]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* ada-lang.c (cast_to_fixed): Do not cast to builtin_type_double.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60#ifndef ADA_RETAIN_DOTS
61#define ADA_RETAIN_DOTS 0
62#endif
63
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
4c4b4cd2 72static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 73
14f9c5c9
AS
74static void modify_general_field (char *, LONGEST, int, int);
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
d2e4a39e 86static struct type *desc_data_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
4c4b4cd2 108static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 109
d2e4a39e 110static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 111 CORE_ADDR *);
14f9c5c9 112
d2e4a39e 113static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 114 CORE_ADDR *);
14f9c5c9 115
4c4b4cd2 116static void ada_add_block_symbols (struct obstack *,
76a01679 117 struct block *, const char *,
2570f2b7 118 domain_enum, struct objfile *, int);
14f9c5c9 119
4c4b4cd2 120static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 121
76a01679 122static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 123 struct block *);
14f9c5c9 124
4c4b4cd2
PH
125static int num_defns_collected (struct obstack *);
126
127static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 128
d2e4a39e 129static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
130 *, const char *, int,
131 domain_enum, int);
14f9c5c9 132
d2e4a39e 133static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 134
4c4b4cd2 135static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 136 struct type *);
14f9c5c9 137
d2e4a39e 138static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 139 struct symbol *, struct block *);
14f9c5c9 140
d2e4a39e 141static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 142
4c4b4cd2
PH
143static char *ada_op_name (enum exp_opcode);
144
145static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 146
d2e4a39e 147static int numeric_type_p (struct type *);
14f9c5c9 148
d2e4a39e 149static int integer_type_p (struct type *);
14f9c5c9 150
d2e4a39e 151static int scalar_type_p (struct type *);
14f9c5c9 152
d2e4a39e 153static int discrete_type_p (struct type *);
14f9c5c9 154
aeb5907d
JB
155static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
4c4b4cd2 163static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 164 int, int, int *);
4c4b4cd2 165
d2e4a39e 166static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 167 int *, enum noside);
14f9c5c9 168
d2e4a39e 169static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 170
d2e4a39e 171static int is_dynamic_field (struct type *, int);
14f9c5c9 172
10a2c479 173static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 174 const gdb_byte *,
4c4b4cd2
PH
175 CORE_ADDR, struct value *);
176
177static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 178
d2e4a39e 179static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 180 struct objfile *);
14f9c5c9 181
d2e4a39e 182static struct type *to_static_fixed_type (struct type *);
f192137b 183static struct type *static_unwrap_type (struct type *type);
14f9c5c9 184
d2e4a39e 185static struct value *unwrap_value (struct value *);
14f9c5c9 186
d2e4a39e 187static struct type *packed_array_type (struct type *, long *);
14f9c5c9 188
d2e4a39e 189static struct type *decode_packed_array_type (struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *decode_packed_array (struct value *);
14f9c5c9 192
d2e4a39e 193static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 194 struct value **);
14f9c5c9 195
52ce6436
PH
196static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
4c4b4cd2
PH
198static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
14f9c5c9 200
d2e4a39e 201static struct value *get_var_value (char *, char *);
14f9c5c9 202
d2e4a39e 203static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 204
d2e4a39e 205static int equiv_types (struct type *, struct type *);
14f9c5c9 206
d2e4a39e 207static int is_name_suffix (const char *);
14f9c5c9 208
5823c3ef
JB
209static int is_digits_suffix (const char *str);
210
d2e4a39e 211static int wild_match (const char *, int, const char *);
14f9c5c9 212
d2e4a39e 213static struct value *ada_coerce_ref (struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static LONGEST pos_atr (struct value *);
216
d2e4a39e 217static struct value *value_pos_atr (struct value *);
14f9c5c9 218
d2e4a39e 219static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 220
4c4b4cd2
PH
221static struct symbol *standard_lookup (const char *, const struct block *,
222 domain_enum);
14f9c5c9 223
4c4b4cd2
PH
224static struct value *ada_search_struct_field (char *, struct value *, int,
225 struct type *);
226
227static struct value *ada_value_primitive_field (struct value *, int, int,
228 struct type *);
229
76a01679 230static int find_struct_field (char *, struct type *, int,
52ce6436 231 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
232
233static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
234 struct value *);
235
236static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 237
4c4b4cd2
PH
238static int ada_resolve_function (struct ada_symbol_info *, int,
239 struct value **, int, const char *,
240 struct type *);
241
242static struct value *ada_coerce_to_simple_array (struct value *);
243
244static int ada_is_direct_array_type (struct type *);
245
72d5681a
PH
246static void ada_language_arch_info (struct gdbarch *,
247 struct language_arch_info *);
714e53ab
PH
248
249static void check_size (const struct type *);
52ce6436
PH
250
251static struct value *ada_index_struct_field (int, struct value *, int,
252 struct type *);
253
254static struct value *assign_aggregate (struct value *, struct value *,
255 struct expression *, int *, enum noside);
256
257static void aggregate_assign_from_choices (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *,
260 int, LONGEST, LONGEST);
261
262static void aggregate_assign_positional (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int *, int,
265 LONGEST, LONGEST);
266
267
268static void aggregate_assign_others (struct value *, struct value *,
269 struct expression *,
270 int *, LONGEST *, int, LONGEST, LONGEST);
271
272
273static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
274
275
276static struct value *ada_evaluate_subexp (struct type *, struct expression *,
277 int *, enum noside);
278
279static void ada_forward_operator_length (struct expression *, int, int *,
280 int *);
4c4b4cd2
PH
281\f
282
76a01679 283
4c4b4cd2 284/* Maximum-sized dynamic type. */
14f9c5c9
AS
285static unsigned int varsize_limit;
286
4c4b4cd2
PH
287/* FIXME: brobecker/2003-09-17: No longer a const because it is
288 returned by a function that does not return a const char *. */
289static char *ada_completer_word_break_characters =
290#ifdef VMS
291 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292#else
14f9c5c9 293 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 294#endif
14f9c5c9 295
4c4b4cd2 296/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 297static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 298 = "__gnat_ada_main_program_name";
14f9c5c9 299
4c4b4cd2
PH
300/* Limit on the number of warnings to raise per expression evaluation. */
301static int warning_limit = 2;
302
303/* Number of warning messages issued; reset to 0 by cleanups after
304 expression evaluation. */
305static int warnings_issued = 0;
306
307static const char *known_runtime_file_name_patterns[] = {
308 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
309};
310
311static const char *known_auxiliary_function_name_patterns[] = {
312 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
313};
314
315/* Space for allocating results of ada_lookup_symbol_list. */
316static struct obstack symbol_list_obstack;
317
318 /* Utilities */
319
41d27058
JB
320/* Given DECODED_NAME a string holding a symbol name in its
321 decoded form (ie using the Ada dotted notation), returns
322 its unqualified name. */
323
324static const char *
325ada_unqualified_name (const char *decoded_name)
326{
327 const char *result = strrchr (decoded_name, '.');
328
329 if (result != NULL)
330 result++; /* Skip the dot... */
331 else
332 result = decoded_name;
333
334 return result;
335}
336
337/* Return a string starting with '<', followed by STR, and '>'.
338 The result is good until the next call. */
339
340static char *
341add_angle_brackets (const char *str)
342{
343 static char *result = NULL;
344
345 xfree (result);
346 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347
348 sprintf (result, "<%s>", str);
349 return result;
350}
96d887e8 351
4c4b4cd2
PH
352static char *
353ada_get_gdb_completer_word_break_characters (void)
354{
355 return ada_completer_word_break_characters;
356}
357
e79af960
JB
358/* Print an array element index using the Ada syntax. */
359
360static void
361ada_print_array_index (struct value *index_value, struct ui_file *stream,
362 int format, enum val_prettyprint pretty)
363{
364 LA_VALUE_PRINT (index_value, stream, format, pretty);
365 fprintf_filtered (stream, " => ");
366}
367
4c4b4cd2
PH
368/* Read the string located at ADDR from the inferior and store the
369 result into BUF. */
370
371static void
14f9c5c9
AS
372extract_string (CORE_ADDR addr, char *buf)
373{
d2e4a39e 374 int char_index = 0;
14f9c5c9 375
4c4b4cd2
PH
376 /* Loop, reading one byte at a time, until we reach the '\000'
377 end-of-string marker. */
d2e4a39e
AS
378 do
379 {
380 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 381 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
382 char_index++;
383 }
384 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
385}
386
f27cf670 387/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 388 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 389 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 390
f27cf670
AS
391void *
392grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 393{
d2e4a39e
AS
394 if (*size < min_size)
395 {
396 *size *= 2;
397 if (*size < min_size)
4c4b4cd2 398 *size = min_size;
f27cf670 399 vect = xrealloc (vect, *size * element_size);
d2e4a39e 400 }
f27cf670 401 return vect;
14f9c5c9
AS
402}
403
404/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 405 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
406
407static int
ebf56fd3 408field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
409{
410 int len = strlen (target);
d2e4a39e 411 return
4c4b4cd2
PH
412 (strncmp (field_name, target, len) == 0
413 && (field_name[len] == '\0'
414 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
415 && strcmp (field_name + strlen (field_name) - 6,
416 "___XVN") != 0)));
14f9c5c9
AS
417}
418
419
4c4b4cd2
PH
420/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
421 FIELD_NAME, and return its index. This function also handles fields
422 whose name have ___ suffixes because the compiler sometimes alters
423 their name by adding such a suffix to represent fields with certain
424 constraints. If the field could not be found, return a negative
425 number if MAYBE_MISSING is set. Otherwise raise an error. */
426
427int
428ada_get_field_index (const struct type *type, const char *field_name,
429 int maybe_missing)
430{
431 int fieldno;
432 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
433 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
434 return fieldno;
435
436 if (!maybe_missing)
323e0a4a 437 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
438 field_name, TYPE_NAME (type));
439
440 return -1;
441}
442
443/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
444
445int
d2e4a39e 446ada_name_prefix_len (const char *name)
14f9c5c9
AS
447{
448 if (name == NULL)
449 return 0;
d2e4a39e 450 else
14f9c5c9 451 {
d2e4a39e 452 const char *p = strstr (name, "___");
14f9c5c9 453 if (p == NULL)
4c4b4cd2 454 return strlen (name);
14f9c5c9 455 else
4c4b4cd2 456 return p - name;
14f9c5c9
AS
457 }
458}
459
4c4b4cd2
PH
460/* Return non-zero if SUFFIX is a suffix of STR.
461 Return zero if STR is null. */
462
14f9c5c9 463static int
d2e4a39e 464is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
465{
466 int len1, len2;
467 if (str == NULL)
468 return 0;
469 len1 = strlen (str);
470 len2 = strlen (suffix);
4c4b4cd2 471 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
472}
473
474/* Create a value of type TYPE whose contents come from VALADDR, if it
4c4b4cd2
PH
475 is non-null, and whose memory address (in the inferior) is
476 ADDRESS. */
477
d2e4a39e 478struct value *
10a2c479 479value_from_contents_and_address (struct type *type,
fc1a4b47 480 const gdb_byte *valaddr,
4c4b4cd2 481 CORE_ADDR address)
14f9c5c9 482{
d2e4a39e
AS
483 struct value *v = allocate_value (type);
484 if (valaddr == NULL)
dfa52d88 485 set_value_lazy (v, 1);
14f9c5c9 486 else
990a07ab 487 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
14f9c5c9
AS
488 VALUE_ADDRESS (v) = address;
489 if (address != 0)
490 VALUE_LVAL (v) = lval_memory;
491 return v;
492}
493
4c4b4cd2
PH
494/* The contents of value VAL, treated as a value of type TYPE. The
495 result is an lval in memory if VAL is. */
14f9c5c9 496
d2e4a39e 497static struct value *
4c4b4cd2 498coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 499{
61ee279c 500 type = ada_check_typedef (type);
df407dfe 501 if (value_type (val) == type)
4c4b4cd2 502 return val;
d2e4a39e 503 else
14f9c5c9 504 {
4c4b4cd2
PH
505 struct value *result;
506
507 /* Make sure that the object size is not unreasonable before
508 trying to allocate some memory for it. */
714e53ab 509 check_size (type);
4c4b4cd2
PH
510
511 result = allocate_value (type);
512 VALUE_LVAL (result) = VALUE_LVAL (val);
9bbda503
AC
513 set_value_bitsize (result, value_bitsize (val));
514 set_value_bitpos (result, value_bitpos (val));
df407dfe 515 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
d69fe07e 516 if (value_lazy (val)
df407dfe 517 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 518 set_value_lazy (result, 1);
d2e4a39e 519 else
0fd88904 520 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 521 TYPE_LENGTH (type));
14f9c5c9
AS
522 return result;
523 }
524}
525
fc1a4b47
AC
526static const gdb_byte *
527cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
528{
529 if (valaddr == NULL)
530 return NULL;
531 else
532 return valaddr + offset;
533}
534
535static CORE_ADDR
ebf56fd3 536cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
537{
538 if (address == 0)
539 return 0;
d2e4a39e 540 else
14f9c5c9
AS
541 return address + offset;
542}
543
4c4b4cd2
PH
544/* Issue a warning (as for the definition of warning in utils.c, but
545 with exactly one argument rather than ...), unless the limit on the
546 number of warnings has passed during the evaluation of the current
547 expression. */
a2249542 548
77109804
AC
549/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
550 provided by "complaint". */
551static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552
14f9c5c9 553static void
a2249542 554lim_warning (const char *format, ...)
14f9c5c9 555{
a2249542
MK
556 va_list args;
557 va_start (args, format);
558
4c4b4cd2
PH
559 warnings_issued += 1;
560 if (warnings_issued <= warning_limit)
a2249542
MK
561 vwarning (format, args);
562
563 va_end (args);
4c4b4cd2
PH
564}
565
714e53ab
PH
566/* Issue an error if the size of an object of type T is unreasonable,
567 i.e. if it would be a bad idea to allocate a value of this type in
568 GDB. */
569
570static void
571check_size (const struct type *type)
572{
573 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 574 error (_("object size is larger than varsize-limit"));
714e53ab
PH
575}
576
577
c3e5cd34
PH
578/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
579 gdbtypes.h, but some of the necessary definitions in that file
580 seem to have gone missing. */
581
582/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 583static LONGEST
c3e5cd34 584max_of_size (int size)
4c4b4cd2 585{
76a01679
JB
586 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
587 return top_bit | (top_bit - 1);
4c4b4cd2
PH
588}
589
c3e5cd34 590/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 591static LONGEST
c3e5cd34 592min_of_size (int size)
4c4b4cd2 593{
c3e5cd34 594 return -max_of_size (size) - 1;
4c4b4cd2
PH
595}
596
c3e5cd34 597/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 598static ULONGEST
c3e5cd34 599umax_of_size (int size)
4c4b4cd2 600{
76a01679
JB
601 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
602 return top_bit | (top_bit - 1);
4c4b4cd2
PH
603}
604
c3e5cd34
PH
605/* Maximum value of integral type T, as a signed quantity. */
606static LONGEST
607max_of_type (struct type *t)
4c4b4cd2 608{
c3e5cd34
PH
609 if (TYPE_UNSIGNED (t))
610 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
611 else
612 return max_of_size (TYPE_LENGTH (t));
613}
614
615/* Minimum value of integral type T, as a signed quantity. */
616static LONGEST
617min_of_type (struct type *t)
618{
619 if (TYPE_UNSIGNED (t))
620 return 0;
621 else
622 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
623}
624
625/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 626static LONGEST
4c4b4cd2
PH
627discrete_type_high_bound (struct type *type)
628{
76a01679 629 switch (TYPE_CODE (type))
4c4b4cd2
PH
630 {
631 case TYPE_CODE_RANGE:
690cc4eb 632 return TYPE_HIGH_BOUND (type);
4c4b4cd2 633 case TYPE_CODE_ENUM:
690cc4eb
PH
634 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
635 case TYPE_CODE_BOOL:
636 return 1;
637 case TYPE_CODE_CHAR:
76a01679 638 case TYPE_CODE_INT:
690cc4eb 639 return max_of_type (type);
4c4b4cd2 640 default:
323e0a4a 641 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
642 }
643}
644
645/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 646static LONGEST
4c4b4cd2
PH
647discrete_type_low_bound (struct type *type)
648{
76a01679 649 switch (TYPE_CODE (type))
4c4b4cd2
PH
650 {
651 case TYPE_CODE_RANGE:
690cc4eb 652 return TYPE_LOW_BOUND (type);
4c4b4cd2 653 case TYPE_CODE_ENUM:
690cc4eb
PH
654 return TYPE_FIELD_BITPOS (type, 0);
655 case TYPE_CODE_BOOL:
656 return 0;
657 case TYPE_CODE_CHAR:
76a01679 658 case TYPE_CODE_INT:
690cc4eb 659 return min_of_type (type);
4c4b4cd2 660 default:
323e0a4a 661 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
662 }
663}
664
665/* The identity on non-range types. For range types, the underlying
76a01679 666 non-range scalar type. */
4c4b4cd2
PH
667
668static struct type *
669base_type (struct type *type)
670{
671 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
672 {
76a01679
JB
673 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
674 return type;
4c4b4cd2
PH
675 type = TYPE_TARGET_TYPE (type);
676 }
677 return type;
14f9c5c9 678}
4c4b4cd2 679\f
76a01679 680
4c4b4cd2 681 /* Language Selection */
14f9c5c9
AS
682
683/* If the main program is in Ada, return language_ada, otherwise return LANG
684 (the main program is in Ada iif the adainit symbol is found).
685
4c4b4cd2 686 MAIN_PST is not used. */
d2e4a39e 687
14f9c5c9 688enum language
d2e4a39e 689ada_update_initial_language (enum language lang,
4c4b4cd2 690 struct partial_symtab *main_pst)
14f9c5c9 691{
d2e4a39e 692 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
693 (struct objfile *) NULL) != NULL)
694 return language_ada;
14f9c5c9
AS
695
696 return lang;
697}
96d887e8
PH
698
699/* If the main procedure is written in Ada, then return its name.
700 The result is good until the next call. Return NULL if the main
701 procedure doesn't appear to be in Ada. */
702
703char *
704ada_main_name (void)
705{
706 struct minimal_symbol *msym;
707 CORE_ADDR main_program_name_addr;
708 static char main_program_name[1024];
6c038f32 709
96d887e8
PH
710 /* For Ada, the name of the main procedure is stored in a specific
711 string constant, generated by the binder. Look for that symbol,
712 extract its address, and then read that string. If we didn't find
713 that string, then most probably the main procedure is not written
714 in Ada. */
715 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
716
717 if (msym != NULL)
718 {
719 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
720 if (main_program_name_addr == 0)
323e0a4a 721 error (_("Invalid address for Ada main program name."));
96d887e8
PH
722
723 extract_string (main_program_name_addr, main_program_name);
724 return main_program_name;
725 }
726
727 /* The main procedure doesn't seem to be in Ada. */
728 return NULL;
729}
14f9c5c9 730\f
4c4b4cd2 731 /* Symbols */
d2e4a39e 732
4c4b4cd2
PH
733/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
734 of NULLs. */
14f9c5c9 735
d2e4a39e
AS
736const struct ada_opname_map ada_opname_table[] = {
737 {"Oadd", "\"+\"", BINOP_ADD},
738 {"Osubtract", "\"-\"", BINOP_SUB},
739 {"Omultiply", "\"*\"", BINOP_MUL},
740 {"Odivide", "\"/\"", BINOP_DIV},
741 {"Omod", "\"mod\"", BINOP_MOD},
742 {"Orem", "\"rem\"", BINOP_REM},
743 {"Oexpon", "\"**\"", BINOP_EXP},
744 {"Olt", "\"<\"", BINOP_LESS},
745 {"Ole", "\"<=\"", BINOP_LEQ},
746 {"Ogt", "\">\"", BINOP_GTR},
747 {"Oge", "\">=\"", BINOP_GEQ},
748 {"Oeq", "\"=\"", BINOP_EQUAL},
749 {"One", "\"/=\"", BINOP_NOTEQUAL},
750 {"Oand", "\"and\"", BINOP_BITWISE_AND},
751 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
752 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
753 {"Oconcat", "\"&\"", BINOP_CONCAT},
754 {"Oabs", "\"abs\"", UNOP_ABS},
755 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
756 {"Oadd", "\"+\"", UNOP_PLUS},
757 {"Osubtract", "\"-\"", UNOP_NEG},
758 {NULL, NULL}
14f9c5c9
AS
759};
760
4c4b4cd2
PH
761/* Return non-zero if STR should be suppressed in info listings. */
762
14f9c5c9 763static int
d2e4a39e 764is_suppressed_name (const char *str)
14f9c5c9 765{
4c4b4cd2 766 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
767 str += 5;
768 if (str[0] == '_' || str[0] == '\000')
769 return 1;
770 else
771 {
d2e4a39e
AS
772 const char *p;
773 const char *suffix = strstr (str, "___");
14f9c5c9 774 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 775 return 1;
14f9c5c9 776 if (suffix == NULL)
4c4b4cd2 777 suffix = str + strlen (str);
d2e4a39e 778 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
779 if (isupper (*p))
780 {
781 int i;
782 if (p[0] == 'X' && p[-1] != '_')
783 goto OK;
784 if (*p != 'O')
785 return 1;
786 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
787 if (strncmp (ada_opname_table[i].encoded, p,
788 strlen (ada_opname_table[i].encoded)) == 0)
789 goto OK;
790 return 1;
791 OK:;
792 }
14f9c5c9
AS
793 return 0;
794 }
795}
796
4c4b4cd2
PH
797/* The "encoded" form of DECODED, according to GNAT conventions.
798 The result is valid until the next call to ada_encode. */
799
14f9c5c9 800char *
4c4b4cd2 801ada_encode (const char *decoded)
14f9c5c9 802{
4c4b4cd2
PH
803 static char *encoding_buffer = NULL;
804 static size_t encoding_buffer_size = 0;
d2e4a39e 805 const char *p;
14f9c5c9 806 int k;
d2e4a39e 807
4c4b4cd2 808 if (decoded == NULL)
14f9c5c9
AS
809 return NULL;
810
4c4b4cd2
PH
811 GROW_VECT (encoding_buffer, encoding_buffer_size,
812 2 * strlen (decoded) + 10);
14f9c5c9
AS
813
814 k = 0;
4c4b4cd2 815 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 816 {
4c4b4cd2
PH
817 if (!ADA_RETAIN_DOTS && *p == '.')
818 {
819 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
820 k += 2;
821 }
14f9c5c9 822 else if (*p == '"')
4c4b4cd2
PH
823 {
824 const struct ada_opname_map *mapping;
825
826 for (mapping = ada_opname_table;
1265e4aa
JB
827 mapping->encoded != NULL
828 && strncmp (mapping->decoded, p,
829 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
830 ;
831 if (mapping->encoded == NULL)
323e0a4a 832 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
833 strcpy (encoding_buffer + k, mapping->encoded);
834 k += strlen (mapping->encoded);
835 break;
836 }
d2e4a39e 837 else
4c4b4cd2
PH
838 {
839 encoding_buffer[k] = *p;
840 k += 1;
841 }
14f9c5c9
AS
842 }
843
4c4b4cd2
PH
844 encoding_buffer[k] = '\0';
845 return encoding_buffer;
14f9c5c9
AS
846}
847
848/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
849 quotes, unfolded, but with the quotes stripped away. Result good
850 to next call. */
851
d2e4a39e
AS
852char *
853ada_fold_name (const char *name)
14f9c5c9 854{
d2e4a39e 855 static char *fold_buffer = NULL;
14f9c5c9
AS
856 static size_t fold_buffer_size = 0;
857
858 int len = strlen (name);
d2e4a39e 859 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
860
861 if (name[0] == '\'')
862 {
d2e4a39e
AS
863 strncpy (fold_buffer, name + 1, len - 2);
864 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
865 }
866 else
867 {
868 int i;
869 for (i = 0; i <= len; i += 1)
4c4b4cd2 870 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
871 }
872
873 return fold_buffer;
874}
875
529cad9c
PH
876/* Return nonzero if C is either a digit or a lowercase alphabet character. */
877
878static int
879is_lower_alphanum (const char c)
880{
881 return (isdigit (c) || (isalpha (c) && islower (c)));
882}
883
29480c32
JB
884/* Remove either of these suffixes:
885 . .{DIGIT}+
886 . ${DIGIT}+
887 . ___{DIGIT}+
888 . __{DIGIT}+.
889 These are suffixes introduced by the compiler for entities such as
890 nested subprogram for instance, in order to avoid name clashes.
891 They do not serve any purpose for the debugger. */
892
893static void
894ada_remove_trailing_digits (const char *encoded, int *len)
895{
896 if (*len > 1 && isdigit (encoded[*len - 1]))
897 {
898 int i = *len - 2;
899 while (i > 0 && isdigit (encoded[i]))
900 i--;
901 if (i >= 0 && encoded[i] == '.')
902 *len = i;
903 else if (i >= 0 && encoded[i] == '$')
904 *len = i;
905 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
906 *len = i - 2;
907 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
908 *len = i - 1;
909 }
910}
911
912/* Remove the suffix introduced by the compiler for protected object
913 subprograms. */
914
915static void
916ada_remove_po_subprogram_suffix (const char *encoded, int *len)
917{
918 /* Remove trailing N. */
919
920 /* Protected entry subprograms are broken into two
921 separate subprograms: The first one is unprotected, and has
922 a 'N' suffix; the second is the protected version, and has
923 the 'P' suffix. The second calls the first one after handling
924 the protection. Since the P subprograms are internally generated,
925 we leave these names undecoded, giving the user a clue that this
926 entity is internal. */
927
928 if (*len > 1
929 && encoded[*len - 1] == 'N'
930 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
931 *len = *len - 1;
932}
933
934/* If ENCODED follows the GNAT entity encoding conventions, then return
935 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
936 replaced by ENCODED.
14f9c5c9 937
4c4b4cd2 938 The resulting string is valid until the next call of ada_decode.
29480c32 939 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
940 is returned. */
941
942const char *
943ada_decode (const char *encoded)
14f9c5c9
AS
944{
945 int i, j;
946 int len0;
d2e4a39e 947 const char *p;
4c4b4cd2 948 char *decoded;
14f9c5c9 949 int at_start_name;
4c4b4cd2
PH
950 static char *decoding_buffer = NULL;
951 static size_t decoding_buffer_size = 0;
d2e4a39e 952
29480c32
JB
953 /* The name of the Ada main procedure starts with "_ada_".
954 This prefix is not part of the decoded name, so skip this part
955 if we see this prefix. */
4c4b4cd2
PH
956 if (strncmp (encoded, "_ada_", 5) == 0)
957 encoded += 5;
14f9c5c9 958
29480c32
JB
959 /* If the name starts with '_', then it is not a properly encoded
960 name, so do not attempt to decode it. Similarly, if the name
961 starts with '<', the name should not be decoded. */
4c4b4cd2 962 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
963 goto Suppress;
964
4c4b4cd2 965 len0 = strlen (encoded);
4c4b4cd2 966
29480c32
JB
967 ada_remove_trailing_digits (encoded, &len0);
968 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 969
4c4b4cd2
PH
970 /* Remove the ___X.* suffix if present. Do not forget to verify that
971 the suffix is located before the current "end" of ENCODED. We want
972 to avoid re-matching parts of ENCODED that have previously been
973 marked as discarded (by decrementing LEN0). */
974 p = strstr (encoded, "___");
975 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
976 {
977 if (p[3] == 'X')
4c4b4cd2 978 len0 = p - encoded;
14f9c5c9 979 else
4c4b4cd2 980 goto Suppress;
14f9c5c9 981 }
4c4b4cd2 982
29480c32
JB
983 /* Remove any trailing TKB suffix. It tells us that this symbol
984 is for the body of a task, but that information does not actually
985 appear in the decoded name. */
986
4c4b4cd2 987 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 988 len0 -= 3;
76a01679 989
29480c32
JB
990 /* Remove trailing "B" suffixes. */
991 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
992
4c4b4cd2 993 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
994 len0 -= 1;
995
4c4b4cd2 996 /* Make decoded big enough for possible expansion by operator name. */
29480c32 997
4c4b4cd2
PH
998 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
999 decoded = decoding_buffer;
14f9c5c9 1000
29480c32
JB
1001 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1002
4c4b4cd2 1003 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1004 {
4c4b4cd2
PH
1005 i = len0 - 2;
1006 while ((i >= 0 && isdigit (encoded[i]))
1007 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1008 i -= 1;
1009 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1010 len0 = i - 1;
1011 else if (encoded[i] == '$')
1012 len0 = i;
d2e4a39e 1013 }
14f9c5c9 1014
29480c32
JB
1015 /* The first few characters that are not alphabetic are not part
1016 of any encoding we use, so we can copy them over verbatim. */
1017
4c4b4cd2
PH
1018 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1019 decoded[j] = encoded[i];
14f9c5c9
AS
1020
1021 at_start_name = 1;
1022 while (i < len0)
1023 {
29480c32 1024 /* Is this a symbol function? */
4c4b4cd2
PH
1025 if (at_start_name && encoded[i] == 'O')
1026 {
1027 int k;
1028 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1029 {
1030 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1031 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1032 op_len - 1) == 0)
1033 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1034 {
1035 strcpy (decoded + j, ada_opname_table[k].decoded);
1036 at_start_name = 0;
1037 i += op_len;
1038 j += strlen (ada_opname_table[k].decoded);
1039 break;
1040 }
1041 }
1042 if (ada_opname_table[k].encoded != NULL)
1043 continue;
1044 }
14f9c5c9
AS
1045 at_start_name = 0;
1046
529cad9c
PH
1047 /* Replace "TK__" with "__", which will eventually be translated
1048 into "." (just below). */
1049
4c4b4cd2
PH
1050 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1051 i += 2;
529cad9c 1052
29480c32
JB
1053 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1054 be translated into "." (just below). These are internal names
1055 generated for anonymous blocks inside which our symbol is nested. */
1056
1057 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1058 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1059 && isdigit (encoded [i+4]))
1060 {
1061 int k = i + 5;
1062
1063 while (k < len0 && isdigit (encoded[k]))
1064 k++; /* Skip any extra digit. */
1065
1066 /* Double-check that the "__B_{DIGITS}+" sequence we found
1067 is indeed followed by "__". */
1068 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1069 i = k;
1070 }
1071
529cad9c
PH
1072 /* Remove _E{DIGITS}+[sb] */
1073
1074 /* Just as for protected object subprograms, there are 2 categories
1075 of subprograms created by the compiler for each entry. The first
1076 one implements the actual entry code, and has a suffix following
1077 the convention above; the second one implements the barrier and
1078 uses the same convention as above, except that the 'E' is replaced
1079 by a 'B'.
1080
1081 Just as above, we do not decode the name of barrier functions
1082 to give the user a clue that the code he is debugging has been
1083 internally generated. */
1084
1085 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1086 && isdigit (encoded[i+2]))
1087 {
1088 int k = i + 3;
1089
1090 while (k < len0 && isdigit (encoded[k]))
1091 k++;
1092
1093 if (k < len0
1094 && (encoded[k] == 'b' || encoded[k] == 's'))
1095 {
1096 k++;
1097 /* Just as an extra precaution, make sure that if this
1098 suffix is followed by anything else, it is a '_'.
1099 Otherwise, we matched this sequence by accident. */
1100 if (k == len0
1101 || (k < len0 && encoded[k] == '_'))
1102 i = k;
1103 }
1104 }
1105
1106 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1107 the GNAT front-end in protected object subprograms. */
1108
1109 if (i < len0 + 3
1110 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1111 {
1112 /* Backtrack a bit up until we reach either the begining of
1113 the encoded name, or "__". Make sure that we only find
1114 digits or lowercase characters. */
1115 const char *ptr = encoded + i - 1;
1116
1117 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1118 ptr--;
1119 if (ptr < encoded
1120 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1121 i++;
1122 }
1123
4c4b4cd2
PH
1124 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1125 {
29480c32
JB
1126 /* This is a X[bn]* sequence not separated from the previous
1127 part of the name with a non-alpha-numeric character (in other
1128 words, immediately following an alpha-numeric character), then
1129 verify that it is placed at the end of the encoded name. If
1130 not, then the encoding is not valid and we should abort the
1131 decoding. Otherwise, just skip it, it is used in body-nested
1132 package names. */
4c4b4cd2
PH
1133 do
1134 i += 1;
1135 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1136 if (i < len0)
1137 goto Suppress;
1138 }
1139 else if (!ADA_RETAIN_DOTS
1140 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1141 {
29480c32 1142 /* Replace '__' by '.'. */
4c4b4cd2
PH
1143 decoded[j] = '.';
1144 at_start_name = 1;
1145 i += 2;
1146 j += 1;
1147 }
14f9c5c9 1148 else
4c4b4cd2 1149 {
29480c32
JB
1150 /* It's a character part of the decoded name, so just copy it
1151 over. */
4c4b4cd2
PH
1152 decoded[j] = encoded[i];
1153 i += 1;
1154 j += 1;
1155 }
14f9c5c9 1156 }
4c4b4cd2 1157 decoded[j] = '\000';
14f9c5c9 1158
29480c32
JB
1159 /* Decoded names should never contain any uppercase character.
1160 Double-check this, and abort the decoding if we find one. */
1161
4c4b4cd2
PH
1162 for (i = 0; decoded[i] != '\0'; i += 1)
1163 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1164 goto Suppress;
1165
4c4b4cd2
PH
1166 if (strcmp (decoded, encoded) == 0)
1167 return encoded;
1168 else
1169 return decoded;
14f9c5c9
AS
1170
1171Suppress:
4c4b4cd2
PH
1172 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1173 decoded = decoding_buffer;
1174 if (encoded[0] == '<')
1175 strcpy (decoded, encoded);
14f9c5c9 1176 else
4c4b4cd2
PH
1177 sprintf (decoded, "<%s>", encoded);
1178 return decoded;
1179
1180}
1181
1182/* Table for keeping permanent unique copies of decoded names. Once
1183 allocated, names in this table are never released. While this is a
1184 storage leak, it should not be significant unless there are massive
1185 changes in the set of decoded names in successive versions of a
1186 symbol table loaded during a single session. */
1187static struct htab *decoded_names_store;
1188
1189/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1190 in the language-specific part of GSYMBOL, if it has not been
1191 previously computed. Tries to save the decoded name in the same
1192 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1193 in any case, the decoded symbol has a lifetime at least that of
1194 GSYMBOL).
1195 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1196 const, but nevertheless modified to a semantically equivalent form
1197 when a decoded name is cached in it.
76a01679 1198*/
4c4b4cd2 1199
76a01679
JB
1200char *
1201ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1202{
76a01679 1203 char **resultp =
4c4b4cd2
PH
1204 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1205 if (*resultp == NULL)
1206 {
1207 const char *decoded = ada_decode (gsymbol->name);
714835d5 1208 if (gsymbol->obj_section != NULL)
76a01679 1209 {
714835d5
UW
1210 struct objfile *objf = gsymbol->obj_section->objfile;
1211 *resultp = obsavestring (decoded, strlen (decoded),
1212 &objf->objfile_obstack);
76a01679 1213 }
4c4b4cd2 1214 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1215 case, we put the result on the heap. Since we only decode
1216 when needed, we hope this usually does not cause a
1217 significant memory leak (FIXME). */
4c4b4cd2 1218 if (*resultp == NULL)
76a01679
JB
1219 {
1220 char **slot = (char **) htab_find_slot (decoded_names_store,
1221 decoded, INSERT);
1222 if (*slot == NULL)
1223 *slot = xstrdup (decoded);
1224 *resultp = *slot;
1225 }
4c4b4cd2 1226 }
14f9c5c9 1227
4c4b4cd2
PH
1228 return *resultp;
1229}
76a01679
JB
1230
1231char *
1232ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1233{
1234 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1235}
1236
1237/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1238 suffixes that encode debugging information or leading _ada_ on
1239 SYM_NAME (see is_name_suffix commentary for the debugging
1240 information that is ignored). If WILD, then NAME need only match a
1241 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1242 either argument is NULL. */
14f9c5c9
AS
1243
1244int
d2e4a39e 1245ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1246{
1247 if (sym_name == NULL || name == NULL)
1248 return 0;
1249 else if (wild)
1250 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1251 else
1252 {
1253 int len_name = strlen (name);
4c4b4cd2
PH
1254 return (strncmp (sym_name, name, len_name) == 0
1255 && is_name_suffix (sym_name + len_name))
1256 || (strncmp (sym_name, "_ada_", 5) == 0
1257 && strncmp (sym_name + 5, name, len_name) == 0
1258 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1259 }
14f9c5c9
AS
1260}
1261
4c4b4cd2
PH
1262/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1263 suppressed in info listings. */
14f9c5c9
AS
1264
1265int
ebf56fd3 1266ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1267{
176620f1 1268 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1269 return 1;
d2e4a39e 1270 else
4c4b4cd2 1271 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1272}
14f9c5c9 1273\f
d2e4a39e 1274
4c4b4cd2 1275 /* Arrays */
14f9c5c9 1276
4c4b4cd2 1277/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1278
d2e4a39e
AS
1279static char *bound_name[] = {
1280 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1281 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1282};
1283
1284/* Maximum number of array dimensions we are prepared to handle. */
1285
4c4b4cd2 1286#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1287
4c4b4cd2 1288/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1289
1290static void
ebf56fd3 1291modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1292{
4c4b4cd2 1293 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1294}
1295
1296
4c4b4cd2
PH
1297/* The desc_* routines return primitive portions of array descriptors
1298 (fat pointers). */
14f9c5c9
AS
1299
1300/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1301 level of indirection, if needed. */
1302
d2e4a39e
AS
1303static struct type *
1304desc_base_type (struct type *type)
14f9c5c9
AS
1305{
1306 if (type == NULL)
1307 return NULL;
61ee279c 1308 type = ada_check_typedef (type);
1265e4aa
JB
1309 if (type != NULL
1310 && (TYPE_CODE (type) == TYPE_CODE_PTR
1311 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1312 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1313 else
1314 return type;
1315}
1316
4c4b4cd2
PH
1317/* True iff TYPE indicates a "thin" array pointer type. */
1318
14f9c5c9 1319static int
d2e4a39e 1320is_thin_pntr (struct type *type)
14f9c5c9 1321{
d2e4a39e 1322 return
14f9c5c9
AS
1323 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1324 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1325}
1326
4c4b4cd2
PH
1327/* The descriptor type for thin pointer type TYPE. */
1328
d2e4a39e
AS
1329static struct type *
1330thin_descriptor_type (struct type *type)
14f9c5c9 1331{
d2e4a39e 1332 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1333 if (base_type == NULL)
1334 return NULL;
1335 if (is_suffix (ada_type_name (base_type), "___XVE"))
1336 return base_type;
d2e4a39e 1337 else
14f9c5c9 1338 {
d2e4a39e 1339 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1340 if (alt_type == NULL)
4c4b4cd2 1341 return base_type;
14f9c5c9 1342 else
4c4b4cd2 1343 return alt_type;
14f9c5c9
AS
1344 }
1345}
1346
4c4b4cd2
PH
1347/* A pointer to the array data for thin-pointer value VAL. */
1348
d2e4a39e
AS
1349static struct value *
1350thin_data_pntr (struct value *val)
14f9c5c9 1351{
df407dfe 1352 struct type *type = value_type (val);
14f9c5c9 1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1354 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1355 value_copy (val));
d2e4a39e 1356 else
14f9c5c9 1357 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1358 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1359}
1360
4c4b4cd2
PH
1361/* True iff TYPE indicates a "thick" array pointer type. */
1362
14f9c5c9 1363static int
d2e4a39e 1364is_thick_pntr (struct type *type)
14f9c5c9
AS
1365{
1366 type = desc_base_type (type);
1367 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1368 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1369}
1370
4c4b4cd2
PH
1371/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1373
d2e4a39e
AS
1374static struct type *
1375desc_bounds_type (struct type *type)
14f9c5c9 1376{
d2e4a39e 1377 struct type *r;
14f9c5c9
AS
1378
1379 type = desc_base_type (type);
1380
1381 if (type == NULL)
1382 return NULL;
1383 else if (is_thin_pntr (type))
1384 {
1385 type = thin_descriptor_type (type);
1386 if (type == NULL)
4c4b4cd2 1387 return NULL;
14f9c5c9
AS
1388 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1389 if (r != NULL)
61ee279c 1390 return ada_check_typedef (r);
14f9c5c9
AS
1391 }
1392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1393 {
1394 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1395 if (r != NULL)
61ee279c 1396 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1397 }
1398 return NULL;
1399}
1400
1401/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1402 one, a pointer to its bounds data. Otherwise NULL. */
1403
d2e4a39e
AS
1404static struct value *
1405desc_bounds (struct value *arr)
14f9c5c9 1406{
df407dfe 1407 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1408 if (is_thin_pntr (type))
14f9c5c9 1409 {
d2e4a39e 1410 struct type *bounds_type =
4c4b4cd2 1411 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1412 LONGEST addr;
1413
4cdfadb1 1414 if (bounds_type == NULL)
323e0a4a 1415 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1416
1417 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1418 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1419 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1421 addr = value_as_long (arr);
d2e4a39e 1422 else
df407dfe 1423 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1424
d2e4a39e 1425 return
4c4b4cd2
PH
1426 value_from_longest (lookup_pointer_type (bounds_type),
1427 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1428 }
1429
1430 else if (is_thick_pntr (type))
d2e4a39e 1431 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1432 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1433 else
1434 return NULL;
1435}
1436
4c4b4cd2
PH
1437/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1438 position of the field containing the address of the bounds data. */
1439
14f9c5c9 1440static int
d2e4a39e 1441fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1442{
1443 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1444}
1445
1446/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1447 size of the field containing the address of the bounds data. */
1448
14f9c5c9 1449static int
d2e4a39e 1450fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1451{
1452 type = desc_base_type (type);
1453
d2e4a39e 1454 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1455 return TYPE_FIELD_BITSIZE (type, 1);
1456 else
61ee279c 1457 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1458}
1459
4c4b4cd2 1460/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1461 pointer to one, the type of its array data (a
4c4b4cd2
PH
1462 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1463 ada_type_of_array to get an array type with bounds data. */
1464
d2e4a39e
AS
1465static struct type *
1466desc_data_type (struct type *type)
14f9c5c9
AS
1467{
1468 type = desc_base_type (type);
1469
4c4b4cd2 1470 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1471 if (is_thin_pntr (type))
d2e4a39e
AS
1472 return lookup_pointer_type
1473 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1474 else if (is_thick_pntr (type))
1475 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1476 else
1477 return NULL;
1478}
1479
1480/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1481 its array data. */
4c4b4cd2 1482
d2e4a39e
AS
1483static struct value *
1484desc_data (struct value *arr)
14f9c5c9 1485{
df407dfe 1486 struct type *type = value_type (arr);
14f9c5c9
AS
1487 if (is_thin_pntr (type))
1488 return thin_data_pntr (arr);
1489 else if (is_thick_pntr (type))
d2e4a39e 1490 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1491 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1492 else
1493 return NULL;
1494}
1495
1496
1497/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1498 position of the field containing the address of the data. */
1499
14f9c5c9 1500static int
d2e4a39e 1501fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1502{
1503 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1504}
1505
1506/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1507 size of the field containing the address of the data. */
1508
14f9c5c9 1509static int
d2e4a39e 1510fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513
1514 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1515 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1516 else
14f9c5c9
AS
1517 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1518}
1519
4c4b4cd2 1520/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1521 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1522 bound, if WHICH is 1. The first bound is I=1. */
1523
d2e4a39e
AS
1524static struct value *
1525desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1526{
d2e4a39e 1527 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1528 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1529}
1530
1531/* If BOUNDS is an array-bounds structure type, return the bit position
1532 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1533 bound, if WHICH is 1. The first bound is I=1. */
1534
14f9c5c9 1535static int
d2e4a39e 1536desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1537{
d2e4a39e 1538 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1539}
1540
1541/* If BOUNDS is an array-bounds structure type, return the bit field size
1542 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1543 bound, if WHICH is 1. The first bound is I=1. */
1544
76a01679 1545static int
d2e4a39e 1546desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1547{
1548 type = desc_base_type (type);
1549
d2e4a39e
AS
1550 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1551 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1552 else
1553 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1554}
1555
1556/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1557 Ith bound (numbering from 1). Otherwise, NULL. */
1558
d2e4a39e
AS
1559static struct type *
1560desc_index_type (struct type *type, int i)
14f9c5c9
AS
1561{
1562 type = desc_base_type (type);
1563
1564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1565 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1566 else
14f9c5c9
AS
1567 return NULL;
1568}
1569
4c4b4cd2
PH
1570/* The number of index positions in the array-bounds type TYPE.
1571 Return 0 if TYPE is NULL. */
1572
14f9c5c9 1573static int
d2e4a39e 1574desc_arity (struct type *type)
14f9c5c9
AS
1575{
1576 type = desc_base_type (type);
1577
1578 if (type != NULL)
1579 return TYPE_NFIELDS (type) / 2;
1580 return 0;
1581}
1582
4c4b4cd2
PH
1583/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1584 an array descriptor type (representing an unconstrained array
1585 type). */
1586
76a01679
JB
1587static int
1588ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1589{
1590 if (type == NULL)
1591 return 0;
61ee279c 1592 type = ada_check_typedef (type);
4c4b4cd2 1593 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1594 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1595}
1596
52ce6436
PH
1597/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1598 * to one. */
1599
1600int
1601ada_is_array_type (struct type *type)
1602{
1603 while (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 type = TYPE_TARGET_TYPE (type);
1607 return ada_is_direct_array_type (type);
1608}
1609
4c4b4cd2 1610/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1611
14f9c5c9 1612int
4c4b4cd2 1613ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1614{
1615 if (type == NULL)
1616 return 0;
61ee279c 1617 type = ada_check_typedef (type);
14f9c5c9 1618 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1619 || (TYPE_CODE (type) == TYPE_CODE_PTR
1620 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1621}
1622
4c4b4cd2
PH
1623/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1624
14f9c5c9 1625int
4c4b4cd2 1626ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1629
1630 if (type == NULL)
1631 return 0;
61ee279c 1632 type = ada_check_typedef (type);
d2e4a39e 1633 return
14f9c5c9
AS
1634 data_type != NULL
1635 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1636 && TYPE_TARGET_TYPE (data_type) != NULL
1637 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1638 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1639 && desc_arity (desc_bounds_type (type)) > 0;
1640}
1641
1642/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1643 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1644 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1645 is still needed. */
1646
14f9c5c9 1647int
ebf56fd3 1648ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1649{
d2e4a39e 1650 return
14f9c5c9
AS
1651 type != NULL
1652 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1653 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1654 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1655 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1656}
1657
1658
4c4b4cd2 1659/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1660 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1661 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1662 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1663 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1664 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1665 a descriptor. */
d2e4a39e
AS
1666struct type *
1667ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1668{
df407dfe
AC
1669 if (ada_is_packed_array_type (value_type (arr)))
1670 return decode_packed_array_type (value_type (arr));
14f9c5c9 1671
df407dfe
AC
1672 if (!ada_is_array_descriptor_type (value_type (arr)))
1673 return value_type (arr);
d2e4a39e
AS
1674
1675 if (!bounds)
1676 return
df407dfe 1677 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1678 else
1679 {
d2e4a39e 1680 struct type *elt_type;
14f9c5c9 1681 int arity;
d2e4a39e 1682 struct value *descriptor;
df407dfe 1683 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1684
df407dfe
AC
1685 elt_type = ada_array_element_type (value_type (arr), -1);
1686 arity = ada_array_arity (value_type (arr));
14f9c5c9 1687
d2e4a39e 1688 if (elt_type == NULL || arity == 0)
df407dfe 1689 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1690
1691 descriptor = desc_bounds (arr);
d2e4a39e 1692 if (value_as_long (descriptor) == 0)
4c4b4cd2 1693 return NULL;
d2e4a39e 1694 while (arity > 0)
4c4b4cd2
PH
1695 {
1696 struct type *range_type = alloc_type (objf);
1697 struct type *array_type = alloc_type (objf);
1698 struct value *low = desc_one_bound (descriptor, arity, 0);
1699 struct value *high = desc_one_bound (descriptor, arity, 1);
1700 arity -= 1;
1701
df407dfe 1702 create_range_type (range_type, value_type (low),
529cad9c
PH
1703 longest_to_int (value_as_long (low)),
1704 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1705 elt_type = create_array_type (array_type, elt_type, range_type);
1706 }
14f9c5c9
AS
1707
1708 return lookup_pointer_type (elt_type);
1709 }
1710}
1711
1712/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1713 Otherwise, returns either a standard GDB array with bounds set
1714 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1715 GDB array. Returns NULL if ARR is a null fat pointer. */
1716
d2e4a39e
AS
1717struct value *
1718ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1719{
df407dfe 1720 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1721 {
d2e4a39e 1722 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1723 if (arrType == NULL)
4c4b4cd2 1724 return NULL;
14f9c5c9
AS
1725 return value_cast (arrType, value_copy (desc_data (arr)));
1726 }
df407dfe 1727 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1728 return decode_packed_array (arr);
1729 else
1730 return arr;
1731}
1732
1733/* If ARR does not represent an array, returns ARR unchanged.
1734 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1735 be ARR itself if it already is in the proper form). */
1736
1737static struct value *
d2e4a39e 1738ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1739{
df407dfe 1740 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1741 {
d2e4a39e 1742 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1743 if (arrVal == NULL)
323e0a4a 1744 error (_("Bounds unavailable for null array pointer."));
529cad9c 1745 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1746 return value_ind (arrVal);
1747 }
df407dfe 1748 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1749 return decode_packed_array (arr);
d2e4a39e 1750 else
14f9c5c9
AS
1751 return arr;
1752}
1753
1754/* If TYPE represents a GNAT array type, return it translated to an
1755 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1756 packing). For other types, is the identity. */
1757
d2e4a39e
AS
1758struct type *
1759ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1760{
d2e4a39e
AS
1761 struct value *mark = value_mark ();
1762 struct value *dummy = value_from_longest (builtin_type_long, 0);
1763 struct type *result;
04624583 1764 deprecated_set_value_type (dummy, type);
14f9c5c9 1765 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1766 value_free_to_mark (mark);
14f9c5c9
AS
1767 return result;
1768}
1769
4c4b4cd2
PH
1770/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1771
14f9c5c9 1772int
d2e4a39e 1773ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1774{
1775 if (type == NULL)
1776 return 0;
4c4b4cd2 1777 type = desc_base_type (type);
61ee279c 1778 type = ada_check_typedef (type);
d2e4a39e 1779 return
14f9c5c9
AS
1780 ada_type_name (type) != NULL
1781 && strstr (ada_type_name (type), "___XP") != NULL;
1782}
1783
1784/* Given that TYPE is a standard GDB array type with all bounds filled
1785 in, and that the element size of its ultimate scalar constituents
1786 (that is, either its elements, or, if it is an array of arrays, its
1787 elements' elements, etc.) is *ELT_BITS, return an identical type,
1788 but with the bit sizes of its elements (and those of any
1789 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1790 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1791 in bits. */
1792
d2e4a39e
AS
1793static struct type *
1794packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1795{
d2e4a39e
AS
1796 struct type *new_elt_type;
1797 struct type *new_type;
14f9c5c9
AS
1798 LONGEST low_bound, high_bound;
1799
61ee279c 1800 type = ada_check_typedef (type);
14f9c5c9
AS
1801 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1802 return type;
1803
1804 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1805 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1806 elt_bits);
14f9c5c9
AS
1807 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
d2e4a39e 1811 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2 1812 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1816 else
14f9c5c9
AS
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1819 TYPE_LENGTH (new_type) =
4c4b4cd2 1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1821 }
1822
876cecd0 1823 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1824 return new_type;
1825}
1826
4c4b4cd2
PH
1827/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1828
d2e4a39e
AS
1829static struct type *
1830decode_packed_array_type (struct type *type)
1831{
4c4b4cd2 1832 struct symbol *sym;
d2e4a39e 1833 struct block **blocks;
727e3d2e
JB
1834 char *raw_name = ada_type_name (ada_check_typedef (type));
1835 char *name;
1836 char *tail;
d2e4a39e 1837 struct type *shadow_type;
14f9c5c9
AS
1838 long bits;
1839 int i, n;
1840
727e3d2e
JB
1841 if (!raw_name)
1842 raw_name = ada_type_name (desc_base_type (type));
1843
1844 if (!raw_name)
1845 return NULL;
1846
1847 name = (char *) alloca (strlen (raw_name) + 1);
1848 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1849 type = desc_base_type (type);
1850
14f9c5c9
AS
1851 memcpy (name, raw_name, tail - raw_name);
1852 name[tail - raw_name] = '\000';
1853
4c4b4cd2
PH
1854 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1855 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1856 {
323e0a4a 1857 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1858 return NULL;
1859 }
4c4b4cd2 1860 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
323e0a4a 1864 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1865 return NULL;
1866 }
d2e4a39e 1867
14f9c5c9
AS
1868 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1869 {
4c4b4cd2 1870 lim_warning
323e0a4a 1871 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1872 return NULL;
1873 }
d2e4a39e 1874
14f9c5c9
AS
1875 return packed_array_type (shadow_type, &bits);
1876}
1877
4c4b4cd2 1878/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1879 returns a simple array that denotes that array. Its type is a
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
4c4b4cd2 1882 type length is set appropriately. */
14f9c5c9 1883
d2e4a39e
AS
1884static struct value *
1885decode_packed_array (struct value *arr)
14f9c5c9 1886{
4c4b4cd2 1887 struct type *type;
14f9c5c9 1888
4c4b4cd2 1889 arr = ada_coerce_ref (arr);
df407dfe 1890 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1891 arr = ada_value_ind (arr);
1892
df407dfe 1893 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1894 if (type == NULL)
1895 {
323e0a4a 1896 error (_("can't unpack array"));
14f9c5c9
AS
1897 return NULL;
1898 }
61ee279c 1899
32c9a795
MD
1900 if (gdbarch_bits_big_endian (current_gdbarch)
1901 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1902 {
1903 /* This is a (right-justified) modular type representing a packed
1904 array with no wrapper. In order to interpret the value through
1905 the (left-justified) packed array type we just built, we must
1906 first left-justify it. */
1907 int bit_size, bit_pos;
1908 ULONGEST mod;
1909
df407dfe 1910 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1911 bit_size = 0;
1912 while (mod > 0)
1913 {
1914 bit_size += 1;
1915 mod >>= 1;
1916 }
df407dfe 1917 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1918 arr = ada_value_primitive_packed_val (arr, NULL,
1919 bit_pos / HOST_CHAR_BIT,
1920 bit_pos % HOST_CHAR_BIT,
1921 bit_size,
1922 type);
1923 }
1924
4c4b4cd2 1925 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1926}
1927
1928
1929/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1930 given in IND. ARR must be a simple array. */
14f9c5c9 1931
d2e4a39e
AS
1932static struct value *
1933value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1934{
1935 int i;
1936 int bits, elt_off, bit_off;
1937 long elt_total_bit_offset;
d2e4a39e
AS
1938 struct type *elt_type;
1939 struct value *v;
14f9c5c9
AS
1940
1941 bits = 0;
1942 elt_total_bit_offset = 0;
df407dfe 1943 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1944 for (i = 0; i < arity; i += 1)
14f9c5c9 1945 {
d2e4a39e 1946 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1947 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1948 error
323e0a4a 1949 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1950 else
4c4b4cd2
PH
1951 {
1952 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1953 LONGEST lowerbound, upperbound;
1954 LONGEST idx;
1955
1956 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1957 {
323e0a4a 1958 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1959 lowerbound = upperbound = 0;
1960 }
1961
1962 idx = value_as_long (value_pos_atr (ind[i]));
1963 if (idx < lowerbound || idx > upperbound)
323e0a4a 1964 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1965 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1966 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1967 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1968 }
14f9c5c9
AS
1969 }
1970 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1971 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1972
1973 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1974 bits, elt_type);
14f9c5c9
AS
1975 return v;
1976}
1977
4c4b4cd2 1978/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1979
1980static int
d2e4a39e 1981has_negatives (struct type *type)
14f9c5c9 1982{
d2e4a39e
AS
1983 switch (TYPE_CODE (type))
1984 {
1985 default:
1986 return 0;
1987 case TYPE_CODE_INT:
1988 return !TYPE_UNSIGNED (type);
1989 case TYPE_CODE_RANGE:
1990 return TYPE_LOW_BOUND (type) < 0;
1991 }
14f9c5c9 1992}
d2e4a39e 1993
14f9c5c9
AS
1994
1995/* Create a new value of type TYPE from the contents of OBJ starting
1996 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1997 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1998 assigning through the result will set the field fetched from.
1999 VALADDR is ignored unless OBJ is NULL, in which case,
2000 VALADDR+OFFSET must address the start of storage containing the
2001 packed value. The value returned in this case is never an lval.
2002 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2003
d2e4a39e 2004struct value *
fc1a4b47 2005ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2006 long offset, int bit_offset, int bit_size,
4c4b4cd2 2007 struct type *type)
14f9c5c9 2008{
d2e4a39e 2009 struct value *v;
4c4b4cd2
PH
2010 int src, /* Index into the source area */
2011 targ, /* Index into the target area */
2012 srcBitsLeft, /* Number of source bits left to move */
2013 nsrc, ntarg, /* Number of source and target bytes */
2014 unusedLS, /* Number of bits in next significant
2015 byte of source that are unused */
2016 accumSize; /* Number of meaningful bits in accum */
2017 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2018 unsigned char *unpacked;
4c4b4cd2 2019 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2020 unsigned char sign;
2021 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2022 /* Transmit bytes from least to most significant; delta is the direction
2023 the indices move. */
32c9a795 2024 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 2025
61ee279c 2026 type = ada_check_typedef (type);
14f9c5c9
AS
2027
2028 if (obj == NULL)
2029 {
2030 v = allocate_value (type);
d2e4a39e 2031 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2032 }
9214ee5f 2033 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2034 {
2035 v = value_at (type,
df407dfe 2036 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2037 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2038 read_memory (VALUE_ADDRESS (v), bytes, len);
2039 }
d2e4a39e 2040 else
14f9c5c9
AS
2041 {
2042 v = allocate_value (type);
0fd88904 2043 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2044 }
d2e4a39e
AS
2045
2046 if (obj != NULL)
14f9c5c9
AS
2047 {
2048 VALUE_LVAL (v) = VALUE_LVAL (obj);
2049 if (VALUE_LVAL (obj) == lval_internalvar)
4c4b4cd2 2050 VALUE_LVAL (v) = lval_internalvar_component;
df407dfe 2051 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
9bbda503
AC
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
df407dfe 2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2055 {
2056 VALUE_ADDRESS (v) += 1;
9bbda503 2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2058 }
14f9c5c9
AS
2059 }
2060 else
9bbda503 2061 set_value_bitsize (v, bit_size);
0fd88904 2062 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2063
2064 srcBitsLeft = bit_size;
2065 nsrc = len;
2066 ntarg = TYPE_LENGTH (type);
2067 sign = 0;
2068 if (bit_size == 0)
2069 {
2070 memset (unpacked, 0, TYPE_LENGTH (type));
2071 return v;
2072 }
32c9a795 2073 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2074 {
d2e4a39e 2075 src = len - 1;
1265e4aa
JB
2076 if (has_negatives (type)
2077 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2078 sign = ~0;
d2e4a39e
AS
2079
2080 unusedLS =
4c4b4cd2
PH
2081 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2082 % HOST_CHAR_BIT;
14f9c5c9
AS
2083
2084 switch (TYPE_CODE (type))
4c4b4cd2
PH
2085 {
2086 case TYPE_CODE_ARRAY:
2087 case TYPE_CODE_UNION:
2088 case TYPE_CODE_STRUCT:
2089 /* Non-scalar values must be aligned at a byte boundary... */
2090 accumSize =
2091 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2092 /* ... And are placed at the beginning (most-significant) bytes
2093 of the target. */
529cad9c 2094 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2095 break;
2096 default:
2097 accumSize = 0;
2098 targ = TYPE_LENGTH (type) - 1;
2099 break;
2100 }
14f9c5c9 2101 }
d2e4a39e 2102 else
14f9c5c9
AS
2103 {
2104 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2105
2106 src = targ = 0;
2107 unusedLS = bit_offset;
2108 accumSize = 0;
2109
d2e4a39e 2110 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2111 sign = ~0;
14f9c5c9 2112 }
d2e4a39e 2113
14f9c5c9
AS
2114 accum = 0;
2115 while (nsrc > 0)
2116 {
2117 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2118 part of the value. */
d2e4a39e 2119 unsigned int unusedMSMask =
4c4b4cd2
PH
2120 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2121 1;
2122 /* Sign-extend bits for this byte. */
14f9c5c9 2123 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2124 accum |=
4c4b4cd2 2125 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2126 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2127 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2128 {
2129 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2130 accumSize -= HOST_CHAR_BIT;
2131 accum >>= HOST_CHAR_BIT;
2132 ntarg -= 1;
2133 targ += delta;
2134 }
14f9c5c9
AS
2135 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2136 unusedLS = 0;
2137 nsrc -= 1;
2138 src += delta;
2139 }
2140 while (ntarg > 0)
2141 {
2142 accum |= sign << accumSize;
2143 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2144 accumSize -= HOST_CHAR_BIT;
2145 accum >>= HOST_CHAR_BIT;
2146 ntarg -= 1;
2147 targ += delta;
2148 }
2149
2150 return v;
2151}
d2e4a39e 2152
14f9c5c9
AS
2153/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2154 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2155 not overlap. */
14f9c5c9 2156static void
fc1a4b47 2157move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2158 int src_offset, int n)
14f9c5c9
AS
2159{
2160 unsigned int accum, mask;
2161 int accum_bits, chunk_size;
2162
2163 target += targ_offset / HOST_CHAR_BIT;
2164 targ_offset %= HOST_CHAR_BIT;
2165 source += src_offset / HOST_CHAR_BIT;
2166 src_offset %= HOST_CHAR_BIT;
32c9a795 2167 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2168 {
2169 accum = (unsigned char) *source;
2170 source += 1;
2171 accum_bits = HOST_CHAR_BIT - src_offset;
2172
d2e4a39e 2173 while (n > 0)
4c4b4cd2
PH
2174 {
2175 int unused_right;
2176 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2177 accum_bits += HOST_CHAR_BIT;
2178 source += 1;
2179 chunk_size = HOST_CHAR_BIT - targ_offset;
2180 if (chunk_size > n)
2181 chunk_size = n;
2182 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2183 mask = ((1 << chunk_size) - 1) << unused_right;
2184 *target =
2185 (*target & ~mask)
2186 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2187 n -= chunk_size;
2188 accum_bits -= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
14f9c5c9
AS
2192 }
2193 else
2194 {
2195 accum = (unsigned char) *source >> src_offset;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
d2e4a39e 2199 while (n > 0)
4c4b4cd2
PH
2200 {
2201 accum = accum + ((unsigned char) *source << accum_bits);
2202 accum_bits += HOST_CHAR_BIT;
2203 source += 1;
2204 chunk_size = HOST_CHAR_BIT - targ_offset;
2205 if (chunk_size > n)
2206 chunk_size = n;
2207 mask = ((1 << chunk_size) - 1) << targ_offset;
2208 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2209 n -= chunk_size;
2210 accum_bits -= chunk_size;
2211 accum >>= chunk_size;
2212 target += 1;
2213 targ_offset = 0;
2214 }
14f9c5c9
AS
2215 }
2216}
2217
14f9c5c9
AS
2218/* Store the contents of FROMVAL into the location of TOVAL.
2219 Return a new value with the location of TOVAL and contents of
2220 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2221 floating-point or non-scalar types. */
14f9c5c9 2222
d2e4a39e
AS
2223static struct value *
2224ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2225{
df407dfe
AC
2226 struct type *type = value_type (toval);
2227 int bits = value_bitsize (toval);
14f9c5c9 2228
52ce6436
PH
2229 toval = ada_coerce_ref (toval);
2230 fromval = ada_coerce_ref (fromval);
2231
2232 if (ada_is_direct_array_type (value_type (toval)))
2233 toval = ada_coerce_to_simple_array (toval);
2234 if (ada_is_direct_array_type (value_type (fromval)))
2235 fromval = ada_coerce_to_simple_array (fromval);
2236
88e3b34b 2237 if (!deprecated_value_modifiable (toval))
323e0a4a 2238 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2239
d2e4a39e 2240 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2241 && bits > 0
d2e4a39e 2242 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2243 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2244 {
df407dfe
AC
2245 int len = (value_bitpos (toval)
2246 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2247 int from_size;
d2e4a39e
AS
2248 char *buffer = (char *) alloca (len);
2249 struct value *val;
52ce6436 2250 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2253 fromval = value_cast (type, fromval);
14f9c5c9 2254
52ce6436 2255 read_memory (to_addr, buffer, len);
aced2898
PH
2256 from_size = value_bitsize (fromval);
2257 if (from_size == 0)
2258 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2259 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2260 move_bits (buffer, value_bitpos (toval),
aced2898 2261 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2262 else
0fd88904 2263 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2264 0, bits);
52ce6436
PH
2265 write_memory (to_addr, buffer, len);
2266 if (deprecated_memory_changed_hook)
2267 deprecated_memory_changed_hook (to_addr, len);
2268
14f9c5c9 2269 val = value_copy (toval);
0fd88904 2270 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2271 TYPE_LENGTH (type));
04624583 2272 deprecated_set_value_type (val, type);
d2e4a39e 2273
14f9c5c9
AS
2274 return val;
2275 }
2276
2277 return value_assign (toval, fromval);
2278}
2279
2280
52ce6436
PH
2281/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2282 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2283 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2284 * COMPONENT, and not the inferior's memory. The current contents
2285 * of COMPONENT are ignored. */
2286static void
2287value_assign_to_component (struct value *container, struct value *component,
2288 struct value *val)
2289{
2290 LONGEST offset_in_container =
2291 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2292 - VALUE_ADDRESS (container) - value_offset (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
32c9a795 2304 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits);
2314}
2315
4c4b4cd2
PH
2316/* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2318 thereto. */
2319
d2e4a39e
AS
2320struct value *
2321ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2322{
2323 int k;
d2e4a39e
AS
2324 struct value *elt;
2325 struct type *elt_type;
14f9c5c9
AS
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
df407dfe 2329 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2337 error (_("too many subscripts (%d expected)"), k);
14f9c5c9
AS
2338 elt = value_subscript (elt, value_pos_atr (ind[k]));
2339 }
2340 return elt;
2341}
2342
2343/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2345 IND. Does not read the entire array into memory. */
14f9c5c9 2346
d2e4a39e
AS
2347struct value *
2348ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2349 struct value **ind)
14f9c5c9
AS
2350{
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
d2e4a39e 2356 struct value *idx;
14f9c5c9
AS
2357
2358 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2359 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2360 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2361 value_copy (arr));
14f9c5c9 2362 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
4c4b4cd2
PH
2363 idx = value_pos_atr (ind[k]);
2364 if (lwb != 0)
89eef114
UW
2365 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2366 BINOP_SUB);
2367
2368 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2369 type = TYPE_TARGET_TYPE (type);
2370 }
2371
2372 return value_ind (arr);
2373}
2374
0b5d8877
PH
2375/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2376 actual type of ARRAY_PTR is ignored), returns a reference to
2377 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2378 bound of this array is LOW, as per Ada rules. */
2379static struct value *
6c038f32 2380ada_value_slice_ptr (struct value *array_ptr, struct type *type,
0b5d8877
PH
2381 int low, int high)
2382{
6c038f32 2383 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2384 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2385 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2386 struct type *index_type =
2387 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2388 low, high);
6c038f32 2389 struct type *slice_type =
0b5d8877
PH
2390 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2391 return value_from_pointer (lookup_reference_type (slice_type), base);
2392}
2393
2394
2395static struct value *
2396ada_value_slice (struct value *array, int low, int high)
2397{
df407dfe 2398 struct type *type = value_type (array);
6c038f32 2399 struct type *index_type =
0b5d8877 2400 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2401 struct type *slice_type =
0b5d8877 2402 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2403 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2404}
2405
14f9c5c9
AS
2406/* If type is a record type in the form of a standard GNAT array
2407 descriptor, returns the number of dimensions for type. If arr is a
2408 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2409 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2410
2411int
d2e4a39e 2412ada_array_arity (struct type *type)
14f9c5c9
AS
2413{
2414 int arity;
2415
2416 if (type == NULL)
2417 return 0;
2418
2419 type = desc_base_type (type);
2420
2421 arity = 0;
d2e4a39e 2422 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2423 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2424 else
2425 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2426 {
4c4b4cd2 2427 arity += 1;
61ee279c 2428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2429 }
d2e4a39e 2430
14f9c5c9
AS
2431 return arity;
2432}
2433
2434/* If TYPE is a record type in the form of a standard GNAT array
2435 descriptor or a simple array type, returns the element type for
2436 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2437 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2438
d2e4a39e
AS
2439struct type *
2440ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2441{
2442 type = desc_base_type (type);
2443
d2e4a39e 2444 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2445 {
2446 int k;
d2e4a39e 2447 struct type *p_array_type;
14f9c5c9
AS
2448
2449 p_array_type = desc_data_type (type);
2450
2451 k = ada_array_arity (type);
2452 if (k == 0)
4c4b4cd2 2453 return NULL;
d2e4a39e 2454
4c4b4cd2 2455 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2456 if (nindices >= 0 && k > nindices)
4c4b4cd2 2457 k = nindices;
14f9c5c9 2458 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2459 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2460 {
61ee279c 2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2462 k -= 1;
2463 }
14f9c5c9
AS
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
14f9c5c9
AS
2473 return type;
2474 }
2475
2476 return NULL;
2477}
2478
4c4b4cd2
PH
2479/* The type of nth index in arrays of given type (n numbering from 1).
2480 Does not examine memory. */
14f9c5c9 2481
d2e4a39e
AS
2482struct type *
2483ada_index_type (struct type *type, int n)
14f9c5c9 2484{
4c4b4cd2
PH
2485 struct type *result_type;
2486
14f9c5c9
AS
2487 type = desc_base_type (type);
2488
2489 if (n > ada_array_arity (type))
2490 return NULL;
2491
4c4b4cd2 2492 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2493 {
2494 int i;
2495
2496 for (i = 1; i < n; i += 1)
4c4b4cd2
PH
2497 type = TYPE_TARGET_TYPE (type);
2498 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2499 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2500 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2501 perhaps stabsread.c would make more sense. */
2502 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2503 result_type = builtin_type_int;
14f9c5c9 2504
4c4b4cd2 2505 return result_type;
14f9c5c9 2506 }
d2e4a39e 2507 else
14f9c5c9
AS
2508 return desc_index_type (desc_bounds_type (type), n);
2509}
2510
2511/* Given that arr is an array type, returns the lower bound of the
2512 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2513 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2514 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2515 bounds type. It works for other arrays with bounds supplied by
2516 run-time quantities other than discriminants. */
14f9c5c9 2517
abb68b3e 2518static LONGEST
d2e4a39e 2519ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2520 struct type ** typep)
14f9c5c9 2521{
d2e4a39e
AS
2522 struct type *type;
2523 struct type *index_type_desc;
14f9c5c9
AS
2524
2525 if (ada_is_packed_array_type (arr_type))
2526 arr_type = decode_packed_array_type (arr_type);
2527
4c4b4cd2 2528 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2529 {
2530 if (typep != NULL)
4c4b4cd2 2531 *typep = builtin_type_int;
d2e4a39e 2532 return (LONGEST) - which;
14f9c5c9
AS
2533 }
2534
2535 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2536 type = TYPE_TARGET_TYPE (arr_type);
2537 else
2538 type = arr_type;
2539
2540 index_type_desc = ada_find_parallel_type (type, "___XA");
d2e4a39e 2541 if (index_type_desc == NULL)
14f9c5c9 2542 {
d2e4a39e 2543 struct type *index_type;
14f9c5c9 2544
d2e4a39e 2545 while (n > 1)
4c4b4cd2
PH
2546 {
2547 type = TYPE_TARGET_TYPE (type);
2548 n -= 1;
2549 }
14f9c5c9 2550
abb68b3e 2551 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2552 if (typep != NULL)
4c4b4cd2 2553 *typep = index_type;
abb68b3e
JB
2554
2555 /* The index type is either a range type or an enumerated type.
2556 For the range type, we have some macros that allow us to
2557 extract the value of the low and high bounds. But they
2558 do now work for enumerated types. The expressions used
2559 below work for both range and enum types. */
d2e4a39e 2560 return
4c4b4cd2 2561 (LONGEST) (which == 0
abb68b3e
JB
2562 ? TYPE_FIELD_BITPOS (index_type, 0)
2563 : TYPE_FIELD_BITPOS (index_type,
2564 TYPE_NFIELDS (index_type) - 1));
14f9c5c9 2565 }
d2e4a39e 2566 else
14f9c5c9 2567 {
d2e4a39e 2568 struct type *index_type =
4c4b4cd2
PH
2569 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2570 NULL, TYPE_OBJFILE (arr_type));
abb68b3e 2571
14f9c5c9 2572 if (typep != NULL)
abb68b3e
JB
2573 *typep = index_type;
2574
d2e4a39e 2575 return
4c4b4cd2
PH
2576 (LONGEST) (which == 0
2577 ? TYPE_LOW_BOUND (index_type)
2578 : TYPE_HIGH_BOUND (index_type));
14f9c5c9
AS
2579 }
2580}
2581
2582/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2583 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2584 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2585 supplied by run-time quantities other than discriminants. */
14f9c5c9 2586
d2e4a39e 2587struct value *
4dc81987 2588ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2589{
df407dfe 2590 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2591
2592 if (ada_is_packed_array_type (arr_type))
2593 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2594 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2595 {
d2e4a39e 2596 struct type *type;
14f9c5c9
AS
2597 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2598 return value_from_longest (type, v);
2599 }
2600 else
2601 return desc_one_bound (desc_bounds (arr), n, which);
2602}
2603
2604/* Given that arr is an array value, returns the length of the
2605 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2606 supplied by run-time quantities other than discriminants.
2607 Does not work for arrays indexed by enumeration types with representation
2608 clauses at the moment. */
14f9c5c9 2609
d2e4a39e
AS
2610struct value *
2611ada_array_length (struct value *arr, int n)
14f9c5c9 2612{
df407dfe 2613 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2614
2615 if (ada_is_packed_array_type (arr_type))
2616 return ada_array_length (decode_packed_array (arr), n);
2617
4c4b4cd2 2618 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2619 {
d2e4a39e 2620 struct type *type;
14f9c5c9 2621 LONGEST v =
4c4b4cd2
PH
2622 ada_array_bound_from_type (arr_type, n, 1, &type) -
2623 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2624 return value_from_longest (type, v);
2625 }
2626 else
d2e4a39e 2627 return
030b4912 2628 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2629 value_as_long (desc_one_bound (desc_bounds (arr),
2630 n, 1))
2631 - value_as_long (desc_one_bound (desc_bounds (arr),
2632 n, 0)) + 1);
2633}
2634
2635/* An empty array whose type is that of ARR_TYPE (an array type),
2636 with bounds LOW to LOW-1. */
2637
2638static struct value *
2639empty_array (struct type *arr_type, int low)
2640{
6c038f32 2641 struct type *index_type =
0b5d8877
PH
2642 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2643 low, low - 1);
2644 struct type *elt_type = ada_array_element_type (arr_type, 1);
2645 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2646}
14f9c5c9 2647\f
d2e4a39e 2648
4c4b4cd2 2649 /* Name resolution */
14f9c5c9 2650
4c4b4cd2
PH
2651/* The "decoded" name for the user-definable Ada operator corresponding
2652 to OP. */
14f9c5c9 2653
d2e4a39e 2654static const char *
4c4b4cd2 2655ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2656{
2657 int i;
2658
4c4b4cd2 2659 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2660 {
2661 if (ada_opname_table[i].op == op)
4c4b4cd2 2662 return ada_opname_table[i].decoded;
14f9c5c9 2663 }
323e0a4a 2664 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2665}
2666
2667
4c4b4cd2
PH
2668/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2669 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2670 undefined namespace) and converts operators that are
2671 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2672 non-null, it provides a preferred result type [at the moment, only
2673 type void has any effect---causing procedures to be preferred over
2674 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2675 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2676
4c4b4cd2
PH
2677static void
2678resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2679{
2680 int pc;
2681 pc = 0;
4c4b4cd2 2682 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2683}
2684
4c4b4cd2
PH
2685/* Resolve the operator of the subexpression beginning at
2686 position *POS of *EXPP. "Resolving" consists of replacing
2687 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2688 with their resolutions, replacing built-in operators with
2689 function calls to user-defined operators, where appropriate, and,
2690 when DEPROCEDURE_P is non-zero, converting function-valued variables
2691 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2692 are as in ada_resolve, above. */
14f9c5c9 2693
d2e4a39e 2694static struct value *
4c4b4cd2 2695resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2696 struct type *context_type)
14f9c5c9
AS
2697{
2698 int pc = *pos;
2699 int i;
4c4b4cd2 2700 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2701 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2702 struct value **argvec; /* Vector of operand types (alloca'ed). */
2703 int nargs; /* Number of operands. */
52ce6436 2704 int oplen;
14f9c5c9
AS
2705
2706 argvec = NULL;
2707 nargs = 0;
2708 exp = *expp;
2709
52ce6436
PH
2710 /* Pass one: resolve operands, saving their types and updating *pos,
2711 if needed. */
14f9c5c9
AS
2712 switch (op)
2713 {
4c4b4cd2
PH
2714 case OP_FUNCALL:
2715 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2716 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2717 *pos += 7;
4c4b4cd2
PH
2718 else
2719 {
2720 *pos += 3;
2721 resolve_subexp (expp, pos, 0, NULL);
2722 }
2723 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2724 break;
2725
14f9c5c9 2726 case UNOP_ADDR:
4c4b4cd2
PH
2727 *pos += 1;
2728 resolve_subexp (expp, pos, 0, NULL);
2729 break;
2730
52ce6436
PH
2731 case UNOP_QUAL:
2732 *pos += 3;
2733 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2734 break;
2735
52ce6436 2736 case OP_ATR_MODULUS:
4c4b4cd2
PH
2737 case OP_ATR_SIZE:
2738 case OP_ATR_TAG:
4c4b4cd2
PH
2739 case OP_ATR_FIRST:
2740 case OP_ATR_LAST:
2741 case OP_ATR_LENGTH:
2742 case OP_ATR_POS:
2743 case OP_ATR_VAL:
4c4b4cd2
PH
2744 case OP_ATR_MIN:
2745 case OP_ATR_MAX:
52ce6436
PH
2746 case TERNOP_IN_RANGE:
2747 case BINOP_IN_BOUNDS:
2748 case UNOP_IN_RANGE:
2749 case OP_AGGREGATE:
2750 case OP_OTHERS:
2751 case OP_CHOICES:
2752 case OP_POSITIONAL:
2753 case OP_DISCRETE_RANGE:
2754 case OP_NAME:
2755 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2756 *pos += oplen;
14f9c5c9
AS
2757 break;
2758
2759 case BINOP_ASSIGN:
2760 {
4c4b4cd2
PH
2761 struct value *arg1;
2762
2763 *pos += 1;
2764 arg1 = resolve_subexp (expp, pos, 0, NULL);
2765 if (arg1 == NULL)
2766 resolve_subexp (expp, pos, 1, NULL);
2767 else
df407dfe 2768 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2769 break;
14f9c5c9
AS
2770 }
2771
4c4b4cd2 2772 case UNOP_CAST:
4c4b4cd2
PH
2773 *pos += 3;
2774 nargs = 1;
2775 break;
14f9c5c9 2776
4c4b4cd2
PH
2777 case BINOP_ADD:
2778 case BINOP_SUB:
2779 case BINOP_MUL:
2780 case BINOP_DIV:
2781 case BINOP_REM:
2782 case BINOP_MOD:
2783 case BINOP_EXP:
2784 case BINOP_CONCAT:
2785 case BINOP_LOGICAL_AND:
2786 case BINOP_LOGICAL_OR:
2787 case BINOP_BITWISE_AND:
2788 case BINOP_BITWISE_IOR:
2789 case BINOP_BITWISE_XOR:
14f9c5c9 2790
4c4b4cd2
PH
2791 case BINOP_EQUAL:
2792 case BINOP_NOTEQUAL:
2793 case BINOP_LESS:
2794 case BINOP_GTR:
2795 case BINOP_LEQ:
2796 case BINOP_GEQ:
14f9c5c9 2797
4c4b4cd2
PH
2798 case BINOP_REPEAT:
2799 case BINOP_SUBSCRIPT:
2800 case BINOP_COMMA:
40c8aaa9
JB
2801 *pos += 1;
2802 nargs = 2;
2803 break;
14f9c5c9 2804
4c4b4cd2
PH
2805 case UNOP_NEG:
2806 case UNOP_PLUS:
2807 case UNOP_LOGICAL_NOT:
2808 case UNOP_ABS:
2809 case UNOP_IND:
2810 *pos += 1;
2811 nargs = 1;
2812 break;
14f9c5c9 2813
4c4b4cd2
PH
2814 case OP_LONG:
2815 case OP_DOUBLE:
2816 case OP_VAR_VALUE:
2817 *pos += 4;
2818 break;
14f9c5c9 2819
4c4b4cd2
PH
2820 case OP_TYPE:
2821 case OP_BOOL:
2822 case OP_LAST:
4c4b4cd2
PH
2823 case OP_INTERNALVAR:
2824 *pos += 3;
2825 break;
14f9c5c9 2826
4c4b4cd2
PH
2827 case UNOP_MEMVAL:
2828 *pos += 3;
2829 nargs = 1;
2830 break;
2831
67f3407f
DJ
2832 case OP_REGISTER:
2833 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2834 break;
2835
4c4b4cd2
PH
2836 case STRUCTOP_STRUCT:
2837 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2838 nargs = 1;
2839 break;
2840
4c4b4cd2 2841 case TERNOP_SLICE:
4c4b4cd2
PH
2842 *pos += 1;
2843 nargs = 3;
2844 break;
2845
52ce6436 2846 case OP_STRING:
14f9c5c9 2847 break;
4c4b4cd2
PH
2848
2849 default:
323e0a4a 2850 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2851 }
2852
76a01679 2853 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2854 for (i = 0; i < nargs; i += 1)
2855 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2856 argvec[i] = NULL;
2857 exp = *expp;
2858
2859 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2860 switch (op)
2861 {
2862 default:
2863 break;
2864
14f9c5c9 2865 case OP_VAR_VALUE:
4c4b4cd2 2866 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 2].symbol),
2874 exp->elts[pc + 1].block, VAR_DOMAIN,
2875 &candidates);
2876
2877 if (n_candidates > 1)
2878 {
2879 /* Types tend to get re-introduced locally, so if there
2880 are any local symbols that are not types, first filter
2881 out all types. */
2882 int j;
2883 for (j = 0; j < n_candidates; j += 1)
2884 switch (SYMBOL_CLASS (candidates[j].sym))
2885 {
2886 case LOC_REGISTER:
2887 case LOC_ARG:
2888 case LOC_REF_ARG:
76a01679
JB
2889 case LOC_REGPARM_ADDR:
2890 case LOC_LOCAL:
76a01679 2891 case LOC_COMPUTED:
76a01679
JB
2892 goto FoundNonType;
2893 default:
2894 break;
2895 }
2896 FoundNonType:
2897 if (j < n_candidates)
2898 {
2899 j = 0;
2900 while (j < n_candidates)
2901 {
2902 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2903 {
2904 candidates[j] = candidates[n_candidates - 1];
2905 n_candidates -= 1;
2906 }
2907 else
2908 j += 1;
2909 }
2910 }
2911 }
2912
2913 if (n_candidates == 0)
323e0a4a 2914 error (_("No definition found for %s"),
76a01679
JB
2915 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2916 else if (n_candidates == 1)
2917 i = 0;
2918 else if (deprocedure_p
2919 && !is_nonfunction (candidates, n_candidates))
2920 {
06d5cf63
JB
2921 i = ada_resolve_function
2922 (candidates, n_candidates, NULL, 0,
2923 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2924 context_type);
76a01679 2925 if (i < 0)
323e0a4a 2926 error (_("Could not find a match for %s"),
76a01679
JB
2927 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2928 }
2929 else
2930 {
323e0a4a 2931 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2932 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2933 user_select_syms (candidates, n_candidates, 1);
2934 i = 0;
2935 }
2936
2937 exp->elts[pc + 1].block = candidates[i].block;
2938 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2939 if (innermost_block == NULL
2940 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2941 innermost_block = candidates[i].block;
2942 }
2943
2944 if (deprocedure_p
2945 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2946 == TYPE_CODE_FUNC))
2947 {
2948 replace_operator_with_call (expp, pc, 0, 0,
2949 exp->elts[pc + 2].symbol,
2950 exp->elts[pc + 1].block);
2951 exp = *expp;
2952 }
14f9c5c9
AS
2953 break;
2954
2955 case OP_FUNCALL:
2956 {
4c4b4cd2 2957 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2958 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2959 {
2960 struct ada_symbol_info *candidates;
2961 int n_candidates;
2962
2963 n_candidates =
76a01679
JB
2964 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2965 (exp->elts[pc + 5].symbol),
2966 exp->elts[pc + 4].block, VAR_DOMAIN,
2967 &candidates);
4c4b4cd2
PH
2968 if (n_candidates == 1)
2969 i = 0;
2970 else
2971 {
06d5cf63
JB
2972 i = ada_resolve_function
2973 (candidates, n_candidates,
2974 argvec, nargs,
2975 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2976 context_type);
4c4b4cd2 2977 if (i < 0)
323e0a4a 2978 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2979 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2980 }
2981
2982 exp->elts[pc + 4].block = candidates[i].block;
2983 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2984 if (innermost_block == NULL
2985 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2986 innermost_block = candidates[i].block;
2987 }
14f9c5c9
AS
2988 }
2989 break;
2990 case BINOP_ADD:
2991 case BINOP_SUB:
2992 case BINOP_MUL:
2993 case BINOP_DIV:
2994 case BINOP_REM:
2995 case BINOP_MOD:
2996 case BINOP_CONCAT:
2997 case BINOP_BITWISE_AND:
2998 case BINOP_BITWISE_IOR:
2999 case BINOP_BITWISE_XOR:
3000 case BINOP_EQUAL:
3001 case BINOP_NOTEQUAL:
3002 case BINOP_LESS:
3003 case BINOP_GTR:
3004 case BINOP_LEQ:
3005 case BINOP_GEQ:
3006 case BINOP_EXP:
3007 case UNOP_NEG:
3008 case UNOP_PLUS:
3009 case UNOP_LOGICAL_NOT:
3010 case UNOP_ABS:
3011 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3012 {
3013 struct ada_symbol_info *candidates;
3014 int n_candidates;
3015
3016 n_candidates =
3017 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3018 (struct block *) NULL, VAR_DOMAIN,
3019 &candidates);
3020 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3021 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3022 if (i < 0)
3023 break;
3024
76a01679
JB
3025 replace_operator_with_call (expp, pc, nargs, 1,
3026 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3027 exp = *expp;
3028 }
14f9c5c9 3029 break;
4c4b4cd2
PH
3030
3031 case OP_TYPE:
b3dbf008 3032 case OP_REGISTER:
4c4b4cd2 3033 return NULL;
14f9c5c9
AS
3034 }
3035
3036 *pos = pc;
3037 return evaluate_subexp_type (exp, pos);
3038}
3039
3040/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3041 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3042 a non-pointer. A type of 'void' (which is never a valid expression type)
3043 by convention matches anything. */
14f9c5c9 3044/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3045 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3046
3047static int
4dc81987 3048ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3049{
61ee279c
PH
3050 ftype = ada_check_typedef (ftype);
3051 atype = ada_check_typedef (atype);
14f9c5c9
AS
3052
3053 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3054 ftype = TYPE_TARGET_TYPE (ftype);
3055 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3056 atype = TYPE_TARGET_TYPE (atype);
3057
d2e4a39e 3058 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3059 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3060 return 1;
3061
d2e4a39e 3062 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3063 {
3064 default:
3065 return 1;
3066 case TYPE_CODE_PTR:
3067 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3068 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3069 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3070 else
1265e4aa
JB
3071 return (may_deref
3072 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3073 case TYPE_CODE_INT:
3074 case TYPE_CODE_ENUM:
3075 case TYPE_CODE_RANGE:
3076 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3077 {
3078 case TYPE_CODE_INT:
3079 case TYPE_CODE_ENUM:
3080 case TYPE_CODE_RANGE:
3081 return 1;
3082 default:
3083 return 0;
3084 }
14f9c5c9
AS
3085
3086 case TYPE_CODE_ARRAY:
d2e4a39e 3087 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3088 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3089
3090 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3091 if (ada_is_array_descriptor_type (ftype))
3092 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3093 || ada_is_array_descriptor_type (atype));
14f9c5c9 3094 else
4c4b4cd2
PH
3095 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3096 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3097
3098 case TYPE_CODE_UNION:
3099 case TYPE_CODE_FLT:
3100 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3101 }
3102}
3103
3104/* Return non-zero if the formals of FUNC "sufficiently match" the
3105 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3106 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3107 argument function. */
14f9c5c9
AS
3108
3109static int
d2e4a39e 3110ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3111{
3112 int i;
d2e4a39e 3113 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3114
1265e4aa
JB
3115 if (SYMBOL_CLASS (func) == LOC_CONST
3116 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3117 return (n_actuals == 0);
3118 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3119 return 0;
3120
3121 if (TYPE_NFIELDS (func_type) != n_actuals)
3122 return 0;
3123
3124 for (i = 0; i < n_actuals; i += 1)
3125 {
4c4b4cd2 3126 if (actuals[i] == NULL)
76a01679
JB
3127 return 0;
3128 else
3129 {
61ee279c 3130 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3131 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3132
76a01679
JB
3133 if (!ada_type_match (ftype, atype, 1))
3134 return 0;
3135 }
14f9c5c9
AS
3136 }
3137 return 1;
3138}
3139
3140/* False iff function type FUNC_TYPE definitely does not produce a value
3141 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3142 FUNC_TYPE is not a valid function type with a non-null return type
3143 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3144
3145static int
d2e4a39e 3146return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3147{
d2e4a39e 3148 struct type *return_type;
14f9c5c9
AS
3149
3150 if (func_type == NULL)
3151 return 1;
3152
4c4b4cd2
PH
3153 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3154 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3155 else
3156 return_type = base_type (func_type);
14f9c5c9
AS
3157 if (return_type == NULL)
3158 return 1;
3159
4c4b4cd2 3160 context_type = base_type (context_type);
14f9c5c9
AS
3161
3162 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3163 return context_type == NULL || return_type == context_type;
3164 else if (context_type == NULL)
3165 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3166 else
3167 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3168}
3169
3170
4c4b4cd2 3171/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3172 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3173 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3174 that returns that type, then eliminate matches that don't. If
3175 CONTEXT_TYPE is void and there is at least one match that does not
3176 return void, eliminate all matches that do.
3177
14f9c5c9
AS
3178 Asks the user if there is more than one match remaining. Returns -1
3179 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3180 solely for messages. May re-arrange and modify SYMS in
3181 the process; the index returned is for the modified vector. */
14f9c5c9 3182
4c4b4cd2
PH
3183static int
3184ada_resolve_function (struct ada_symbol_info syms[],
3185 int nsyms, struct value **args, int nargs,
3186 const char *name, struct type *context_type)
14f9c5c9
AS
3187{
3188 int k;
4c4b4cd2 3189 int m; /* Number of hits */
d2e4a39e
AS
3190 struct type *fallback;
3191 struct type *return_type;
14f9c5c9
AS
3192
3193 return_type = context_type;
3194 if (context_type == NULL)
3195 fallback = builtin_type_void;
3196 else
3197 fallback = NULL;
3198
d2e4a39e 3199 m = 0;
14f9c5c9
AS
3200 while (1)
3201 {
3202 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3203 {
61ee279c 3204 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3205
3206 if (ada_args_match (syms[k].sym, args, nargs)
3207 && return_match (type, return_type))
3208 {
3209 syms[m] = syms[k];
3210 m += 1;
3211 }
3212 }
14f9c5c9 3213 if (m > 0 || return_type == fallback)
4c4b4cd2 3214 break;
14f9c5c9 3215 else
4c4b4cd2 3216 return_type = fallback;
14f9c5c9
AS
3217 }
3218
3219 if (m == 0)
3220 return -1;
3221 else if (m > 1)
3222 {
323e0a4a 3223 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3224 user_select_syms (syms, m, 1);
14f9c5c9
AS
3225 return 0;
3226 }
3227 return 0;
3228}
3229
4c4b4cd2
PH
3230/* Returns true (non-zero) iff decoded name N0 should appear before N1
3231 in a listing of choices during disambiguation (see sort_choices, below).
3232 The idea is that overloadings of a subprogram name from the
3233 same package should sort in their source order. We settle for ordering
3234 such symbols by their trailing number (__N or $N). */
3235
14f9c5c9 3236static int
4c4b4cd2 3237encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3238{
3239 if (N1 == NULL)
3240 return 0;
3241 else if (N0 == NULL)
3242 return 1;
3243 else
3244 {
3245 int k0, k1;
d2e4a39e 3246 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3247 ;
d2e4a39e 3248 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3249 ;
d2e4a39e 3250 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3251 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3252 {
3253 int n0, n1;
3254 n0 = k0;
3255 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3256 n0 -= 1;
3257 n1 = k1;
3258 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3259 n1 -= 1;
3260 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3261 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3262 }
14f9c5c9
AS
3263 return (strcmp (N0, N1) < 0);
3264 }
3265}
d2e4a39e 3266
4c4b4cd2
PH
3267/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3268 encoded names. */
3269
d2e4a39e 3270static void
4c4b4cd2 3271sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3272{
4c4b4cd2 3273 int i;
d2e4a39e 3274 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3275 {
4c4b4cd2 3276 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3277 int j;
3278
d2e4a39e 3279 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3280 {
3281 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3282 SYMBOL_LINKAGE_NAME (sym.sym)))
3283 break;
3284 syms[j + 1] = syms[j];
3285 }
d2e4a39e 3286 syms[j + 1] = sym;
14f9c5c9
AS
3287 }
3288}
3289
4c4b4cd2
PH
3290/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3291 by asking the user (if necessary), returning the number selected,
3292 and setting the first elements of SYMS items. Error if no symbols
3293 selected. */
14f9c5c9
AS
3294
3295/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3296 to be re-integrated one of these days. */
14f9c5c9
AS
3297
3298int
4c4b4cd2 3299user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3300{
3301 int i;
d2e4a39e 3302 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3303 int n_chosen;
3304 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3305 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3306
3307 if (max_results < 1)
323e0a4a 3308 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3309 if (nsyms <= 1)
3310 return nsyms;
3311
717d2f5a
JB
3312 if (select_mode == multiple_symbols_cancel)
3313 error (_("\
3314canceled because the command is ambiguous\n\
3315See set/show multiple-symbol."));
3316
3317 /* If select_mode is "all", then return all possible symbols.
3318 Only do that if more than one symbol can be selected, of course.
3319 Otherwise, display the menu as usual. */
3320 if (select_mode == multiple_symbols_all && max_results > 1)
3321 return nsyms;
3322
323e0a4a 3323 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3324 if (max_results > 1)
323e0a4a 3325 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3326
4c4b4cd2 3327 sort_choices (syms, nsyms);
14f9c5c9
AS
3328
3329 for (i = 0; i < nsyms; i += 1)
3330 {
4c4b4cd2
PH
3331 if (syms[i].sym == NULL)
3332 continue;
3333
3334 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3335 {
76a01679
JB
3336 struct symtab_and_line sal =
3337 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3338 if (sal.symtab == NULL)
3339 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3340 i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym),
3342 sal.line);
3343 else
3344 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3345 SYMBOL_PRINT_NAME (syms[i].sym),
3346 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3347 continue;
3348 }
d2e4a39e 3349 else
4c4b4cd2
PH
3350 {
3351 int is_enumeral =
3352 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3353 && SYMBOL_TYPE (syms[i].sym) != NULL
3354 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3355 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3356
3357 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3358 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3359 i + first_choice,
3360 SYMBOL_PRINT_NAME (syms[i].sym),
3361 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3362 else if (is_enumeral
3363 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3364 {
a3f17187 3365 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3366 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3367 gdb_stdout, -1, 0);
323e0a4a 3368 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3370 }
3371 else if (symtab != NULL)
3372 printf_unfiltered (is_enumeral
323e0a4a
AC
3373 ? _("[%d] %s in %s (enumeral)\n")
3374 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3375 i + first_choice,
3376 SYMBOL_PRINT_NAME (syms[i].sym),
3377 symtab->filename);
3378 else
3379 printf_unfiltered (is_enumeral
323e0a4a
AC
3380 ? _("[%d] %s (enumeral)\n")
3381 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3382 i + first_choice,
3383 SYMBOL_PRINT_NAME (syms[i].sym));
3384 }
14f9c5c9 3385 }
d2e4a39e 3386
14f9c5c9 3387 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3388 "overload-choice");
14f9c5c9
AS
3389
3390 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3391 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3392
3393 return n_chosen;
3394}
3395
3396/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3397 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3398 order in CHOICES[0 .. N-1], and return N.
3399
3400 The user types choices as a sequence of numbers on one line
3401 separated by blanks, encoding them as follows:
3402
4c4b4cd2 3403 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3404 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3405 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3406
4c4b4cd2 3407 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3408
3409 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3410 prompts (for use with the -f switch). */
14f9c5c9
AS
3411
3412int
d2e4a39e 3413get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3414 int is_all_choice, char *annotation_suffix)
14f9c5c9 3415{
d2e4a39e 3416 char *args;
0bcd0149 3417 char *prompt;
14f9c5c9
AS
3418 int n_chosen;
3419 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3420
14f9c5c9
AS
3421 prompt = getenv ("PS2");
3422 if (prompt == NULL)
0bcd0149 3423 prompt = "> ";
14f9c5c9 3424
0bcd0149 3425 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3426
14f9c5c9 3427 if (args == NULL)
323e0a4a 3428 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3429
3430 n_chosen = 0;
76a01679 3431
4c4b4cd2
PH
3432 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3433 order, as given in args. Choices are validated. */
14f9c5c9
AS
3434 while (1)
3435 {
d2e4a39e 3436 char *args2;
14f9c5c9
AS
3437 int choice, j;
3438
3439 while (isspace (*args))
4c4b4cd2 3440 args += 1;
14f9c5c9 3441 if (*args == '\0' && n_chosen == 0)
323e0a4a 3442 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3443 else if (*args == '\0')
4c4b4cd2 3444 break;
14f9c5c9
AS
3445
3446 choice = strtol (args, &args2, 10);
d2e4a39e 3447 if (args == args2 || choice < 0
4c4b4cd2 3448 || choice > n_choices + first_choice - 1)
323e0a4a 3449 error (_("Argument must be choice number"));
14f9c5c9
AS
3450 args = args2;
3451
d2e4a39e 3452 if (choice == 0)
323e0a4a 3453 error (_("cancelled"));
14f9c5c9
AS
3454
3455 if (choice < first_choice)
4c4b4cd2
PH
3456 {
3457 n_chosen = n_choices;
3458 for (j = 0; j < n_choices; j += 1)
3459 choices[j] = j;
3460 break;
3461 }
14f9c5c9
AS
3462 choice -= first_choice;
3463
d2e4a39e 3464 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3465 {
3466 }
14f9c5c9
AS
3467
3468 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3469 {
3470 int k;
3471 for (k = n_chosen - 1; k > j; k -= 1)
3472 choices[k + 1] = choices[k];
3473 choices[j + 1] = choice;
3474 n_chosen += 1;
3475 }
14f9c5c9
AS
3476 }
3477
3478 if (n_chosen > max_results)
323e0a4a 3479 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3480
14f9c5c9
AS
3481 return n_chosen;
3482}
3483
4c4b4cd2
PH
3484/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3485 on the function identified by SYM and BLOCK, and taking NARGS
3486 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3487
3488static void
d2e4a39e 3489replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3490 int oplen, struct symbol *sym,
3491 struct block *block)
14f9c5c9
AS
3492{
3493 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3494 symbol, -oplen for operator being replaced). */
d2e4a39e 3495 struct expression *newexp = (struct expression *)
14f9c5c9 3496 xmalloc (sizeof (struct expression)
4c4b4cd2 3497 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3498 struct expression *exp = *expp;
14f9c5c9
AS
3499
3500 newexp->nelts = exp->nelts + 7 - oplen;
3501 newexp->language_defn = exp->language_defn;
3502 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3503 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3504 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3505
3506 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3507 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3508
3509 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3510 newexp->elts[pc + 4].block = block;
3511 newexp->elts[pc + 5].symbol = sym;
3512
3513 *expp = newexp;
aacb1f0a 3514 xfree (exp);
d2e4a39e 3515}
14f9c5c9
AS
3516
3517/* Type-class predicates */
3518
4c4b4cd2
PH
3519/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3520 or FLOAT). */
14f9c5c9
AS
3521
3522static int
d2e4a39e 3523numeric_type_p (struct type *type)
14f9c5c9
AS
3524{
3525 if (type == NULL)
3526 return 0;
d2e4a39e
AS
3527 else
3528 {
3529 switch (TYPE_CODE (type))
4c4b4cd2
PH
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_FLT:
3533 return 1;
3534 case TYPE_CODE_RANGE:
3535 return (type == TYPE_TARGET_TYPE (type)
3536 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3537 default:
3538 return 0;
3539 }
d2e4a39e 3540 }
14f9c5c9
AS
3541}
3542
4c4b4cd2 3543/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3544
3545static int
d2e4a39e 3546integer_type_p (struct type *type)
14f9c5c9
AS
3547{
3548 if (type == NULL)
3549 return 0;
d2e4a39e
AS
3550 else
3551 {
3552 switch (TYPE_CODE (type))
4c4b4cd2
PH
3553 {
3554 case TYPE_CODE_INT:
3555 return 1;
3556 case TYPE_CODE_RANGE:
3557 return (type == TYPE_TARGET_TYPE (type)
3558 || integer_type_p (TYPE_TARGET_TYPE (type)));
3559 default:
3560 return 0;
3561 }
d2e4a39e 3562 }
14f9c5c9
AS
3563}
3564
4c4b4cd2 3565/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3566
3567static int
d2e4a39e 3568scalar_type_p (struct type *type)
14f9c5c9
AS
3569{
3570 if (type == NULL)
3571 return 0;
d2e4a39e
AS
3572 else
3573 {
3574 switch (TYPE_CODE (type))
4c4b4cd2
PH
3575 {
3576 case TYPE_CODE_INT:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_ENUM:
3579 case TYPE_CODE_FLT:
3580 return 1;
3581 default:
3582 return 0;
3583 }
d2e4a39e 3584 }
14f9c5c9
AS
3585}
3586
4c4b4cd2 3587/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3588
3589static int
d2e4a39e 3590discrete_type_p (struct type *type)
14f9c5c9
AS
3591{
3592 if (type == NULL)
3593 return 0;
d2e4a39e
AS
3594 else
3595 {
3596 switch (TYPE_CODE (type))
4c4b4cd2
PH
3597 {
3598 case TYPE_CODE_INT:
3599 case TYPE_CODE_RANGE:
3600 case TYPE_CODE_ENUM:
3601 return 1;
3602 default:
3603 return 0;
3604 }
d2e4a39e 3605 }
14f9c5c9
AS
3606}
3607
4c4b4cd2
PH
3608/* Returns non-zero if OP with operands in the vector ARGS could be
3609 a user-defined function. Errs on the side of pre-defined operators
3610 (i.e., result 0). */
14f9c5c9
AS
3611
3612static int
d2e4a39e 3613possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3614{
76a01679 3615 struct type *type0 =
df407dfe 3616 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3617 struct type *type1 =
df407dfe 3618 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3619
4c4b4cd2
PH
3620 if (type0 == NULL)
3621 return 0;
3622
14f9c5c9
AS
3623 switch (op)
3624 {
3625 default:
3626 return 0;
3627
3628 case BINOP_ADD:
3629 case BINOP_SUB:
3630 case BINOP_MUL:
3631 case BINOP_DIV:
d2e4a39e 3632 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3633
3634 case BINOP_REM:
3635 case BINOP_MOD:
3636 case BINOP_BITWISE_AND:
3637 case BINOP_BITWISE_IOR:
3638 case BINOP_BITWISE_XOR:
d2e4a39e 3639 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3640
3641 case BINOP_EQUAL:
3642 case BINOP_NOTEQUAL:
3643 case BINOP_LESS:
3644 case BINOP_GTR:
3645 case BINOP_LEQ:
3646 case BINOP_GEQ:
d2e4a39e 3647 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3648
3649 case BINOP_CONCAT:
ee90b9ab 3650 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3651
3652 case BINOP_EXP:
d2e4a39e 3653 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3654
3655 case UNOP_NEG:
3656 case UNOP_PLUS:
3657 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3658 case UNOP_ABS:
3659 return (!numeric_type_p (type0));
14f9c5c9
AS
3660
3661 }
3662}
3663\f
4c4b4cd2 3664 /* Renaming */
14f9c5c9 3665
aeb5907d
JB
3666/* NOTES:
3667
3668 1. In the following, we assume that a renaming type's name may
3669 have an ___XD suffix. It would be nice if this went away at some
3670 point.
3671 2. We handle both the (old) purely type-based representation of
3672 renamings and the (new) variable-based encoding. At some point,
3673 it is devoutly to be hoped that the former goes away
3674 (FIXME: hilfinger-2007-07-09).
3675 3. Subprogram renamings are not implemented, although the XRS
3676 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3677
3678/* If SYM encodes a renaming,
3679
3680 <renaming> renames <renamed entity>,
3681
3682 sets *LEN to the length of the renamed entity's name,
3683 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3684 the string describing the subcomponent selected from the renamed
3685 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3686 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3687 are undefined). Otherwise, returns a value indicating the category
3688 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3689 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3690 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3691 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3692 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3693 may be NULL, in which case they are not assigned.
3694
3695 [Currently, however, GCC does not generate subprogram renamings.] */
3696
3697enum ada_renaming_category
3698ada_parse_renaming (struct symbol *sym,
3699 const char **renamed_entity, int *len,
3700 const char **renaming_expr)
3701{
3702 enum ada_renaming_category kind;
3703 const char *info;
3704 const char *suffix;
3705
3706 if (sym == NULL)
3707 return ADA_NOT_RENAMING;
3708 switch (SYMBOL_CLASS (sym))
14f9c5c9 3709 {
aeb5907d
JB
3710 default:
3711 return ADA_NOT_RENAMING;
3712 case LOC_TYPEDEF:
3713 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3714 renamed_entity, len, renaming_expr);
3715 case LOC_LOCAL:
3716 case LOC_STATIC:
3717 case LOC_COMPUTED:
3718 case LOC_OPTIMIZED_OUT:
3719 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3720 if (info == NULL)
3721 return ADA_NOT_RENAMING;
3722 switch (info[5])
3723 {
3724 case '_':
3725 kind = ADA_OBJECT_RENAMING;
3726 info += 6;
3727 break;
3728 case 'E':
3729 kind = ADA_EXCEPTION_RENAMING;
3730 info += 7;
3731 break;
3732 case 'P':
3733 kind = ADA_PACKAGE_RENAMING;
3734 info += 7;
3735 break;
3736 case 'S':
3737 kind = ADA_SUBPROGRAM_RENAMING;
3738 info += 7;
3739 break;
3740 default:
3741 return ADA_NOT_RENAMING;
3742 }
14f9c5c9 3743 }
4c4b4cd2 3744
aeb5907d
JB
3745 if (renamed_entity != NULL)
3746 *renamed_entity = info;
3747 suffix = strstr (info, "___XE");
3748 if (suffix == NULL || suffix == info)
3749 return ADA_NOT_RENAMING;
3750 if (len != NULL)
3751 *len = strlen (info) - strlen (suffix);
3752 suffix += 5;
3753 if (renaming_expr != NULL)
3754 *renaming_expr = suffix;
3755 return kind;
3756}
3757
3758/* Assuming TYPE encodes a renaming according to the old encoding in
3759 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3760 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3761 ADA_NOT_RENAMING otherwise. */
3762static enum ada_renaming_category
3763parse_old_style_renaming (struct type *type,
3764 const char **renamed_entity, int *len,
3765 const char **renaming_expr)
3766{
3767 enum ada_renaming_category kind;
3768 const char *name;
3769 const char *info;
3770 const char *suffix;
14f9c5c9 3771
aeb5907d
JB
3772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3773 || TYPE_NFIELDS (type) != 1)
3774 return ADA_NOT_RENAMING;
14f9c5c9 3775
aeb5907d
JB
3776 name = type_name_no_tag (type);
3777 if (name == NULL)
3778 return ADA_NOT_RENAMING;
3779
3780 name = strstr (name, "___XR");
3781 if (name == NULL)
3782 return ADA_NOT_RENAMING;
3783 switch (name[5])
3784 {
3785 case '\0':
3786 case '_':
3787 kind = ADA_OBJECT_RENAMING;
3788 break;
3789 case 'E':
3790 kind = ADA_EXCEPTION_RENAMING;
3791 break;
3792 case 'P':
3793 kind = ADA_PACKAGE_RENAMING;
3794 break;
3795 case 'S':
3796 kind = ADA_SUBPROGRAM_RENAMING;
3797 break;
3798 default:
3799 return ADA_NOT_RENAMING;
3800 }
14f9c5c9 3801
aeb5907d
JB
3802 info = TYPE_FIELD_NAME (type, 0);
3803 if (info == NULL)
3804 return ADA_NOT_RENAMING;
3805 if (renamed_entity != NULL)
3806 *renamed_entity = info;
3807 suffix = strstr (info, "___XE");
3808 if (renaming_expr != NULL)
3809 *renaming_expr = suffix + 5;
3810 if (suffix == NULL || suffix == info)
3811 return ADA_NOT_RENAMING;
3812 if (len != NULL)
3813 *len = suffix - info;
3814 return kind;
3815}
52ce6436 3816
14f9c5c9 3817\f
d2e4a39e 3818
4c4b4cd2 3819 /* Evaluation: Function Calls */
14f9c5c9 3820
4c4b4cd2
PH
3821/* Return an lvalue containing the value VAL. This is the identity on
3822 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3823 on the stack, using and updating *SP as the stack pointer, and
3824 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3825
d2e4a39e 3826static struct value *
4c4b4cd2 3827ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3828{
c3e5cd34
PH
3829 if (! VALUE_LVAL (val))
3830 {
df407dfe 3831 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3832
3833 /* The following is taken from the structure-return code in
3834 call_function_by_hand. FIXME: Therefore, some refactoring seems
3835 indicated. */
4d1e7dd1 3836 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3837 {
3838 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3839 reserving sufficient space. */
3840 *sp -= len;
3841 if (gdbarch_frame_align_p (current_gdbarch))
3842 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3843 VALUE_ADDRESS (val) = *sp;
3844 }
3845 else
3846 {
3847 /* Stack grows upward. Align the frame, allocate space, and
3848 then again, re-align the frame. */
3849 if (gdbarch_frame_align_p (current_gdbarch))
3850 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3851 VALUE_ADDRESS (val) = *sp;
3852 *sp += len;
3853 if (gdbarch_frame_align_p (current_gdbarch))
3854 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3855 }
a84a8a0d 3856 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3857
990a07ab 3858 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3859 }
14f9c5c9
AS
3860
3861 return val;
3862}
3863
3864/* Return the value ACTUAL, converted to be an appropriate value for a
3865 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3866 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3867 values not residing in memory, updating it as needed. */
14f9c5c9 3868
a93c0eb6
JB
3869struct value *
3870ada_convert_actual (struct value *actual, struct type *formal_type0,
3871 CORE_ADDR *sp)
14f9c5c9 3872{
df407dfe 3873 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3874 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3875 struct type *formal_target =
3876 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3877 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3878 struct type *actual_target =
3879 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3880 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3881
4c4b4cd2 3882 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3883 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3884 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3885 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3886 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3887 {
a84a8a0d 3888 struct value *result;
14f9c5c9 3889 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3890 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3891 result = desc_data (actual);
14f9c5c9 3892 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3893 {
3894 if (VALUE_LVAL (actual) != lval_memory)
3895 {
3896 struct value *val;
df407dfe 3897 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3898 val = allocate_value (actual_type);
990a07ab 3899 memcpy ((char *) value_contents_raw (val),
0fd88904 3900 (char *) value_contents (actual),
4c4b4cd2
PH
3901 TYPE_LENGTH (actual_type));
3902 actual = ensure_lval (val, sp);
3903 }
a84a8a0d 3904 result = value_addr (actual);
4c4b4cd2 3905 }
a84a8a0d
JB
3906 else
3907 return actual;
3908 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3909 }
3910 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3911 return ada_value_ind (actual);
3912
3913 return actual;
3914}
3915
3916
4c4b4cd2
PH
3917/* Push a descriptor of type TYPE for array value ARR on the stack at
3918 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3919 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3920 to-descriptor type rather than a descriptor type), a struct value *
3921 representing a pointer to this descriptor. */
14f9c5c9 3922
d2e4a39e
AS
3923static struct value *
3924make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3925{
d2e4a39e
AS
3926 struct type *bounds_type = desc_bounds_type (type);
3927 struct type *desc_type = desc_base_type (type);
3928 struct value *descriptor = allocate_value (desc_type);
3929 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3930 int i;
d2e4a39e 3931
df407dfe 3932 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3933 {
0fd88904 3934 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3935 value_as_long (ada_array_bound (arr, i, 0)),
3936 desc_bound_bitpos (bounds_type, i, 0),
3937 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3938 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3939 value_as_long (ada_array_bound (arr, i, 1)),
3940 desc_bound_bitpos (bounds_type, i, 1),
3941 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3942 }
d2e4a39e 3943
4c4b4cd2 3944 bounds = ensure_lval (bounds, sp);
d2e4a39e 3945
0fd88904 3946 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3947 VALUE_ADDRESS (ensure_lval (arr, sp)),
3948 fat_pntr_data_bitpos (desc_type),
3949 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3950
0fd88904 3951 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3952 VALUE_ADDRESS (bounds),
3953 fat_pntr_bounds_bitpos (desc_type),
3954 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3955
4c4b4cd2 3956 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3957
3958 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3959 return value_addr (descriptor);
3960 else
3961 return descriptor;
3962}
14f9c5c9 3963\f
963a6417
PH
3964/* Dummy definitions for an experimental caching module that is not
3965 * used in the public sources. */
96d887e8 3966
96d887e8
PH
3967static int
3968lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3969 struct symbol **sym, struct block **block)
96d887e8
PH
3970{
3971 return 0;
3972}
3973
3974static void
3975cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3976 struct block *block)
96d887e8
PH
3977{
3978}
4c4b4cd2
PH
3979\f
3980 /* Symbol Lookup */
3981
3982/* Return the result of a standard (literal, C-like) lookup of NAME in
3983 given DOMAIN, visible from lexical block BLOCK. */
3984
3985static struct symbol *
3986standard_lookup (const char *name, const struct block *block,
3987 domain_enum domain)
3988{
3989 struct symbol *sym;
4c4b4cd2 3990
2570f2b7 3991 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3992 return sym;
2570f2b7
UW
3993 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3994 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3995 return sym;
3996}
3997
3998
3999/* Non-zero iff there is at least one non-function/non-enumeral symbol
4000 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4001 since they contend in overloading in the same way. */
4002static int
4003is_nonfunction (struct ada_symbol_info syms[], int n)
4004{
4005 int i;
4006
4007 for (i = 0; i < n; i += 1)
4008 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4009 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4010 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4011 return 1;
4012
4013 return 0;
4014}
4015
4016/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4017 struct types. Otherwise, they may not. */
14f9c5c9
AS
4018
4019static int
d2e4a39e 4020equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4021{
d2e4a39e 4022 if (type0 == type1)
14f9c5c9 4023 return 1;
d2e4a39e 4024 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4025 || TYPE_CODE (type0) != TYPE_CODE (type1))
4026 return 0;
d2e4a39e 4027 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4028 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4029 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4030 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4031 return 1;
d2e4a39e 4032
14f9c5c9
AS
4033 return 0;
4034}
4035
4036/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4037 no more defined than that of SYM1. */
14f9c5c9
AS
4038
4039static int
d2e4a39e 4040lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4041{
4042 if (sym0 == sym1)
4043 return 1;
176620f1 4044 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4045 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4046 return 0;
4047
d2e4a39e 4048 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4049 {
4050 case LOC_UNDEF:
4051 return 1;
4052 case LOC_TYPEDEF:
4053 {
4c4b4cd2
PH
4054 struct type *type0 = SYMBOL_TYPE (sym0);
4055 struct type *type1 = SYMBOL_TYPE (sym1);
4056 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4057 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4058 int len0 = strlen (name0);
4059 return
4060 TYPE_CODE (type0) == TYPE_CODE (type1)
4061 && (equiv_types (type0, type1)
4062 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4063 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4064 }
4065 case LOC_CONST:
4066 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4067 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4068 default:
4069 return 0;
14f9c5c9
AS
4070 }
4071}
4072
4c4b4cd2
PH
4073/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4074 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4075
4076static void
76a01679
JB
4077add_defn_to_vec (struct obstack *obstackp,
4078 struct symbol *sym,
2570f2b7 4079 struct block *block)
14f9c5c9
AS
4080{
4081 int i;
4082 size_t tmp;
4c4b4cd2 4083 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4084
529cad9c
PH
4085 /* Do not try to complete stub types, as the debugger is probably
4086 already scanning all symbols matching a certain name at the
4087 time when this function is called. Trying to replace the stub
4088 type by its associated full type will cause us to restart a scan
4089 which may lead to an infinite recursion. Instead, the client
4090 collecting the matching symbols will end up collecting several
4091 matches, with at least one of them complete. It can then filter
4092 out the stub ones if needed. */
4093
4c4b4cd2
PH
4094 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4095 {
4096 if (lesseq_defined_than (sym, prevDefns[i].sym))
4097 return;
4098 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4099 {
4100 prevDefns[i].sym = sym;
4101 prevDefns[i].block = block;
4c4b4cd2 4102 return;
76a01679 4103 }
4c4b4cd2
PH
4104 }
4105
4106 {
4107 struct ada_symbol_info info;
4108
4109 info.sym = sym;
4110 info.block = block;
4c4b4cd2
PH
4111 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4112 }
4113}
4114
4115/* Number of ada_symbol_info structures currently collected in
4116 current vector in *OBSTACKP. */
4117
76a01679
JB
4118static int
4119num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4120{
4121 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4122}
4123
4124/* Vector of ada_symbol_info structures currently collected in current
4125 vector in *OBSTACKP. If FINISH, close off the vector and return
4126 its final address. */
4127
76a01679 4128static struct ada_symbol_info *
4c4b4cd2
PH
4129defns_collected (struct obstack *obstackp, int finish)
4130{
4131 if (finish)
4132 return obstack_finish (obstackp);
4133 else
4134 return (struct ada_symbol_info *) obstack_base (obstackp);
4135}
4136
96d887e8
PH
4137/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4138 Check the global symbols if GLOBAL, the static symbols if not.
4139 Do wild-card match if WILD. */
4c4b4cd2 4140
96d887e8
PH
4141static struct partial_symbol *
4142ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4143 int global, domain_enum namespace, int wild)
4c4b4cd2 4144{
96d887e8
PH
4145 struct partial_symbol **start;
4146 int name_len = strlen (name);
4147 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4148 int i;
4c4b4cd2 4149
96d887e8 4150 if (length == 0)
4c4b4cd2 4151 {
96d887e8 4152 return (NULL);
4c4b4cd2
PH
4153 }
4154
96d887e8
PH
4155 start = (global ?
4156 pst->objfile->global_psymbols.list + pst->globals_offset :
4157 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4158
96d887e8 4159 if (wild)
4c4b4cd2 4160 {
96d887e8
PH
4161 for (i = 0; i < length; i += 1)
4162 {
4163 struct partial_symbol *psym = start[i];
4c4b4cd2 4164
5eeb2539
AR
4165 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4166 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4167 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4168 return psym;
4169 }
4170 return NULL;
4c4b4cd2 4171 }
96d887e8
PH
4172 else
4173 {
4174 if (global)
4175 {
4176 int U;
4177 i = 0;
4178 U = length - 1;
4179 while (U - i > 4)
4180 {
4181 int M = (U + i) >> 1;
4182 struct partial_symbol *psym = start[M];
4183 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4184 i = M + 1;
4185 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4186 U = M - 1;
4187 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4188 i = M + 1;
4189 else
4190 U = M;
4191 }
4192 }
4193 else
4194 i = 0;
4c4b4cd2 4195
96d887e8
PH
4196 while (i < length)
4197 {
4198 struct partial_symbol *psym = start[i];
4c4b4cd2 4199
5eeb2539
AR
4200 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4201 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4202 {
4203 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4204
96d887e8
PH
4205 if (cmp < 0)
4206 {
4207 if (global)
4208 break;
4209 }
4210 else if (cmp == 0
4211 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4212 + name_len))
96d887e8
PH
4213 return psym;
4214 }
4215 i += 1;
4216 }
4c4b4cd2 4217
96d887e8
PH
4218 if (global)
4219 {
4220 int U;
4221 i = 0;
4222 U = length - 1;
4223 while (U - i > 4)
4224 {
4225 int M = (U + i) >> 1;
4226 struct partial_symbol *psym = start[M];
4227 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4228 i = M + 1;
4229 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4230 U = M - 1;
4231 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4232 i = M + 1;
4233 else
4234 U = M;
4235 }
4236 }
4237 else
4238 i = 0;
4c4b4cd2 4239
96d887e8
PH
4240 while (i < length)
4241 {
4242 struct partial_symbol *psym = start[i];
4c4b4cd2 4243
5eeb2539
AR
4244 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4245 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4246 {
4247 int cmp;
4c4b4cd2 4248
96d887e8
PH
4249 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4250 if (cmp == 0)
4251 {
4252 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4253 if (cmp == 0)
4254 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4255 name_len);
96d887e8 4256 }
4c4b4cd2 4257
96d887e8
PH
4258 if (cmp < 0)
4259 {
4260 if (global)
4261 break;
4262 }
4263 else if (cmp == 0
4264 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4265 + name_len + 5))
96d887e8
PH
4266 return psym;
4267 }
4268 i += 1;
4269 }
4270 }
4271 return NULL;
4c4b4cd2
PH
4272}
4273
96d887e8 4274/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4275
96d887e8
PH
4276static struct symtab *
4277symtab_for_sym (struct symbol *sym)
4c4b4cd2 4278{
96d887e8
PH
4279 struct symtab *s;
4280 struct objfile *objfile;
4281 struct block *b;
4282 struct symbol *tmp_sym;
4283 struct dict_iterator iter;
4284 int j;
4c4b4cd2 4285
11309657 4286 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4287 {
4288 switch (SYMBOL_CLASS (sym))
4289 {
4290 case LOC_CONST:
4291 case LOC_STATIC:
4292 case LOC_TYPEDEF:
4293 case LOC_REGISTER:
4294 case LOC_LABEL:
4295 case LOC_BLOCK:
4296 case LOC_CONST_BYTES:
76a01679
JB
4297 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4298 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4299 return s;
4300 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4301 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4302 return s;
96d887e8
PH
4303 break;
4304 default:
4305 break;
4306 }
4307 switch (SYMBOL_CLASS (sym))
4308 {
4309 case LOC_REGISTER:
4310 case LOC_ARG:
4311 case LOC_REF_ARG:
96d887e8
PH
4312 case LOC_REGPARM_ADDR:
4313 case LOC_LOCAL:
4314 case LOC_TYPEDEF:
96d887e8 4315 case LOC_COMPUTED:
76a01679
JB
4316 for (j = FIRST_LOCAL_BLOCK;
4317 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4318 {
4319 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4320 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4321 return s;
4322 }
4323 break;
96d887e8
PH
4324 default:
4325 break;
4326 }
4327 }
4328 return NULL;
4c4b4cd2
PH
4329}
4330
96d887e8
PH
4331/* Return a minimal symbol matching NAME according to Ada decoding
4332 rules. Returns NULL if there is no such minimal symbol. Names
4333 prefixed with "standard__" are handled specially: "standard__" is
4334 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4335
96d887e8
PH
4336struct minimal_symbol *
4337ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4338{
4c4b4cd2 4339 struct objfile *objfile;
96d887e8
PH
4340 struct minimal_symbol *msymbol;
4341 int wild_match;
4c4b4cd2 4342
96d887e8 4343 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4344 {
96d887e8 4345 name += sizeof ("standard__") - 1;
4c4b4cd2 4346 wild_match = 0;
4c4b4cd2
PH
4347 }
4348 else
96d887e8 4349 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4350
96d887e8
PH
4351 ALL_MSYMBOLS (objfile, msymbol)
4352 {
4353 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4354 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4355 return msymbol;
4356 }
4c4b4cd2 4357
96d887e8
PH
4358 return NULL;
4359}
4c4b4cd2 4360
96d887e8
PH
4361/* For all subprograms that statically enclose the subprogram of the
4362 selected frame, add symbols matching identifier NAME in DOMAIN
4363 and their blocks to the list of data in OBSTACKP, as for
4364 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4365 wildcard prefix. */
4c4b4cd2 4366
96d887e8
PH
4367static void
4368add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4369 const char *name, domain_enum namespace,
96d887e8
PH
4370 int wild_match)
4371{
96d887e8 4372}
14f9c5c9 4373
96d887e8
PH
4374/* True if TYPE is definitely an artificial type supplied to a symbol
4375 for which no debugging information was given in the symbol file. */
14f9c5c9 4376
96d887e8
PH
4377static int
4378is_nondebugging_type (struct type *type)
4379{
4380 char *name = ada_type_name (type);
4381 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4382}
4c4b4cd2 4383
96d887e8
PH
4384/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4385 duplicate other symbols in the list (The only case I know of where
4386 this happens is when object files containing stabs-in-ecoff are
4387 linked with files containing ordinary ecoff debugging symbols (or no
4388 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4389 Returns the number of items in the modified list. */
4c4b4cd2 4390
96d887e8
PH
4391static int
4392remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4393{
4394 int i, j;
4c4b4cd2 4395
96d887e8
PH
4396 i = 0;
4397 while (i < nsyms)
4398 {
4399 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4400 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4401 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4402 {
4403 for (j = 0; j < nsyms; j += 1)
4404 {
4405 if (i != j
4406 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4407 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4408 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4409 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4410 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4411 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4c4b4cd2 4412 {
96d887e8
PH
4413 int k;
4414 for (k = i + 1; k < nsyms; k += 1)
76a01679 4415 syms[k - 1] = syms[k];
96d887e8
PH
4416 nsyms -= 1;
4417 goto NextSymbol;
4c4b4cd2 4418 }
4c4b4cd2 4419 }
4c4b4cd2 4420 }
96d887e8
PH
4421 i += 1;
4422 NextSymbol:
4423 ;
14f9c5c9 4424 }
96d887e8 4425 return nsyms;
14f9c5c9
AS
4426}
4427
96d887e8
PH
4428/* Given a type that corresponds to a renaming entity, use the type name
4429 to extract the scope (package name or function name, fully qualified,
4430 and following the GNAT encoding convention) where this renaming has been
4431 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4432
96d887e8
PH
4433static char *
4434xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4435{
96d887e8
PH
4436 /* The renaming types adhere to the following convention:
4437 <scope>__<rename>___<XR extension>.
4438 So, to extract the scope, we search for the "___XR" extension,
4439 and then backtrack until we find the first "__". */
76a01679 4440
96d887e8
PH
4441 const char *name = type_name_no_tag (renaming_type);
4442 char *suffix = strstr (name, "___XR");
4443 char *last;
4444 int scope_len;
4445 char *scope;
14f9c5c9 4446
96d887e8
PH
4447 /* Now, backtrack a bit until we find the first "__". Start looking
4448 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4449
96d887e8
PH
4450 for (last = suffix - 3; last > name; last--)
4451 if (last[0] == '_' && last[1] == '_')
4452 break;
76a01679 4453
96d887e8 4454 /* Make a copy of scope and return it. */
14f9c5c9 4455
96d887e8
PH
4456 scope_len = last - name;
4457 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4458
96d887e8
PH
4459 strncpy (scope, name, scope_len);
4460 scope[scope_len] = '\0';
4c4b4cd2 4461
96d887e8 4462 return scope;
4c4b4cd2
PH
4463}
4464
96d887e8 4465/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4466
96d887e8
PH
4467static int
4468is_package_name (const char *name)
4c4b4cd2 4469{
96d887e8
PH
4470 /* Here, We take advantage of the fact that no symbols are generated
4471 for packages, while symbols are generated for each function.
4472 So the condition for NAME represent a package becomes equivalent
4473 to NAME not existing in our list of symbols. There is only one
4474 small complication with library-level functions (see below). */
4c4b4cd2 4475
96d887e8 4476 char *fun_name;
76a01679 4477
96d887e8
PH
4478 /* If it is a function that has not been defined at library level,
4479 then we should be able to look it up in the symbols. */
4480 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4481 return 0;
14f9c5c9 4482
96d887e8
PH
4483 /* Library-level function names start with "_ada_". See if function
4484 "_ada_" followed by NAME can be found. */
14f9c5c9 4485
96d887e8 4486 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4487 functions names cannot contain "__" in them. */
96d887e8
PH
4488 if (strstr (name, "__") != NULL)
4489 return 0;
4c4b4cd2 4490
b435e160 4491 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4492
96d887e8
PH
4493 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4494}
14f9c5c9 4495
96d887e8 4496/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4497 not visible from FUNCTION_NAME. */
14f9c5c9 4498
96d887e8 4499static int
aeb5907d 4500old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4501{
aeb5907d
JB
4502 char *scope;
4503
4504 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4505 return 0;
4506
4507 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4508
96d887e8 4509 make_cleanup (xfree, scope);
14f9c5c9 4510
96d887e8
PH
4511 /* If the rename has been defined in a package, then it is visible. */
4512 if (is_package_name (scope))
aeb5907d 4513 return 0;
14f9c5c9 4514
96d887e8
PH
4515 /* Check that the rename is in the current function scope by checking
4516 that its name starts with SCOPE. */
76a01679 4517
96d887e8
PH
4518 /* If the function name starts with "_ada_", it means that it is
4519 a library-level function. Strip this prefix before doing the
4520 comparison, as the encoding for the renaming does not contain
4521 this prefix. */
4522 if (strncmp (function_name, "_ada_", 5) == 0)
4523 function_name += 5;
f26caa11 4524
aeb5907d 4525 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4526}
4527
aeb5907d
JB
4528/* Remove entries from SYMS that corresponds to a renaming entity that
4529 is not visible from the function associated with CURRENT_BLOCK or
4530 that is superfluous due to the presence of more specific renaming
4531 information. Places surviving symbols in the initial entries of
4532 SYMS and returns the number of surviving symbols.
96d887e8
PH
4533
4534 Rationale:
aeb5907d
JB
4535 First, in cases where an object renaming is implemented as a
4536 reference variable, GNAT may produce both the actual reference
4537 variable and the renaming encoding. In this case, we discard the
4538 latter.
4539
4540 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4541 entity. Unfortunately, STABS currently does not support the definition
4542 of types that are local to a given lexical block, so all renamings types
4543 are emitted at library level. As a consequence, if an application
4544 contains two renaming entities using the same name, and a user tries to
4545 print the value of one of these entities, the result of the ada symbol
4546 lookup will also contain the wrong renaming type.
f26caa11 4547
96d887e8
PH
4548 This function partially covers for this limitation by attempting to
4549 remove from the SYMS list renaming symbols that should be visible
4550 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4551 method with the current information available. The implementation
4552 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4553
4554 - When the user tries to print a rename in a function while there
4555 is another rename entity defined in a package: Normally, the
4556 rename in the function has precedence over the rename in the
4557 package, so the latter should be removed from the list. This is
4558 currently not the case.
4559
4560 - This function will incorrectly remove valid renames if
4561 the CURRENT_BLOCK corresponds to a function which symbol name
4562 has been changed by an "Export" pragma. As a consequence,
4563 the user will be unable to print such rename entities. */
4c4b4cd2 4564
14f9c5c9 4565static int
aeb5907d
JB
4566remove_irrelevant_renamings (struct ada_symbol_info *syms,
4567 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4568{
4569 struct symbol *current_function;
4570 char *current_function_name;
4571 int i;
aeb5907d
JB
4572 int is_new_style_renaming;
4573
4574 /* If there is both a renaming foo___XR... encoded as a variable and
4575 a simple variable foo in the same block, discard the latter.
4576 First, zero out such symbols, then compress. */
4577 is_new_style_renaming = 0;
4578 for (i = 0; i < nsyms; i += 1)
4579 {
4580 struct symbol *sym = syms[i].sym;
4581 struct block *block = syms[i].block;
4582 const char *name;
4583 const char *suffix;
4584
4585 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4586 continue;
4587 name = SYMBOL_LINKAGE_NAME (sym);
4588 suffix = strstr (name, "___XR");
4589
4590 if (suffix != NULL)
4591 {
4592 int name_len = suffix - name;
4593 int j;
4594 is_new_style_renaming = 1;
4595 for (j = 0; j < nsyms; j += 1)
4596 if (i != j && syms[j].sym != NULL
4597 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4598 name_len) == 0
4599 && block == syms[j].block)
4600 syms[j].sym = NULL;
4601 }
4602 }
4603 if (is_new_style_renaming)
4604 {
4605 int j, k;
4606
4607 for (j = k = 0; j < nsyms; j += 1)
4608 if (syms[j].sym != NULL)
4609 {
4610 syms[k] = syms[j];
4611 k += 1;
4612 }
4613 return k;
4614 }
4c4b4cd2
PH
4615
4616 /* Extract the function name associated to CURRENT_BLOCK.
4617 Abort if unable to do so. */
76a01679 4618
4c4b4cd2
PH
4619 if (current_block == NULL)
4620 return nsyms;
76a01679 4621
7f0df278 4622 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4623 if (current_function == NULL)
4624 return nsyms;
4625
4626 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4627 if (current_function_name == NULL)
4628 return nsyms;
4629
4630 /* Check each of the symbols, and remove it from the list if it is
4631 a type corresponding to a renaming that is out of the scope of
4632 the current block. */
4633
4634 i = 0;
4635 while (i < nsyms)
4636 {
aeb5907d
JB
4637 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4638 == ADA_OBJECT_RENAMING
4639 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4640 {
4641 int j;
aeb5907d 4642 for (j = i + 1; j < nsyms; j += 1)
76a01679 4643 syms[j - 1] = syms[j];
4c4b4cd2
PH
4644 nsyms -= 1;
4645 }
4646 else
4647 i += 1;
4648 }
4649
4650 return nsyms;
4651}
4652
4653/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4654 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4655 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4656 indicating the symbols found and the blocks and symbol tables (if
4657 any) in which they were found. This vector are transient---good only to
4658 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4659 symbol match within the nest of blocks whose innermost member is BLOCK0,
4660 is the one match returned (no other matches in that or
4661 enclosing blocks is returned). If there are any matches in or
4662 surrounding BLOCK0, then these alone are returned. Otherwise, the
4663 search extends to global and file-scope (static) symbol tables.
4664 Names prefixed with "standard__" are handled specially: "standard__"
4665 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4666
4667int
4c4b4cd2 4668ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4669 domain_enum namespace,
4670 struct ada_symbol_info **results)
14f9c5c9
AS
4671{
4672 struct symbol *sym;
4673 struct symtab *s;
4674 struct partial_symtab *ps;
4675 struct blockvector *bv;
4676 struct objfile *objfile;
14f9c5c9 4677 struct block *block;
4c4b4cd2 4678 const char *name;
14f9c5c9 4679 struct minimal_symbol *msymbol;
4c4b4cd2 4680 int wild_match;
14f9c5c9 4681 int cacheIfUnique;
4c4b4cd2
PH
4682 int block_depth;
4683 int ndefns;
14f9c5c9 4684
4c4b4cd2
PH
4685 obstack_free (&symbol_list_obstack, NULL);
4686 obstack_init (&symbol_list_obstack);
14f9c5c9 4687
14f9c5c9
AS
4688 cacheIfUnique = 0;
4689
4690 /* Search specified block and its superiors. */
4691
4c4b4cd2
PH
4692 wild_match = (strstr (name0, "__") == NULL);
4693 name = name0;
76a01679
JB
4694 block = (struct block *) block0; /* FIXME: No cast ought to be
4695 needed, but adding const will
4696 have a cascade effect. */
4c4b4cd2
PH
4697 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4698 {
4699 wild_match = 0;
4700 block = NULL;
4701 name = name0 + sizeof ("standard__") - 1;
4702 }
4703
4704 block_depth = 0;
14f9c5c9
AS
4705 while (block != NULL)
4706 {
4c4b4cd2 4707 block_depth += 1;
76a01679 4708 ada_add_block_symbols (&symbol_list_obstack, block, name,
2570f2b7 4709 namespace, NULL, wild_match);
14f9c5c9 4710
4c4b4cd2
PH
4711 /* If we found a non-function match, assume that's the one. */
4712 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
76a01679 4713 num_defns_collected (&symbol_list_obstack)))
4c4b4cd2 4714 goto done;
14f9c5c9
AS
4715
4716 block = BLOCK_SUPERBLOCK (block);
4717 }
4718
4c4b4cd2
PH
4719 /* If no luck so far, try to find NAME as a local symbol in some lexically
4720 enclosing subprogram. */
4721 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4722 add_symbols_from_enclosing_procs (&symbol_list_obstack,
76a01679 4723 name, namespace, wild_match);
4c4b4cd2
PH
4724
4725 /* If we found ANY matches among non-global symbols, we're done. */
14f9c5c9 4726
4c4b4cd2 4727 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4728 goto done;
d2e4a39e 4729
14f9c5c9 4730 cacheIfUnique = 1;
2570f2b7 4731 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4732 {
4733 if (sym != NULL)
2570f2b7 4734 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4735 goto done;
4736 }
14f9c5c9
AS
4737
4738 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4c4b4cd2 4739 tables, and psymtab's. */
14f9c5c9 4740
11309657 4741 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e
AS
4742 {
4743 QUIT;
d2e4a39e
AS
4744 bv = BLOCKVECTOR (s);
4745 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
76a01679 4746 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
2570f2b7 4747 objfile, wild_match);
d2e4a39e 4748 }
14f9c5c9 4749
4c4b4cd2 4750 if (namespace == VAR_DOMAIN)
14f9c5c9
AS
4751 {
4752 ALL_MSYMBOLS (objfile, msymbol)
d2e4a39e 4753 {
4c4b4cd2
PH
4754 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4755 {
4756 switch (MSYMBOL_TYPE (msymbol))
4757 {
4758 case mst_solib_trampoline:
4759 break;
4760 default:
4761 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4762 if (s != NULL)
4763 {
4764 int ndefns0 = num_defns_collected (&symbol_list_obstack);
5823c3ef
JB
4765 char *raw_name = SYMBOL_LINKAGE_NAME (msymbol);
4766 char *name1;
4767 const char *suffix;
4c4b4cd2 4768 QUIT;
5823c3ef
JB
4769 suffix = strrchr (raw_name, '.');
4770 if (suffix == NULL)
4771 suffix = strrchr (raw_name, '$');
4772 if (suffix != NULL && is_digits_suffix (suffix + 1))
4773 {
4774 name1 = alloca (suffix - raw_name + 1);
4775 strncpy (name1, raw_name, suffix - raw_name);
4776 name1[suffix - raw_name] = '\0';
4777 }
4778 else
4779 name1 = raw_name;
4780
4c4b4cd2
PH
4781 bv = BLOCKVECTOR (s);
4782 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4783 ada_add_block_symbols (&symbol_list_obstack, block,
5823c3ef 4784 name1, namespace, objfile, 0);
76a01679 4785
4c4b4cd2
PH
4786 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4787 {
4788 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4789 ada_add_block_symbols (&symbol_list_obstack, block,
5823c3ef 4790 name1, namespace, objfile, 0);
4c4b4cd2
PH
4791 }
4792 }
4793 }
4794 }
d2e4a39e 4795 }
14f9c5c9 4796 }
d2e4a39e 4797
14f9c5c9 4798 ALL_PSYMTABS (objfile, ps)
d2e4a39e
AS
4799 {
4800 QUIT;
4801 if (!ps->readin
4c4b4cd2 4802 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
d2e4a39e 4803 {
4c4b4cd2
PH
4804 s = PSYMTAB_TO_SYMTAB (ps);
4805 if (!s->primary)
4806 continue;
4807 bv = BLOCKVECTOR (s);
4808 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4809 ada_add_block_symbols (&symbol_list_obstack, block, name,
2570f2b7 4810 namespace, objfile, wild_match);
d2e4a39e
AS
4811 }
4812 }
4813
4c4b4cd2 4814 /* Now add symbols from all per-file blocks if we've gotten no hits
14f9c5c9 4815 (Not strictly correct, but perhaps better than an error).
4c4b4cd2 4816 Do the symtabs first, then check the psymtabs. */
d2e4a39e 4817
4c4b4cd2 4818 if (num_defns_collected (&symbol_list_obstack) == 0)
14f9c5c9
AS
4819 {
4820
11309657 4821 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e 4822 {
4c4b4cd2 4823 QUIT;
4c4b4cd2
PH
4824 bv = BLOCKVECTOR (s);
4825 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679 4826 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
2570f2b7 4827 objfile, wild_match);
d2e4a39e
AS
4828 }
4829
14f9c5c9 4830 ALL_PSYMTABS (objfile, ps)
d2e4a39e 4831 {
4c4b4cd2
PH
4832 QUIT;
4833 if (!ps->readin
4834 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4835 {
4836 s = PSYMTAB_TO_SYMTAB (ps);
4837 bv = BLOCKVECTOR (s);
4838 if (!s->primary)
4839 continue;
4840 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679 4841 ada_add_block_symbols (&symbol_list_obstack, block, name,
2570f2b7 4842 namespace, objfile, wild_match);
4c4b4cd2 4843 }
d2e4a39e
AS
4844 }
4845 }
14f9c5c9 4846
4c4b4cd2
PH
4847done:
4848 ndefns = num_defns_collected (&symbol_list_obstack);
4849 *results = defns_collected (&symbol_list_obstack, 1);
4850
4851 ndefns = remove_extra_symbols (*results, ndefns);
4852
d2e4a39e 4853 if (ndefns == 0)
2570f2b7 4854 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4855
4c4b4cd2 4856 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4857 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4858
aeb5907d 4859 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4860
14f9c5c9
AS
4861 return ndefns;
4862}
4863
d2e4a39e 4864struct symbol *
aeb5907d 4865ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4866 domain_enum namespace, struct block **block_found)
14f9c5c9 4867{
4c4b4cd2 4868 struct ada_symbol_info *candidates;
14f9c5c9
AS
4869 int n_candidates;
4870
aeb5907d 4871 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4872
4873 if (n_candidates == 0)
4874 return NULL;
4c4b4cd2 4875
aeb5907d
JB
4876 if (block_found != NULL)
4877 *block_found = candidates[0].block;
4c4b4cd2 4878
21b556f4 4879 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4880}
4881
4882/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4883 scope and in global scopes, or NULL if none. NAME is folded and
4884 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4885 choosing the first symbol if there are multiple choices.
4886 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4887 table in which the symbol was found (in both cases, these
4888 assignments occur only if the pointers are non-null). */
4889struct symbol *
4890ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4891 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4892{
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4895
4896 return
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4898 block0, namespace, NULL);
4c4b4cd2 4899}
14f9c5c9 4900
4c4b4cd2
PH
4901static struct symbol *
4902ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4903 const char *linkage_name,
4904 const struct block *block,
21b556f4 4905 const domain_enum domain)
4c4b4cd2
PH
4906{
4907 if (linkage_name == NULL)
4908 linkage_name = name;
76a01679 4909 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4910 NULL);
14f9c5c9
AS
4911}
4912
4913
4c4b4cd2
PH
4914/* True iff STR is a possible encoded suffix of a normal Ada name
4915 that is to be ignored for matching purposes. Suffixes of parallel
4916 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4917 are given by any of the regular expressions:
4c4b4cd2 4918
babe1480
JB
4919 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4920 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4921 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4922 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4923
4924 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4925 match is performed. This sequence is used to differentiate homonyms,
4926 is an optional part of a valid name suffix. */
4c4b4cd2 4927
14f9c5c9 4928static int
d2e4a39e 4929is_name_suffix (const char *str)
14f9c5c9
AS
4930{
4931 int k;
4c4b4cd2
PH
4932 const char *matching;
4933 const int len = strlen (str);
4934
babe1480
JB
4935 /* Skip optional leading __[0-9]+. */
4936
4c4b4cd2
PH
4937 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4938 {
babe1480
JB
4939 str += 3;
4940 while (isdigit (str[0]))
4941 str += 1;
4c4b4cd2 4942 }
babe1480
JB
4943
4944 /* [.$][0-9]+ */
4c4b4cd2 4945
babe1480 4946 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4947 {
babe1480 4948 matching = str + 1;
4c4b4cd2
PH
4949 while (isdigit (matching[0]))
4950 matching += 1;
4951 if (matching[0] == '\0')
4952 return 1;
4953 }
4954
4955 /* ___[0-9]+ */
babe1480 4956
4c4b4cd2
PH
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4958 {
4959 matching = str + 3;
4960 while (isdigit (matching[0]))
4961 matching += 1;
4962 if (matching[0] == '\0')
4963 return 1;
4964 }
4965
529cad9c
PH
4966#if 0
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4973 name ends with N.
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4980 return 1;
4981#endif
4982
4983 /* _E[0-9]+[bs]$ */
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4985 {
4986 matching = str + 3;
4987 while (isdigit (matching[0]))
4988 matching += 1;
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4991 return 1;
4992 }
4993
4c4b4cd2
PH
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4999 if (str[0] == 'X')
5000 {
5001 str += 1;
d2e4a39e 5002 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5003 {
5004 if (str[0] != 'n' && str[0] != 'b')
5005 return 0;
5006 str += 1;
5007 }
14f9c5c9 5008 }
babe1480 5009
14f9c5c9
AS
5010 if (str[0] == '\000')
5011 return 1;
babe1480 5012
d2e4a39e 5013 if (str[0] == '_')
14f9c5c9
AS
5014 {
5015 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5016 return 0;
d2e4a39e 5017 if (str[2] == '_')
4c4b4cd2 5018 {
61ee279c
PH
5019 if (strcmp (str + 3, "JM") == 0)
5020 return 1;
5021 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5022 the LJM suffix in favor of the JM one. But we will
5023 still accept LJM as a valid suffix for a reasonable
5024 amount of time, just to allow ourselves to debug programs
5025 compiled using an older version of GNAT. */
4c4b4cd2
PH
5026 if (strcmp (str + 3, "LJM") == 0)
5027 return 1;
5028 if (str[3] != 'X')
5029 return 0;
1265e4aa
JB
5030 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5031 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5032 return 1;
5033 if (str[4] == 'R' && str[5] != 'T')
5034 return 1;
5035 return 0;
5036 }
5037 if (!isdigit (str[2]))
5038 return 0;
5039 for (k = 3; str[k] != '\0'; k += 1)
5040 if (!isdigit (str[k]) && str[k] != '_')
5041 return 0;
14f9c5c9
AS
5042 return 1;
5043 }
4c4b4cd2 5044 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5045 {
4c4b4cd2
PH
5046 for (k = 2; str[k] != '\0'; k += 1)
5047 if (!isdigit (str[k]) && str[k] != '_')
5048 return 0;
14f9c5c9
AS
5049 return 1;
5050 }
5051 return 0;
5052}
d2e4a39e 5053
5823c3ef
JB
5054/* Return nonzero if the given string contains only digits.
5055 The empty string also matches. */
4c4b4cd2
PH
5056
5057static int
5823c3ef 5058is_digits_suffix (const char *str)
4c4b4cd2 5059{
4c4b4cd2
PH
5060 while (isdigit (str[0]))
5061 str++;
5062 return (str[0] == '\0');
5063}
5064
aeb5907d
JB
5065/* Return non-zero if the string starting at NAME and ending before
5066 NAME_END contains no capital letters. */
529cad9c
PH
5067
5068static int
5069is_valid_name_for_wild_match (const char *name0)
5070{
5071 const char *decoded_name = ada_decode (name0);
5072 int i;
5073
5823c3ef
JB
5074 /* If the decoded name starts with an angle bracket, it means that
5075 NAME0 does not follow the GNAT encoding format. It should then
5076 not be allowed as a possible wild match. */
5077 if (decoded_name[0] == '<')
5078 return 0;
5079
529cad9c
PH
5080 for (i=0; decoded_name[i] != '\0'; i++)
5081 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5082 return 0;
5083
5084 return 1;
5085}
5086
4c4b4cd2
PH
5087/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5088 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5089 informational suffixes of NAME (i.e., for which is_name_suffix is
5090 true). */
5091
14f9c5c9 5092static int
4c4b4cd2 5093wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 5094{
5823c3ef
JB
5095 char* match;
5096 const char* start;
5097 start = name0;
5098 while (1)
14f9c5c9 5099 {
5823c3ef
JB
5100 match = strstr (start, patn0);
5101 if (match == NULL)
5102 return 0;
5103 if ((match == name0
5104 || match[-1] == '.'
5105 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5106 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5107 && is_name_suffix (match + patn_len))
5108 return (match == name0 || is_valid_name_for_wild_match (name0));
5109 start = match + 1;
96d887e8 5110 }
96d887e8
PH
5111}
5112
5113
5114/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5115 vector *defn_symbols, updating the list of symbols in OBSTACKP
5116 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5117 OBJFILE is the section containing BLOCK.
5118 SYMTAB is recorded with each symbol added. */
5119
5120static void
5121ada_add_block_symbols (struct obstack *obstackp,
76a01679 5122 struct block *block, const char *name,
96d887e8 5123 domain_enum domain, struct objfile *objfile,
2570f2b7 5124 int wild)
96d887e8
PH
5125{
5126 struct dict_iterator iter;
5127 int name_len = strlen (name);
5128 /* A matching argument symbol, if any. */
5129 struct symbol *arg_sym;
5130 /* Set true when we find a matching non-argument symbol. */
5131 int found_sym;
5132 struct symbol *sym;
5133
5134 arg_sym = NULL;
5135 found_sym = 0;
5136 if (wild)
5137 {
5138 struct symbol *sym;
5139 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5140 {
5eeb2539
AR
5141 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5142 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5143 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5144 {
2a2d4dc3
AS
5145 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5146 continue;
5147 else if (SYMBOL_IS_ARGUMENT (sym))
5148 arg_sym = sym;
5149 else
5150 {
76a01679
JB
5151 found_sym = 1;
5152 add_defn_to_vec (obstackp,
5153 fixup_symbol_section (sym, objfile),
2570f2b7 5154 block);
76a01679
JB
5155 }
5156 }
5157 }
96d887e8
PH
5158 }
5159 else
5160 {
5161 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5162 {
5eeb2539
AR
5163 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5164 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5165 {
5166 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5167 if (cmp == 0
5168 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5169 {
2a2d4dc3
AS
5170 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5171 {
5172 if (SYMBOL_IS_ARGUMENT (sym))
5173 arg_sym = sym;
5174 else
5175 {
5176 found_sym = 1;
5177 add_defn_to_vec (obstackp,
5178 fixup_symbol_section (sym, objfile),
5179 block);
5180 }
5181 }
76a01679
JB
5182 }
5183 }
5184 }
96d887e8
PH
5185 }
5186
5187 if (!found_sym && arg_sym != NULL)
5188 {
76a01679
JB
5189 add_defn_to_vec (obstackp,
5190 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5191 block);
96d887e8
PH
5192 }
5193
5194 if (!wild)
5195 {
5196 arg_sym = NULL;
5197 found_sym = 0;
5198
5199 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5200 {
5eeb2539
AR
5201 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5202 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5203 {
5204 int cmp;
5205
5206 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5207 if (cmp == 0)
5208 {
5209 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5210 if (cmp == 0)
5211 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5212 name_len);
5213 }
5214
5215 if (cmp == 0
5216 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5217 {
2a2d4dc3
AS
5218 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5219 {
5220 if (SYMBOL_IS_ARGUMENT (sym))
5221 arg_sym = sym;
5222 else
5223 {
5224 found_sym = 1;
5225 add_defn_to_vec (obstackp,
5226 fixup_symbol_section (sym, objfile),
5227 block);
5228 }
5229 }
76a01679
JB
5230 }
5231 }
76a01679 5232 }
96d887e8
PH
5233
5234 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5235 They aren't parameters, right? */
5236 if (!found_sym && arg_sym != NULL)
5237 {
5238 add_defn_to_vec (obstackp,
76a01679 5239 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5240 block);
96d887e8
PH
5241 }
5242 }
5243}
5244\f
41d27058
JB
5245
5246 /* Symbol Completion */
5247
5248/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5249 name in a form that's appropriate for the completion. The result
5250 does not need to be deallocated, but is only good until the next call.
5251
5252 TEXT_LEN is equal to the length of TEXT.
5253 Perform a wild match if WILD_MATCH is set.
5254 ENCODED should be set if TEXT represents the start of a symbol name
5255 in its encoded form. */
5256
5257static const char *
5258symbol_completion_match (const char *sym_name,
5259 const char *text, int text_len,
5260 int wild_match, int encoded)
5261{
5262 char *result;
5263 const int verbatim_match = (text[0] == '<');
5264 int match = 0;
5265
5266 if (verbatim_match)
5267 {
5268 /* Strip the leading angle bracket. */
5269 text = text + 1;
5270 text_len--;
5271 }
5272
5273 /* First, test against the fully qualified name of the symbol. */
5274
5275 if (strncmp (sym_name, text, text_len) == 0)
5276 match = 1;
5277
5278 if (match && !encoded)
5279 {
5280 /* One needed check before declaring a positive match is to verify
5281 that iff we are doing a verbatim match, the decoded version
5282 of the symbol name starts with '<'. Otherwise, this symbol name
5283 is not a suitable completion. */
5284 const char *sym_name_copy = sym_name;
5285 int has_angle_bracket;
5286
5287 sym_name = ada_decode (sym_name);
5288 has_angle_bracket = (sym_name[0] == '<');
5289 match = (has_angle_bracket == verbatim_match);
5290 sym_name = sym_name_copy;
5291 }
5292
5293 if (match && !verbatim_match)
5294 {
5295 /* When doing non-verbatim match, another check that needs to
5296 be done is to verify that the potentially matching symbol name
5297 does not include capital letters, because the ada-mode would
5298 not be able to understand these symbol names without the
5299 angle bracket notation. */
5300 const char *tmp;
5301
5302 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5303 if (*tmp != '\0')
5304 match = 0;
5305 }
5306
5307 /* Second: Try wild matching... */
5308
5309 if (!match && wild_match)
5310 {
5311 /* Since we are doing wild matching, this means that TEXT
5312 may represent an unqualified symbol name. We therefore must
5313 also compare TEXT against the unqualified name of the symbol. */
5314 sym_name = ada_unqualified_name (ada_decode (sym_name));
5315
5316 if (strncmp (sym_name, text, text_len) == 0)
5317 match = 1;
5318 }
5319
5320 /* Finally: If we found a mach, prepare the result to return. */
5321
5322 if (!match)
5323 return NULL;
5324
5325 if (verbatim_match)
5326 sym_name = add_angle_brackets (sym_name);
5327
5328 if (!encoded)
5329 sym_name = ada_decode (sym_name);
5330
5331 return sym_name;
5332}
5333
2ba95b9b
JB
5334typedef char *char_ptr;
5335DEF_VEC_P (char_ptr);
5336
41d27058
JB
5337/* A companion function to ada_make_symbol_completion_list().
5338 Check if SYM_NAME represents a symbol which name would be suitable
5339 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5340 it is appended at the end of the given string vector SV.
5341
5342 ORIG_TEXT is the string original string from the user command
5343 that needs to be completed. WORD is the entire command on which
5344 completion should be performed. These two parameters are used to
5345 determine which part of the symbol name should be added to the
5346 completion vector.
5347 if WILD_MATCH is set, then wild matching is performed.
5348 ENCODED should be set if TEXT represents a symbol name in its
5349 encoded formed (in which case the completion should also be
5350 encoded). */
5351
5352static void
d6565258 5353symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5354 const char *sym_name,
5355 const char *text, int text_len,
5356 const char *orig_text, const char *word,
5357 int wild_match, int encoded)
5358{
5359 const char *match = symbol_completion_match (sym_name, text, text_len,
5360 wild_match, encoded);
5361 char *completion;
5362
5363 if (match == NULL)
5364 return;
5365
5366 /* We found a match, so add the appropriate completion to the given
5367 string vector. */
5368
5369 if (word == orig_text)
5370 {
5371 completion = xmalloc (strlen (match) + 5);
5372 strcpy (completion, match);
5373 }
5374 else if (word > orig_text)
5375 {
5376 /* Return some portion of sym_name. */
5377 completion = xmalloc (strlen (match) + 5);
5378 strcpy (completion, match + (word - orig_text));
5379 }
5380 else
5381 {
5382 /* Return some of ORIG_TEXT plus sym_name. */
5383 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5384 strncpy (completion, word, orig_text - word);
5385 completion[orig_text - word] = '\0';
5386 strcat (completion, match);
5387 }
5388
d6565258 5389 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5390}
5391
5392/* Return a list of possible symbol names completing TEXT0. The list
5393 is NULL terminated. WORD is the entire command on which completion
5394 is made. */
5395
5396static char **
5397ada_make_symbol_completion_list (char *text0, char *word)
5398{
5399 char *text;
5400 int text_len;
5401 int wild_match;
5402 int encoded;
2ba95b9b 5403 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5404 struct symbol *sym;
5405 struct symtab *s;
5406 struct partial_symtab *ps;
5407 struct minimal_symbol *msymbol;
5408 struct objfile *objfile;
5409 struct block *b, *surrounding_static_block = 0;
5410 int i;
5411 struct dict_iterator iter;
5412
5413 if (text0[0] == '<')
5414 {
5415 text = xstrdup (text0);
5416 make_cleanup (xfree, text);
5417 text_len = strlen (text);
5418 wild_match = 0;
5419 encoded = 1;
5420 }
5421 else
5422 {
5423 text = xstrdup (ada_encode (text0));
5424 make_cleanup (xfree, text);
5425 text_len = strlen (text);
5426 for (i = 0; i < text_len; i++)
5427 text[i] = tolower (text[i]);
5428
5429 encoded = (strstr (text0, "__") != NULL);
5430 /* If the name contains a ".", then the user is entering a fully
5431 qualified entity name, and the match must not be done in wild
5432 mode. Similarly, if the user wants to complete what looks like
5433 an encoded name, the match must not be done in wild mode. */
5434 wild_match = (strchr (text0, '.') == NULL && !encoded);
5435 }
5436
5437 /* First, look at the partial symtab symbols. */
5438 ALL_PSYMTABS (objfile, ps)
5439 {
5440 struct partial_symbol **psym;
5441
5442 /* If the psymtab's been read in we'll get it when we search
5443 through the blockvector. */
5444 if (ps->readin)
5445 continue;
5446
5447 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5448 psym < (objfile->global_psymbols.list + ps->globals_offset
5449 + ps->n_global_syms); psym++)
5450 {
5451 QUIT;
d6565258 5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5453 text, text_len, text0, word,
5454 wild_match, encoded);
5455 }
5456
5457 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5458 psym < (objfile->static_psymbols.list + ps->statics_offset
5459 + ps->n_static_syms); psym++)
5460 {
5461 QUIT;
d6565258 5462 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5463 text, text_len, text0, word,
5464 wild_match, encoded);
5465 }
5466 }
5467
5468 /* At this point scan through the misc symbol vectors and add each
5469 symbol you find to the list. Eventually we want to ignore
5470 anything that isn't a text symbol (everything else will be
5471 handled by the psymtab code above). */
5472
5473 ALL_MSYMBOLS (objfile, msymbol)
5474 {
5475 QUIT;
d6565258 5476 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5477 text, text_len, text0, word, wild_match, encoded);
5478 }
5479
5480 /* Search upwards from currently selected frame (so that we can
5481 complete on local vars. */
5482
5483 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5484 {
5485 if (!BLOCK_SUPERBLOCK (b))
5486 surrounding_static_block = b; /* For elmin of dups */
5487
5488 ALL_BLOCK_SYMBOLS (b, iter, sym)
5489 {
d6565258 5490 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5491 text, text_len, text0, word,
5492 wild_match, encoded);
5493 }
5494 }
5495
5496 /* Go through the symtabs and check the externs and statics for
5497 symbols which match. */
5498
5499 ALL_SYMTABS (objfile, s)
5500 {
5501 QUIT;
5502 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5503 ALL_BLOCK_SYMBOLS (b, iter, sym)
5504 {
d6565258 5505 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5506 text, text_len, text0, word,
5507 wild_match, encoded);
5508 }
5509 }
5510
5511 ALL_SYMTABS (objfile, s)
5512 {
5513 QUIT;
5514 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5515 /* Don't do this block twice. */
5516 if (b == surrounding_static_block)
5517 continue;
5518 ALL_BLOCK_SYMBOLS (b, iter, sym)
5519 {
d6565258 5520 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5521 text, text_len, text0, word,
5522 wild_match, encoded);
5523 }
5524 }
5525
5526 /* Append the closing NULL entry. */
2ba95b9b 5527 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5528
2ba95b9b
JB
5529 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5530 return the copy. It's unfortunate that we have to make a copy
5531 of an array that we're about to destroy, but there is nothing much
5532 we can do about it. Fortunately, it's typically not a very large
5533 array. */
5534 {
5535 const size_t completions_size =
5536 VEC_length (char_ptr, completions) * sizeof (char *);
5537 char **result = malloc (completions_size);
5538
5539 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5540
5541 VEC_free (char_ptr, completions);
5542 return result;
5543 }
41d27058
JB
5544}
5545
963a6417 5546 /* Field Access */
96d887e8 5547
73fb9985
JB
5548/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5549 for tagged types. */
5550
5551static int
5552ada_is_dispatch_table_ptr_type (struct type *type)
5553{
5554 char *name;
5555
5556 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5557 return 0;
5558
5559 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5560 if (name == NULL)
5561 return 0;
5562
5563 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5564}
5565
963a6417
PH
5566/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5567 to be invisible to users. */
96d887e8 5568
963a6417
PH
5569int
5570ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5571{
963a6417
PH
5572 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5573 return 1;
73fb9985
JB
5574
5575 /* Check the name of that field. */
5576 {
5577 const char *name = TYPE_FIELD_NAME (type, field_num);
5578
5579 /* Anonymous field names should not be printed.
5580 brobecker/2007-02-20: I don't think this can actually happen
5581 but we don't want to print the value of annonymous fields anyway. */
5582 if (name == NULL)
5583 return 1;
5584
5585 /* A field named "_parent" is internally generated by GNAT for
5586 tagged types, and should not be printed either. */
5587 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5588 return 1;
5589 }
5590
5591 /* If this is the dispatch table of a tagged type, then ignore. */
5592 if (ada_is_tagged_type (type, 1)
5593 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5594 return 1;
5595
5596 /* Not a special field, so it should not be ignored. */
5597 return 0;
963a6417 5598}
96d887e8 5599
963a6417
PH
5600/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5601 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5602
963a6417
PH
5603int
5604ada_is_tagged_type (struct type *type, int refok)
5605{
5606 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5607}
96d887e8 5608
963a6417 5609/* True iff TYPE represents the type of X'Tag */
96d887e8 5610
963a6417
PH
5611int
5612ada_is_tag_type (struct type *type)
5613{
5614 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5615 return 0;
5616 else
96d887e8 5617 {
963a6417
PH
5618 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5619 return (name != NULL
5620 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5621 }
96d887e8
PH
5622}
5623
963a6417 5624/* The type of the tag on VAL. */
76a01679 5625
963a6417
PH
5626struct type *
5627ada_tag_type (struct value *val)
96d887e8 5628{
df407dfe 5629 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5630}
96d887e8 5631
963a6417 5632/* The value of the tag on VAL. */
96d887e8 5633
963a6417
PH
5634struct value *
5635ada_value_tag (struct value *val)
5636{
03ee6b2e 5637 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5638}
5639
963a6417
PH
5640/* The value of the tag on the object of type TYPE whose contents are
5641 saved at VALADDR, if it is non-null, or is at memory address
5642 ADDRESS. */
96d887e8 5643
963a6417 5644static struct value *
10a2c479 5645value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5646 const gdb_byte *valaddr,
963a6417 5647 CORE_ADDR address)
96d887e8 5648{
963a6417
PH
5649 int tag_byte_offset, dummy1, dummy2;
5650 struct type *tag_type;
5651 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5652 NULL, NULL, NULL))
96d887e8 5653 {
fc1a4b47 5654 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5655 ? NULL
5656 : valaddr + tag_byte_offset);
963a6417 5657 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5658
963a6417 5659 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5660 }
963a6417
PH
5661 return NULL;
5662}
96d887e8 5663
963a6417
PH
5664static struct type *
5665type_from_tag (struct value *tag)
5666{
5667 const char *type_name = ada_tag_name (tag);
5668 if (type_name != NULL)
5669 return ada_find_any_type (ada_encode (type_name));
5670 return NULL;
5671}
96d887e8 5672
963a6417
PH
5673struct tag_args
5674{
5675 struct value *tag;
5676 char *name;
5677};
4c4b4cd2 5678
529cad9c
PH
5679
5680static int ada_tag_name_1 (void *);
5681static int ada_tag_name_2 (struct tag_args *);
5682
4c4b4cd2
PH
5683/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5684 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5685 The value stored in ARGS->name is valid until the next call to
5686 ada_tag_name_1. */
5687
5688static int
5689ada_tag_name_1 (void *args0)
5690{
5691 struct tag_args *args = (struct tag_args *) args0;
5692 static char name[1024];
76a01679 5693 char *p;
4c4b4cd2
PH
5694 struct value *val;
5695 args->name = NULL;
03ee6b2e 5696 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5697 if (val == NULL)
5698 return ada_tag_name_2 (args);
03ee6b2e 5699 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5700 if (val == NULL)
5701 return 0;
5702 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5703 for (p = name; *p != '\0'; p += 1)
5704 if (isalpha (*p))
5705 *p = tolower (*p);
5706 args->name = name;
5707 return 0;
5708}
5709
5710/* Utility function for ada_tag_name_1 that tries the second
5711 representation for the dispatch table (in which there is no
5712 explicit 'tsd' field in the referent of the tag pointer, and instead
5713 the tsd pointer is stored just before the dispatch table. */
5714
5715static int
5716ada_tag_name_2 (struct tag_args *args)
5717{
5718 struct type *info_type;
5719 static char name[1024];
5720 char *p;
5721 struct value *val, *valp;
5722
5723 args->name = NULL;
5724 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5725 if (info_type == NULL)
5726 return 0;
5727 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5728 valp = value_cast (info_type, args->tag);
5729 if (valp == NULL)
5730 return 0;
89eef114
UW
5731 val = value_ind (value_ptradd (valp,
5732 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5733 if (val == NULL)
5734 return 0;
03ee6b2e 5735 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5736 if (val == NULL)
5737 return 0;
5738 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5739 for (p = name; *p != '\0'; p += 1)
5740 if (isalpha (*p))
5741 *p = tolower (*p);
5742 args->name = name;
5743 return 0;
5744}
5745
5746/* The type name of the dynamic type denoted by the 'tag value TAG, as
5747 * a C string. */
5748
5749const char *
5750ada_tag_name (struct value *tag)
5751{
5752 struct tag_args args;
df407dfe 5753 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5754 return NULL;
76a01679 5755 args.tag = tag;
4c4b4cd2
PH
5756 args.name = NULL;
5757 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5758 return args.name;
5759}
5760
5761/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5762
d2e4a39e 5763struct type *
ebf56fd3 5764ada_parent_type (struct type *type)
14f9c5c9
AS
5765{
5766 int i;
5767
61ee279c 5768 type = ada_check_typedef (type);
14f9c5c9
AS
5769
5770 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5771 return NULL;
5772
5773 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5774 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5775 {
5776 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5777
5778 /* If the _parent field is a pointer, then dereference it. */
5779 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5780 parent_type = TYPE_TARGET_TYPE (parent_type);
5781 /* If there is a parallel XVS type, get the actual base type. */
5782 parent_type = ada_get_base_type (parent_type);
5783
5784 return ada_check_typedef (parent_type);
5785 }
14f9c5c9
AS
5786
5787 return NULL;
5788}
5789
4c4b4cd2
PH
5790/* True iff field number FIELD_NUM of structure type TYPE contains the
5791 parent-type (inherited) fields of a derived type. Assumes TYPE is
5792 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5793
5794int
ebf56fd3 5795ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5796{
61ee279c 5797 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5798 return (name != NULL
5799 && (strncmp (name, "PARENT", 6) == 0
5800 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5801}
5802
4c4b4cd2 5803/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5804 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5805 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5806 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5807 structures. */
14f9c5c9
AS
5808
5809int
ebf56fd3 5810ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5811{
d2e4a39e
AS
5812 const char *name = TYPE_FIELD_NAME (type, field_num);
5813 return (name != NULL
4c4b4cd2
PH
5814 && (strncmp (name, "PARENT", 6) == 0
5815 || strcmp (name, "REP") == 0
5816 || strncmp (name, "_parent", 7) == 0
5817 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5818}
5819
4c4b4cd2
PH
5820/* True iff field number FIELD_NUM of structure or union type TYPE
5821 is a variant wrapper. Assumes TYPE is a structure type with at least
5822 FIELD_NUM+1 fields. */
14f9c5c9
AS
5823
5824int
ebf56fd3 5825ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5826{
d2e4a39e 5827 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5828 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5829 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5830 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5831 == TYPE_CODE_UNION)));
14f9c5c9
AS
5832}
5833
5834/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5835 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5836 returns the type of the controlling discriminant for the variant. */
5837
d2e4a39e 5838struct type *
ebf56fd3 5839ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5840{
d2e4a39e 5841 char *name = ada_variant_discrim_name (var_type);
76a01679 5842 struct type *type =
4c4b4cd2 5843 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5844 if (type == NULL)
5845 return builtin_type_int;
5846 else
5847 return type;
5848}
5849
4c4b4cd2 5850/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5851 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5852 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5853
5854int
ebf56fd3 5855ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5856{
d2e4a39e 5857 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5858 return (name != NULL && name[0] == 'O');
5859}
5860
5861/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5862 returns the name of the discriminant controlling the variant.
5863 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5864
d2e4a39e 5865char *
ebf56fd3 5866ada_variant_discrim_name (struct type *type0)
14f9c5c9 5867{
d2e4a39e 5868 static char *result = NULL;
14f9c5c9 5869 static size_t result_len = 0;
d2e4a39e
AS
5870 struct type *type;
5871 const char *name;
5872 const char *discrim_end;
5873 const char *discrim_start;
14f9c5c9
AS
5874
5875 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5876 type = TYPE_TARGET_TYPE (type0);
5877 else
5878 type = type0;
5879
5880 name = ada_type_name (type);
5881
5882 if (name == NULL || name[0] == '\000')
5883 return "";
5884
5885 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5886 discrim_end -= 1)
5887 {
4c4b4cd2
PH
5888 if (strncmp (discrim_end, "___XVN", 6) == 0)
5889 break;
14f9c5c9
AS
5890 }
5891 if (discrim_end == name)
5892 return "";
5893
d2e4a39e 5894 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5895 discrim_start -= 1)
5896 {
d2e4a39e 5897 if (discrim_start == name + 1)
4c4b4cd2 5898 return "";
76a01679 5899 if ((discrim_start > name + 3
4c4b4cd2
PH
5900 && strncmp (discrim_start - 3, "___", 3) == 0)
5901 || discrim_start[-1] == '.')
5902 break;
14f9c5c9
AS
5903 }
5904
5905 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5906 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5907 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5908 return result;
5909}
5910
4c4b4cd2
PH
5911/* Scan STR for a subtype-encoded number, beginning at position K.
5912 Put the position of the character just past the number scanned in
5913 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5914 Return 1 if there was a valid number at the given position, and 0
5915 otherwise. A "subtype-encoded" number consists of the absolute value
5916 in decimal, followed by the letter 'm' to indicate a negative number.
5917 Assumes 0m does not occur. */
14f9c5c9
AS
5918
5919int
d2e4a39e 5920ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5921{
5922 ULONGEST RU;
5923
d2e4a39e 5924 if (!isdigit (str[k]))
14f9c5c9
AS
5925 return 0;
5926
4c4b4cd2 5927 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5928 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5929 LONGEST. */
14f9c5c9
AS
5930 RU = 0;
5931 while (isdigit (str[k]))
5932 {
d2e4a39e 5933 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5934 k += 1;
5935 }
5936
d2e4a39e 5937 if (str[k] == 'm')
14f9c5c9
AS
5938 {
5939 if (R != NULL)
4c4b4cd2 5940 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5941 k += 1;
5942 }
5943 else if (R != NULL)
5944 *R = (LONGEST) RU;
5945
4c4b4cd2 5946 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5947 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5948 number representable as a LONGEST (although either would probably work
5949 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5950 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5951
5952 if (new_k != NULL)
5953 *new_k = k;
5954 return 1;
5955}
5956
4c4b4cd2
PH
5957/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5958 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5959 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5960
d2e4a39e 5961int
ebf56fd3 5962ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5963{
d2e4a39e 5964 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5965 int p;
5966
5967 p = 0;
5968 while (1)
5969 {
d2e4a39e 5970 switch (name[p])
4c4b4cd2
PH
5971 {
5972 case '\0':
5973 return 0;
5974 case 'S':
5975 {
5976 LONGEST W;
5977 if (!ada_scan_number (name, p + 1, &W, &p))
5978 return 0;
5979 if (val == W)
5980 return 1;
5981 break;
5982 }
5983 case 'R':
5984 {
5985 LONGEST L, U;
5986 if (!ada_scan_number (name, p + 1, &L, &p)
5987 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5988 return 0;
5989 if (val >= L && val <= U)
5990 return 1;
5991 break;
5992 }
5993 case 'O':
5994 return 1;
5995 default:
5996 return 0;
5997 }
5998 }
5999}
6000
6001/* FIXME: Lots of redundancy below. Try to consolidate. */
6002
6003/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6004 ARG_TYPE, extract and return the value of one of its (non-static)
6005 fields. FIELDNO says which field. Differs from value_primitive_field
6006 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6007
4c4b4cd2 6008static struct value *
d2e4a39e 6009ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6010 struct type *arg_type)
14f9c5c9 6011{
14f9c5c9
AS
6012 struct type *type;
6013
61ee279c 6014 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6015 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6016
4c4b4cd2 6017 /* Handle packed fields. */
14f9c5c9
AS
6018
6019 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6020 {
6021 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6022 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6023
0fd88904 6024 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6025 offset + bit_pos / 8,
6026 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6027 }
6028 else
6029 return value_primitive_field (arg1, offset, fieldno, arg_type);
6030}
6031
52ce6436
PH
6032/* Find field with name NAME in object of type TYPE. If found,
6033 set the following for each argument that is non-null:
6034 - *FIELD_TYPE_P to the field's type;
6035 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6036 an object of that type;
6037 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6038 - *BIT_SIZE_P to its size in bits if the field is packed, and
6039 0 otherwise;
6040 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6041 fields up to but not including the desired field, or by the total
6042 number of fields if not found. A NULL value of NAME never
6043 matches; the function just counts visible fields in this case.
6044
6045 Returns 1 if found, 0 otherwise. */
6046
4c4b4cd2 6047static int
76a01679
JB
6048find_struct_field (char *name, struct type *type, int offset,
6049 struct type **field_type_p,
52ce6436
PH
6050 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6051 int *index_p)
4c4b4cd2
PH
6052{
6053 int i;
6054
61ee279c 6055 type = ada_check_typedef (type);
76a01679 6056
52ce6436
PH
6057 if (field_type_p != NULL)
6058 *field_type_p = NULL;
6059 if (byte_offset_p != NULL)
d5d6fca5 6060 *byte_offset_p = 0;
52ce6436
PH
6061 if (bit_offset_p != NULL)
6062 *bit_offset_p = 0;
6063 if (bit_size_p != NULL)
6064 *bit_size_p = 0;
6065
6066 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6067 {
6068 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6069 int fld_offset = offset + bit_pos / 8;
6070 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6071
4c4b4cd2
PH
6072 if (t_field_name == NULL)
6073 continue;
6074
52ce6436 6075 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6076 {
6077 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6078 if (field_type_p != NULL)
6079 *field_type_p = TYPE_FIELD_TYPE (type, i);
6080 if (byte_offset_p != NULL)
6081 *byte_offset_p = fld_offset;
6082 if (bit_offset_p != NULL)
6083 *bit_offset_p = bit_pos % 8;
6084 if (bit_size_p != NULL)
6085 *bit_size_p = bit_size;
76a01679
JB
6086 return 1;
6087 }
4c4b4cd2
PH
6088 else if (ada_is_wrapper_field (type, i))
6089 {
52ce6436
PH
6090 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6091 field_type_p, byte_offset_p, bit_offset_p,
6092 bit_size_p, index_p))
76a01679
JB
6093 return 1;
6094 }
4c4b4cd2
PH
6095 else if (ada_is_variant_part (type, i))
6096 {
52ce6436
PH
6097 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6098 fixed type?? */
4c4b4cd2 6099 int j;
52ce6436
PH
6100 struct type *field_type
6101 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6102
52ce6436 6103 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6104 {
76a01679
JB
6105 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6106 fld_offset
6107 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6108 field_type_p, byte_offset_p,
52ce6436 6109 bit_offset_p, bit_size_p, index_p))
76a01679 6110 return 1;
4c4b4cd2
PH
6111 }
6112 }
52ce6436
PH
6113 else if (index_p != NULL)
6114 *index_p += 1;
4c4b4cd2
PH
6115 }
6116 return 0;
6117}
6118
52ce6436 6119/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6120
52ce6436
PH
6121static int
6122num_visible_fields (struct type *type)
6123{
6124 int n;
6125 n = 0;
6126 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6127 return n;
6128}
14f9c5c9 6129
4c4b4cd2 6130/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6131 and search in it assuming it has (class) type TYPE.
6132 If found, return value, else return NULL.
6133
4c4b4cd2 6134 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6135
4c4b4cd2 6136static struct value *
d2e4a39e 6137ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6138 struct type *type)
14f9c5c9
AS
6139{
6140 int i;
61ee279c 6141 type = ada_check_typedef (type);
14f9c5c9 6142
52ce6436 6143 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6144 {
6145 char *t_field_name = TYPE_FIELD_NAME (type, i);
6146
6147 if (t_field_name == NULL)
4c4b4cd2 6148 continue;
14f9c5c9
AS
6149
6150 else if (field_name_match (t_field_name, name))
4c4b4cd2 6151 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6152
6153 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6154 {
06d5cf63
JB
6155 struct value *v = /* Do not let indent join lines here. */
6156 ada_search_struct_field (name, arg,
6157 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6158 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6159 if (v != NULL)
6160 return v;
6161 }
14f9c5c9
AS
6162
6163 else if (ada_is_variant_part (type, i))
4c4b4cd2 6164 {
52ce6436 6165 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6166 int j;
61ee279c 6167 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6168 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6169
52ce6436 6170 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6171 {
06d5cf63
JB
6172 struct value *v = ada_search_struct_field /* Force line break. */
6173 (name, arg,
6174 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6175 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6176 if (v != NULL)
6177 return v;
6178 }
6179 }
14f9c5c9
AS
6180 }
6181 return NULL;
6182}
d2e4a39e 6183
52ce6436
PH
6184static struct value *ada_index_struct_field_1 (int *, struct value *,
6185 int, struct type *);
6186
6187
6188/* Return field #INDEX in ARG, where the index is that returned by
6189 * find_struct_field through its INDEX_P argument. Adjust the address
6190 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6191 * If found, return value, else return NULL. */
6192
6193static struct value *
6194ada_index_struct_field (int index, struct value *arg, int offset,
6195 struct type *type)
6196{
6197 return ada_index_struct_field_1 (&index, arg, offset, type);
6198}
6199
6200
6201/* Auxiliary function for ada_index_struct_field. Like
6202 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6203 * *INDEX_P. */
6204
6205static struct value *
6206ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6207 struct type *type)
6208{
6209 int i;
6210 type = ada_check_typedef (type);
6211
6212 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6213 {
6214 if (TYPE_FIELD_NAME (type, i) == NULL)
6215 continue;
6216 else if (ada_is_wrapper_field (type, i))
6217 {
6218 struct value *v = /* Do not let indent join lines here. */
6219 ada_index_struct_field_1 (index_p, arg,
6220 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6221 TYPE_FIELD_TYPE (type, i));
6222 if (v != NULL)
6223 return v;
6224 }
6225
6226 else if (ada_is_variant_part (type, i))
6227 {
6228 /* PNH: Do we ever get here? See ada_search_struct_field,
6229 find_struct_field. */
6230 error (_("Cannot assign this kind of variant record"));
6231 }
6232 else if (*index_p == 0)
6233 return ada_value_primitive_field (arg, offset, i, type);
6234 else
6235 *index_p -= 1;
6236 }
6237 return NULL;
6238}
6239
4c4b4cd2
PH
6240/* Given ARG, a value of type (pointer or reference to a)*
6241 structure/union, extract the component named NAME from the ultimate
6242 target structure/union and return it as a value with its
6243 appropriate type. If ARG is a pointer or reference and the field
6244 is not packed, returns a reference to the field, otherwise the
6245 value of the field (an lvalue if ARG is an lvalue).
14f9c5c9 6246
4c4b4cd2
PH
6247 The routine searches for NAME among all members of the structure itself
6248 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6249 (e.g., '_parent').
6250
03ee6b2e
PH
6251 If NO_ERR, then simply return NULL in case of error, rather than
6252 calling error. */
14f9c5c9 6253
d2e4a39e 6254struct value *
03ee6b2e 6255ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6256{
4c4b4cd2 6257 struct type *t, *t1;
d2e4a39e 6258 struct value *v;
14f9c5c9 6259
4c4b4cd2 6260 v = NULL;
df407dfe 6261 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6262 if (TYPE_CODE (t) == TYPE_CODE_REF)
6263 {
6264 t1 = TYPE_TARGET_TYPE (t);
6265 if (t1 == NULL)
03ee6b2e 6266 goto BadValue;
61ee279c 6267 t1 = ada_check_typedef (t1);
4c4b4cd2 6268 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6269 {
994b9211 6270 arg = coerce_ref (arg);
76a01679
JB
6271 t = t1;
6272 }
4c4b4cd2 6273 }
14f9c5c9 6274
4c4b4cd2
PH
6275 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6276 {
6277 t1 = TYPE_TARGET_TYPE (t);
6278 if (t1 == NULL)
03ee6b2e 6279 goto BadValue;
61ee279c 6280 t1 = ada_check_typedef (t1);
4c4b4cd2 6281 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6282 {
6283 arg = value_ind (arg);
6284 t = t1;
6285 }
4c4b4cd2 6286 else
76a01679 6287 break;
4c4b4cd2 6288 }
14f9c5c9 6289
4c4b4cd2 6290 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6291 goto BadValue;
14f9c5c9 6292
4c4b4cd2
PH
6293 if (t1 == t)
6294 v = ada_search_struct_field (name, arg, 0, t);
6295 else
6296 {
6297 int bit_offset, bit_size, byte_offset;
6298 struct type *field_type;
6299 CORE_ADDR address;
6300
76a01679
JB
6301 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6302 address = value_as_address (arg);
4c4b4cd2 6303 else
0fd88904 6304 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6305
1ed6ede0 6306 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6307 if (find_struct_field (name, t1, 0,
6308 &field_type, &byte_offset, &bit_offset,
52ce6436 6309 &bit_size, NULL))
76a01679
JB
6310 {
6311 if (bit_size != 0)
6312 {
714e53ab
PH
6313 if (TYPE_CODE (t) == TYPE_CODE_REF)
6314 arg = ada_coerce_ref (arg);
6315 else
6316 arg = ada_value_ind (arg);
76a01679
JB
6317 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6318 bit_offset, bit_size,
6319 field_type);
6320 }
6321 else
6322 v = value_from_pointer (lookup_reference_type (field_type),
6323 address + byte_offset);
6324 }
6325 }
6326
03ee6b2e
PH
6327 if (v != NULL || no_err)
6328 return v;
6329 else
323e0a4a 6330 error (_("There is no member named %s."), name);
14f9c5c9 6331
03ee6b2e
PH
6332 BadValue:
6333 if (no_err)
6334 return NULL;
6335 else
6336 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6337}
6338
6339/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6340 If DISPP is non-null, add its byte displacement from the beginning of a
6341 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6342 work for packed fields).
6343
6344 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6345 followed by "___".
14f9c5c9 6346
4c4b4cd2
PH
6347 TYPE can be either a struct or union. If REFOK, TYPE may also
6348 be a (pointer or reference)+ to a struct or union, and the
6349 ultimate target type will be searched.
14f9c5c9
AS
6350
6351 Looks recursively into variant clauses and parent types.
6352
4c4b4cd2
PH
6353 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6354 TYPE is not a type of the right kind. */
14f9c5c9 6355
4c4b4cd2 6356static struct type *
76a01679
JB
6357ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6358 int noerr, int *dispp)
14f9c5c9
AS
6359{
6360 int i;
6361
6362 if (name == NULL)
6363 goto BadName;
6364
76a01679 6365 if (refok && type != NULL)
4c4b4cd2
PH
6366 while (1)
6367 {
61ee279c 6368 type = ada_check_typedef (type);
76a01679
JB
6369 if (TYPE_CODE (type) != TYPE_CODE_PTR
6370 && TYPE_CODE (type) != TYPE_CODE_REF)
6371 break;
6372 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6373 }
14f9c5c9 6374
76a01679 6375 if (type == NULL
1265e4aa
JB
6376 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6377 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6378 {
4c4b4cd2 6379 if (noerr)
76a01679 6380 return NULL;
4c4b4cd2 6381 else
76a01679
JB
6382 {
6383 target_terminal_ours ();
6384 gdb_flush (gdb_stdout);
323e0a4a
AC
6385 if (type == NULL)
6386 error (_("Type (null) is not a structure or union type"));
6387 else
6388 {
6389 /* XXX: type_sprint */
6390 fprintf_unfiltered (gdb_stderr, _("Type "));
6391 type_print (type, "", gdb_stderr, -1);
6392 error (_(" is not a structure or union type"));
6393 }
76a01679 6394 }
14f9c5c9
AS
6395 }
6396
6397 type = to_static_fixed_type (type);
6398
6399 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6400 {
6401 char *t_field_name = TYPE_FIELD_NAME (type, i);
6402 struct type *t;
6403 int disp;
d2e4a39e 6404
14f9c5c9 6405 if (t_field_name == NULL)
4c4b4cd2 6406 continue;
14f9c5c9
AS
6407
6408 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6409 {
6410 if (dispp != NULL)
6411 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6412 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6413 }
14f9c5c9
AS
6414
6415 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6416 {
6417 disp = 0;
6418 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6419 0, 1, &disp);
6420 if (t != NULL)
6421 {
6422 if (dispp != NULL)
6423 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6424 return t;
6425 }
6426 }
14f9c5c9
AS
6427
6428 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6429 {
6430 int j;
61ee279c 6431 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6432
6433 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6434 {
6435 disp = 0;
6436 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6437 name, 0, 1, &disp);
6438 if (t != NULL)
6439 {
6440 if (dispp != NULL)
6441 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6442 return t;
6443 }
6444 }
6445 }
14f9c5c9
AS
6446
6447 }
6448
6449BadName:
d2e4a39e 6450 if (!noerr)
14f9c5c9
AS
6451 {
6452 target_terminal_ours ();
6453 gdb_flush (gdb_stdout);
323e0a4a
AC
6454 if (name == NULL)
6455 {
6456 /* XXX: type_sprint */
6457 fprintf_unfiltered (gdb_stderr, _("Type "));
6458 type_print (type, "", gdb_stderr, -1);
6459 error (_(" has no component named <null>"));
6460 }
6461 else
6462 {
6463 /* XXX: type_sprint */
6464 fprintf_unfiltered (gdb_stderr, _("Type "));
6465 type_print (type, "", gdb_stderr, -1);
6466 error (_(" has no component named %s"), name);
6467 }
14f9c5c9
AS
6468 }
6469
6470 return NULL;
6471}
6472
6473/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6474 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6475 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6476 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6477
d2e4a39e 6478int
ebf56fd3 6479ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6480 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6481{
6482 int others_clause;
6483 int i;
d2e4a39e 6484 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6485 struct value *outer;
6486 struct value *discrim;
14f9c5c9
AS
6487 LONGEST discrim_val;
6488
0c281816
JB
6489 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6490 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6491 if (discrim == NULL)
14f9c5c9 6492 return -1;
0c281816 6493 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6494
6495 others_clause = -1;
6496 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6497 {
6498 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6499 others_clause = i;
14f9c5c9 6500 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6501 return i;
14f9c5c9
AS
6502 }
6503
6504 return others_clause;
6505}
d2e4a39e 6506\f
14f9c5c9
AS
6507
6508
4c4b4cd2 6509 /* Dynamic-Sized Records */
14f9c5c9
AS
6510
6511/* Strategy: The type ostensibly attached to a value with dynamic size
6512 (i.e., a size that is not statically recorded in the debugging
6513 data) does not accurately reflect the size or layout of the value.
6514 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6515 conventional types that are constructed on the fly. */
14f9c5c9
AS
6516
6517/* There is a subtle and tricky problem here. In general, we cannot
6518 determine the size of dynamic records without its data. However,
6519 the 'struct value' data structure, which GDB uses to represent
6520 quantities in the inferior process (the target), requires the size
6521 of the type at the time of its allocation in order to reserve space
6522 for GDB's internal copy of the data. That's why the
6523 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6524 rather than struct value*s.
14f9c5c9
AS
6525
6526 However, GDB's internal history variables ($1, $2, etc.) are
6527 struct value*s containing internal copies of the data that are not, in
6528 general, the same as the data at their corresponding addresses in
6529 the target. Fortunately, the types we give to these values are all
6530 conventional, fixed-size types (as per the strategy described
6531 above), so that we don't usually have to perform the
6532 'to_fixed_xxx_type' conversions to look at their values.
6533 Unfortunately, there is one exception: if one of the internal
6534 history variables is an array whose elements are unconstrained
6535 records, then we will need to create distinct fixed types for each
6536 element selected. */
6537
6538/* The upshot of all of this is that many routines take a (type, host
6539 address, target address) triple as arguments to represent a value.
6540 The host address, if non-null, is supposed to contain an internal
6541 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6542 target at the target address. */
14f9c5c9
AS
6543
6544/* Assuming that VAL0 represents a pointer value, the result of
6545 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6546 dynamic-sized types. */
14f9c5c9 6547
d2e4a39e
AS
6548struct value *
6549ada_value_ind (struct value *val0)
14f9c5c9 6550{
d2e4a39e 6551 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6552 return ada_to_fixed_value (val);
14f9c5c9
AS
6553}
6554
6555/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6556 qualifiers on VAL0. */
6557
d2e4a39e
AS
6558static struct value *
6559ada_coerce_ref (struct value *val0)
6560{
df407dfe 6561 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6562 {
6563 struct value *val = val0;
994b9211 6564 val = coerce_ref (val);
d2e4a39e 6565 val = unwrap_value (val);
4c4b4cd2 6566 return ada_to_fixed_value (val);
d2e4a39e
AS
6567 }
6568 else
14f9c5c9
AS
6569 return val0;
6570}
6571
6572/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6573 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6574
6575static unsigned int
ebf56fd3 6576align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6577{
6578 return (off + alignment - 1) & ~(alignment - 1);
6579}
6580
4c4b4cd2 6581/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6582
6583static unsigned int
ebf56fd3 6584field_alignment (struct type *type, int f)
14f9c5c9 6585{
d2e4a39e 6586 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6587 int len;
14f9c5c9
AS
6588 int align_offset;
6589
64a1bf19
JB
6590 /* The field name should never be null, unless the debugging information
6591 is somehow malformed. In this case, we assume the field does not
6592 require any alignment. */
6593 if (name == NULL)
6594 return 1;
6595
6596 len = strlen (name);
6597
4c4b4cd2
PH
6598 if (!isdigit (name[len - 1]))
6599 return 1;
14f9c5c9 6600
d2e4a39e 6601 if (isdigit (name[len - 2]))
14f9c5c9
AS
6602 align_offset = len - 2;
6603 else
6604 align_offset = len - 1;
6605
4c4b4cd2 6606 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6607 return TARGET_CHAR_BIT;
6608
4c4b4cd2
PH
6609 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6610}
6611
6612/* Find a symbol named NAME. Ignores ambiguity. */
6613
6614struct symbol *
6615ada_find_any_symbol (const char *name)
6616{
6617 struct symbol *sym;
6618
6619 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6620 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6621 return sym;
6622
6623 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6624 return sym;
14f9c5c9
AS
6625}
6626
6627/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6628
d2e4a39e 6629struct type *
ebf56fd3 6630ada_find_any_type (const char *name)
14f9c5c9 6631{
4c4b4cd2 6632 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6633
14f9c5c9
AS
6634 if (sym != NULL)
6635 return SYMBOL_TYPE (sym);
6636
6637 return NULL;
6638}
6639
aeb5907d
JB
6640/* Given NAME and an associated BLOCK, search all symbols for
6641 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6642 associated to NAME. Return this symbol if found, return
6643 NULL otherwise. */
6644
6645struct symbol *
6646ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6647{
6648 struct symbol *sym;
6649
6650 sym = find_old_style_renaming_symbol (name, block);
6651
6652 if (sym != NULL)
6653 return sym;
6654
6655 /* Not right yet. FIXME pnh 7/20/2007. */
6656 sym = ada_find_any_symbol (name);
6657 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6658 return sym;
6659 else
6660 return NULL;
6661}
6662
6663static struct symbol *
6664find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6665{
7f0df278 6666 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6667 char *rename;
6668
6669 if (function_sym != NULL)
6670 {
6671 /* If the symbol is defined inside a function, NAME is not fully
6672 qualified. This means we need to prepend the function name
6673 as well as adding the ``___XR'' suffix to build the name of
6674 the associated renaming symbol. */
6675 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6676 /* Function names sometimes contain suffixes used
6677 for instance to qualify nested subprograms. When building
6678 the XR type name, we need to make sure that this suffix is
6679 not included. So do not include any suffix in the function
6680 name length below. */
6681 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6682 const int rename_len = function_name_len + 2 /* "__" */
6683 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6684
529cad9c
PH
6685 /* Strip the suffix if necessary. */
6686 function_name[function_name_len] = '\0';
6687
4c4b4cd2
PH
6688 /* Library-level functions are a special case, as GNAT adds
6689 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6690 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6691 have this prefix, so we need to skip this prefix if present. */
6692 if (function_name_len > 5 /* "_ada_" */
6693 && strstr (function_name, "_ada_") == function_name)
6694 function_name = function_name + 5;
6695
6696 rename = (char *) alloca (rename_len * sizeof (char));
6697 sprintf (rename, "%s__%s___XR", function_name, name);
6698 }
6699 else
6700 {
6701 const int rename_len = strlen (name) + 6;
6702 rename = (char *) alloca (rename_len * sizeof (char));
6703 sprintf (rename, "%s___XR", name);
6704 }
6705
6706 return ada_find_any_symbol (rename);
6707}
6708
14f9c5c9 6709/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6710 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6711 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6712 otherwise return 0. */
6713
14f9c5c9 6714int
d2e4a39e 6715ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6716{
6717 if (type1 == NULL)
6718 return 1;
6719 else if (type0 == NULL)
6720 return 0;
6721 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6722 return 1;
6723 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6724 return 0;
4c4b4cd2
PH
6725 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6726 return 1;
14f9c5c9
AS
6727 else if (ada_is_packed_array_type (type0))
6728 return 1;
4c4b4cd2
PH
6729 else if (ada_is_array_descriptor_type (type0)
6730 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6731 return 1;
aeb5907d
JB
6732 else
6733 {
6734 const char *type0_name = type_name_no_tag (type0);
6735 const char *type1_name = type_name_no_tag (type1);
6736
6737 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6738 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6739 return 1;
6740 }
14f9c5c9
AS
6741 return 0;
6742}
6743
6744/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6745 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6746
d2e4a39e
AS
6747char *
6748ada_type_name (struct type *type)
14f9c5c9 6749{
d2e4a39e 6750 if (type == NULL)
14f9c5c9
AS
6751 return NULL;
6752 else if (TYPE_NAME (type) != NULL)
6753 return TYPE_NAME (type);
6754 else
6755 return TYPE_TAG_NAME (type);
6756}
6757
6758/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6759 SUFFIX to the name of TYPE. */
14f9c5c9 6760
d2e4a39e 6761struct type *
ebf56fd3 6762ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6763{
d2e4a39e 6764 static char *name;
14f9c5c9 6765 static size_t name_len = 0;
14f9c5c9 6766 int len;
d2e4a39e
AS
6767 char *typename = ada_type_name (type);
6768
14f9c5c9
AS
6769 if (typename == NULL)
6770 return NULL;
6771
6772 len = strlen (typename);
6773
d2e4a39e 6774 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6775
6776 strcpy (name, typename);
6777 strcpy (name + len, suffix);
6778
6779 return ada_find_any_type (name);
6780}
6781
6782
6783/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6784 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6785
d2e4a39e
AS
6786static struct type *
6787dynamic_template_type (struct type *type)
14f9c5c9 6788{
61ee279c 6789 type = ada_check_typedef (type);
14f9c5c9
AS
6790
6791 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6792 || ada_type_name (type) == NULL)
14f9c5c9 6793 return NULL;
d2e4a39e 6794 else
14f9c5c9
AS
6795 {
6796 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6797 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6798 return type;
14f9c5c9 6799 else
4c4b4cd2 6800 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6801 }
6802}
6803
6804/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6805 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6806
d2e4a39e
AS
6807static int
6808is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6809{
6810 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6811 return name != NULL
14f9c5c9
AS
6812 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6813 && strstr (name, "___XVL") != NULL;
6814}
6815
4c4b4cd2
PH
6816/* The index of the variant field of TYPE, or -1 if TYPE does not
6817 represent a variant record type. */
14f9c5c9 6818
d2e4a39e 6819static int
4c4b4cd2 6820variant_field_index (struct type *type)
14f9c5c9
AS
6821{
6822 int f;
6823
4c4b4cd2
PH
6824 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6825 return -1;
6826
6827 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6828 {
6829 if (ada_is_variant_part (type, f))
6830 return f;
6831 }
6832 return -1;
14f9c5c9
AS
6833}
6834
4c4b4cd2
PH
6835/* A record type with no fields. */
6836
d2e4a39e
AS
6837static struct type *
6838empty_record (struct objfile *objfile)
14f9c5c9 6839{
d2e4a39e 6840 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6841 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6842 TYPE_NFIELDS (type) = 0;
6843 TYPE_FIELDS (type) = NULL;
6844 TYPE_NAME (type) = "<empty>";
6845 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6846 TYPE_LENGTH (type) = 0;
6847 return type;
6848}
6849
6850/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6851 the value of type TYPE at VALADDR or ADDRESS (see comments at
6852 the beginning of this section) VAL according to GNAT conventions.
6853 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6854 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6855 an outer-level type (i.e., as opposed to a branch of a variant.) A
6856 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6857 of the variant.
14f9c5c9 6858
4c4b4cd2
PH
6859 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6860 length are not statically known are discarded. As a consequence,
6861 VALADDR, ADDRESS and DVAL0 are ignored.
6862
6863 NOTE: Limitations: For now, we assume that dynamic fields and
6864 variants occupy whole numbers of bytes. However, they need not be
6865 byte-aligned. */
6866
6867struct type *
10a2c479 6868ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6869 const gdb_byte *valaddr,
4c4b4cd2
PH
6870 CORE_ADDR address, struct value *dval0,
6871 int keep_dynamic_fields)
14f9c5c9 6872{
d2e4a39e
AS
6873 struct value *mark = value_mark ();
6874 struct value *dval;
6875 struct type *rtype;
14f9c5c9 6876 int nfields, bit_len;
4c4b4cd2 6877 int variant_field;
14f9c5c9 6878 long off;
4c4b4cd2 6879 int fld_bit_len, bit_incr;
14f9c5c9
AS
6880 int f;
6881
4c4b4cd2
PH
6882 /* Compute the number of fields in this record type that are going
6883 to be processed: unless keep_dynamic_fields, this includes only
6884 fields whose position and length are static will be processed. */
6885 if (keep_dynamic_fields)
6886 nfields = TYPE_NFIELDS (type);
6887 else
6888 {
6889 nfields = 0;
76a01679 6890 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6891 && !ada_is_variant_part (type, nfields)
6892 && !is_dynamic_field (type, nfields))
6893 nfields++;
6894 }
6895
14f9c5c9
AS
6896 rtype = alloc_type (TYPE_OBJFILE (type));
6897 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6898 INIT_CPLUS_SPECIFIC (rtype);
6899 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6900 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6901 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6902 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6903 TYPE_NAME (rtype) = ada_type_name (type);
6904 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6905 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6906
d2e4a39e
AS
6907 off = 0;
6908 bit_len = 0;
4c4b4cd2
PH
6909 variant_field = -1;
6910
14f9c5c9
AS
6911 for (f = 0; f < nfields; f += 1)
6912 {
6c038f32
PH
6913 off = align_value (off, field_alignment (type, f))
6914 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6915 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6916 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6917
d2e4a39e 6918 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6919 {
6920 variant_field = f;
6921 fld_bit_len = bit_incr = 0;
6922 }
14f9c5c9 6923 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6924 {
6925 if (dval0 == NULL)
6926 dval = value_from_contents_and_address (rtype, valaddr, address);
6927 else
6928 dval = dval0;
6929
1ed6ede0
JB
6930 /* Get the fixed type of the field. Note that, in this case, we
6931 do not want to get the real type out of the tag: if the current
6932 field is the parent part of a tagged record, we will get the
6933 tag of the object. Clearly wrong: the real type of the parent
6934 is not the real type of the child. We would end up in an infinite
6935 loop. */
4c4b4cd2
PH
6936 TYPE_FIELD_TYPE (rtype, f) =
6937 ada_to_fixed_type
6938 (ada_get_base_type
6939 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6940 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6941 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6942 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6943 bit_incr = fld_bit_len =
6944 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6945 }
14f9c5c9 6946 else
4c4b4cd2
PH
6947 {
6948 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6949 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6950 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6951 bit_incr = fld_bit_len =
6952 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6953 else
6954 bit_incr = fld_bit_len =
6955 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6956 }
14f9c5c9 6957 if (off + fld_bit_len > bit_len)
4c4b4cd2 6958 bit_len = off + fld_bit_len;
14f9c5c9 6959 off += bit_incr;
4c4b4cd2
PH
6960 TYPE_LENGTH (rtype) =
6961 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6962 }
4c4b4cd2
PH
6963
6964 /* We handle the variant part, if any, at the end because of certain
6965 odd cases in which it is re-ordered so as NOT the last field of
6966 the record. This can happen in the presence of representation
6967 clauses. */
6968 if (variant_field >= 0)
6969 {
6970 struct type *branch_type;
6971
6972 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6973
6974 if (dval0 == NULL)
6975 dval = value_from_contents_and_address (rtype, valaddr, address);
6976 else
6977 dval = dval0;
6978
6979 branch_type =
6980 to_fixed_variant_branch_type
6981 (TYPE_FIELD_TYPE (type, variant_field),
6982 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6983 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6984 if (branch_type == NULL)
6985 {
6986 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6987 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6988 TYPE_NFIELDS (rtype) -= 1;
6989 }
6990 else
6991 {
6992 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6993 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6994 fld_bit_len =
6995 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6996 TARGET_CHAR_BIT;
6997 if (off + fld_bit_len > bit_len)
6998 bit_len = off + fld_bit_len;
6999 TYPE_LENGTH (rtype) =
7000 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7001 }
7002 }
7003
714e53ab
PH
7004 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7005 should contain the alignment of that record, which should be a strictly
7006 positive value. If null or negative, then something is wrong, most
7007 probably in the debug info. In that case, we don't round up the size
7008 of the resulting type. If this record is not part of another structure,
7009 the current RTYPE length might be good enough for our purposes. */
7010 if (TYPE_LENGTH (type) <= 0)
7011 {
323e0a4a
AC
7012 if (TYPE_NAME (rtype))
7013 warning (_("Invalid type size for `%s' detected: %d."),
7014 TYPE_NAME (rtype), TYPE_LENGTH (type));
7015 else
7016 warning (_("Invalid type size for <unnamed> detected: %d."),
7017 TYPE_LENGTH (type));
714e53ab
PH
7018 }
7019 else
7020 {
7021 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7022 TYPE_LENGTH (type));
7023 }
14f9c5c9
AS
7024
7025 value_free_to_mark (mark);
d2e4a39e 7026 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7027 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7028 return rtype;
7029}
7030
4c4b4cd2
PH
7031/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7032 of 1. */
14f9c5c9 7033
d2e4a39e 7034static struct type *
fc1a4b47 7035template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7036 CORE_ADDR address, struct value *dval0)
7037{
7038 return ada_template_to_fixed_record_type_1 (type, valaddr,
7039 address, dval0, 1);
7040}
7041
7042/* An ordinary record type in which ___XVL-convention fields and
7043 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7044 static approximations, containing all possible fields. Uses
7045 no runtime values. Useless for use in values, but that's OK,
7046 since the results are used only for type determinations. Works on both
7047 structs and unions. Representation note: to save space, we memorize
7048 the result of this function in the TYPE_TARGET_TYPE of the
7049 template type. */
7050
7051static struct type *
7052template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7053{
7054 struct type *type;
7055 int nfields;
7056 int f;
7057
4c4b4cd2
PH
7058 if (TYPE_TARGET_TYPE (type0) != NULL)
7059 return TYPE_TARGET_TYPE (type0);
7060
7061 nfields = TYPE_NFIELDS (type0);
7062 type = type0;
14f9c5c9
AS
7063
7064 for (f = 0; f < nfields; f += 1)
7065 {
61ee279c 7066 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7067 struct type *new_type;
14f9c5c9 7068
4c4b4cd2
PH
7069 if (is_dynamic_field (type0, f))
7070 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7071 else
f192137b 7072 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7073 if (type == type0 && new_type != field_type)
7074 {
7075 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7076 TYPE_CODE (type) = TYPE_CODE (type0);
7077 INIT_CPLUS_SPECIFIC (type);
7078 TYPE_NFIELDS (type) = nfields;
7079 TYPE_FIELDS (type) = (struct field *)
7080 TYPE_ALLOC (type, nfields * sizeof (struct field));
7081 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7082 sizeof (struct field) * nfields);
7083 TYPE_NAME (type) = ada_type_name (type0);
7084 TYPE_TAG_NAME (type) = NULL;
876cecd0 7085 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7086 TYPE_LENGTH (type) = 0;
7087 }
7088 TYPE_FIELD_TYPE (type, f) = new_type;
7089 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7090 }
14f9c5c9
AS
7091 return type;
7092}
7093
4c4b4cd2 7094/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7095 whose address in memory is ADDRESS, returns a revision of TYPE,
7096 which should be a non-dynamic-sized record, in which the variant
7097 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7098 for discriminant values in DVAL0, which can be NULL if the record
7099 contains the necessary discriminant values. */
7100
d2e4a39e 7101static struct type *
fc1a4b47 7102to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7103 CORE_ADDR address, struct value *dval0)
14f9c5c9 7104{
d2e4a39e 7105 struct value *mark = value_mark ();
4c4b4cd2 7106 struct value *dval;
d2e4a39e 7107 struct type *rtype;
14f9c5c9
AS
7108 struct type *branch_type;
7109 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7110 int variant_field = variant_field_index (type);
14f9c5c9 7111
4c4b4cd2 7112 if (variant_field == -1)
14f9c5c9
AS
7113 return type;
7114
4c4b4cd2
PH
7115 if (dval0 == NULL)
7116 dval = value_from_contents_and_address (type, valaddr, address);
7117 else
7118 dval = dval0;
7119
14f9c5c9
AS
7120 rtype = alloc_type (TYPE_OBJFILE (type));
7121 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7122 INIT_CPLUS_SPECIFIC (rtype);
7123 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7124 TYPE_FIELDS (rtype) =
7125 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7126 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7127 sizeof (struct field) * nfields);
14f9c5c9
AS
7128 TYPE_NAME (rtype) = ada_type_name (type);
7129 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7130 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7131 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7132
4c4b4cd2
PH
7133 branch_type = to_fixed_variant_branch_type
7134 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7135 cond_offset_host (valaddr,
4c4b4cd2
PH
7136 TYPE_FIELD_BITPOS (type, variant_field)
7137 / TARGET_CHAR_BIT),
d2e4a39e 7138 cond_offset_target (address,
4c4b4cd2
PH
7139 TYPE_FIELD_BITPOS (type, variant_field)
7140 / TARGET_CHAR_BIT), dval);
d2e4a39e 7141 if (branch_type == NULL)
14f9c5c9 7142 {
4c4b4cd2
PH
7143 int f;
7144 for (f = variant_field + 1; f < nfields; f += 1)
7145 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7146 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7147 }
7148 else
7149 {
4c4b4cd2
PH
7150 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7151 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7152 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7153 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7154 }
4c4b4cd2 7155 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7156
4c4b4cd2 7157 value_free_to_mark (mark);
14f9c5c9
AS
7158 return rtype;
7159}
7160
7161/* An ordinary record type (with fixed-length fields) that describes
7162 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7163 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7164 should be in DVAL, a record value; it may be NULL if the object
7165 at ADDR itself contains any necessary discriminant values.
7166 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7167 values from the record are needed. Except in the case that DVAL,
7168 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7169 unchecked) is replaced by a particular branch of the variant.
7170
7171 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7172 is questionable and may be removed. It can arise during the
7173 processing of an unconstrained-array-of-record type where all the
7174 variant branches have exactly the same size. This is because in
7175 such cases, the compiler does not bother to use the XVS convention
7176 when encoding the record. I am currently dubious of this
7177 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7178
d2e4a39e 7179static struct type *
fc1a4b47 7180to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7181 CORE_ADDR address, struct value *dval)
14f9c5c9 7182{
d2e4a39e 7183 struct type *templ_type;
14f9c5c9 7184
876cecd0 7185 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7186 return type0;
7187
d2e4a39e 7188 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7189
7190 if (templ_type != NULL)
7191 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7192 else if (variant_field_index (type0) >= 0)
7193 {
7194 if (dval == NULL && valaddr == NULL && address == 0)
7195 return type0;
7196 return to_record_with_fixed_variant_part (type0, valaddr, address,
7197 dval);
7198 }
14f9c5c9
AS
7199 else
7200 {
876cecd0 7201 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7202 return type0;
7203 }
7204
7205}
7206
7207/* An ordinary record type (with fixed-length fields) that describes
7208 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7209 union type. Any necessary discriminants' values should be in DVAL,
7210 a record value. That is, this routine selects the appropriate
7211 branch of the union at ADDR according to the discriminant value
4c4b4cd2 7212 indicated in the union's type name. */
14f9c5c9 7213
d2e4a39e 7214static struct type *
fc1a4b47 7215to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7216 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7217{
7218 int which;
d2e4a39e
AS
7219 struct type *templ_type;
7220 struct type *var_type;
14f9c5c9
AS
7221
7222 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7223 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7224 else
14f9c5c9
AS
7225 var_type = var_type0;
7226
7227 templ_type = ada_find_parallel_type (var_type, "___XVU");
7228
7229 if (templ_type != NULL)
7230 var_type = templ_type;
7231
d2e4a39e
AS
7232 which =
7233 ada_which_variant_applies (var_type,
0fd88904 7234 value_type (dval), value_contents (dval));
14f9c5c9
AS
7235
7236 if (which < 0)
7237 return empty_record (TYPE_OBJFILE (var_type));
7238 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7239 return to_fixed_record_type
d2e4a39e
AS
7240 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7241 valaddr, address, dval);
4c4b4cd2 7242 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7243 return
7244 to_fixed_record_type
7245 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7246 else
7247 return TYPE_FIELD_TYPE (var_type, which);
7248}
7249
7250/* Assuming that TYPE0 is an array type describing the type of a value
7251 at ADDR, and that DVAL describes a record containing any
7252 discriminants used in TYPE0, returns a type for the value that
7253 contains no dynamic components (that is, no components whose sizes
7254 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7255 true, gives an error message if the resulting type's size is over
4c4b4cd2 7256 varsize_limit. */
14f9c5c9 7257
d2e4a39e
AS
7258static struct type *
7259to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7260 int ignore_too_big)
14f9c5c9 7261{
d2e4a39e
AS
7262 struct type *index_type_desc;
7263 struct type *result;
14f9c5c9 7264
4c4b4cd2 7265 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7266 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7267 return type0;
14f9c5c9
AS
7268
7269 index_type_desc = ada_find_parallel_type (type0, "___XA");
7270 if (index_type_desc == NULL)
7271 {
61ee279c 7272 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7273 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7274 depend on the contents of the array in properly constructed
7275 debugging data. */
529cad9c
PH
7276 /* Create a fixed version of the array element type.
7277 We're not providing the address of an element here,
e1d5a0d2 7278 and thus the actual object value cannot be inspected to do
529cad9c
PH
7279 the conversion. This should not be a problem, since arrays of
7280 unconstrained objects are not allowed. In particular, all
7281 the elements of an array of a tagged type should all be of
7282 the same type specified in the debugging info. No need to
7283 consult the object tag. */
1ed6ede0 7284 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7285
7286 if (elt_type0 == elt_type)
4c4b4cd2 7287 result = type0;
14f9c5c9 7288 else
4c4b4cd2
PH
7289 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7290 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7291 }
7292 else
7293 {
7294 int i;
7295 struct type *elt_type0;
7296
7297 elt_type0 = type0;
7298 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7299 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7300
7301 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7302 depend on the contents of the array in properly constructed
7303 debugging data. */
529cad9c
PH
7304 /* Create a fixed version of the array element type.
7305 We're not providing the address of an element here,
e1d5a0d2 7306 and thus the actual object value cannot be inspected to do
529cad9c
PH
7307 the conversion. This should not be a problem, since arrays of
7308 unconstrained objects are not allowed. In particular, all
7309 the elements of an array of a tagged type should all be of
7310 the same type specified in the debugging info. No need to
7311 consult the object tag. */
1ed6ede0
JB
7312 result =
7313 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7314 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7315 {
7316 struct type *range_type =
7317 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7318 dval, TYPE_OBJFILE (type0));
7319 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7320 result, range_type);
7321 }
d2e4a39e 7322 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7323 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7324 }
7325
876cecd0 7326 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7327 return result;
d2e4a39e 7328}
14f9c5c9
AS
7329
7330
7331/* A standard type (containing no dynamically sized components)
7332 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7333 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7334 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7335 ADDRESS or in VALADDR contains these discriminants.
7336
1ed6ede0
JB
7337 If CHECK_TAG is not null, in the case of tagged types, this function
7338 attempts to locate the object's tag and use it to compute the actual
7339 type. However, when ADDRESS is null, we cannot use it to determine the
7340 location of the tag, and therefore compute the tagged type's actual type.
7341 So we return the tagged type without consulting the tag. */
529cad9c 7342
f192137b
JB
7343static struct type *
7344ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7345 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7346{
61ee279c 7347 type = ada_check_typedef (type);
d2e4a39e
AS
7348 switch (TYPE_CODE (type))
7349 {
7350 default:
14f9c5c9 7351 return type;
d2e4a39e 7352 case TYPE_CODE_STRUCT:
4c4b4cd2 7353 {
76a01679 7354 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7355 struct type *fixed_record_type =
7356 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7357 /* If STATIC_TYPE is a tagged type and we know the object's address,
7358 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7359 type from there. Note that we have to use the fixed record
7360 type (the parent part of the record may have dynamic fields
7361 and the way the location of _tag is expressed may depend on
7362 them). */
529cad9c 7363
1ed6ede0 7364 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7365 {
7366 struct type *real_type =
1ed6ede0
JB
7367 type_from_tag (value_tag_from_contents_and_address
7368 (fixed_record_type,
7369 valaddr,
7370 address));
76a01679 7371 if (real_type != NULL)
1ed6ede0 7372 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7373 }
1ed6ede0 7374 return fixed_record_type;
4c4b4cd2 7375 }
d2e4a39e 7376 case TYPE_CODE_ARRAY:
4c4b4cd2 7377 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7378 case TYPE_CODE_UNION:
7379 if (dval == NULL)
4c4b4cd2 7380 return type;
d2e4a39e 7381 else
4c4b4cd2 7382 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7383 }
14f9c5c9
AS
7384}
7385
f192137b
JB
7386/* The same as ada_to_fixed_type_1, except that it preserves the type
7387 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7388 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7389
7390struct type *
7391ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7392 CORE_ADDR address, struct value *dval, int check_tag)
7393
7394{
7395 struct type *fixed_type =
7396 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7397
7398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7399 && TYPE_TARGET_TYPE (type) == fixed_type)
7400 return type;
7401
7402 return fixed_type;
7403}
7404
14f9c5c9 7405/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7406 TYPE0, but based on no runtime data. */
14f9c5c9 7407
d2e4a39e
AS
7408static struct type *
7409to_static_fixed_type (struct type *type0)
14f9c5c9 7410{
d2e4a39e 7411 struct type *type;
14f9c5c9
AS
7412
7413 if (type0 == NULL)
7414 return NULL;
7415
876cecd0 7416 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7417 return type0;
7418
61ee279c 7419 type0 = ada_check_typedef (type0);
d2e4a39e 7420
14f9c5c9
AS
7421 switch (TYPE_CODE (type0))
7422 {
7423 default:
7424 return type0;
7425 case TYPE_CODE_STRUCT:
7426 type = dynamic_template_type (type0);
d2e4a39e 7427 if (type != NULL)
4c4b4cd2
PH
7428 return template_to_static_fixed_type (type);
7429 else
7430 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7431 case TYPE_CODE_UNION:
7432 type = ada_find_parallel_type (type0, "___XVU");
7433 if (type != NULL)
4c4b4cd2
PH
7434 return template_to_static_fixed_type (type);
7435 else
7436 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7437 }
7438}
7439
4c4b4cd2
PH
7440/* A static approximation of TYPE with all type wrappers removed. */
7441
d2e4a39e
AS
7442static struct type *
7443static_unwrap_type (struct type *type)
14f9c5c9
AS
7444{
7445 if (ada_is_aligner_type (type))
7446 {
61ee279c 7447 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7448 if (ada_type_name (type1) == NULL)
4c4b4cd2 7449 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7450
7451 return static_unwrap_type (type1);
7452 }
d2e4a39e 7453 else
14f9c5c9 7454 {
d2e4a39e
AS
7455 struct type *raw_real_type = ada_get_base_type (type);
7456 if (raw_real_type == type)
4c4b4cd2 7457 return type;
14f9c5c9 7458 else
4c4b4cd2 7459 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7460 }
7461}
7462
7463/* In some cases, incomplete and private types require
4c4b4cd2 7464 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7465 type Foo;
7466 type FooP is access Foo;
7467 V: FooP;
7468 type Foo is array ...;
4c4b4cd2 7469 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7470 cross-references to such types, we instead substitute for FooP a
7471 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7472 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7473
7474/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7475 exists, otherwise TYPE. */
7476
d2e4a39e 7477struct type *
61ee279c 7478ada_check_typedef (struct type *type)
14f9c5c9 7479{
727e3d2e
JB
7480 if (type == NULL)
7481 return NULL;
7482
14f9c5c9
AS
7483 CHECK_TYPEDEF (type);
7484 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7485 || !TYPE_STUB (type)
14f9c5c9
AS
7486 || TYPE_TAG_NAME (type) == NULL)
7487 return type;
d2e4a39e 7488 else
14f9c5c9 7489 {
d2e4a39e
AS
7490 char *name = TYPE_TAG_NAME (type);
7491 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7492 return (type1 == NULL) ? type : type1;
7493 }
7494}
7495
7496/* A value representing the data at VALADDR/ADDRESS as described by
7497 type TYPE0, but with a standard (static-sized) type that correctly
7498 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7499 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7500 creation of struct values]. */
14f9c5c9 7501
4c4b4cd2
PH
7502static struct value *
7503ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7504 struct value *val0)
14f9c5c9 7505{
1ed6ede0 7506 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7507 if (type == type0 && val0 != NULL)
7508 return val0;
d2e4a39e 7509 else
4c4b4cd2
PH
7510 return value_from_contents_and_address (type, 0, address);
7511}
7512
7513/* A value representing VAL, but with a standard (static-sized) type
7514 that correctly describes it. Does not necessarily create a new
7515 value. */
7516
7517static struct value *
7518ada_to_fixed_value (struct value *val)
7519{
df407dfe
AC
7520 return ada_to_fixed_value_create (value_type (val),
7521 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7522 val);
14f9c5c9
AS
7523}
7524
4c4b4cd2 7525/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7526 chosen to approximate the real type of VAL as well as possible, but
7527 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7528 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7529
d2e4a39e
AS
7530struct value *
7531ada_to_static_fixed_value (struct value *val)
14f9c5c9 7532{
d2e4a39e 7533 struct type *type =
df407dfe
AC
7534 to_static_fixed_type (static_unwrap_type (value_type (val)));
7535 if (type == value_type (val))
14f9c5c9
AS
7536 return val;
7537 else
4c4b4cd2 7538 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7539}
d2e4a39e 7540\f
14f9c5c9 7541
14f9c5c9
AS
7542/* Attributes */
7543
4c4b4cd2
PH
7544/* Table mapping attribute numbers to names.
7545 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7546
d2e4a39e 7547static const char *attribute_names[] = {
14f9c5c9
AS
7548 "<?>",
7549
d2e4a39e 7550 "first",
14f9c5c9
AS
7551 "last",
7552 "length",
7553 "image",
14f9c5c9
AS
7554 "max",
7555 "min",
4c4b4cd2
PH
7556 "modulus",
7557 "pos",
7558 "size",
7559 "tag",
14f9c5c9 7560 "val",
14f9c5c9
AS
7561 0
7562};
7563
d2e4a39e 7564const char *
4c4b4cd2 7565ada_attribute_name (enum exp_opcode n)
14f9c5c9 7566{
4c4b4cd2
PH
7567 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7568 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7569 else
7570 return attribute_names[0];
7571}
7572
4c4b4cd2 7573/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7574
4c4b4cd2
PH
7575static LONGEST
7576pos_atr (struct value *arg)
14f9c5c9 7577{
24209737
PH
7578 struct value *val = coerce_ref (arg);
7579 struct type *type = value_type (val);
14f9c5c9 7580
d2e4a39e 7581 if (!discrete_type_p (type))
323e0a4a 7582 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7583
7584 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7585 {
7586 int i;
24209737 7587 LONGEST v = value_as_long (val);
14f9c5c9 7588
d2e4a39e 7589 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7590 {
7591 if (v == TYPE_FIELD_BITPOS (type, i))
7592 return i;
7593 }
323e0a4a 7594 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7595 }
7596 else
24209737 7597 return value_as_long (val);
4c4b4cd2
PH
7598}
7599
7600static struct value *
7601value_pos_atr (struct value *arg)
7602{
72d5681a 7603 return value_from_longest (builtin_type_int, pos_atr (arg));
14f9c5c9
AS
7604}
7605
4c4b4cd2 7606/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7607
d2e4a39e
AS
7608static struct value *
7609value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7610{
d2e4a39e 7611 if (!discrete_type_p (type))
323e0a4a 7612 error (_("'VAL only defined on discrete types"));
df407dfe 7613 if (!integer_type_p (value_type (arg)))
323e0a4a 7614 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7615
7616 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7617 {
7618 long pos = value_as_long (arg);
7619 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7620 error (_("argument to 'VAL out of range"));
d2e4a39e 7621 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7622 }
7623 else
7624 return value_from_longest (type, value_as_long (arg));
7625}
14f9c5c9 7626\f
d2e4a39e 7627
4c4b4cd2 7628 /* Evaluation */
14f9c5c9 7629
4c4b4cd2
PH
7630/* True if TYPE appears to be an Ada character type.
7631 [At the moment, this is true only for Character and Wide_Character;
7632 It is a heuristic test that could stand improvement]. */
14f9c5c9 7633
d2e4a39e
AS
7634int
7635ada_is_character_type (struct type *type)
14f9c5c9 7636{
7b9f71f2
JB
7637 const char *name;
7638
7639 /* If the type code says it's a character, then assume it really is,
7640 and don't check any further. */
7641 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7642 return 1;
7643
7644 /* Otherwise, assume it's a character type iff it is a discrete type
7645 with a known character type name. */
7646 name = ada_type_name (type);
7647 return (name != NULL
7648 && (TYPE_CODE (type) == TYPE_CODE_INT
7649 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7650 && (strcmp (name, "character") == 0
7651 || strcmp (name, "wide_character") == 0
5a517ebd 7652 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7653 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7654}
7655
4c4b4cd2 7656/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7657
7658int
ebf56fd3 7659ada_is_string_type (struct type *type)
14f9c5c9 7660{
61ee279c 7661 type = ada_check_typedef (type);
d2e4a39e 7662 if (type != NULL
14f9c5c9 7663 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7664 && (ada_is_simple_array_type (type)
7665 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7666 && ada_array_arity (type) == 1)
7667 {
7668 struct type *elttype = ada_array_element_type (type, 1);
7669
7670 return ada_is_character_type (elttype);
7671 }
d2e4a39e 7672 else
14f9c5c9
AS
7673 return 0;
7674}
7675
7676
7677/* True if TYPE is a struct type introduced by the compiler to force the
7678 alignment of a value. Such types have a single field with a
4c4b4cd2 7679 distinctive name. */
14f9c5c9
AS
7680
7681int
ebf56fd3 7682ada_is_aligner_type (struct type *type)
14f9c5c9 7683{
61ee279c 7684 type = ada_check_typedef (type);
714e53ab
PH
7685
7686 /* If we can find a parallel XVS type, then the XVS type should
7687 be used instead of this type. And hence, this is not an aligner
7688 type. */
7689 if (ada_find_parallel_type (type, "___XVS") != NULL)
7690 return 0;
7691
14f9c5c9 7692 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7693 && TYPE_NFIELDS (type) == 1
7694 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7695}
7696
7697/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7698 the parallel type. */
14f9c5c9 7699
d2e4a39e
AS
7700struct type *
7701ada_get_base_type (struct type *raw_type)
14f9c5c9 7702{
d2e4a39e
AS
7703 struct type *real_type_namer;
7704 struct type *raw_real_type;
14f9c5c9
AS
7705
7706 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7707 return raw_type;
7708
7709 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7710 if (real_type_namer == NULL
14f9c5c9
AS
7711 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7712 || TYPE_NFIELDS (real_type_namer) != 1)
7713 return raw_type;
7714
7715 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7716 if (raw_real_type == NULL)
14f9c5c9
AS
7717 return raw_type;
7718 else
7719 return raw_real_type;
d2e4a39e 7720}
14f9c5c9 7721
4c4b4cd2 7722/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7723
d2e4a39e
AS
7724struct type *
7725ada_aligned_type (struct type *type)
14f9c5c9
AS
7726{
7727 if (ada_is_aligner_type (type))
7728 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7729 else
7730 return ada_get_base_type (type);
7731}
7732
7733
7734/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7735 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7736
fc1a4b47
AC
7737const gdb_byte *
7738ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7739{
d2e4a39e 7740 if (ada_is_aligner_type (type))
14f9c5c9 7741 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7742 valaddr +
7743 TYPE_FIELD_BITPOS (type,
7744 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7745 else
7746 return valaddr;
7747}
7748
4c4b4cd2
PH
7749
7750
14f9c5c9 7751/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7752 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7753const char *
7754ada_enum_name (const char *name)
14f9c5c9 7755{
4c4b4cd2
PH
7756 static char *result;
7757 static size_t result_len = 0;
d2e4a39e 7758 char *tmp;
14f9c5c9 7759
4c4b4cd2
PH
7760 /* First, unqualify the enumeration name:
7761 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7762 all the preceeding characters, the unqualified name starts
7763 right after that dot.
4c4b4cd2 7764 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7765 translates dots into "__". Search forward for double underscores,
7766 but stop searching when we hit an overloading suffix, which is
7767 of the form "__" followed by digits. */
4c4b4cd2 7768
c3e5cd34
PH
7769 tmp = strrchr (name, '.');
7770 if (tmp != NULL)
4c4b4cd2
PH
7771 name = tmp + 1;
7772 else
14f9c5c9 7773 {
4c4b4cd2
PH
7774 while ((tmp = strstr (name, "__")) != NULL)
7775 {
7776 if (isdigit (tmp[2]))
7777 break;
7778 else
7779 name = tmp + 2;
7780 }
14f9c5c9
AS
7781 }
7782
7783 if (name[0] == 'Q')
7784 {
14f9c5c9
AS
7785 int v;
7786 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7787 {
7788 if (sscanf (name + 2, "%x", &v) != 1)
7789 return name;
7790 }
14f9c5c9 7791 else
4c4b4cd2 7792 return name;
14f9c5c9 7793
4c4b4cd2 7794 GROW_VECT (result, result_len, 16);
14f9c5c9 7795 if (isascii (v) && isprint (v))
4c4b4cd2 7796 sprintf (result, "'%c'", v);
14f9c5c9 7797 else if (name[1] == 'U')
4c4b4cd2 7798 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7799 else
4c4b4cd2 7800 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7801
7802 return result;
7803 }
d2e4a39e 7804 else
4c4b4cd2 7805 {
c3e5cd34
PH
7806 tmp = strstr (name, "__");
7807 if (tmp == NULL)
7808 tmp = strstr (name, "$");
7809 if (tmp != NULL)
4c4b4cd2
PH
7810 {
7811 GROW_VECT (result, result_len, tmp - name + 1);
7812 strncpy (result, name, tmp - name);
7813 result[tmp - name] = '\0';
7814 return result;
7815 }
7816
7817 return name;
7818 }
14f9c5c9
AS
7819}
7820
d2e4a39e 7821static struct value *
ebf56fd3 7822evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7823 enum noside noside)
14f9c5c9 7824{
76a01679 7825 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7826 (expect_type, exp, pos, noside);
14f9c5c9
AS
7827}
7828
7829/* Evaluate the subexpression of EXP starting at *POS as for
7830 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7831 expression. */
14f9c5c9 7832
d2e4a39e
AS
7833static struct value *
7834evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7835{
4c4b4cd2 7836 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7837 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7838}
7839
7840/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7841 value it wraps. */
14f9c5c9 7842
d2e4a39e
AS
7843static struct value *
7844unwrap_value (struct value *val)
14f9c5c9 7845{
df407dfe 7846 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7847 if (ada_is_aligner_type (type))
7848 {
de4d072f 7849 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7850 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7851 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7852 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7853
7854 return unwrap_value (v);
7855 }
d2e4a39e 7856 else
14f9c5c9 7857 {
d2e4a39e 7858 struct type *raw_real_type =
61ee279c 7859 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7860
14f9c5c9 7861 if (type == raw_real_type)
4c4b4cd2 7862 return val;
14f9c5c9 7863
d2e4a39e 7864 return
4c4b4cd2
PH
7865 coerce_unspec_val_to_type
7866 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7867 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7868 NULL, 1));
14f9c5c9
AS
7869 }
7870}
d2e4a39e
AS
7871
7872static struct value *
7873cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7874{
7875 LONGEST val;
7876
df407dfe 7877 if (type == value_type (arg))
14f9c5c9 7878 return arg;
df407dfe 7879 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7880 val = ada_float_to_fixed (type,
df407dfe 7881 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7882 value_as_long (arg)));
d2e4a39e 7883 else
14f9c5c9 7884 {
a53b7a21 7885 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7886 val = ada_float_to_fixed (type, argd);
7887 }
7888
7889 return value_from_longest (type, val);
7890}
7891
d2e4a39e 7892static struct value *
a53b7a21 7893cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7894{
df407dfe 7895 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7896 value_as_long (arg));
a53b7a21 7897 return value_from_double (type, val);
14f9c5c9
AS
7898}
7899
4c4b4cd2
PH
7900/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7901 return the converted value. */
7902
d2e4a39e
AS
7903static struct value *
7904coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7905{
df407dfe 7906 struct type *type2 = value_type (val);
14f9c5c9
AS
7907 if (type == type2)
7908 return val;
7909
61ee279c
PH
7910 type2 = ada_check_typedef (type2);
7911 type = ada_check_typedef (type);
14f9c5c9 7912
d2e4a39e
AS
7913 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7914 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7915 {
7916 val = ada_value_ind (val);
df407dfe 7917 type2 = value_type (val);
14f9c5c9
AS
7918 }
7919
d2e4a39e 7920 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7921 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7922 {
7923 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7924 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7925 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7926 error (_("Incompatible types in assignment"));
04624583 7927 deprecated_set_value_type (val, type);
14f9c5c9 7928 }
d2e4a39e 7929 return val;
14f9c5c9
AS
7930}
7931
4c4b4cd2
PH
7932static struct value *
7933ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7934{
7935 struct value *val;
7936 struct type *type1, *type2;
7937 LONGEST v, v1, v2;
7938
994b9211
AC
7939 arg1 = coerce_ref (arg1);
7940 arg2 = coerce_ref (arg2);
df407dfe
AC
7941 type1 = base_type (ada_check_typedef (value_type (arg1)));
7942 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7943
76a01679
JB
7944 if (TYPE_CODE (type1) != TYPE_CODE_INT
7945 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7946 return value_binop (arg1, arg2, op);
7947
76a01679 7948 switch (op)
4c4b4cd2
PH
7949 {
7950 case BINOP_MOD:
7951 case BINOP_DIV:
7952 case BINOP_REM:
7953 break;
7954 default:
7955 return value_binop (arg1, arg2, op);
7956 }
7957
7958 v2 = value_as_long (arg2);
7959 if (v2 == 0)
323e0a4a 7960 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7961
7962 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7963 return value_binop (arg1, arg2, op);
7964
7965 v1 = value_as_long (arg1);
7966 switch (op)
7967 {
7968 case BINOP_DIV:
7969 v = v1 / v2;
76a01679
JB
7970 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7971 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7972 break;
7973 case BINOP_REM:
7974 v = v1 % v2;
76a01679
JB
7975 if (v * v1 < 0)
7976 v -= v2;
4c4b4cd2
PH
7977 break;
7978 default:
7979 /* Should not reach this point. */
7980 v = 0;
7981 }
7982
7983 val = allocate_value (type1);
990a07ab 7984 store_unsigned_integer (value_contents_raw (val),
df407dfe 7985 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7986 return val;
7987}
7988
7989static int
7990ada_value_equal (struct value *arg1, struct value *arg2)
7991{
df407dfe
AC
7992 if (ada_is_direct_array_type (value_type (arg1))
7993 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7994 {
f58b38bf
JB
7995 /* Automatically dereference any array reference before
7996 we attempt to perform the comparison. */
7997 arg1 = ada_coerce_ref (arg1);
7998 arg2 = ada_coerce_ref (arg2);
7999
4c4b4cd2
PH
8000 arg1 = ada_coerce_to_simple_array (arg1);
8001 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8002 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8003 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8004 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8005 /* FIXME: The following works only for types whose
76a01679
JB
8006 representations use all bits (no padding or undefined bits)
8007 and do not have user-defined equality. */
8008 return
df407dfe 8009 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8010 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8011 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8012 }
8013 return value_equal (arg1, arg2);
8014}
8015
52ce6436
PH
8016/* Total number of component associations in the aggregate starting at
8017 index PC in EXP. Assumes that index PC is the start of an
8018 OP_AGGREGATE. */
8019
8020static int
8021num_component_specs (struct expression *exp, int pc)
8022{
8023 int n, m, i;
8024 m = exp->elts[pc + 1].longconst;
8025 pc += 3;
8026 n = 0;
8027 for (i = 0; i < m; i += 1)
8028 {
8029 switch (exp->elts[pc].opcode)
8030 {
8031 default:
8032 n += 1;
8033 break;
8034 case OP_CHOICES:
8035 n += exp->elts[pc + 1].longconst;
8036 break;
8037 }
8038 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8039 }
8040 return n;
8041}
8042
8043/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8044 component of LHS (a simple array or a record), updating *POS past
8045 the expression, assuming that LHS is contained in CONTAINER. Does
8046 not modify the inferior's memory, nor does it modify LHS (unless
8047 LHS == CONTAINER). */
8048
8049static void
8050assign_component (struct value *container, struct value *lhs, LONGEST index,
8051 struct expression *exp, int *pos)
8052{
8053 struct value *mark = value_mark ();
8054 struct value *elt;
8055 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8056 {
8057 struct value *index_val = value_from_longest (builtin_type_int, index);
8058 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8059 }
8060 else
8061 {
8062 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8063 elt = ada_to_fixed_value (unwrap_value (elt));
8064 }
8065
8066 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8067 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8068 else
8069 value_assign_to_component (container, elt,
8070 ada_evaluate_subexp (NULL, exp, pos,
8071 EVAL_NORMAL));
8072
8073 value_free_to_mark (mark);
8074}
8075
8076/* Assuming that LHS represents an lvalue having a record or array
8077 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8078 of that aggregate's value to LHS, advancing *POS past the
8079 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8080 lvalue containing LHS (possibly LHS itself). Does not modify
8081 the inferior's memory, nor does it modify the contents of
8082 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8083
8084static struct value *
8085assign_aggregate (struct value *container,
8086 struct value *lhs, struct expression *exp,
8087 int *pos, enum noside noside)
8088{
8089 struct type *lhs_type;
8090 int n = exp->elts[*pos+1].longconst;
8091 LONGEST low_index, high_index;
8092 int num_specs;
8093 LONGEST *indices;
8094 int max_indices, num_indices;
8095 int is_array_aggregate;
8096 int i;
8097 struct value *mark = value_mark ();
8098
8099 *pos += 3;
8100 if (noside != EVAL_NORMAL)
8101 {
8102 int i;
8103 for (i = 0; i < n; i += 1)
8104 ada_evaluate_subexp (NULL, exp, pos, noside);
8105 return container;
8106 }
8107
8108 container = ada_coerce_ref (container);
8109 if (ada_is_direct_array_type (value_type (container)))
8110 container = ada_coerce_to_simple_array (container);
8111 lhs = ada_coerce_ref (lhs);
8112 if (!deprecated_value_modifiable (lhs))
8113 error (_("Left operand of assignment is not a modifiable lvalue."));
8114
8115 lhs_type = value_type (lhs);
8116 if (ada_is_direct_array_type (lhs_type))
8117 {
8118 lhs = ada_coerce_to_simple_array (lhs);
8119 lhs_type = value_type (lhs);
8120 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8121 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8122 is_array_aggregate = 1;
8123 }
8124 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8125 {
8126 low_index = 0;
8127 high_index = num_visible_fields (lhs_type) - 1;
8128 is_array_aggregate = 0;
8129 }
8130 else
8131 error (_("Left-hand side must be array or record."));
8132
8133 num_specs = num_component_specs (exp, *pos - 3);
8134 max_indices = 4 * num_specs + 4;
8135 indices = alloca (max_indices * sizeof (indices[0]));
8136 indices[0] = indices[1] = low_index - 1;
8137 indices[2] = indices[3] = high_index + 1;
8138 num_indices = 4;
8139
8140 for (i = 0; i < n; i += 1)
8141 {
8142 switch (exp->elts[*pos].opcode)
8143 {
8144 case OP_CHOICES:
8145 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8146 &num_indices, max_indices,
8147 low_index, high_index);
8148 break;
8149 case OP_POSITIONAL:
8150 aggregate_assign_positional (container, lhs, exp, pos, indices,
8151 &num_indices, max_indices,
8152 low_index, high_index);
8153 break;
8154 case OP_OTHERS:
8155 if (i != n-1)
8156 error (_("Misplaced 'others' clause"));
8157 aggregate_assign_others (container, lhs, exp, pos, indices,
8158 num_indices, low_index, high_index);
8159 break;
8160 default:
8161 error (_("Internal error: bad aggregate clause"));
8162 }
8163 }
8164
8165 return container;
8166}
8167
8168/* Assign into the component of LHS indexed by the OP_POSITIONAL
8169 construct at *POS, updating *POS past the construct, given that
8170 the positions are relative to lower bound LOW, where HIGH is the
8171 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8172 updating *NUM_INDICES as needed. CONTAINER is as for
8173 assign_aggregate. */
8174static void
8175aggregate_assign_positional (struct value *container,
8176 struct value *lhs, struct expression *exp,
8177 int *pos, LONGEST *indices, int *num_indices,
8178 int max_indices, LONGEST low, LONGEST high)
8179{
8180 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8181
8182 if (ind - 1 == high)
e1d5a0d2 8183 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8184 if (ind <= high)
8185 {
8186 add_component_interval (ind, ind, indices, num_indices, max_indices);
8187 *pos += 3;
8188 assign_component (container, lhs, ind, exp, pos);
8189 }
8190 else
8191 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8192}
8193
8194/* Assign into the components of LHS indexed by the OP_CHOICES
8195 construct at *POS, updating *POS past the construct, given that
8196 the allowable indices are LOW..HIGH. Record the indices assigned
8197 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8198 needed. CONTAINER is as for assign_aggregate. */
8199static void
8200aggregate_assign_from_choices (struct value *container,
8201 struct value *lhs, struct expression *exp,
8202 int *pos, LONGEST *indices, int *num_indices,
8203 int max_indices, LONGEST low, LONGEST high)
8204{
8205 int j;
8206 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8207 int choice_pos, expr_pc;
8208 int is_array = ada_is_direct_array_type (value_type (lhs));
8209
8210 choice_pos = *pos += 3;
8211
8212 for (j = 0; j < n_choices; j += 1)
8213 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8214 expr_pc = *pos;
8215 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8216
8217 for (j = 0; j < n_choices; j += 1)
8218 {
8219 LONGEST lower, upper;
8220 enum exp_opcode op = exp->elts[choice_pos].opcode;
8221 if (op == OP_DISCRETE_RANGE)
8222 {
8223 choice_pos += 1;
8224 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8225 EVAL_NORMAL));
8226 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8227 EVAL_NORMAL));
8228 }
8229 else if (is_array)
8230 {
8231 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8232 EVAL_NORMAL));
8233 upper = lower;
8234 }
8235 else
8236 {
8237 int ind;
8238 char *name;
8239 switch (op)
8240 {
8241 case OP_NAME:
8242 name = &exp->elts[choice_pos + 2].string;
8243 break;
8244 case OP_VAR_VALUE:
8245 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8246 break;
8247 default:
8248 error (_("Invalid record component association."));
8249 }
8250 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8251 ind = 0;
8252 if (! find_struct_field (name, value_type (lhs), 0,
8253 NULL, NULL, NULL, NULL, &ind))
8254 error (_("Unknown component name: %s."), name);
8255 lower = upper = ind;
8256 }
8257
8258 if (lower <= upper && (lower < low || upper > high))
8259 error (_("Index in component association out of bounds."));
8260
8261 add_component_interval (lower, upper, indices, num_indices,
8262 max_indices);
8263 while (lower <= upper)
8264 {
8265 int pos1;
8266 pos1 = expr_pc;
8267 assign_component (container, lhs, lower, exp, &pos1);
8268 lower += 1;
8269 }
8270 }
8271}
8272
8273/* Assign the value of the expression in the OP_OTHERS construct in
8274 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8275 have not been previously assigned. The index intervals already assigned
8276 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8277 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8278static void
8279aggregate_assign_others (struct value *container,
8280 struct value *lhs, struct expression *exp,
8281 int *pos, LONGEST *indices, int num_indices,
8282 LONGEST low, LONGEST high)
8283{
8284 int i;
8285 int expr_pc = *pos+1;
8286
8287 for (i = 0; i < num_indices - 2; i += 2)
8288 {
8289 LONGEST ind;
8290 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8291 {
8292 int pos;
8293 pos = expr_pc;
8294 assign_component (container, lhs, ind, exp, &pos);
8295 }
8296 }
8297 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8298}
8299
8300/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8301 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8302 modifying *SIZE as needed. It is an error if *SIZE exceeds
8303 MAX_SIZE. The resulting intervals do not overlap. */
8304static void
8305add_component_interval (LONGEST low, LONGEST high,
8306 LONGEST* indices, int *size, int max_size)
8307{
8308 int i, j;
8309 for (i = 0; i < *size; i += 2) {
8310 if (high >= indices[i] && low <= indices[i + 1])
8311 {
8312 int kh;
8313 for (kh = i + 2; kh < *size; kh += 2)
8314 if (high < indices[kh])
8315 break;
8316 if (low < indices[i])
8317 indices[i] = low;
8318 indices[i + 1] = indices[kh - 1];
8319 if (high > indices[i + 1])
8320 indices[i + 1] = high;
8321 memcpy (indices + i + 2, indices + kh, *size - kh);
8322 *size -= kh - i - 2;
8323 return;
8324 }
8325 else if (high < indices[i])
8326 break;
8327 }
8328
8329 if (*size == max_size)
8330 error (_("Internal error: miscounted aggregate components."));
8331 *size += 2;
8332 for (j = *size-1; j >= i+2; j -= 1)
8333 indices[j] = indices[j - 2];
8334 indices[i] = low;
8335 indices[i + 1] = high;
8336}
8337
6e48bd2c
JB
8338/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8339 is different. */
8340
8341static struct value *
8342ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8343{
8344 if (type == ada_check_typedef (value_type (arg2)))
8345 return arg2;
8346
8347 if (ada_is_fixed_point_type (type))
8348 return (cast_to_fixed (type, arg2));
8349
8350 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8351 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8352
8353 return value_cast (type, arg2);
8354}
8355
52ce6436 8356static struct value *
ebf56fd3 8357ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8358 int *pos, enum noside noside)
14f9c5c9
AS
8359{
8360 enum exp_opcode op;
14f9c5c9
AS
8361 int tem, tem2, tem3;
8362 int pc;
8363 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8364 struct type *type;
52ce6436 8365 int nargs, oplen;
d2e4a39e 8366 struct value **argvec;
14f9c5c9 8367
d2e4a39e
AS
8368 pc = *pos;
8369 *pos += 1;
14f9c5c9
AS
8370 op = exp->elts[pc].opcode;
8371
d2e4a39e 8372 switch (op)
14f9c5c9
AS
8373 {
8374 default:
8375 *pos -= 1;
6e48bd2c
JB
8376 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8377 arg1 = unwrap_value (arg1);
8378
8379 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8380 then we need to perform the conversion manually, because
8381 evaluate_subexp_standard doesn't do it. This conversion is
8382 necessary in Ada because the different kinds of float/fixed
8383 types in Ada have different representations.
8384
8385 Similarly, we need to perform the conversion from OP_LONG
8386 ourselves. */
8387 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8388 arg1 = ada_value_cast (expect_type, arg1, noside);
8389
8390 return arg1;
4c4b4cd2
PH
8391
8392 case OP_STRING:
8393 {
76a01679
JB
8394 struct value *result;
8395 *pos -= 1;
8396 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8397 /* The result type will have code OP_STRING, bashed there from
8398 OP_ARRAY. Bash it back. */
df407dfe
AC
8399 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8400 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8401 return result;
4c4b4cd2 8402 }
14f9c5c9
AS
8403
8404 case UNOP_CAST:
8405 (*pos) += 2;
8406 type = exp->elts[pc + 1].type;
8407 arg1 = evaluate_subexp (type, exp, pos, noside);
8408 if (noside == EVAL_SKIP)
4c4b4cd2 8409 goto nosideret;
6e48bd2c 8410 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8411 return arg1;
8412
4c4b4cd2
PH
8413 case UNOP_QUAL:
8414 (*pos) += 2;
8415 type = exp->elts[pc + 1].type;
8416 return ada_evaluate_subexp (type, exp, pos, noside);
8417
14f9c5c9
AS
8418 case BINOP_ASSIGN:
8419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8420 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8421 {
8422 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8423 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8424 return arg1;
8425 return ada_value_assign (arg1, arg1);
8426 }
003f3813
JB
8427 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8428 except if the lhs of our assignment is a convenience variable.
8429 In the case of assigning to a convenience variable, the lhs
8430 should be exactly the result of the evaluation of the rhs. */
8431 type = value_type (arg1);
8432 if (VALUE_LVAL (arg1) == lval_internalvar)
8433 type = NULL;
8434 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8435 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8436 return arg1;
df407dfe
AC
8437 if (ada_is_fixed_point_type (value_type (arg1)))
8438 arg2 = cast_to_fixed (value_type (arg1), arg2);
8439 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8440 error
323e0a4a 8441 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8442 else
df407dfe 8443 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8444 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8445
8446 case BINOP_ADD:
8447 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8448 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8449 if (noside == EVAL_SKIP)
4c4b4cd2 8450 goto nosideret;
2ac8a782
JB
8451 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8452 return (value_from_longest
8453 (value_type (arg1),
8454 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8455 if ((ada_is_fixed_point_type (value_type (arg1))
8456 || ada_is_fixed_point_type (value_type (arg2)))
8457 && value_type (arg1) != value_type (arg2))
323e0a4a 8458 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8459 /* Do the addition, and cast the result to the type of the first
8460 argument. We cannot cast the result to a reference type, so if
8461 ARG1 is a reference type, find its underlying type. */
8462 type = value_type (arg1);
8463 while (TYPE_CODE (type) == TYPE_CODE_REF)
8464 type = TYPE_TARGET_TYPE (type);
f44316fa 8465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8466 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8467
8468 case BINOP_SUB:
8469 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8470 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8471 if (noside == EVAL_SKIP)
4c4b4cd2 8472 goto nosideret;
2ac8a782
JB
8473 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8474 return (value_from_longest
8475 (value_type (arg1),
8476 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8477 if ((ada_is_fixed_point_type (value_type (arg1))
8478 || ada_is_fixed_point_type (value_type (arg2)))
8479 && value_type (arg1) != value_type (arg2))
323e0a4a 8480 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8481 /* Do the substraction, and cast the result to the type of the first
8482 argument. We cannot cast the result to a reference type, so if
8483 ARG1 is a reference type, find its underlying type. */
8484 type = value_type (arg1);
8485 while (TYPE_CODE (type) == TYPE_CODE_REF)
8486 type = TYPE_TARGET_TYPE (type);
f44316fa 8487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8488 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8489
8490 case BINOP_MUL:
8491 case BINOP_DIV:
8492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8493 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8494 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8495 goto nosideret;
8496 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8497 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8498 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8499 else
4c4b4cd2 8500 {
a53b7a21 8501 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8502 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8503 arg1 = cast_from_fixed (type, arg1);
df407dfe 8504 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8505 arg2 = cast_from_fixed (type, arg2);
f44316fa 8506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8507 return ada_value_binop (arg1, arg2, op);
8508 }
8509
8510 case BINOP_REM:
8511 case BINOP_MOD:
8512 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8513 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8514 if (noside == EVAL_SKIP)
76a01679 8515 goto nosideret;
4c4b4cd2 8516 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8517 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8518 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8519 else
f44316fa
UW
8520 {
8521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8522 return ada_value_binop (arg1, arg2, op);
8523 }
14f9c5c9 8524
4c4b4cd2
PH
8525 case BINOP_EQUAL:
8526 case BINOP_NOTEQUAL:
14f9c5c9 8527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8528 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8529 if (noside == EVAL_SKIP)
76a01679 8530 goto nosideret;
4c4b4cd2 8531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8532 tem = 0;
4c4b4cd2 8533 else
f44316fa
UW
8534 {
8535 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8536 tem = ada_value_equal (arg1, arg2);
8537 }
4c4b4cd2 8538 if (op == BINOP_NOTEQUAL)
76a01679 8539 tem = !tem;
fbb06eb1
UW
8540 type = language_bool_type (exp->language_defn, exp->gdbarch);
8541 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8542
8543 case UNOP_NEG:
8544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8545 if (noside == EVAL_SKIP)
8546 goto nosideret;
df407dfe
AC
8547 else if (ada_is_fixed_point_type (value_type (arg1)))
8548 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8549 else
f44316fa
UW
8550 {
8551 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8552 return value_neg (arg1);
8553 }
4c4b4cd2 8554
2330c6c6
JB
8555 case BINOP_LOGICAL_AND:
8556 case BINOP_LOGICAL_OR:
8557 case UNOP_LOGICAL_NOT:
000d5124
JB
8558 {
8559 struct value *val;
8560
8561 *pos -= 1;
8562 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8563 type = language_bool_type (exp->language_defn, exp->gdbarch);
8564 return value_cast (type, val);
000d5124 8565 }
2330c6c6
JB
8566
8567 case BINOP_BITWISE_AND:
8568 case BINOP_BITWISE_IOR:
8569 case BINOP_BITWISE_XOR:
000d5124
JB
8570 {
8571 struct value *val;
8572
8573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8574 *pos = pc;
8575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8576
8577 return value_cast (value_type (arg1), val);
8578 }
2330c6c6 8579
14f9c5c9
AS
8580 case OP_VAR_VALUE:
8581 *pos -= 1;
6799def4 8582
14f9c5c9 8583 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8584 {
8585 *pos += 4;
8586 goto nosideret;
8587 }
8588 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8589 /* Only encountered when an unresolved symbol occurs in a
8590 context other than a function call, in which case, it is
52ce6436 8591 invalid. */
323e0a4a 8592 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8593 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8594 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8595 {
0c1f74cf
JB
8596 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8597 if (ada_is_tagged_type (type, 0))
8598 {
8599 /* Tagged types are a little special in the fact that the real
8600 type is dynamic and can only be determined by inspecting the
8601 object's tag. This means that we need to get the object's
8602 value first (EVAL_NORMAL) and then extract the actual object
8603 type from its tag.
8604
8605 Note that we cannot skip the final step where we extract
8606 the object type from its tag, because the EVAL_NORMAL phase
8607 results in dynamic components being resolved into fixed ones.
8608 This can cause problems when trying to print the type
8609 description of tagged types whose parent has a dynamic size:
8610 We use the type name of the "_parent" component in order
8611 to print the name of the ancestor type in the type description.
8612 If that component had a dynamic size, the resolution into
8613 a fixed type would result in the loss of that type name,
8614 thus preventing us from printing the name of the ancestor
8615 type in the type description. */
8616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8617 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8618 }
8619
4c4b4cd2
PH
8620 *pos += 4;
8621 return value_zero
8622 (to_static_fixed_type
8623 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8624 not_lval);
8625 }
d2e4a39e 8626 else
4c4b4cd2
PH
8627 {
8628 arg1 =
8629 unwrap_value (evaluate_subexp_standard
8630 (expect_type, exp, pos, noside));
8631 return ada_to_fixed_value (arg1);
8632 }
8633
8634 case OP_FUNCALL:
8635 (*pos) += 2;
8636
8637 /* Allocate arg vector, including space for the function to be
8638 called in argvec[0] and a terminating NULL. */
8639 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8640 argvec =
8641 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8642
8643 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8644 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8645 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8646 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8647 else
8648 {
8649 for (tem = 0; tem <= nargs; tem += 1)
8650 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 argvec[tem] = 0;
8652
8653 if (noside == EVAL_SKIP)
8654 goto nosideret;
8655 }
8656
df407dfe 8657 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8658 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8659 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8660 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8661 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8662 argvec[0] = value_addr (argvec[0]);
8663
df407dfe 8664 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8666 {
61ee279c 8667 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8668 {
8669 case TYPE_CODE_FUNC:
61ee279c 8670 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8671 break;
8672 case TYPE_CODE_ARRAY:
8673 break;
8674 case TYPE_CODE_STRUCT:
8675 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8676 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8677 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8678 break;
8679 default:
323e0a4a 8680 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8681 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8682 break;
8683 }
8684 }
8685
8686 switch (TYPE_CODE (type))
8687 {
8688 case TYPE_CODE_FUNC:
8689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8690 return allocate_value (TYPE_TARGET_TYPE (type));
8691 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8692 case TYPE_CODE_STRUCT:
8693 {
8694 int arity;
8695
4c4b4cd2
PH
8696 arity = ada_array_arity (type);
8697 type = ada_array_element_type (type, nargs);
8698 if (type == NULL)
323e0a4a 8699 error (_("cannot subscript or call a record"));
4c4b4cd2 8700 if (arity != nargs)
323e0a4a 8701 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8703 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8704 return
8705 unwrap_value (ada_value_subscript
8706 (argvec[0], nargs, argvec + 1));
8707 }
8708 case TYPE_CODE_ARRAY:
8709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8710 {
8711 type = ada_array_element_type (type, nargs);
8712 if (type == NULL)
323e0a4a 8713 error (_("element type of array unknown"));
4c4b4cd2 8714 else
0a07e705 8715 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8716 }
8717 return
8718 unwrap_value (ada_value_subscript
8719 (ada_coerce_to_simple_array (argvec[0]),
8720 nargs, argvec + 1));
8721 case TYPE_CODE_PTR: /* Pointer to array */
8722 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8724 {
8725 type = ada_array_element_type (type, nargs);
8726 if (type == NULL)
323e0a4a 8727 error (_("element type of array unknown"));
4c4b4cd2 8728 else
0a07e705 8729 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8730 }
8731 return
8732 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8733 nargs, argvec + 1));
8734
8735 default:
e1d5a0d2
PH
8736 error (_("Attempt to index or call something other than an "
8737 "array or function"));
4c4b4cd2
PH
8738 }
8739
8740 case TERNOP_SLICE:
8741 {
8742 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8743 struct value *low_bound_val =
8744 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8745 struct value *high_bound_val =
8746 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8747 LONGEST low_bound;
8748 LONGEST high_bound;
994b9211
AC
8749 low_bound_val = coerce_ref (low_bound_val);
8750 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8751 low_bound = pos_atr (low_bound_val);
8752 high_bound = pos_atr (high_bound_val);
963a6417 8753
4c4b4cd2
PH
8754 if (noside == EVAL_SKIP)
8755 goto nosideret;
8756
4c4b4cd2
PH
8757 /* If this is a reference to an aligner type, then remove all
8758 the aligners. */
df407dfe
AC
8759 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8760 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8761 TYPE_TARGET_TYPE (value_type (array)) =
8762 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8763
df407dfe 8764 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8765 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8766
8767 /* If this is a reference to an array or an array lvalue,
8768 convert to a pointer. */
df407dfe
AC
8769 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8770 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8771 && VALUE_LVAL (array) == lval_memory))
8772 array = value_addr (array);
8773
1265e4aa 8774 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8775 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8776 (value_type (array))))
0b5d8877 8777 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8778
8779 array = ada_coerce_to_simple_array_ptr (array);
8780
714e53ab
PH
8781 /* If we have more than one level of pointer indirection,
8782 dereference the value until we get only one level. */
df407dfe
AC
8783 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8784 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8785 == TYPE_CODE_PTR))
8786 array = value_ind (array);
8787
8788 /* Make sure we really do have an array type before going further,
8789 to avoid a SEGV when trying to get the index type or the target
8790 type later down the road if the debug info generated by
8791 the compiler is incorrect or incomplete. */
df407dfe 8792 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8793 error (_("cannot take slice of non-array"));
714e53ab 8794
df407dfe 8795 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8796 {
0b5d8877 8797 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8798 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8799 low_bound);
8800 else
8801 {
8802 struct type *arr_type0 =
df407dfe 8803 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8804 NULL, 1);
0b5d8877 8805 return ada_value_slice_ptr (array, arr_type0,
529cad9c
PH
8806 longest_to_int (low_bound),
8807 longest_to_int (high_bound));
4c4b4cd2
PH
8808 }
8809 }
8810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8811 return array;
8812 else if (high_bound < low_bound)
df407dfe 8813 return empty_array (value_type (array), low_bound);
4c4b4cd2 8814 else
529cad9c
PH
8815 return ada_value_slice (array, longest_to_int (low_bound),
8816 longest_to_int (high_bound));
4c4b4cd2 8817 }
14f9c5c9 8818
4c4b4cd2
PH
8819 case UNOP_IN_RANGE:
8820 (*pos) += 2;
8821 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8822 type = exp->elts[pc + 1].type;
14f9c5c9 8823
14f9c5c9 8824 if (noside == EVAL_SKIP)
4c4b4cd2 8825 goto nosideret;
14f9c5c9 8826
4c4b4cd2
PH
8827 switch (TYPE_CODE (type))
8828 {
8829 default:
e1d5a0d2
PH
8830 lim_warning (_("Membership test incompletely implemented; "
8831 "always returns true"));
fbb06eb1
UW
8832 type = language_bool_type (exp->language_defn, exp->gdbarch);
8833 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8834
8835 case TYPE_CODE_RANGE:
030b4912
UW
8836 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8837 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8840 type = language_bool_type (exp->language_defn, exp->gdbarch);
8841 return
8842 value_from_longest (type,
4c4b4cd2
PH
8843 (value_less (arg1, arg3)
8844 || value_equal (arg1, arg3))
8845 && (value_less (arg2, arg1)
8846 || value_equal (arg2, arg1)));
8847 }
8848
8849 case BINOP_IN_BOUNDS:
14f9c5c9 8850 (*pos) += 2;
4c4b4cd2
PH
8851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8852 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8853
4c4b4cd2
PH
8854 if (noside == EVAL_SKIP)
8855 goto nosideret;
14f9c5c9 8856
4c4b4cd2 8857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8858 {
8859 type = language_bool_type (exp->language_defn, exp->gdbarch);
8860 return value_zero (type, not_lval);
8861 }
14f9c5c9 8862
4c4b4cd2 8863 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8864
df407dfe 8865 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8866 error (_("invalid dimension number to 'range"));
14f9c5c9 8867
4c4b4cd2
PH
8868 arg3 = ada_array_bound (arg2, tem, 1);
8869 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8870
f44316fa
UW
8871 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8873 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8874 return
fbb06eb1 8875 value_from_longest (type,
4c4b4cd2
PH
8876 (value_less (arg1, arg3)
8877 || value_equal (arg1, arg3))
8878 && (value_less (arg2, arg1)
8879 || value_equal (arg2, arg1)));
8880
8881 case TERNOP_IN_RANGE:
8882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8883 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8884 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8885
8886 if (noside == EVAL_SKIP)
8887 goto nosideret;
8888
f44316fa
UW
8889 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8890 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8891 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8892 return
fbb06eb1 8893 value_from_longest (type,
4c4b4cd2
PH
8894 (value_less (arg1, arg3)
8895 || value_equal (arg1, arg3))
8896 && (value_less (arg2, arg1)
8897 || value_equal (arg2, arg1)));
8898
8899 case OP_ATR_FIRST:
8900 case OP_ATR_LAST:
8901 case OP_ATR_LENGTH:
8902 {
76a01679
JB
8903 struct type *type_arg;
8904 if (exp->elts[*pos].opcode == OP_TYPE)
8905 {
8906 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8907 arg1 = NULL;
8908 type_arg = exp->elts[pc + 2].type;
8909 }
8910 else
8911 {
8912 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8913 type_arg = NULL;
8914 }
8915
8916 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8917 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8918 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8919 *pos += 4;
8920
8921 if (noside == EVAL_SKIP)
8922 goto nosideret;
8923
8924 if (type_arg == NULL)
8925 {
8926 arg1 = ada_coerce_ref (arg1);
8927
df407dfe 8928 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8929 arg1 = ada_coerce_to_simple_array (arg1);
8930
df407dfe 8931 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8932 error (_("invalid dimension number to '%s"),
76a01679
JB
8933 ada_attribute_name (op));
8934
8935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8936 {
df407dfe 8937 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8938 if (type == NULL)
8939 error
323e0a4a 8940 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8941 return allocate_value (type);
8942 }
8943
8944 switch (op)
8945 {
8946 default: /* Should never happen. */
323e0a4a 8947 error (_("unexpected attribute encountered"));
76a01679
JB
8948 case OP_ATR_FIRST:
8949 return ada_array_bound (arg1, tem, 0);
8950 case OP_ATR_LAST:
8951 return ada_array_bound (arg1, tem, 1);
8952 case OP_ATR_LENGTH:
8953 return ada_array_length (arg1, tem);
8954 }
8955 }
8956 else if (discrete_type_p (type_arg))
8957 {
8958 struct type *range_type;
8959 char *name = ada_type_name (type_arg);
8960 range_type = NULL;
8961 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8962 range_type =
8963 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8964 if (range_type == NULL)
8965 range_type = type_arg;
8966 switch (op)
8967 {
8968 default:
323e0a4a 8969 error (_("unexpected attribute encountered"));
76a01679 8970 case OP_ATR_FIRST:
690cc4eb
PH
8971 return value_from_longest
8972 (range_type, discrete_type_low_bound (range_type));
76a01679 8973 case OP_ATR_LAST:
690cc4eb
PH
8974 return value_from_longest
8975 (range_type, discrete_type_high_bound (range_type));
76a01679 8976 case OP_ATR_LENGTH:
323e0a4a 8977 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8978 }
8979 }
8980 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8981 error (_("unimplemented type attribute"));
76a01679
JB
8982 else
8983 {
8984 LONGEST low, high;
8985
8986 if (ada_is_packed_array_type (type_arg))
8987 type_arg = decode_packed_array_type (type_arg);
8988
8989 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8990 error (_("invalid dimension number to '%s"),
76a01679
JB
8991 ada_attribute_name (op));
8992
8993 type = ada_index_type (type_arg, tem);
8994 if (type == NULL)
8995 error
323e0a4a 8996 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 return allocate_value (type);
8999
9000 switch (op)
9001 {
9002 default:
323e0a4a 9003 error (_("unexpected attribute encountered"));
76a01679
JB
9004 case OP_ATR_FIRST:
9005 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9006 return value_from_longest (type, low);
9007 case OP_ATR_LAST:
9008 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9009 return value_from_longest (type, high);
9010 case OP_ATR_LENGTH:
9011 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9012 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9013 return value_from_longest (type, high - low + 1);
9014 }
9015 }
14f9c5c9
AS
9016 }
9017
4c4b4cd2
PH
9018 case OP_ATR_TAG:
9019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9020 if (noside == EVAL_SKIP)
76a01679 9021 goto nosideret;
4c4b4cd2
PH
9022
9023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9024 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9025
9026 return ada_value_tag (arg1);
9027
9028 case OP_ATR_MIN:
9029 case OP_ATR_MAX:
9030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9032 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9033 if (noside == EVAL_SKIP)
76a01679 9034 goto nosideret;
d2e4a39e 9035 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9036 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9037 else
f44316fa
UW
9038 {
9039 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9040 return value_binop (arg1, arg2,
9041 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9042 }
14f9c5c9 9043
4c4b4cd2
PH
9044 case OP_ATR_MODULUS:
9045 {
76a01679
JB
9046 struct type *type_arg = exp->elts[pc + 2].type;
9047 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9048
76a01679
JB
9049 if (noside == EVAL_SKIP)
9050 goto nosideret;
4c4b4cd2 9051
76a01679 9052 if (!ada_is_modular_type (type_arg))
323e0a4a 9053 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9054
76a01679
JB
9055 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9056 ada_modulus (type_arg));
4c4b4cd2
PH
9057 }
9058
9059
9060 case OP_ATR_POS:
9061 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9063 if (noside == EVAL_SKIP)
76a01679 9064 goto nosideret;
4c4b4cd2 9065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 9066 return value_zero (builtin_type_int, not_lval);
14f9c5c9 9067 else
76a01679 9068 return value_pos_atr (arg1);
14f9c5c9 9069
4c4b4cd2
PH
9070 case OP_ATR_SIZE:
9071 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9072 if (noside == EVAL_SKIP)
76a01679 9073 goto nosideret;
4c4b4cd2 9074 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9075 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9076 else
6d2e05aa 9077 return value_from_longest (builtin_type_int32,
76a01679 9078 TARGET_CHAR_BIT
df407dfe 9079 * TYPE_LENGTH (value_type (arg1)));
4c4b4cd2
PH
9080
9081 case OP_ATR_VAL:
9082 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9083 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9084 type = exp->elts[pc + 2].type;
14f9c5c9 9085 if (noside == EVAL_SKIP)
76a01679 9086 goto nosideret;
4c4b4cd2 9087 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9088 return value_zero (type, not_lval);
4c4b4cd2 9089 else
76a01679 9090 return value_val_atr (type, arg1);
4c4b4cd2
PH
9091
9092 case BINOP_EXP:
9093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9094 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9095 if (noside == EVAL_SKIP)
9096 goto nosideret;
9097 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9098 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9099 else
f44316fa
UW
9100 {
9101 /* For integer exponentiation operations,
9102 only promote the first argument. */
9103 if (is_integral_type (value_type (arg2)))
9104 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9105 else
9106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9107
9108 return value_binop (arg1, arg2, op);
9109 }
4c4b4cd2
PH
9110
9111 case UNOP_PLUS:
9112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9113 if (noside == EVAL_SKIP)
9114 goto nosideret;
9115 else
9116 return arg1;
9117
9118 case UNOP_ABS:
9119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 if (noside == EVAL_SKIP)
9121 goto nosideret;
f44316fa 9122 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9123 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9124 return value_neg (arg1);
14f9c5c9 9125 else
4c4b4cd2 9126 return arg1;
14f9c5c9
AS
9127
9128 case UNOP_IND:
9129 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
61ee279c 9130 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
14f9c5c9
AS
9131 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9132 if (noside == EVAL_SKIP)
4c4b4cd2 9133 goto nosideret;
df407dfe 9134 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9136 {
9137 if (ada_is_array_descriptor_type (type))
9138 /* GDB allows dereferencing GNAT array descriptors. */
9139 {
9140 struct type *arrType = ada_type_of_array (arg1, 0);
9141 if (arrType == NULL)
323e0a4a 9142 error (_("Attempt to dereference null array pointer."));
00a4c844 9143 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9144 }
9145 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9146 || TYPE_CODE (type) == TYPE_CODE_REF
9147 /* In C you can dereference an array to get the 1st elt. */
9148 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9149 {
9150 type = to_static_fixed_type
9151 (ada_aligned_type
9152 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9153 check_size (type);
9154 return value_zero (type, lval_memory);
9155 }
4c4b4cd2
PH
9156 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9157 /* GDB allows dereferencing an int. */
22fe0fbb
UW
9158 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9159 lval_memory);
4c4b4cd2 9160 else
323e0a4a 9161 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9162 }
76a01679 9163 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9164 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9165
4c4b4cd2
PH
9166 if (ada_is_array_descriptor_type (type))
9167 /* GDB allows dereferencing GNAT array descriptors. */
9168 return ada_coerce_to_simple_array (arg1);
22fe0fbb
UW
9169 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9170 /* GDB allows dereferencing an int. */
9171 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9172 (CORE_ADDR) value_as_address (arg1));
14f9c5c9 9173 else
4c4b4cd2 9174 return ada_value_ind (arg1);
14f9c5c9
AS
9175
9176 case STRUCTOP_STRUCT:
9177 tem = longest_to_int (exp->elts[pc + 1].longconst);
9178 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 if (noside == EVAL_SKIP)
4c4b4cd2 9181 goto nosideret;
14f9c5c9 9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9183 {
df407dfe 9184 struct type *type1 = value_type (arg1);
76a01679
JB
9185 if (ada_is_tagged_type (type1, 1))
9186 {
9187 type = ada_lookup_struct_elt_type (type1,
9188 &exp->elts[pc + 2].string,
9189 1, 1, NULL);
9190 if (type == NULL)
9191 /* In this case, we assume that the field COULD exist
9192 in some extension of the type. Return an object of
9193 "type" void, which will match any formal
9194 (see ada_type_match). */
9195 return value_zero (builtin_type_void, lval_memory);
9196 }
9197 else
9198 type =
9199 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9200 0, NULL);
9201
9202 return value_zero (ada_aligned_type (type), lval_memory);
9203 }
14f9c5c9 9204 else
76a01679
JB
9205 return
9206 ada_to_fixed_value (unwrap_value
9207 (ada_value_struct_elt
03ee6b2e 9208 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9209 case OP_TYPE:
4c4b4cd2
PH
9210 /* The value is not supposed to be used. This is here to make it
9211 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9212 (*pos) += 2;
9213 if (noside == EVAL_SKIP)
4c4b4cd2 9214 goto nosideret;
14f9c5c9 9215 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9216 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9217 else
323e0a4a 9218 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9219
9220 case OP_AGGREGATE:
9221 case OP_CHOICES:
9222 case OP_OTHERS:
9223 case OP_DISCRETE_RANGE:
9224 case OP_POSITIONAL:
9225 case OP_NAME:
9226 if (noside == EVAL_NORMAL)
9227 switch (op)
9228 {
9229 case OP_NAME:
9230 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9231 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9232 case OP_AGGREGATE:
9233 error (_("Aggregates only allowed on the right of an assignment"));
9234 default:
e1d5a0d2 9235 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9236 }
9237
9238 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9239 *pos += oplen - 1;
9240 for (tem = 0; tem < nargs; tem += 1)
9241 ada_evaluate_subexp (NULL, exp, pos, noside);
9242 goto nosideret;
14f9c5c9
AS
9243 }
9244
9245nosideret:
cb18ec49 9246 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9247}
14f9c5c9 9248\f
d2e4a39e 9249
4c4b4cd2 9250 /* Fixed point */
14f9c5c9
AS
9251
9252/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9253 type name that encodes the 'small and 'delta information.
4c4b4cd2 9254 Otherwise, return NULL. */
14f9c5c9 9255
d2e4a39e 9256static const char *
ebf56fd3 9257fixed_type_info (struct type *type)
14f9c5c9 9258{
d2e4a39e 9259 const char *name = ada_type_name (type);
14f9c5c9
AS
9260 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9261
d2e4a39e
AS
9262 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9263 {
14f9c5c9
AS
9264 const char *tail = strstr (name, "___XF_");
9265 if (tail == NULL)
4c4b4cd2 9266 return NULL;
d2e4a39e 9267 else
4c4b4cd2 9268 return tail + 5;
14f9c5c9
AS
9269 }
9270 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9271 return fixed_type_info (TYPE_TARGET_TYPE (type));
9272 else
9273 return NULL;
9274}
9275
4c4b4cd2 9276/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9277
9278int
ebf56fd3 9279ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9280{
9281 return fixed_type_info (type) != NULL;
9282}
9283
4c4b4cd2
PH
9284/* Return non-zero iff TYPE represents a System.Address type. */
9285
9286int
9287ada_is_system_address_type (struct type *type)
9288{
9289 return (TYPE_NAME (type)
9290 && strcmp (TYPE_NAME (type), "system__address") == 0);
9291}
9292
14f9c5c9
AS
9293/* Assuming that TYPE is the representation of an Ada fixed-point
9294 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9295 delta cannot be determined. */
14f9c5c9
AS
9296
9297DOUBLEST
ebf56fd3 9298ada_delta (struct type *type)
14f9c5c9
AS
9299{
9300 const char *encoding = fixed_type_info (type);
9301 long num, den;
9302
9303 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9304 return -1.0;
d2e4a39e 9305 else
14f9c5c9
AS
9306 return (DOUBLEST) num / (DOUBLEST) den;
9307}
9308
9309/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9310 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9311
9312static DOUBLEST
ebf56fd3 9313scaling_factor (struct type *type)
14f9c5c9
AS
9314{
9315 const char *encoding = fixed_type_info (type);
9316 unsigned long num0, den0, num1, den1;
9317 int n;
d2e4a39e 9318
14f9c5c9
AS
9319 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9320
9321 if (n < 2)
9322 return 1.0;
9323 else if (n == 4)
9324 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9325 else
14f9c5c9
AS
9326 return (DOUBLEST) num0 / (DOUBLEST) den0;
9327}
9328
9329
9330/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9331 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9332
9333DOUBLEST
ebf56fd3 9334ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9335{
d2e4a39e 9336 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9337}
9338
4c4b4cd2
PH
9339/* The representation of a fixed-point value of type TYPE
9340 corresponding to the value X. */
14f9c5c9
AS
9341
9342LONGEST
ebf56fd3 9343ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9344{
9345 return (LONGEST) (x / scaling_factor (type) + 0.5);
9346}
9347
9348
4c4b4cd2 9349 /* VAX floating formats */
14f9c5c9
AS
9350
9351/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9352 types. */
9353
14f9c5c9 9354int
d2e4a39e 9355ada_is_vax_floating_type (struct type *type)
14f9c5c9 9356{
d2e4a39e 9357 int name_len =
14f9c5c9 9358 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9359 return
14f9c5c9 9360 name_len > 6
d2e4a39e 9361 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9362 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9363 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9364}
9365
9366/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9367 ada_is_vax_floating_point. */
9368
14f9c5c9 9369int
d2e4a39e 9370ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9371{
d2e4a39e 9372 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9373}
9374
4c4b4cd2 9375/* A value representing the special debugging function that outputs
14f9c5c9 9376 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9377 ada_is_vax_floating_type (TYPE). */
9378
d2e4a39e
AS
9379struct value *
9380ada_vax_float_print_function (struct type *type)
9381{
9382 switch (ada_vax_float_type_suffix (type))
9383 {
9384 case 'F':
9385 return get_var_value ("DEBUG_STRING_F", 0);
9386 case 'D':
9387 return get_var_value ("DEBUG_STRING_D", 0);
9388 case 'G':
9389 return get_var_value ("DEBUG_STRING_G", 0);
9390 default:
323e0a4a 9391 error (_("invalid VAX floating-point type"));
d2e4a39e 9392 }
14f9c5c9 9393}
14f9c5c9 9394\f
d2e4a39e 9395
4c4b4cd2 9396 /* Range types */
14f9c5c9
AS
9397
9398/* Scan STR beginning at position K for a discriminant name, and
9399 return the value of that discriminant field of DVAL in *PX. If
9400 PNEW_K is not null, put the position of the character beyond the
9401 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9402 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9403
9404static int
07d8f827 9405scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9406 int *pnew_k)
14f9c5c9
AS
9407{
9408 static char *bound_buffer = NULL;
9409 static size_t bound_buffer_len = 0;
9410 char *bound;
9411 char *pend;
d2e4a39e 9412 struct value *bound_val;
14f9c5c9
AS
9413
9414 if (dval == NULL || str == NULL || str[k] == '\0')
9415 return 0;
9416
d2e4a39e 9417 pend = strstr (str + k, "__");
14f9c5c9
AS
9418 if (pend == NULL)
9419 {
d2e4a39e 9420 bound = str + k;
14f9c5c9
AS
9421 k += strlen (bound);
9422 }
d2e4a39e 9423 else
14f9c5c9 9424 {
d2e4a39e 9425 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9426 bound = bound_buffer;
d2e4a39e
AS
9427 strncpy (bound_buffer, str + k, pend - (str + k));
9428 bound[pend - (str + k)] = '\0';
9429 k = pend - str;
14f9c5c9 9430 }
d2e4a39e 9431
df407dfe 9432 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9433 if (bound_val == NULL)
9434 return 0;
9435
9436 *px = value_as_long (bound_val);
9437 if (pnew_k != NULL)
9438 *pnew_k = k;
9439 return 1;
9440}
9441
9442/* Value of variable named NAME in the current environment. If
9443 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9444 otherwise causes an error with message ERR_MSG. */
9445
d2e4a39e
AS
9446static struct value *
9447get_var_value (char *name, char *err_msg)
14f9c5c9 9448{
4c4b4cd2 9449 struct ada_symbol_info *syms;
14f9c5c9
AS
9450 int nsyms;
9451
4c4b4cd2
PH
9452 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9453 &syms);
14f9c5c9
AS
9454
9455 if (nsyms != 1)
9456 {
9457 if (err_msg == NULL)
4c4b4cd2 9458 return 0;
14f9c5c9 9459 else
8a3fe4f8 9460 error (("%s"), err_msg);
14f9c5c9
AS
9461 }
9462
4c4b4cd2 9463 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9464}
d2e4a39e 9465
14f9c5c9 9466/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9467 no such variable found, returns 0, and sets *FLAG to 0. If
9468 successful, sets *FLAG to 1. */
9469
14f9c5c9 9470LONGEST
4c4b4cd2 9471get_int_var_value (char *name, int *flag)
14f9c5c9 9472{
4c4b4cd2 9473 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9474
14f9c5c9
AS
9475 if (var_val == 0)
9476 {
9477 if (flag != NULL)
4c4b4cd2 9478 *flag = 0;
14f9c5c9
AS
9479 return 0;
9480 }
9481 else
9482 {
9483 if (flag != NULL)
4c4b4cd2 9484 *flag = 1;
14f9c5c9
AS
9485 return value_as_long (var_val);
9486 }
9487}
d2e4a39e 9488
14f9c5c9
AS
9489
9490/* Return a range type whose base type is that of the range type named
9491 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9492 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9493 Extract discriminant values, if needed, from DVAL. If a new type
9494 must be created, allocate in OBJFILE's space. The bounds
9495 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9496 the named range type. */
14f9c5c9 9497
d2e4a39e 9498static struct type *
ebf56fd3 9499to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9500{
9501 struct type *raw_type = ada_find_any_type (name);
9502 struct type *base_type;
d2e4a39e 9503 char *subtype_info;
14f9c5c9
AS
9504
9505 if (raw_type == NULL)
9506 base_type = builtin_type_int;
9507 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9508 base_type = TYPE_TARGET_TYPE (raw_type);
9509 else
9510 base_type = raw_type;
9511
9512 subtype_info = strstr (name, "___XD");
9513 if (subtype_info == NULL)
690cc4eb
PH
9514 {
9515 LONGEST L = discrete_type_low_bound (raw_type);
9516 LONGEST U = discrete_type_high_bound (raw_type);
9517 if (L < INT_MIN || U > INT_MAX)
9518 return raw_type;
9519 else
9520 return create_range_type (alloc_type (objfile), raw_type,
9521 discrete_type_low_bound (raw_type),
9522 discrete_type_high_bound (raw_type));
9523 }
14f9c5c9
AS
9524 else
9525 {
9526 static char *name_buf = NULL;
9527 static size_t name_len = 0;
9528 int prefix_len = subtype_info - name;
9529 LONGEST L, U;
9530 struct type *type;
9531 char *bounds_str;
9532 int n;
9533
9534 GROW_VECT (name_buf, name_len, prefix_len + 5);
9535 strncpy (name_buf, name, prefix_len);
9536 name_buf[prefix_len] = '\0';
9537
9538 subtype_info += 5;
9539 bounds_str = strchr (subtype_info, '_');
9540 n = 1;
9541
d2e4a39e 9542 if (*subtype_info == 'L')
4c4b4cd2
PH
9543 {
9544 if (!ada_scan_number (bounds_str, n, &L, &n)
9545 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9546 return raw_type;
9547 if (bounds_str[n] == '_')
9548 n += 2;
9549 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9550 n += 1;
9551 subtype_info += 1;
9552 }
d2e4a39e 9553 else
4c4b4cd2
PH
9554 {
9555 int ok;
9556 strcpy (name_buf + prefix_len, "___L");
9557 L = get_int_var_value (name_buf, &ok);
9558 if (!ok)
9559 {
323e0a4a 9560 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9561 L = 1;
9562 }
9563 }
14f9c5c9 9564
d2e4a39e 9565 if (*subtype_info == 'U')
4c4b4cd2
PH
9566 {
9567 if (!ada_scan_number (bounds_str, n, &U, &n)
9568 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9569 return raw_type;
9570 }
d2e4a39e 9571 else
4c4b4cd2
PH
9572 {
9573 int ok;
9574 strcpy (name_buf + prefix_len, "___U");
9575 U = get_int_var_value (name_buf, &ok);
9576 if (!ok)
9577 {
323e0a4a 9578 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9579 U = L;
9580 }
9581 }
14f9c5c9 9582
d2e4a39e 9583 if (objfile == NULL)
4c4b4cd2 9584 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9585 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9586 TYPE_NAME (type) = name;
14f9c5c9
AS
9587 return type;
9588 }
9589}
9590
4c4b4cd2
PH
9591/* True iff NAME is the name of a range type. */
9592
14f9c5c9 9593int
d2e4a39e 9594ada_is_range_type_name (const char *name)
14f9c5c9
AS
9595{
9596 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9597}
14f9c5c9 9598\f
d2e4a39e 9599
4c4b4cd2
PH
9600 /* Modular types */
9601
9602/* True iff TYPE is an Ada modular type. */
14f9c5c9 9603
14f9c5c9 9604int
d2e4a39e 9605ada_is_modular_type (struct type *type)
14f9c5c9 9606{
4c4b4cd2 9607 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9608
9609 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9610 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9611 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9612}
9613
4c4b4cd2
PH
9614/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9615
61ee279c 9616ULONGEST
d2e4a39e 9617ada_modulus (struct type * type)
14f9c5c9 9618{
61ee279c 9619 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9620}
d2e4a39e 9621\f
f7f9143b
JB
9622
9623/* Ada exception catchpoint support:
9624 ---------------------------------
9625
9626 We support 3 kinds of exception catchpoints:
9627 . catchpoints on Ada exceptions
9628 . catchpoints on unhandled Ada exceptions
9629 . catchpoints on failed assertions
9630
9631 Exceptions raised during failed assertions, or unhandled exceptions
9632 could perfectly be caught with the general catchpoint on Ada exceptions.
9633 However, we can easily differentiate these two special cases, and having
9634 the option to distinguish these two cases from the rest can be useful
9635 to zero-in on certain situations.
9636
9637 Exception catchpoints are a specialized form of breakpoint,
9638 since they rely on inserting breakpoints inside known routines
9639 of the GNAT runtime. The implementation therefore uses a standard
9640 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9641 of breakpoint_ops.
9642
0259addd
JB
9643 Support in the runtime for exception catchpoints have been changed
9644 a few times already, and these changes affect the implementation
9645 of these catchpoints. In order to be able to support several
9646 variants of the runtime, we use a sniffer that will determine
9647 the runtime variant used by the program being debugged.
9648
f7f9143b
JB
9649 At this time, we do not support the use of conditions on Ada exception
9650 catchpoints. The COND and COND_STRING fields are therefore set
9651 to NULL (most of the time, see below).
9652
9653 Conditions where EXP_STRING, COND, and COND_STRING are used:
9654
9655 When a user specifies the name of a specific exception in the case
9656 of catchpoints on Ada exceptions, we store the name of that exception
9657 in the EXP_STRING. We then translate this request into an actual
9658 condition stored in COND_STRING, and then parse it into an expression
9659 stored in COND. */
9660
9661/* The different types of catchpoints that we introduced for catching
9662 Ada exceptions. */
9663
9664enum exception_catchpoint_kind
9665{
9666 ex_catch_exception,
9667 ex_catch_exception_unhandled,
9668 ex_catch_assert
9669};
9670
0259addd
JB
9671typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9672
9673/* A structure that describes how to support exception catchpoints
9674 for a given executable. */
9675
9676struct exception_support_info
9677{
9678 /* The name of the symbol to break on in order to insert
9679 a catchpoint on exceptions. */
9680 const char *catch_exception_sym;
9681
9682 /* The name of the symbol to break on in order to insert
9683 a catchpoint on unhandled exceptions. */
9684 const char *catch_exception_unhandled_sym;
9685
9686 /* The name of the symbol to break on in order to insert
9687 a catchpoint on failed assertions. */
9688 const char *catch_assert_sym;
9689
9690 /* Assuming that the inferior just triggered an unhandled exception
9691 catchpoint, this function is responsible for returning the address
9692 in inferior memory where the name of that exception is stored.
9693 Return zero if the address could not be computed. */
9694 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9695};
9696
9697static CORE_ADDR ada_unhandled_exception_name_addr (void);
9698static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9699
9700/* The following exception support info structure describes how to
9701 implement exception catchpoints with the latest version of the
9702 Ada runtime (as of 2007-03-06). */
9703
9704static const struct exception_support_info default_exception_support_info =
9705{
9706 "__gnat_debug_raise_exception", /* catch_exception_sym */
9707 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9708 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9709 ada_unhandled_exception_name_addr
9710};
9711
9712/* The following exception support info structure describes how to
9713 implement exception catchpoints with a slightly older version
9714 of the Ada runtime. */
9715
9716static const struct exception_support_info exception_support_info_fallback =
9717{
9718 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9719 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9720 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9721 ada_unhandled_exception_name_addr_from_raise
9722};
9723
9724/* For each executable, we sniff which exception info structure to use
9725 and cache it in the following global variable. */
9726
9727static const struct exception_support_info *exception_info = NULL;
9728
9729/* Inspect the Ada runtime and determine which exception info structure
9730 should be used to provide support for exception catchpoints.
9731
9732 This function will always set exception_info, or raise an error. */
9733
9734static void
9735ada_exception_support_info_sniffer (void)
9736{
9737 struct symbol *sym;
9738
9739 /* If the exception info is already known, then no need to recompute it. */
9740 if (exception_info != NULL)
9741 return;
9742
9743 /* Check the latest (default) exception support info. */
9744 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9745 NULL, VAR_DOMAIN);
9746 if (sym != NULL)
9747 {
9748 exception_info = &default_exception_support_info;
9749 return;
9750 }
9751
9752 /* Try our fallback exception suport info. */
9753 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9754 NULL, VAR_DOMAIN);
9755 if (sym != NULL)
9756 {
9757 exception_info = &exception_support_info_fallback;
9758 return;
9759 }
9760
9761 /* Sometimes, it is normal for us to not be able to find the routine
9762 we are looking for. This happens when the program is linked with
9763 the shared version of the GNAT runtime, and the program has not been
9764 started yet. Inform the user of these two possible causes if
9765 applicable. */
9766
9767 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9768 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9769
9770 /* If the symbol does not exist, then check that the program is
9771 already started, to make sure that shared libraries have been
9772 loaded. If it is not started, this may mean that the symbol is
9773 in a shared library. */
9774
9775 if (ptid_get_pid (inferior_ptid) == 0)
9776 error (_("Unable to insert catchpoint. Try to start the program first."));
9777
9778 /* At this point, we know that we are debugging an Ada program and
9779 that the inferior has been started, but we still are not able to
9780 find the run-time symbols. That can mean that we are in
9781 configurable run time mode, or that a-except as been optimized
9782 out by the linker... In any case, at this point it is not worth
9783 supporting this feature. */
9784
9785 error (_("Cannot insert catchpoints in this configuration."));
9786}
9787
9788/* An observer of "executable_changed" events.
9789 Its role is to clear certain cached values that need to be recomputed
9790 each time a new executable is loaded by GDB. */
9791
9792static void
781b42b0 9793ada_executable_changed_observer (void)
0259addd
JB
9794{
9795 /* If the executable changed, then it is possible that the Ada runtime
9796 is different. So we need to invalidate the exception support info
9797 cache. */
9798 exception_info = NULL;
9799}
9800
f7f9143b
JB
9801/* Return the name of the function at PC, NULL if could not find it.
9802 This function only checks the debugging information, not the symbol
9803 table. */
9804
9805static char *
9806function_name_from_pc (CORE_ADDR pc)
9807{
9808 char *func_name;
9809
9810 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9811 return NULL;
9812
9813 return func_name;
9814}
9815
9816/* True iff FRAME is very likely to be that of a function that is
9817 part of the runtime system. This is all very heuristic, but is
9818 intended to be used as advice as to what frames are uninteresting
9819 to most users. */
9820
9821static int
9822is_known_support_routine (struct frame_info *frame)
9823{
4ed6b5be 9824 struct symtab_and_line sal;
f7f9143b
JB
9825 char *func_name;
9826 int i;
f7f9143b 9827
4ed6b5be
JB
9828 /* If this code does not have any debugging information (no symtab),
9829 This cannot be any user code. */
f7f9143b 9830
4ed6b5be 9831 find_frame_sal (frame, &sal);
f7f9143b
JB
9832 if (sal.symtab == NULL)
9833 return 1;
9834
4ed6b5be
JB
9835 /* If there is a symtab, but the associated source file cannot be
9836 located, then assume this is not user code: Selecting a frame
9837 for which we cannot display the code would not be very helpful
9838 for the user. This should also take care of case such as VxWorks
9839 where the kernel has some debugging info provided for a few units. */
f7f9143b 9840
9bbc9174 9841 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9842 return 1;
9843
4ed6b5be
JB
9844 /* Check the unit filename againt the Ada runtime file naming.
9845 We also check the name of the objfile against the name of some
9846 known system libraries that sometimes come with debugging info
9847 too. */
9848
f7f9143b
JB
9849 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9850 {
9851 re_comp (known_runtime_file_name_patterns[i]);
9852 if (re_exec (sal.symtab->filename))
9853 return 1;
4ed6b5be
JB
9854 if (sal.symtab->objfile != NULL
9855 && re_exec (sal.symtab->objfile->name))
9856 return 1;
f7f9143b
JB
9857 }
9858
4ed6b5be 9859 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9860
4ed6b5be 9861 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9862 if (func_name == NULL)
9863 return 1;
9864
9865 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9866 {
9867 re_comp (known_auxiliary_function_name_patterns[i]);
9868 if (re_exec (func_name))
9869 return 1;
9870 }
9871
9872 return 0;
9873}
9874
9875/* Find the first frame that contains debugging information and that is not
9876 part of the Ada run-time, starting from FI and moving upward. */
9877
9878static void
9879ada_find_printable_frame (struct frame_info *fi)
9880{
9881 for (; fi != NULL; fi = get_prev_frame (fi))
9882 {
9883 if (!is_known_support_routine (fi))
9884 {
9885 select_frame (fi);
9886 break;
9887 }
9888 }
9889
9890}
9891
9892/* Assuming that the inferior just triggered an unhandled exception
9893 catchpoint, return the address in inferior memory where the name
9894 of the exception is stored.
9895
9896 Return zero if the address could not be computed. */
9897
9898static CORE_ADDR
9899ada_unhandled_exception_name_addr (void)
0259addd
JB
9900{
9901 return parse_and_eval_address ("e.full_name");
9902}
9903
9904/* Same as ada_unhandled_exception_name_addr, except that this function
9905 should be used when the inferior uses an older version of the runtime,
9906 where the exception name needs to be extracted from a specific frame
9907 several frames up in the callstack. */
9908
9909static CORE_ADDR
9910ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9911{
9912 int frame_level;
9913 struct frame_info *fi;
9914
9915 /* To determine the name of this exception, we need to select
9916 the frame corresponding to RAISE_SYM_NAME. This frame is
9917 at least 3 levels up, so we simply skip the first 3 frames
9918 without checking the name of their associated function. */
9919 fi = get_current_frame ();
9920 for (frame_level = 0; frame_level < 3; frame_level += 1)
9921 if (fi != NULL)
9922 fi = get_prev_frame (fi);
9923
9924 while (fi != NULL)
9925 {
9926 const char *func_name =
9927 function_name_from_pc (get_frame_address_in_block (fi));
9928 if (func_name != NULL
0259addd 9929 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9930 break; /* We found the frame we were looking for... */
9931 fi = get_prev_frame (fi);
9932 }
9933
9934 if (fi == NULL)
9935 return 0;
9936
9937 select_frame (fi);
9938 return parse_and_eval_address ("id.full_name");
9939}
9940
9941/* Assuming the inferior just triggered an Ada exception catchpoint
9942 (of any type), return the address in inferior memory where the name
9943 of the exception is stored, if applicable.
9944
9945 Return zero if the address could not be computed, or if not relevant. */
9946
9947static CORE_ADDR
9948ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9949 struct breakpoint *b)
9950{
9951 switch (ex)
9952 {
9953 case ex_catch_exception:
9954 return (parse_and_eval_address ("e.full_name"));
9955 break;
9956
9957 case ex_catch_exception_unhandled:
0259addd 9958 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9959 break;
9960
9961 case ex_catch_assert:
9962 return 0; /* Exception name is not relevant in this case. */
9963 break;
9964
9965 default:
9966 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9967 break;
9968 }
9969
9970 return 0; /* Should never be reached. */
9971}
9972
9973/* Same as ada_exception_name_addr_1, except that it intercepts and contains
9974 any error that ada_exception_name_addr_1 might cause to be thrown.
9975 When an error is intercepted, a warning with the error message is printed,
9976 and zero is returned. */
9977
9978static CORE_ADDR
9979ada_exception_name_addr (enum exception_catchpoint_kind ex,
9980 struct breakpoint *b)
9981{
9982 struct gdb_exception e;
9983 CORE_ADDR result = 0;
9984
9985 TRY_CATCH (e, RETURN_MASK_ERROR)
9986 {
9987 result = ada_exception_name_addr_1 (ex, b);
9988 }
9989
9990 if (e.reason < 0)
9991 {
9992 warning (_("failed to get exception name: %s"), e.message);
9993 return 0;
9994 }
9995
9996 return result;
9997}
9998
9999/* Implement the PRINT_IT method in the breakpoint_ops structure
10000 for all exception catchpoint kinds. */
10001
10002static enum print_stop_action
10003print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10004{
10005 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10006 char exception_name[256];
10007
10008 if (addr != 0)
10009 {
10010 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10011 exception_name [sizeof (exception_name) - 1] = '\0';
10012 }
10013
10014 ada_find_printable_frame (get_current_frame ());
10015
10016 annotate_catchpoint (b->number);
10017 switch (ex)
10018 {
10019 case ex_catch_exception:
10020 if (addr != 0)
10021 printf_filtered (_("\nCatchpoint %d, %s at "),
10022 b->number, exception_name);
10023 else
10024 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10025 break;
10026 case ex_catch_exception_unhandled:
10027 if (addr != 0)
10028 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10029 b->number, exception_name);
10030 else
10031 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10032 b->number);
10033 break;
10034 case ex_catch_assert:
10035 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10036 b->number);
10037 break;
10038 }
10039
10040 return PRINT_SRC_AND_LOC;
10041}
10042
10043/* Implement the PRINT_ONE method in the breakpoint_ops structure
10044 for all exception catchpoint kinds. */
10045
10046static void
10047print_one_exception (enum exception_catchpoint_kind ex,
10048 struct breakpoint *b, CORE_ADDR *last_addr)
10049{
10050 if (addressprint)
10051 {
10052 annotate_field (4);
10053 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10054 }
10055
10056 annotate_field (5);
10057 *last_addr = b->loc->address;
10058 switch (ex)
10059 {
10060 case ex_catch_exception:
10061 if (b->exp_string != NULL)
10062 {
10063 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10064
10065 ui_out_field_string (uiout, "what", msg);
10066 xfree (msg);
10067 }
10068 else
10069 ui_out_field_string (uiout, "what", "all Ada exceptions");
10070
10071 break;
10072
10073 case ex_catch_exception_unhandled:
10074 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10075 break;
10076
10077 case ex_catch_assert:
10078 ui_out_field_string (uiout, "what", "failed Ada assertions");
10079 break;
10080
10081 default:
10082 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10083 break;
10084 }
10085}
10086
10087/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10088 for all exception catchpoint kinds. */
10089
10090static void
10091print_mention_exception (enum exception_catchpoint_kind ex,
10092 struct breakpoint *b)
10093{
10094 switch (ex)
10095 {
10096 case ex_catch_exception:
10097 if (b->exp_string != NULL)
10098 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10099 b->number, b->exp_string);
10100 else
10101 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10102
10103 break;
10104
10105 case ex_catch_exception_unhandled:
10106 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10107 b->number);
10108 break;
10109
10110 case ex_catch_assert:
10111 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10112 break;
10113
10114 default:
10115 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10116 break;
10117 }
10118}
10119
10120/* Virtual table for "catch exception" breakpoints. */
10121
10122static enum print_stop_action
10123print_it_catch_exception (struct breakpoint *b)
10124{
10125 return print_it_exception (ex_catch_exception, b);
10126}
10127
10128static void
10129print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10130{
10131 print_one_exception (ex_catch_exception, b, last_addr);
10132}
10133
10134static void
10135print_mention_catch_exception (struct breakpoint *b)
10136{
10137 print_mention_exception (ex_catch_exception, b);
10138}
10139
10140static struct breakpoint_ops catch_exception_breakpoint_ops =
10141{
10142 print_it_catch_exception,
10143 print_one_catch_exception,
10144 print_mention_catch_exception
10145};
10146
10147/* Virtual table for "catch exception unhandled" breakpoints. */
10148
10149static enum print_stop_action
10150print_it_catch_exception_unhandled (struct breakpoint *b)
10151{
10152 return print_it_exception (ex_catch_exception_unhandled, b);
10153}
10154
10155static void
10156print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10157{
10158 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10159}
10160
10161static void
10162print_mention_catch_exception_unhandled (struct breakpoint *b)
10163{
10164 print_mention_exception (ex_catch_exception_unhandled, b);
10165}
10166
10167static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10168 print_it_catch_exception_unhandled,
10169 print_one_catch_exception_unhandled,
10170 print_mention_catch_exception_unhandled
10171};
10172
10173/* Virtual table for "catch assert" breakpoints. */
10174
10175static enum print_stop_action
10176print_it_catch_assert (struct breakpoint *b)
10177{
10178 return print_it_exception (ex_catch_assert, b);
10179}
10180
10181static void
10182print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10183{
10184 print_one_exception (ex_catch_assert, b, last_addr);
10185}
10186
10187static void
10188print_mention_catch_assert (struct breakpoint *b)
10189{
10190 print_mention_exception (ex_catch_assert, b);
10191}
10192
10193static struct breakpoint_ops catch_assert_breakpoint_ops = {
10194 print_it_catch_assert,
10195 print_one_catch_assert,
10196 print_mention_catch_assert
10197};
10198
10199/* Return non-zero if B is an Ada exception catchpoint. */
10200
10201int
10202ada_exception_catchpoint_p (struct breakpoint *b)
10203{
10204 return (b->ops == &catch_exception_breakpoint_ops
10205 || b->ops == &catch_exception_unhandled_breakpoint_ops
10206 || b->ops == &catch_assert_breakpoint_ops);
10207}
10208
f7f9143b
JB
10209/* Return a newly allocated copy of the first space-separated token
10210 in ARGSP, and then adjust ARGSP to point immediately after that
10211 token.
10212
10213 Return NULL if ARGPS does not contain any more tokens. */
10214
10215static char *
10216ada_get_next_arg (char **argsp)
10217{
10218 char *args = *argsp;
10219 char *end;
10220 char *result;
10221
10222 /* Skip any leading white space. */
10223
10224 while (isspace (*args))
10225 args++;
10226
10227 if (args[0] == '\0')
10228 return NULL; /* No more arguments. */
10229
10230 /* Find the end of the current argument. */
10231
10232 end = args;
10233 while (*end != '\0' && !isspace (*end))
10234 end++;
10235
10236 /* Adjust ARGSP to point to the start of the next argument. */
10237
10238 *argsp = end;
10239
10240 /* Make a copy of the current argument and return it. */
10241
10242 result = xmalloc (end - args + 1);
10243 strncpy (result, args, end - args);
10244 result[end - args] = '\0';
10245
10246 return result;
10247}
10248
10249/* Split the arguments specified in a "catch exception" command.
10250 Set EX to the appropriate catchpoint type.
10251 Set EXP_STRING to the name of the specific exception if
10252 specified by the user. */
10253
10254static void
10255catch_ada_exception_command_split (char *args,
10256 enum exception_catchpoint_kind *ex,
10257 char **exp_string)
10258{
10259 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10260 char *exception_name;
10261
10262 exception_name = ada_get_next_arg (&args);
10263 make_cleanup (xfree, exception_name);
10264
10265 /* Check that we do not have any more arguments. Anything else
10266 is unexpected. */
10267
10268 while (isspace (*args))
10269 args++;
10270
10271 if (args[0] != '\0')
10272 error (_("Junk at end of expression"));
10273
10274 discard_cleanups (old_chain);
10275
10276 if (exception_name == NULL)
10277 {
10278 /* Catch all exceptions. */
10279 *ex = ex_catch_exception;
10280 *exp_string = NULL;
10281 }
10282 else if (strcmp (exception_name, "unhandled") == 0)
10283 {
10284 /* Catch unhandled exceptions. */
10285 *ex = ex_catch_exception_unhandled;
10286 *exp_string = NULL;
10287 }
10288 else
10289 {
10290 /* Catch a specific exception. */
10291 *ex = ex_catch_exception;
10292 *exp_string = exception_name;
10293 }
10294}
10295
10296/* Return the name of the symbol on which we should break in order to
10297 implement a catchpoint of the EX kind. */
10298
10299static const char *
10300ada_exception_sym_name (enum exception_catchpoint_kind ex)
10301{
0259addd
JB
10302 gdb_assert (exception_info != NULL);
10303
f7f9143b
JB
10304 switch (ex)
10305 {
10306 case ex_catch_exception:
0259addd 10307 return (exception_info->catch_exception_sym);
f7f9143b
JB
10308 break;
10309 case ex_catch_exception_unhandled:
0259addd 10310 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10311 break;
10312 case ex_catch_assert:
0259addd 10313 return (exception_info->catch_assert_sym);
f7f9143b
JB
10314 break;
10315 default:
10316 internal_error (__FILE__, __LINE__,
10317 _("unexpected catchpoint kind (%d)"), ex);
10318 }
10319}
10320
10321/* Return the breakpoint ops "virtual table" used for catchpoints
10322 of the EX kind. */
10323
10324static struct breakpoint_ops *
4b9eee8c 10325ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10326{
10327 switch (ex)
10328 {
10329 case ex_catch_exception:
10330 return (&catch_exception_breakpoint_ops);
10331 break;
10332 case ex_catch_exception_unhandled:
10333 return (&catch_exception_unhandled_breakpoint_ops);
10334 break;
10335 case ex_catch_assert:
10336 return (&catch_assert_breakpoint_ops);
10337 break;
10338 default:
10339 internal_error (__FILE__, __LINE__,
10340 _("unexpected catchpoint kind (%d)"), ex);
10341 }
10342}
10343
10344/* Return the condition that will be used to match the current exception
10345 being raised with the exception that the user wants to catch. This
10346 assumes that this condition is used when the inferior just triggered
10347 an exception catchpoint.
10348
10349 The string returned is a newly allocated string that needs to be
10350 deallocated later. */
10351
10352static char *
10353ada_exception_catchpoint_cond_string (const char *exp_string)
10354{
10355 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10356}
10357
10358/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10359
10360static struct expression *
10361ada_parse_catchpoint_condition (char *cond_string,
10362 struct symtab_and_line sal)
10363{
10364 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10365}
10366
10367/* Return the symtab_and_line that should be used to insert an exception
10368 catchpoint of the TYPE kind.
10369
10370 EX_STRING should contain the name of a specific exception
10371 that the catchpoint should catch, or NULL otherwise.
10372
10373 The idea behind all the remaining parameters is that their names match
10374 the name of certain fields in the breakpoint structure that are used to
10375 handle exception catchpoints. This function returns the value to which
10376 these fields should be set, depending on the type of catchpoint we need
10377 to create.
10378
10379 If COND and COND_STRING are both non-NULL, any value they might
10380 hold will be free'ed, and then replaced by newly allocated ones.
10381 These parameters are left untouched otherwise. */
10382
10383static struct symtab_and_line
10384ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10385 char **addr_string, char **cond_string,
10386 struct expression **cond, struct breakpoint_ops **ops)
10387{
10388 const char *sym_name;
10389 struct symbol *sym;
10390 struct symtab_and_line sal;
10391
0259addd
JB
10392 /* First, find out which exception support info to use. */
10393 ada_exception_support_info_sniffer ();
10394
10395 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10396 the Ada exceptions requested by the user. */
10397
10398 sym_name = ada_exception_sym_name (ex);
10399 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10400
10401 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10402 that should be compiled with debugging information. As a result, we
10403 expect to find that symbol in the symtabs. If we don't find it, then
10404 the target most likely does not support Ada exceptions, or we cannot
10405 insert exception breakpoints yet, because the GNAT runtime hasn't been
10406 loaded yet. */
10407
10408 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10409 in such a way that no debugging information is produced for the symbol
10410 we are looking for. In this case, we could search the minimal symbols
10411 as a fall-back mechanism. This would still be operating in degraded
10412 mode, however, as we would still be missing the debugging information
10413 that is needed in order to extract the name of the exception being
10414 raised (this name is printed in the catchpoint message, and is also
10415 used when trying to catch a specific exception). We do not handle
10416 this case for now. */
10417
10418 if (sym == NULL)
0259addd 10419 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10420
10421 /* Make sure that the symbol we found corresponds to a function. */
10422 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10423 error (_("Symbol \"%s\" is not a function (class = %d)"),
10424 sym_name, SYMBOL_CLASS (sym));
10425
10426 sal = find_function_start_sal (sym, 1);
10427
10428 /* Set ADDR_STRING. */
10429
10430 *addr_string = xstrdup (sym_name);
10431
10432 /* Set the COND and COND_STRING (if not NULL). */
10433
10434 if (cond_string != NULL && cond != NULL)
10435 {
10436 if (*cond_string != NULL)
10437 {
10438 xfree (*cond_string);
10439 *cond_string = NULL;
10440 }
10441 if (*cond != NULL)
10442 {
10443 xfree (*cond);
10444 *cond = NULL;
10445 }
10446 if (exp_string != NULL)
10447 {
10448 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10449 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10450 }
10451 }
10452
10453 /* Set OPS. */
4b9eee8c 10454 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10455
10456 return sal;
10457}
10458
10459/* Parse the arguments (ARGS) of the "catch exception" command.
10460
10461 Set TYPE to the appropriate exception catchpoint type.
10462 If the user asked the catchpoint to catch only a specific
10463 exception, then save the exception name in ADDR_STRING.
10464
10465 See ada_exception_sal for a description of all the remaining
10466 function arguments of this function. */
10467
10468struct symtab_and_line
10469ada_decode_exception_location (char *args, char **addr_string,
10470 char **exp_string, char **cond_string,
10471 struct expression **cond,
10472 struct breakpoint_ops **ops)
10473{
10474 enum exception_catchpoint_kind ex;
10475
10476 catch_ada_exception_command_split (args, &ex, exp_string);
10477 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10478 cond, ops);
10479}
10480
10481struct symtab_and_line
10482ada_decode_assert_location (char *args, char **addr_string,
10483 struct breakpoint_ops **ops)
10484{
10485 /* Check that no argument where provided at the end of the command. */
10486
10487 if (args != NULL)
10488 {
10489 while (isspace (*args))
10490 args++;
10491 if (*args != '\0')
10492 error (_("Junk at end of arguments."));
10493 }
10494
10495 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10496 ops);
10497}
10498
4c4b4cd2
PH
10499 /* Operators */
10500/* Information about operators given special treatment in functions
10501 below. */
10502/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10503
10504#define ADA_OPERATORS \
10505 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10506 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10507 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10508 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10509 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10510 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10511 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10512 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10513 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10514 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10515 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10516 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10517 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10518 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10519 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10520 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10521 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10522 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10523 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10524
10525static void
10526ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10527{
10528 switch (exp->elts[pc - 1].opcode)
10529 {
76a01679 10530 default:
4c4b4cd2
PH
10531 operator_length_standard (exp, pc, oplenp, argsp);
10532 break;
10533
10534#define OP_DEFN(op, len, args, binop) \
10535 case op: *oplenp = len; *argsp = args; break;
10536 ADA_OPERATORS;
10537#undef OP_DEFN
52ce6436
PH
10538
10539 case OP_AGGREGATE:
10540 *oplenp = 3;
10541 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10542 break;
10543
10544 case OP_CHOICES:
10545 *oplenp = 3;
10546 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10547 break;
4c4b4cd2
PH
10548 }
10549}
10550
10551static char *
10552ada_op_name (enum exp_opcode opcode)
10553{
10554 switch (opcode)
10555 {
76a01679 10556 default:
4c4b4cd2 10557 return op_name_standard (opcode);
52ce6436 10558
4c4b4cd2
PH
10559#define OP_DEFN(op, len, args, binop) case op: return #op;
10560 ADA_OPERATORS;
10561#undef OP_DEFN
52ce6436
PH
10562
10563 case OP_AGGREGATE:
10564 return "OP_AGGREGATE";
10565 case OP_CHOICES:
10566 return "OP_CHOICES";
10567 case OP_NAME:
10568 return "OP_NAME";
4c4b4cd2
PH
10569 }
10570}
10571
10572/* As for operator_length, but assumes PC is pointing at the first
10573 element of the operator, and gives meaningful results only for the
52ce6436 10574 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10575
10576static void
76a01679
JB
10577ada_forward_operator_length (struct expression *exp, int pc,
10578 int *oplenp, int *argsp)
4c4b4cd2 10579{
76a01679 10580 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10581 {
10582 default:
10583 *oplenp = *argsp = 0;
10584 break;
52ce6436 10585
4c4b4cd2
PH
10586#define OP_DEFN(op, len, args, binop) \
10587 case op: *oplenp = len; *argsp = args; break;
10588 ADA_OPERATORS;
10589#undef OP_DEFN
52ce6436
PH
10590
10591 case OP_AGGREGATE:
10592 *oplenp = 3;
10593 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10594 break;
10595
10596 case OP_CHOICES:
10597 *oplenp = 3;
10598 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10599 break;
10600
10601 case OP_STRING:
10602 case OP_NAME:
10603 {
10604 int len = longest_to_int (exp->elts[pc + 1].longconst);
10605 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10606 *argsp = 0;
10607 break;
10608 }
4c4b4cd2
PH
10609 }
10610}
10611
10612static int
10613ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10614{
10615 enum exp_opcode op = exp->elts[elt].opcode;
10616 int oplen, nargs;
10617 int pc = elt;
10618 int i;
76a01679 10619
4c4b4cd2
PH
10620 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10621
76a01679 10622 switch (op)
4c4b4cd2 10623 {
76a01679 10624 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10625 case OP_ATR_FIRST:
10626 case OP_ATR_LAST:
10627 case OP_ATR_LENGTH:
10628 case OP_ATR_IMAGE:
10629 case OP_ATR_MAX:
10630 case OP_ATR_MIN:
10631 case OP_ATR_MODULUS:
10632 case OP_ATR_POS:
10633 case OP_ATR_SIZE:
10634 case OP_ATR_TAG:
10635 case OP_ATR_VAL:
10636 break;
10637
10638 case UNOP_IN_RANGE:
10639 case UNOP_QUAL:
323e0a4a
AC
10640 /* XXX: gdb_sprint_host_address, type_sprint */
10641 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10642 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10643 fprintf_filtered (stream, " (");
10644 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10645 fprintf_filtered (stream, ")");
10646 break;
10647 case BINOP_IN_BOUNDS:
52ce6436
PH
10648 fprintf_filtered (stream, " (%d)",
10649 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10650 break;
10651 case TERNOP_IN_RANGE:
10652 break;
10653
52ce6436
PH
10654 case OP_AGGREGATE:
10655 case OP_OTHERS:
10656 case OP_DISCRETE_RANGE:
10657 case OP_POSITIONAL:
10658 case OP_CHOICES:
10659 break;
10660
10661 case OP_NAME:
10662 case OP_STRING:
10663 {
10664 char *name = &exp->elts[elt + 2].string;
10665 int len = longest_to_int (exp->elts[elt + 1].longconst);
10666 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10667 break;
10668 }
10669
4c4b4cd2
PH
10670 default:
10671 return dump_subexp_body_standard (exp, stream, elt);
10672 }
10673
10674 elt += oplen;
10675 for (i = 0; i < nargs; i += 1)
10676 elt = dump_subexp (exp, stream, elt);
10677
10678 return elt;
10679}
10680
10681/* The Ada extension of print_subexp (q.v.). */
10682
76a01679
JB
10683static void
10684ada_print_subexp (struct expression *exp, int *pos,
10685 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10686{
52ce6436 10687 int oplen, nargs, i;
4c4b4cd2
PH
10688 int pc = *pos;
10689 enum exp_opcode op = exp->elts[pc].opcode;
10690
10691 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10692
52ce6436 10693 *pos += oplen;
4c4b4cd2
PH
10694 switch (op)
10695 {
10696 default:
52ce6436 10697 *pos -= oplen;
4c4b4cd2
PH
10698 print_subexp_standard (exp, pos, stream, prec);
10699 return;
10700
10701 case OP_VAR_VALUE:
4c4b4cd2
PH
10702 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10703 return;
10704
10705 case BINOP_IN_BOUNDS:
323e0a4a 10706 /* XXX: sprint_subexp */
4c4b4cd2 10707 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10708 fputs_filtered (" in ", stream);
4c4b4cd2 10709 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10710 fputs_filtered ("'range", stream);
4c4b4cd2 10711 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10712 fprintf_filtered (stream, "(%ld)",
10713 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10714 return;
10715
10716 case TERNOP_IN_RANGE:
4c4b4cd2 10717 if (prec >= PREC_EQUAL)
76a01679 10718 fputs_filtered ("(", stream);
323e0a4a 10719 /* XXX: sprint_subexp */
4c4b4cd2 10720 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10721 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10722 print_subexp (exp, pos, stream, PREC_EQUAL);
10723 fputs_filtered (" .. ", stream);
10724 print_subexp (exp, pos, stream, PREC_EQUAL);
10725 if (prec >= PREC_EQUAL)
76a01679
JB
10726 fputs_filtered (")", stream);
10727 return;
4c4b4cd2
PH
10728
10729 case OP_ATR_FIRST:
10730 case OP_ATR_LAST:
10731 case OP_ATR_LENGTH:
10732 case OP_ATR_IMAGE:
10733 case OP_ATR_MAX:
10734 case OP_ATR_MIN:
10735 case OP_ATR_MODULUS:
10736 case OP_ATR_POS:
10737 case OP_ATR_SIZE:
10738 case OP_ATR_TAG:
10739 case OP_ATR_VAL:
4c4b4cd2 10740 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10741 {
10742 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10743 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10744 *pos += 3;
10745 }
4c4b4cd2 10746 else
76a01679 10747 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10748 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10749 if (nargs > 1)
76a01679
JB
10750 {
10751 int tem;
10752 for (tem = 1; tem < nargs; tem += 1)
10753 {
10754 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10755 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10756 }
10757 fputs_filtered (")", stream);
10758 }
4c4b4cd2 10759 return;
14f9c5c9 10760
4c4b4cd2 10761 case UNOP_QUAL:
4c4b4cd2
PH
10762 type_print (exp->elts[pc + 1].type, "", stream, 0);
10763 fputs_filtered ("'(", stream);
10764 print_subexp (exp, pos, stream, PREC_PREFIX);
10765 fputs_filtered (")", stream);
10766 return;
14f9c5c9 10767
4c4b4cd2 10768 case UNOP_IN_RANGE:
323e0a4a 10769 /* XXX: sprint_subexp */
4c4b4cd2 10770 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10771 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10772 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10773 return;
52ce6436
PH
10774
10775 case OP_DISCRETE_RANGE:
10776 print_subexp (exp, pos, stream, PREC_SUFFIX);
10777 fputs_filtered ("..", stream);
10778 print_subexp (exp, pos, stream, PREC_SUFFIX);
10779 return;
10780
10781 case OP_OTHERS:
10782 fputs_filtered ("others => ", stream);
10783 print_subexp (exp, pos, stream, PREC_SUFFIX);
10784 return;
10785
10786 case OP_CHOICES:
10787 for (i = 0; i < nargs-1; i += 1)
10788 {
10789 if (i > 0)
10790 fputs_filtered ("|", stream);
10791 print_subexp (exp, pos, stream, PREC_SUFFIX);
10792 }
10793 fputs_filtered (" => ", stream);
10794 print_subexp (exp, pos, stream, PREC_SUFFIX);
10795 return;
10796
10797 case OP_POSITIONAL:
10798 print_subexp (exp, pos, stream, PREC_SUFFIX);
10799 return;
10800
10801 case OP_AGGREGATE:
10802 fputs_filtered ("(", stream);
10803 for (i = 0; i < nargs; i += 1)
10804 {
10805 if (i > 0)
10806 fputs_filtered (", ", stream);
10807 print_subexp (exp, pos, stream, PREC_SUFFIX);
10808 }
10809 fputs_filtered (")", stream);
10810 return;
4c4b4cd2
PH
10811 }
10812}
14f9c5c9
AS
10813
10814/* Table mapping opcodes into strings for printing operators
10815 and precedences of the operators. */
10816
d2e4a39e
AS
10817static const struct op_print ada_op_print_tab[] = {
10818 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10819 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10820 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10821 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10822 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10823 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10824 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10825 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10826 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10827 {">=", BINOP_GEQ, PREC_ORDER, 0},
10828 {">", BINOP_GTR, PREC_ORDER, 0},
10829 {"<", BINOP_LESS, PREC_ORDER, 0},
10830 {">>", BINOP_RSH, PREC_SHIFT, 0},
10831 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10832 {"+", BINOP_ADD, PREC_ADD, 0},
10833 {"-", BINOP_SUB, PREC_ADD, 0},
10834 {"&", BINOP_CONCAT, PREC_ADD, 0},
10835 {"*", BINOP_MUL, PREC_MUL, 0},
10836 {"/", BINOP_DIV, PREC_MUL, 0},
10837 {"rem", BINOP_REM, PREC_MUL, 0},
10838 {"mod", BINOP_MOD, PREC_MUL, 0},
10839 {"**", BINOP_EXP, PREC_REPEAT, 0},
10840 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10841 {"-", UNOP_NEG, PREC_PREFIX, 0},
10842 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10843 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10844 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10845 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10846 {".all", UNOP_IND, PREC_SUFFIX, 1},
10847 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10848 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10849 {NULL, 0, 0, 0}
14f9c5c9
AS
10850};
10851\f
72d5681a
PH
10852enum ada_primitive_types {
10853 ada_primitive_type_int,
10854 ada_primitive_type_long,
10855 ada_primitive_type_short,
10856 ada_primitive_type_char,
10857 ada_primitive_type_float,
10858 ada_primitive_type_double,
10859 ada_primitive_type_void,
10860 ada_primitive_type_long_long,
10861 ada_primitive_type_long_double,
10862 ada_primitive_type_natural,
10863 ada_primitive_type_positive,
10864 ada_primitive_type_system_address,
10865 nr_ada_primitive_types
10866};
6c038f32
PH
10867
10868static void
d4a9a881 10869ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10870 struct language_arch_info *lai)
10871{
d4a9a881 10872 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10873 lai->primitive_type_vector
d4a9a881 10874 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10875 struct type *);
10876 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10877 init_type (TYPE_CODE_INT,
d4a9a881 10878 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10879 0, "integer", (struct objfile *) NULL);
72d5681a 10880 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10881 init_type (TYPE_CODE_INT,
d4a9a881 10882 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10883 0, "long_integer", (struct objfile *) NULL);
72d5681a 10884 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10885 init_type (TYPE_CODE_INT,
d4a9a881 10886 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10887 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10888 lai->string_char_type =
10889 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10890 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10891 0, "character", (struct objfile *) NULL);
72d5681a 10892 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10893 init_type (TYPE_CODE_FLT,
d4a9a881 10894 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10895 0, "float", (struct objfile *) NULL);
72d5681a 10896 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10897 init_type (TYPE_CODE_FLT,
d4a9a881 10898 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10899 0, "long_float", (struct objfile *) NULL);
72d5681a 10900 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10901 init_type (TYPE_CODE_INT,
d4a9a881 10902 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10903 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10904 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10905 init_type (TYPE_CODE_FLT,
d4a9a881 10906 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10907 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10908 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10909 init_type (TYPE_CODE_INT,
d4a9a881 10910 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10911 0, "natural", (struct objfile *) NULL);
72d5681a 10912 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10913 init_type (TYPE_CODE_INT,
d4a9a881 10914 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10915 0, "positive", (struct objfile *) NULL);
72d5681a 10916 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10917
72d5681a 10918 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10919 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10920 (struct objfile *) NULL));
72d5681a
PH
10921 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10922 = "system__address";
fbb06eb1
UW
10923
10924 lai->bool_type_symbol = "boolean";
10925 lai->bool_type_default = builtin->builtin_bool;
6c038f32 10926}
6c038f32
PH
10927\f
10928 /* Language vector */
10929
10930/* Not really used, but needed in the ada_language_defn. */
10931
10932static void
10933emit_char (int c, struct ui_file *stream, int quoter)
10934{
10935 ada_emit_char (c, stream, quoter, 1);
10936}
10937
10938static int
10939parse (void)
10940{
10941 warnings_issued = 0;
10942 return ada_parse ();
10943}
10944
10945static const struct exp_descriptor ada_exp_descriptor = {
10946 ada_print_subexp,
10947 ada_operator_length,
10948 ada_op_name,
10949 ada_dump_subexp_body,
10950 ada_evaluate_subexp
10951};
10952
10953const struct language_defn ada_language_defn = {
10954 "ada", /* Language name */
10955 language_ada,
6c038f32
PH
10956 range_check_off,
10957 type_check_off,
10958 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10959 that's not quite what this means. */
6c038f32
PH
10960 array_row_major,
10961 &ada_exp_descriptor,
10962 parse,
10963 ada_error,
10964 resolve,
10965 ada_printchar, /* Print a character constant */
10966 ada_printstr, /* Function to print string constant */
10967 emit_char, /* Function to print single char (not used) */
6c038f32
PH
10968 ada_print_type, /* Print a type using appropriate syntax */
10969 ada_val_print, /* Print a value using appropriate syntax */
10970 ada_value_print, /* Print a top-level value */
10971 NULL, /* Language specific skip_trampoline */
2b2d9e11 10972 NULL, /* name_of_this */
6c038f32
PH
10973 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10974 basic_lookup_transparent_type, /* lookup_transparent_type */
10975 ada_la_decode, /* Language specific symbol demangler */
10976 NULL, /* Language specific class_name_from_physname */
10977 ada_op_print_tab, /* expression operators for printing */
10978 0, /* c-style arrays */
10979 1, /* String lower bound */
6c038f32 10980 ada_get_gdb_completer_word_break_characters,
41d27058 10981 ada_make_symbol_completion_list,
72d5681a 10982 ada_language_arch_info,
e79af960 10983 ada_print_array_index,
41f1b697 10984 default_pass_by_reference,
6c038f32
PH
10985 LANG_MAGIC
10986};
10987
d2e4a39e 10988void
6c038f32 10989_initialize_ada_language (void)
14f9c5c9 10990{
6c038f32
PH
10991 add_language (&ada_language_defn);
10992
10993 varsize_limit = 65536;
6c038f32
PH
10994
10995 obstack_init (&symbol_list_obstack);
10996
10997 decoded_names_store = htab_create_alloc
10998 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10999 NULL, xcalloc, xfree);
6b69afc4
JB
11000
11001 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11002}