4a39e | 5745 | if (str[2] == '_') |
4c4b4cd2 | 5746 | { |
61ee279c PH |
5747 | if (strcmp (str + 3, "JM") == 0) |
5748 | return 1; | |
5749 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5750 | the LJM suffix in favor of the JM one. But we will | |
5751 | still accept LJM as a valid suffix for a reasonable | |
5752 | amount of time, just to allow ourselves to debug programs | |
5753 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5754 | if (strcmp (str + 3, "LJM") == 0) |
5755 | return 1; | |
5756 | if (str[3] != 'X') | |
5757 | return 0; | |
1265e4aa JB |
5758 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5759 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5760 | return 1; |
5761 | if (str[4] == 'R' && str[5] != 'T') | |
5762 | return 1; | |
5763 | return 0; | |
5764 | } | |
5765 | if (!isdigit (str[2])) | |
5766 | return 0; | |
5767 | for (k = 3; str[k] != '\0'; k += 1) | |
5768 | if (!isdigit (str[k]) && str[k] != '_') | |
5769 | return 0; | |
14f9c5c9 AS |
5770 | return 1; |
5771 | } | |
4c4b4cd2 | 5772 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5773 | { |
4c4b4cd2 PH |
5774 | for (k = 2; str[k] != '\0'; k += 1) |
5775 | if (!isdigit (str[k]) && str[k] != '_') | |
5776 | return 0; | |
14f9c5c9 AS |
5777 | return 1; |
5778 | } | |
5779 | return 0; | |
5780 | } | |
d2e4a39e | 5781 | |
aeb5907d JB |
5782 | /* Return non-zero if the string starting at NAME and ending before |
5783 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5784 | |
5785 | static int | |
5786 | is_valid_name_for_wild_match (const char *name0) | |
5787 | { | |
5788 | const char *decoded_name = ada_decode (name0); | |
5789 | int i; | |
5790 | ||
5823c3ef JB |
5791 | /* If the decoded name starts with an angle bracket, it means that |
5792 | NAME0 does not follow the GNAT encoding format. It should then | |
5793 | not be allowed as a possible wild match. */ | |
5794 | if (decoded_name[0] == '<') | |
5795 | return 0; | |
5796 | ||
529cad9c PH |
5797 | for (i=0; decoded_name[i] != '\0'; i++) |
5798 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5799 | return 0; | |
5800 | ||
5801 | return 1; | |
5802 | } | |
5803 | ||
73589123 PH |
5804 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5805 | that could start a simple name. Assumes that *NAMEP points into | |
5806 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5807 | |
14f9c5c9 | 5808 | static int |
73589123 | 5809 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5810 | { |
73589123 | 5811 | const char *name = *namep; |
5b4ee69b | 5812 | |
5823c3ef | 5813 | while (1) |
14f9c5c9 | 5814 | { |
aa27d0b3 | 5815 | int t0, t1; |
73589123 PH |
5816 | |
5817 | t0 = *name; | |
5818 | if (t0 == '_') | |
5819 | { | |
5820 | t1 = name[1]; | |
5821 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5822 | { | |
5823 | name += 1; | |
5824 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5825 | break; | |
5826 | else | |
5827 | name += 1; | |
5828 | } | |
aa27d0b3 JB |
5829 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5830 | || name[2] == target0)) | |
73589123 PH |
5831 | { |
5832 | name += 2; | |
5833 | break; | |
5834 | } | |
5835 | else | |
5836 | return 0; | |
5837 | } | |
5838 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5839 | name += 1; | |
5840 | else | |
5823c3ef | 5841 | return 0; |
73589123 PH |
5842 | } |
5843 | ||
5844 | *namep = name; | |
5845 | return 1; | |
5846 | } | |
5847 | ||
5848 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5849 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5850 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5851 | ||
5852 | static int | |
5853 | wild_match (const char *name, const char *patn) | |
5854 | { | |
22e048c9 | 5855 | const char *p; |
73589123 PH |
5856 | const char *name0 = name; |
5857 | ||
5858 | while (1) | |
5859 | { | |
5860 | const char *match = name; | |
5861 | ||
5862 | if (*name == *patn) | |
5863 | { | |
5864 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5865 | if (*p != *name) | |
5866 | break; | |
5867 | if (*p == '\0' && is_name_suffix (name)) | |
5868 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5869 | ||
5870 | if (name[-1] == '_') | |
5871 | name -= 1; | |
5872 | } | |
5873 | if (!advance_wild_match (&name, name0, *patn)) | |
5874 | return 1; | |
96d887e8 | 5875 | } |
96d887e8 PH |
5876 | } |
5877 | ||
40658b94 PH |
5878 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5879 | informational suffix. */ | |
5880 | ||
c4d840bd PH |
5881 | static int |
5882 | full_match (const char *sym_name, const char *search_name) | |
5883 | { | |
40658b94 | 5884 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5885 | } |
5886 | ||
5887 | ||
96d887e8 PH |
5888 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5889 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5890 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5891 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5892 | |
5893 | static void | |
5894 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 5895 | const struct block *block, const char *name, |
96d887e8 | 5896 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5897 | int wild) |
96d887e8 | 5898 | { |
8157b174 | 5899 | struct block_iterator iter; |
96d887e8 PH |
5900 | int name_len = strlen (name); |
5901 | /* A matching argument symbol, if any. */ | |
5902 | struct symbol *arg_sym; | |
5903 | /* Set true when we find a matching non-argument symbol. */ | |
5904 | int found_sym; | |
5905 | struct symbol *sym; | |
5906 | ||
5907 | arg_sym = NULL; | |
5908 | found_sym = 0; | |
5909 | if (wild) | |
5910 | { | |
8157b174 TT |
5911 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5912 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5913 | { |
4186eb54 KS |
5914 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5915 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5916 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5917 | { |
2a2d4dc3 AS |
5918 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5919 | continue; | |
5920 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5921 | arg_sym = sym; | |
5922 | else | |
5923 | { | |
76a01679 JB |
5924 | found_sym = 1; |
5925 | add_defn_to_vec (obstackp, | |
5926 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5927 | block); |
76a01679 JB |
5928 | } |
5929 | } | |
5930 | } | |
96d887e8 PH |
5931 | } |
5932 | else | |
5933 | { | |
8157b174 TT |
5934 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5935 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5936 | { |
4186eb54 KS |
5937 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5938 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5939 | { |
c4d840bd PH |
5940 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5941 | { | |
5942 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5943 | arg_sym = sym; | |
5944 | else | |
2a2d4dc3 | 5945 | { |
c4d840bd PH |
5946 | found_sym = 1; |
5947 | add_defn_to_vec (obstackp, | |
5948 | fixup_symbol_section (sym, objfile), | |
5949 | block); | |
2a2d4dc3 | 5950 | } |
c4d840bd | 5951 | } |
76a01679 JB |
5952 | } |
5953 | } | |
96d887e8 PH |
5954 | } |
5955 | ||
5956 | if (!found_sym && arg_sym != NULL) | |
5957 | { | |
76a01679 JB |
5958 | add_defn_to_vec (obstackp, |
5959 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5960 | block); |
96d887e8 PH |
5961 | } |
5962 | ||
5963 | if (!wild) | |
5964 | { | |
5965 | arg_sym = NULL; | |
5966 | found_sym = 0; | |
5967 | ||
5968 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5969 | { |
4186eb54 KS |
5970 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5971 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5972 | { |
5973 | int cmp; | |
5974 | ||
5975 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5976 | if (cmp == 0) | |
5977 | { | |
5978 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5979 | if (cmp == 0) | |
5980 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5981 | name_len); | |
5982 | } | |
5983 | ||
5984 | if (cmp == 0 | |
5985 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5986 | { | |
2a2d4dc3 AS |
5987 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5988 | { | |
5989 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5990 | arg_sym = sym; | |
5991 | else | |
5992 | { | |
5993 | found_sym = 1; | |
5994 | add_defn_to_vec (obstackp, | |
5995 | fixup_symbol_section (sym, objfile), | |
5996 | block); | |
5997 | } | |
5998 | } | |
76a01679 JB |
5999 | } |
6000 | } | |
76a01679 | 6001 | } |
96d887e8 PH |
6002 | |
6003 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6004 | They aren't parameters, right? */ | |
6005 | if (!found_sym && arg_sym != NULL) | |
6006 | { | |
6007 | add_defn_to_vec (obstackp, | |
76a01679 | 6008 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6009 | block); |
96d887e8 PH |
6010 | } |
6011 | } | |
6012 | } | |
6013 | \f | |
41d27058 JB |
6014 | |
6015 | /* Symbol Completion */ | |
6016 | ||
6017 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6018 | name in a form that's appropriate for the completion. The result | |
6019 | does not need to be deallocated, but is only good until the next call. | |
6020 | ||
6021 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6022 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6023 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6024 | in its encoded form. */ |
6025 | ||
6026 | static const char * | |
6027 | symbol_completion_match (const char *sym_name, | |
6028 | const char *text, int text_len, | |
6ea35997 | 6029 | int wild_match_p, int encoded_p) |
41d27058 | 6030 | { |
41d27058 JB |
6031 | const int verbatim_match = (text[0] == '<'); |
6032 | int match = 0; | |
6033 | ||
6034 | if (verbatim_match) | |
6035 | { | |
6036 | /* Strip the leading angle bracket. */ | |
6037 | text = text + 1; | |
6038 | text_len--; | |
6039 | } | |
6040 | ||
6041 | /* First, test against the fully qualified name of the symbol. */ | |
6042 | ||
6043 | if (strncmp (sym_name, text, text_len) == 0) | |
6044 | match = 1; | |
6045 | ||
6ea35997 | 6046 | if (match && !encoded_p) |
41d27058 JB |
6047 | { |
6048 | /* One needed check before declaring a positive match is to verify | |
6049 | that iff we are doing a verbatim match, the decoded version | |
6050 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6051 | is not a suitable completion. */ | |
6052 | const char *sym_name_copy = sym_name; | |
6053 | int has_angle_bracket; | |
6054 | ||
6055 | sym_name = ada_decode (sym_name); | |
6056 | has_angle_bracket = (sym_name[0] == '<'); | |
6057 | match = (has_angle_bracket == verbatim_match); | |
6058 | sym_name = sym_name_copy; | |
6059 | } | |
6060 | ||
6061 | if (match && !verbatim_match) | |
6062 | { | |
6063 | /* When doing non-verbatim match, another check that needs to | |
6064 | be done is to verify that the potentially matching symbol name | |
6065 | does not include capital letters, because the ada-mode would | |
6066 | not be able to understand these symbol names without the | |
6067 | angle bracket notation. */ | |
6068 | const char *tmp; | |
6069 | ||
6070 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6071 | if (*tmp != '\0') | |
6072 | match = 0; | |
6073 | } | |
6074 | ||
6075 | /* Second: Try wild matching... */ | |
6076 | ||
e701b3c0 | 6077 | if (!match && wild_match_p) |
41d27058 JB |
6078 | { |
6079 | /* Since we are doing wild matching, this means that TEXT | |
6080 | may represent an unqualified symbol name. We therefore must | |
6081 | also compare TEXT against the unqualified name of the symbol. */ | |
6082 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6083 | ||
6084 | if (strncmp (sym_name, text, text_len) == 0) | |
6085 | match = 1; | |
6086 | } | |
6087 | ||
6088 | /* Finally: If we found a mach, prepare the result to return. */ | |
6089 | ||
6090 | if (!match) | |
6091 | return NULL; | |
6092 | ||
6093 | if (verbatim_match) | |
6094 | sym_name = add_angle_brackets (sym_name); | |
6095 | ||
6ea35997 | 6096 | if (!encoded_p) |
41d27058 JB |
6097 | sym_name = ada_decode (sym_name); |
6098 | ||
6099 | return sym_name; | |
6100 | } | |
6101 | ||
6102 | /* A companion function to ada_make_symbol_completion_list(). | |
6103 | Check if SYM_NAME represents a symbol which name would be suitable | |
6104 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6105 | it is appended at the end of the given string vector SV. | |
6106 | ||
6107 | ORIG_TEXT is the string original string from the user command | |
6108 | that needs to be completed. WORD is the entire command on which | |
6109 | completion should be performed. These two parameters are used to | |
6110 | determine which part of the symbol name should be added to the | |
6111 | completion vector. | |
c0af1706 | 6112 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6113 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6114 | encoded formed (in which case the completion should also be |
6115 | encoded). */ | |
6116 | ||
6117 | static void | |
d6565258 | 6118 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6119 | const char *sym_name, |
6120 | const char *text, int text_len, | |
6121 | const char *orig_text, const char *word, | |
cb8e9b97 | 6122 | int wild_match_p, int encoded_p) |
41d27058 JB |
6123 | { |
6124 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6125 | wild_match_p, encoded_p); |
41d27058 JB |
6126 | char *completion; |
6127 | ||
6128 | if (match == NULL) | |
6129 | return; | |
6130 | ||
6131 | /* We found a match, so add the appropriate completion to the given | |
6132 | string vector. */ | |
6133 | ||
6134 | if (word == orig_text) | |
6135 | { | |
6136 | completion = xmalloc (strlen (match) + 5); | |
6137 | strcpy (completion, match); | |
6138 | } | |
6139 | else if (word > orig_text) | |
6140 | { | |
6141 | /* Return some portion of sym_name. */ | |
6142 | completion = xmalloc (strlen (match) + 5); | |
6143 | strcpy (completion, match + (word - orig_text)); | |
6144 | } | |
6145 | else | |
6146 | { | |
6147 | /* Return some of ORIG_TEXT plus sym_name. */ | |
6148 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
6149 | strncpy (completion, word, orig_text - word); | |
6150 | completion[orig_text - word] = '\0'; | |
6151 | strcat (completion, match); | |
6152 | } | |
6153 | ||
d6565258 | 6154 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6155 | } |
6156 | ||
ccefe4c4 | 6157 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 6158 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
6159 | struct add_partial_datum |
6160 | { | |
6161 | VEC(char_ptr) **completions; | |
6f937416 | 6162 | const char *text; |
ccefe4c4 | 6163 | int text_len; |
6f937416 PA |
6164 | const char *text0; |
6165 | const char *word; | |
ccefe4c4 TT |
6166 | int wild_match; |
6167 | int encoded; | |
6168 | }; | |
6169 | ||
bb4142cf DE |
6170 | /* A callback for expand_symtabs_matching. */ |
6171 | ||
7b08b9eb | 6172 | static int |
bb4142cf | 6173 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 TT |
6174 | { |
6175 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
6176 | |
6177 | return symbol_completion_match (name, data->text, data->text_len, | |
6178 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
6179 | } |
6180 | ||
49c4e619 TT |
6181 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6182 | the entire command on which completion is made. */ | |
41d27058 | 6183 | |
49c4e619 | 6184 | static VEC (char_ptr) * |
6f937416 PA |
6185 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6186 | enum type_code code) | |
41d27058 JB |
6187 | { |
6188 | char *text; | |
6189 | int text_len; | |
b1ed564a JB |
6190 | int wild_match_p; |
6191 | int encoded_p; | |
2ba95b9b | 6192 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 | 6193 | struct symbol *sym; |
43f3e411 | 6194 | struct compunit_symtab *s; |
41d27058 JB |
6195 | struct minimal_symbol *msymbol; |
6196 | struct objfile *objfile; | |
3977b71f | 6197 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6198 | int i; |
8157b174 | 6199 | struct block_iterator iter; |
b8fea896 | 6200 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6201 | |
2f68a895 TT |
6202 | gdb_assert (code == TYPE_CODE_UNDEF); |
6203 | ||
41d27058 JB |
6204 | if (text0[0] == '<') |
6205 | { | |
6206 | text = xstrdup (text0); | |
6207 | make_cleanup (xfree, text); | |
6208 | text_len = strlen (text); | |
b1ed564a JB |
6209 | wild_match_p = 0; |
6210 | encoded_p = 1; | |
41d27058 JB |
6211 | } |
6212 | else | |
6213 | { | |
6214 | text = xstrdup (ada_encode (text0)); | |
6215 | make_cleanup (xfree, text); | |
6216 | text_len = strlen (text); | |
6217 | for (i = 0; i < text_len; i++) | |
6218 | text[i] = tolower (text[i]); | |
6219 | ||
b1ed564a | 6220 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6221 | /* If the name contains a ".", then the user is entering a fully |
6222 | qualified entity name, and the match must not be done in wild | |
6223 | mode. Similarly, if the user wants to complete what looks like | |
6224 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6225 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6226 | } |
6227 | ||
6228 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 6229 | { |
ccefe4c4 TT |
6230 | struct add_partial_datum data; |
6231 | ||
6232 | data.completions = &completions; | |
6233 | data.text = text; | |
6234 | data.text_len = text_len; | |
6235 | data.text0 = text0; | |
6236 | data.word = word; | |
b1ed564a JB |
6237 | data.wild_match = wild_match_p; |
6238 | data.encoded = encoded_p; | |
bb4142cf DE |
6239 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN, |
6240 | &data); | |
41d27058 JB |
6241 | } |
6242 | ||
6243 | /* At this point scan through the misc symbol vectors and add each | |
6244 | symbol you find to the list. Eventually we want to ignore | |
6245 | anything that isn't a text symbol (everything else will be | |
6246 | handled by the psymtab code above). */ | |
6247 | ||
6248 | ALL_MSYMBOLS (objfile, msymbol) | |
6249 | { | |
6250 | QUIT; | |
efd66ac6 | 6251 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6252 | text, text_len, text0, word, wild_match_p, |
6253 | encoded_p); | |
41d27058 JB |
6254 | } |
6255 | ||
6256 | /* Search upwards from currently selected frame (so that we can | |
6257 | complete on local vars. */ | |
6258 | ||
6259 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6260 | { | |
6261 | if (!BLOCK_SUPERBLOCK (b)) | |
6262 | surrounding_static_block = b; /* For elmin of dups */ | |
6263 | ||
6264 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6265 | { | |
d6565258 | 6266 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6267 | text, text_len, text0, word, |
b1ed564a | 6268 | wild_match_p, encoded_p); |
41d27058 JB |
6269 | } |
6270 | } | |
6271 | ||
6272 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6273 | symbols which match. */ |
41d27058 | 6274 | |
43f3e411 | 6275 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6276 | { |
6277 | QUIT; | |
43f3e411 | 6278 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6279 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6280 | { | |
d6565258 | 6281 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6282 | text, text_len, text0, word, |
b1ed564a | 6283 | wild_match_p, encoded_p); |
41d27058 JB |
6284 | } |
6285 | } | |
6286 | ||
43f3e411 | 6287 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6288 | { |
6289 | QUIT; | |
43f3e411 | 6290 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6291 | /* Don't do this block twice. */ |
6292 | if (b == surrounding_static_block) | |
6293 | continue; | |
6294 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6295 | { | |
d6565258 | 6296 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6297 | text, text_len, text0, word, |
b1ed564a | 6298 | wild_match_p, encoded_p); |
41d27058 JB |
6299 | } |
6300 | } | |
6301 | ||
b8fea896 | 6302 | do_cleanups (old_chain); |
49c4e619 | 6303 | return completions; |
41d27058 JB |
6304 | } |
6305 | ||
963a6417 | 6306 | /* Field Access */ |
96d887e8 | 6307 | |
73fb9985 JB |
6308 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6309 | for tagged types. */ | |
6310 | ||
6311 | static int | |
6312 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6313 | { | |
0d5cff50 | 6314 | const char *name; |
73fb9985 JB |
6315 | |
6316 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6317 | return 0; | |
6318 | ||
6319 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6320 | if (name == NULL) | |
6321 | return 0; | |
6322 | ||
6323 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6324 | } | |
6325 | ||
ac4a2da4 JG |
6326 | /* Return non-zero if TYPE is an interface tag. */ |
6327 | ||
6328 | static int | |
6329 | ada_is_interface_tag (struct type *type) | |
6330 | { | |
6331 | const char *name = TYPE_NAME (type); | |
6332 | ||
6333 | if (name == NULL) | |
6334 | return 0; | |
6335 | ||
6336 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6337 | } | |
6338 | ||
963a6417 PH |
6339 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6340 | to be invisible to users. */ | |
96d887e8 | 6341 | |
963a6417 PH |
6342 | int |
6343 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6344 | { |
963a6417 PH |
6345 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6346 | return 1; | |
ffde82bf | 6347 | |
73fb9985 JB |
6348 | /* Check the name of that field. */ |
6349 | { | |
6350 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6351 | ||
6352 | /* Anonymous field names should not be printed. | |
6353 | brobecker/2007-02-20: I don't think this can actually happen | |
6354 | but we don't want to print the value of annonymous fields anyway. */ | |
6355 | if (name == NULL) | |
6356 | return 1; | |
6357 | ||
ffde82bf JB |
6358 | /* Normally, fields whose name start with an underscore ("_") |
6359 | are fields that have been internally generated by the compiler, | |
6360 | and thus should not be printed. The "_parent" field is special, | |
6361 | however: This is a field internally generated by the compiler | |
6362 | for tagged types, and it contains the components inherited from | |
6363 | the parent type. This field should not be printed as is, but | |
6364 | should not be ignored either. */ | |
73fb9985 JB |
6365 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
6366 | return 1; | |
6367 | } | |
6368 | ||
ac4a2da4 JG |
6369 | /* If this is the dispatch table of a tagged type or an interface tag, |
6370 | then ignore. */ | |
73fb9985 | 6371 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6372 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6373 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6374 | return 1; |
6375 | ||
6376 | /* Not a special field, so it should not be ignored. */ | |
6377 | return 0; | |
963a6417 | 6378 | } |
96d887e8 | 6379 | |
963a6417 | 6380 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6381 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6382 | |
963a6417 PH |
6383 | int |
6384 | ada_is_tagged_type (struct type *type, int refok) | |
6385 | { | |
6386 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6387 | } | |
96d887e8 | 6388 | |
963a6417 | 6389 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6390 | |
963a6417 PH |
6391 | int |
6392 | ada_is_tag_type (struct type *type) | |
6393 | { | |
6394 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6395 | return 0; | |
6396 | else | |
96d887e8 | 6397 | { |
963a6417 | 6398 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6399 | |
963a6417 PH |
6400 | return (name != NULL |
6401 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6402 | } |
96d887e8 PH |
6403 | } |
6404 | ||
963a6417 | 6405 | /* The type of the tag on VAL. */ |
76a01679 | 6406 | |
963a6417 PH |
6407 | struct type * |
6408 | ada_tag_type (struct value *val) | |
96d887e8 | 6409 | { |
df407dfe | 6410 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6411 | } |
96d887e8 | 6412 | |
b50d69b5 JG |
6413 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6414 | retired at Ada 05). */ | |
6415 | ||
6416 | static int | |
6417 | is_ada95_tag (struct value *tag) | |
6418 | { | |
6419 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6420 | } | |
6421 | ||
963a6417 | 6422 | /* The value of the tag on VAL. */ |
96d887e8 | 6423 | |
963a6417 PH |
6424 | struct value * |
6425 | ada_value_tag (struct value *val) | |
6426 | { | |
03ee6b2e | 6427 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6428 | } |
6429 | ||
963a6417 PH |
6430 | /* The value of the tag on the object of type TYPE whose contents are |
6431 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6432 | ADDRESS. */ |
96d887e8 | 6433 | |
963a6417 | 6434 | static struct value * |
10a2c479 | 6435 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6436 | const gdb_byte *valaddr, |
963a6417 | 6437 | CORE_ADDR address) |
96d887e8 | 6438 | { |
b5385fc0 | 6439 | int tag_byte_offset; |
963a6417 | 6440 | struct type *tag_type; |
5b4ee69b | 6441 | |
963a6417 | 6442 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6443 | NULL, NULL, NULL)) |
96d887e8 | 6444 | { |
fc1a4b47 | 6445 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6446 | ? NULL |
6447 | : valaddr + tag_byte_offset); | |
963a6417 | 6448 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6449 | |
963a6417 | 6450 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6451 | } |
963a6417 PH |
6452 | return NULL; |
6453 | } | |
96d887e8 | 6454 | |
963a6417 PH |
6455 | static struct type * |
6456 | type_from_tag (struct value *tag) | |
6457 | { | |
6458 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6459 | |
963a6417 PH |
6460 | if (type_name != NULL) |
6461 | return ada_find_any_type (ada_encode (type_name)); | |
6462 | return NULL; | |
6463 | } | |
96d887e8 | 6464 | |
b50d69b5 JG |
6465 | /* Given a value OBJ of a tagged type, return a value of this |
6466 | type at the base address of the object. The base address, as | |
6467 | defined in Ada.Tags, it is the address of the primary tag of | |
6468 | the object, and therefore where the field values of its full | |
6469 | view can be fetched. */ | |
6470 | ||
6471 | struct value * | |
6472 | ada_tag_value_at_base_address (struct value *obj) | |
6473 | { | |
6474 | volatile struct gdb_exception e; | |
6475 | struct value *val; | |
6476 | LONGEST offset_to_top = 0; | |
6477 | struct type *ptr_type, *obj_type; | |
6478 | struct value *tag; | |
6479 | CORE_ADDR base_address; | |
6480 | ||
6481 | obj_type = value_type (obj); | |
6482 | ||
6483 | /* It is the responsability of the caller to deref pointers. */ | |
6484 | ||
6485 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6486 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6487 | return obj; | |
6488 | ||
6489 | tag = ada_value_tag (obj); | |
6490 | if (!tag) | |
6491 | return obj; | |
6492 | ||
6493 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6494 | ||
6495 | if (is_ada95_tag (tag)) | |
6496 | return obj; | |
6497 | ||
6498 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6499 | ptr_type = lookup_pointer_type (ptr_type); | |
6500 | val = value_cast (ptr_type, tag); | |
6501 | if (!val) | |
6502 | return obj; | |
6503 | ||
6504 | /* It is perfectly possible that an exception be raised while | |
6505 | trying to determine the base address, just like for the tag; | |
6506 | see ada_tag_name for more details. We do not print the error | |
6507 | message for the same reason. */ | |
6508 | ||
6509 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6510 | { | |
6511 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6512 | } | |
6513 | ||
6514 | if (e.reason < 0) | |
6515 | return obj; | |
6516 | ||
6517 | /* If offset is null, nothing to do. */ | |
6518 | ||
6519 | if (offset_to_top == 0) | |
6520 | return obj; | |
6521 | ||
6522 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6523 | is not quite clear from the documentation. So do nothing for | |
6524 | now. */ | |
6525 | ||
6526 | if (offset_to_top == -1) | |
6527 | return obj; | |
6528 | ||
6529 | base_address = value_address (obj) - offset_to_top; | |
6530 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6531 | ||
6532 | /* Make sure that we have a proper tag at the new address. | |
6533 | Otherwise, offset_to_top is bogus (which can happen when | |
6534 | the object is not initialized yet). */ | |
6535 | ||
6536 | if (!tag) | |
6537 | return obj; | |
6538 | ||
6539 | obj_type = type_from_tag (tag); | |
6540 | ||
6541 | if (!obj_type) | |
6542 | return obj; | |
6543 | ||
6544 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6545 | } | |
6546 | ||
1b611343 JB |
6547 | /* Return the "ada__tags__type_specific_data" type. */ |
6548 | ||
6549 | static struct type * | |
6550 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6551 | { |
1b611343 | 6552 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6553 | |
1b611343 JB |
6554 | if (data->tsd_type == 0) |
6555 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6556 | return data->tsd_type; | |
6557 | } | |
529cad9c | 6558 | |
1b611343 JB |
6559 | /* Return the TSD (type-specific data) associated to the given TAG. |
6560 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6561 | |
1b611343 | 6562 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6563 | |
1b611343 JB |
6564 | static struct value * |
6565 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6566 | { |
4c4b4cd2 | 6567 | struct value *val; |
1b611343 | 6568 | struct type *type; |
5b4ee69b | 6569 | |
1b611343 JB |
6570 | /* First option: The TSD is simply stored as a field of our TAG. |
6571 | Only older versions of GNAT would use this format, but we have | |
6572 | to test it first, because there are no visible markers for | |
6573 | the current approach except the absence of that field. */ | |
529cad9c | 6574 | |
1b611343 JB |
6575 | val = ada_value_struct_elt (tag, "tsd", 1); |
6576 | if (val) | |
6577 | return val; | |
e802dbe0 | 6578 | |
1b611343 JB |
6579 | /* Try the second representation for the dispatch table (in which |
6580 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6581 | and instead the tsd pointer is stored just before the dispatch | |
6582 | table. */ | |
e802dbe0 | 6583 | |
1b611343 JB |
6584 | type = ada_get_tsd_type (current_inferior()); |
6585 | if (type == NULL) | |
6586 | return NULL; | |
6587 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6588 | val = value_cast (type, tag); | |
6589 | if (val == NULL) | |
6590 | return NULL; | |
6591 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6592 | } |
6593 | ||
1b611343 JB |
6594 | /* Given the TSD of a tag (type-specific data), return a string |
6595 | containing the name of the associated type. | |
6596 | ||
6597 | The returned value is good until the next call. May return NULL | |
6598 | if we are unable to determine the tag name. */ | |
6599 | ||
6600 | static char * | |
6601 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6602 | { |
529cad9c PH |
6603 | static char name[1024]; |
6604 | char *p; | |
1b611343 | 6605 | struct value *val; |
529cad9c | 6606 | |
1b611343 | 6607 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6608 | if (val == NULL) |
1b611343 | 6609 | return NULL; |
4c4b4cd2 PH |
6610 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6611 | for (p = name; *p != '\0'; p += 1) | |
6612 | if (isalpha (*p)) | |
6613 | *p = tolower (*p); | |
1b611343 | 6614 | return name; |
4c4b4cd2 PH |
6615 | } |
6616 | ||
6617 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6618 | a C string. |
6619 | ||
6620 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6621 | determine the name of that tag. The result is good until the next | |
6622 | call. */ | |
4c4b4cd2 PH |
6623 | |
6624 | const char * | |
6625 | ada_tag_name (struct value *tag) | |
6626 | { | |
1b611343 JB |
6627 | volatile struct gdb_exception e; |
6628 | char *name = NULL; | |
5b4ee69b | 6629 | |
df407dfe | 6630 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6631 | return NULL; |
1b611343 JB |
6632 | |
6633 | /* It is perfectly possible that an exception be raised while trying | |
6634 | to determine the TAG's name, even under normal circumstances: | |
6635 | The associated variable may be uninitialized or corrupted, for | |
6636 | instance. We do not let any exception propagate past this point. | |
6637 | instead we return NULL. | |
6638 | ||
6639 | We also do not print the error message either (which often is very | |
6640 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6641 | the caller print a more meaningful message if necessary. */ | |
6642 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6643 | { | |
6644 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6645 | ||
6646 | if (tsd != NULL) | |
6647 | name = ada_tag_name_from_tsd (tsd); | |
6648 | } | |
6649 | ||
6650 | return name; | |
4c4b4cd2 PH |
6651 | } |
6652 | ||
6653 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6654 | |
d2e4a39e | 6655 | struct type * |
ebf56fd3 | 6656 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6657 | { |
6658 | int i; | |
6659 | ||
61ee279c | 6660 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6661 | |
6662 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6663 | return NULL; | |
6664 | ||
6665 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6666 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6667 | { |
6668 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6669 | ||
6670 | /* If the _parent field is a pointer, then dereference it. */ | |
6671 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6672 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6673 | /* If there is a parallel XVS type, get the actual base type. */ | |
6674 | parent_type = ada_get_base_type (parent_type); | |
6675 | ||
6676 | return ada_check_typedef (parent_type); | |
6677 | } | |
14f9c5c9 AS |
6678 | |
6679 | return NULL; | |
6680 | } | |
6681 | ||
4c4b4cd2 PH |
6682 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6683 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6684 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6685 | |
6686 | int | |
ebf56fd3 | 6687 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6688 | { |
61ee279c | 6689 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6690 | |
4c4b4cd2 PH |
6691 | return (name != NULL |
6692 | && (strncmp (name, "PARENT", 6) == 0 | |
6693 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6694 | } |
6695 | ||
4c4b4cd2 | 6696 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6697 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6698 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6699 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6700 | structures. */ |
14f9c5c9 AS |
6701 | |
6702 | int | |
ebf56fd3 | 6703 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6704 | { |
d2e4a39e | 6705 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6706 | |
d2e4a39e | 6707 | return (name != NULL |
4c4b4cd2 PH |
6708 | && (strncmp (name, "PARENT", 6) == 0 |
6709 | || strcmp (name, "REP") == 0 | |
6710 | || strncmp (name, "_parent", 7) == 0 | |
6711 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6712 | } |
6713 | ||
4c4b4cd2 PH |
6714 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6715 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6716 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6717 | |
6718 | int | |
ebf56fd3 | 6719 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6720 | { |
d2e4a39e | 6721 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6722 | |
14f9c5c9 | 6723 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6724 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6725 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6726 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6727 | } |
6728 | ||
6729 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6730 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6731 | returns the type of the controlling discriminant for the variant. |
6732 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6733 | |
d2e4a39e | 6734 | struct type * |
ebf56fd3 | 6735 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6736 | { |
d2e4a39e | 6737 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6738 | |
7c964f07 | 6739 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6740 | } |
6741 | ||
4c4b4cd2 | 6742 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6743 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6744 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6745 | |
6746 | int | |
ebf56fd3 | 6747 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6748 | { |
d2e4a39e | 6749 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6750 | |
14f9c5c9 AS |
6751 | return (name != NULL && name[0] == 'O'); |
6752 | } | |
6753 | ||
6754 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6755 | returns the name of the discriminant controlling the variant. |
6756 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6757 | |
d2e4a39e | 6758 | char * |
ebf56fd3 | 6759 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6760 | { |
d2e4a39e | 6761 | static char *result = NULL; |
14f9c5c9 | 6762 | static size_t result_len = 0; |
d2e4a39e AS |
6763 | struct type *type; |
6764 | const char *name; | |
6765 | const char *discrim_end; | |
6766 | const char *discrim_start; | |
14f9c5c9 AS |
6767 | |
6768 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6769 | type = TYPE_TARGET_TYPE (type0); | |
6770 | else | |
6771 | type = type0; | |
6772 | ||
6773 | name = ada_type_name (type); | |
6774 | ||
6775 | if (name == NULL || name[0] == '\000') | |
6776 | return ""; | |
6777 | ||
6778 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6779 | discrim_end -= 1) | |
6780 | { | |
4c4b4cd2 PH |
6781 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6782 | break; | |
14f9c5c9 AS |
6783 | } |
6784 | if (discrim_end == name) | |
6785 | return ""; | |
6786 | ||
d2e4a39e | 6787 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6788 | discrim_start -= 1) |
6789 | { | |
d2e4a39e | 6790 | if (discrim_start == name + 1) |
4c4b4cd2 | 6791 | return ""; |
76a01679 | 6792 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6793 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6794 | || discrim_start[-1] == '.') | |
6795 | break; | |
14f9c5c9 AS |
6796 | } |
6797 | ||
6798 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6799 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6800 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6801 | return result; |
6802 | } | |
6803 | ||
4c4b4cd2 PH |
6804 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6805 | Put the position of the character just past the number scanned in | |
6806 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6807 | Return 1 if there was a valid number at the given position, and 0 | |
6808 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6809 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6810 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6811 | |
6812 | int | |
d2e4a39e | 6813 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6814 | { |
6815 | ULONGEST RU; | |
6816 | ||
d2e4a39e | 6817 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6818 | return 0; |
6819 | ||
4c4b4cd2 | 6820 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6821 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6822 | LONGEST. */ |
14f9c5c9 AS |
6823 | RU = 0; |
6824 | while (isdigit (str[k])) | |
6825 | { | |
d2e4a39e | 6826 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6827 | k += 1; |
6828 | } | |
6829 | ||
d2e4a39e | 6830 | if (str[k] == 'm') |
14f9c5c9 AS |
6831 | { |
6832 | if (R != NULL) | |
4c4b4cd2 | 6833 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6834 | k += 1; |
6835 | } | |
6836 | else if (R != NULL) | |
6837 | *R = (LONGEST) RU; | |
6838 | ||
4c4b4cd2 | 6839 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6840 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6841 | number representable as a LONGEST (although either would probably work | |
6842 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6843 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6844 | |
6845 | if (new_k != NULL) | |
6846 | *new_k = k; | |
6847 | return 1; | |
6848 | } | |
6849 | ||
4c4b4cd2 PH |
6850 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6851 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6852 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6853 | |
d2e4a39e | 6854 | int |
ebf56fd3 | 6855 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6856 | { |
d2e4a39e | 6857 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6858 | int p; |
6859 | ||
6860 | p = 0; | |
6861 | while (1) | |
6862 | { | |
d2e4a39e | 6863 | switch (name[p]) |
4c4b4cd2 PH |
6864 | { |
6865 | case '\0': | |
6866 | return 0; | |
6867 | case 'S': | |
6868 | { | |
6869 | LONGEST W; | |
5b4ee69b | 6870 | |
4c4b4cd2 PH |
6871 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6872 | return 0; | |
6873 | if (val == W) | |
6874 | return 1; | |
6875 | break; | |
6876 | } | |
6877 | case 'R': | |
6878 | { | |
6879 | LONGEST L, U; | |
5b4ee69b | 6880 | |
4c4b4cd2 PH |
6881 | if (!ada_scan_number (name, p + 1, &L, &p) |
6882 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6883 | return 0; | |
6884 | if (val >= L && val <= U) | |
6885 | return 1; | |
6886 | break; | |
6887 | } | |
6888 | case 'O': | |
6889 | return 1; | |
6890 | default: | |
6891 | return 0; | |
6892 | } | |
6893 | } | |
6894 | } | |
6895 | ||
0963b4bd | 6896 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6897 | |
6898 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6899 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6900 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6901 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6902 | |
4c4b4cd2 | 6903 | static struct value * |
d2e4a39e | 6904 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6905 | struct type *arg_type) |
14f9c5c9 | 6906 | { |
14f9c5c9 AS |
6907 | struct type *type; |
6908 | ||
61ee279c | 6909 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6910 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6911 | ||
4c4b4cd2 | 6912 | /* Handle packed fields. */ |
14f9c5c9 AS |
6913 | |
6914 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6915 | { | |
6916 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6917 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6918 | |
0fd88904 | 6919 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6920 | offset + bit_pos / 8, |
6921 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6922 | } |
6923 | else | |
6924 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6925 | } | |
6926 | ||
52ce6436 PH |
6927 | /* Find field with name NAME in object of type TYPE. If found, |
6928 | set the following for each argument that is non-null: | |
6929 | - *FIELD_TYPE_P to the field's type; | |
6930 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6931 | an object of that type; | |
6932 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6933 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6934 | 0 otherwise; | |
6935 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6936 | fields up to but not including the desired field, or by the total | |
6937 | number of fields if not found. A NULL value of NAME never | |
6938 | matches; the function just counts visible fields in this case. | |
6939 | ||
0963b4bd | 6940 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6941 | |
4c4b4cd2 | 6942 | static int |
0d5cff50 | 6943 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6944 | struct type **field_type_p, |
52ce6436 PH |
6945 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6946 | int *index_p) | |
4c4b4cd2 PH |
6947 | { |
6948 | int i; | |
6949 | ||
61ee279c | 6950 | type = ada_check_typedef (type); |
76a01679 | 6951 | |
52ce6436 PH |
6952 | if (field_type_p != NULL) |
6953 | *field_type_p = NULL; | |
6954 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6955 | *byte_offset_p = 0; |
52ce6436 PH |
6956 | if (bit_offset_p != NULL) |
6957 | *bit_offset_p = 0; | |
6958 | if (bit_size_p != NULL) | |
6959 | *bit_size_p = 0; | |
6960 | ||
6961 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6962 | { |
6963 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6964 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6965 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6966 | |
4c4b4cd2 PH |
6967 | if (t_field_name == NULL) |
6968 | continue; | |
6969 | ||
52ce6436 | 6970 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6971 | { |
6972 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6973 | |
52ce6436 PH |
6974 | if (field_type_p != NULL) |
6975 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6976 | if (byte_offset_p != NULL) | |
6977 | *byte_offset_p = fld_offset; | |
6978 | if (bit_offset_p != NULL) | |
6979 | *bit_offset_p = bit_pos % 8; | |
6980 | if (bit_size_p != NULL) | |
6981 | *bit_size_p = bit_size; | |
76a01679 JB |
6982 | return 1; |
6983 | } | |
4c4b4cd2 PH |
6984 | else if (ada_is_wrapper_field (type, i)) |
6985 | { | |
52ce6436 PH |
6986 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6987 | field_type_p, byte_offset_p, bit_offset_p, | |
6988 | bit_size_p, index_p)) | |
76a01679 JB |
6989 | return 1; |
6990 | } | |
4c4b4cd2 PH |
6991 | else if (ada_is_variant_part (type, i)) |
6992 | { | |
52ce6436 PH |
6993 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6994 | fixed type?? */ | |
4c4b4cd2 | 6995 | int j; |
52ce6436 PH |
6996 | struct type *field_type |
6997 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6998 | |
52ce6436 | 6999 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7000 | { |
76a01679 JB |
7001 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7002 | fld_offset | |
7003 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7004 | field_type_p, byte_offset_p, | |
52ce6436 | 7005 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7006 | return 1; |
4c4b4cd2 PH |
7007 | } |
7008 | } | |
52ce6436 PH |
7009 | else if (index_p != NULL) |
7010 | *index_p += 1; | |
4c4b4cd2 PH |
7011 | } |
7012 | return 0; | |
7013 | } | |
7014 | ||
0963b4bd | 7015 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7016 | |
52ce6436 PH |
7017 | static int |
7018 | num_visible_fields (struct type *type) | |
7019 | { | |
7020 | int n; | |
5b4ee69b | 7021 | |
52ce6436 PH |
7022 | n = 0; |
7023 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7024 | return n; | |
7025 | } | |
14f9c5c9 | 7026 | |
4c4b4cd2 | 7027 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7028 | and search in it assuming it has (class) type TYPE. |
7029 | If found, return value, else return NULL. | |
7030 | ||
4c4b4cd2 | 7031 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7032 | |
4c4b4cd2 | 7033 | static struct value * |
d2e4a39e | 7034 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 7035 | struct type *type) |
14f9c5c9 AS |
7036 | { |
7037 | int i; | |
14f9c5c9 | 7038 | |
5b4ee69b | 7039 | type = ada_check_typedef (type); |
52ce6436 | 7040 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7041 | { |
0d5cff50 | 7042 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7043 | |
7044 | if (t_field_name == NULL) | |
4c4b4cd2 | 7045 | continue; |
14f9c5c9 AS |
7046 | |
7047 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7048 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7049 | |
7050 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7051 | { |
0963b4bd | 7052 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7053 | ada_search_struct_field (name, arg, |
7054 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7055 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7056 | |
4c4b4cd2 PH |
7057 | if (v != NULL) |
7058 | return v; | |
7059 | } | |
14f9c5c9 AS |
7060 | |
7061 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7062 | { |
0963b4bd | 7063 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7064 | int j; |
5b4ee69b MS |
7065 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7066 | i)); | |
4c4b4cd2 PH |
7067 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7068 | ||
52ce6436 | 7069 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7070 | { |
0963b4bd MS |
7071 | struct value *v = ada_search_struct_field /* Force line |
7072 | break. */ | |
06d5cf63 JB |
7073 | (name, arg, |
7074 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7075 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7076 | |
4c4b4cd2 PH |
7077 | if (v != NULL) |
7078 | return v; | |
7079 | } | |
7080 | } | |
14f9c5c9 AS |
7081 | } |
7082 | return NULL; | |
7083 | } | |
d2e4a39e | 7084 | |
52ce6436 PH |
7085 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7086 | int, struct type *); | |
7087 | ||
7088 | ||
7089 | /* Return field #INDEX in ARG, where the index is that returned by | |
7090 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7091 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7092 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7093 | |
7094 | static struct value * | |
7095 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7096 | struct type *type) | |
7097 | { | |
7098 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7099 | } | |
7100 | ||
7101 | ||
7102 | /* Auxiliary function for ada_index_struct_field. Like | |
7103 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7104 | * *INDEX_P. */ |
52ce6436 PH |
7105 | |
7106 | static struct value * | |
7107 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7108 | struct type *type) | |
7109 | { | |
7110 | int i; | |
7111 | type = ada_check_typedef (type); | |
7112 | ||
7113 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7114 | { | |
7115 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7116 | continue; | |
7117 | else if (ada_is_wrapper_field (type, i)) | |
7118 | { | |
0963b4bd | 7119 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7120 | ada_index_struct_field_1 (index_p, arg, |
7121 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7122 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7123 | |
52ce6436 PH |
7124 | if (v != NULL) |
7125 | return v; | |
7126 | } | |
7127 | ||
7128 | else if (ada_is_variant_part (type, i)) | |
7129 | { | |
7130 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7131 | find_struct_field. */ |
52ce6436 PH |
7132 | error (_("Cannot assign this kind of variant record")); |
7133 | } | |
7134 | else if (*index_p == 0) | |
7135 | return ada_value_primitive_field (arg, offset, i, type); | |
7136 | else | |
7137 | *index_p -= 1; | |
7138 | } | |
7139 | return NULL; | |
7140 | } | |
7141 | ||
4c4b4cd2 PH |
7142 | /* Given ARG, a value of type (pointer or reference to a)* |
7143 | structure/union, extract the component named NAME from the ultimate | |
7144 | target structure/union and return it as a value with its | |
f5938064 | 7145 | appropriate type. |
14f9c5c9 | 7146 | |
4c4b4cd2 PH |
7147 | The routine searches for NAME among all members of the structure itself |
7148 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7149 | (e.g., '_parent'). |
7150 | ||
03ee6b2e PH |
7151 | If NO_ERR, then simply return NULL in case of error, rather than |
7152 | calling error. */ | |
14f9c5c9 | 7153 | |
d2e4a39e | 7154 | struct value * |
03ee6b2e | 7155 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 7156 | { |
4c4b4cd2 | 7157 | struct type *t, *t1; |
d2e4a39e | 7158 | struct value *v; |
14f9c5c9 | 7159 | |
4c4b4cd2 | 7160 | v = NULL; |
df407dfe | 7161 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7162 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7163 | { | |
7164 | t1 = TYPE_TARGET_TYPE (t); | |
7165 | if (t1 == NULL) | |
03ee6b2e | 7166 | goto BadValue; |
61ee279c | 7167 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7168 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7169 | { |
994b9211 | 7170 | arg = coerce_ref (arg); |
76a01679 JB |
7171 | t = t1; |
7172 | } | |
4c4b4cd2 | 7173 | } |
14f9c5c9 | 7174 | |
4c4b4cd2 PH |
7175 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7176 | { | |
7177 | t1 = TYPE_TARGET_TYPE (t); | |
7178 | if (t1 == NULL) | |
03ee6b2e | 7179 | goto BadValue; |
61ee279c | 7180 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7181 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7182 | { |
7183 | arg = value_ind (arg); | |
7184 | t = t1; | |
7185 | } | |
4c4b4cd2 | 7186 | else |
76a01679 | 7187 | break; |
4c4b4cd2 | 7188 | } |
14f9c5c9 | 7189 | |
4c4b4cd2 | 7190 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7191 | goto BadValue; |
14f9c5c9 | 7192 | |
4c4b4cd2 PH |
7193 | if (t1 == t) |
7194 | v = ada_search_struct_field (name, arg, 0, t); | |
7195 | else | |
7196 | { | |
7197 | int bit_offset, bit_size, byte_offset; | |
7198 | struct type *field_type; | |
7199 | CORE_ADDR address; | |
7200 | ||
76a01679 | 7201 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7202 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7203 | else |
b50d69b5 | 7204 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7205 | |
1ed6ede0 | 7206 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7207 | if (find_struct_field (name, t1, 0, |
7208 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7209 | &bit_size, NULL)) |
76a01679 JB |
7210 | { |
7211 | if (bit_size != 0) | |
7212 | { | |
714e53ab PH |
7213 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7214 | arg = ada_coerce_ref (arg); | |
7215 | else | |
7216 | arg = ada_value_ind (arg); | |
76a01679 JB |
7217 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7218 | bit_offset, bit_size, | |
7219 | field_type); | |
7220 | } | |
7221 | else | |
f5938064 | 7222 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7223 | } |
7224 | } | |
7225 | ||
03ee6b2e PH |
7226 | if (v != NULL || no_err) |
7227 | return v; | |
7228 | else | |
323e0a4a | 7229 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7230 | |
03ee6b2e PH |
7231 | BadValue: |
7232 | if (no_err) | |
7233 | return NULL; | |
7234 | else | |
0963b4bd MS |
7235 | error (_("Attempt to extract a component of " |
7236 | "a value that is not a record.")); | |
14f9c5c9 AS |
7237 | } |
7238 | ||
7239 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
7240 | If DISPP is non-null, add its byte displacement from the beginning of a |
7241 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7242 | work for packed fields). |
7243 | ||
7244 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7245 | followed by "___". |
14f9c5c9 | 7246 | |
0963b4bd | 7247 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7248 | be a (pointer or reference)+ to a struct or union, and the |
7249 | ultimate target type will be searched. | |
14f9c5c9 AS |
7250 | |
7251 | Looks recursively into variant clauses and parent types. | |
7252 | ||
4c4b4cd2 PH |
7253 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7254 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7255 | |
4c4b4cd2 | 7256 | static struct type * |
76a01679 JB |
7257 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
7258 | int noerr, int *dispp) | |
14f9c5c9 AS |
7259 | { |
7260 | int i; | |
7261 | ||
7262 | if (name == NULL) | |
7263 | goto BadName; | |
7264 | ||
76a01679 | 7265 | if (refok && type != NULL) |
4c4b4cd2 PH |
7266 | while (1) |
7267 | { | |
61ee279c | 7268 | type = ada_check_typedef (type); |
76a01679 JB |
7269 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7270 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7271 | break; | |
7272 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7273 | } |
14f9c5c9 | 7274 | |
76a01679 | 7275 | if (type == NULL |
1265e4aa JB |
7276 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7277 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7278 | { |
4c4b4cd2 | 7279 | if (noerr) |
76a01679 | 7280 | return NULL; |
4c4b4cd2 | 7281 | else |
76a01679 JB |
7282 | { |
7283 | target_terminal_ours (); | |
7284 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7285 | if (type == NULL) |
7286 | error (_("Type (null) is not a structure or union type")); | |
7287 | else | |
7288 | { | |
7289 | /* XXX: type_sprint */ | |
7290 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7291 | type_print (type, "", gdb_stderr, -1); | |
7292 | error (_(" is not a structure or union type")); | |
7293 | } | |
76a01679 | 7294 | } |
14f9c5c9 AS |
7295 | } |
7296 | ||
7297 | type = to_static_fixed_type (type); | |
7298 | ||
7299 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7300 | { | |
0d5cff50 | 7301 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7302 | struct type *t; |
7303 | int disp; | |
d2e4a39e | 7304 | |
14f9c5c9 | 7305 | if (t_field_name == NULL) |
4c4b4cd2 | 7306 | continue; |
14f9c5c9 AS |
7307 | |
7308 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7309 | { |
7310 | if (dispp != NULL) | |
7311 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 7312 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 7313 | } |
14f9c5c9 AS |
7314 | |
7315 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7316 | { |
7317 | disp = 0; | |
7318 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7319 | 0, 1, &disp); | |
7320 | if (t != NULL) | |
7321 | { | |
7322 | if (dispp != NULL) | |
7323 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7324 | return t; | |
7325 | } | |
7326 | } | |
14f9c5c9 AS |
7327 | |
7328 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7329 | { |
7330 | int j; | |
5b4ee69b MS |
7331 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7332 | i)); | |
4c4b4cd2 PH |
7333 | |
7334 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7335 | { | |
b1f33ddd JB |
7336 | /* FIXME pnh 2008/01/26: We check for a field that is |
7337 | NOT wrapped in a struct, since the compiler sometimes | |
7338 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7339 | if the compiler changes this practice. */ |
0d5cff50 | 7340 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7341 | disp = 0; |
b1f33ddd JB |
7342 | if (v_field_name != NULL |
7343 | && field_name_match (v_field_name, name)) | |
7344 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
7345 | else | |
0963b4bd MS |
7346 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7347 | j), | |
b1f33ddd JB |
7348 | name, 0, 1, &disp); |
7349 | ||
4c4b4cd2 PH |
7350 | if (t != NULL) |
7351 | { | |
7352 | if (dispp != NULL) | |
7353 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7354 | return t; | |
7355 | } | |
7356 | } | |
7357 | } | |
14f9c5c9 AS |
7358 | |
7359 | } | |
7360 | ||
7361 | BadName: | |
d2e4a39e | 7362 | if (!noerr) |
14f9c5c9 AS |
7363 | { |
7364 | target_terminal_ours (); | |
7365 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7366 | if (name == NULL) |
7367 | { | |
7368 | /* XXX: type_sprint */ | |
7369 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7370 | type_print (type, "", gdb_stderr, -1); | |
7371 | error (_(" has no component named <null>")); | |
7372 | } | |
7373 | else | |
7374 | { | |
7375 | /* XXX: type_sprint */ | |
7376 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7377 | type_print (type, "", gdb_stderr, -1); | |
7378 | error (_(" has no component named %s"), name); | |
7379 | } | |
14f9c5c9 AS |
7380 | } |
7381 | ||
7382 | return NULL; | |
7383 | } | |
7384 | ||
b1f33ddd JB |
7385 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7386 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7387 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7388 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7389 | |
7390 | static int | |
7391 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7392 | { | |
7393 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7394 | |
b1f33ddd JB |
7395 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7396 | == NULL); | |
7397 | } | |
7398 | ||
7399 | ||
14f9c5c9 AS |
7400 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7401 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7402 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7403 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7404 | |
d2e4a39e | 7405 | int |
ebf56fd3 | 7406 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7407 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7408 | { |
7409 | int others_clause; | |
7410 | int i; | |
d2e4a39e | 7411 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7412 | struct value *outer; |
7413 | struct value *discrim; | |
14f9c5c9 AS |
7414 | LONGEST discrim_val; |
7415 | ||
012370f6 TT |
7416 | /* Using plain value_from_contents_and_address here causes problems |
7417 | because we will end up trying to resolve a type that is currently | |
7418 | being constructed. */ | |
7419 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7420 | outer_valaddr, 0); | |
0c281816 JB |
7421 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7422 | if (discrim == NULL) | |
14f9c5c9 | 7423 | return -1; |
0c281816 | 7424 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7425 | |
7426 | others_clause = -1; | |
7427 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7428 | { | |
7429 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7430 | others_clause = i; |
14f9c5c9 | 7431 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7432 | return i; |
14f9c5c9 AS |
7433 | } |
7434 | ||
7435 | return others_clause; | |
7436 | } | |
d2e4a39e | 7437 | \f |
14f9c5c9 AS |
7438 | |
7439 | ||
4c4b4cd2 | 7440 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7441 | |
7442 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7443 | (i.e., a size that is not statically recorded in the debugging | |
7444 | data) does not accurately reflect the size or layout of the value. | |
7445 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7446 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7447 | |
7448 | /* There is a subtle and tricky problem here. In general, we cannot | |
7449 | determine the size of dynamic records without its data. However, | |
7450 | the 'struct value' data structure, which GDB uses to represent | |
7451 | quantities in the inferior process (the target), requires the size | |
7452 | of the type at the time of its allocation in order to reserve space | |
7453 | for GDB's internal copy of the data. That's why the | |
7454 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7455 | rather than struct value*s. |
14f9c5c9 AS |
7456 | |
7457 | However, GDB's internal history variables ($1, $2, etc.) are | |
7458 | struct value*s containing internal copies of the data that are not, in | |
7459 | general, the same as the data at their corresponding addresses in | |
7460 | the target. Fortunately, the types we give to these values are all | |
7461 | conventional, fixed-size types (as per the strategy described | |
7462 | above), so that we don't usually have to perform the | |
7463 | 'to_fixed_xxx_type' conversions to look at their values. | |
7464 | Unfortunately, there is one exception: if one of the internal | |
7465 | history variables is an array whose elements are unconstrained | |
7466 | records, then we will need to create distinct fixed types for each | |
7467 | element selected. */ | |
7468 | ||
7469 | /* The upshot of all of this is that many routines take a (type, host | |
7470 | address, target address) triple as arguments to represent a value. | |
7471 | The host address, if non-null, is supposed to contain an internal | |
7472 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7473 | target at the target address. */ |
14f9c5c9 AS |
7474 | |
7475 | /* Assuming that VAL0 represents a pointer value, the result of | |
7476 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7477 | dynamic-sized types. */ |
14f9c5c9 | 7478 | |
d2e4a39e AS |
7479 | struct value * |
7480 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7481 | { |
c48db5ca | 7482 | struct value *val = value_ind (val0); |
5b4ee69b | 7483 | |
b50d69b5 JG |
7484 | if (ada_is_tagged_type (value_type (val), 0)) |
7485 | val = ada_tag_value_at_base_address (val); | |
7486 | ||
4c4b4cd2 | 7487 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7488 | } |
7489 | ||
7490 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7491 | qualifiers on VAL0. */ |
7492 | ||
d2e4a39e AS |
7493 | static struct value * |
7494 | ada_coerce_ref (struct value *val0) | |
7495 | { | |
df407dfe | 7496 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7497 | { |
7498 | struct value *val = val0; | |
5b4ee69b | 7499 | |
994b9211 | 7500 | val = coerce_ref (val); |
b50d69b5 JG |
7501 | |
7502 | if (ada_is_tagged_type (value_type (val), 0)) | |
7503 | val = ada_tag_value_at_base_address (val); | |
7504 | ||
4c4b4cd2 | 7505 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7506 | } |
7507 | else | |
14f9c5c9 AS |
7508 | return val0; |
7509 | } | |
7510 | ||
7511 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7512 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7513 | |
7514 | static unsigned int | |
ebf56fd3 | 7515 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7516 | { |
7517 | return (off + alignment - 1) & ~(alignment - 1); | |
7518 | } | |
7519 | ||
4c4b4cd2 | 7520 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7521 | |
7522 | static unsigned int | |
ebf56fd3 | 7523 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7524 | { |
d2e4a39e | 7525 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7526 | int len; |
14f9c5c9 AS |
7527 | int align_offset; |
7528 | ||
64a1bf19 JB |
7529 | /* The field name should never be null, unless the debugging information |
7530 | is somehow malformed. In this case, we assume the field does not | |
7531 | require any alignment. */ | |
7532 | if (name == NULL) | |
7533 | return 1; | |
7534 | ||
7535 | len = strlen (name); | |
7536 | ||
4c4b4cd2 PH |
7537 | if (!isdigit (name[len - 1])) |
7538 | return 1; | |
14f9c5c9 | 7539 | |
d2e4a39e | 7540 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7541 | align_offset = len - 2; |
7542 | else | |
7543 | align_offset = len - 1; | |
7544 | ||
4c4b4cd2 | 7545 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7546 | return TARGET_CHAR_BIT; |
7547 | ||
4c4b4cd2 PH |
7548 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7549 | } | |
7550 | ||
852dff6c | 7551 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7552 | |
852dff6c JB |
7553 | static struct symbol * |
7554 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7555 | { |
7556 | struct symbol *sym; | |
7557 | ||
7558 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7559 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7560 | return sym; |
7561 | ||
4186eb54 KS |
7562 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7563 | return sym; | |
14f9c5c9 AS |
7564 | } |
7565 | ||
dddfab26 UW |
7566 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7567 | solely for types defined by debug info, it will not search the GDB | |
7568 | primitive types. */ | |
4c4b4cd2 | 7569 | |
852dff6c | 7570 | static struct type * |
ebf56fd3 | 7571 | ada_find_any_type (const char *name) |
14f9c5c9 | 7572 | { |
852dff6c | 7573 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7574 | |
14f9c5c9 | 7575 | if (sym != NULL) |
dddfab26 | 7576 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7577 | |
dddfab26 | 7578 | return NULL; |
14f9c5c9 AS |
7579 | } |
7580 | ||
739593e0 JB |
7581 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7582 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7583 | symbol, in which case it is returned. Otherwise, this looks for | |
7584 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7585 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7586 | |
7587 | struct symbol * | |
270140bd | 7588 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7589 | { |
739593e0 | 7590 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7591 | struct symbol *sym; |
7592 | ||
739593e0 JB |
7593 | if (strstr (name, "___XR") != NULL) |
7594 | return name_sym; | |
7595 | ||
aeb5907d JB |
7596 | sym = find_old_style_renaming_symbol (name, block); |
7597 | ||
7598 | if (sym != NULL) | |
7599 | return sym; | |
7600 | ||
0963b4bd | 7601 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7602 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7603 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7604 | return sym; | |
7605 | else | |
7606 | return NULL; | |
7607 | } | |
7608 | ||
7609 | static struct symbol * | |
270140bd | 7610 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7611 | { |
7f0df278 | 7612 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7613 | char *rename; |
7614 | ||
7615 | if (function_sym != NULL) | |
7616 | { | |
7617 | /* If the symbol is defined inside a function, NAME is not fully | |
7618 | qualified. This means we need to prepend the function name | |
7619 | as well as adding the ``___XR'' suffix to build the name of | |
7620 | the associated renaming symbol. */ | |
0d5cff50 | 7621 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7622 | /* Function names sometimes contain suffixes used |
7623 | for instance to qualify nested subprograms. When building | |
7624 | the XR type name, we need to make sure that this suffix is | |
7625 | not included. So do not include any suffix in the function | |
7626 | name length below. */ | |
69fadcdf | 7627 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7628 | const int rename_len = function_name_len + 2 /* "__" */ |
7629 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7630 | |
529cad9c | 7631 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7632 | ada_remove_trailing_digits (function_name, &function_name_len); |
7633 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7634 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7635 | |
4c4b4cd2 PH |
7636 | /* Library-level functions are a special case, as GNAT adds |
7637 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7638 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7639 | have this prefix, so we need to skip this prefix if present. */ |
7640 | if (function_name_len > 5 /* "_ada_" */ | |
7641 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7642 | { |
7643 | function_name += 5; | |
7644 | function_name_len -= 5; | |
7645 | } | |
4c4b4cd2 PH |
7646 | |
7647 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7648 | strncpy (rename, function_name, function_name_len); |
7649 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7650 | "__%s___XR", name); | |
4c4b4cd2 PH |
7651 | } |
7652 | else | |
7653 | { | |
7654 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7655 | |
4c4b4cd2 | 7656 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7657 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7658 | } |
7659 | ||
852dff6c | 7660 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7661 | } |
7662 | ||
14f9c5c9 | 7663 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7664 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7665 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7666 | otherwise return 0. */ |
7667 | ||
14f9c5c9 | 7668 | int |
d2e4a39e | 7669 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7670 | { |
7671 | if (type1 == NULL) | |
7672 | return 1; | |
7673 | else if (type0 == NULL) | |
7674 | return 0; | |
7675 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7676 | return 1; | |
7677 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7678 | return 0; | |
4c4b4cd2 PH |
7679 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7680 | return 1; | |
ad82864c | 7681 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7682 | return 1; |
4c4b4cd2 PH |
7683 | else if (ada_is_array_descriptor_type (type0) |
7684 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7685 | return 1; |
aeb5907d JB |
7686 | else |
7687 | { | |
7688 | const char *type0_name = type_name_no_tag (type0); | |
7689 | const char *type1_name = type_name_no_tag (type1); | |
7690 | ||
7691 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7692 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7693 | return 1; | |
7694 | } | |
14f9c5c9 AS |
7695 | return 0; |
7696 | } | |
7697 | ||
7698 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7699 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7700 | ||
0d5cff50 | 7701 | const char * |
d2e4a39e | 7702 | ada_type_name (struct type *type) |
14f9c5c9 | 7703 | { |
d2e4a39e | 7704 | if (type == NULL) |
14f9c5c9 AS |
7705 | return NULL; |
7706 | else if (TYPE_NAME (type) != NULL) | |
7707 | return TYPE_NAME (type); | |
7708 | else | |
7709 | return TYPE_TAG_NAME (type); | |
7710 | } | |
7711 | ||
b4ba55a1 JB |
7712 | /* Search the list of "descriptive" types associated to TYPE for a type |
7713 | whose name is NAME. */ | |
7714 | ||
7715 | static struct type * | |
7716 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7717 | { | |
7718 | struct type *result; | |
7719 | ||
c6044dd1 JB |
7720 | if (ada_ignore_descriptive_types_p) |
7721 | return NULL; | |
7722 | ||
b4ba55a1 JB |
7723 | /* If there no descriptive-type info, then there is no parallel type |
7724 | to be found. */ | |
7725 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7726 | return NULL; | |
7727 | ||
7728 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7729 | while (result != NULL) | |
7730 | { | |
0d5cff50 | 7731 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7732 | |
7733 | if (result_name == NULL) | |
7734 | { | |
7735 | warning (_("unexpected null name on descriptive type")); | |
7736 | return NULL; | |
7737 | } | |
7738 | ||
7739 | /* If the names match, stop. */ | |
7740 | if (strcmp (result_name, name) == 0) | |
7741 | break; | |
7742 | ||
7743 | /* Otherwise, look at the next item on the list, if any. */ | |
7744 | if (HAVE_GNAT_AUX_INFO (result)) | |
7745 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7746 | else | |
7747 | result = NULL; | |
7748 | } | |
7749 | ||
7750 | /* If we didn't find a match, see whether this is a packed array. With | |
7751 | older compilers, the descriptive type information is either absent or | |
7752 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7753 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7754 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7755 | return ada_find_any_type (name); |
7756 | ||
7757 | return result; | |
7758 | } | |
7759 | ||
7760 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7761 | descriptive type taken from the debugging information, if available, | |
7762 | and otherwise using the (slower) name-based method. */ | |
7763 | ||
7764 | static struct type * | |
7765 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7766 | { | |
7767 | struct type *result = NULL; | |
7768 | ||
7769 | if (HAVE_GNAT_AUX_INFO (type)) | |
7770 | result = find_parallel_type_by_descriptive_type (type, name); | |
7771 | else | |
7772 | result = ada_find_any_type (name); | |
7773 | ||
7774 | return result; | |
7775 | } | |
7776 | ||
7777 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7778 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7779 | |
d2e4a39e | 7780 | struct type * |
ebf56fd3 | 7781 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7782 | { |
0d5cff50 DE |
7783 | char *name; |
7784 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7785 | int len; |
d2e4a39e | 7786 | |
14f9c5c9 AS |
7787 | if (typename == NULL) |
7788 | return NULL; | |
7789 | ||
7790 | len = strlen (typename); | |
7791 | ||
b4ba55a1 | 7792 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7793 | |
7794 | strcpy (name, typename); | |
7795 | strcpy (name + len, suffix); | |
7796 | ||
b4ba55a1 | 7797 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7798 | } |
7799 | ||
14f9c5c9 | 7800 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7801 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7802 | |
d2e4a39e AS |
7803 | static struct type * |
7804 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7805 | { |
61ee279c | 7806 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7807 | |
7808 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7809 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7810 | return NULL; |
d2e4a39e | 7811 | else |
14f9c5c9 AS |
7812 | { |
7813 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7814 | |
4c4b4cd2 PH |
7815 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7816 | return type; | |
14f9c5c9 | 7817 | else |
4c4b4cd2 | 7818 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7819 | } |
7820 | } | |
7821 | ||
7822 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7823 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7824 | |
d2e4a39e AS |
7825 | static int |
7826 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7827 | { |
7828 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7829 | |
d2e4a39e | 7830 | return name != NULL |
14f9c5c9 AS |
7831 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7832 | && strstr (name, "___XVL") != NULL; | |
7833 | } | |
7834 | ||
4c4b4cd2 PH |
7835 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7836 | represent a variant record type. */ | |
14f9c5c9 | 7837 | |
d2e4a39e | 7838 | static int |
4c4b4cd2 | 7839 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7840 | { |
7841 | int f; | |
7842 | ||
4c4b4cd2 PH |
7843 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7844 | return -1; | |
7845 | ||
7846 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7847 | { | |
7848 | if (ada_is_variant_part (type, f)) | |
7849 | return f; | |
7850 | } | |
7851 | return -1; | |
14f9c5c9 AS |
7852 | } |
7853 | ||
4c4b4cd2 PH |
7854 | /* A record type with no fields. */ |
7855 | ||
d2e4a39e | 7856 | static struct type * |
e9bb382b | 7857 | empty_record (struct type *template) |
14f9c5c9 | 7858 | { |
e9bb382b | 7859 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7860 | |
14f9c5c9 AS |
7861 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7862 | TYPE_NFIELDS (type) = 0; | |
7863 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7864 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7865 | TYPE_NAME (type) = "<empty>"; |
7866 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7867 | TYPE_LENGTH (type) = 0; |
7868 | return type; | |
7869 | } | |
7870 | ||
7871 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7872 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7873 | the beginning of this section) VAL according to GNAT conventions. | |
7874 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7875 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7876 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7877 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7878 | of the variant. |
14f9c5c9 | 7879 | |
4c4b4cd2 PH |
7880 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7881 | length are not statically known are discarded. As a consequence, | |
7882 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7883 | ||
7884 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7885 | variants occupy whole numbers of bytes. However, they need not be | |
7886 | byte-aligned. */ | |
7887 | ||
7888 | struct type * | |
10a2c479 | 7889 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7890 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7891 | CORE_ADDR address, struct value *dval0, |
7892 | int keep_dynamic_fields) | |
14f9c5c9 | 7893 | { |
d2e4a39e AS |
7894 | struct value *mark = value_mark (); |
7895 | struct value *dval; | |
7896 | struct type *rtype; | |
14f9c5c9 | 7897 | int nfields, bit_len; |
4c4b4cd2 | 7898 | int variant_field; |
14f9c5c9 | 7899 | long off; |
d94e4f4f | 7900 | int fld_bit_len; |
14f9c5c9 AS |
7901 | int f; |
7902 | ||
4c4b4cd2 PH |
7903 | /* Compute the number of fields in this record type that are going |
7904 | to be processed: unless keep_dynamic_fields, this includes only | |
7905 | fields whose position and length are static will be processed. */ | |
7906 | if (keep_dynamic_fields) | |
7907 | nfields = TYPE_NFIELDS (type); | |
7908 | else | |
7909 | { | |
7910 | nfields = 0; | |
76a01679 | 7911 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7912 | && !ada_is_variant_part (type, nfields) |
7913 | && !is_dynamic_field (type, nfields)) | |
7914 | nfields++; | |
7915 | } | |
7916 | ||
e9bb382b | 7917 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7918 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7919 | INIT_CPLUS_SPECIFIC (rtype); | |
7920 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7921 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7922 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7923 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7924 | TYPE_NAME (rtype) = ada_type_name (type); | |
7925 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7926 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7927 | |
d2e4a39e AS |
7928 | off = 0; |
7929 | bit_len = 0; | |
4c4b4cd2 PH |
7930 | variant_field = -1; |
7931 | ||
14f9c5c9 AS |
7932 | for (f = 0; f < nfields; f += 1) |
7933 | { | |
6c038f32 PH |
7934 | off = align_value (off, field_alignment (type, f)) |
7935 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7936 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7937 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7938 | |
d2e4a39e | 7939 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7940 | { |
7941 | variant_field = f; | |
d94e4f4f | 7942 | fld_bit_len = 0; |
4c4b4cd2 | 7943 | } |
14f9c5c9 | 7944 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7945 | { |
284614f0 JB |
7946 | const gdb_byte *field_valaddr = valaddr; |
7947 | CORE_ADDR field_address = address; | |
7948 | struct type *field_type = | |
7949 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7950 | ||
4c4b4cd2 | 7951 | if (dval0 == NULL) |
b5304971 JG |
7952 | { |
7953 | /* rtype's length is computed based on the run-time | |
7954 | value of discriminants. If the discriminants are not | |
7955 | initialized, the type size may be completely bogus and | |
0963b4bd | 7956 | GDB may fail to allocate a value for it. So check the |
b5304971 | 7957 | size first before creating the value. */ |
c1b5a1a6 | 7958 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
7959 | /* Using plain value_from_contents_and_address here |
7960 | causes problems because we will end up trying to | |
7961 | resolve a type that is currently being | |
7962 | constructed. */ | |
7963 | dval = value_from_contents_and_address_unresolved (rtype, | |
7964 | valaddr, | |
7965 | address); | |
9f1f738a | 7966 | rtype = value_type (dval); |
b5304971 | 7967 | } |
4c4b4cd2 PH |
7968 | else |
7969 | dval = dval0; | |
7970 | ||
284614f0 JB |
7971 | /* If the type referenced by this field is an aligner type, we need |
7972 | to unwrap that aligner type, because its size might not be set. | |
7973 | Keeping the aligner type would cause us to compute the wrong | |
7974 | size for this field, impacting the offset of the all the fields | |
7975 | that follow this one. */ | |
7976 | if (ada_is_aligner_type (field_type)) | |
7977 | { | |
7978 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7979 | ||
7980 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7981 | field_address = cond_offset_target (field_address, field_offset); | |
7982 | field_type = ada_aligned_type (field_type); | |
7983 | } | |
7984 | ||
7985 | field_valaddr = cond_offset_host (field_valaddr, | |
7986 | off / TARGET_CHAR_BIT); | |
7987 | field_address = cond_offset_target (field_address, | |
7988 | off / TARGET_CHAR_BIT); | |
7989 | ||
7990 | /* Get the fixed type of the field. Note that, in this case, | |
7991 | we do not want to get the real type out of the tag: if | |
7992 | the current field is the parent part of a tagged record, | |
7993 | we will get the tag of the object. Clearly wrong: the real | |
7994 | type of the parent is not the real type of the child. We | |
7995 | would end up in an infinite loop. */ | |
7996 | field_type = ada_get_base_type (field_type); | |
7997 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7998 | field_address, dval, 0); | |
27f2a97b JB |
7999 | /* If the field size is already larger than the maximum |
8000 | object size, then the record itself will necessarily | |
8001 | be larger than the maximum object size. We need to make | |
8002 | this check now, because the size might be so ridiculously | |
8003 | large (due to an uninitialized variable in the inferior) | |
8004 | that it would cause an overflow when adding it to the | |
8005 | record size. */ | |
c1b5a1a6 | 8006 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8007 | |
8008 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8009 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8010 | /* The multiplication can potentially overflow. But because |
8011 | the field length has been size-checked just above, and | |
8012 | assuming that the maximum size is a reasonable value, | |
8013 | an overflow should not happen in practice. So rather than | |
8014 | adding overflow recovery code to this already complex code, | |
8015 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8016 | fld_bit_len = |
4c4b4cd2 PH |
8017 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8018 | } | |
14f9c5c9 | 8019 | else |
4c4b4cd2 | 8020 | { |
5ded5331 JB |
8021 | /* Note: If this field's type is a typedef, it is important |
8022 | to preserve the typedef layer. | |
8023 | ||
8024 | Otherwise, we might be transforming a typedef to a fat | |
8025 | pointer (encoding a pointer to an unconstrained array), | |
8026 | into a basic fat pointer (encoding an unconstrained | |
8027 | array). As both types are implemented using the same | |
8028 | structure, the typedef is the only clue which allows us | |
8029 | to distinguish between the two options. Stripping it | |
8030 | would prevent us from printing this field appropriately. */ | |
8031 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8032 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8033 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8034 | fld_bit_len = |
4c4b4cd2 PH |
8035 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8036 | else | |
5ded5331 JB |
8037 | { |
8038 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8039 | ||
8040 | /* We need to be careful of typedefs when computing | |
8041 | the length of our field. If this is a typedef, | |
8042 | get the length of the target type, not the length | |
8043 | of the typedef. */ | |
8044 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8045 | field_type = ada_typedef_target_type (field_type); | |
8046 | ||
8047 | fld_bit_len = | |
8048 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8049 | } | |
4c4b4cd2 | 8050 | } |
14f9c5c9 | 8051 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8052 | bit_len = off + fld_bit_len; |
d94e4f4f | 8053 | off += fld_bit_len; |
4c4b4cd2 PH |
8054 | TYPE_LENGTH (rtype) = |
8055 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8056 | } |
4c4b4cd2 PH |
8057 | |
8058 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8059 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8060 | the record. This can happen in the presence of representation |
8061 | clauses. */ | |
8062 | if (variant_field >= 0) | |
8063 | { | |
8064 | struct type *branch_type; | |
8065 | ||
8066 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8067 | ||
8068 | if (dval0 == NULL) | |
9f1f738a | 8069 | { |
012370f6 TT |
8070 | /* Using plain value_from_contents_and_address here causes |
8071 | problems because we will end up trying to resolve a type | |
8072 | that is currently being constructed. */ | |
8073 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8074 | address); | |
9f1f738a SA |
8075 | rtype = value_type (dval); |
8076 | } | |
4c4b4cd2 PH |
8077 | else |
8078 | dval = dval0; | |
8079 | ||
8080 | branch_type = | |
8081 | to_fixed_variant_branch_type | |
8082 | (TYPE_FIELD_TYPE (type, variant_field), | |
8083 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8084 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8085 | if (branch_type == NULL) | |
8086 | { | |
8087 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8088 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8089 | TYPE_NFIELDS (rtype) -= 1; | |
8090 | } | |
8091 | else | |
8092 | { | |
8093 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8094 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8095 | fld_bit_len = | |
8096 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8097 | TARGET_CHAR_BIT; | |
8098 | if (off + fld_bit_len > bit_len) | |
8099 | bit_len = off + fld_bit_len; | |
8100 | TYPE_LENGTH (rtype) = | |
8101 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8102 | } | |
8103 | } | |
8104 | ||
714e53ab PH |
8105 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8106 | should contain the alignment of that record, which should be a strictly | |
8107 | positive value. If null or negative, then something is wrong, most | |
8108 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8109 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8110 | the current RTYPE length might be good enough for our purposes. */ |
8111 | if (TYPE_LENGTH (type) <= 0) | |
8112 | { | |
323e0a4a AC |
8113 | if (TYPE_NAME (rtype)) |
8114 | warning (_("Invalid type size for `%s' detected: %d."), | |
8115 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8116 | else | |
8117 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8118 | TYPE_LENGTH (type)); | |
714e53ab PH |
8119 | } |
8120 | else | |
8121 | { | |
8122 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8123 | TYPE_LENGTH (type)); | |
8124 | } | |
14f9c5c9 AS |
8125 | |
8126 | value_free_to_mark (mark); | |
d2e4a39e | 8127 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8128 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8129 | return rtype; |
8130 | } | |
8131 | ||
4c4b4cd2 PH |
8132 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8133 | of 1. */ | |
14f9c5c9 | 8134 | |
d2e4a39e | 8135 | static struct type * |
fc1a4b47 | 8136 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8137 | CORE_ADDR address, struct value *dval0) |
8138 | { | |
8139 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8140 | address, dval0, 1); | |
8141 | } | |
8142 | ||
8143 | /* An ordinary record type in which ___XVL-convention fields and | |
8144 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8145 | static approximations, containing all possible fields. Uses | |
8146 | no runtime values. Useless for use in values, but that's OK, | |
8147 | since the results are used only for type determinations. Works on both | |
8148 | structs and unions. Representation note: to save space, we memorize | |
8149 | the result of this function in the TYPE_TARGET_TYPE of the | |
8150 | template type. */ | |
8151 | ||
8152 | static struct type * | |
8153 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8154 | { |
8155 | struct type *type; | |
8156 | int nfields; | |
8157 | int f; | |
8158 | ||
4c4b4cd2 PH |
8159 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8160 | return TYPE_TARGET_TYPE (type0); | |
8161 | ||
8162 | nfields = TYPE_NFIELDS (type0); | |
8163 | type = type0; | |
14f9c5c9 AS |
8164 | |
8165 | for (f = 0; f < nfields; f += 1) | |
8166 | { | |
61ee279c | 8167 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 8168 | struct type *new_type; |
14f9c5c9 | 8169 | |
4c4b4cd2 PH |
8170 | if (is_dynamic_field (type0, f)) |
8171 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 8172 | else |
f192137b | 8173 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
8174 | if (type == type0 && new_type != field_type) |
8175 | { | |
e9bb382b | 8176 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
8177 | TYPE_CODE (type) = TYPE_CODE (type0); |
8178 | INIT_CPLUS_SPECIFIC (type); | |
8179 | TYPE_NFIELDS (type) = nfields; | |
8180 | TYPE_FIELDS (type) = (struct field *) | |
8181 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8182 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8183 | sizeof (struct field) * nfields); | |
8184 | TYPE_NAME (type) = ada_type_name (type0); | |
8185 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 8186 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
8187 | TYPE_LENGTH (type) = 0; |
8188 | } | |
8189 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8190 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 8191 | } |
14f9c5c9 AS |
8192 | return type; |
8193 | } | |
8194 | ||
4c4b4cd2 | 8195 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8196 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8197 | which should be a non-dynamic-sized record, in which the variant | |
8198 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8199 | for discriminant values in DVAL0, which can be NULL if the record |
8200 | contains the necessary discriminant values. */ | |
8201 | ||
d2e4a39e | 8202 | static struct type * |
fc1a4b47 | 8203 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8204 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8205 | { |
d2e4a39e | 8206 | struct value *mark = value_mark (); |
4c4b4cd2 | 8207 | struct value *dval; |
d2e4a39e | 8208 | struct type *rtype; |
14f9c5c9 AS |
8209 | struct type *branch_type; |
8210 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8211 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8212 | |
4c4b4cd2 | 8213 | if (variant_field == -1) |
14f9c5c9 AS |
8214 | return type; |
8215 | ||
4c4b4cd2 | 8216 | if (dval0 == NULL) |
9f1f738a SA |
8217 | { |
8218 | dval = value_from_contents_and_address (type, valaddr, address); | |
8219 | type = value_type (dval); | |
8220 | } | |
4c4b4cd2 PH |
8221 | else |
8222 | dval = dval0; | |
8223 | ||
e9bb382b | 8224 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8225 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8226 | INIT_CPLUS_SPECIFIC (rtype); |
8227 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8228 | TYPE_FIELDS (rtype) = |
8229 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8230 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8231 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8232 | TYPE_NAME (rtype) = ada_type_name (type); |
8233 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8234 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8235 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8236 | ||
4c4b4cd2 PH |
8237 | branch_type = to_fixed_variant_branch_type |
8238 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8239 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8240 | TYPE_FIELD_BITPOS (type, variant_field) |
8241 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8242 | cond_offset_target (address, |
4c4b4cd2 PH |
8243 | TYPE_FIELD_BITPOS (type, variant_field) |
8244 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8245 | if (branch_type == NULL) |
14f9c5c9 | 8246 | { |
4c4b4cd2 | 8247 | int f; |
5b4ee69b | 8248 | |
4c4b4cd2 PH |
8249 | for (f = variant_field + 1; f < nfields; f += 1) |
8250 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8251 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8252 | } |
8253 | else | |
8254 | { | |
4c4b4cd2 PH |
8255 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8256 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8257 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8258 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8259 | } |
4c4b4cd2 | 8260 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8261 | |
4c4b4cd2 | 8262 | value_free_to_mark (mark); |
14f9c5c9 AS |
8263 | return rtype; |
8264 | } | |
8265 | ||
8266 | /* An ordinary record type (with fixed-length fields) that describes | |
8267 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8268 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8269 | should be in DVAL, a record value; it may be NULL if the object |
8270 | at ADDR itself contains any necessary discriminant values. | |
8271 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8272 | values from the record are needed. Except in the case that DVAL, | |
8273 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8274 | unchecked) is replaced by a particular branch of the variant. | |
8275 | ||
8276 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8277 | is questionable and may be removed. It can arise during the | |
8278 | processing of an unconstrained-array-of-record type where all the | |
8279 | variant branches have exactly the same size. This is because in | |
8280 | such cases, the compiler does not bother to use the XVS convention | |
8281 | when encoding the record. I am currently dubious of this | |
8282 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8283 | |
d2e4a39e | 8284 | static struct type * |
fc1a4b47 | 8285 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8286 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8287 | { |
d2e4a39e | 8288 | struct type *templ_type; |
14f9c5c9 | 8289 | |
876cecd0 | 8290 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8291 | return type0; |
8292 | ||
d2e4a39e | 8293 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8294 | |
8295 | if (templ_type != NULL) | |
8296 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8297 | else if (variant_field_index (type0) >= 0) |
8298 | { | |
8299 | if (dval == NULL && valaddr == NULL && address == 0) | |
8300 | return type0; | |
8301 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8302 | dval); | |
8303 | } | |
14f9c5c9 AS |
8304 | else |
8305 | { | |
876cecd0 | 8306 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8307 | return type0; |
8308 | } | |
8309 | ||
8310 | } | |
8311 | ||
8312 | /* An ordinary record type (with fixed-length fields) that describes | |
8313 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8314 | union type. Any necessary discriminants' values should be in DVAL, | |
8315 | a record value. That is, this routine selects the appropriate | |
8316 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8317 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8318 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8319 | |
d2e4a39e | 8320 | static struct type * |
fc1a4b47 | 8321 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8322 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8323 | { |
8324 | int which; | |
d2e4a39e AS |
8325 | struct type *templ_type; |
8326 | struct type *var_type; | |
14f9c5c9 AS |
8327 | |
8328 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8329 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8330 | else |
14f9c5c9 AS |
8331 | var_type = var_type0; |
8332 | ||
8333 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8334 | ||
8335 | if (templ_type != NULL) | |
8336 | var_type = templ_type; | |
8337 | ||
b1f33ddd JB |
8338 | if (is_unchecked_variant (var_type, value_type (dval))) |
8339 | return var_type0; | |
d2e4a39e AS |
8340 | which = |
8341 | ada_which_variant_applies (var_type, | |
0fd88904 | 8342 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8343 | |
8344 | if (which < 0) | |
e9bb382b | 8345 | return empty_record (var_type); |
14f9c5c9 | 8346 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8347 | return to_fixed_record_type |
d2e4a39e AS |
8348 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8349 | valaddr, address, dval); | |
4c4b4cd2 | 8350 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8351 | return |
8352 | to_fixed_record_type | |
8353 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8354 | else |
8355 | return TYPE_FIELD_TYPE (var_type, which); | |
8356 | } | |
8357 | ||
8908fca5 JB |
8358 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8359 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8360 | type encodings, only carries redundant information. */ | |
8361 | ||
8362 | static int | |
8363 | ada_is_redundant_range_encoding (struct type *range_type, | |
8364 | struct type *encoding_type) | |
8365 | { | |
8366 | struct type *fixed_range_type; | |
8367 | char *bounds_str; | |
8368 | int n; | |
8369 | LONGEST lo, hi; | |
8370 | ||
8371 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8372 | ||
005e2509 JB |
8373 | if (TYPE_CODE (get_base_type (range_type)) |
8374 | != TYPE_CODE (get_base_type (encoding_type))) | |
8375 | { | |
8376 | /* The compiler probably used a simple base type to describe | |
8377 | the range type instead of the range's actual base type, | |
8378 | expecting us to get the real base type from the encoding | |
8379 | anyway. In this situation, the encoding cannot be ignored | |
8380 | as redundant. */ | |
8381 | return 0; | |
8382 | } | |
8383 | ||
8908fca5 JB |
8384 | if (is_dynamic_type (range_type)) |
8385 | return 0; | |
8386 | ||
8387 | if (TYPE_NAME (encoding_type) == NULL) | |
8388 | return 0; | |
8389 | ||
8390 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8391 | if (bounds_str == NULL) | |
8392 | return 0; | |
8393 | ||
8394 | n = 8; /* Skip "___XDLU_". */ | |
8395 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8396 | return 0; | |
8397 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8398 | return 0; | |
8399 | ||
8400 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8401 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8402 | return 0; | |
8403 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8404 | return 0; | |
8405 | ||
8406 | return 1; | |
8407 | } | |
8408 | ||
8409 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8410 | a type following the GNAT encoding for describing array type | |
8411 | indices, only carries redundant information. */ | |
8412 | ||
8413 | static int | |
8414 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8415 | struct type *desc_type) | |
8416 | { | |
8417 | struct type *this_layer = check_typedef (array_type); | |
8418 | int i; | |
8419 | ||
8420 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8421 | { | |
8422 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8423 | TYPE_FIELD_TYPE (desc_type, i))) | |
8424 | return 0; | |
8425 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8426 | } | |
8427 | ||
8428 | return 1; | |
8429 | } | |
8430 | ||
14f9c5c9 AS |
8431 | /* Assuming that TYPE0 is an array type describing the type of a value |
8432 | at ADDR, and that DVAL describes a record containing any | |
8433 | discriminants used in TYPE0, returns a type for the value that | |
8434 | contains no dynamic components (that is, no components whose sizes | |
8435 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8436 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8437 | varsize_limit. */ |
14f9c5c9 | 8438 | |
d2e4a39e AS |
8439 | static struct type * |
8440 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8441 | int ignore_too_big) |
14f9c5c9 | 8442 | { |
d2e4a39e AS |
8443 | struct type *index_type_desc; |
8444 | struct type *result; | |
ad82864c | 8445 | int constrained_packed_array_p; |
14f9c5c9 | 8446 | |
b0dd7688 | 8447 | type0 = ada_check_typedef (type0); |
284614f0 | 8448 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8449 | return type0; |
14f9c5c9 | 8450 | |
ad82864c JB |
8451 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8452 | if (constrained_packed_array_p) | |
8453 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8454 | |
14f9c5c9 | 8455 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 8456 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8457 | if (index_type_desc != NULL |
8458 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8459 | { | |
8460 | /* Ignore this ___XA parallel type, as it does not bring any | |
8461 | useful information. This allows us to avoid creating fixed | |
8462 | versions of the array's index types, which would be identical | |
8463 | to the original ones. This, in turn, can also help avoid | |
8464 | the creation of fixed versions of the array itself. */ | |
8465 | index_type_desc = NULL; | |
8466 | } | |
8467 | ||
14f9c5c9 AS |
8468 | if (index_type_desc == NULL) |
8469 | { | |
61ee279c | 8470 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8471 | |
14f9c5c9 | 8472 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8473 | depend on the contents of the array in properly constructed |
8474 | debugging data. */ | |
529cad9c PH |
8475 | /* Create a fixed version of the array element type. |
8476 | We're not providing the address of an element here, | |
e1d5a0d2 | 8477 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8478 | the conversion. This should not be a problem, since arrays of |
8479 | unconstrained objects are not allowed. In particular, all | |
8480 | the elements of an array of a tagged type should all be of | |
8481 | the same type specified in the debugging info. No need to | |
8482 | consult the object tag. */ | |
1ed6ede0 | 8483 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8484 | |
284614f0 JB |
8485 | /* Make sure we always create a new array type when dealing with |
8486 | packed array types, since we're going to fix-up the array | |
8487 | type length and element bitsize a little further down. */ | |
ad82864c | 8488 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8489 | result = type0; |
14f9c5c9 | 8490 | else |
e9bb382b | 8491 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8492 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8493 | } |
8494 | else | |
8495 | { | |
8496 | int i; | |
8497 | struct type *elt_type0; | |
8498 | ||
8499 | elt_type0 = type0; | |
8500 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8501 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8502 | |
8503 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8504 | depend on the contents of the array in properly constructed |
8505 | debugging data. */ | |
529cad9c PH |
8506 | /* Create a fixed version of the array element type. |
8507 | We're not providing the address of an element here, | |
e1d5a0d2 | 8508 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8509 | the conversion. This should not be a problem, since arrays of |
8510 | unconstrained objects are not allowed. In particular, all | |
8511 | the elements of an array of a tagged type should all be of | |
8512 | the same type specified in the debugging info. No need to | |
8513 | consult the object tag. */ | |
1ed6ede0 JB |
8514 | result = |
8515 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8516 | |
8517 | elt_type0 = type0; | |
14f9c5c9 | 8518 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8519 | { |
8520 | struct type *range_type = | |
28c85d6c | 8521 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8522 | |
e9bb382b | 8523 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8524 | result, range_type); |
1ce677a4 | 8525 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8526 | } |
d2e4a39e | 8527 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8528 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8529 | } |
8530 | ||
2e6fda7d JB |
8531 | /* We want to preserve the type name. This can be useful when |
8532 | trying to get the type name of a value that has already been | |
8533 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8534 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8535 | ||
ad82864c | 8536 | if (constrained_packed_array_p) |
284614f0 JB |
8537 | { |
8538 | /* So far, the resulting type has been created as if the original | |
8539 | type was a regular (non-packed) array type. As a result, the | |
8540 | bitsize of the array elements needs to be set again, and the array | |
8541 | length needs to be recomputed based on that bitsize. */ | |
8542 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8543 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8544 | ||
8545 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8546 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8547 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8548 | TYPE_LENGTH (result)++; | |
8549 | } | |
8550 | ||
876cecd0 | 8551 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8552 | return result; |
d2e4a39e | 8553 | } |
14f9c5c9 AS |
8554 | |
8555 | ||
8556 | /* A standard type (containing no dynamically sized components) | |
8557 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8558 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8559 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8560 | ADDRESS or in VALADDR contains these discriminants. |
8561 | ||
1ed6ede0 JB |
8562 | If CHECK_TAG is not null, in the case of tagged types, this function |
8563 | attempts to locate the object's tag and use it to compute the actual | |
8564 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8565 | location of the tag, and therefore compute the tagged type's actual type. | |
8566 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8567 | |
f192137b JB |
8568 | static struct type * |
8569 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8570 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8571 | { |
61ee279c | 8572 | type = ada_check_typedef (type); |
d2e4a39e AS |
8573 | switch (TYPE_CODE (type)) |
8574 | { | |
8575 | default: | |
14f9c5c9 | 8576 | return type; |
d2e4a39e | 8577 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8578 | { |
76a01679 | 8579 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8580 | struct type *fixed_record_type = |
8581 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8582 | |
529cad9c PH |
8583 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8584 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8585 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8586 | type (the parent part of the record may have dynamic fields |
8587 | and the way the location of _tag is expressed may depend on | |
8588 | them). */ | |
529cad9c | 8589 | |
1ed6ede0 | 8590 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8591 | { |
b50d69b5 JG |
8592 | struct value *tag = |
8593 | value_tag_from_contents_and_address | |
8594 | (fixed_record_type, | |
8595 | valaddr, | |
8596 | address); | |
8597 | struct type *real_type = type_from_tag (tag); | |
8598 | struct value *obj = | |
8599 | value_from_contents_and_address (fixed_record_type, | |
8600 | valaddr, | |
8601 | address); | |
9f1f738a | 8602 | fixed_record_type = value_type (obj); |
76a01679 | 8603 | if (real_type != NULL) |
b50d69b5 JG |
8604 | return to_fixed_record_type |
8605 | (real_type, NULL, | |
8606 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8607 | } |
4af88198 JB |
8608 | |
8609 | /* Check to see if there is a parallel ___XVZ variable. | |
8610 | If there is, then it provides the actual size of our type. */ | |
8611 | else if (ada_type_name (fixed_record_type) != NULL) | |
8612 | { | |
0d5cff50 | 8613 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8614 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8615 | int xvz_found = 0; | |
8616 | LONGEST size; | |
8617 | ||
88c15c34 | 8618 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8619 | size = get_int_var_value (xvz_name, &xvz_found); |
8620 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8621 | { | |
8622 | fixed_record_type = copy_type (fixed_record_type); | |
8623 | TYPE_LENGTH (fixed_record_type) = size; | |
8624 | ||
8625 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8626 | observed this when the debugging info is STABS, and | |
8627 | apparently it is something that is hard to fix. | |
8628 | ||
8629 | In practice, we don't need the actual type definition | |
8630 | at all, because the presence of the XVZ variable allows us | |
8631 | to assume that there must be a XVS type as well, which we | |
8632 | should be able to use later, when we need the actual type | |
8633 | definition. | |
8634 | ||
8635 | In the meantime, pretend that the "fixed" type we are | |
8636 | returning is NOT a stub, because this can cause trouble | |
8637 | when using this type to create new types targeting it. | |
8638 | Indeed, the associated creation routines often check | |
8639 | whether the target type is a stub and will try to replace | |
0963b4bd | 8640 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8641 | might cause the new type to have the wrong size too. |
8642 | Consider the case of an array, for instance, where the size | |
8643 | of the array is computed from the number of elements in | |
8644 | our array multiplied by the size of its element. */ | |
8645 | TYPE_STUB (fixed_record_type) = 0; | |
8646 | } | |
8647 | } | |
1ed6ede0 | 8648 | return fixed_record_type; |
4c4b4cd2 | 8649 | } |
d2e4a39e | 8650 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8651 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8652 | case TYPE_CODE_UNION: |
8653 | if (dval == NULL) | |
4c4b4cd2 | 8654 | return type; |
d2e4a39e | 8655 | else |
4c4b4cd2 | 8656 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8657 | } |
14f9c5c9 AS |
8658 | } |
8659 | ||
f192137b JB |
8660 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8661 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8662 | |
8663 | The typedef layer needs be preserved in order to differentiate between | |
8664 | arrays and array pointers when both types are implemented using the same | |
8665 | fat pointer. In the array pointer case, the pointer is encoded as | |
8666 | a typedef of the pointer type. For instance, considering: | |
8667 | ||
8668 | type String_Access is access String; | |
8669 | S1 : String_Access := null; | |
8670 | ||
8671 | To the debugger, S1 is defined as a typedef of type String. But | |
8672 | to the user, it is a pointer. So if the user tries to print S1, | |
8673 | we should not dereference the array, but print the array address | |
8674 | instead. | |
8675 | ||
8676 | If we didn't preserve the typedef layer, we would lose the fact that | |
8677 | the type is to be presented as a pointer (needs de-reference before | |
8678 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8679 | |
8680 | struct type * | |
8681 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8682 | CORE_ADDR address, struct value *dval, int check_tag) | |
8683 | ||
8684 | { | |
8685 | struct type *fixed_type = | |
8686 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8687 | ||
96dbd2c1 JB |
8688 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8689 | then preserve the typedef layer. | |
8690 | ||
8691 | Implementation note: We can only check the main-type portion of | |
8692 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8693 | from TYPE now returns a type that has the same instance flags | |
8694 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8695 | target type is a "struct", then the typedef elimination will return | |
8696 | a "const" version of the target type. See check_typedef for more | |
8697 | details about how the typedef layer elimination is done. | |
8698 | ||
8699 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8700 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8701 | Perhaps, we could add a check for that and preserve the typedef layer | |
8702 | only in that situation. But this seems unecessary so far, probably | |
8703 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8704 | */ | |
f192137b | 8705 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8706 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8707 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8708 | return type; |
8709 | ||
8710 | return fixed_type; | |
8711 | } | |
8712 | ||
14f9c5c9 | 8713 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8714 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8715 | |
d2e4a39e AS |
8716 | static struct type * |
8717 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8718 | { |
d2e4a39e | 8719 | struct type *type; |
14f9c5c9 AS |
8720 | |
8721 | if (type0 == NULL) | |
8722 | return NULL; | |
8723 | ||
876cecd0 | 8724 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8725 | return type0; |
8726 | ||
61ee279c | 8727 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8728 | |
14f9c5c9 AS |
8729 | switch (TYPE_CODE (type0)) |
8730 | { | |
8731 | default: | |
8732 | return type0; | |
8733 | case TYPE_CODE_STRUCT: | |
8734 | type = dynamic_template_type (type0); | |
d2e4a39e | 8735 | if (type != NULL) |
4c4b4cd2 PH |
8736 | return template_to_static_fixed_type (type); |
8737 | else | |
8738 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8739 | case TYPE_CODE_UNION: |
8740 | type = ada_find_parallel_type (type0, "___XVU"); | |
8741 | if (type != NULL) | |
4c4b4cd2 PH |
8742 | return template_to_static_fixed_type (type); |
8743 | else | |
8744 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8745 | } |
8746 | } | |
8747 | ||
4c4b4cd2 PH |
8748 | /* A static approximation of TYPE with all type wrappers removed. */ |
8749 | ||
d2e4a39e AS |
8750 | static struct type * |
8751 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8752 | { |
8753 | if (ada_is_aligner_type (type)) | |
8754 | { | |
61ee279c | 8755 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8756 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8757 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8758 | |
8759 | return static_unwrap_type (type1); | |
8760 | } | |
d2e4a39e | 8761 | else |
14f9c5c9 | 8762 | { |
d2e4a39e | 8763 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8764 | |
d2e4a39e | 8765 | if (raw_real_type == type) |
4c4b4cd2 | 8766 | return type; |
14f9c5c9 | 8767 | else |
4c4b4cd2 | 8768 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8769 | } |
8770 | } | |
8771 | ||
8772 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8773 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8774 | type Foo; |
8775 | type FooP is access Foo; | |
8776 | V: FooP; | |
8777 | type Foo is array ...; | |
4c4b4cd2 | 8778 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8779 | cross-references to such types, we instead substitute for FooP a |
8780 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8781 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8782 | |
8783 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8784 | exists, otherwise TYPE. */ |
8785 | ||
d2e4a39e | 8786 | struct type * |
61ee279c | 8787 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8788 | { |
727e3d2e JB |
8789 | if (type == NULL) |
8790 | return NULL; | |
8791 | ||
720d1a40 JB |
8792 | /* If our type is a typedef type of a fat pointer, then we're done. |
8793 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8794 | what allows us to distinguish between fat pointers that represent | |
8795 | array types, and fat pointers that represent array access types | |
8796 | (in both cases, the compiler implements them as fat pointers). */ | |
8797 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8798 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8799 | return type; | |
8800 | ||
14f9c5c9 AS |
8801 | CHECK_TYPEDEF (type); |
8802 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8803 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8804 | || TYPE_TAG_NAME (type) == NULL) |
8805 | return type; | |
d2e4a39e | 8806 | else |
14f9c5c9 | 8807 | { |
0d5cff50 | 8808 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8809 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8810 | |
05e522ef JB |
8811 | if (type1 == NULL) |
8812 | return type; | |
8813 | ||
8814 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8815 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8816 | types, only for the typedef-to-array types). If that's the case, |
8817 | strip the typedef layer. */ | |
8818 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8819 | type1 = ada_check_typedef (type1); | |
8820 | ||
8821 | return type1; | |
14f9c5c9 AS |
8822 | } |
8823 | } | |
8824 | ||
8825 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8826 | type TYPE0, but with a standard (static-sized) type that correctly | |
8827 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8828 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8829 | creation of struct values]. */ |
14f9c5c9 | 8830 | |
4c4b4cd2 PH |
8831 | static struct value * |
8832 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8833 | struct value *val0) | |
14f9c5c9 | 8834 | { |
1ed6ede0 | 8835 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8836 | |
14f9c5c9 AS |
8837 | if (type == type0 && val0 != NULL) |
8838 | return val0; | |
d2e4a39e | 8839 | else |
4c4b4cd2 PH |
8840 | return value_from_contents_and_address (type, 0, address); |
8841 | } | |
8842 | ||
8843 | /* A value representing VAL, but with a standard (static-sized) type | |
8844 | that correctly describes it. Does not necessarily create a new | |
8845 | value. */ | |
8846 | ||
0c3acc09 | 8847 | struct value * |
4c4b4cd2 PH |
8848 | ada_to_fixed_value (struct value *val) |
8849 | { | |
c48db5ca JB |
8850 | val = unwrap_value (val); |
8851 | val = ada_to_fixed_value_create (value_type (val), | |
8852 | value_address (val), | |
8853 | val); | |
8854 | return val; | |
14f9c5c9 | 8855 | } |
d2e4a39e | 8856 | \f |
14f9c5c9 | 8857 | |
14f9c5c9 AS |
8858 | /* Attributes */ |
8859 | ||
4c4b4cd2 PH |
8860 | /* Table mapping attribute numbers to names. |
8861 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8862 | |
d2e4a39e | 8863 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8864 | "<?>", |
8865 | ||
d2e4a39e | 8866 | "first", |
14f9c5c9 AS |
8867 | "last", |
8868 | "length", | |
8869 | "image", | |
14f9c5c9 AS |
8870 | "max", |
8871 | "min", | |
4c4b4cd2 PH |
8872 | "modulus", |
8873 | "pos", | |
8874 | "size", | |
8875 | "tag", | |
14f9c5c9 | 8876 | "val", |
14f9c5c9 AS |
8877 | 0 |
8878 | }; | |
8879 | ||
d2e4a39e | 8880 | const char * |
4c4b4cd2 | 8881 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8882 | { |
4c4b4cd2 PH |
8883 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8884 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8885 | else |
8886 | return attribute_names[0]; | |
8887 | } | |
8888 | ||
4c4b4cd2 | 8889 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8890 | |
4c4b4cd2 PH |
8891 | static LONGEST |
8892 | pos_atr (struct value *arg) | |
14f9c5c9 | 8893 | { |
24209737 PH |
8894 | struct value *val = coerce_ref (arg); |
8895 | struct type *type = value_type (val); | |
14f9c5c9 | 8896 | |
d2e4a39e | 8897 | if (!discrete_type_p (type)) |
323e0a4a | 8898 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8899 | |
8900 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8901 | { | |
8902 | int i; | |
24209737 | 8903 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8904 | |
d2e4a39e | 8905 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8906 | { |
14e75d8e | 8907 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8908 | return i; |
8909 | } | |
323e0a4a | 8910 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8911 | } |
8912 | else | |
24209737 | 8913 | return value_as_long (val); |
4c4b4cd2 PH |
8914 | } |
8915 | ||
8916 | static struct value * | |
3cb382c9 | 8917 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8918 | { |
3cb382c9 | 8919 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8920 | } |
8921 | ||
4c4b4cd2 | 8922 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8923 | |
d2e4a39e AS |
8924 | static struct value * |
8925 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8926 | { |
d2e4a39e | 8927 | if (!discrete_type_p (type)) |
323e0a4a | 8928 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8929 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8930 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8931 | |
8932 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8933 | { | |
8934 | long pos = value_as_long (arg); | |
5b4ee69b | 8935 | |
14f9c5c9 | 8936 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8937 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8938 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8939 | } |
8940 | else | |
8941 | return value_from_longest (type, value_as_long (arg)); | |
8942 | } | |
14f9c5c9 | 8943 | \f |
d2e4a39e | 8944 | |
4c4b4cd2 | 8945 | /* Evaluation */ |
14f9c5c9 | 8946 | |
4c4b4cd2 PH |
8947 | /* True if TYPE appears to be an Ada character type. |
8948 | [At the moment, this is true only for Character and Wide_Character; | |
8949 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8950 | |
d2e4a39e AS |
8951 | int |
8952 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8953 | { |
7b9f71f2 JB |
8954 | const char *name; |
8955 | ||
8956 | /* If the type code says it's a character, then assume it really is, | |
8957 | and don't check any further. */ | |
8958 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8959 | return 1; | |
8960 | ||
8961 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8962 | with a known character type name. */ | |
8963 | name = ada_type_name (type); | |
8964 | return (name != NULL | |
8965 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8966 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8967 | && (strcmp (name, "character") == 0 | |
8968 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8969 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8970 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8971 | } |
8972 | ||
4c4b4cd2 | 8973 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8974 | |
8975 | int | |
ebf56fd3 | 8976 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8977 | { |
61ee279c | 8978 | type = ada_check_typedef (type); |
d2e4a39e | 8979 | if (type != NULL |
14f9c5c9 | 8980 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8981 | && (ada_is_simple_array_type (type) |
8982 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8983 | && ada_array_arity (type) == 1) |
8984 | { | |
8985 | struct type *elttype = ada_array_element_type (type, 1); | |
8986 | ||
8987 | return ada_is_character_type (elttype); | |
8988 | } | |
d2e4a39e | 8989 | else |
14f9c5c9 AS |
8990 | return 0; |
8991 | } | |
8992 | ||
5bf03f13 JB |
8993 | /* The compiler sometimes provides a parallel XVS type for a given |
8994 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8995 | but older versions of the compiler have a bug that causes the offset | |
8996 | of its "F" field to be wrong. Following that field in that case | |
8997 | would lead to incorrect results, but this can be worked around | |
8998 | by ignoring the PAD type and using the associated XVS type instead. | |
8999 | ||
9000 | Set to True if the debugger should trust the contents of PAD types. | |
9001 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9002 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9003 | |
9004 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9005 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9006 | distinctive name. */ |
14f9c5c9 AS |
9007 | |
9008 | int | |
ebf56fd3 | 9009 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9010 | { |
61ee279c | 9011 | type = ada_check_typedef (type); |
714e53ab | 9012 | |
5bf03f13 | 9013 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9014 | return 0; |
9015 | ||
14f9c5c9 | 9016 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9017 | && TYPE_NFIELDS (type) == 1 |
9018 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9019 | } |
9020 | ||
9021 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9022 | the parallel type. */ |
14f9c5c9 | 9023 | |
d2e4a39e AS |
9024 | struct type * |
9025 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9026 | { |
d2e4a39e AS |
9027 | struct type *real_type_namer; |
9028 | struct type *raw_real_type; | |
14f9c5c9 AS |
9029 | |
9030 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9031 | return raw_type; | |
9032 | ||
284614f0 JB |
9033 | if (ada_is_aligner_type (raw_type)) |
9034 | /* The encoding specifies that we should always use the aligner type. | |
9035 | So, even if this aligner type has an associated XVS type, we should | |
9036 | simply ignore it. | |
9037 | ||
9038 | According to the compiler gurus, an XVS type parallel to an aligner | |
9039 | type may exist because of a stabs limitation. In stabs, aligner | |
9040 | types are empty because the field has a variable-sized type, and | |
9041 | thus cannot actually be used as an aligner type. As a result, | |
9042 | we need the associated parallel XVS type to decode the type. | |
9043 | Since the policy in the compiler is to not change the internal | |
9044 | representation based on the debugging info format, we sometimes | |
9045 | end up having a redundant XVS type parallel to the aligner type. */ | |
9046 | return raw_type; | |
9047 | ||
14f9c5c9 | 9048 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9049 | if (real_type_namer == NULL |
14f9c5c9 AS |
9050 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9051 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9052 | return raw_type; | |
9053 | ||
f80d3ff2 JB |
9054 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9055 | { | |
9056 | /* This is an older encoding form where the base type needs to be | |
9057 | looked up by name. We prefer the newer enconding because it is | |
9058 | more efficient. */ | |
9059 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9060 | if (raw_real_type == NULL) | |
9061 | return raw_type; | |
9062 | else | |
9063 | return raw_real_type; | |
9064 | } | |
9065 | ||
9066 | /* The field in our XVS type is a reference to the base type. */ | |
9067 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9068 | } |
14f9c5c9 | 9069 | |
4c4b4cd2 | 9070 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9071 | |
d2e4a39e AS |
9072 | struct type * |
9073 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9074 | { |
9075 | if (ada_is_aligner_type (type)) | |
9076 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9077 | else | |
9078 | return ada_get_base_type (type); | |
9079 | } | |
9080 | ||
9081 | ||
9082 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9083 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9084 | |
fc1a4b47 AC |
9085 | const gdb_byte * |
9086 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9087 | { |
d2e4a39e | 9088 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9089 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9090 | valaddr + |
9091 | TYPE_FIELD_BITPOS (type, | |
9092 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9093 | else |
9094 | return valaddr; | |
9095 | } | |
9096 | ||
4c4b4cd2 PH |
9097 | |
9098 | ||
14f9c5c9 | 9099 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9100 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9101 | const char * |
9102 | ada_enum_name (const char *name) | |
14f9c5c9 | 9103 | { |
4c4b4cd2 PH |
9104 | static char *result; |
9105 | static size_t result_len = 0; | |
d2e4a39e | 9106 | char *tmp; |
14f9c5c9 | 9107 | |
4c4b4cd2 PH |
9108 | /* First, unqualify the enumeration name: |
9109 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9110 | all the preceding characters, the unqualified name starts |
76a01679 | 9111 | right after that dot. |
4c4b4cd2 | 9112 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9113 | translates dots into "__". Search forward for double underscores, |
9114 | but stop searching when we hit an overloading suffix, which is | |
9115 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9116 | |
c3e5cd34 PH |
9117 | tmp = strrchr (name, '.'); |
9118 | if (tmp != NULL) | |
4c4b4cd2 PH |
9119 | name = tmp + 1; |
9120 | else | |
14f9c5c9 | 9121 | { |
4c4b4cd2 PH |
9122 | while ((tmp = strstr (name, "__")) != NULL) |
9123 | { | |
9124 | if (isdigit (tmp[2])) | |
9125 | break; | |
9126 | else | |
9127 | name = tmp + 2; | |
9128 | } | |
14f9c5c9 AS |
9129 | } |
9130 | ||
9131 | if (name[0] == 'Q') | |
9132 | { | |
14f9c5c9 | 9133 | int v; |
5b4ee69b | 9134 | |
14f9c5c9 | 9135 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9136 | { |
9137 | if (sscanf (name + 2, "%x", &v) != 1) | |
9138 | return name; | |
9139 | } | |
14f9c5c9 | 9140 | else |
4c4b4cd2 | 9141 | return name; |
14f9c5c9 | 9142 | |
4c4b4cd2 | 9143 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9144 | if (isascii (v) && isprint (v)) |
88c15c34 | 9145 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9146 | else if (name[1] == 'U') |
88c15c34 | 9147 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9148 | else |
88c15c34 | 9149 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9150 | |
9151 | return result; | |
9152 | } | |
d2e4a39e | 9153 | else |
4c4b4cd2 | 9154 | { |
c3e5cd34 PH |
9155 | tmp = strstr (name, "__"); |
9156 | if (tmp == NULL) | |
9157 | tmp = strstr (name, "$"); | |
9158 | if (tmp != NULL) | |
4c4b4cd2 PH |
9159 | { |
9160 | GROW_VECT (result, result_len, tmp - name + 1); | |
9161 | strncpy (result, name, tmp - name); | |
9162 | result[tmp - name] = '\0'; | |
9163 | return result; | |
9164 | } | |
9165 | ||
9166 | return name; | |
9167 | } | |
14f9c5c9 AS |
9168 | } |
9169 | ||
14f9c5c9 AS |
9170 | /* Evaluate the subexpression of EXP starting at *POS as for |
9171 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9172 | expression. */ |
14f9c5c9 | 9173 | |
d2e4a39e AS |
9174 | static struct value * |
9175 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9176 | { |
4b27a620 | 9177 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9178 | } |
9179 | ||
9180 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9181 | value it wraps. */ |
14f9c5c9 | 9182 | |
d2e4a39e AS |
9183 | static struct value * |
9184 | unwrap_value (struct value *val) | |
14f9c5c9 | 9185 | { |
df407dfe | 9186 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9187 | |
14f9c5c9 AS |
9188 | if (ada_is_aligner_type (type)) |
9189 | { | |
de4d072f | 9190 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9191 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9192 | |
14f9c5c9 | 9193 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9194 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9195 | |
9196 | return unwrap_value (v); | |
9197 | } | |
d2e4a39e | 9198 | else |
14f9c5c9 | 9199 | { |
d2e4a39e | 9200 | struct type *raw_real_type = |
61ee279c | 9201 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9202 | |
5bf03f13 JB |
9203 | /* If there is no parallel XVS or XVE type, then the value is |
9204 | already unwrapped. Return it without further modification. */ | |
9205 | if ((type == raw_real_type) | |
9206 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9207 | return val; | |
14f9c5c9 | 9208 | |
d2e4a39e | 9209 | return |
4c4b4cd2 PH |
9210 | coerce_unspec_val_to_type |
9211 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9212 | value_address (val), |
1ed6ede0 | 9213 | NULL, 1)); |
14f9c5c9 AS |
9214 | } |
9215 | } | |
d2e4a39e AS |
9216 | |
9217 | static struct value * | |
9218 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9219 | { |
9220 | LONGEST val; | |
9221 | ||
df407dfe | 9222 | if (type == value_type (arg)) |
14f9c5c9 | 9223 | return arg; |
df407dfe | 9224 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9225 | val = ada_float_to_fixed (type, |
df407dfe | 9226 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9227 | value_as_long (arg))); |
d2e4a39e | 9228 | else |
14f9c5c9 | 9229 | { |
a53b7a21 | 9230 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9231 | |
14f9c5c9 AS |
9232 | val = ada_float_to_fixed (type, argd); |
9233 | } | |
9234 | ||
9235 | return value_from_longest (type, val); | |
9236 | } | |
9237 | ||
d2e4a39e | 9238 | static struct value * |
a53b7a21 | 9239 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9240 | { |
df407dfe | 9241 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9242 | value_as_long (arg)); |
5b4ee69b | 9243 | |
a53b7a21 | 9244 | return value_from_double (type, val); |
14f9c5c9 AS |
9245 | } |
9246 | ||
d99dcf51 JB |
9247 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9248 | contain the same number of elements. */ | |
9249 | ||
9250 | static int | |
9251 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9252 | { | |
9253 | LONGEST lo1, hi1, lo2, hi2; | |
9254 | ||
9255 | /* Get the array bounds in order to verify that the size of | |
9256 | the two arrays match. */ | |
9257 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9258 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9259 | error (_("unable to determine array bounds")); | |
9260 | ||
9261 | /* To make things easier for size comparison, normalize a bit | |
9262 | the case of empty arrays by making sure that the difference | |
9263 | between upper bound and lower bound is always -1. */ | |
9264 | if (lo1 > hi1) | |
9265 | hi1 = lo1 - 1; | |
9266 | if (lo2 > hi2) | |
9267 | hi2 = lo2 - 1; | |
9268 | ||
9269 | return (hi1 - lo1 == hi2 - lo2); | |
9270 | } | |
9271 | ||
9272 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9273 | an array with the same number of elements, but with wider integral | |
9274 | elements, return an array "casted" to TYPE. In practice, this | |
9275 | means that the returned array is built by casting each element | |
9276 | of the original array into TYPE's (wider) element type. */ | |
9277 | ||
9278 | static struct value * | |
9279 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9280 | { | |
9281 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9282 | LONGEST lo, hi; | |
9283 | struct value *res; | |
9284 | LONGEST i; | |
9285 | ||
9286 | /* Verify that both val and type are arrays of scalars, and | |
9287 | that the size of val's elements is smaller than the size | |
9288 | of type's element. */ | |
9289 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9290 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9291 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9292 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9293 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9294 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9295 | ||
9296 | if (!get_array_bounds (type, &lo, &hi)) | |
9297 | error (_("unable to determine array bounds")); | |
9298 | ||
9299 | res = allocate_value (type); | |
9300 | ||
9301 | /* Promote each array element. */ | |
9302 | for (i = 0; i < hi - lo + 1; i++) | |
9303 | { | |
9304 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9305 | ||
9306 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9307 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9308 | } | |
9309 | ||
9310 | return res; | |
9311 | } | |
9312 | ||
4c4b4cd2 PH |
9313 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9314 | return the converted value. */ | |
9315 | ||
d2e4a39e AS |
9316 | static struct value * |
9317 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9318 | { |
df407dfe | 9319 | struct type *type2 = value_type (val); |
5b4ee69b | 9320 | |
14f9c5c9 AS |
9321 | if (type == type2) |
9322 | return val; | |
9323 | ||
61ee279c PH |
9324 | type2 = ada_check_typedef (type2); |
9325 | type = ada_check_typedef (type); | |
14f9c5c9 | 9326 | |
d2e4a39e AS |
9327 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9328 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9329 | { |
9330 | val = ada_value_ind (val); | |
df407dfe | 9331 | type2 = value_type (val); |
14f9c5c9 AS |
9332 | } |
9333 | ||
d2e4a39e | 9334 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9335 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9336 | { | |
d99dcf51 JB |
9337 | if (!ada_same_array_size_p (type, type2)) |
9338 | error (_("cannot assign arrays of different length")); | |
9339 | ||
9340 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9341 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9342 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9343 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9344 | { | |
9345 | /* Allow implicit promotion of the array elements to | |
9346 | a wider type. */ | |
9347 | return ada_promote_array_of_integrals (type, val); | |
9348 | } | |
9349 | ||
9350 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9351 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9352 | error (_("Incompatible types in assignment")); |
04624583 | 9353 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9354 | } |
d2e4a39e | 9355 | return val; |
14f9c5c9 AS |
9356 | } |
9357 | ||
4c4b4cd2 PH |
9358 | static struct value * |
9359 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9360 | { | |
9361 | struct value *val; | |
9362 | struct type *type1, *type2; | |
9363 | LONGEST v, v1, v2; | |
9364 | ||
994b9211 AC |
9365 | arg1 = coerce_ref (arg1); |
9366 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9367 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9368 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9369 | |
76a01679 JB |
9370 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9371 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9372 | return value_binop (arg1, arg2, op); |
9373 | ||
76a01679 | 9374 | switch (op) |
4c4b4cd2 PH |
9375 | { |
9376 | case BINOP_MOD: | |
9377 | case BINOP_DIV: | |
9378 | case BINOP_REM: | |
9379 | break; | |
9380 | default: | |
9381 | return value_binop (arg1, arg2, op); | |
9382 | } | |
9383 | ||
9384 | v2 = value_as_long (arg2); | |
9385 | if (v2 == 0) | |
323e0a4a | 9386 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9387 | |
9388 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9389 | return value_binop (arg1, arg2, op); | |
9390 | ||
9391 | v1 = value_as_long (arg1); | |
9392 | switch (op) | |
9393 | { | |
9394 | case BINOP_DIV: | |
9395 | v = v1 / v2; | |
76a01679 JB |
9396 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9397 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9398 | break; |
9399 | case BINOP_REM: | |
9400 | v = v1 % v2; | |
76a01679 JB |
9401 | if (v * v1 < 0) |
9402 | v -= v2; | |
4c4b4cd2 PH |
9403 | break; |
9404 | default: | |
9405 | /* Should not reach this point. */ | |
9406 | v = 0; | |
9407 | } | |
9408 | ||
9409 | val = allocate_value (type1); | |
990a07ab | 9410 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9411 | TYPE_LENGTH (value_type (val)), |
9412 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9413 | return val; |
9414 | } | |
9415 | ||
9416 | static int | |
9417 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9418 | { | |
df407dfe AC |
9419 | if (ada_is_direct_array_type (value_type (arg1)) |
9420 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9421 | { |
f58b38bf JB |
9422 | /* Automatically dereference any array reference before |
9423 | we attempt to perform the comparison. */ | |
9424 | arg1 = ada_coerce_ref (arg1); | |
9425 | arg2 = ada_coerce_ref (arg2); | |
9426 | ||
4c4b4cd2 PH |
9427 | arg1 = ada_coerce_to_simple_array (arg1); |
9428 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9429 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9430 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9431 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9432 | /* FIXME: The following works only for types whose |
76a01679 JB |
9433 | representations use all bits (no padding or undefined bits) |
9434 | and do not have user-defined equality. */ | |
9435 | return | |
df407dfe | 9436 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9437 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9438 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9439 | } |
9440 | return value_equal (arg1, arg2); | |
9441 | } | |
9442 | ||
52ce6436 PH |
9443 | /* Total number of component associations in the aggregate starting at |
9444 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9445 | OP_AGGREGATE. */ |
52ce6436 PH |
9446 | |
9447 | static int | |
9448 | num_component_specs (struct expression *exp, int pc) | |
9449 | { | |
9450 | int n, m, i; | |
5b4ee69b | 9451 | |
52ce6436 PH |
9452 | m = exp->elts[pc + 1].longconst; |
9453 | pc += 3; | |
9454 | n = 0; | |
9455 | for (i = 0; i < m; i += 1) | |
9456 | { | |
9457 | switch (exp->elts[pc].opcode) | |
9458 | { | |
9459 | default: | |
9460 | n += 1; | |
9461 | break; | |
9462 | case OP_CHOICES: | |
9463 | n += exp->elts[pc + 1].longconst; | |
9464 | break; | |
9465 | } | |
9466 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9467 | } | |
9468 | return n; | |
9469 | } | |
9470 | ||
9471 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9472 | component of LHS (a simple array or a record), updating *POS past | |
9473 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9474 | not modify the inferior's memory, nor does it modify LHS (unless | |
9475 | LHS == CONTAINER). */ | |
9476 | ||
9477 | static void | |
9478 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9479 | struct expression *exp, int *pos) | |
9480 | { | |
9481 | struct value *mark = value_mark (); | |
9482 | struct value *elt; | |
5b4ee69b | 9483 | |
52ce6436 PH |
9484 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9485 | { | |
22601c15 UW |
9486 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9487 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9488 | |
52ce6436 PH |
9489 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9490 | } | |
9491 | else | |
9492 | { | |
9493 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9494 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9495 | } |
9496 | ||
9497 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9498 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9499 | else | |
9500 | value_assign_to_component (container, elt, | |
9501 | ada_evaluate_subexp (NULL, exp, pos, | |
9502 | EVAL_NORMAL)); | |
9503 | ||
9504 | value_free_to_mark (mark); | |
9505 | } | |
9506 | ||
9507 | /* Assuming that LHS represents an lvalue having a record or array | |
9508 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9509 | of that aggregate's value to LHS, advancing *POS past the | |
9510 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9511 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9512 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9513 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9514 | |
9515 | static struct value * | |
9516 | assign_aggregate (struct value *container, | |
9517 | struct value *lhs, struct expression *exp, | |
9518 | int *pos, enum noside noside) | |
9519 | { | |
9520 | struct type *lhs_type; | |
9521 | int n = exp->elts[*pos+1].longconst; | |
9522 | LONGEST low_index, high_index; | |
9523 | int num_specs; | |
9524 | LONGEST *indices; | |
9525 | int max_indices, num_indices; | |
52ce6436 | 9526 | int i; |
52ce6436 PH |
9527 | |
9528 | *pos += 3; | |
9529 | if (noside != EVAL_NORMAL) | |
9530 | { | |
52ce6436 PH |
9531 | for (i = 0; i < n; i += 1) |
9532 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9533 | return container; | |
9534 | } | |
9535 | ||
9536 | container = ada_coerce_ref (container); | |
9537 | if (ada_is_direct_array_type (value_type (container))) | |
9538 | container = ada_coerce_to_simple_array (container); | |
9539 | lhs = ada_coerce_ref (lhs); | |
9540 | if (!deprecated_value_modifiable (lhs)) | |
9541 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9542 | ||
9543 | lhs_type = value_type (lhs); | |
9544 | if (ada_is_direct_array_type (lhs_type)) | |
9545 | { | |
9546 | lhs = ada_coerce_to_simple_array (lhs); | |
9547 | lhs_type = value_type (lhs); | |
9548 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9549 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9550 | } |
9551 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9552 | { | |
9553 | low_index = 0; | |
9554 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9555 | } |
9556 | else | |
9557 | error (_("Left-hand side must be array or record.")); | |
9558 | ||
9559 | num_specs = num_component_specs (exp, *pos - 3); | |
9560 | max_indices = 4 * num_specs + 4; | |
9561 | indices = alloca (max_indices * sizeof (indices[0])); | |
9562 | indices[0] = indices[1] = low_index - 1; | |
9563 | indices[2] = indices[3] = high_index + 1; | |
9564 | num_indices = 4; | |
9565 | ||
9566 | for (i = 0; i < n; i += 1) | |
9567 | { | |
9568 | switch (exp->elts[*pos].opcode) | |
9569 | { | |
1fbf5ada JB |
9570 | case OP_CHOICES: |
9571 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9572 | &num_indices, max_indices, | |
9573 | low_index, high_index); | |
9574 | break; | |
9575 | case OP_POSITIONAL: | |
9576 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9577 | &num_indices, max_indices, |
9578 | low_index, high_index); | |
1fbf5ada JB |
9579 | break; |
9580 | case OP_OTHERS: | |
9581 | if (i != n-1) | |
9582 | error (_("Misplaced 'others' clause")); | |
9583 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9584 | num_indices, low_index, high_index); | |
9585 | break; | |
9586 | default: | |
9587 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9588 | } |
9589 | } | |
9590 | ||
9591 | return container; | |
9592 | } | |
9593 | ||
9594 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9595 | construct at *POS, updating *POS past the construct, given that | |
9596 | the positions are relative to lower bound LOW, where HIGH is the | |
9597 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9598 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9599 | assign_aggregate. */ |
52ce6436 PH |
9600 | static void |
9601 | aggregate_assign_positional (struct value *container, | |
9602 | struct value *lhs, struct expression *exp, | |
9603 | int *pos, LONGEST *indices, int *num_indices, | |
9604 | int max_indices, LONGEST low, LONGEST high) | |
9605 | { | |
9606 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9607 | ||
9608 | if (ind - 1 == high) | |
e1d5a0d2 | 9609 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9610 | if (ind <= high) |
9611 | { | |
9612 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9613 | *pos += 3; | |
9614 | assign_component (container, lhs, ind, exp, pos); | |
9615 | } | |
9616 | else | |
9617 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9618 | } | |
9619 | ||
9620 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9621 | construct at *POS, updating *POS past the construct, given that | |
9622 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9623 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9624 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9625 | static void |
9626 | aggregate_assign_from_choices (struct value *container, | |
9627 | struct value *lhs, struct expression *exp, | |
9628 | int *pos, LONGEST *indices, int *num_indices, | |
9629 | int max_indices, LONGEST low, LONGEST high) | |
9630 | { | |
9631 | int j; | |
9632 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9633 | int choice_pos, expr_pc; | |
9634 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9635 | ||
9636 | choice_pos = *pos += 3; | |
9637 | ||
9638 | for (j = 0; j < n_choices; j += 1) | |
9639 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9640 | expr_pc = *pos; | |
9641 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9642 | ||
9643 | for (j = 0; j < n_choices; j += 1) | |
9644 | { | |
9645 | LONGEST lower, upper; | |
9646 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9647 | |
52ce6436 PH |
9648 | if (op == OP_DISCRETE_RANGE) |
9649 | { | |
9650 | choice_pos += 1; | |
9651 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9652 | EVAL_NORMAL)); | |
9653 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9654 | EVAL_NORMAL)); | |
9655 | } | |
9656 | else if (is_array) | |
9657 | { | |
9658 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9659 | EVAL_NORMAL)); | |
9660 | upper = lower; | |
9661 | } | |
9662 | else | |
9663 | { | |
9664 | int ind; | |
0d5cff50 | 9665 | const char *name; |
5b4ee69b | 9666 | |
52ce6436 PH |
9667 | switch (op) |
9668 | { | |
9669 | case OP_NAME: | |
9670 | name = &exp->elts[choice_pos + 2].string; | |
9671 | break; | |
9672 | case OP_VAR_VALUE: | |
9673 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9674 | break; | |
9675 | default: | |
9676 | error (_("Invalid record component association.")); | |
9677 | } | |
9678 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9679 | ind = 0; | |
9680 | if (! find_struct_field (name, value_type (lhs), 0, | |
9681 | NULL, NULL, NULL, NULL, &ind)) | |
9682 | error (_("Unknown component name: %s."), name); | |
9683 | lower = upper = ind; | |
9684 | } | |
9685 | ||
9686 | if (lower <= upper && (lower < low || upper > high)) | |
9687 | error (_("Index in component association out of bounds.")); | |
9688 | ||
9689 | add_component_interval (lower, upper, indices, num_indices, | |
9690 | max_indices); | |
9691 | while (lower <= upper) | |
9692 | { | |
9693 | int pos1; | |
5b4ee69b | 9694 | |
52ce6436 PH |
9695 | pos1 = expr_pc; |
9696 | assign_component (container, lhs, lower, exp, &pos1); | |
9697 | lower += 1; | |
9698 | } | |
9699 | } | |
9700 | } | |
9701 | ||
9702 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9703 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9704 | have not been previously assigned. The index intervals already assigned | |
9705 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9706 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9707 | static void |
9708 | aggregate_assign_others (struct value *container, | |
9709 | struct value *lhs, struct expression *exp, | |
9710 | int *pos, LONGEST *indices, int num_indices, | |
9711 | LONGEST low, LONGEST high) | |
9712 | { | |
9713 | int i; | |
5ce64950 | 9714 | int expr_pc = *pos + 1; |
52ce6436 PH |
9715 | |
9716 | for (i = 0; i < num_indices - 2; i += 2) | |
9717 | { | |
9718 | LONGEST ind; | |
5b4ee69b | 9719 | |
52ce6436 PH |
9720 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9721 | { | |
5ce64950 | 9722 | int localpos; |
5b4ee69b | 9723 | |
5ce64950 MS |
9724 | localpos = expr_pc; |
9725 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9726 | } |
9727 | } | |
9728 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9729 | } | |
9730 | ||
9731 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9732 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9733 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9734 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9735 | static void | |
9736 | add_component_interval (LONGEST low, LONGEST high, | |
9737 | LONGEST* indices, int *size, int max_size) | |
9738 | { | |
9739 | int i, j; | |
5b4ee69b | 9740 | |
52ce6436 PH |
9741 | for (i = 0; i < *size; i += 2) { |
9742 | if (high >= indices[i] && low <= indices[i + 1]) | |
9743 | { | |
9744 | int kh; | |
5b4ee69b | 9745 | |
52ce6436 PH |
9746 | for (kh = i + 2; kh < *size; kh += 2) |
9747 | if (high < indices[kh]) | |
9748 | break; | |
9749 | if (low < indices[i]) | |
9750 | indices[i] = low; | |
9751 | indices[i + 1] = indices[kh - 1]; | |
9752 | if (high > indices[i + 1]) | |
9753 | indices[i + 1] = high; | |
9754 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9755 | *size -= kh - i - 2; | |
9756 | return; | |
9757 | } | |
9758 | else if (high < indices[i]) | |
9759 | break; | |
9760 | } | |
9761 | ||
9762 | if (*size == max_size) | |
9763 | error (_("Internal error: miscounted aggregate components.")); | |
9764 | *size += 2; | |
9765 | for (j = *size-1; j >= i+2; j -= 1) | |
9766 | indices[j] = indices[j - 2]; | |
9767 | indices[i] = low; | |
9768 | indices[i + 1] = high; | |
9769 | } | |
9770 | ||
6e48bd2c JB |
9771 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9772 | is different. */ | |
9773 | ||
9774 | static struct value * | |
9775 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9776 | { | |
9777 | if (type == ada_check_typedef (value_type (arg2))) | |
9778 | return arg2; | |
9779 | ||
9780 | if (ada_is_fixed_point_type (type)) | |
9781 | return (cast_to_fixed (type, arg2)); | |
9782 | ||
9783 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9784 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9785 | |
9786 | return value_cast (type, arg2); | |
9787 | } | |
9788 | ||
284614f0 JB |
9789 | /* Evaluating Ada expressions, and printing their result. |
9790 | ------------------------------------------------------ | |
9791 | ||
21649b50 JB |
9792 | 1. Introduction: |
9793 | ---------------- | |
9794 | ||
284614f0 JB |
9795 | We usually evaluate an Ada expression in order to print its value. |
9796 | We also evaluate an expression in order to print its type, which | |
9797 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9798 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9799 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9800 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9801 | similar. | |
9802 | ||
9803 | Evaluating expressions is a little more complicated for Ada entities | |
9804 | than it is for entities in languages such as C. The main reason for | |
9805 | this is that Ada provides types whose definition might be dynamic. | |
9806 | One example of such types is variant records. Or another example | |
9807 | would be an array whose bounds can only be known at run time. | |
9808 | ||
9809 | The following description is a general guide as to what should be | |
9810 | done (and what should NOT be done) in order to evaluate an expression | |
9811 | involving such types, and when. This does not cover how the semantic | |
9812 | information is encoded by GNAT as this is covered separatly. For the | |
9813 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9814 | in the GNAT sources. | |
9815 | ||
9816 | Ideally, we should embed each part of this description next to its | |
9817 | associated code. Unfortunately, the amount of code is so vast right | |
9818 | now that it's hard to see whether the code handling a particular | |
9819 | situation might be duplicated or not. One day, when the code is | |
9820 | cleaned up, this guide might become redundant with the comments | |
9821 | inserted in the code, and we might want to remove it. | |
9822 | ||
21649b50 JB |
9823 | 2. ``Fixing'' an Entity, the Simple Case: |
9824 | ----------------------------------------- | |
9825 | ||
284614f0 JB |
9826 | When evaluating Ada expressions, the tricky issue is that they may |
9827 | reference entities whose type contents and size are not statically | |
9828 | known. Consider for instance a variant record: | |
9829 | ||
9830 | type Rec (Empty : Boolean := True) is record | |
9831 | case Empty is | |
9832 | when True => null; | |
9833 | when False => Value : Integer; | |
9834 | end case; | |
9835 | end record; | |
9836 | Yes : Rec := (Empty => False, Value => 1); | |
9837 | No : Rec := (empty => True); | |
9838 | ||
9839 | The size and contents of that record depends on the value of the | |
9840 | descriminant (Rec.Empty). At this point, neither the debugging | |
9841 | information nor the associated type structure in GDB are able to | |
9842 | express such dynamic types. So what the debugger does is to create | |
9843 | "fixed" versions of the type that applies to the specific object. | |
9844 | We also informally refer to this opperation as "fixing" an object, | |
9845 | which means creating its associated fixed type. | |
9846 | ||
9847 | Example: when printing the value of variable "Yes" above, its fixed | |
9848 | type would look like this: | |
9849 | ||
9850 | type Rec is record | |
9851 | Empty : Boolean; | |
9852 | Value : Integer; | |
9853 | end record; | |
9854 | ||
9855 | On the other hand, if we printed the value of "No", its fixed type | |
9856 | would become: | |
9857 | ||
9858 | type Rec is record | |
9859 | Empty : Boolean; | |
9860 | end record; | |
9861 | ||
9862 | Things become a little more complicated when trying to fix an entity | |
9863 | with a dynamic type that directly contains another dynamic type, | |
9864 | such as an array of variant records, for instance. There are | |
9865 | two possible cases: Arrays, and records. | |
9866 | ||
21649b50 JB |
9867 | 3. ``Fixing'' Arrays: |
9868 | --------------------- | |
9869 | ||
9870 | The type structure in GDB describes an array in terms of its bounds, | |
9871 | and the type of its elements. By design, all elements in the array | |
9872 | have the same type and we cannot represent an array of variant elements | |
9873 | using the current type structure in GDB. When fixing an array, | |
9874 | we cannot fix the array element, as we would potentially need one | |
9875 | fixed type per element of the array. As a result, the best we can do | |
9876 | when fixing an array is to produce an array whose bounds and size | |
9877 | are correct (allowing us to read it from memory), but without having | |
9878 | touched its element type. Fixing each element will be done later, | |
9879 | when (if) necessary. | |
9880 | ||
9881 | Arrays are a little simpler to handle than records, because the same | |
9882 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9883 | the amount of space actually used by each element differs from element |
21649b50 | 9884 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9885 | |
9886 | type Rec_Array is array (1 .. 2) of Rec; | |
9887 | ||
1b536f04 JB |
9888 | The actual amount of memory occupied by each element might be different |
9889 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9890 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9891 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9892 | the debugging information available, from which we can then determine |
9893 | the array size (we multiply the number of elements of the array by | |
9894 | the size of each element). | |
9895 | ||
9896 | The simplest case is when we have an array of a constrained element | |
9897 | type. For instance, consider the following type declarations: | |
9898 | ||
9899 | type Bounded_String (Max_Size : Integer) is | |
9900 | Length : Integer; | |
9901 | Buffer : String (1 .. Max_Size); | |
9902 | end record; | |
9903 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9904 | ||
9905 | In this case, the compiler describes the array as an array of | |
9906 | variable-size elements (identified by its XVS suffix) for which | |
9907 | the size can be read in the parallel XVZ variable. | |
9908 | ||
9909 | In the case of an array of an unconstrained element type, the compiler | |
9910 | wraps the array element inside a private PAD type. This type should not | |
9911 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9912 | that we also use the adjective "aligner" in our code to designate |
9913 | these wrapper types. | |
9914 | ||
1b536f04 | 9915 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9916 | known. In that case, the PAD type already has the correct size, |
9917 | and the array element should remain unfixed. | |
9918 | ||
9919 | But there are cases when this size is not statically known. | |
9920 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9921 | |
9922 | type Dynamic is array (1 .. Five) of Integer; | |
9923 | type Wrapper (Has_Length : Boolean := False) is record | |
9924 | Data : Dynamic; | |
9925 | case Has_Length is | |
9926 | when True => Length : Integer; | |
9927 | when False => null; | |
9928 | end case; | |
9929 | end record; | |
9930 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9931 | ||
9932 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9933 | Data => (others => 17), | |
9934 | Length => 1)); | |
9935 | ||
9936 | ||
9937 | The debugging info would describe variable Hello as being an | |
9938 | array of a PAD type. The size of that PAD type is not statically | |
9939 | known, but can be determined using a parallel XVZ variable. | |
9940 | In that case, a copy of the PAD type with the correct size should | |
9941 | be used for the fixed array. | |
9942 | ||
21649b50 JB |
9943 | 3. ``Fixing'' record type objects: |
9944 | ---------------------------------- | |
9945 | ||
9946 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9947 | record types. In this case, in order to compute the associated |
9948 | fixed type, we need to determine the size and offset of each of | |
9949 | its components. This, in turn, requires us to compute the fixed | |
9950 | type of each of these components. | |
9951 | ||
9952 | Consider for instance the example: | |
9953 | ||
9954 | type Bounded_String (Max_Size : Natural) is record | |
9955 | Str : String (1 .. Max_Size); | |
9956 | Length : Natural; | |
9957 | end record; | |
9958 | My_String : Bounded_String (Max_Size => 10); | |
9959 | ||
9960 | In that case, the position of field "Length" depends on the size | |
9961 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9962 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9963 | we need to fix the type of field Str. Therefore, fixing a variant |
9964 | record requires us to fix each of its components. | |
9965 | ||
9966 | However, if a component does not have a dynamic size, the component | |
9967 | should not be fixed. In particular, fields that use a PAD type | |
9968 | should not fixed. Here is an example where this might happen | |
9969 | (assuming type Rec above): | |
9970 | ||
9971 | type Container (Big : Boolean) is record | |
9972 | First : Rec; | |
9973 | After : Integer; | |
9974 | case Big is | |
9975 | when True => Another : Integer; | |
9976 | when False => null; | |
9977 | end case; | |
9978 | end record; | |
9979 | My_Container : Container := (Big => False, | |
9980 | First => (Empty => True), | |
9981 | After => 42); | |
9982 | ||
9983 | In that example, the compiler creates a PAD type for component First, | |
9984 | whose size is constant, and then positions the component After just | |
9985 | right after it. The offset of component After is therefore constant | |
9986 | in this case. | |
9987 | ||
9988 | The debugger computes the position of each field based on an algorithm | |
9989 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9990 | preceding it. Let's now imagine that the user is trying to print |
9991 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9992 | end up computing the offset of field After based on the size of the |
9993 | fixed version of field First. And since in our example First has | |
9994 | only one actual field, the size of the fixed type is actually smaller | |
9995 | than the amount of space allocated to that field, and thus we would | |
9996 | compute the wrong offset of field After. | |
9997 | ||
21649b50 JB |
9998 | To make things more complicated, we need to watch out for dynamic |
9999 | components of variant records (identified by the ___XVL suffix in | |
10000 | the component name). Even if the target type is a PAD type, the size | |
10001 | of that type might not be statically known. So the PAD type needs | |
10002 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10003 | we might end up with the wrong size for our component. This can be | |
10004 | observed with the following type declarations: | |
284614f0 JB |
10005 | |
10006 | type Octal is new Integer range 0 .. 7; | |
10007 | type Octal_Array is array (Positive range <>) of Octal; | |
10008 | pragma Pack (Octal_Array); | |
10009 | ||
10010 | type Octal_Buffer (Size : Positive) is record | |
10011 | Buffer : Octal_Array (1 .. Size); | |
10012 | Length : Integer; | |
10013 | end record; | |
10014 | ||
10015 | In that case, Buffer is a PAD type whose size is unset and needs | |
10016 | to be computed by fixing the unwrapped type. | |
10017 | ||
21649b50 JB |
10018 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10019 | ---------------------------------------------------------- | |
10020 | ||
10021 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10022 | thus far, be actually fixed? |
10023 | ||
10024 | The answer is: Only when referencing that element. For instance | |
10025 | when selecting one component of a record, this specific component | |
10026 | should be fixed at that point in time. Or when printing the value | |
10027 | of a record, each component should be fixed before its value gets | |
10028 | printed. Similarly for arrays, the element of the array should be | |
10029 | fixed when printing each element of the array, or when extracting | |
10030 | one element out of that array. On the other hand, fixing should | |
10031 | not be performed on the elements when taking a slice of an array! | |
10032 | ||
10033 | Note that one of the side-effects of miscomputing the offset and | |
10034 | size of each field is that we end up also miscomputing the size | |
10035 | of the containing type. This can have adverse results when computing | |
10036 | the value of an entity. GDB fetches the value of an entity based | |
10037 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10038 | the wrong amount of memory. In the case where the computed size is | |
10039 | too small, GDB fetches too little data to print the value of our | |
10040 | entiry. Results in this case as unpredicatble, as we usually read | |
10041 | past the buffer containing the data =:-o. */ | |
10042 | ||
10043 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10044 | for the Ada language. */ | |
10045 | ||
52ce6436 | 10046 | static struct value * |
ebf56fd3 | 10047 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10048 | int *pos, enum noside noside) |
14f9c5c9 AS |
10049 | { |
10050 | enum exp_opcode op; | |
b5385fc0 | 10051 | int tem; |
14f9c5c9 | 10052 | int pc; |
5ec18f2b | 10053 | int preeval_pos; |
14f9c5c9 AS |
10054 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10055 | struct type *type; | |
52ce6436 | 10056 | int nargs, oplen; |
d2e4a39e | 10057 | struct value **argvec; |
14f9c5c9 | 10058 | |
d2e4a39e AS |
10059 | pc = *pos; |
10060 | *pos += 1; | |
14f9c5c9 AS |
10061 | op = exp->elts[pc].opcode; |
10062 | ||
d2e4a39e | 10063 | switch (op) |
14f9c5c9 AS |
10064 | { |
10065 | default: | |
10066 | *pos -= 1; | |
6e48bd2c | 10067 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10068 | |
10069 | if (noside == EVAL_NORMAL) | |
10070 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10071 | |
10072 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10073 | then we need to perform the conversion manually, because | |
10074 | evaluate_subexp_standard doesn't do it. This conversion is | |
10075 | necessary in Ada because the different kinds of float/fixed | |
10076 | types in Ada have different representations. | |
10077 | ||
10078 | Similarly, we need to perform the conversion from OP_LONG | |
10079 | ourselves. */ | |
10080 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10081 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10082 | ||
10083 | return arg1; | |
4c4b4cd2 PH |
10084 | |
10085 | case OP_STRING: | |
10086 | { | |
76a01679 | 10087 | struct value *result; |
5b4ee69b | 10088 | |
76a01679 JB |
10089 | *pos -= 1; |
10090 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10091 | /* The result type will have code OP_STRING, bashed there from | |
10092 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10093 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10094 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10095 | return result; |
4c4b4cd2 | 10096 | } |
14f9c5c9 AS |
10097 | |
10098 | case UNOP_CAST: | |
10099 | (*pos) += 2; | |
10100 | type = exp->elts[pc + 1].type; | |
10101 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10102 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10103 | goto nosideret; |
6e48bd2c | 10104 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10105 | return arg1; |
10106 | ||
4c4b4cd2 PH |
10107 | case UNOP_QUAL: |
10108 | (*pos) += 2; | |
10109 | type = exp->elts[pc + 1].type; | |
10110 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10111 | ||
14f9c5c9 AS |
10112 | case BINOP_ASSIGN: |
10113 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10114 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10115 | { | |
10116 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10117 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10118 | return arg1; | |
10119 | return ada_value_assign (arg1, arg1); | |
10120 | } | |
003f3813 JB |
10121 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10122 | except if the lhs of our assignment is a convenience variable. | |
10123 | In the case of assigning to a convenience variable, the lhs | |
10124 | should be exactly the result of the evaluation of the rhs. */ | |
10125 | type = value_type (arg1); | |
10126 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10127 | type = NULL; | |
10128 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10129 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10130 | return arg1; |
df407dfe AC |
10131 | if (ada_is_fixed_point_type (value_type (arg1))) |
10132 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10133 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10134 | error |
323e0a4a | 10135 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10136 | else |
df407dfe | 10137 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10138 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10139 | |
10140 | case BINOP_ADD: | |
10141 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10142 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10143 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10144 | goto nosideret; |
2ac8a782 JB |
10145 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10146 | return (value_from_longest | |
10147 | (value_type (arg1), | |
10148 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10149 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10150 | return (value_from_longest | |
10151 | (value_type (arg2), | |
10152 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10153 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10154 | || ada_is_fixed_point_type (value_type (arg2))) | |
10155 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10156 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10157 | /* Do the addition, and cast the result to the type of the first |
10158 | argument. We cannot cast the result to a reference type, so if | |
10159 | ARG1 is a reference type, find its underlying type. */ | |
10160 | type = value_type (arg1); | |
10161 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10162 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10163 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10164 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10165 | |
10166 | case BINOP_SUB: | |
10167 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10168 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10169 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10170 | goto nosideret; |
2ac8a782 JB |
10171 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10172 | return (value_from_longest | |
10173 | (value_type (arg1), | |
10174 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10175 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10176 | return (value_from_longest | |
10177 | (value_type (arg2), | |
10178 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10179 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10180 | || ada_is_fixed_point_type (value_type (arg2))) | |
10181 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10182 | error (_("Operands of fixed-point subtraction " |
10183 | "must have the same type")); | |
b7789565 JB |
10184 | /* Do the substraction, and cast the result to the type of the first |
10185 | argument. We cannot cast the result to a reference type, so if | |
10186 | ARG1 is a reference type, find its underlying type. */ | |
10187 | type = value_type (arg1); | |
10188 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10189 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10190 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10191 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10192 | |
10193 | case BINOP_MUL: | |
10194 | case BINOP_DIV: | |
e1578042 JB |
10195 | case BINOP_REM: |
10196 | case BINOP_MOD: | |
14f9c5c9 AS |
10197 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10198 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10199 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10200 | goto nosideret; |
e1578042 | 10201 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10202 | { |
10203 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10204 | return value_zero (value_type (arg1), not_lval); | |
10205 | } | |
14f9c5c9 | 10206 | else |
4c4b4cd2 | 10207 | { |
a53b7a21 | 10208 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10209 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10210 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10211 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10212 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10213 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10214 | return ada_value_binop (arg1, arg2, op); |
10215 | } | |
10216 | ||
4c4b4cd2 PH |
10217 | case BINOP_EQUAL: |
10218 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10219 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10220 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10221 | if (noside == EVAL_SKIP) |
76a01679 | 10222 | goto nosideret; |
4c4b4cd2 | 10223 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10224 | tem = 0; |
4c4b4cd2 | 10225 | else |
f44316fa UW |
10226 | { |
10227 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10228 | tem = ada_value_equal (arg1, arg2); | |
10229 | } | |
4c4b4cd2 | 10230 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10231 | tem = !tem; |
fbb06eb1 UW |
10232 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10233 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10234 | |
10235 | case UNOP_NEG: | |
10236 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10237 | if (noside == EVAL_SKIP) | |
10238 | goto nosideret; | |
df407dfe AC |
10239 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10240 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10241 | else |
f44316fa UW |
10242 | { |
10243 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10244 | return value_neg (arg1); | |
10245 | } | |
4c4b4cd2 | 10246 | |
2330c6c6 JB |
10247 | case BINOP_LOGICAL_AND: |
10248 | case BINOP_LOGICAL_OR: | |
10249 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10250 | { |
10251 | struct value *val; | |
10252 | ||
10253 | *pos -= 1; | |
10254 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10255 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10256 | return value_cast (type, val); | |
000d5124 | 10257 | } |
2330c6c6 JB |
10258 | |
10259 | case BINOP_BITWISE_AND: | |
10260 | case BINOP_BITWISE_IOR: | |
10261 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10262 | { |
10263 | struct value *val; | |
10264 | ||
10265 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10266 | *pos = pc; | |
10267 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10268 | ||
10269 | return value_cast (value_type (arg1), val); | |
10270 | } | |
2330c6c6 | 10271 | |
14f9c5c9 AS |
10272 | case OP_VAR_VALUE: |
10273 | *pos -= 1; | |
6799def4 | 10274 | |
14f9c5c9 | 10275 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10276 | { |
10277 | *pos += 4; | |
10278 | goto nosideret; | |
10279 | } | |
da5c522f JB |
10280 | |
10281 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10282 | /* Only encountered when an unresolved symbol occurs in a |
10283 | context other than a function call, in which case, it is | |
52ce6436 | 10284 | invalid. */ |
323e0a4a | 10285 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10286 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10287 | |
10288 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10289 | { |
0c1f74cf | 10290 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10291 | /* Check to see if this is a tagged type. We also need to handle |
10292 | the case where the type is a reference to a tagged type, but | |
10293 | we have to be careful to exclude pointers to tagged types. | |
10294 | The latter should be shown as usual (as a pointer), whereas | |
10295 | a reference should mostly be transparent to the user. */ | |
10296 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10297 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10298 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10299 | { |
10300 | /* Tagged types are a little special in the fact that the real | |
10301 | type is dynamic and can only be determined by inspecting the | |
10302 | object's tag. This means that we need to get the object's | |
10303 | value first (EVAL_NORMAL) and then extract the actual object | |
10304 | type from its tag. | |
10305 | ||
10306 | Note that we cannot skip the final step where we extract | |
10307 | the object type from its tag, because the EVAL_NORMAL phase | |
10308 | results in dynamic components being resolved into fixed ones. | |
10309 | This can cause problems when trying to print the type | |
10310 | description of tagged types whose parent has a dynamic size: | |
10311 | We use the type name of the "_parent" component in order | |
10312 | to print the name of the ancestor type in the type description. | |
10313 | If that component had a dynamic size, the resolution into | |
10314 | a fixed type would result in the loss of that type name, | |
10315 | thus preventing us from printing the name of the ancestor | |
10316 | type in the type description. */ | |
10317 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10318 | ||
10319 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10320 | { | |
10321 | struct type *actual_type; | |
10322 | ||
10323 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10324 | if (actual_type == NULL) | |
10325 | /* If, for some reason, we were unable to determine | |
10326 | the actual type from the tag, then use the static | |
10327 | approximation that we just computed as a fallback. | |
10328 | This can happen if the debugging information is | |
10329 | incomplete, for instance. */ | |
10330 | actual_type = type; | |
10331 | return value_zero (actual_type, not_lval); | |
10332 | } | |
10333 | else | |
10334 | { | |
10335 | /* In the case of a ref, ada_coerce_ref takes care | |
10336 | of determining the actual type. But the evaluation | |
10337 | should return a ref as it should be valid to ask | |
10338 | for its address; so rebuild a ref after coerce. */ | |
10339 | arg1 = ada_coerce_ref (arg1); | |
10340 | return value_ref (arg1); | |
10341 | } | |
10342 | } | |
0c1f74cf | 10343 | |
84754697 JB |
10344 | /* Records and unions for which GNAT encodings have been |
10345 | generated need to be statically fixed as well. | |
10346 | Otherwise, non-static fixing produces a type where | |
10347 | all dynamic properties are removed, which prevents "ptype" | |
10348 | from being able to completely describe the type. | |
10349 | For instance, a case statement in a variant record would be | |
10350 | replaced by the relevant components based on the actual | |
10351 | value of the discriminants. */ | |
10352 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10353 | && dynamic_template_type (type) != NULL) | |
10354 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10355 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10356 | { | |
10357 | *pos += 4; | |
10358 | return value_zero (to_static_fixed_type (type), not_lval); | |
10359 | } | |
4c4b4cd2 | 10360 | } |
da5c522f JB |
10361 | |
10362 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10363 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10364 | |
10365 | case OP_FUNCALL: | |
10366 | (*pos) += 2; | |
10367 | ||
10368 | /* Allocate arg vector, including space for the function to be | |
10369 | called in argvec[0] and a terminating NULL. */ | |
10370 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
10371 | argvec = | |
10372 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
10373 | ||
10374 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10375 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10376 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10377 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10378 | else | |
10379 | { | |
10380 | for (tem = 0; tem <= nargs; tem += 1) | |
10381 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10382 | argvec[tem] = 0; | |
10383 | ||
10384 | if (noside == EVAL_SKIP) | |
10385 | goto nosideret; | |
10386 | } | |
10387 | ||
ad82864c JB |
10388 | if (ada_is_constrained_packed_array_type |
10389 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10390 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10391 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10392 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10393 | /* This is a packed array that has already been fixed, and | |
10394 | therefore already coerced to a simple array. Nothing further | |
10395 | to do. */ | |
10396 | ; | |
df407dfe AC |
10397 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
10398 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 10399 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
10400 | argvec[0] = value_addr (argvec[0]); |
10401 | ||
df407dfe | 10402 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10403 | |
10404 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10405 | them. So, if this is an array typedef (encoding use for array |
10406 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10407 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10408 | type = ada_typedef_target_type (type); | |
10409 | ||
4c4b4cd2 PH |
10410 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10411 | { | |
61ee279c | 10412 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10413 | { |
10414 | case TYPE_CODE_FUNC: | |
61ee279c | 10415 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10416 | break; |
10417 | case TYPE_CODE_ARRAY: | |
10418 | break; | |
10419 | case TYPE_CODE_STRUCT: | |
10420 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10421 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10422 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10423 | break; |
10424 | default: | |
323e0a4a | 10425 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10426 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10427 | break; |
10428 | } | |
10429 | } | |
10430 | ||
10431 | switch (TYPE_CODE (type)) | |
10432 | { | |
10433 | case TYPE_CODE_FUNC: | |
10434 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10435 | { |
10436 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10437 | ||
10438 | if (TYPE_GNU_IFUNC (type)) | |
10439 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10440 | return allocate_value (rtype); | |
10441 | } | |
4c4b4cd2 | 10442 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10443 | case TYPE_CODE_INTERNAL_FUNCTION: |
10444 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10445 | /* We don't know anything about what the internal | |
10446 | function might return, but we have to return | |
10447 | something. */ | |
10448 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10449 | not_lval); | |
10450 | else | |
10451 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10452 | argvec[0], nargs, argvec + 1); | |
10453 | ||
4c4b4cd2 PH |
10454 | case TYPE_CODE_STRUCT: |
10455 | { | |
10456 | int arity; | |
10457 | ||
4c4b4cd2 PH |
10458 | arity = ada_array_arity (type); |
10459 | type = ada_array_element_type (type, nargs); | |
10460 | if (type == NULL) | |
323e0a4a | 10461 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10462 | if (arity != nargs) |
323e0a4a | 10463 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10464 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10465 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10466 | return |
10467 | unwrap_value (ada_value_subscript | |
10468 | (argvec[0], nargs, argvec + 1)); | |
10469 | } | |
10470 | case TYPE_CODE_ARRAY: | |
10471 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10472 | { | |
10473 | type = ada_array_element_type (type, nargs); | |
10474 | if (type == NULL) | |
323e0a4a | 10475 | error (_("element type of array unknown")); |
4c4b4cd2 | 10476 | else |
0a07e705 | 10477 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10478 | } |
10479 | return | |
10480 | unwrap_value (ada_value_subscript | |
10481 | (ada_coerce_to_simple_array (argvec[0]), | |
10482 | nargs, argvec + 1)); | |
10483 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10484 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10485 | { | |
deede10c | 10486 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10487 | type = ada_array_element_type (type, nargs); |
10488 | if (type == NULL) | |
323e0a4a | 10489 | error (_("element type of array unknown")); |
4c4b4cd2 | 10490 | else |
0a07e705 | 10491 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10492 | } |
10493 | return | |
deede10c JB |
10494 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10495 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10496 | |
10497 | default: | |
e1d5a0d2 PH |
10498 | error (_("Attempt to index or call something other than an " |
10499 | "array or function")); | |
4c4b4cd2 PH |
10500 | } |
10501 | ||
10502 | case TERNOP_SLICE: | |
10503 | { | |
10504 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10505 | struct value *low_bound_val = | |
10506 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10507 | struct value *high_bound_val = |
10508 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10509 | LONGEST low_bound; | |
10510 | LONGEST high_bound; | |
5b4ee69b | 10511 | |
994b9211 AC |
10512 | low_bound_val = coerce_ref (low_bound_val); |
10513 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10514 | low_bound = pos_atr (low_bound_val); |
10515 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10516 | |
4c4b4cd2 PH |
10517 | if (noside == EVAL_SKIP) |
10518 | goto nosideret; | |
10519 | ||
4c4b4cd2 PH |
10520 | /* If this is a reference to an aligner type, then remove all |
10521 | the aligners. */ | |
df407dfe AC |
10522 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10523 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10524 | TYPE_TARGET_TYPE (value_type (array)) = | |
10525 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10526 | |
ad82864c | 10527 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10528 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10529 | |
10530 | /* If this is a reference to an array or an array lvalue, | |
10531 | convert to a pointer. */ | |
df407dfe AC |
10532 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10533 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10534 | && VALUE_LVAL (array) == lval_memory)) |
10535 | array = value_addr (array); | |
10536 | ||
1265e4aa | 10537 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10538 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10539 | (value_type (array)))) |
0b5d8877 | 10540 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10541 | |
10542 | array = ada_coerce_to_simple_array_ptr (array); | |
10543 | ||
714e53ab PH |
10544 | /* If we have more than one level of pointer indirection, |
10545 | dereference the value until we get only one level. */ | |
df407dfe AC |
10546 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10547 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10548 | == TYPE_CODE_PTR)) |
10549 | array = value_ind (array); | |
10550 | ||
10551 | /* Make sure we really do have an array type before going further, | |
10552 | to avoid a SEGV when trying to get the index type or the target | |
10553 | type later down the road if the debug info generated by | |
10554 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10555 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10556 | error (_("cannot take slice of non-array")); |
714e53ab | 10557 | |
828292f2 JB |
10558 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10559 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10560 | { |
828292f2 JB |
10561 | struct type *type0 = ada_check_typedef (value_type (array)); |
10562 | ||
0b5d8877 | 10563 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10564 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10565 | else |
10566 | { | |
10567 | struct type *arr_type0 = | |
828292f2 | 10568 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10569 | |
f5938064 JG |
10570 | return ada_value_slice_from_ptr (array, arr_type0, |
10571 | longest_to_int (low_bound), | |
10572 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10573 | } |
10574 | } | |
10575 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10576 | return array; | |
10577 | else if (high_bound < low_bound) | |
df407dfe | 10578 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10579 | else |
529cad9c PH |
10580 | return ada_value_slice (array, longest_to_int (low_bound), |
10581 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10582 | } |
14f9c5c9 | 10583 | |
4c4b4cd2 PH |
10584 | case UNOP_IN_RANGE: |
10585 | (*pos) += 2; | |
10586 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10587 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10588 | |
14f9c5c9 | 10589 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10590 | goto nosideret; |
14f9c5c9 | 10591 | |
4c4b4cd2 PH |
10592 | switch (TYPE_CODE (type)) |
10593 | { | |
10594 | default: | |
e1d5a0d2 PH |
10595 | lim_warning (_("Membership test incompletely implemented; " |
10596 | "always returns true")); | |
fbb06eb1 UW |
10597 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10598 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10599 | |
10600 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10601 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10602 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10603 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10604 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10605 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10606 | return | |
10607 | value_from_longest (type, | |
4c4b4cd2 PH |
10608 | (value_less (arg1, arg3) |
10609 | || value_equal (arg1, arg3)) | |
10610 | && (value_less (arg2, arg1) | |
10611 | || value_equal (arg2, arg1))); | |
10612 | } | |
10613 | ||
10614 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10615 | (*pos) += 2; |
4c4b4cd2 PH |
10616 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10617 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10618 | |
4c4b4cd2 PH |
10619 | if (noside == EVAL_SKIP) |
10620 | goto nosideret; | |
14f9c5c9 | 10621 | |
4c4b4cd2 | 10622 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10623 | { |
10624 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10625 | return value_zero (type, not_lval); | |
10626 | } | |
14f9c5c9 | 10627 | |
4c4b4cd2 | 10628 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10629 | |
1eea4ebd UW |
10630 | type = ada_index_type (value_type (arg2), tem, "range"); |
10631 | if (!type) | |
10632 | type = value_type (arg1); | |
14f9c5c9 | 10633 | |
1eea4ebd UW |
10634 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10635 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10636 | |
f44316fa UW |
10637 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10638 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10639 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10640 | return |
fbb06eb1 | 10641 | value_from_longest (type, |
4c4b4cd2 PH |
10642 | (value_less (arg1, arg3) |
10643 | || value_equal (arg1, arg3)) | |
10644 | && (value_less (arg2, arg1) | |
10645 | || value_equal (arg2, arg1))); | |
10646 | ||
10647 | case TERNOP_IN_RANGE: | |
10648 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10649 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10650 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10651 | ||
10652 | if (noside == EVAL_SKIP) | |
10653 | goto nosideret; | |
10654 | ||
f44316fa UW |
10655 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10656 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10657 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10658 | return |
fbb06eb1 | 10659 | value_from_longest (type, |
4c4b4cd2 PH |
10660 | (value_less (arg1, arg3) |
10661 | || value_equal (arg1, arg3)) | |
10662 | && (value_less (arg2, arg1) | |
10663 | || value_equal (arg2, arg1))); | |
10664 | ||
10665 | case OP_ATR_FIRST: | |
10666 | case OP_ATR_LAST: | |
10667 | case OP_ATR_LENGTH: | |
10668 | { | |
76a01679 | 10669 | struct type *type_arg; |
5b4ee69b | 10670 | |
76a01679 JB |
10671 | if (exp->elts[*pos].opcode == OP_TYPE) |
10672 | { | |
10673 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10674 | arg1 = NULL; | |
5bc23cb3 | 10675 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10676 | } |
10677 | else | |
10678 | { | |
10679 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10680 | type_arg = NULL; | |
10681 | } | |
10682 | ||
10683 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10684 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10685 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10686 | *pos += 4; | |
10687 | ||
10688 | if (noside == EVAL_SKIP) | |
10689 | goto nosideret; | |
10690 | ||
10691 | if (type_arg == NULL) | |
10692 | { | |
10693 | arg1 = ada_coerce_ref (arg1); | |
10694 | ||
ad82864c | 10695 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10696 | arg1 = ada_coerce_to_simple_array (arg1); |
10697 | ||
aa4fb036 | 10698 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10699 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10700 | else |
10701 | { | |
10702 | type = ada_index_type (value_type (arg1), tem, | |
10703 | ada_attribute_name (op)); | |
10704 | if (type == NULL) | |
10705 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10706 | } | |
76a01679 JB |
10707 | |
10708 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10709 | return allocate_value (type); |
76a01679 JB |
10710 | |
10711 | switch (op) | |
10712 | { | |
10713 | default: /* Should never happen. */ | |
323e0a4a | 10714 | error (_("unexpected attribute encountered")); |
76a01679 | 10715 | case OP_ATR_FIRST: |
1eea4ebd UW |
10716 | return value_from_longest |
10717 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10718 | case OP_ATR_LAST: |
1eea4ebd UW |
10719 | return value_from_longest |
10720 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10721 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10722 | return value_from_longest |
10723 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10724 | } |
10725 | } | |
10726 | else if (discrete_type_p (type_arg)) | |
10727 | { | |
10728 | struct type *range_type; | |
0d5cff50 | 10729 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10730 | |
76a01679 JB |
10731 | range_type = NULL; |
10732 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10733 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10734 | if (range_type == NULL) |
10735 | range_type = type_arg; | |
10736 | switch (op) | |
10737 | { | |
10738 | default: | |
323e0a4a | 10739 | error (_("unexpected attribute encountered")); |
76a01679 | 10740 | case OP_ATR_FIRST: |
690cc4eb | 10741 | return value_from_longest |
43bbcdc2 | 10742 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10743 | case OP_ATR_LAST: |
690cc4eb | 10744 | return value_from_longest |
43bbcdc2 | 10745 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10746 | case OP_ATR_LENGTH: |
323e0a4a | 10747 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10748 | } |
10749 | } | |
10750 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10751 | error (_("unimplemented type attribute")); |
76a01679 JB |
10752 | else |
10753 | { | |
10754 | LONGEST low, high; | |
10755 | ||
ad82864c JB |
10756 | if (ada_is_constrained_packed_array_type (type_arg)) |
10757 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10758 | |
aa4fb036 | 10759 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10760 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10761 | else |
10762 | { | |
10763 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
10764 | if (type == NULL) | |
10765 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10766 | } | |
1eea4ebd | 10767 | |
76a01679 JB |
10768 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10769 | return allocate_value (type); | |
10770 | ||
10771 | switch (op) | |
10772 | { | |
10773 | default: | |
323e0a4a | 10774 | error (_("unexpected attribute encountered")); |
76a01679 | 10775 | case OP_ATR_FIRST: |
1eea4ebd | 10776 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10777 | return value_from_longest (type, low); |
10778 | case OP_ATR_LAST: | |
1eea4ebd | 10779 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10780 | return value_from_longest (type, high); |
10781 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10782 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10783 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10784 | return value_from_longest (type, high - low + 1); |
10785 | } | |
10786 | } | |
14f9c5c9 AS |
10787 | } |
10788 | ||
4c4b4cd2 PH |
10789 | case OP_ATR_TAG: |
10790 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10791 | if (noside == EVAL_SKIP) | |
76a01679 | 10792 | goto nosideret; |
4c4b4cd2 PH |
10793 | |
10794 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10795 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10796 | |
10797 | return ada_value_tag (arg1); | |
10798 | ||
10799 | case OP_ATR_MIN: | |
10800 | case OP_ATR_MAX: | |
10801 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10802 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10803 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10804 | if (noside == EVAL_SKIP) | |
76a01679 | 10805 | goto nosideret; |
d2e4a39e | 10806 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10807 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10808 | else |
f44316fa UW |
10809 | { |
10810 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10811 | return value_binop (arg1, arg2, | |
10812 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10813 | } | |
14f9c5c9 | 10814 | |
4c4b4cd2 PH |
10815 | case OP_ATR_MODULUS: |
10816 | { | |
31dedfee | 10817 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10818 | |
5b4ee69b | 10819 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10820 | if (noside == EVAL_SKIP) |
10821 | goto nosideret; | |
4c4b4cd2 | 10822 | |
76a01679 | 10823 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10824 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10825 | |
76a01679 JB |
10826 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10827 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10828 | } |
10829 | ||
10830 | ||
10831 | case OP_ATR_POS: | |
10832 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10833 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10834 | if (noside == EVAL_SKIP) | |
76a01679 | 10835 | goto nosideret; |
3cb382c9 UW |
10836 | type = builtin_type (exp->gdbarch)->builtin_int; |
10837 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10838 | return value_zero (type, not_lval); | |
14f9c5c9 | 10839 | else |
3cb382c9 | 10840 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10841 | |
4c4b4cd2 PH |
10842 | case OP_ATR_SIZE: |
10843 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10844 | type = value_type (arg1); |
10845 | ||
10846 | /* If the argument is a reference, then dereference its type, since | |
10847 | the user is really asking for the size of the actual object, | |
10848 | not the size of the pointer. */ | |
10849 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10850 | type = TYPE_TARGET_TYPE (type); | |
10851 | ||
4c4b4cd2 | 10852 | if (noside == EVAL_SKIP) |
76a01679 | 10853 | goto nosideret; |
4c4b4cd2 | 10854 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10855 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10856 | else |
22601c15 | 10857 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10858 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10859 | |
10860 | case OP_ATR_VAL: | |
10861 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10862 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10863 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10864 | if (noside == EVAL_SKIP) |
76a01679 | 10865 | goto nosideret; |
4c4b4cd2 | 10866 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10867 | return value_zero (type, not_lval); |
4c4b4cd2 | 10868 | else |
76a01679 | 10869 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10870 | |
10871 | case BINOP_EXP: | |
10872 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10873 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10874 | if (noside == EVAL_SKIP) | |
10875 | goto nosideret; | |
10876 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10877 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10878 | else |
f44316fa UW |
10879 | { |
10880 | /* For integer exponentiation operations, | |
10881 | only promote the first argument. */ | |
10882 | if (is_integral_type (value_type (arg2))) | |
10883 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10884 | else | |
10885 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10886 | ||
10887 | return value_binop (arg1, arg2, op); | |
10888 | } | |
4c4b4cd2 PH |
10889 | |
10890 | case UNOP_PLUS: | |
10891 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10892 | if (noside == EVAL_SKIP) | |
10893 | goto nosideret; | |
10894 | else | |
10895 | return arg1; | |
10896 | ||
10897 | case UNOP_ABS: | |
10898 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10899 | if (noside == EVAL_SKIP) | |
10900 | goto nosideret; | |
f44316fa | 10901 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10902 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10903 | return value_neg (arg1); |
14f9c5c9 | 10904 | else |
4c4b4cd2 | 10905 | return arg1; |
14f9c5c9 AS |
10906 | |
10907 | case UNOP_IND: | |
5ec18f2b | 10908 | preeval_pos = *pos; |
6b0d7253 | 10909 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10910 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10911 | goto nosideret; |
df407dfe | 10912 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10913 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10914 | { |
10915 | if (ada_is_array_descriptor_type (type)) | |
10916 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10917 | { | |
10918 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10919 | |
4c4b4cd2 | 10920 | if (arrType == NULL) |
323e0a4a | 10921 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10922 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10923 | } |
10924 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10925 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10926 | /* In C you can dereference an array to get the 1st elt. */ | |
10927 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 10928 | { |
5ec18f2b JG |
10929 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
10930 | only be determined by inspecting the object's tag. | |
10931 | This means that we need to evaluate completely the | |
10932 | expression in order to get its type. */ | |
10933 | ||
023db19c JB |
10934 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
10935 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
10936 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
10937 | { | |
10938 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
10939 | EVAL_NORMAL); | |
10940 | type = value_type (ada_value_ind (arg1)); | |
10941 | } | |
10942 | else | |
10943 | { | |
10944 | type = to_static_fixed_type | |
10945 | (ada_aligned_type | |
10946 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10947 | } | |
c1b5a1a6 | 10948 | ada_ensure_varsize_limit (type); |
714e53ab PH |
10949 | return value_zero (type, lval_memory); |
10950 | } | |
4c4b4cd2 | 10951 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10952 | { |
10953 | /* GDB allows dereferencing an int. */ | |
10954 | if (expect_type == NULL) | |
10955 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10956 | lval_memory); | |
10957 | else | |
10958 | { | |
10959 | expect_type = | |
10960 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10961 | return value_zero (expect_type, lval_memory); | |
10962 | } | |
10963 | } | |
4c4b4cd2 | 10964 | else |
323e0a4a | 10965 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10966 | } |
0963b4bd | 10967 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10968 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10969 | |
96967637 JB |
10970 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10971 | /* GDB allows dereferencing an int. If we were given | |
10972 | the expect_type, then use that as the target type. | |
10973 | Otherwise, assume that the target type is an int. */ | |
10974 | { | |
10975 | if (expect_type != NULL) | |
10976 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10977 | arg1)); | |
10978 | else | |
10979 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10980 | (CORE_ADDR) value_as_address (arg1)); | |
10981 | } | |
6b0d7253 | 10982 | |
4c4b4cd2 PH |
10983 | if (ada_is_array_descriptor_type (type)) |
10984 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10985 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10986 | else |
4c4b4cd2 | 10987 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10988 | |
10989 | case STRUCTOP_STRUCT: | |
10990 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10991 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 10992 | preeval_pos = *pos; |
14f9c5c9 AS |
10993 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10994 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10995 | goto nosideret; |
14f9c5c9 | 10996 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10997 | { |
df407dfe | 10998 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10999 | |
76a01679 JB |
11000 | if (ada_is_tagged_type (type1, 1)) |
11001 | { | |
11002 | type = ada_lookup_struct_elt_type (type1, | |
11003 | &exp->elts[pc + 2].string, | |
11004 | 1, 1, NULL); | |
5ec18f2b JG |
11005 | |
11006 | /* If the field is not found, check if it exists in the | |
11007 | extension of this object's type. This means that we | |
11008 | need to evaluate completely the expression. */ | |
11009 | ||
76a01679 | 11010 | if (type == NULL) |
5ec18f2b JG |
11011 | { |
11012 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11013 | EVAL_NORMAL); | |
11014 | arg1 = ada_value_struct_elt (arg1, | |
11015 | &exp->elts[pc + 2].string, | |
11016 | 0); | |
11017 | arg1 = unwrap_value (arg1); | |
11018 | type = value_type (ada_to_fixed_value (arg1)); | |
11019 | } | |
76a01679 JB |
11020 | } |
11021 | else | |
11022 | type = | |
11023 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
11024 | 0, NULL); | |
11025 | ||
11026 | return value_zero (ada_aligned_type (type), lval_memory); | |
11027 | } | |
14f9c5c9 | 11028 | else |
284614f0 JB |
11029 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
11030 | arg1 = unwrap_value (arg1); | |
11031 | return ada_to_fixed_value (arg1); | |
11032 | ||
14f9c5c9 | 11033 | case OP_TYPE: |
4c4b4cd2 PH |
11034 | /* The value is not supposed to be used. This is here to make it |
11035 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11036 | (*pos) += 2; |
11037 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11038 | goto nosideret; |
14f9c5c9 | 11039 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11040 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11041 | else |
323e0a4a | 11042 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11043 | |
11044 | case OP_AGGREGATE: | |
11045 | case OP_CHOICES: | |
11046 | case OP_OTHERS: | |
11047 | case OP_DISCRETE_RANGE: | |
11048 | case OP_POSITIONAL: | |
11049 | case OP_NAME: | |
11050 | if (noside == EVAL_NORMAL) | |
11051 | switch (op) | |
11052 | { | |
11053 | case OP_NAME: | |
11054 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11055 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11056 | case OP_AGGREGATE: |
11057 | error (_("Aggregates only allowed on the right of an assignment")); | |
11058 | default: | |
0963b4bd MS |
11059 | internal_error (__FILE__, __LINE__, |
11060 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11061 | } |
11062 | ||
11063 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11064 | *pos += oplen - 1; | |
11065 | for (tem = 0; tem < nargs; tem += 1) | |
11066 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11067 | goto nosideret; | |
14f9c5c9 AS |
11068 | } |
11069 | ||
11070 | nosideret: | |
22601c15 | 11071 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11072 | } |
14f9c5c9 | 11073 | \f |
d2e4a39e | 11074 | |
4c4b4cd2 | 11075 | /* Fixed point */ |
14f9c5c9 AS |
11076 | |
11077 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11078 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11079 | Otherwise, return NULL. */ |
14f9c5c9 | 11080 | |
d2e4a39e | 11081 | static const char * |
ebf56fd3 | 11082 | fixed_type_info (struct type *type) |
14f9c5c9 | 11083 | { |
d2e4a39e | 11084 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11085 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11086 | ||
d2e4a39e AS |
11087 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11088 | { | |
14f9c5c9 | 11089 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11090 | |
14f9c5c9 | 11091 | if (tail == NULL) |
4c4b4cd2 | 11092 | return NULL; |
d2e4a39e | 11093 | else |
4c4b4cd2 | 11094 | return tail + 5; |
14f9c5c9 AS |
11095 | } |
11096 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11097 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11098 | else | |
11099 | return NULL; | |
11100 | } | |
11101 | ||
4c4b4cd2 | 11102 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11103 | |
11104 | int | |
ebf56fd3 | 11105 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11106 | { |
11107 | return fixed_type_info (type) != NULL; | |
11108 | } | |
11109 | ||
4c4b4cd2 PH |
11110 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11111 | ||
11112 | int | |
11113 | ada_is_system_address_type (struct type *type) | |
11114 | { | |
11115 | return (TYPE_NAME (type) | |
11116 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11117 | } | |
11118 | ||
14f9c5c9 AS |
11119 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11120 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11121 | delta cannot be determined. */ |
14f9c5c9 AS |
11122 | |
11123 | DOUBLEST | |
ebf56fd3 | 11124 | ada_delta (struct type *type) |
14f9c5c9 AS |
11125 | { |
11126 | const char *encoding = fixed_type_info (type); | |
facc390f | 11127 | DOUBLEST num, den; |
14f9c5c9 | 11128 | |
facc390f JB |
11129 | /* Strictly speaking, num and den are encoded as integer. However, |
11130 | they may not fit into a long, and they will have to be converted | |
11131 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11132 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11133 | &num, &den) < 2) | |
14f9c5c9 | 11134 | return -1.0; |
d2e4a39e | 11135 | else |
facc390f | 11136 | return num / den; |
14f9c5c9 AS |
11137 | } |
11138 | ||
11139 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11140 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11141 | |
11142 | static DOUBLEST | |
ebf56fd3 | 11143 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11144 | { |
11145 | const char *encoding = fixed_type_info (type); | |
facc390f | 11146 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11147 | int n; |
d2e4a39e | 11148 | |
facc390f JB |
11149 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11150 | they may not fit into a long, and they will have to be converted | |
11151 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11152 | n = sscanf (encoding, | |
11153 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11154 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11155 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11156 | |
11157 | if (n < 2) | |
11158 | return 1.0; | |
11159 | else if (n == 4) | |
facc390f | 11160 | return num1 / den1; |
d2e4a39e | 11161 | else |
facc390f | 11162 | return num0 / den0; |
14f9c5c9 AS |
11163 | } |
11164 | ||
11165 | ||
11166 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11167 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11168 | |
11169 | DOUBLEST | |
ebf56fd3 | 11170 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11171 | { |
d2e4a39e | 11172 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11173 | } |
11174 | ||
4c4b4cd2 PH |
11175 | /* The representation of a fixed-point value of type TYPE |
11176 | corresponding to the value X. */ | |
14f9c5c9 AS |
11177 | |
11178 | LONGEST | |
ebf56fd3 | 11179 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11180 | { |
11181 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11182 | } | |
11183 | ||
14f9c5c9 | 11184 | \f |
d2e4a39e | 11185 | |
4c4b4cd2 | 11186 | /* Range types */ |
14f9c5c9 AS |
11187 | |
11188 | /* Scan STR beginning at position K for a discriminant name, and | |
11189 | return the value of that discriminant field of DVAL in *PX. If | |
11190 | PNEW_K is not null, put the position of the character beyond the | |
11191 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11192 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11193 | |
11194 | static int | |
07d8f827 | 11195 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11196 | int *pnew_k) |
14f9c5c9 AS |
11197 | { |
11198 | static char *bound_buffer = NULL; | |
11199 | static size_t bound_buffer_len = 0; | |
11200 | char *bound; | |
11201 | char *pend; | |
d2e4a39e | 11202 | struct value *bound_val; |
14f9c5c9 AS |
11203 | |
11204 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11205 | return 0; | |
11206 | ||
d2e4a39e | 11207 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
11208 | if (pend == NULL) |
11209 | { | |
d2e4a39e | 11210 | bound = str + k; |
14f9c5c9 AS |
11211 | k += strlen (bound); |
11212 | } | |
d2e4a39e | 11213 | else |
14f9c5c9 | 11214 | { |
d2e4a39e | 11215 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 11216 | bound = bound_buffer; |
d2e4a39e AS |
11217 | strncpy (bound_buffer, str + k, pend - (str + k)); |
11218 | bound[pend - (str + k)] = '\0'; | |
11219 | k = pend - str; | |
14f9c5c9 | 11220 | } |
d2e4a39e | 11221 | |
df407dfe | 11222 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11223 | if (bound_val == NULL) |
11224 | return 0; | |
11225 | ||
11226 | *px = value_as_long (bound_val); | |
11227 | if (pnew_k != NULL) | |
11228 | *pnew_k = k; | |
11229 | return 1; | |
11230 | } | |
11231 | ||
11232 | /* Value of variable named NAME in the current environment. If | |
11233 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11234 | otherwise causes an error with message ERR_MSG. */ |
11235 | ||
d2e4a39e AS |
11236 | static struct value * |
11237 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11238 | { |
4c4b4cd2 | 11239 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
11240 | int nsyms; |
11241 | ||
4c4b4cd2 | 11242 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11243 | &syms); |
14f9c5c9 AS |
11244 | |
11245 | if (nsyms != 1) | |
11246 | { | |
11247 | if (err_msg == NULL) | |
4c4b4cd2 | 11248 | return 0; |
14f9c5c9 | 11249 | else |
8a3fe4f8 | 11250 | error (("%s"), err_msg); |
14f9c5c9 AS |
11251 | } |
11252 | ||
4c4b4cd2 | 11253 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 11254 | } |
d2e4a39e | 11255 | |
14f9c5c9 | 11256 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11257 | no such variable found, returns 0, and sets *FLAG to 0. If |
11258 | successful, sets *FLAG to 1. */ | |
11259 | ||
14f9c5c9 | 11260 | LONGEST |
4c4b4cd2 | 11261 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11262 | { |
4c4b4cd2 | 11263 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11264 | |
14f9c5c9 AS |
11265 | if (var_val == 0) |
11266 | { | |
11267 | if (flag != NULL) | |
4c4b4cd2 | 11268 | *flag = 0; |
14f9c5c9 AS |
11269 | return 0; |
11270 | } | |
11271 | else | |
11272 | { | |
11273 | if (flag != NULL) | |
4c4b4cd2 | 11274 | *flag = 1; |
14f9c5c9 AS |
11275 | return value_as_long (var_val); |
11276 | } | |
11277 | } | |
d2e4a39e | 11278 | |
14f9c5c9 AS |
11279 | |
11280 | /* Return a range type whose base type is that of the range type named | |
11281 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11282 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11283 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11284 | corresponding range type from debug information; fall back to using it | |
11285 | if symbol lookup fails. If a new type must be created, allocate it | |
11286 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11287 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11288 | |
d2e4a39e | 11289 | static struct type * |
28c85d6c | 11290 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11291 | { |
0d5cff50 | 11292 | const char *name; |
14f9c5c9 | 11293 | struct type *base_type; |
d2e4a39e | 11294 | char *subtype_info; |
14f9c5c9 | 11295 | |
28c85d6c JB |
11296 | gdb_assert (raw_type != NULL); |
11297 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11298 | |
1ce677a4 | 11299 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11300 | base_type = TYPE_TARGET_TYPE (raw_type); |
11301 | else | |
11302 | base_type = raw_type; | |
11303 | ||
28c85d6c | 11304 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11305 | subtype_info = strstr (name, "___XD"); |
11306 | if (subtype_info == NULL) | |
690cc4eb | 11307 | { |
43bbcdc2 PH |
11308 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11309 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11310 | |
690cc4eb PH |
11311 | if (L < INT_MIN || U > INT_MAX) |
11312 | return raw_type; | |
11313 | else | |
0c9c3474 SA |
11314 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11315 | L, U); | |
690cc4eb | 11316 | } |
14f9c5c9 AS |
11317 | else |
11318 | { | |
11319 | static char *name_buf = NULL; | |
11320 | static size_t name_len = 0; | |
11321 | int prefix_len = subtype_info - name; | |
11322 | LONGEST L, U; | |
11323 | struct type *type; | |
11324 | char *bounds_str; | |
11325 | int n; | |
11326 | ||
11327 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11328 | strncpy (name_buf, name, prefix_len); | |
11329 | name_buf[prefix_len] = '\0'; | |
11330 | ||
11331 | subtype_info += 5; | |
11332 | bounds_str = strchr (subtype_info, '_'); | |
11333 | n = 1; | |
11334 | ||
d2e4a39e | 11335 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11336 | { |
11337 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11338 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11339 | return raw_type; | |
11340 | if (bounds_str[n] == '_') | |
11341 | n += 2; | |
0963b4bd | 11342 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11343 | n += 1; |
11344 | subtype_info += 1; | |
11345 | } | |
d2e4a39e | 11346 | else |
4c4b4cd2 PH |
11347 | { |
11348 | int ok; | |
5b4ee69b | 11349 | |
4c4b4cd2 PH |
11350 | strcpy (name_buf + prefix_len, "___L"); |
11351 | L = get_int_var_value (name_buf, &ok); | |
11352 | if (!ok) | |
11353 | { | |
323e0a4a | 11354 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11355 | L = 1; |
11356 | } | |
11357 | } | |
14f9c5c9 | 11358 | |
d2e4a39e | 11359 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11360 | { |
11361 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11362 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11363 | return raw_type; | |
11364 | } | |
d2e4a39e | 11365 | else |
4c4b4cd2 PH |
11366 | { |
11367 | int ok; | |
5b4ee69b | 11368 | |
4c4b4cd2 PH |
11369 | strcpy (name_buf + prefix_len, "___U"); |
11370 | U = get_int_var_value (name_buf, &ok); | |
11371 | if (!ok) | |
11372 | { | |
323e0a4a | 11373 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11374 | U = L; |
11375 | } | |
11376 | } | |
14f9c5c9 | 11377 | |
0c9c3474 SA |
11378 | type = create_static_range_type (alloc_type_copy (raw_type), |
11379 | base_type, L, U); | |
d2e4a39e | 11380 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11381 | return type; |
11382 | } | |
11383 | } | |
11384 | ||
4c4b4cd2 PH |
11385 | /* True iff NAME is the name of a range type. */ |
11386 | ||
14f9c5c9 | 11387 | int |
d2e4a39e | 11388 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11389 | { |
11390 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11391 | } |
14f9c5c9 | 11392 | \f |
d2e4a39e | 11393 | |
4c4b4cd2 PH |
11394 | /* Modular types */ |
11395 | ||
11396 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11397 | |
14f9c5c9 | 11398 | int |
d2e4a39e | 11399 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11400 | { |
18af8284 | 11401 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11402 | |
11403 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11404 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11405 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11406 | } |
11407 | ||
4c4b4cd2 PH |
11408 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11409 | ||
61ee279c | 11410 | ULONGEST |
0056e4d5 | 11411 | ada_modulus (struct type *type) |
14f9c5c9 | 11412 | { |
43bbcdc2 | 11413 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11414 | } |
d2e4a39e | 11415 | \f |
f7f9143b JB |
11416 | |
11417 | /* Ada exception catchpoint support: | |
11418 | --------------------------------- | |
11419 | ||
11420 | We support 3 kinds of exception catchpoints: | |
11421 | . catchpoints on Ada exceptions | |
11422 | . catchpoints on unhandled Ada exceptions | |
11423 | . catchpoints on failed assertions | |
11424 | ||
11425 | Exceptions raised during failed assertions, or unhandled exceptions | |
11426 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11427 | However, we can easily differentiate these two special cases, and having | |
11428 | the option to distinguish these two cases from the rest can be useful | |
11429 | to zero-in on certain situations. | |
11430 | ||
11431 | Exception catchpoints are a specialized form of breakpoint, | |
11432 | since they rely on inserting breakpoints inside known routines | |
11433 | of the GNAT runtime. The implementation therefore uses a standard | |
11434 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11435 | of breakpoint_ops. | |
11436 | ||
0259addd JB |
11437 | Support in the runtime for exception catchpoints have been changed |
11438 | a few times already, and these changes affect the implementation | |
11439 | of these catchpoints. In order to be able to support several | |
11440 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11441 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11442 | |
82eacd52 JB |
11443 | /* Ada's standard exceptions. |
11444 | ||
11445 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11446 | situations where it was unclear from the Ada 83 Reference Manual | |
11447 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11448 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11449 | Interpretation saying that anytime the RM says that Numeric_Error | |
11450 | should be raised, the implementation may raise Constraint_Error. | |
11451 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11452 | from the list of standard exceptions (it made it a renaming of | |
11453 | Constraint_Error, to help preserve compatibility when compiling | |
11454 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11455 | this list of standard exceptions. */ | |
3d0b0fa3 JB |
11456 | |
11457 | static char *standard_exc[] = { | |
11458 | "constraint_error", | |
11459 | "program_error", | |
11460 | "storage_error", | |
11461 | "tasking_error" | |
11462 | }; | |
11463 | ||
0259addd JB |
11464 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11465 | ||
11466 | /* A structure that describes how to support exception catchpoints | |
11467 | for a given executable. */ | |
11468 | ||
11469 | struct exception_support_info | |
11470 | { | |
11471 | /* The name of the symbol to break on in order to insert | |
11472 | a catchpoint on exceptions. */ | |
11473 | const char *catch_exception_sym; | |
11474 | ||
11475 | /* The name of the symbol to break on in order to insert | |
11476 | a catchpoint on unhandled exceptions. */ | |
11477 | const char *catch_exception_unhandled_sym; | |
11478 | ||
11479 | /* The name of the symbol to break on in order to insert | |
11480 | a catchpoint on failed assertions. */ | |
11481 | const char *catch_assert_sym; | |
11482 | ||
11483 | /* Assuming that the inferior just triggered an unhandled exception | |
11484 | catchpoint, this function is responsible for returning the address | |
11485 | in inferior memory where the name of that exception is stored. | |
11486 | Return zero if the address could not be computed. */ | |
11487 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11488 | }; | |
11489 | ||
11490 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11491 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11492 | ||
11493 | /* The following exception support info structure describes how to | |
11494 | implement exception catchpoints with the latest version of the | |
11495 | Ada runtime (as of 2007-03-06). */ | |
11496 | ||
11497 | static const struct exception_support_info default_exception_support_info = | |
11498 | { | |
11499 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11500 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11501 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11502 | ada_unhandled_exception_name_addr | |
11503 | }; | |
11504 | ||
11505 | /* The following exception support info structure describes how to | |
11506 | implement exception catchpoints with a slightly older version | |
11507 | of the Ada runtime. */ | |
11508 | ||
11509 | static const struct exception_support_info exception_support_info_fallback = | |
11510 | { | |
11511 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11512 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11513 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11514 | ada_unhandled_exception_name_addr_from_raise | |
11515 | }; | |
11516 | ||
f17011e0 JB |
11517 | /* Return nonzero if we can detect the exception support routines |
11518 | described in EINFO. | |
11519 | ||
11520 | This function errors out if an abnormal situation is detected | |
11521 | (for instance, if we find the exception support routines, but | |
11522 | that support is found to be incomplete). */ | |
11523 | ||
11524 | static int | |
11525 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11526 | { | |
11527 | struct symbol *sym; | |
11528 | ||
11529 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11530 | that should be compiled with debugging information. As a result, we | |
11531 | expect to find that symbol in the symtabs. */ | |
11532 | ||
11533 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11534 | if (sym == NULL) | |
a6af7abe JB |
11535 | { |
11536 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11537 | compiled without debugging info, or simply stripped of it. | |
11538 | It happens on some GNU/Linux distributions for instance, where | |
11539 | users have to install a separate debug package in order to get | |
11540 | the runtime's debugging info. In that situation, let the user | |
11541 | know why we cannot insert an Ada exception catchpoint. | |
11542 | ||
11543 | Note: Just for the purpose of inserting our Ada exception | |
11544 | catchpoint, we could rely purely on the associated minimal symbol. | |
11545 | But we would be operating in degraded mode anyway, since we are | |
11546 | still lacking the debugging info needed later on to extract | |
11547 | the name of the exception being raised (this name is printed in | |
11548 | the catchpoint message, and is also used when trying to catch | |
11549 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11550 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11551 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11552 | ||
3b7344d5 | 11553 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11554 | error (_("Your Ada runtime appears to be missing some debugging " |
11555 | "information.\nCannot insert Ada exception catchpoint " | |
11556 | "in this configuration.")); | |
11557 | ||
11558 | return 0; | |
11559 | } | |
f17011e0 JB |
11560 | |
11561 | /* Make sure that the symbol we found corresponds to a function. */ | |
11562 | ||
11563 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11564 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11565 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11566 | ||
11567 | return 1; | |
11568 | } | |
11569 | ||
0259addd JB |
11570 | /* Inspect the Ada runtime and determine which exception info structure |
11571 | should be used to provide support for exception catchpoints. | |
11572 | ||
3eecfa55 JB |
11573 | This function will always set the per-inferior exception_info, |
11574 | or raise an error. */ | |
0259addd JB |
11575 | |
11576 | static void | |
11577 | ada_exception_support_info_sniffer (void) | |
11578 | { | |
3eecfa55 | 11579 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11580 | |
11581 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11582 | if (data->exception_info != NULL) |
0259addd JB |
11583 | return; |
11584 | ||
11585 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11586 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11587 | { |
3eecfa55 | 11588 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11589 | return; |
11590 | } | |
11591 | ||
11592 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11593 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11594 | { |
3eecfa55 | 11595 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11596 | return; |
11597 | } | |
11598 | ||
11599 | /* Sometimes, it is normal for us to not be able to find the routine | |
11600 | we are looking for. This happens when the program is linked with | |
11601 | the shared version of the GNAT runtime, and the program has not been | |
11602 | started yet. Inform the user of these two possible causes if | |
11603 | applicable. */ | |
11604 | ||
ccefe4c4 | 11605 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11606 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11607 | ||
11608 | /* If the symbol does not exist, then check that the program is | |
11609 | already started, to make sure that shared libraries have been | |
11610 | loaded. If it is not started, this may mean that the symbol is | |
11611 | in a shared library. */ | |
11612 | ||
11613 | if (ptid_get_pid (inferior_ptid) == 0) | |
11614 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11615 | ||
11616 | /* At this point, we know that we are debugging an Ada program and | |
11617 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11618 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11619 | configurable run time mode, or that a-except as been optimized |
11620 | out by the linker... In any case, at this point it is not worth | |
11621 | supporting this feature. */ | |
11622 | ||
7dda8cff | 11623 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11624 | } |
11625 | ||
f7f9143b JB |
11626 | /* True iff FRAME is very likely to be that of a function that is |
11627 | part of the runtime system. This is all very heuristic, but is | |
11628 | intended to be used as advice as to what frames are uninteresting | |
11629 | to most users. */ | |
11630 | ||
11631 | static int | |
11632 | is_known_support_routine (struct frame_info *frame) | |
11633 | { | |
4ed6b5be | 11634 | struct symtab_and_line sal; |
55b87a52 | 11635 | char *func_name; |
692465f1 | 11636 | enum language func_lang; |
f7f9143b | 11637 | int i; |
f35a17b5 | 11638 | const char *fullname; |
f7f9143b | 11639 | |
4ed6b5be JB |
11640 | /* If this code does not have any debugging information (no symtab), |
11641 | This cannot be any user code. */ | |
f7f9143b | 11642 | |
4ed6b5be | 11643 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11644 | if (sal.symtab == NULL) |
11645 | return 1; | |
11646 | ||
4ed6b5be JB |
11647 | /* If there is a symtab, but the associated source file cannot be |
11648 | located, then assume this is not user code: Selecting a frame | |
11649 | for which we cannot display the code would not be very helpful | |
11650 | for the user. This should also take care of case such as VxWorks | |
11651 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11652 | |
f35a17b5 JK |
11653 | fullname = symtab_to_fullname (sal.symtab); |
11654 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11655 | return 1; |
11656 | ||
4ed6b5be JB |
11657 | /* Check the unit filename againt the Ada runtime file naming. |
11658 | We also check the name of the objfile against the name of some | |
11659 | known system libraries that sometimes come with debugging info | |
11660 | too. */ | |
11661 | ||
f7f9143b JB |
11662 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11663 | { | |
11664 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11665 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11666 | return 1; |
eb822aa6 DE |
11667 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
11668 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 11669 | return 1; |
f7f9143b JB |
11670 | } |
11671 | ||
4ed6b5be | 11672 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11673 | |
e9e07ba6 | 11674 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11675 | if (func_name == NULL) |
11676 | return 1; | |
11677 | ||
11678 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11679 | { | |
11680 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11681 | if (re_exec (func_name)) | |
55b87a52 KS |
11682 | { |
11683 | xfree (func_name); | |
11684 | return 1; | |
11685 | } | |
f7f9143b JB |
11686 | } |
11687 | ||
55b87a52 | 11688 | xfree (func_name); |
f7f9143b JB |
11689 | return 0; |
11690 | } | |
11691 | ||
11692 | /* Find the first frame that contains debugging information and that is not | |
11693 | part of the Ada run-time, starting from FI and moving upward. */ | |
11694 | ||
0ef643c8 | 11695 | void |
f7f9143b JB |
11696 | ada_find_printable_frame (struct frame_info *fi) |
11697 | { | |
11698 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11699 | { | |
11700 | if (!is_known_support_routine (fi)) | |
11701 | { | |
11702 | select_frame (fi); | |
11703 | break; | |
11704 | } | |
11705 | } | |
11706 | ||
11707 | } | |
11708 | ||
11709 | /* Assuming that the inferior just triggered an unhandled exception | |
11710 | catchpoint, return the address in inferior memory where the name | |
11711 | of the exception is stored. | |
11712 | ||
11713 | Return zero if the address could not be computed. */ | |
11714 | ||
11715 | static CORE_ADDR | |
11716 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11717 | { |
11718 | return parse_and_eval_address ("e.full_name"); | |
11719 | } | |
11720 | ||
11721 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11722 | should be used when the inferior uses an older version of the runtime, | |
11723 | where the exception name needs to be extracted from a specific frame | |
11724 | several frames up in the callstack. */ | |
11725 | ||
11726 | static CORE_ADDR | |
11727 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11728 | { |
11729 | int frame_level; | |
11730 | struct frame_info *fi; | |
3eecfa55 | 11731 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11732 | struct cleanup *old_chain; |
f7f9143b JB |
11733 | |
11734 | /* To determine the name of this exception, we need to select | |
11735 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11736 | at least 3 levels up, so we simply skip the first 3 frames | |
11737 | without checking the name of their associated function. */ | |
11738 | fi = get_current_frame (); | |
11739 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11740 | if (fi != NULL) | |
11741 | fi = get_prev_frame (fi); | |
11742 | ||
55b87a52 | 11743 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
11744 | while (fi != NULL) |
11745 | { | |
55b87a52 | 11746 | char *func_name; |
692465f1 JB |
11747 | enum language func_lang; |
11748 | ||
e9e07ba6 | 11749 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
11750 | if (func_name != NULL) |
11751 | { | |
11752 | make_cleanup (xfree, func_name); | |
11753 | ||
11754 | if (strcmp (func_name, | |
11755 | data->exception_info->catch_exception_sym) == 0) | |
11756 | break; /* We found the frame we were looking for... */ | |
11757 | fi = get_prev_frame (fi); | |
11758 | } | |
f7f9143b | 11759 | } |
55b87a52 | 11760 | do_cleanups (old_chain); |
f7f9143b JB |
11761 | |
11762 | if (fi == NULL) | |
11763 | return 0; | |
11764 | ||
11765 | select_frame (fi); | |
11766 | return parse_and_eval_address ("id.full_name"); | |
11767 | } | |
11768 | ||
11769 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11770 | (of any type), return the address in inferior memory where the name | |
11771 | of the exception is stored, if applicable. | |
11772 | ||
11773 | Return zero if the address could not be computed, or if not relevant. */ | |
11774 | ||
11775 | static CORE_ADDR | |
761269c8 | 11776 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11777 | struct breakpoint *b) |
11778 | { | |
3eecfa55 JB |
11779 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11780 | ||
f7f9143b JB |
11781 | switch (ex) |
11782 | { | |
761269c8 | 11783 | case ada_catch_exception: |
f7f9143b JB |
11784 | return (parse_and_eval_address ("e.full_name")); |
11785 | break; | |
11786 | ||
761269c8 | 11787 | case ada_catch_exception_unhandled: |
3eecfa55 | 11788 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11789 | break; |
11790 | ||
761269c8 | 11791 | case ada_catch_assert: |
f7f9143b JB |
11792 | return 0; /* Exception name is not relevant in this case. */ |
11793 | break; | |
11794 | ||
11795 | default: | |
11796 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11797 | break; | |
11798 | } | |
11799 | ||
11800 | return 0; /* Should never be reached. */ | |
11801 | } | |
11802 | ||
11803 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11804 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11805 | When an error is intercepted, a warning with the error message is printed, | |
11806 | and zero is returned. */ | |
11807 | ||
11808 | static CORE_ADDR | |
761269c8 | 11809 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11810 | struct breakpoint *b) |
11811 | { | |
bfd189b1 | 11812 | volatile struct gdb_exception e; |
f7f9143b JB |
11813 | CORE_ADDR result = 0; |
11814 | ||
11815 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11816 | { | |
11817 | result = ada_exception_name_addr_1 (ex, b); | |
11818 | } | |
11819 | ||
11820 | if (e.reason < 0) | |
11821 | { | |
11822 | warning (_("failed to get exception name: %s"), e.message); | |
11823 | return 0; | |
11824 | } | |
11825 | ||
11826 | return result; | |
11827 | } | |
11828 | ||
28010a5d PA |
11829 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11830 | ||
11831 | /* Ada catchpoints. | |
11832 | ||
11833 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11834 | stop the target on every exception the program throws. When a user | |
11835 | specifies the name of a specific exception, we translate this | |
11836 | request into a condition expression (in text form), and then parse | |
11837 | it into an expression stored in each of the catchpoint's locations. | |
11838 | We then use this condition to check whether the exception that was | |
11839 | raised is the one the user is interested in. If not, then the | |
11840 | target is resumed again. We store the name of the requested | |
11841 | exception, in order to be able to re-set the condition expression | |
11842 | when symbols change. */ | |
11843 | ||
11844 | /* An instance of this type is used to represent an Ada catchpoint | |
11845 | breakpoint location. It includes a "struct bp_location" as a kind | |
11846 | of base class; users downcast to "struct bp_location *" when | |
11847 | needed. */ | |
11848 | ||
11849 | struct ada_catchpoint_location | |
11850 | { | |
11851 | /* The base class. */ | |
11852 | struct bp_location base; | |
11853 | ||
11854 | /* The condition that checks whether the exception that was raised | |
11855 | is the specific exception the user specified on catchpoint | |
11856 | creation. */ | |
11857 | struct expression *excep_cond_expr; | |
11858 | }; | |
11859 | ||
11860 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11861 | Ada exception catchpoint kinds. */ | |
11862 | ||
11863 | static void | |
11864 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11865 | { | |
11866 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11867 | ||
11868 | xfree (al->excep_cond_expr); | |
11869 | } | |
11870 | ||
11871 | /* The vtable to be used in Ada catchpoint locations. */ | |
11872 | ||
11873 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11874 | { | |
11875 | ada_catchpoint_location_dtor | |
11876 | }; | |
11877 | ||
11878 | /* An instance of this type is used to represent an Ada catchpoint. | |
11879 | It includes a "struct breakpoint" as a kind of base class; users | |
11880 | downcast to "struct breakpoint *" when needed. */ | |
11881 | ||
11882 | struct ada_catchpoint | |
11883 | { | |
11884 | /* The base class. */ | |
11885 | struct breakpoint base; | |
11886 | ||
11887 | /* The name of the specific exception the user specified. */ | |
11888 | char *excep_string; | |
11889 | }; | |
11890 | ||
11891 | /* Parse the exception condition string in the context of each of the | |
11892 | catchpoint's locations, and store them for later evaluation. */ | |
11893 | ||
11894 | static void | |
11895 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11896 | { | |
11897 | struct cleanup *old_chain; | |
11898 | struct bp_location *bl; | |
11899 | char *cond_string; | |
11900 | ||
11901 | /* Nothing to do if there's no specific exception to catch. */ | |
11902 | if (c->excep_string == NULL) | |
11903 | return; | |
11904 | ||
11905 | /* Same if there are no locations... */ | |
11906 | if (c->base.loc == NULL) | |
11907 | return; | |
11908 | ||
11909 | /* Compute the condition expression in text form, from the specific | |
11910 | expection we want to catch. */ | |
11911 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11912 | old_chain = make_cleanup (xfree, cond_string); | |
11913 | ||
11914 | /* Iterate over all the catchpoint's locations, and parse an | |
11915 | expression for each. */ | |
11916 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11917 | { | |
11918 | struct ada_catchpoint_location *ada_loc | |
11919 | = (struct ada_catchpoint_location *) bl; | |
11920 | struct expression *exp = NULL; | |
11921 | ||
11922 | if (!bl->shlib_disabled) | |
11923 | { | |
11924 | volatile struct gdb_exception e; | |
bbc13ae3 | 11925 | const char *s; |
28010a5d PA |
11926 | |
11927 | s = cond_string; | |
11928 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11929 | { | |
1bb9788d TT |
11930 | exp = parse_exp_1 (&s, bl->address, |
11931 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11932 | } |
11933 | if (e.reason < 0) | |
849f2b52 JB |
11934 | { |
11935 | warning (_("failed to reevaluate internal exception condition " | |
11936 | "for catchpoint %d: %s"), | |
11937 | c->base.number, e.message); | |
11938 | /* There is a bug in GCC on sparc-solaris when building with | |
11939 | optimization which causes EXP to change unexpectedly | |
11940 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
11941 | The problem should be fixed starting with GCC 4.9. | |
11942 | In the meantime, work around it by forcing EXP back | |
11943 | to NULL. */ | |
11944 | exp = NULL; | |
11945 | } | |
28010a5d PA |
11946 | } |
11947 | ||
11948 | ada_loc->excep_cond_expr = exp; | |
11949 | } | |
11950 | ||
11951 | do_cleanups (old_chain); | |
11952 | } | |
11953 | ||
11954 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11955 | exception catchpoint kinds. */ | |
11956 | ||
11957 | static void | |
761269c8 | 11958 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11959 | { |
11960 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11961 | ||
11962 | xfree (c->excep_string); | |
348d480f | 11963 | |
2060206e | 11964 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11965 | } |
11966 | ||
11967 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11968 | structure for all exception catchpoint kinds. */ | |
11969 | ||
11970 | static struct bp_location * | |
761269c8 | 11971 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
11972 | struct breakpoint *self) |
11973 | { | |
11974 | struct ada_catchpoint_location *loc; | |
11975 | ||
11976 | loc = XNEW (struct ada_catchpoint_location); | |
11977 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11978 | loc->excep_cond_expr = NULL; | |
11979 | return &loc->base; | |
11980 | } | |
11981 | ||
11982 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11983 | exception catchpoint kinds. */ | |
11984 | ||
11985 | static void | |
761269c8 | 11986 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11987 | { |
11988 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11989 | ||
11990 | /* Call the base class's method. This updates the catchpoint's | |
11991 | locations. */ | |
2060206e | 11992 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11993 | |
11994 | /* Reparse the exception conditional expressions. One for each | |
11995 | location. */ | |
11996 | create_excep_cond_exprs (c); | |
11997 | } | |
11998 | ||
11999 | /* Returns true if we should stop for this breakpoint hit. If the | |
12000 | user specified a specific exception, we only want to cause a stop | |
12001 | if the program thrown that exception. */ | |
12002 | ||
12003 | static int | |
12004 | should_stop_exception (const struct bp_location *bl) | |
12005 | { | |
12006 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12007 | const struct ada_catchpoint_location *ada_loc | |
12008 | = (const struct ada_catchpoint_location *) bl; | |
12009 | volatile struct gdb_exception ex; | |
12010 | int stop; | |
12011 | ||
12012 | /* With no specific exception, should always stop. */ | |
12013 | if (c->excep_string == NULL) | |
12014 | return 1; | |
12015 | ||
12016 | if (ada_loc->excep_cond_expr == NULL) | |
12017 | { | |
12018 | /* We will have a NULL expression if back when we were creating | |
12019 | the expressions, this location's had failed to parse. */ | |
12020 | return 1; | |
12021 | } | |
12022 | ||
12023 | stop = 1; | |
12024 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
12025 | { | |
12026 | struct value *mark; | |
12027 | ||
12028 | mark = value_mark (); | |
12029 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
12030 | value_free_to_mark (mark); | |
12031 | } | |
12032 | if (ex.reason < 0) | |
12033 | exception_fprintf (gdb_stderr, ex, | |
12034 | _("Error in testing exception condition:\n")); | |
12035 | return stop; | |
12036 | } | |
12037 | ||
12038 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12039 | for all exception catchpoint kinds. */ | |
12040 | ||
12041 | static void | |
761269c8 | 12042 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12043 | { |
12044 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12045 | } | |
12046 | ||
f7f9143b JB |
12047 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12048 | for all exception catchpoint kinds. */ | |
12049 | ||
12050 | static enum print_stop_action | |
761269c8 | 12051 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12052 | { |
79a45e25 | 12053 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12054 | struct breakpoint *b = bs->breakpoint_at; |
12055 | ||
956a9fb9 | 12056 | annotate_catchpoint (b->number); |
f7f9143b | 12057 | |
956a9fb9 | 12058 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 12059 | { |
956a9fb9 JB |
12060 | ui_out_field_string (uiout, "reason", |
12061 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
12062 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
12063 | } |
12064 | ||
00eb2c4a JB |
12065 | ui_out_text (uiout, |
12066 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
12067 | : "\nCatchpoint "); | |
956a9fb9 JB |
12068 | ui_out_field_int (uiout, "bkptno", b->number); |
12069 | ui_out_text (uiout, ", "); | |
f7f9143b | 12070 | |
f7f9143b JB |
12071 | switch (ex) |
12072 | { | |
761269c8 JB |
12073 | case ada_catch_exception: |
12074 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12075 | { |
12076 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12077 | char exception_name[256]; | |
12078 | ||
12079 | if (addr != 0) | |
12080 | { | |
c714b426 PA |
12081 | read_memory (addr, (gdb_byte *) exception_name, |
12082 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12083 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12084 | } | |
12085 | else | |
12086 | { | |
12087 | /* For some reason, we were unable to read the exception | |
12088 | name. This could happen if the Runtime was compiled | |
12089 | without debugging info, for instance. In that case, | |
12090 | just replace the exception name by the generic string | |
12091 | "exception" - it will read as "an exception" in the | |
12092 | notification we are about to print. */ | |
967cff16 | 12093 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12094 | } |
12095 | /* In the case of unhandled exception breakpoints, we print | |
12096 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12097 | it clearer to the user which kind of catchpoint just got | |
12098 | hit. We used ui_out_text to make sure that this extra | |
12099 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12100 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
12101 | ui_out_text (uiout, "unhandled "); |
12102 | ui_out_field_string (uiout, "exception-name", exception_name); | |
12103 | } | |
12104 | break; | |
761269c8 | 12105 | case ada_catch_assert: |
956a9fb9 JB |
12106 | /* In this case, the name of the exception is not really |
12107 | important. Just print "failed assertion" to make it clearer | |
12108 | that his program just hit an assertion-failure catchpoint. | |
12109 | We used ui_out_text because this info does not belong in | |
12110 | the MI output. */ | |
12111 | ui_out_text (uiout, "failed assertion"); | |
12112 | break; | |
f7f9143b | 12113 | } |
956a9fb9 JB |
12114 | ui_out_text (uiout, " at "); |
12115 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
12116 | |
12117 | return PRINT_SRC_AND_LOC; | |
12118 | } | |
12119 | ||
12120 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12121 | for all exception catchpoint kinds. */ | |
12122 | ||
12123 | static void | |
761269c8 | 12124 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12125 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12126 | { |
79a45e25 | 12127 | struct ui_out *uiout = current_uiout; |
28010a5d | 12128 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12129 | struct value_print_options opts; |
12130 | ||
12131 | get_user_print_options (&opts); | |
12132 | if (opts.addressprint) | |
f7f9143b JB |
12133 | { |
12134 | annotate_field (4); | |
5af949e3 | 12135 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12136 | } |
12137 | ||
12138 | annotate_field (5); | |
a6d9a66e | 12139 | *last_loc = b->loc; |
f7f9143b JB |
12140 | switch (ex) |
12141 | { | |
761269c8 | 12142 | case ada_catch_exception: |
28010a5d | 12143 | if (c->excep_string != NULL) |
f7f9143b | 12144 | { |
28010a5d PA |
12145 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12146 | ||
f7f9143b JB |
12147 | ui_out_field_string (uiout, "what", msg); |
12148 | xfree (msg); | |
12149 | } | |
12150 | else | |
12151 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
12152 | ||
12153 | break; | |
12154 | ||
761269c8 | 12155 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12156 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
12157 | break; | |
12158 | ||
761269c8 | 12159 | case ada_catch_assert: |
f7f9143b JB |
12160 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
12161 | break; | |
12162 | ||
12163 | default: | |
12164 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12165 | break; | |
12166 | } | |
12167 | } | |
12168 | ||
12169 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12170 | for all exception catchpoint kinds. */ | |
12171 | ||
12172 | static void | |
761269c8 | 12173 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12174 | struct breakpoint *b) |
12175 | { | |
28010a5d | 12176 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12177 | struct ui_out *uiout = current_uiout; |
28010a5d | 12178 | |
00eb2c4a JB |
12179 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
12180 | : _("Catchpoint ")); | |
12181 | ui_out_field_int (uiout, "bkptno", b->number); | |
12182 | ui_out_text (uiout, ": "); | |
12183 | ||
f7f9143b JB |
12184 | switch (ex) |
12185 | { | |
761269c8 | 12186 | case ada_catch_exception: |
28010a5d | 12187 | if (c->excep_string != NULL) |
00eb2c4a JB |
12188 | { |
12189 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12190 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12191 | ||
12192 | ui_out_text (uiout, info); | |
12193 | do_cleanups (old_chain); | |
12194 | } | |
f7f9143b | 12195 | else |
00eb2c4a | 12196 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
12197 | break; |
12198 | ||
761269c8 | 12199 | case ada_catch_exception_unhandled: |
00eb2c4a | 12200 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
12201 | break; |
12202 | ||
761269c8 | 12203 | case ada_catch_assert: |
00eb2c4a | 12204 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
12205 | break; |
12206 | ||
12207 | default: | |
12208 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12209 | break; | |
12210 | } | |
12211 | } | |
12212 | ||
6149aea9 PA |
12213 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12214 | for all exception catchpoint kinds. */ | |
12215 | ||
12216 | static void | |
761269c8 | 12217 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12218 | struct breakpoint *b, struct ui_file *fp) |
12219 | { | |
28010a5d PA |
12220 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12221 | ||
6149aea9 PA |
12222 | switch (ex) |
12223 | { | |
761269c8 | 12224 | case ada_catch_exception: |
6149aea9 | 12225 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12226 | if (c->excep_string != NULL) |
12227 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12228 | break; |
12229 | ||
761269c8 | 12230 | case ada_catch_exception_unhandled: |
78076abc | 12231 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12232 | break; |
12233 | ||
761269c8 | 12234 | case ada_catch_assert: |
6149aea9 PA |
12235 | fprintf_filtered (fp, "catch assert"); |
12236 | break; | |
12237 | ||
12238 | default: | |
12239 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12240 | } | |
d9b3f62e | 12241 | print_recreate_thread (b, fp); |
6149aea9 PA |
12242 | } |
12243 | ||
f7f9143b JB |
12244 | /* Virtual table for "catch exception" breakpoints. */ |
12245 | ||
28010a5d PA |
12246 | static void |
12247 | dtor_catch_exception (struct breakpoint *b) | |
12248 | { | |
761269c8 | 12249 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12250 | } |
12251 | ||
12252 | static struct bp_location * | |
12253 | allocate_location_catch_exception (struct breakpoint *self) | |
12254 | { | |
761269c8 | 12255 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12256 | } |
12257 | ||
12258 | static void | |
12259 | re_set_catch_exception (struct breakpoint *b) | |
12260 | { | |
761269c8 | 12261 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12262 | } |
12263 | ||
12264 | static void | |
12265 | check_status_catch_exception (bpstat bs) | |
12266 | { | |
761269c8 | 12267 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12268 | } |
12269 | ||
f7f9143b | 12270 | static enum print_stop_action |
348d480f | 12271 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12272 | { |
761269c8 | 12273 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12274 | } |
12275 | ||
12276 | static void | |
a6d9a66e | 12277 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12278 | { |
761269c8 | 12279 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12280 | } |
12281 | ||
12282 | static void | |
12283 | print_mention_catch_exception (struct breakpoint *b) | |
12284 | { | |
761269c8 | 12285 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12286 | } |
12287 | ||
6149aea9 PA |
12288 | static void |
12289 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12290 | { | |
761269c8 | 12291 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12292 | } |
12293 | ||
2060206e | 12294 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12295 | |
12296 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12297 | ||
28010a5d PA |
12298 | static void |
12299 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12300 | { | |
761269c8 | 12301 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12302 | } |
12303 | ||
12304 | static struct bp_location * | |
12305 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12306 | { | |
761269c8 | 12307 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12308 | } |
12309 | ||
12310 | static void | |
12311 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12312 | { | |
761269c8 | 12313 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12314 | } |
12315 | ||
12316 | static void | |
12317 | check_status_catch_exception_unhandled (bpstat bs) | |
12318 | { | |
761269c8 | 12319 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12320 | } |
12321 | ||
f7f9143b | 12322 | static enum print_stop_action |
348d480f | 12323 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12324 | { |
761269c8 | 12325 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12326 | } |
12327 | ||
12328 | static void | |
a6d9a66e UW |
12329 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12330 | struct bp_location **last_loc) | |
f7f9143b | 12331 | { |
761269c8 | 12332 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12333 | } |
12334 | ||
12335 | static void | |
12336 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12337 | { | |
761269c8 | 12338 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12339 | } |
12340 | ||
6149aea9 PA |
12341 | static void |
12342 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12343 | struct ui_file *fp) | |
12344 | { | |
761269c8 | 12345 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12346 | } |
12347 | ||
2060206e | 12348 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12349 | |
12350 | /* Virtual table for "catch assert" breakpoints. */ | |
12351 | ||
28010a5d PA |
12352 | static void |
12353 | dtor_catch_assert (struct breakpoint *b) | |
12354 | { | |
761269c8 | 12355 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12356 | } |
12357 | ||
12358 | static struct bp_location * | |
12359 | allocate_location_catch_assert (struct breakpoint *self) | |
12360 | { | |
761269c8 | 12361 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12362 | } |
12363 | ||
12364 | static void | |
12365 | re_set_catch_assert (struct breakpoint *b) | |
12366 | { | |
761269c8 | 12367 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12368 | } |
12369 | ||
12370 | static void | |
12371 | check_status_catch_assert (bpstat bs) | |
12372 | { | |
761269c8 | 12373 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12374 | } |
12375 | ||
f7f9143b | 12376 | static enum print_stop_action |
348d480f | 12377 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12378 | { |
761269c8 | 12379 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12380 | } |
12381 | ||
12382 | static void | |
a6d9a66e | 12383 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12384 | { |
761269c8 | 12385 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12386 | } |
12387 | ||
12388 | static void | |
12389 | print_mention_catch_assert (struct breakpoint *b) | |
12390 | { | |
761269c8 | 12391 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12392 | } |
12393 | ||
6149aea9 PA |
12394 | static void |
12395 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12396 | { | |
761269c8 | 12397 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12398 | } |
12399 | ||
2060206e | 12400 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12401 | |
f7f9143b JB |
12402 | /* Return a newly allocated copy of the first space-separated token |
12403 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12404 | token. | |
12405 | ||
12406 | Return NULL if ARGPS does not contain any more tokens. */ | |
12407 | ||
12408 | static char * | |
12409 | ada_get_next_arg (char **argsp) | |
12410 | { | |
12411 | char *args = *argsp; | |
12412 | char *end; | |
12413 | char *result; | |
12414 | ||
0fcd72ba | 12415 | args = skip_spaces (args); |
f7f9143b JB |
12416 | if (args[0] == '\0') |
12417 | return NULL; /* No more arguments. */ | |
12418 | ||
12419 | /* Find the end of the current argument. */ | |
12420 | ||
0fcd72ba | 12421 | end = skip_to_space (args); |
f7f9143b JB |
12422 | |
12423 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12424 | ||
12425 | *argsp = end; | |
12426 | ||
12427 | /* Make a copy of the current argument and return it. */ | |
12428 | ||
12429 | result = xmalloc (end - args + 1); | |
12430 | strncpy (result, args, end - args); | |
12431 | result[end - args] = '\0'; | |
12432 | ||
12433 | return result; | |
12434 | } | |
12435 | ||
12436 | /* Split the arguments specified in a "catch exception" command. | |
12437 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12438 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12439 | specified by the user. |
12440 | If a condition is found at the end of the arguments, the condition | |
12441 | expression is stored in COND_STRING (memory must be deallocated | |
12442 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12443 | |
12444 | static void | |
12445 | catch_ada_exception_command_split (char *args, | |
761269c8 | 12446 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12447 | char **excep_string, |
12448 | char **cond_string) | |
f7f9143b JB |
12449 | { |
12450 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12451 | char *exception_name; | |
5845583d | 12452 | char *cond = NULL; |
f7f9143b JB |
12453 | |
12454 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12455 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12456 | { | |
12457 | /* This is not an exception name; this is the start of a condition | |
12458 | expression for a catchpoint on all exceptions. So, "un-get" | |
12459 | this token, and set exception_name to NULL. */ | |
12460 | xfree (exception_name); | |
12461 | exception_name = NULL; | |
12462 | args -= 2; | |
12463 | } | |
f7f9143b JB |
12464 | make_cleanup (xfree, exception_name); |
12465 | ||
5845583d | 12466 | /* Check to see if we have a condition. */ |
f7f9143b | 12467 | |
0fcd72ba | 12468 | args = skip_spaces (args); |
5845583d JB |
12469 | if (strncmp (args, "if", 2) == 0 |
12470 | && (isspace (args[2]) || args[2] == '\0')) | |
12471 | { | |
12472 | args += 2; | |
12473 | args = skip_spaces (args); | |
12474 | ||
12475 | if (args[0] == '\0') | |
12476 | error (_("Condition missing after `if' keyword")); | |
12477 | cond = xstrdup (args); | |
12478 | make_cleanup (xfree, cond); | |
12479 | ||
12480 | args += strlen (args); | |
12481 | } | |
12482 | ||
12483 | /* Check that we do not have any more arguments. Anything else | |
12484 | is unexpected. */ | |
f7f9143b JB |
12485 | |
12486 | if (args[0] != '\0') | |
12487 | error (_("Junk at end of expression")); | |
12488 | ||
12489 | discard_cleanups (old_chain); | |
12490 | ||
12491 | if (exception_name == NULL) | |
12492 | { | |
12493 | /* Catch all exceptions. */ | |
761269c8 | 12494 | *ex = ada_catch_exception; |
28010a5d | 12495 | *excep_string = NULL; |
f7f9143b JB |
12496 | } |
12497 | else if (strcmp (exception_name, "unhandled") == 0) | |
12498 | { | |
12499 | /* Catch unhandled exceptions. */ | |
761269c8 | 12500 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12501 | *excep_string = NULL; |
f7f9143b JB |
12502 | } |
12503 | else | |
12504 | { | |
12505 | /* Catch a specific exception. */ | |
761269c8 | 12506 | *ex = ada_catch_exception; |
28010a5d | 12507 | *excep_string = exception_name; |
f7f9143b | 12508 | } |
5845583d | 12509 | *cond_string = cond; |
f7f9143b JB |
12510 | } |
12511 | ||
12512 | /* Return the name of the symbol on which we should break in order to | |
12513 | implement a catchpoint of the EX kind. */ | |
12514 | ||
12515 | static const char * | |
761269c8 | 12516 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12517 | { |
3eecfa55 JB |
12518 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12519 | ||
12520 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12521 | |
f7f9143b JB |
12522 | switch (ex) |
12523 | { | |
761269c8 | 12524 | case ada_catch_exception: |
3eecfa55 | 12525 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12526 | break; |
761269c8 | 12527 | case ada_catch_exception_unhandled: |
3eecfa55 | 12528 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12529 | break; |
761269c8 | 12530 | case ada_catch_assert: |
3eecfa55 | 12531 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12532 | break; |
12533 | default: | |
12534 | internal_error (__FILE__, __LINE__, | |
12535 | _("unexpected catchpoint kind (%d)"), ex); | |
12536 | } | |
12537 | } | |
12538 | ||
12539 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12540 | of the EX kind. */ | |
12541 | ||
c0a91b2b | 12542 | static const struct breakpoint_ops * |
761269c8 | 12543 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12544 | { |
12545 | switch (ex) | |
12546 | { | |
761269c8 | 12547 | case ada_catch_exception: |
f7f9143b JB |
12548 | return (&catch_exception_breakpoint_ops); |
12549 | break; | |
761269c8 | 12550 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12551 | return (&catch_exception_unhandled_breakpoint_ops); |
12552 | break; | |
761269c8 | 12553 | case ada_catch_assert: |
f7f9143b JB |
12554 | return (&catch_assert_breakpoint_ops); |
12555 | break; | |
12556 | default: | |
12557 | internal_error (__FILE__, __LINE__, | |
12558 | _("unexpected catchpoint kind (%d)"), ex); | |
12559 | } | |
12560 | } | |
12561 | ||
12562 | /* Return the condition that will be used to match the current exception | |
12563 | being raised with the exception that the user wants to catch. This | |
12564 | assumes that this condition is used when the inferior just triggered | |
12565 | an exception catchpoint. | |
12566 | ||
12567 | The string returned is a newly allocated string that needs to be | |
12568 | deallocated later. */ | |
12569 | ||
12570 | static char * | |
28010a5d | 12571 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12572 | { |
3d0b0fa3 JB |
12573 | int i; |
12574 | ||
0963b4bd | 12575 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12576 | runtime units that have been compiled without debugging info; if |
28010a5d | 12577 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12578 | exception (e.g. "constraint_error") then, during the evaluation |
12579 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12580 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12581 | may then be set only on user-defined exceptions which have the |
12582 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12583 | ||
12584 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12585 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12586 | exception constraint_error" is rewritten into "catch exception |
12587 | standard.constraint_error". | |
12588 | ||
12589 | If an exception named contraint_error is defined in another package of | |
12590 | the inferior program, then the only way to specify this exception as a | |
12591 | breakpoint condition is to use its fully-qualified named: | |
12592 | e.g. my_package.constraint_error. */ | |
12593 | ||
12594 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12595 | { | |
28010a5d | 12596 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12597 | { |
12598 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12599 | excep_string); |
3d0b0fa3 JB |
12600 | } |
12601 | } | |
28010a5d | 12602 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12603 | } |
12604 | ||
12605 | /* Return the symtab_and_line that should be used to insert an exception | |
12606 | catchpoint of the TYPE kind. | |
12607 | ||
28010a5d PA |
12608 | EXCEP_STRING should contain the name of a specific exception that |
12609 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12610 | |
28010a5d PA |
12611 | ADDR_STRING returns the name of the function where the real |
12612 | breakpoint that implements the catchpoints is set, depending on the | |
12613 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12614 | |
12615 | static struct symtab_and_line | |
761269c8 | 12616 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12617 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12618 | { |
12619 | const char *sym_name; | |
12620 | struct symbol *sym; | |
f7f9143b | 12621 | |
0259addd JB |
12622 | /* First, find out which exception support info to use. */ |
12623 | ada_exception_support_info_sniffer (); | |
12624 | ||
12625 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12626 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12627 | sym_name = ada_exception_sym_name (ex); |
12628 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12629 | ||
f17011e0 JB |
12630 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12631 | did not exist, ada_exception_support_info_sniffer would have | |
12632 | raised an exception. | |
f7f9143b | 12633 | |
f17011e0 JB |
12634 | Also, ada_exception_support_info_sniffer should have already |
12635 | verified that SYM is a function symbol. */ | |
12636 | gdb_assert (sym != NULL); | |
12637 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12638 | |
12639 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12640 | *addr_string = xstrdup (sym_name); |
12641 | ||
f7f9143b | 12642 | /* Set OPS. */ |
4b9eee8c | 12643 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12644 | |
f17011e0 | 12645 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12646 | } |
12647 | ||
b4a5b78b | 12648 | /* Create an Ada exception catchpoint. |
f7f9143b | 12649 | |
b4a5b78b | 12650 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12651 | |
2df4d1d5 JB |
12652 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12653 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12654 | of the exception to which this catchpoint applies. When not NULL, | |
12655 | the string must be allocated on the heap, and its deallocation | |
12656 | is no longer the responsibility of the caller. | |
12657 | ||
12658 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12659 | must be allocated on the heap, and its deallocation is no longer | |
12660 | the responsibility of the caller. | |
f7f9143b | 12661 | |
b4a5b78b JB |
12662 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12663 | should be temporary. | |
28010a5d | 12664 | |
b4a5b78b | 12665 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12666 | |
349774ef | 12667 | void |
28010a5d | 12668 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12669 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12670 | char *excep_string, |
5845583d | 12671 | char *cond_string, |
28010a5d | 12672 | int tempflag, |
349774ef | 12673 | int disabled, |
28010a5d PA |
12674 | int from_tty) |
12675 | { | |
12676 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12677 | char *addr_string = NULL; |
12678 | const struct breakpoint_ops *ops = NULL; | |
12679 | struct symtab_and_line sal | |
12680 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12681 | |
12682 | c = XNEW (struct ada_catchpoint); | |
12683 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12684 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12685 | c->excep_string = excep_string; |
12686 | create_excep_cond_exprs (c); | |
5845583d JB |
12687 | if (cond_string != NULL) |
12688 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12689 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12690 | } |
12691 | ||
9ac4176b PA |
12692 | /* Implement the "catch exception" command. */ |
12693 | ||
12694 | static void | |
12695 | catch_ada_exception_command (char *arg, int from_tty, | |
12696 | struct cmd_list_element *command) | |
12697 | { | |
12698 | struct gdbarch *gdbarch = get_current_arch (); | |
12699 | int tempflag; | |
761269c8 | 12700 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12701 | char *excep_string = NULL; |
5845583d | 12702 | char *cond_string = NULL; |
9ac4176b PA |
12703 | |
12704 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12705 | ||
12706 | if (!arg) | |
12707 | arg = ""; | |
b4a5b78b JB |
12708 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12709 | &cond_string); | |
12710 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12711 | excep_string, cond_string, | |
349774ef JB |
12712 | tempflag, 1 /* enabled */, |
12713 | from_tty); | |
9ac4176b PA |
12714 | } |
12715 | ||
b4a5b78b | 12716 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12717 | |
b4a5b78b JB |
12718 | ARGS contains the command's arguments (or the empty string if |
12719 | no arguments were passed). | |
5845583d JB |
12720 | |
12721 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12722 | (the memory needs to be deallocated after use). */ |
5845583d | 12723 | |
b4a5b78b JB |
12724 | static void |
12725 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12726 | { |
5845583d | 12727 | args = skip_spaces (args); |
f7f9143b | 12728 | |
5845583d JB |
12729 | /* Check whether a condition was provided. */ |
12730 | if (strncmp (args, "if", 2) == 0 | |
12731 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12732 | { |
5845583d | 12733 | args += 2; |
0fcd72ba | 12734 | args = skip_spaces (args); |
5845583d JB |
12735 | if (args[0] == '\0') |
12736 | error (_("condition missing after `if' keyword")); | |
12737 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12738 | } |
12739 | ||
5845583d JB |
12740 | /* Otherwise, there should be no other argument at the end of |
12741 | the command. */ | |
12742 | else if (args[0] != '\0') | |
12743 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12744 | } |
12745 | ||
9ac4176b PA |
12746 | /* Implement the "catch assert" command. */ |
12747 | ||
12748 | static void | |
12749 | catch_assert_command (char *arg, int from_tty, | |
12750 | struct cmd_list_element *command) | |
12751 | { | |
12752 | struct gdbarch *gdbarch = get_current_arch (); | |
12753 | int tempflag; | |
5845583d | 12754 | char *cond_string = NULL; |
9ac4176b PA |
12755 | |
12756 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12757 | ||
12758 | if (!arg) | |
12759 | arg = ""; | |
b4a5b78b | 12760 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 12761 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 12762 | NULL, cond_string, |
349774ef JB |
12763 | tempflag, 1 /* enabled */, |
12764 | from_tty); | |
9ac4176b | 12765 | } |
778865d3 JB |
12766 | |
12767 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12768 | ||
12769 | static int | |
12770 | ada_is_exception_sym (struct symbol *sym) | |
12771 | { | |
12772 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
12773 | ||
12774 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
12775 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
12776 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12777 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12778 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
12779 | } | |
12780 | ||
12781 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12782 | Ada exception object. This matches all exceptions except the ones | |
12783 | defined by the Ada language. */ | |
12784 | ||
12785 | static int | |
12786 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12787 | { | |
12788 | int i; | |
12789 | ||
12790 | if (!ada_is_exception_sym (sym)) | |
12791 | return 0; | |
12792 | ||
12793 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12794 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
12795 | return 0; /* A standard exception. */ | |
12796 | ||
12797 | /* Numeric_Error is also a standard exception, so exclude it. | |
12798 | See the STANDARD_EXC description for more details as to why | |
12799 | this exception is not listed in that array. */ | |
12800 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
12801 | return 0; | |
12802 | ||
12803 | return 1; | |
12804 | } | |
12805 | ||
12806 | /* A helper function for qsort, comparing two struct ada_exc_info | |
12807 | objects. | |
12808 | ||
12809 | The comparison is determined first by exception name, and then | |
12810 | by exception address. */ | |
12811 | ||
12812 | static int | |
12813 | compare_ada_exception_info (const void *a, const void *b) | |
12814 | { | |
12815 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
12816 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
12817 | int result; | |
12818 | ||
12819 | result = strcmp (exc_a->name, exc_b->name); | |
12820 | if (result != 0) | |
12821 | return result; | |
12822 | ||
12823 | if (exc_a->addr < exc_b->addr) | |
12824 | return -1; | |
12825 | if (exc_a->addr > exc_b->addr) | |
12826 | return 1; | |
12827 | ||
12828 | return 0; | |
12829 | } | |
12830 | ||
12831 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12832 | routine, but keeping the first SKIP elements untouched. | |
12833 | ||
12834 | All duplicates are also removed. */ | |
12835 | ||
12836 | static void | |
12837 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
12838 | int skip) | |
12839 | { | |
12840 | struct ada_exc_info *to_sort | |
12841 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
12842 | int to_sort_len | |
12843 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
12844 | int i, j; | |
12845 | ||
12846 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
12847 | compare_ada_exception_info); | |
12848 | ||
12849 | for (i = 1, j = 1; i < to_sort_len; i++) | |
12850 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
12851 | to_sort[j++] = to_sort[i]; | |
12852 | to_sort_len = j; | |
12853 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
12854 | } | |
12855 | ||
12856 | /* A function intended as the "name_matcher" callback in the struct | |
12857 | quick_symbol_functions' expand_symtabs_matching method. | |
12858 | ||
12859 | SEARCH_NAME is the symbol's search name. | |
12860 | ||
12861 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
12862 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
12863 | is null, no filtering is performed, and all symbols are a positive | |
12864 | match. */ | |
12865 | ||
12866 | static int | |
12867 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
12868 | { | |
12869 | regex_t *preg = user_data; | |
12870 | ||
12871 | if (preg == NULL) | |
12872 | return 1; | |
12873 | ||
12874 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
12875 | the regular expression used to do the matching refers to | |
12876 | the natural name. So match against the decoded name. */ | |
12877 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
12878 | } | |
12879 | ||
12880 | /* Add all exceptions defined by the Ada standard whose name match | |
12881 | a regular expression. | |
12882 | ||
12883 | If PREG is not NULL, then this regexp_t object is used to | |
12884 | perform the symbol name matching. Otherwise, no name-based | |
12885 | filtering is performed. | |
12886 | ||
12887 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12888 | gets pushed. */ | |
12889 | ||
12890 | static void | |
12891 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12892 | { | |
12893 | int i; | |
12894 | ||
12895 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12896 | { | |
12897 | if (preg == NULL | |
12898 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
12899 | { | |
12900 | struct bound_minimal_symbol msymbol | |
12901 | = ada_lookup_simple_minsym (standard_exc[i]); | |
12902 | ||
12903 | if (msymbol.minsym != NULL) | |
12904 | { | |
12905 | struct ada_exc_info info | |
77e371c0 | 12906 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
12907 | |
12908 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12909 | } | |
12910 | } | |
12911 | } | |
12912 | } | |
12913 | ||
12914 | /* Add all Ada exceptions defined locally and accessible from the given | |
12915 | FRAME. | |
12916 | ||
12917 | If PREG is not NULL, then this regexp_t object is used to | |
12918 | perform the symbol name matching. Otherwise, no name-based | |
12919 | filtering is performed. | |
12920 | ||
12921 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12922 | gets pushed. */ | |
12923 | ||
12924 | static void | |
12925 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
12926 | VEC(ada_exc_info) **exceptions) | |
12927 | { | |
3977b71f | 12928 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
12929 | |
12930 | while (block != 0) | |
12931 | { | |
12932 | struct block_iterator iter; | |
12933 | struct symbol *sym; | |
12934 | ||
12935 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
12936 | { | |
12937 | switch (SYMBOL_CLASS (sym)) | |
12938 | { | |
12939 | case LOC_TYPEDEF: | |
12940 | case LOC_BLOCK: | |
12941 | case LOC_CONST: | |
12942 | break; | |
12943 | default: | |
12944 | if (ada_is_exception_sym (sym)) | |
12945 | { | |
12946 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
12947 | SYMBOL_VALUE_ADDRESS (sym)}; | |
12948 | ||
12949 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12950 | } | |
12951 | } | |
12952 | } | |
12953 | if (BLOCK_FUNCTION (block) != NULL) | |
12954 | break; | |
12955 | block = BLOCK_SUPERBLOCK (block); | |
12956 | } | |
12957 | } | |
12958 | ||
12959 | /* Add all exceptions defined globally whose name name match | |
12960 | a regular expression, excluding standard exceptions. | |
12961 | ||
12962 | The reason we exclude standard exceptions is that they need | |
12963 | to be handled separately: Standard exceptions are defined inside | |
12964 | a runtime unit which is normally not compiled with debugging info, | |
12965 | and thus usually do not show up in our symbol search. However, | |
12966 | if the unit was in fact built with debugging info, we need to | |
12967 | exclude them because they would duplicate the entry we found | |
12968 | during the special loop that specifically searches for those | |
12969 | standard exceptions. | |
12970 | ||
12971 | If PREG is not NULL, then this regexp_t object is used to | |
12972 | perform the symbol name matching. Otherwise, no name-based | |
12973 | filtering is performed. | |
12974 | ||
12975 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12976 | gets pushed. */ | |
12977 | ||
12978 | static void | |
12979 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12980 | { | |
12981 | struct objfile *objfile; | |
43f3e411 | 12982 | struct compunit_symtab *s; |
778865d3 | 12983 | |
bb4142cf DE |
12984 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, |
12985 | VARIABLES_DOMAIN, preg); | |
778865d3 | 12986 | |
43f3e411 | 12987 | ALL_COMPUNITS (objfile, s) |
778865d3 | 12988 | { |
43f3e411 | 12989 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
12990 | int i; |
12991 | ||
12992 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
12993 | { | |
12994 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
12995 | struct block_iterator iter; | |
12996 | struct symbol *sym; | |
12997 | ||
12998 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
12999 | if (ada_is_non_standard_exception_sym (sym) | |
13000 | && (preg == NULL | |
13001 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
13002 | 0, NULL, 0) == 0)) | |
13003 | { | |
13004 | struct ada_exc_info info | |
13005 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13006 | ||
13007 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13008 | } | |
13009 | } | |
13010 | } | |
13011 | } | |
13012 | ||
13013 | /* Implements ada_exceptions_list with the regular expression passed | |
13014 | as a regex_t, rather than a string. | |
13015 | ||
13016 | If not NULL, PREG is used to filter out exceptions whose names | |
13017 | do not match. Otherwise, all exceptions are listed. */ | |
13018 | ||
13019 | static VEC(ada_exc_info) * | |
13020 | ada_exceptions_list_1 (regex_t *preg) | |
13021 | { | |
13022 | VEC(ada_exc_info) *result = NULL; | |
13023 | struct cleanup *old_chain | |
13024 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
13025 | int prev_len; | |
13026 | ||
13027 | /* First, list the known standard exceptions. These exceptions | |
13028 | need to be handled separately, as they are usually defined in | |
13029 | runtime units that have been compiled without debugging info. */ | |
13030 | ||
13031 | ada_add_standard_exceptions (preg, &result); | |
13032 | ||
13033 | /* Next, find all exceptions whose scope is local and accessible | |
13034 | from the currently selected frame. */ | |
13035 | ||
13036 | if (has_stack_frames ()) | |
13037 | { | |
13038 | prev_len = VEC_length (ada_exc_info, result); | |
13039 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13040 | &result); | |
13041 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13042 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13043 | } | |
13044 | ||
13045 | /* Add all exceptions whose scope is global. */ | |
13046 | ||
13047 | prev_len = VEC_length (ada_exc_info, result); | |
13048 | ada_add_global_exceptions (preg, &result); | |
13049 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13050 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13051 | ||
13052 | discard_cleanups (old_chain); | |
13053 | return result; | |
13054 | } | |
13055 | ||
13056 | /* Return a vector of ada_exc_info. | |
13057 | ||
13058 | If REGEXP is NULL, all exceptions are included in the result. | |
13059 | Otherwise, it should contain a valid regular expression, | |
13060 | and only the exceptions whose names match that regular expression | |
13061 | are included in the result. | |
13062 | ||
13063 | The exceptions are sorted in the following order: | |
13064 | - Standard exceptions (defined by the Ada language), in | |
13065 | alphabetical order; | |
13066 | - Exceptions only visible from the current frame, in | |
13067 | alphabetical order; | |
13068 | - Exceptions whose scope is global, in alphabetical order. */ | |
13069 | ||
13070 | VEC(ada_exc_info) * | |
13071 | ada_exceptions_list (const char *regexp) | |
13072 | { | |
13073 | VEC(ada_exc_info) *result = NULL; | |
13074 | struct cleanup *old_chain = NULL; | |
13075 | regex_t reg; | |
13076 | ||
13077 | if (regexp != NULL) | |
13078 | old_chain = compile_rx_or_error (®, regexp, | |
13079 | _("invalid regular expression")); | |
13080 | ||
13081 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
13082 | ||
13083 | if (old_chain != NULL) | |
13084 | do_cleanups (old_chain); | |
13085 | return result; | |
13086 | } | |
13087 | ||
13088 | /* Implement the "info exceptions" command. */ | |
13089 | ||
13090 | static void | |
13091 | info_exceptions_command (char *regexp, int from_tty) | |
13092 | { | |
13093 | VEC(ada_exc_info) *exceptions; | |
13094 | struct cleanup *cleanup; | |
13095 | struct gdbarch *gdbarch = get_current_arch (); | |
13096 | int ix; | |
13097 | struct ada_exc_info *info; | |
13098 | ||
13099 | exceptions = ada_exceptions_list (regexp); | |
13100 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13101 | ||
13102 | if (regexp != NULL) | |
13103 | printf_filtered | |
13104 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13105 | else | |
13106 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13107 | ||
13108 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13109 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13110 | ||
13111 | do_cleanups (cleanup); | |
13112 | } | |
13113 | ||
4c4b4cd2 PH |
13114 | /* Operators */ |
13115 | /* Information about operators given special treatment in functions | |
13116 | below. */ | |
13117 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13118 | ||
13119 | #define ADA_OPERATORS \ | |
13120 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13121 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13122 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13123 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13124 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13125 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13126 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13127 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13128 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13129 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13130 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13131 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13132 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13133 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13134 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13135 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13136 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13137 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13138 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13139 | |
13140 | static void | |
554794dc SDJ |
13141 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13142 | int *argsp) | |
4c4b4cd2 PH |
13143 | { |
13144 | switch (exp->elts[pc - 1].opcode) | |
13145 | { | |
76a01679 | 13146 | default: |
4c4b4cd2 PH |
13147 | operator_length_standard (exp, pc, oplenp, argsp); |
13148 | break; | |
13149 | ||
13150 | #define OP_DEFN(op, len, args, binop) \ | |
13151 | case op: *oplenp = len; *argsp = args; break; | |
13152 | ADA_OPERATORS; | |
13153 | #undef OP_DEFN | |
52ce6436 PH |
13154 | |
13155 | case OP_AGGREGATE: | |
13156 | *oplenp = 3; | |
13157 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13158 | break; | |
13159 | ||
13160 | case OP_CHOICES: | |
13161 | *oplenp = 3; | |
13162 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13163 | break; | |
4c4b4cd2 PH |
13164 | } |
13165 | } | |
13166 | ||
c0201579 JK |
13167 | /* Implementation of the exp_descriptor method operator_check. */ |
13168 | ||
13169 | static int | |
13170 | ada_operator_check (struct expression *exp, int pos, | |
13171 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13172 | void *data) | |
13173 | { | |
13174 | const union exp_element *const elts = exp->elts; | |
13175 | struct type *type = NULL; | |
13176 | ||
13177 | switch (elts[pos].opcode) | |
13178 | { | |
13179 | case UNOP_IN_RANGE: | |
13180 | case UNOP_QUAL: | |
13181 | type = elts[pos + 1].type; | |
13182 | break; | |
13183 | ||
13184 | default: | |
13185 | return operator_check_standard (exp, pos, objfile_func, data); | |
13186 | } | |
13187 | ||
13188 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13189 | ||
13190 | if (type && TYPE_OBJFILE (type) | |
13191 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13192 | return 1; | |
13193 | ||
13194 | return 0; | |
13195 | } | |
13196 | ||
4c4b4cd2 PH |
13197 | static char * |
13198 | ada_op_name (enum exp_opcode opcode) | |
13199 | { | |
13200 | switch (opcode) | |
13201 | { | |
76a01679 | 13202 | default: |
4c4b4cd2 | 13203 | return op_name_standard (opcode); |
52ce6436 | 13204 | |
4c4b4cd2 PH |
13205 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13206 | ADA_OPERATORS; | |
13207 | #undef OP_DEFN | |
52ce6436 PH |
13208 | |
13209 | case OP_AGGREGATE: | |
13210 | return "OP_AGGREGATE"; | |
13211 | case OP_CHOICES: | |
13212 | return "OP_CHOICES"; | |
13213 | case OP_NAME: | |
13214 | return "OP_NAME"; | |
4c4b4cd2 PH |
13215 | } |
13216 | } | |
13217 | ||
13218 | /* As for operator_length, but assumes PC is pointing at the first | |
13219 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13220 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13221 | |
13222 | static void | |
76a01679 JB |
13223 | ada_forward_operator_length (struct expression *exp, int pc, |
13224 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13225 | { |
76a01679 | 13226 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13227 | { |
13228 | default: | |
13229 | *oplenp = *argsp = 0; | |
13230 | break; | |
52ce6436 | 13231 | |
4c4b4cd2 PH |
13232 | #define OP_DEFN(op, len, args, binop) \ |
13233 | case op: *oplenp = len; *argsp = args; break; | |
13234 | ADA_OPERATORS; | |
13235 | #undef OP_DEFN | |
52ce6436 PH |
13236 | |
13237 | case OP_AGGREGATE: | |
13238 | *oplenp = 3; | |
13239 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13240 | break; | |
13241 | ||
13242 | case OP_CHOICES: | |
13243 | *oplenp = 3; | |
13244 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13245 | break; | |
13246 | ||
13247 | case OP_STRING: | |
13248 | case OP_NAME: | |
13249 | { | |
13250 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13251 | |
52ce6436 PH |
13252 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13253 | *argsp = 0; | |
13254 | break; | |
13255 | } | |
4c4b4cd2 PH |
13256 | } |
13257 | } | |
13258 | ||
13259 | static int | |
13260 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13261 | { | |
13262 | enum exp_opcode op = exp->elts[elt].opcode; | |
13263 | int oplen, nargs; | |
13264 | int pc = elt; | |
13265 | int i; | |
76a01679 | 13266 | |
4c4b4cd2 PH |
13267 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13268 | ||
76a01679 | 13269 | switch (op) |
4c4b4cd2 | 13270 | { |
76a01679 | 13271 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13272 | case OP_ATR_FIRST: |
13273 | case OP_ATR_LAST: | |
13274 | case OP_ATR_LENGTH: | |
13275 | case OP_ATR_IMAGE: | |
13276 | case OP_ATR_MAX: | |
13277 | case OP_ATR_MIN: | |
13278 | case OP_ATR_MODULUS: | |
13279 | case OP_ATR_POS: | |
13280 | case OP_ATR_SIZE: | |
13281 | case OP_ATR_TAG: | |
13282 | case OP_ATR_VAL: | |
13283 | break; | |
13284 | ||
13285 | case UNOP_IN_RANGE: | |
13286 | case UNOP_QUAL: | |
323e0a4a AC |
13287 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13288 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13289 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13290 | fprintf_filtered (stream, " ("); | |
13291 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13292 | fprintf_filtered (stream, ")"); | |
13293 | break; | |
13294 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13295 | fprintf_filtered (stream, " (%d)", |
13296 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13297 | break; |
13298 | case TERNOP_IN_RANGE: | |
13299 | break; | |
13300 | ||
52ce6436 PH |
13301 | case OP_AGGREGATE: |
13302 | case OP_OTHERS: | |
13303 | case OP_DISCRETE_RANGE: | |
13304 | case OP_POSITIONAL: | |
13305 | case OP_CHOICES: | |
13306 | break; | |
13307 | ||
13308 | case OP_NAME: | |
13309 | case OP_STRING: | |
13310 | { | |
13311 | char *name = &exp->elts[elt + 2].string; | |
13312 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13313 | |
52ce6436 PH |
13314 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13315 | break; | |
13316 | } | |
13317 | ||
4c4b4cd2 PH |
13318 | default: |
13319 | return dump_subexp_body_standard (exp, stream, elt); | |
13320 | } | |
13321 | ||
13322 | elt += oplen; | |
13323 | for (i = 0; i < nargs; i += 1) | |
13324 | elt = dump_subexp (exp, stream, elt); | |
13325 | ||
13326 | return elt; | |
13327 | } | |
13328 | ||
13329 | /* The Ada extension of print_subexp (q.v.). */ | |
13330 | ||
76a01679 JB |
13331 | static void |
13332 | ada_print_subexp (struct expression *exp, int *pos, | |
13333 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13334 | { |
52ce6436 | 13335 | int oplen, nargs, i; |
4c4b4cd2 PH |
13336 | int pc = *pos; |
13337 | enum exp_opcode op = exp->elts[pc].opcode; | |
13338 | ||
13339 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13340 | ||
52ce6436 | 13341 | *pos += oplen; |
4c4b4cd2 PH |
13342 | switch (op) |
13343 | { | |
13344 | default: | |
52ce6436 | 13345 | *pos -= oplen; |
4c4b4cd2 PH |
13346 | print_subexp_standard (exp, pos, stream, prec); |
13347 | return; | |
13348 | ||
13349 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13350 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13351 | return; | |
13352 | ||
13353 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13354 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13355 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13356 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13357 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13358 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13359 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13360 | fprintf_filtered (stream, "(%ld)", |
13361 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13362 | return; |
13363 | ||
13364 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13365 | if (prec >= PREC_EQUAL) |
76a01679 | 13366 | fputs_filtered ("(", stream); |
323e0a4a | 13367 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13368 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13369 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13370 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13371 | fputs_filtered (" .. ", stream); | |
13372 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13373 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13374 | fputs_filtered (")", stream); |
13375 | return; | |
4c4b4cd2 PH |
13376 | |
13377 | case OP_ATR_FIRST: | |
13378 | case OP_ATR_LAST: | |
13379 | case OP_ATR_LENGTH: | |
13380 | case OP_ATR_IMAGE: | |
13381 | case OP_ATR_MAX: | |
13382 | case OP_ATR_MIN: | |
13383 | case OP_ATR_MODULUS: | |
13384 | case OP_ATR_POS: | |
13385 | case OP_ATR_SIZE: | |
13386 | case OP_ATR_TAG: | |
13387 | case OP_ATR_VAL: | |
4c4b4cd2 | 13388 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13389 | { |
13390 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13391 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13392 | &type_print_raw_options); | |
76a01679 JB |
13393 | *pos += 3; |
13394 | } | |
4c4b4cd2 | 13395 | else |
76a01679 | 13396 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13397 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13398 | if (nargs > 1) | |
76a01679 JB |
13399 | { |
13400 | int tem; | |
5b4ee69b | 13401 | |
76a01679 JB |
13402 | for (tem = 1; tem < nargs; tem += 1) |
13403 | { | |
13404 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13405 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13406 | } | |
13407 | fputs_filtered (")", stream); | |
13408 | } | |
4c4b4cd2 | 13409 | return; |
14f9c5c9 | 13410 | |
4c4b4cd2 | 13411 | case UNOP_QUAL: |
4c4b4cd2 PH |
13412 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13413 | fputs_filtered ("'(", stream); | |
13414 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13415 | fputs_filtered (")", stream); | |
13416 | return; | |
14f9c5c9 | 13417 | |
4c4b4cd2 | 13418 | case UNOP_IN_RANGE: |
323e0a4a | 13419 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13420 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13421 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13422 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13423 | &type_print_raw_options); | |
4c4b4cd2 | 13424 | return; |
52ce6436 PH |
13425 | |
13426 | case OP_DISCRETE_RANGE: | |
13427 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13428 | fputs_filtered ("..", stream); | |
13429 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13430 | return; | |
13431 | ||
13432 | case OP_OTHERS: | |
13433 | fputs_filtered ("others => ", stream); | |
13434 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13435 | return; | |
13436 | ||
13437 | case OP_CHOICES: | |
13438 | for (i = 0; i < nargs-1; i += 1) | |
13439 | { | |
13440 | if (i > 0) | |
13441 | fputs_filtered ("|", stream); | |
13442 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13443 | } | |
13444 | fputs_filtered (" => ", stream); | |
13445 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13446 | return; | |
13447 | ||
13448 | case OP_POSITIONAL: | |
13449 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13450 | return; | |
13451 | ||
13452 | case OP_AGGREGATE: | |
13453 | fputs_filtered ("(", stream); | |
13454 | for (i = 0; i < nargs; i += 1) | |
13455 | { | |
13456 | if (i > 0) | |
13457 | fputs_filtered (", ", stream); | |
13458 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13459 | } | |
13460 | fputs_filtered (")", stream); | |
13461 | return; | |
4c4b4cd2 PH |
13462 | } |
13463 | } | |
14f9c5c9 AS |
13464 | |
13465 | /* Table mapping opcodes into strings for printing operators | |
13466 | and precedences of the operators. */ | |
13467 | ||
d2e4a39e AS |
13468 | static const struct op_print ada_op_print_tab[] = { |
13469 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13470 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13471 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13472 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13473 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13474 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13475 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13476 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13477 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13478 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13479 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13480 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13481 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13482 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13483 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13484 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13485 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13486 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13487 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13488 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13489 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13490 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13491 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13492 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13493 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13494 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13495 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13496 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13497 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13498 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13499 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 13500 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
13501 | }; |
13502 | \f | |
72d5681a PH |
13503 | enum ada_primitive_types { |
13504 | ada_primitive_type_int, | |
13505 | ada_primitive_type_long, | |
13506 | ada_primitive_type_short, | |
13507 | ada_primitive_type_char, | |
13508 | ada_primitive_type_float, | |
13509 | ada_primitive_type_double, | |
13510 | ada_primitive_type_void, | |
13511 | ada_primitive_type_long_long, | |
13512 | ada_primitive_type_long_double, | |
13513 | ada_primitive_type_natural, | |
13514 | ada_primitive_type_positive, | |
13515 | ada_primitive_type_system_address, | |
13516 | nr_ada_primitive_types | |
13517 | }; | |
6c038f32 PH |
13518 | |
13519 | static void | |
d4a9a881 | 13520 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13521 | struct language_arch_info *lai) |
13522 | { | |
d4a9a881 | 13523 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13524 | |
72d5681a | 13525 | lai->primitive_type_vector |
d4a9a881 | 13526 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13527 | struct type *); |
e9bb382b UW |
13528 | |
13529 | lai->primitive_type_vector [ada_primitive_type_int] | |
13530 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13531 | 0, "integer"); | |
13532 | lai->primitive_type_vector [ada_primitive_type_long] | |
13533 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13534 | 0, "long_integer"); | |
13535 | lai->primitive_type_vector [ada_primitive_type_short] | |
13536 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13537 | 0, "short_integer"); | |
13538 | lai->string_char_type | |
13539 | = lai->primitive_type_vector [ada_primitive_type_char] | |
13540 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
13541 | lai->primitive_type_vector [ada_primitive_type_float] | |
13542 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13543 | "float", NULL); | |
13544 | lai->primitive_type_vector [ada_primitive_type_double] | |
13545 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13546 | "long_float", NULL); | |
13547 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13548 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13549 | 0, "long_long_integer"); | |
13550 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13551 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13552 | "long_long_float", NULL); | |
13553 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13554 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13555 | 0, "natural"); | |
13556 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13557 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13558 | 0, "positive"); | |
13559 | lai->primitive_type_vector [ada_primitive_type_void] | |
13560 | = builtin->builtin_void; | |
13561 | ||
13562 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13563 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13564 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13565 | = "system__address"; | |
fbb06eb1 | 13566 | |
47e729a8 | 13567 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13568 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13569 | } |
6c038f32 PH |
13570 | \f |
13571 | /* Language vector */ | |
13572 | ||
13573 | /* Not really used, but needed in the ada_language_defn. */ | |
13574 | ||
13575 | static void | |
6c7a06a3 | 13576 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13577 | { |
6c7a06a3 | 13578 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13579 | } |
13580 | ||
13581 | static int | |
410a0ff2 | 13582 | parse (struct parser_state *ps) |
6c038f32 PH |
13583 | { |
13584 | warnings_issued = 0; | |
410a0ff2 | 13585 | return ada_parse (ps); |
6c038f32 PH |
13586 | } |
13587 | ||
13588 | static const struct exp_descriptor ada_exp_descriptor = { | |
13589 | ada_print_subexp, | |
13590 | ada_operator_length, | |
c0201579 | 13591 | ada_operator_check, |
6c038f32 PH |
13592 | ada_op_name, |
13593 | ada_dump_subexp_body, | |
13594 | ada_evaluate_subexp | |
13595 | }; | |
13596 | ||
1a119f36 | 13597 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13598 | for Ada. */ |
13599 | ||
1a119f36 JB |
13600 | static symbol_name_cmp_ftype |
13601 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13602 | { |
13603 | if (should_use_wild_match (lookup_name)) | |
13604 | return wild_match; | |
13605 | else | |
13606 | return compare_names; | |
13607 | } | |
13608 | ||
a5ee536b JB |
13609 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13610 | ||
13611 | static struct value * | |
13612 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
13613 | { | |
3977b71f | 13614 | const struct block *frame_block = NULL; |
a5ee536b JB |
13615 | struct symbol *renaming_sym = NULL; |
13616 | ||
13617 | /* The only case where default_read_var_value is not sufficient | |
13618 | is when VAR is a renaming... */ | |
13619 | if (frame) | |
13620 | frame_block = get_frame_block (frame, NULL); | |
13621 | if (frame_block) | |
13622 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13623 | if (renaming_sym != NULL) | |
13624 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13625 | ||
13626 | /* This is a typical case where we expect the default_read_var_value | |
13627 | function to work. */ | |
13628 | return default_read_var_value (var, frame); | |
13629 | } | |
13630 | ||
6c038f32 PH |
13631 | const struct language_defn ada_language_defn = { |
13632 | "ada", /* Language name */ | |
6abde28f | 13633 | "Ada", |
6c038f32 | 13634 | language_ada, |
6c038f32 | 13635 | range_check_off, |
6c038f32 PH |
13636 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13637 | that's not quite what this means. */ | |
6c038f32 | 13638 | array_row_major, |
9a044a89 | 13639 | macro_expansion_no, |
6c038f32 PH |
13640 | &ada_exp_descriptor, |
13641 | parse, | |
13642 | ada_error, | |
13643 | resolve, | |
13644 | ada_printchar, /* Print a character constant */ | |
13645 | ada_printstr, /* Function to print string constant */ | |
13646 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13647 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13648 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13649 | ada_val_print, /* Print a value using appropriate syntax */ |
13650 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13651 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13652 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13653 | NULL, /* name_of_this */ |
6c038f32 PH |
13654 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13655 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13656 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13657 | NULL, /* Language specific |
13658 | class_name_from_physname */ | |
6c038f32 PH |
13659 | ada_op_print_tab, /* expression operators for printing */ |
13660 | 0, /* c-style arrays */ | |
13661 | 1, /* String lower bound */ | |
6c038f32 | 13662 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13663 | ada_make_symbol_completion_list, |
72d5681a | 13664 | ada_language_arch_info, |
e79af960 | 13665 | ada_print_array_index, |
41f1b697 | 13666 | default_pass_by_reference, |
ae6a3a4c | 13667 | c_get_string, |
1a119f36 | 13668 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13669 | ada_iterate_over_symbols, |
a53b64ea | 13670 | &ada_varobj_ops, |
bb2ec1b3 TT |
13671 | NULL, |
13672 | NULL, | |
6c038f32 PH |
13673 | LANG_MAGIC |
13674 | }; | |
13675 | ||
2c0b251b PA |
13676 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13677 | extern initialize_file_ftype _initialize_ada_language; | |
13678 | ||
5bf03f13 JB |
13679 | /* Command-list for the "set/show ada" prefix command. */ |
13680 | static struct cmd_list_element *set_ada_list; | |
13681 | static struct cmd_list_element *show_ada_list; | |
13682 | ||
13683 | /* Implement the "set ada" prefix command. */ | |
13684 | ||
13685 | static void | |
13686 | set_ada_command (char *arg, int from_tty) | |
13687 | { | |
13688 | printf_unfiltered (_(\ | |
13689 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 13690 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
13691 | } |
13692 | ||
13693 | /* Implement the "show ada" prefix command. */ | |
13694 | ||
13695 | static void | |
13696 | show_ada_command (char *args, int from_tty) | |
13697 | { | |
13698 | cmd_show_list (show_ada_list, from_tty, ""); | |
13699 | } | |
13700 | ||
2060206e PA |
13701 | static void |
13702 | initialize_ada_catchpoint_ops (void) | |
13703 | { | |
13704 | struct breakpoint_ops *ops; | |
13705 | ||
13706 | initialize_breakpoint_ops (); | |
13707 | ||
13708 | ops = &catch_exception_breakpoint_ops; | |
13709 | *ops = bkpt_breakpoint_ops; | |
13710 | ops->dtor = dtor_catch_exception; | |
13711 | ops->allocate_location = allocate_location_catch_exception; | |
13712 | ops->re_set = re_set_catch_exception; | |
13713 | ops->check_status = check_status_catch_exception; | |
13714 | ops->print_it = print_it_catch_exception; | |
13715 | ops->print_one = print_one_catch_exception; | |
13716 | ops->print_mention = print_mention_catch_exception; | |
13717 | ops->print_recreate = print_recreate_catch_exception; | |
13718 | ||
13719 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13720 | *ops = bkpt_breakpoint_ops; | |
13721 | ops->dtor = dtor_catch_exception_unhandled; | |
13722 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13723 | ops->re_set = re_set_catch_exception_unhandled; | |
13724 | ops->check_status = check_status_catch_exception_unhandled; | |
13725 | ops->print_it = print_it_catch_exception_unhandled; | |
13726 | ops->print_one = print_one_catch_exception_unhandled; | |
13727 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13728 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13729 | ||
13730 | ops = &catch_assert_breakpoint_ops; | |
13731 | *ops = bkpt_breakpoint_ops; | |
13732 | ops->dtor = dtor_catch_assert; | |
13733 | ops->allocate_location = allocate_location_catch_assert; | |
13734 | ops->re_set = re_set_catch_assert; | |
13735 | ops->check_status = check_status_catch_assert; | |
13736 | ops->print_it = print_it_catch_assert; | |
13737 | ops->print_one = print_one_catch_assert; | |
13738 | ops->print_mention = print_mention_catch_assert; | |
13739 | ops->print_recreate = print_recreate_catch_assert; | |
13740 | } | |
13741 | ||
3d9434b5 JB |
13742 | /* This module's 'new_objfile' observer. */ |
13743 | ||
13744 | static void | |
13745 | ada_new_objfile_observer (struct objfile *objfile) | |
13746 | { | |
13747 | ada_clear_symbol_cache (); | |
13748 | } | |
13749 | ||
13750 | /* This module's 'free_objfile' observer. */ | |
13751 | ||
13752 | static void | |
13753 | ada_free_objfile_observer (struct objfile *objfile) | |
13754 | { | |
13755 | ada_clear_symbol_cache (); | |
13756 | } | |
13757 | ||
d2e4a39e | 13758 | void |
6c038f32 | 13759 | _initialize_ada_language (void) |
14f9c5c9 | 13760 | { |
6c038f32 PH |
13761 | add_language (&ada_language_defn); |
13762 | ||
2060206e PA |
13763 | initialize_ada_catchpoint_ops (); |
13764 | ||
5bf03f13 JB |
13765 | add_prefix_cmd ("ada", no_class, set_ada_command, |
13766 | _("Prefix command for changing Ada-specfic settings"), | |
13767 | &set_ada_list, "set ada ", 0, &setlist); | |
13768 | ||
13769 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
13770 | _("Generic command for showing Ada-specific settings."), | |
13771 | &show_ada_list, "show ada ", 0, &showlist); | |
13772 | ||
13773 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
13774 | &trust_pad_over_xvs, _("\ | |
13775 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
13776 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
13777 | _("\ | |
13778 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
13779 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13780 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13781 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13782 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13783 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13784 | this option to \"off\" unless necessary."), | |
13785 | NULL, NULL, &set_ada_list, &show_ada_list); | |
13786 | ||
9ac4176b PA |
13787 | add_catch_command ("exception", _("\ |
13788 | Catch Ada exceptions, when raised.\n\ | |
13789 | With an argument, catch only exceptions with the given name."), | |
13790 | catch_ada_exception_command, | |
13791 | NULL, | |
13792 | CATCH_PERMANENT, | |
13793 | CATCH_TEMPORARY); | |
13794 | add_catch_command ("assert", _("\ | |
13795 | Catch failed Ada assertions, when raised.\n\ | |
13796 | With an argument, catch only exceptions with the given name."), | |
13797 | catch_assert_command, | |
13798 | NULL, | |
13799 | CATCH_PERMANENT, | |
13800 | CATCH_TEMPORARY); | |
13801 | ||
6c038f32 | 13802 | varsize_limit = 65536; |
6c038f32 | 13803 | |
778865d3 JB |
13804 | add_info ("exceptions", info_exceptions_command, |
13805 | _("\ | |
13806 | List all Ada exception names.\n\ | |
13807 | If a regular expression is passed as an argument, only those matching\n\ | |
13808 | the regular expression are listed.")); | |
13809 | ||
c6044dd1 JB |
13810 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
13811 | _("Set Ada maintenance-related variables."), | |
13812 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
13813 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
13814 | ||
13815 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
13816 | _("Show Ada maintenance-related variables"), | |
13817 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
13818 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
13819 | ||
13820 | add_setshow_boolean_cmd | |
13821 | ("ignore-descriptive-types", class_maintenance, | |
13822 | &ada_ignore_descriptive_types_p, | |
13823 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
13824 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
13825 | _("\ | |
13826 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
13827 | DWARF attribute."), | |
13828 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
13829 | ||
6c038f32 PH |
13830 | obstack_init (&symbol_list_obstack); |
13831 | ||
13832 | decoded_names_store = htab_create_alloc | |
13833 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
13834 | NULL, xcalloc, xfree); | |
6b69afc4 | 13835 | |
3d9434b5 JB |
13836 | /* The ada-lang observers. */ |
13837 | observer_attach_new_objfile (ada_new_objfile_observer); | |
13838 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 13839 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
13840 | |
13841 | /* Setup various context-specific data. */ | |
e802dbe0 | 13842 | ada_inferior_data |
8e260fc0 | 13843 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
13844 | ada_pspace_data_handle |
13845 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 13846 | } |