]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
f7f9143b JB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007 |
4 | Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | #ifndef ADA_RETAIN_DOTS |
61 | #define ADA_RETAIN_DOTS 0 | |
62 | #endif | |
63 | ||
64 | /* Define whether or not the C operator '/' truncates towards zero for | |
65 | differently signed operands (truncation direction is undefined in C). | |
66 | Copied from valarith.c. */ | |
67 | ||
68 | #ifndef TRUNCATION_TOWARDS_ZERO | |
69 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
70 | #endif | |
71 | ||
4c4b4cd2 | 72 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 73 | |
14f9c5c9 AS |
74 | static void modify_general_field (char *, LONGEST, int, int); |
75 | ||
d2e4a39e | 76 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 81 | |
d2e4a39e | 82 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static struct type *desc_data_type (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static struct value *desc_data (struct value *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int desc_arity (struct type *); |
14f9c5c9 | 103 | |
d2e4a39e | 104 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 105 | |
d2e4a39e | 106 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 107 | |
4c4b4cd2 | 108 | static struct value *ensure_lval (struct value *, CORE_ADDR *); |
14f9c5c9 | 109 | |
d2e4a39e | 110 | static struct value *convert_actual (struct value *, struct type *, |
4c4b4cd2 | 111 | CORE_ADDR *); |
14f9c5c9 | 112 | |
d2e4a39e | 113 | static struct value *make_array_descriptor (struct type *, struct value *, |
4c4b4cd2 | 114 | CORE_ADDR *); |
14f9c5c9 | 115 | |
4c4b4cd2 | 116 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 117 | struct block *, const char *, |
2570f2b7 | 118 | domain_enum, struct objfile *, int); |
14f9c5c9 | 119 | |
4c4b4cd2 | 120 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 121 | |
76a01679 | 122 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 123 | struct block *); |
14f9c5c9 | 124 | |
4c4b4cd2 PH |
125 | static int num_defns_collected (struct obstack *); |
126 | ||
127 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
130 | *, const char *, int, |
131 | domain_enum, int); | |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static struct symtab *symtab_for_sym (struct symbol *); |
14f9c5c9 | 134 | |
4c4b4cd2 | 135 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 136 | struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 139 | struct symbol *, struct block *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 142 | |
4c4b4cd2 PH |
143 | static char *ada_op_name (enum exp_opcode); |
144 | ||
145 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 146 | |
d2e4a39e | 147 | static int numeric_type_p (struct type *); |
14f9c5c9 | 148 | |
d2e4a39e | 149 | static int integer_type_p (struct type *); |
14f9c5c9 | 150 | |
d2e4a39e | 151 | static int scalar_type_p (struct type *); |
14f9c5c9 | 152 | |
d2e4a39e | 153 | static int discrete_type_p (struct type *); |
14f9c5c9 | 154 | |
aeb5907d JB |
155 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
156 | const char **, | |
157 | int *, | |
158 | const char **); | |
159 | ||
160 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
161 | struct block *); | |
162 | ||
4c4b4cd2 | 163 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 164 | int, int, int *); |
4c4b4cd2 | 165 | |
d2e4a39e | 166 | static struct value *evaluate_subexp (struct type *, struct expression *, |
4c4b4cd2 | 167 | int *, enum noside); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 172 | |
10a2c479 | 173 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 174 | const gdb_byte *, |
4c4b4cd2 PH |
175 | CORE_ADDR, struct value *); |
176 | ||
177 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 178 | |
d2e4a39e | 179 | static struct type *to_fixed_range_type (char *, struct value *, |
4c4b4cd2 | 180 | struct objfile *); |
14f9c5c9 | 181 | |
d2e4a39e | 182 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 183 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 184 | |
d2e4a39e | 185 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct type *packed_array_type (struct type *, long *); |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct type *decode_packed_array_type (struct type *); |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *decode_packed_array (struct value *); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 194 | struct value **); |
14f9c5c9 | 195 | |
52ce6436 PH |
196 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int); |
197 | ||
4c4b4cd2 PH |
198 | static struct value *coerce_unspec_val_to_type (struct value *, |
199 | struct type *); | |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 204 | |
d2e4a39e | 205 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static int is_name_suffix (const char *); |
14f9c5c9 | 208 | |
5823c3ef JB |
209 | static int is_digits_suffix (const char *str); |
210 | ||
d2e4a39e | 211 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static LONGEST pos_atr (struct value *); |
216 | ||
d2e4a39e | 217 | static struct value *value_pos_atr (struct value *); |
14f9c5c9 | 218 | |
d2e4a39e | 219 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 220 | |
4c4b4cd2 PH |
221 | static struct symbol *standard_lookup (const char *, const struct block *, |
222 | domain_enum); | |
14f9c5c9 | 223 | |
4c4b4cd2 PH |
224 | static struct value *ada_search_struct_field (char *, struct value *, int, |
225 | struct type *); | |
226 | ||
227 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
228 | struct type *); | |
229 | ||
76a01679 | 230 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 231 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
232 | |
233 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
234 | struct value *); | |
235 | ||
236 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 237 | |
4c4b4cd2 PH |
238 | static int ada_resolve_function (struct ada_symbol_info *, int, |
239 | struct value **, int, const char *, | |
240 | struct type *); | |
241 | ||
242 | static struct value *ada_coerce_to_simple_array (struct value *); | |
243 | ||
244 | static int ada_is_direct_array_type (struct type *); | |
245 | ||
72d5681a PH |
246 | static void ada_language_arch_info (struct gdbarch *, |
247 | struct language_arch_info *); | |
714e53ab PH |
248 | |
249 | static void check_size (const struct type *); | |
52ce6436 PH |
250 | |
251 | static struct value *ada_index_struct_field (int, struct value *, int, | |
252 | struct type *); | |
253 | ||
254 | static struct value *assign_aggregate (struct value *, struct value *, | |
255 | struct expression *, int *, enum noside); | |
256 | ||
257 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int *, | |
260 | int, LONGEST, LONGEST); | |
261 | ||
262 | static void aggregate_assign_positional (struct value *, struct value *, | |
263 | struct expression *, | |
264 | int *, LONGEST *, int *, int, | |
265 | LONGEST, LONGEST); | |
266 | ||
267 | ||
268 | static void aggregate_assign_others (struct value *, struct value *, | |
269 | struct expression *, | |
270 | int *, LONGEST *, int, LONGEST, LONGEST); | |
271 | ||
272 | ||
273 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
274 | ||
275 | ||
276 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
277 | int *, enum noside); | |
278 | ||
279 | static void ada_forward_operator_length (struct expression *, int, int *, | |
280 | int *); | |
4c4b4cd2 PH |
281 | \f |
282 | ||
76a01679 | 283 | |
4c4b4cd2 | 284 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
285 | static unsigned int varsize_limit; |
286 | ||
4c4b4cd2 PH |
287 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
288 | returned by a function that does not return a const char *. */ | |
289 | static char *ada_completer_word_break_characters = | |
290 | #ifdef VMS | |
291 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
292 | #else | |
14f9c5c9 | 293 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 294 | #endif |
14f9c5c9 | 295 | |
4c4b4cd2 | 296 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 297 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 298 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 299 | |
4c4b4cd2 PH |
300 | /* Limit on the number of warnings to raise per expression evaluation. */ |
301 | static int warning_limit = 2; | |
302 | ||
303 | /* Number of warning messages issued; reset to 0 by cleanups after | |
304 | expression evaluation. */ | |
305 | static int warnings_issued = 0; | |
306 | ||
307 | static const char *known_runtime_file_name_patterns[] = { | |
308 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
309 | }; | |
310 | ||
311 | static const char *known_auxiliary_function_name_patterns[] = { | |
312 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
313 | }; | |
314 | ||
315 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
316 | static struct obstack symbol_list_obstack; | |
317 | ||
318 | /* Utilities */ | |
319 | ||
41d27058 JB |
320 | /* Given DECODED_NAME a string holding a symbol name in its |
321 | decoded form (ie using the Ada dotted notation), returns | |
322 | its unqualified name. */ | |
323 | ||
324 | static const char * | |
325 | ada_unqualified_name (const char *decoded_name) | |
326 | { | |
327 | const char *result = strrchr (decoded_name, '.'); | |
328 | ||
329 | if (result != NULL) | |
330 | result++; /* Skip the dot... */ | |
331 | else | |
332 | result = decoded_name; | |
333 | ||
334 | return result; | |
335 | } | |
336 | ||
337 | /* Return a string starting with '<', followed by STR, and '>'. | |
338 | The result is good until the next call. */ | |
339 | ||
340 | static char * | |
341 | add_angle_brackets (const char *str) | |
342 | { | |
343 | static char *result = NULL; | |
344 | ||
345 | xfree (result); | |
346 | result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char)); | |
347 | ||
348 | sprintf (result, "<%s>", str); | |
349 | return result; | |
350 | } | |
96d887e8 | 351 | |
4c4b4cd2 PH |
352 | static char * |
353 | ada_get_gdb_completer_word_break_characters (void) | |
354 | { | |
355 | return ada_completer_word_break_characters; | |
356 | } | |
357 | ||
e79af960 JB |
358 | /* Print an array element index using the Ada syntax. */ |
359 | ||
360 | static void | |
361 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
362 | int format, enum val_prettyprint pretty) | |
363 | { | |
364 | LA_VALUE_PRINT (index_value, stream, format, pretty); | |
365 | fprintf_filtered (stream, " => "); | |
366 | } | |
367 | ||
4c4b4cd2 PH |
368 | /* Read the string located at ADDR from the inferior and store the |
369 | result into BUF. */ | |
370 | ||
371 | static void | |
14f9c5c9 AS |
372 | extract_string (CORE_ADDR addr, char *buf) |
373 | { | |
d2e4a39e | 374 | int char_index = 0; |
14f9c5c9 | 375 | |
4c4b4cd2 PH |
376 | /* Loop, reading one byte at a time, until we reach the '\000' |
377 | end-of-string marker. */ | |
d2e4a39e AS |
378 | do |
379 | { | |
380 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 381 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
382 | char_index++; |
383 | } | |
384 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
385 | } |
386 | ||
f27cf670 | 387 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 388 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 389 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 390 | |
f27cf670 AS |
391 | void * |
392 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 393 | { |
d2e4a39e AS |
394 | if (*size < min_size) |
395 | { | |
396 | *size *= 2; | |
397 | if (*size < min_size) | |
4c4b4cd2 | 398 | *size = min_size; |
f27cf670 | 399 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 400 | } |
f27cf670 | 401 | return vect; |
14f9c5c9 AS |
402 | } |
403 | ||
404 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 405 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
406 | |
407 | static int | |
ebf56fd3 | 408 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
409 | { |
410 | int len = strlen (target); | |
d2e4a39e | 411 | return |
4c4b4cd2 PH |
412 | (strncmp (field_name, target, len) == 0 |
413 | && (field_name[len] == '\0' | |
414 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
415 | && strcmp (field_name + strlen (field_name) - 6, |
416 | "___XVN") != 0))); | |
14f9c5c9 AS |
417 | } |
418 | ||
419 | ||
4c4b4cd2 PH |
420 | /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches |
421 | FIELD_NAME, and return its index. This function also handles fields | |
422 | whose name have ___ suffixes because the compiler sometimes alters | |
423 | their name by adding such a suffix to represent fields with certain | |
424 | constraints. If the field could not be found, return a negative | |
425 | number if MAYBE_MISSING is set. Otherwise raise an error. */ | |
426 | ||
427 | int | |
428 | ada_get_field_index (const struct type *type, const char *field_name, | |
429 | int maybe_missing) | |
430 | { | |
431 | int fieldno; | |
432 | for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++) | |
433 | if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name)) | |
434 | return fieldno; | |
435 | ||
436 | if (!maybe_missing) | |
323e0a4a | 437 | error (_("Unable to find field %s in struct %s. Aborting"), |
4c4b4cd2 PH |
438 | field_name, TYPE_NAME (type)); |
439 | ||
440 | return -1; | |
441 | } | |
442 | ||
443 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
444 | |
445 | int | |
d2e4a39e | 446 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
447 | { |
448 | if (name == NULL) | |
449 | return 0; | |
d2e4a39e | 450 | else |
14f9c5c9 | 451 | { |
d2e4a39e | 452 | const char *p = strstr (name, "___"); |
14f9c5c9 | 453 | if (p == NULL) |
4c4b4cd2 | 454 | return strlen (name); |
14f9c5c9 | 455 | else |
4c4b4cd2 | 456 | return p - name; |
14f9c5c9 AS |
457 | } |
458 | } | |
459 | ||
4c4b4cd2 PH |
460 | /* Return non-zero if SUFFIX is a suffix of STR. |
461 | Return zero if STR is null. */ | |
462 | ||
14f9c5c9 | 463 | static int |
d2e4a39e | 464 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
465 | { |
466 | int len1, len2; | |
467 | if (str == NULL) | |
468 | return 0; | |
469 | len1 = strlen (str); | |
470 | len2 = strlen (suffix); | |
4c4b4cd2 | 471 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
472 | } |
473 | ||
474 | /* Create a value of type TYPE whose contents come from VALADDR, if it | |
4c4b4cd2 PH |
475 | is non-null, and whose memory address (in the inferior) is |
476 | ADDRESS. */ | |
477 | ||
d2e4a39e | 478 | struct value * |
10a2c479 | 479 | value_from_contents_and_address (struct type *type, |
fc1a4b47 | 480 | const gdb_byte *valaddr, |
4c4b4cd2 | 481 | CORE_ADDR address) |
14f9c5c9 | 482 | { |
d2e4a39e AS |
483 | struct value *v = allocate_value (type); |
484 | if (valaddr == NULL) | |
dfa52d88 | 485 | set_value_lazy (v, 1); |
14f9c5c9 | 486 | else |
990a07ab | 487 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); |
14f9c5c9 AS |
488 | VALUE_ADDRESS (v) = address; |
489 | if (address != 0) | |
490 | VALUE_LVAL (v) = lval_memory; | |
491 | return v; | |
492 | } | |
493 | ||
4c4b4cd2 PH |
494 | /* The contents of value VAL, treated as a value of type TYPE. The |
495 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 496 | |
d2e4a39e | 497 | static struct value * |
4c4b4cd2 | 498 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 499 | { |
61ee279c | 500 | type = ada_check_typedef (type); |
df407dfe | 501 | if (value_type (val) == type) |
4c4b4cd2 | 502 | return val; |
d2e4a39e | 503 | else |
14f9c5c9 | 504 | { |
4c4b4cd2 PH |
505 | struct value *result; |
506 | ||
507 | /* Make sure that the object size is not unreasonable before | |
508 | trying to allocate some memory for it. */ | |
714e53ab | 509 | check_size (type); |
4c4b4cd2 PH |
510 | |
511 | result = allocate_value (type); | |
512 | VALUE_LVAL (result) = VALUE_LVAL (val); | |
9bbda503 AC |
513 | set_value_bitsize (result, value_bitsize (val)); |
514 | set_value_bitpos (result, value_bitpos (val)); | |
df407dfe | 515 | VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val); |
d69fe07e | 516 | if (value_lazy (val) |
df407dfe | 517 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 518 | set_value_lazy (result, 1); |
d2e4a39e | 519 | else |
0fd88904 | 520 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 521 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
522 | return result; |
523 | } | |
524 | } | |
525 | ||
fc1a4b47 AC |
526 | static const gdb_byte * |
527 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
528 | { |
529 | if (valaddr == NULL) | |
530 | return NULL; | |
531 | else | |
532 | return valaddr + offset; | |
533 | } | |
534 | ||
535 | static CORE_ADDR | |
ebf56fd3 | 536 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
537 | { |
538 | if (address == 0) | |
539 | return 0; | |
d2e4a39e | 540 | else |
14f9c5c9 AS |
541 | return address + offset; |
542 | } | |
543 | ||
4c4b4cd2 PH |
544 | /* Issue a warning (as for the definition of warning in utils.c, but |
545 | with exactly one argument rather than ...), unless the limit on the | |
546 | number of warnings has passed during the evaluation of the current | |
547 | expression. */ | |
a2249542 | 548 | |
77109804 AC |
549 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
550 | provided by "complaint". */ | |
551 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
552 | ||
14f9c5c9 | 553 | static void |
a2249542 | 554 | lim_warning (const char *format, ...) |
14f9c5c9 | 555 | { |
a2249542 MK |
556 | va_list args; |
557 | va_start (args, format); | |
558 | ||
4c4b4cd2 PH |
559 | warnings_issued += 1; |
560 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
561 | vwarning (format, args); |
562 | ||
563 | va_end (args); | |
4c4b4cd2 PH |
564 | } |
565 | ||
714e53ab PH |
566 | /* Issue an error if the size of an object of type T is unreasonable, |
567 | i.e. if it would be a bad idea to allocate a value of this type in | |
568 | GDB. */ | |
569 | ||
570 | static void | |
571 | check_size (const struct type *type) | |
572 | { | |
573 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 574 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
575 | } |
576 | ||
577 | ||
c3e5cd34 PH |
578 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
579 | gdbtypes.h, but some of the necessary definitions in that file | |
580 | seem to have gone missing. */ | |
581 | ||
582 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 583 | static LONGEST |
c3e5cd34 | 584 | max_of_size (int size) |
4c4b4cd2 | 585 | { |
76a01679 JB |
586 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
587 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
588 | } |
589 | ||
c3e5cd34 | 590 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 591 | static LONGEST |
c3e5cd34 | 592 | min_of_size (int size) |
4c4b4cd2 | 593 | { |
c3e5cd34 | 594 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
595 | } |
596 | ||
c3e5cd34 | 597 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 598 | static ULONGEST |
c3e5cd34 | 599 | umax_of_size (int size) |
4c4b4cd2 | 600 | { |
76a01679 JB |
601 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
602 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
603 | } |
604 | ||
c3e5cd34 PH |
605 | /* Maximum value of integral type T, as a signed quantity. */ |
606 | static LONGEST | |
607 | max_of_type (struct type *t) | |
4c4b4cd2 | 608 | { |
c3e5cd34 PH |
609 | if (TYPE_UNSIGNED (t)) |
610 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
611 | else | |
612 | return max_of_size (TYPE_LENGTH (t)); | |
613 | } | |
614 | ||
615 | /* Minimum value of integral type T, as a signed quantity. */ | |
616 | static LONGEST | |
617 | min_of_type (struct type *t) | |
618 | { | |
619 | if (TYPE_UNSIGNED (t)) | |
620 | return 0; | |
621 | else | |
622 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
623 | } |
624 | ||
625 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 626 | static LONGEST |
4c4b4cd2 PH |
627 | discrete_type_high_bound (struct type *type) |
628 | { | |
76a01679 | 629 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
630 | { |
631 | case TYPE_CODE_RANGE: | |
690cc4eb | 632 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 633 | case TYPE_CODE_ENUM: |
690cc4eb PH |
634 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
635 | case TYPE_CODE_BOOL: | |
636 | return 1; | |
637 | case TYPE_CODE_CHAR: | |
76a01679 | 638 | case TYPE_CODE_INT: |
690cc4eb | 639 | return max_of_type (type); |
4c4b4cd2 | 640 | default: |
323e0a4a | 641 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
642 | } |
643 | } | |
644 | ||
645 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 646 | static LONGEST |
4c4b4cd2 PH |
647 | discrete_type_low_bound (struct type *type) |
648 | { | |
76a01679 | 649 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
650 | { |
651 | case TYPE_CODE_RANGE: | |
690cc4eb | 652 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 653 | case TYPE_CODE_ENUM: |
690cc4eb PH |
654 | return TYPE_FIELD_BITPOS (type, 0); |
655 | case TYPE_CODE_BOOL: | |
656 | return 0; | |
657 | case TYPE_CODE_CHAR: | |
76a01679 | 658 | case TYPE_CODE_INT: |
690cc4eb | 659 | return min_of_type (type); |
4c4b4cd2 | 660 | default: |
323e0a4a | 661 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
662 | } |
663 | } | |
664 | ||
665 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 666 | non-range scalar type. */ |
4c4b4cd2 PH |
667 | |
668 | static struct type * | |
669 | base_type (struct type *type) | |
670 | { | |
671 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
672 | { | |
76a01679 JB |
673 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
674 | return type; | |
4c4b4cd2 PH |
675 | type = TYPE_TARGET_TYPE (type); |
676 | } | |
677 | return type; | |
14f9c5c9 | 678 | } |
4c4b4cd2 | 679 | \f |
76a01679 | 680 | |
4c4b4cd2 | 681 | /* Language Selection */ |
14f9c5c9 AS |
682 | |
683 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
684 | (the main program is in Ada iif the adainit symbol is found). | |
685 | ||
4c4b4cd2 | 686 | MAIN_PST is not used. */ |
d2e4a39e | 687 | |
14f9c5c9 | 688 | enum language |
d2e4a39e | 689 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 690 | struct partial_symtab *main_pst) |
14f9c5c9 | 691 | { |
d2e4a39e | 692 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
693 | (struct objfile *) NULL) != NULL) |
694 | return language_ada; | |
14f9c5c9 AS |
695 | |
696 | return lang; | |
697 | } | |
96d887e8 PH |
698 | |
699 | /* If the main procedure is written in Ada, then return its name. | |
700 | The result is good until the next call. Return NULL if the main | |
701 | procedure doesn't appear to be in Ada. */ | |
702 | ||
703 | char * | |
704 | ada_main_name (void) | |
705 | { | |
706 | struct minimal_symbol *msym; | |
707 | CORE_ADDR main_program_name_addr; | |
708 | static char main_program_name[1024]; | |
6c038f32 | 709 | |
96d887e8 PH |
710 | /* For Ada, the name of the main procedure is stored in a specific |
711 | string constant, generated by the binder. Look for that symbol, | |
712 | extract its address, and then read that string. If we didn't find | |
713 | that string, then most probably the main procedure is not written | |
714 | in Ada. */ | |
715 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
716 | ||
717 | if (msym != NULL) | |
718 | { | |
719 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); | |
720 | if (main_program_name_addr == 0) | |
323e0a4a | 721 | error (_("Invalid address for Ada main program name.")); |
96d887e8 PH |
722 | |
723 | extract_string (main_program_name_addr, main_program_name); | |
724 | return main_program_name; | |
725 | } | |
726 | ||
727 | /* The main procedure doesn't seem to be in Ada. */ | |
728 | return NULL; | |
729 | } | |
14f9c5c9 | 730 | \f |
4c4b4cd2 | 731 | /* Symbols */ |
d2e4a39e | 732 | |
4c4b4cd2 PH |
733 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
734 | of NULLs. */ | |
14f9c5c9 | 735 | |
d2e4a39e AS |
736 | const struct ada_opname_map ada_opname_table[] = { |
737 | {"Oadd", "\"+\"", BINOP_ADD}, | |
738 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
739 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
740 | {"Odivide", "\"/\"", BINOP_DIV}, | |
741 | {"Omod", "\"mod\"", BINOP_MOD}, | |
742 | {"Orem", "\"rem\"", BINOP_REM}, | |
743 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
744 | {"Olt", "\"<\"", BINOP_LESS}, | |
745 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
746 | {"Ogt", "\">\"", BINOP_GTR}, | |
747 | {"Oge", "\">=\"", BINOP_GEQ}, | |
748 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
749 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
750 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
751 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
752 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
753 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
754 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
755 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
756 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
757 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
758 | {NULL, NULL} | |
14f9c5c9 AS |
759 | }; |
760 | ||
4c4b4cd2 PH |
761 | /* Return non-zero if STR should be suppressed in info listings. */ |
762 | ||
14f9c5c9 | 763 | static int |
d2e4a39e | 764 | is_suppressed_name (const char *str) |
14f9c5c9 | 765 | { |
4c4b4cd2 | 766 | if (strncmp (str, "_ada_", 5) == 0) |
14f9c5c9 AS |
767 | str += 5; |
768 | if (str[0] == '_' || str[0] == '\000') | |
769 | return 1; | |
770 | else | |
771 | { | |
d2e4a39e AS |
772 | const char *p; |
773 | const char *suffix = strstr (str, "___"); | |
14f9c5c9 | 774 | if (suffix != NULL && suffix[3] != 'X') |
4c4b4cd2 | 775 | return 1; |
14f9c5c9 | 776 | if (suffix == NULL) |
4c4b4cd2 | 777 | suffix = str + strlen (str); |
d2e4a39e | 778 | for (p = suffix - 1; p != str; p -= 1) |
4c4b4cd2 PH |
779 | if (isupper (*p)) |
780 | { | |
781 | int i; | |
782 | if (p[0] == 'X' && p[-1] != '_') | |
783 | goto OK; | |
784 | if (*p != 'O') | |
785 | return 1; | |
786 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) | |
787 | if (strncmp (ada_opname_table[i].encoded, p, | |
788 | strlen (ada_opname_table[i].encoded)) == 0) | |
789 | goto OK; | |
790 | return 1; | |
791 | OK:; | |
792 | } | |
14f9c5c9 AS |
793 | return 0; |
794 | } | |
795 | } | |
796 | ||
4c4b4cd2 PH |
797 | /* The "encoded" form of DECODED, according to GNAT conventions. |
798 | The result is valid until the next call to ada_encode. */ | |
799 | ||
14f9c5c9 | 800 | char * |
4c4b4cd2 | 801 | ada_encode (const char *decoded) |
14f9c5c9 | 802 | { |
4c4b4cd2 PH |
803 | static char *encoding_buffer = NULL; |
804 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 805 | const char *p; |
14f9c5c9 | 806 | int k; |
d2e4a39e | 807 | |
4c4b4cd2 | 808 | if (decoded == NULL) |
14f9c5c9 AS |
809 | return NULL; |
810 | ||
4c4b4cd2 PH |
811 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
812 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
813 | |
814 | k = 0; | |
4c4b4cd2 | 815 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 816 | { |
4c4b4cd2 PH |
817 | if (!ADA_RETAIN_DOTS && *p == '.') |
818 | { | |
819 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
820 | k += 2; | |
821 | } | |
14f9c5c9 | 822 | else if (*p == '"') |
4c4b4cd2 PH |
823 | { |
824 | const struct ada_opname_map *mapping; | |
825 | ||
826 | for (mapping = ada_opname_table; | |
1265e4aa JB |
827 | mapping->encoded != NULL |
828 | && strncmp (mapping->decoded, p, | |
829 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
830 | ; |
831 | if (mapping->encoded == NULL) | |
323e0a4a | 832 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
833 | strcpy (encoding_buffer + k, mapping->encoded); |
834 | k += strlen (mapping->encoded); | |
835 | break; | |
836 | } | |
d2e4a39e | 837 | else |
4c4b4cd2 PH |
838 | { |
839 | encoding_buffer[k] = *p; | |
840 | k += 1; | |
841 | } | |
14f9c5c9 AS |
842 | } |
843 | ||
4c4b4cd2 PH |
844 | encoding_buffer[k] = '\0'; |
845 | return encoding_buffer; | |
14f9c5c9 AS |
846 | } |
847 | ||
848 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
849 | quotes, unfolded, but with the quotes stripped away. Result good |
850 | to next call. */ | |
851 | ||
d2e4a39e AS |
852 | char * |
853 | ada_fold_name (const char *name) | |
14f9c5c9 | 854 | { |
d2e4a39e | 855 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
856 | static size_t fold_buffer_size = 0; |
857 | ||
858 | int len = strlen (name); | |
d2e4a39e | 859 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
860 | |
861 | if (name[0] == '\'') | |
862 | { | |
d2e4a39e AS |
863 | strncpy (fold_buffer, name + 1, len - 2); |
864 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
865 | } |
866 | else | |
867 | { | |
868 | int i; | |
869 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 870 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
871 | } |
872 | ||
873 | return fold_buffer; | |
874 | } | |
875 | ||
529cad9c PH |
876 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
877 | ||
878 | static int | |
879 | is_lower_alphanum (const char c) | |
880 | { | |
881 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
882 | } | |
883 | ||
29480c32 JB |
884 | /* Remove either of these suffixes: |
885 | . .{DIGIT}+ | |
886 | . ${DIGIT}+ | |
887 | . ___{DIGIT}+ | |
888 | . __{DIGIT}+. | |
889 | These are suffixes introduced by the compiler for entities such as | |
890 | nested subprogram for instance, in order to avoid name clashes. | |
891 | They do not serve any purpose for the debugger. */ | |
892 | ||
893 | static void | |
894 | ada_remove_trailing_digits (const char *encoded, int *len) | |
895 | { | |
896 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
897 | { | |
898 | int i = *len - 2; | |
899 | while (i > 0 && isdigit (encoded[i])) | |
900 | i--; | |
901 | if (i >= 0 && encoded[i] == '.') | |
902 | *len = i; | |
903 | else if (i >= 0 && encoded[i] == '$') | |
904 | *len = i; | |
905 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
906 | *len = i - 2; | |
907 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
908 | *len = i - 1; | |
909 | } | |
910 | } | |
911 | ||
912 | /* Remove the suffix introduced by the compiler for protected object | |
913 | subprograms. */ | |
914 | ||
915 | static void | |
916 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
917 | { | |
918 | /* Remove trailing N. */ | |
919 | ||
920 | /* Protected entry subprograms are broken into two | |
921 | separate subprograms: The first one is unprotected, and has | |
922 | a 'N' suffix; the second is the protected version, and has | |
923 | the 'P' suffix. The second calls the first one after handling | |
924 | the protection. Since the P subprograms are internally generated, | |
925 | we leave these names undecoded, giving the user a clue that this | |
926 | entity is internal. */ | |
927 | ||
928 | if (*len > 1 | |
929 | && encoded[*len - 1] == 'N' | |
930 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
931 | *len = *len - 1; | |
932 | } | |
933 | ||
934 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
935 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
936 | replaced by ENCODED. | |
14f9c5c9 | 937 | |
4c4b4cd2 | 938 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 939 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
940 | is returned. */ |
941 | ||
942 | const char * | |
943 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
944 | { |
945 | int i, j; | |
946 | int len0; | |
d2e4a39e | 947 | const char *p; |
4c4b4cd2 | 948 | char *decoded; |
14f9c5c9 | 949 | int at_start_name; |
4c4b4cd2 PH |
950 | static char *decoding_buffer = NULL; |
951 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 952 | |
29480c32 JB |
953 | /* The name of the Ada main procedure starts with "_ada_". |
954 | This prefix is not part of the decoded name, so skip this part | |
955 | if we see this prefix. */ | |
4c4b4cd2 PH |
956 | if (strncmp (encoded, "_ada_", 5) == 0) |
957 | encoded += 5; | |
14f9c5c9 | 958 | |
29480c32 JB |
959 | /* If the name starts with '_', then it is not a properly encoded |
960 | name, so do not attempt to decode it. Similarly, if the name | |
961 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 962 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
963 | goto Suppress; |
964 | ||
4c4b4cd2 | 965 | len0 = strlen (encoded); |
4c4b4cd2 | 966 | |
29480c32 JB |
967 | ada_remove_trailing_digits (encoded, &len0); |
968 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 969 | |
4c4b4cd2 PH |
970 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
971 | the suffix is located before the current "end" of ENCODED. We want | |
972 | to avoid re-matching parts of ENCODED that have previously been | |
973 | marked as discarded (by decrementing LEN0). */ | |
974 | p = strstr (encoded, "___"); | |
975 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
976 | { |
977 | if (p[3] == 'X') | |
4c4b4cd2 | 978 | len0 = p - encoded; |
14f9c5c9 | 979 | else |
4c4b4cd2 | 980 | goto Suppress; |
14f9c5c9 | 981 | } |
4c4b4cd2 | 982 | |
29480c32 JB |
983 | /* Remove any trailing TKB suffix. It tells us that this symbol |
984 | is for the body of a task, but that information does not actually | |
985 | appear in the decoded name. */ | |
986 | ||
4c4b4cd2 | 987 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 988 | len0 -= 3; |
76a01679 | 989 | |
29480c32 JB |
990 | /* Remove trailing "B" suffixes. */ |
991 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
992 | ||
4c4b4cd2 | 993 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
994 | len0 -= 1; |
995 | ||
4c4b4cd2 | 996 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 997 | |
4c4b4cd2 PH |
998 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
999 | decoded = decoding_buffer; | |
14f9c5c9 | 1000 | |
29480c32 JB |
1001 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1002 | ||
4c4b4cd2 | 1003 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1004 | { |
4c4b4cd2 PH |
1005 | i = len0 - 2; |
1006 | while ((i >= 0 && isdigit (encoded[i])) | |
1007 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1008 | i -= 1; | |
1009 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1010 | len0 = i - 1; | |
1011 | else if (encoded[i] == '$') | |
1012 | len0 = i; | |
d2e4a39e | 1013 | } |
14f9c5c9 | 1014 | |
29480c32 JB |
1015 | /* The first few characters that are not alphabetic are not part |
1016 | of any encoding we use, so we can copy them over verbatim. */ | |
1017 | ||
4c4b4cd2 PH |
1018 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1019 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1020 | |
1021 | at_start_name = 1; | |
1022 | while (i < len0) | |
1023 | { | |
29480c32 | 1024 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1025 | if (at_start_name && encoded[i] == 'O') |
1026 | { | |
1027 | int k; | |
1028 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
1029 | { | |
1030 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1031 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1032 | op_len - 1) == 0) | |
1033 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1034 | { |
1035 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1036 | at_start_name = 0; | |
1037 | i += op_len; | |
1038 | j += strlen (ada_opname_table[k].decoded); | |
1039 | break; | |
1040 | } | |
1041 | } | |
1042 | if (ada_opname_table[k].encoded != NULL) | |
1043 | continue; | |
1044 | } | |
14f9c5c9 AS |
1045 | at_start_name = 0; |
1046 | ||
529cad9c PH |
1047 | /* Replace "TK__" with "__", which will eventually be translated |
1048 | into "." (just below). */ | |
1049 | ||
4c4b4cd2 PH |
1050 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1051 | i += 2; | |
529cad9c | 1052 | |
29480c32 JB |
1053 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1054 | be translated into "." (just below). These are internal names | |
1055 | generated for anonymous blocks inside which our symbol is nested. */ | |
1056 | ||
1057 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1058 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1059 | && isdigit (encoded [i+4])) | |
1060 | { | |
1061 | int k = i + 5; | |
1062 | ||
1063 | while (k < len0 && isdigit (encoded[k])) | |
1064 | k++; /* Skip any extra digit. */ | |
1065 | ||
1066 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1067 | is indeed followed by "__". */ | |
1068 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1069 | i = k; | |
1070 | } | |
1071 | ||
529cad9c PH |
1072 | /* Remove _E{DIGITS}+[sb] */ |
1073 | ||
1074 | /* Just as for protected object subprograms, there are 2 categories | |
1075 | of subprograms created by the compiler for each entry. The first | |
1076 | one implements the actual entry code, and has a suffix following | |
1077 | the convention above; the second one implements the barrier and | |
1078 | uses the same convention as above, except that the 'E' is replaced | |
1079 | by a 'B'. | |
1080 | ||
1081 | Just as above, we do not decode the name of barrier functions | |
1082 | to give the user a clue that the code he is debugging has been | |
1083 | internally generated. */ | |
1084 | ||
1085 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1086 | && isdigit (encoded[i+2])) | |
1087 | { | |
1088 | int k = i + 3; | |
1089 | ||
1090 | while (k < len0 && isdigit (encoded[k])) | |
1091 | k++; | |
1092 | ||
1093 | if (k < len0 | |
1094 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1095 | { | |
1096 | k++; | |
1097 | /* Just as an extra precaution, make sure that if this | |
1098 | suffix is followed by anything else, it is a '_'. | |
1099 | Otherwise, we matched this sequence by accident. */ | |
1100 | if (k == len0 | |
1101 | || (k < len0 && encoded[k] == '_')) | |
1102 | i = k; | |
1103 | } | |
1104 | } | |
1105 | ||
1106 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1107 | the GNAT front-end in protected object subprograms. */ | |
1108 | ||
1109 | if (i < len0 + 3 | |
1110 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1111 | { | |
1112 | /* Backtrack a bit up until we reach either the begining of | |
1113 | the encoded name, or "__". Make sure that we only find | |
1114 | digits or lowercase characters. */ | |
1115 | const char *ptr = encoded + i - 1; | |
1116 | ||
1117 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1118 | ptr--; | |
1119 | if (ptr < encoded | |
1120 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1121 | i++; | |
1122 | } | |
1123 | ||
4c4b4cd2 PH |
1124 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1125 | { | |
29480c32 JB |
1126 | /* This is a X[bn]* sequence not separated from the previous |
1127 | part of the name with a non-alpha-numeric character (in other | |
1128 | words, immediately following an alpha-numeric character), then | |
1129 | verify that it is placed at the end of the encoded name. If | |
1130 | not, then the encoding is not valid and we should abort the | |
1131 | decoding. Otherwise, just skip it, it is used in body-nested | |
1132 | package names. */ | |
4c4b4cd2 PH |
1133 | do |
1134 | i += 1; | |
1135 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1136 | if (i < len0) | |
1137 | goto Suppress; | |
1138 | } | |
1139 | else if (!ADA_RETAIN_DOTS | |
1140 | && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') | |
1141 | { | |
29480c32 | 1142 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1143 | decoded[j] = '.'; |
1144 | at_start_name = 1; | |
1145 | i += 2; | |
1146 | j += 1; | |
1147 | } | |
14f9c5c9 | 1148 | else |
4c4b4cd2 | 1149 | { |
29480c32 JB |
1150 | /* It's a character part of the decoded name, so just copy it |
1151 | over. */ | |
4c4b4cd2 PH |
1152 | decoded[j] = encoded[i]; |
1153 | i += 1; | |
1154 | j += 1; | |
1155 | } | |
14f9c5c9 | 1156 | } |
4c4b4cd2 | 1157 | decoded[j] = '\000'; |
14f9c5c9 | 1158 | |
29480c32 JB |
1159 | /* Decoded names should never contain any uppercase character. |
1160 | Double-check this, and abort the decoding if we find one. */ | |
1161 | ||
4c4b4cd2 PH |
1162 | for (i = 0; decoded[i] != '\0'; i += 1) |
1163 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1164 | goto Suppress; |
1165 | ||
4c4b4cd2 PH |
1166 | if (strcmp (decoded, encoded) == 0) |
1167 | return encoded; | |
1168 | else | |
1169 | return decoded; | |
14f9c5c9 AS |
1170 | |
1171 | Suppress: | |
4c4b4cd2 PH |
1172 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1173 | decoded = decoding_buffer; | |
1174 | if (encoded[0] == '<') | |
1175 | strcpy (decoded, encoded); | |
14f9c5c9 | 1176 | else |
4c4b4cd2 PH |
1177 | sprintf (decoded, "<%s>", encoded); |
1178 | return decoded; | |
1179 | ||
1180 | } | |
1181 | ||
1182 | /* Table for keeping permanent unique copies of decoded names. Once | |
1183 | allocated, names in this table are never released. While this is a | |
1184 | storage leak, it should not be significant unless there are massive | |
1185 | changes in the set of decoded names in successive versions of a | |
1186 | symbol table loaded during a single session. */ | |
1187 | static struct htab *decoded_names_store; | |
1188 | ||
1189 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1190 | in the language-specific part of GSYMBOL, if it has not been | |
1191 | previously computed. Tries to save the decoded name in the same | |
1192 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1193 | in any case, the decoded symbol has a lifetime at least that of | |
1194 | GSYMBOL). | |
1195 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1196 | const, but nevertheless modified to a semantically equivalent form | |
1197 | when a decoded name is cached in it. | |
76a01679 | 1198 | */ |
4c4b4cd2 | 1199 | |
76a01679 JB |
1200 | char * |
1201 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1202 | { |
76a01679 | 1203 | char **resultp = |
4c4b4cd2 PH |
1204 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1205 | if (*resultp == NULL) | |
1206 | { | |
1207 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1208 | if (gsymbol->obj_section != NULL) |
76a01679 | 1209 | { |
714835d5 UW |
1210 | struct objfile *objf = gsymbol->obj_section->objfile; |
1211 | *resultp = obsavestring (decoded, strlen (decoded), | |
1212 | &objf->objfile_obstack); | |
76a01679 | 1213 | } |
4c4b4cd2 | 1214 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1215 | case, we put the result on the heap. Since we only decode |
1216 | when needed, we hope this usually does not cause a | |
1217 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1218 | if (*resultp == NULL) |
76a01679 JB |
1219 | { |
1220 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1221 | decoded, INSERT); | |
1222 | if (*slot == NULL) | |
1223 | *slot = xstrdup (decoded); | |
1224 | *resultp = *slot; | |
1225 | } | |
4c4b4cd2 | 1226 | } |
14f9c5c9 | 1227 | |
4c4b4cd2 PH |
1228 | return *resultp; |
1229 | } | |
76a01679 JB |
1230 | |
1231 | char * | |
1232 | ada_la_decode (const char *encoded, int options) | |
4c4b4cd2 PH |
1233 | { |
1234 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1235 | } |
1236 | ||
1237 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1238 | suffixes that encode debugging information or leading _ada_ on |
1239 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1240 | information that is ignored). If WILD, then NAME need only match a | |
1241 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1242 | either argument is NULL. */ | |
14f9c5c9 AS |
1243 | |
1244 | int | |
d2e4a39e | 1245 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1246 | { |
1247 | if (sym_name == NULL || name == NULL) | |
1248 | return 0; | |
1249 | else if (wild) | |
1250 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1251 | else |
1252 | { | |
1253 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1254 | return (strncmp (sym_name, name, len_name) == 0 |
1255 | && is_name_suffix (sym_name + len_name)) | |
1256 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1257 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1258 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1259 | } |
14f9c5c9 AS |
1260 | } |
1261 | ||
4c4b4cd2 PH |
1262 | /* True (non-zero) iff, in Ada mode, the symbol SYM should be |
1263 | suppressed in info listings. */ | |
14f9c5c9 AS |
1264 | |
1265 | int | |
ebf56fd3 | 1266 | ada_suppress_symbol_printing (struct symbol *sym) |
14f9c5c9 | 1267 | { |
176620f1 | 1268 | if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN) |
14f9c5c9 | 1269 | return 1; |
d2e4a39e | 1270 | else |
4c4b4cd2 | 1271 | return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym)); |
14f9c5c9 | 1272 | } |
14f9c5c9 | 1273 | \f |
d2e4a39e | 1274 | |
4c4b4cd2 | 1275 | /* Arrays */ |
14f9c5c9 | 1276 | |
4c4b4cd2 | 1277 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1278 | |
d2e4a39e AS |
1279 | static char *bound_name[] = { |
1280 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1281 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1282 | }; | |
1283 | ||
1284 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1285 | ||
4c4b4cd2 | 1286 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1287 | |
4c4b4cd2 | 1288 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1289 | |
1290 | static void | |
ebf56fd3 | 1291 | modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
14f9c5c9 | 1292 | { |
4c4b4cd2 | 1293 | modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1294 | } |
1295 | ||
1296 | ||
4c4b4cd2 PH |
1297 | /* The desc_* routines return primitive portions of array descriptors |
1298 | (fat pointers). */ | |
14f9c5c9 AS |
1299 | |
1300 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1301 | level of indirection, if needed. */ |
1302 | ||
d2e4a39e AS |
1303 | static struct type * |
1304 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1305 | { |
1306 | if (type == NULL) | |
1307 | return NULL; | |
61ee279c | 1308 | type = ada_check_typedef (type); |
1265e4aa JB |
1309 | if (type != NULL |
1310 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1311 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1312 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1313 | else |
1314 | return type; | |
1315 | } | |
1316 | ||
4c4b4cd2 PH |
1317 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1318 | ||
14f9c5c9 | 1319 | static int |
d2e4a39e | 1320 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1321 | { |
d2e4a39e | 1322 | return |
14f9c5c9 AS |
1323 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1324 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1325 | } | |
1326 | ||
4c4b4cd2 PH |
1327 | /* The descriptor type for thin pointer type TYPE. */ |
1328 | ||
d2e4a39e AS |
1329 | static struct type * |
1330 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1331 | { |
d2e4a39e | 1332 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1333 | if (base_type == NULL) |
1334 | return NULL; | |
1335 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1336 | return base_type; | |
d2e4a39e | 1337 | else |
14f9c5c9 | 1338 | { |
d2e4a39e | 1339 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1340 | if (alt_type == NULL) |
4c4b4cd2 | 1341 | return base_type; |
14f9c5c9 | 1342 | else |
4c4b4cd2 | 1343 | return alt_type; |
14f9c5c9 AS |
1344 | } |
1345 | } | |
1346 | ||
4c4b4cd2 PH |
1347 | /* A pointer to the array data for thin-pointer value VAL. */ |
1348 | ||
d2e4a39e AS |
1349 | static struct value * |
1350 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1351 | { |
df407dfe | 1352 | struct type *type = value_type (val); |
14f9c5c9 | 1353 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
d2e4a39e | 1354 | return value_cast (desc_data_type (thin_descriptor_type (type)), |
4c4b4cd2 | 1355 | value_copy (val)); |
d2e4a39e | 1356 | else |
14f9c5c9 | 1357 | return value_from_longest (desc_data_type (thin_descriptor_type (type)), |
df407dfe | 1358 | VALUE_ADDRESS (val) + value_offset (val)); |
14f9c5c9 AS |
1359 | } |
1360 | ||
4c4b4cd2 PH |
1361 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1362 | ||
14f9c5c9 | 1363 | static int |
d2e4a39e | 1364 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1365 | { |
1366 | type = desc_base_type (type); | |
1367 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1368 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1369 | } |
1370 | ||
4c4b4cd2 PH |
1371 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1372 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1373 | |
d2e4a39e AS |
1374 | static struct type * |
1375 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1376 | { |
d2e4a39e | 1377 | struct type *r; |
14f9c5c9 AS |
1378 | |
1379 | type = desc_base_type (type); | |
1380 | ||
1381 | if (type == NULL) | |
1382 | return NULL; | |
1383 | else if (is_thin_pntr (type)) | |
1384 | { | |
1385 | type = thin_descriptor_type (type); | |
1386 | if (type == NULL) | |
4c4b4cd2 | 1387 | return NULL; |
14f9c5c9 AS |
1388 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1389 | if (r != NULL) | |
61ee279c | 1390 | return ada_check_typedef (r); |
14f9c5c9 AS |
1391 | } |
1392 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1393 | { | |
1394 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1395 | if (r != NULL) | |
61ee279c | 1396 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1397 | } |
1398 | return NULL; | |
1399 | } | |
1400 | ||
1401 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1402 | one, a pointer to its bounds data. Otherwise NULL. */ |
1403 | ||
d2e4a39e AS |
1404 | static struct value * |
1405 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1406 | { |
df407dfe | 1407 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1408 | if (is_thin_pntr (type)) |
14f9c5c9 | 1409 | { |
d2e4a39e | 1410 | struct type *bounds_type = |
4c4b4cd2 | 1411 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1412 | LONGEST addr; |
1413 | ||
4cdfadb1 | 1414 | if (bounds_type == NULL) |
323e0a4a | 1415 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1416 | |
1417 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1418 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1419 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1420 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1421 | addr = value_as_long (arr); |
d2e4a39e | 1422 | else |
df407dfe | 1423 | addr = VALUE_ADDRESS (arr) + value_offset (arr); |
14f9c5c9 | 1424 | |
d2e4a39e | 1425 | return |
4c4b4cd2 PH |
1426 | value_from_longest (lookup_pointer_type (bounds_type), |
1427 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1428 | } |
1429 | ||
1430 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1431 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1432 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1433 | else |
1434 | return NULL; | |
1435 | } | |
1436 | ||
4c4b4cd2 PH |
1437 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1438 | position of the field containing the address of the bounds data. */ | |
1439 | ||
14f9c5c9 | 1440 | static int |
d2e4a39e | 1441 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1442 | { |
1443 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1444 | } | |
1445 | ||
1446 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1447 | size of the field containing the address of the bounds data. */ |
1448 | ||
14f9c5c9 | 1449 | static int |
d2e4a39e | 1450 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1451 | { |
1452 | type = desc_base_type (type); | |
1453 | ||
d2e4a39e | 1454 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1455 | return TYPE_FIELD_BITSIZE (type, 1); |
1456 | else | |
61ee279c | 1457 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1458 | } |
1459 | ||
4c4b4cd2 | 1460 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
14f9c5c9 | 1461 | pointer to one, the type of its array data (a |
4c4b4cd2 PH |
1462 | pointer-to-array-with-no-bounds type); otherwise, NULL. Use |
1463 | ada_type_of_array to get an array type with bounds data. */ | |
1464 | ||
d2e4a39e AS |
1465 | static struct type * |
1466 | desc_data_type (struct type *type) | |
14f9c5c9 AS |
1467 | { |
1468 | type = desc_base_type (type); | |
1469 | ||
4c4b4cd2 | 1470 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1471 | if (is_thin_pntr (type)) |
d2e4a39e AS |
1472 | return lookup_pointer_type |
1473 | (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1))); | |
14f9c5c9 AS |
1474 | else if (is_thick_pntr (type)) |
1475 | return lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1476 | else | |
1477 | return NULL; | |
1478 | } | |
1479 | ||
1480 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1481 | its array data. */ | |
4c4b4cd2 | 1482 | |
d2e4a39e AS |
1483 | static struct value * |
1484 | desc_data (struct value *arr) | |
14f9c5c9 | 1485 | { |
df407dfe | 1486 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1487 | if (is_thin_pntr (type)) |
1488 | return thin_data_pntr (arr); | |
1489 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1490 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1491 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1492 | else |
1493 | return NULL; | |
1494 | } | |
1495 | ||
1496 | ||
1497 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1498 | position of the field containing the address of the data. */ |
1499 | ||
14f9c5c9 | 1500 | static int |
d2e4a39e | 1501 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1502 | { |
1503 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1504 | } | |
1505 | ||
1506 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1507 | size of the field containing the address of the data. */ |
1508 | ||
14f9c5c9 | 1509 | static int |
d2e4a39e | 1510 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1511 | { |
1512 | type = desc_base_type (type); | |
1513 | ||
1514 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1515 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1516 | else |
14f9c5c9 AS |
1517 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1518 | } | |
1519 | ||
4c4b4cd2 | 1520 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1521 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1522 | bound, if WHICH is 1. The first bound is I=1. */ |
1523 | ||
d2e4a39e AS |
1524 | static struct value * |
1525 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1526 | { |
d2e4a39e | 1527 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1528 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1529 | } |
1530 | ||
1531 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1532 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1533 | bound, if WHICH is 1. The first bound is I=1. */ |
1534 | ||
14f9c5c9 | 1535 | static int |
d2e4a39e | 1536 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1537 | { |
d2e4a39e | 1538 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1539 | } |
1540 | ||
1541 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1542 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1543 | bound, if WHICH is 1. The first bound is I=1. */ |
1544 | ||
76a01679 | 1545 | static int |
d2e4a39e | 1546 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1547 | { |
1548 | type = desc_base_type (type); | |
1549 | ||
d2e4a39e AS |
1550 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1551 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1552 | else | |
1553 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1554 | } |
1555 | ||
1556 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1557 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1558 | ||
d2e4a39e AS |
1559 | static struct type * |
1560 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1561 | { |
1562 | type = desc_base_type (type); | |
1563 | ||
1564 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1565 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1566 | else | |
14f9c5c9 AS |
1567 | return NULL; |
1568 | } | |
1569 | ||
4c4b4cd2 PH |
1570 | /* The number of index positions in the array-bounds type TYPE. |
1571 | Return 0 if TYPE is NULL. */ | |
1572 | ||
14f9c5c9 | 1573 | static int |
d2e4a39e | 1574 | desc_arity (struct type *type) |
14f9c5c9 AS |
1575 | { |
1576 | type = desc_base_type (type); | |
1577 | ||
1578 | if (type != NULL) | |
1579 | return TYPE_NFIELDS (type) / 2; | |
1580 | return 0; | |
1581 | } | |
1582 | ||
4c4b4cd2 PH |
1583 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1584 | an array descriptor type (representing an unconstrained array | |
1585 | type). */ | |
1586 | ||
76a01679 JB |
1587 | static int |
1588 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1589 | { |
1590 | if (type == NULL) | |
1591 | return 0; | |
61ee279c | 1592 | type = ada_check_typedef (type); |
4c4b4cd2 | 1593 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1594 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1595 | } |
1596 | ||
52ce6436 PH |
1597 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1598 | * to one. */ | |
1599 | ||
1600 | int | |
1601 | ada_is_array_type (struct type *type) | |
1602 | { | |
1603 | while (type != NULL | |
1604 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1605 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1606 | type = TYPE_TARGET_TYPE (type); | |
1607 | return ada_is_direct_array_type (type); | |
1608 | } | |
1609 | ||
4c4b4cd2 | 1610 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1611 | |
14f9c5c9 | 1612 | int |
4c4b4cd2 | 1613 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1614 | { |
1615 | if (type == NULL) | |
1616 | return 0; | |
61ee279c | 1617 | type = ada_check_typedef (type); |
14f9c5c9 | 1618 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1619 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1620 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1621 | } |
1622 | ||
4c4b4cd2 PH |
1623 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1624 | ||
14f9c5c9 | 1625 | int |
4c4b4cd2 | 1626 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1627 | { |
d2e4a39e | 1628 | struct type *data_type = desc_data_type (type); |
14f9c5c9 AS |
1629 | |
1630 | if (type == NULL) | |
1631 | return 0; | |
61ee279c | 1632 | type = ada_check_typedef (type); |
d2e4a39e | 1633 | return |
14f9c5c9 AS |
1634 | data_type != NULL |
1635 | && ((TYPE_CODE (data_type) == TYPE_CODE_PTR | |
4c4b4cd2 PH |
1636 | && TYPE_TARGET_TYPE (data_type) != NULL |
1637 | && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY) | |
1265e4aa | 1638 | || TYPE_CODE (data_type) == TYPE_CODE_ARRAY) |
14f9c5c9 AS |
1639 | && desc_arity (desc_bounds_type (type)) > 0; |
1640 | } | |
1641 | ||
1642 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1643 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1644 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1645 | is still needed. */ |
1646 | ||
14f9c5c9 | 1647 | int |
ebf56fd3 | 1648 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1649 | { |
d2e4a39e | 1650 | return |
14f9c5c9 AS |
1651 | type != NULL |
1652 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1653 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1654 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1655 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1656 | } |
1657 | ||
1658 | ||
4c4b4cd2 | 1659 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1660 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1661 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1662 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1663 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1664 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1665 | a descriptor. */ |
d2e4a39e AS |
1666 | struct type * |
1667 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1668 | { |
df407dfe AC |
1669 | if (ada_is_packed_array_type (value_type (arr))) |
1670 | return decode_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1671 | |
df407dfe AC |
1672 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1673 | return value_type (arr); | |
d2e4a39e AS |
1674 | |
1675 | if (!bounds) | |
1676 | return | |
df407dfe | 1677 | ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr)))); |
14f9c5c9 AS |
1678 | else |
1679 | { | |
d2e4a39e | 1680 | struct type *elt_type; |
14f9c5c9 | 1681 | int arity; |
d2e4a39e | 1682 | struct value *descriptor; |
df407dfe | 1683 | struct objfile *objf = TYPE_OBJFILE (value_type (arr)); |
14f9c5c9 | 1684 | |
df407dfe AC |
1685 | elt_type = ada_array_element_type (value_type (arr), -1); |
1686 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1687 | |
d2e4a39e | 1688 | if (elt_type == NULL || arity == 0) |
df407dfe | 1689 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1690 | |
1691 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1692 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1693 | return NULL; |
d2e4a39e | 1694 | while (arity > 0) |
4c4b4cd2 PH |
1695 | { |
1696 | struct type *range_type = alloc_type (objf); | |
1697 | struct type *array_type = alloc_type (objf); | |
1698 | struct value *low = desc_one_bound (descriptor, arity, 0); | |
1699 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1700 | arity -= 1; | |
1701 | ||
df407dfe | 1702 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1703 | longest_to_int (value_as_long (low)), |
1704 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 PH |
1705 | elt_type = create_array_type (array_type, elt_type, range_type); |
1706 | } | |
14f9c5c9 AS |
1707 | |
1708 | return lookup_pointer_type (elt_type); | |
1709 | } | |
1710 | } | |
1711 | ||
1712 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1713 | Otherwise, returns either a standard GDB array with bounds set |
1714 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1715 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1716 | ||
d2e4a39e AS |
1717 | struct value * |
1718 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1719 | { |
df407dfe | 1720 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1721 | { |
d2e4a39e | 1722 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1723 | if (arrType == NULL) |
4c4b4cd2 | 1724 | return NULL; |
14f9c5c9 AS |
1725 | return value_cast (arrType, value_copy (desc_data (arr))); |
1726 | } | |
df407dfe | 1727 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 AS |
1728 | return decode_packed_array (arr); |
1729 | else | |
1730 | return arr; | |
1731 | } | |
1732 | ||
1733 | /* If ARR does not represent an array, returns ARR unchanged. | |
1734 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1735 | be ARR itself if it already is in the proper form). */ |
1736 | ||
1737 | static struct value * | |
d2e4a39e | 1738 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1739 | { |
df407dfe | 1740 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1741 | { |
d2e4a39e | 1742 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1743 | if (arrVal == NULL) |
323e0a4a | 1744 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1745 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1746 | return value_ind (arrVal); |
1747 | } | |
df407dfe | 1748 | else if (ada_is_packed_array_type (value_type (arr))) |
14f9c5c9 | 1749 | return decode_packed_array (arr); |
d2e4a39e | 1750 | else |
14f9c5c9 AS |
1751 | return arr; |
1752 | } | |
1753 | ||
1754 | /* If TYPE represents a GNAT array type, return it translated to an | |
1755 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1756 | packing). For other types, is the identity. */ |
1757 | ||
d2e4a39e AS |
1758 | struct type * |
1759 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1760 | { |
d2e4a39e AS |
1761 | struct value *mark = value_mark (); |
1762 | struct value *dummy = value_from_longest (builtin_type_long, 0); | |
1763 | struct type *result; | |
04624583 | 1764 | deprecated_set_value_type (dummy, type); |
14f9c5c9 | 1765 | result = ada_type_of_array (dummy, 0); |
4c4b4cd2 | 1766 | value_free_to_mark (mark); |
14f9c5c9 AS |
1767 | return result; |
1768 | } | |
1769 | ||
4c4b4cd2 PH |
1770 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1771 | ||
14f9c5c9 | 1772 | int |
d2e4a39e | 1773 | ada_is_packed_array_type (struct type *type) |
14f9c5c9 AS |
1774 | { |
1775 | if (type == NULL) | |
1776 | return 0; | |
4c4b4cd2 | 1777 | type = desc_base_type (type); |
61ee279c | 1778 | type = ada_check_typedef (type); |
d2e4a39e | 1779 | return |
14f9c5c9 AS |
1780 | ada_type_name (type) != NULL |
1781 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1782 | } | |
1783 | ||
1784 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1785 | in, and that the element size of its ultimate scalar constituents | |
1786 | (that is, either its elements, or, if it is an array of arrays, its | |
1787 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1788 | but with the bit sizes of its elements (and those of any | |
1789 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1790 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1791 | in bits. */ | |
1792 | ||
d2e4a39e AS |
1793 | static struct type * |
1794 | packed_array_type (struct type *type, long *elt_bits) | |
14f9c5c9 | 1795 | { |
d2e4a39e AS |
1796 | struct type *new_elt_type; |
1797 | struct type *new_type; | |
14f9c5c9 AS |
1798 | LONGEST low_bound, high_bound; |
1799 | ||
61ee279c | 1800 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1801 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1802 | return type; | |
1803 | ||
1804 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
61ee279c | 1805 | new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 1806 | elt_bits); |
14f9c5c9 AS |
1807 | create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0)); |
1808 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; | |
1809 | TYPE_NAME (new_type) = ada_type_name (type); | |
1810 | ||
d2e4a39e | 1811 | if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 | 1812 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1813 | low_bound = high_bound = 0; |
1814 | if (high_bound < low_bound) | |
1815 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1816 | else |
14f9c5c9 AS |
1817 | { |
1818 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1819 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1820 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1821 | } |
1822 | ||
876cecd0 | 1823 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1824 | return new_type; |
1825 | } | |
1826 | ||
4c4b4cd2 PH |
1827 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */ |
1828 | ||
d2e4a39e AS |
1829 | static struct type * |
1830 | decode_packed_array_type (struct type *type) | |
1831 | { | |
4c4b4cd2 | 1832 | struct symbol *sym; |
d2e4a39e | 1833 | struct block **blocks; |
727e3d2e JB |
1834 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1835 | char *name; | |
1836 | char *tail; | |
d2e4a39e | 1837 | struct type *shadow_type; |
14f9c5c9 AS |
1838 | long bits; |
1839 | int i, n; | |
1840 | ||
727e3d2e JB |
1841 | if (!raw_name) |
1842 | raw_name = ada_type_name (desc_base_type (type)); | |
1843 | ||
1844 | if (!raw_name) | |
1845 | return NULL; | |
1846 | ||
1847 | name = (char *) alloca (strlen (raw_name) + 1); | |
1848 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1849 | type = desc_base_type (type); |
1850 | ||
14f9c5c9 AS |
1851 | memcpy (name, raw_name, tail - raw_name); |
1852 | name[tail - raw_name] = '\000'; | |
1853 | ||
4c4b4cd2 PH |
1854 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1855 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1856 | { |
323e0a4a | 1857 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1858 | return NULL; |
1859 | } | |
4c4b4cd2 | 1860 | shadow_type = SYMBOL_TYPE (sym); |
14f9c5c9 AS |
1861 | |
1862 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1863 | { | |
323e0a4a | 1864 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1865 | return NULL; |
1866 | } | |
d2e4a39e | 1867 | |
14f9c5c9 AS |
1868 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) |
1869 | { | |
4c4b4cd2 | 1870 | lim_warning |
323e0a4a | 1871 | (_("could not understand bit size information on packed array")); |
14f9c5c9 AS |
1872 | return NULL; |
1873 | } | |
d2e4a39e | 1874 | |
14f9c5c9 AS |
1875 | return packed_array_type (shadow_type, &bits); |
1876 | } | |
1877 | ||
4c4b4cd2 | 1878 | /* Given that ARR is a struct value *indicating a GNAT packed array, |
14f9c5c9 AS |
1879 | returns a simple array that denotes that array. Its type is a |
1880 | standard GDB array type except that the BITSIZEs of the array | |
1881 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1882 | type length is set appropriately. */ |
14f9c5c9 | 1883 | |
d2e4a39e AS |
1884 | static struct value * |
1885 | decode_packed_array (struct value *arr) | |
14f9c5c9 | 1886 | { |
4c4b4cd2 | 1887 | struct type *type; |
14f9c5c9 | 1888 | |
4c4b4cd2 | 1889 | arr = ada_coerce_ref (arr); |
df407dfe | 1890 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
4c4b4cd2 PH |
1891 | arr = ada_value_ind (arr); |
1892 | ||
df407dfe | 1893 | type = decode_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1894 | if (type == NULL) |
1895 | { | |
323e0a4a | 1896 | error (_("can't unpack array")); |
14f9c5c9 AS |
1897 | return NULL; |
1898 | } | |
61ee279c | 1899 | |
32c9a795 MD |
1900 | if (gdbarch_bits_big_endian (current_gdbarch) |
1901 | && ada_is_modular_type (value_type (arr))) | |
61ee279c PH |
1902 | { |
1903 | /* This is a (right-justified) modular type representing a packed | |
1904 | array with no wrapper. In order to interpret the value through | |
1905 | the (left-justified) packed array type we just built, we must | |
1906 | first left-justify it. */ | |
1907 | int bit_size, bit_pos; | |
1908 | ULONGEST mod; | |
1909 | ||
df407dfe | 1910 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1911 | bit_size = 0; |
1912 | while (mod > 0) | |
1913 | { | |
1914 | bit_size += 1; | |
1915 | mod >>= 1; | |
1916 | } | |
df407dfe | 1917 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1918 | arr = ada_value_primitive_packed_val (arr, NULL, |
1919 | bit_pos / HOST_CHAR_BIT, | |
1920 | bit_pos % HOST_CHAR_BIT, | |
1921 | bit_size, | |
1922 | type); | |
1923 | } | |
1924 | ||
4c4b4cd2 | 1925 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1926 | } |
1927 | ||
1928 | ||
1929 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1930 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1931 | |
d2e4a39e AS |
1932 | static struct value * |
1933 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1934 | { |
1935 | int i; | |
1936 | int bits, elt_off, bit_off; | |
1937 | long elt_total_bit_offset; | |
d2e4a39e AS |
1938 | struct type *elt_type; |
1939 | struct value *v; | |
14f9c5c9 AS |
1940 | |
1941 | bits = 0; | |
1942 | elt_total_bit_offset = 0; | |
df407dfe | 1943 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1944 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1945 | { |
d2e4a39e | 1946 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1947 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1948 | error | |
323e0a4a | 1949 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1950 | else |
4c4b4cd2 PH |
1951 | { |
1952 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1953 | LONGEST lowerbound, upperbound; | |
1954 | LONGEST idx; | |
1955 | ||
1956 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1957 | { | |
323e0a4a | 1958 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1959 | lowerbound = upperbound = 0; |
1960 | } | |
1961 | ||
1962 | idx = value_as_long (value_pos_atr (ind[i])); | |
1963 | if (idx < lowerbound || idx > upperbound) | |
323e0a4a | 1964 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1965 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1966 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1967 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1968 | } |
14f9c5c9 AS |
1969 | } |
1970 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1971 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1972 | |
1973 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1974 | bits, elt_type); |
14f9c5c9 AS |
1975 | return v; |
1976 | } | |
1977 | ||
4c4b4cd2 | 1978 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1979 | |
1980 | static int | |
d2e4a39e | 1981 | has_negatives (struct type *type) |
14f9c5c9 | 1982 | { |
d2e4a39e AS |
1983 | switch (TYPE_CODE (type)) |
1984 | { | |
1985 | default: | |
1986 | return 0; | |
1987 | case TYPE_CODE_INT: | |
1988 | return !TYPE_UNSIGNED (type); | |
1989 | case TYPE_CODE_RANGE: | |
1990 | return TYPE_LOW_BOUND (type) < 0; | |
1991 | } | |
14f9c5c9 | 1992 | } |
d2e4a39e | 1993 | |
14f9c5c9 AS |
1994 | |
1995 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1996 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
1997 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
1998 | assigning through the result will set the field fetched from. |
1999 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2000 | VALADDR+OFFSET must address the start of storage containing the | |
2001 | packed value. The value returned in this case is never an lval. | |
2002 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2003 | |
d2e4a39e | 2004 | struct value * |
fc1a4b47 | 2005 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2006 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2007 | struct type *type) |
14f9c5c9 | 2008 | { |
d2e4a39e | 2009 | struct value *v; |
4c4b4cd2 PH |
2010 | int src, /* Index into the source area */ |
2011 | targ, /* Index into the target area */ | |
2012 | srcBitsLeft, /* Number of source bits left to move */ | |
2013 | nsrc, ntarg, /* Number of source and target bytes */ | |
2014 | unusedLS, /* Number of bits in next significant | |
2015 | byte of source that are unused */ | |
2016 | accumSize; /* Number of meaningful bits in accum */ | |
2017 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2018 | unsigned char *unpacked; |
4c4b4cd2 | 2019 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2020 | unsigned char sign; |
2021 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2022 | /* Transmit bytes from least to most significant; delta is the direction |
2023 | the indices move. */ | |
32c9a795 | 2024 | int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1; |
14f9c5c9 | 2025 | |
61ee279c | 2026 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2027 | |
2028 | if (obj == NULL) | |
2029 | { | |
2030 | v = allocate_value (type); | |
d2e4a39e | 2031 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2032 | } |
9214ee5f | 2033 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2034 | { |
2035 | v = value_at (type, | |
df407dfe | 2036 | VALUE_ADDRESS (obj) + value_offset (obj) + offset); |
d2e4a39e | 2037 | bytes = (unsigned char *) alloca (len); |
14f9c5c9 AS |
2038 | read_memory (VALUE_ADDRESS (v), bytes, len); |
2039 | } | |
d2e4a39e | 2040 | else |
14f9c5c9 AS |
2041 | { |
2042 | v = allocate_value (type); | |
0fd88904 | 2043 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2044 | } |
d2e4a39e AS |
2045 | |
2046 | if (obj != NULL) | |
14f9c5c9 AS |
2047 | { |
2048 | VALUE_LVAL (v) = VALUE_LVAL (obj); | |
2049 | if (VALUE_LVAL (obj) == lval_internalvar) | |
4c4b4cd2 | 2050 | VALUE_LVAL (v) = lval_internalvar_component; |
df407dfe | 2051 | VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset; |
9bbda503 AC |
2052 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2053 | set_value_bitsize (v, bit_size); | |
df407dfe | 2054 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2055 | { |
2056 | VALUE_ADDRESS (v) += 1; | |
9bbda503 | 2057 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2058 | } |
14f9c5c9 AS |
2059 | } |
2060 | else | |
9bbda503 | 2061 | set_value_bitsize (v, bit_size); |
0fd88904 | 2062 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2063 | |
2064 | srcBitsLeft = bit_size; | |
2065 | nsrc = len; | |
2066 | ntarg = TYPE_LENGTH (type); | |
2067 | sign = 0; | |
2068 | if (bit_size == 0) | |
2069 | { | |
2070 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2071 | return v; | |
2072 | } | |
32c9a795 | 2073 | else if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 | 2074 | { |
d2e4a39e | 2075 | src = len - 1; |
1265e4aa JB |
2076 | if (has_negatives (type) |
2077 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2078 | sign = ~0; |
d2e4a39e AS |
2079 | |
2080 | unusedLS = | |
4c4b4cd2 PH |
2081 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2082 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2083 | |
2084 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2085 | { |
2086 | case TYPE_CODE_ARRAY: | |
2087 | case TYPE_CODE_UNION: | |
2088 | case TYPE_CODE_STRUCT: | |
2089 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2090 | accumSize = | |
2091 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2092 | /* ... And are placed at the beginning (most-significant) bytes | |
2093 | of the target. */ | |
529cad9c | 2094 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
4c4b4cd2 PH |
2095 | break; |
2096 | default: | |
2097 | accumSize = 0; | |
2098 | targ = TYPE_LENGTH (type) - 1; | |
2099 | break; | |
2100 | } | |
14f9c5c9 | 2101 | } |
d2e4a39e | 2102 | else |
14f9c5c9 AS |
2103 | { |
2104 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2105 | ||
2106 | src = targ = 0; | |
2107 | unusedLS = bit_offset; | |
2108 | accumSize = 0; | |
2109 | ||
d2e4a39e | 2110 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2111 | sign = ~0; |
14f9c5c9 | 2112 | } |
d2e4a39e | 2113 | |
14f9c5c9 AS |
2114 | accum = 0; |
2115 | while (nsrc > 0) | |
2116 | { | |
2117 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2118 | part of the value. */ |
d2e4a39e | 2119 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2120 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2121 | 1; | |
2122 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2123 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2124 | accum |= |
4c4b4cd2 | 2125 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2126 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2127 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2128 | { |
2129 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2130 | accumSize -= HOST_CHAR_BIT; | |
2131 | accum >>= HOST_CHAR_BIT; | |
2132 | ntarg -= 1; | |
2133 | targ += delta; | |
2134 | } | |
14f9c5c9 AS |
2135 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2136 | unusedLS = 0; | |
2137 | nsrc -= 1; | |
2138 | src += delta; | |
2139 | } | |
2140 | while (ntarg > 0) | |
2141 | { | |
2142 | accum |= sign << accumSize; | |
2143 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2144 | accumSize -= HOST_CHAR_BIT; | |
2145 | accum >>= HOST_CHAR_BIT; | |
2146 | ntarg -= 1; | |
2147 | targ += delta; | |
2148 | } | |
2149 | ||
2150 | return v; | |
2151 | } | |
d2e4a39e | 2152 | |
14f9c5c9 AS |
2153 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2154 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2155 | not overlap. */ |
14f9c5c9 | 2156 | static void |
fc1a4b47 | 2157 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
0fd88904 | 2158 | int src_offset, int n) |
14f9c5c9 AS |
2159 | { |
2160 | unsigned int accum, mask; | |
2161 | int accum_bits, chunk_size; | |
2162 | ||
2163 | target += targ_offset / HOST_CHAR_BIT; | |
2164 | targ_offset %= HOST_CHAR_BIT; | |
2165 | source += src_offset / HOST_CHAR_BIT; | |
2166 | src_offset %= HOST_CHAR_BIT; | |
32c9a795 | 2167 | if (gdbarch_bits_big_endian (current_gdbarch)) |
14f9c5c9 AS |
2168 | { |
2169 | accum = (unsigned char) *source; | |
2170 | source += 1; | |
2171 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2172 | ||
d2e4a39e | 2173 | while (n > 0) |
4c4b4cd2 PH |
2174 | { |
2175 | int unused_right; | |
2176 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2177 | accum_bits += HOST_CHAR_BIT; | |
2178 | source += 1; | |
2179 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2180 | if (chunk_size > n) | |
2181 | chunk_size = n; | |
2182 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2183 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2184 | *target = | |
2185 | (*target & ~mask) | |
2186 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2187 | n -= chunk_size; | |
2188 | accum_bits -= chunk_size; | |
2189 | target += 1; | |
2190 | targ_offset = 0; | |
2191 | } | |
14f9c5c9 AS |
2192 | } |
2193 | else | |
2194 | { | |
2195 | accum = (unsigned char) *source >> src_offset; | |
2196 | source += 1; | |
2197 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2198 | ||
d2e4a39e | 2199 | while (n > 0) |
4c4b4cd2 PH |
2200 | { |
2201 | accum = accum + ((unsigned char) *source << accum_bits); | |
2202 | accum_bits += HOST_CHAR_BIT; | |
2203 | source += 1; | |
2204 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2205 | if (chunk_size > n) | |
2206 | chunk_size = n; | |
2207 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2208 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2209 | n -= chunk_size; | |
2210 | accum_bits -= chunk_size; | |
2211 | accum >>= chunk_size; | |
2212 | target += 1; | |
2213 | targ_offset = 0; | |
2214 | } | |
14f9c5c9 AS |
2215 | } |
2216 | } | |
2217 | ||
14f9c5c9 AS |
2218 | /* Store the contents of FROMVAL into the location of TOVAL. |
2219 | Return a new value with the location of TOVAL and contents of | |
2220 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2221 | floating-point or non-scalar types. */ |
14f9c5c9 | 2222 | |
d2e4a39e AS |
2223 | static struct value * |
2224 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2225 | { |
df407dfe AC |
2226 | struct type *type = value_type (toval); |
2227 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2228 | |
52ce6436 PH |
2229 | toval = ada_coerce_ref (toval); |
2230 | fromval = ada_coerce_ref (fromval); | |
2231 | ||
2232 | if (ada_is_direct_array_type (value_type (toval))) | |
2233 | toval = ada_coerce_to_simple_array (toval); | |
2234 | if (ada_is_direct_array_type (value_type (fromval))) | |
2235 | fromval = ada_coerce_to_simple_array (fromval); | |
2236 | ||
88e3b34b | 2237 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2238 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2239 | |
d2e4a39e | 2240 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2241 | && bits > 0 |
d2e4a39e | 2242 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2243 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2244 | { |
df407dfe AC |
2245 | int len = (value_bitpos (toval) |
2246 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2247 | int from_size; |
d2e4a39e AS |
2248 | char *buffer = (char *) alloca (len); |
2249 | struct value *val; | |
52ce6436 | 2250 | CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval); |
14f9c5c9 AS |
2251 | |
2252 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2253 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2254 | |
52ce6436 | 2255 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2256 | from_size = value_bitsize (fromval); |
2257 | if (from_size == 0) | |
2258 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
32c9a795 | 2259 | if (gdbarch_bits_big_endian (current_gdbarch)) |
df407dfe | 2260 | move_bits (buffer, value_bitpos (toval), |
aced2898 | 2261 | value_contents (fromval), from_size - bits, bits); |
14f9c5c9 | 2262 | else |
0fd88904 | 2263 | move_bits (buffer, value_bitpos (toval), value_contents (fromval), |
4c4b4cd2 | 2264 | 0, bits); |
52ce6436 PH |
2265 | write_memory (to_addr, buffer, len); |
2266 | if (deprecated_memory_changed_hook) | |
2267 | deprecated_memory_changed_hook (to_addr, len); | |
2268 | ||
14f9c5c9 | 2269 | val = value_copy (toval); |
0fd88904 | 2270 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2271 | TYPE_LENGTH (type)); |
04624583 | 2272 | deprecated_set_value_type (val, type); |
d2e4a39e | 2273 | |
14f9c5c9 AS |
2274 | return val; |
2275 | } | |
2276 | ||
2277 | return value_assign (toval, fromval); | |
2278 | } | |
2279 | ||
2280 | ||
52ce6436 PH |
2281 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2282 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2283 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2284 | * COMPONENT, and not the inferior's memory. The current contents | |
2285 | * of COMPONENT are ignored. */ | |
2286 | static void | |
2287 | value_assign_to_component (struct value *container, struct value *component, | |
2288 | struct value *val) | |
2289 | { | |
2290 | LONGEST offset_in_container = | |
2291 | (LONGEST) (VALUE_ADDRESS (component) + value_offset (component) | |
2292 | - VALUE_ADDRESS (container) - value_offset (container)); | |
2293 | int bit_offset_in_container = | |
2294 | value_bitpos (component) - value_bitpos (container); | |
2295 | int bits; | |
2296 | ||
2297 | val = value_cast (value_type (component), val); | |
2298 | ||
2299 | if (value_bitsize (component) == 0) | |
2300 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2301 | else | |
2302 | bits = value_bitsize (component); | |
2303 | ||
32c9a795 | 2304 | if (gdbarch_bits_big_endian (current_gdbarch)) |
52ce6436 PH |
2305 | move_bits (value_contents_writeable (container) + offset_in_container, |
2306 | value_bitpos (container) + bit_offset_in_container, | |
2307 | value_contents (val), | |
2308 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
2309 | bits); | |
2310 | else | |
2311 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2312 | value_bitpos (container) + bit_offset_in_container, | |
2313 | value_contents (val), 0, bits); | |
2314 | } | |
2315 | ||
4c4b4cd2 PH |
2316 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2317 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2318 | thereto. */ |
2319 | ||
d2e4a39e AS |
2320 | struct value * |
2321 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2322 | { |
2323 | int k; | |
d2e4a39e AS |
2324 | struct value *elt; |
2325 | struct type *elt_type; | |
14f9c5c9 AS |
2326 | |
2327 | elt = ada_coerce_to_simple_array (arr); | |
2328 | ||
df407dfe | 2329 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2330 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2331 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2332 | return value_subscript_packed (elt, arity, ind); | |
2333 | ||
2334 | for (k = 0; k < arity; k += 1) | |
2335 | { | |
2336 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2337 | error (_("too many subscripts (%d expected)"), k); |
14f9c5c9 AS |
2338 | elt = value_subscript (elt, value_pos_atr (ind[k])); |
2339 | } | |
2340 | return elt; | |
2341 | } | |
2342 | ||
2343 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2344 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2345 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2346 | |
d2e4a39e AS |
2347 | struct value * |
2348 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, | |
4c4b4cd2 | 2349 | struct value **ind) |
14f9c5c9 AS |
2350 | { |
2351 | int k; | |
2352 | ||
2353 | for (k = 0; k < arity; k += 1) | |
2354 | { | |
2355 | LONGEST lwb, upb; | |
d2e4a39e | 2356 | struct value *idx; |
14f9c5c9 AS |
2357 | |
2358 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2359 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2360 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2361 | value_copy (arr)); |
14f9c5c9 | 2362 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
4c4b4cd2 PH |
2363 | idx = value_pos_atr (ind[k]); |
2364 | if (lwb != 0) | |
89eef114 UW |
2365 | idx = value_binop (idx, value_from_longest (value_type (idx), lwb), |
2366 | BINOP_SUB); | |
2367 | ||
2368 | arr = value_ptradd (arr, idx); | |
14f9c5c9 AS |
2369 | type = TYPE_TARGET_TYPE (type); |
2370 | } | |
2371 | ||
2372 | return value_ind (arr); | |
2373 | } | |
2374 | ||
0b5d8877 PH |
2375 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
2376 | actual type of ARRAY_PTR is ignored), returns a reference to | |
2377 | the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower | |
2378 | bound of this array is LOW, as per Ada rules. */ | |
2379 | static struct value * | |
6c038f32 | 2380 | ada_value_slice_ptr (struct value *array_ptr, struct type *type, |
0b5d8877 PH |
2381 | int low, int high) |
2382 | { | |
6c038f32 | 2383 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2384 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2385 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2386 | struct type *index_type = |
2387 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2388 | low, high); |
6c038f32 | 2389 | struct type *slice_type = |
0b5d8877 PH |
2390 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
2391 | return value_from_pointer (lookup_reference_type (slice_type), base); | |
2392 | } | |
2393 | ||
2394 | ||
2395 | static struct value * | |
2396 | ada_value_slice (struct value *array, int low, int high) | |
2397 | { | |
df407dfe | 2398 | struct type *type = value_type (array); |
6c038f32 | 2399 | struct type *index_type = |
0b5d8877 | 2400 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2401 | struct type *slice_type = |
0b5d8877 | 2402 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2403 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2404 | } |
2405 | ||
14f9c5c9 AS |
2406 | /* If type is a record type in the form of a standard GNAT array |
2407 | descriptor, returns the number of dimensions for type. If arr is a | |
2408 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2409 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2410 | |
2411 | int | |
d2e4a39e | 2412 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2413 | { |
2414 | int arity; | |
2415 | ||
2416 | if (type == NULL) | |
2417 | return 0; | |
2418 | ||
2419 | type = desc_base_type (type); | |
2420 | ||
2421 | arity = 0; | |
d2e4a39e | 2422 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2423 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2424 | else |
2425 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2426 | { |
4c4b4cd2 | 2427 | arity += 1; |
61ee279c | 2428 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2429 | } |
d2e4a39e | 2430 | |
14f9c5c9 AS |
2431 | return arity; |
2432 | } | |
2433 | ||
2434 | /* If TYPE is a record type in the form of a standard GNAT array | |
2435 | descriptor or a simple array type, returns the element type for | |
2436 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2437 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2438 | |
d2e4a39e AS |
2439 | struct type * |
2440 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2441 | { |
2442 | type = desc_base_type (type); | |
2443 | ||
d2e4a39e | 2444 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2445 | { |
2446 | int k; | |
d2e4a39e | 2447 | struct type *p_array_type; |
14f9c5c9 AS |
2448 | |
2449 | p_array_type = desc_data_type (type); | |
2450 | ||
2451 | k = ada_array_arity (type); | |
2452 | if (k == 0) | |
4c4b4cd2 | 2453 | return NULL; |
d2e4a39e | 2454 | |
4c4b4cd2 | 2455 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2456 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2457 | k = nindices; |
14f9c5c9 | 2458 | p_array_type = TYPE_TARGET_TYPE (p_array_type); |
d2e4a39e | 2459 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2460 | { |
61ee279c | 2461 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2462 | k -= 1; |
2463 | } | |
14f9c5c9 AS |
2464 | return p_array_type; |
2465 | } | |
2466 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2467 | { | |
2468 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2469 | { |
2470 | type = TYPE_TARGET_TYPE (type); | |
2471 | nindices -= 1; | |
2472 | } | |
14f9c5c9 AS |
2473 | return type; |
2474 | } | |
2475 | ||
2476 | return NULL; | |
2477 | } | |
2478 | ||
4c4b4cd2 PH |
2479 | /* The type of nth index in arrays of given type (n numbering from 1). |
2480 | Does not examine memory. */ | |
14f9c5c9 | 2481 | |
d2e4a39e AS |
2482 | struct type * |
2483 | ada_index_type (struct type *type, int n) | |
14f9c5c9 | 2484 | { |
4c4b4cd2 PH |
2485 | struct type *result_type; |
2486 | ||
14f9c5c9 AS |
2487 | type = desc_base_type (type); |
2488 | ||
2489 | if (n > ada_array_arity (type)) | |
2490 | return NULL; | |
2491 | ||
4c4b4cd2 | 2492 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2493 | { |
2494 | int i; | |
2495 | ||
2496 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 PH |
2497 | type = TYPE_TARGET_TYPE (type); |
2498 | result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0)); | |
2499 | /* FIXME: The stabs type r(0,0);bound;bound in an array type | |
2500 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 JB |
2501 | perhaps stabsread.c would make more sense. */ |
2502 | if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF) | |
2503 | result_type = builtin_type_int; | |
14f9c5c9 | 2504 | |
4c4b4cd2 | 2505 | return result_type; |
14f9c5c9 | 2506 | } |
d2e4a39e | 2507 | else |
14f9c5c9 AS |
2508 | return desc_index_type (desc_bounds_type (type), n); |
2509 | } | |
2510 | ||
2511 | /* Given that arr is an array type, returns the lower bound of the | |
2512 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 PH |
2513 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
2514 | array-descriptor type. If TYPEP is non-null, *TYPEP is set to the | |
2515 | bounds type. It works for other arrays with bounds supplied by | |
2516 | run-time quantities other than discriminants. */ | |
14f9c5c9 | 2517 | |
abb68b3e | 2518 | static LONGEST |
d2e4a39e | 2519 | ada_array_bound_from_type (struct type * arr_type, int n, int which, |
4c4b4cd2 | 2520 | struct type ** typep) |
14f9c5c9 | 2521 | { |
d2e4a39e AS |
2522 | struct type *type; |
2523 | struct type *index_type_desc; | |
14f9c5c9 AS |
2524 | |
2525 | if (ada_is_packed_array_type (arr_type)) | |
2526 | arr_type = decode_packed_array_type (arr_type); | |
2527 | ||
4c4b4cd2 | 2528 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
14f9c5c9 AS |
2529 | { |
2530 | if (typep != NULL) | |
4c4b4cd2 | 2531 | *typep = builtin_type_int; |
d2e4a39e | 2532 | return (LONGEST) - which; |
14f9c5c9 AS |
2533 | } |
2534 | ||
2535 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2536 | type = TYPE_TARGET_TYPE (arr_type); | |
2537 | else | |
2538 | type = arr_type; | |
2539 | ||
2540 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
d2e4a39e | 2541 | if (index_type_desc == NULL) |
14f9c5c9 | 2542 | { |
d2e4a39e | 2543 | struct type *index_type; |
14f9c5c9 | 2544 | |
d2e4a39e | 2545 | while (n > 1) |
4c4b4cd2 PH |
2546 | { |
2547 | type = TYPE_TARGET_TYPE (type); | |
2548 | n -= 1; | |
2549 | } | |
14f9c5c9 | 2550 | |
abb68b3e | 2551 | index_type = TYPE_INDEX_TYPE (type); |
14f9c5c9 | 2552 | if (typep != NULL) |
4c4b4cd2 | 2553 | *typep = index_type; |
abb68b3e JB |
2554 | |
2555 | /* The index type is either a range type or an enumerated type. | |
2556 | For the range type, we have some macros that allow us to | |
2557 | extract the value of the low and high bounds. But they | |
2558 | do now work for enumerated types. The expressions used | |
2559 | below work for both range and enum types. */ | |
d2e4a39e | 2560 | return |
4c4b4cd2 | 2561 | (LONGEST) (which == 0 |
abb68b3e JB |
2562 | ? TYPE_FIELD_BITPOS (index_type, 0) |
2563 | : TYPE_FIELD_BITPOS (index_type, | |
2564 | TYPE_NFIELDS (index_type) - 1)); | |
14f9c5c9 | 2565 | } |
d2e4a39e | 2566 | else |
14f9c5c9 | 2567 | { |
d2e4a39e | 2568 | struct type *index_type = |
4c4b4cd2 PH |
2569 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), |
2570 | NULL, TYPE_OBJFILE (arr_type)); | |
abb68b3e | 2571 | |
14f9c5c9 | 2572 | if (typep != NULL) |
abb68b3e JB |
2573 | *typep = index_type; |
2574 | ||
d2e4a39e | 2575 | return |
4c4b4cd2 PH |
2576 | (LONGEST) (which == 0 |
2577 | ? TYPE_LOW_BOUND (index_type) | |
2578 | : TYPE_HIGH_BOUND (index_type)); | |
14f9c5c9 AS |
2579 | } |
2580 | } | |
2581 | ||
2582 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2583 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2584 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2585 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2586 | |
d2e4a39e | 2587 | struct value * |
4dc81987 | 2588 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2589 | { |
df407dfe | 2590 | struct type *arr_type = value_type (arr); |
14f9c5c9 AS |
2591 | |
2592 | if (ada_is_packed_array_type (arr_type)) | |
2593 | return ada_array_bound (decode_packed_array (arr), n, which); | |
4c4b4cd2 | 2594 | else if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2595 | { |
d2e4a39e | 2596 | struct type *type; |
14f9c5c9 AS |
2597 | LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); |
2598 | return value_from_longest (type, v); | |
2599 | } | |
2600 | else | |
2601 | return desc_one_bound (desc_bounds (arr), n, which); | |
2602 | } | |
2603 | ||
2604 | /* Given that arr is an array value, returns the length of the | |
2605 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2606 | supplied by run-time quantities other than discriminants. |
2607 | Does not work for arrays indexed by enumeration types with representation | |
2608 | clauses at the moment. */ | |
14f9c5c9 | 2609 | |
d2e4a39e AS |
2610 | struct value * |
2611 | ada_array_length (struct value *arr, int n) | |
14f9c5c9 | 2612 | { |
df407dfe | 2613 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2614 | |
2615 | if (ada_is_packed_array_type (arr_type)) | |
2616 | return ada_array_length (decode_packed_array (arr), n); | |
2617 | ||
4c4b4cd2 | 2618 | if (ada_is_simple_array_type (arr_type)) |
14f9c5c9 | 2619 | { |
d2e4a39e | 2620 | struct type *type; |
14f9c5c9 | 2621 | LONGEST v = |
4c4b4cd2 PH |
2622 | ada_array_bound_from_type (arr_type, n, 1, &type) - |
2623 | ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; | |
14f9c5c9 AS |
2624 | return value_from_longest (type, v); |
2625 | } | |
2626 | else | |
d2e4a39e | 2627 | return |
030b4912 | 2628 | value_from_longest (builtin_type_int32, |
4c4b4cd2 PH |
2629 | value_as_long (desc_one_bound (desc_bounds (arr), |
2630 | n, 1)) | |
2631 | - value_as_long (desc_one_bound (desc_bounds (arr), | |
2632 | n, 0)) + 1); | |
2633 | } | |
2634 | ||
2635 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2636 | with bounds LOW to LOW-1. */ | |
2637 | ||
2638 | static struct value * | |
2639 | empty_array (struct type *arr_type, int low) | |
2640 | { | |
6c038f32 | 2641 | struct type *index_type = |
0b5d8877 PH |
2642 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2643 | low, low - 1); | |
2644 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2645 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2646 | } |
14f9c5c9 | 2647 | \f |
d2e4a39e | 2648 | |
4c4b4cd2 | 2649 | /* Name resolution */ |
14f9c5c9 | 2650 | |
4c4b4cd2 PH |
2651 | /* The "decoded" name for the user-definable Ada operator corresponding |
2652 | to OP. */ | |
14f9c5c9 | 2653 | |
d2e4a39e | 2654 | static const char * |
4c4b4cd2 | 2655 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2656 | { |
2657 | int i; | |
2658 | ||
4c4b4cd2 | 2659 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2660 | { |
2661 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2662 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2663 | } |
323e0a4a | 2664 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2665 | } |
2666 | ||
2667 | ||
4c4b4cd2 PH |
2668 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2669 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2670 | undefined namespace) and converts operators that are | |
2671 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2672 | non-null, it provides a preferred result type [at the moment, only |
2673 | type void has any effect---causing procedures to be preferred over | |
2674 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2675 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2676 | |
4c4b4cd2 PH |
2677 | static void |
2678 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 AS |
2679 | { |
2680 | int pc; | |
2681 | pc = 0; | |
4c4b4cd2 | 2682 | resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL); |
14f9c5c9 AS |
2683 | } |
2684 | ||
4c4b4cd2 PH |
2685 | /* Resolve the operator of the subexpression beginning at |
2686 | position *POS of *EXPP. "Resolving" consists of replacing | |
2687 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2688 | with their resolutions, replacing built-in operators with | |
2689 | function calls to user-defined operators, where appropriate, and, | |
2690 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2691 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2692 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2693 | |
d2e4a39e | 2694 | static struct value * |
4c4b4cd2 | 2695 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2696 | struct type *context_type) |
14f9c5c9 AS |
2697 | { |
2698 | int pc = *pos; | |
2699 | int i; | |
4c4b4cd2 | 2700 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2701 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2702 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2703 | int nargs; /* Number of operands. */ | |
52ce6436 | 2704 | int oplen; |
14f9c5c9 AS |
2705 | |
2706 | argvec = NULL; | |
2707 | nargs = 0; | |
2708 | exp = *expp; | |
2709 | ||
52ce6436 PH |
2710 | /* Pass one: resolve operands, saving their types and updating *pos, |
2711 | if needed. */ | |
14f9c5c9 AS |
2712 | switch (op) |
2713 | { | |
4c4b4cd2 PH |
2714 | case OP_FUNCALL: |
2715 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2716 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2717 | *pos += 7; | |
4c4b4cd2 PH |
2718 | else |
2719 | { | |
2720 | *pos += 3; | |
2721 | resolve_subexp (expp, pos, 0, NULL); | |
2722 | } | |
2723 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2724 | break; |
2725 | ||
14f9c5c9 | 2726 | case UNOP_ADDR: |
4c4b4cd2 PH |
2727 | *pos += 1; |
2728 | resolve_subexp (expp, pos, 0, NULL); | |
2729 | break; | |
2730 | ||
52ce6436 PH |
2731 | case UNOP_QUAL: |
2732 | *pos += 3; | |
2733 | resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type); | |
4c4b4cd2 PH |
2734 | break; |
2735 | ||
52ce6436 | 2736 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2737 | case OP_ATR_SIZE: |
2738 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2739 | case OP_ATR_FIRST: |
2740 | case OP_ATR_LAST: | |
2741 | case OP_ATR_LENGTH: | |
2742 | case OP_ATR_POS: | |
2743 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2744 | case OP_ATR_MIN: |
2745 | case OP_ATR_MAX: | |
52ce6436 PH |
2746 | case TERNOP_IN_RANGE: |
2747 | case BINOP_IN_BOUNDS: | |
2748 | case UNOP_IN_RANGE: | |
2749 | case OP_AGGREGATE: | |
2750 | case OP_OTHERS: | |
2751 | case OP_CHOICES: | |
2752 | case OP_POSITIONAL: | |
2753 | case OP_DISCRETE_RANGE: | |
2754 | case OP_NAME: | |
2755 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2756 | *pos += oplen; | |
14f9c5c9 AS |
2757 | break; |
2758 | ||
2759 | case BINOP_ASSIGN: | |
2760 | { | |
4c4b4cd2 PH |
2761 | struct value *arg1; |
2762 | ||
2763 | *pos += 1; | |
2764 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2765 | if (arg1 == NULL) | |
2766 | resolve_subexp (expp, pos, 1, NULL); | |
2767 | else | |
df407dfe | 2768 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2769 | break; |
14f9c5c9 AS |
2770 | } |
2771 | ||
4c4b4cd2 | 2772 | case UNOP_CAST: |
4c4b4cd2 PH |
2773 | *pos += 3; |
2774 | nargs = 1; | |
2775 | break; | |
14f9c5c9 | 2776 | |
4c4b4cd2 PH |
2777 | case BINOP_ADD: |
2778 | case BINOP_SUB: | |
2779 | case BINOP_MUL: | |
2780 | case BINOP_DIV: | |
2781 | case BINOP_REM: | |
2782 | case BINOP_MOD: | |
2783 | case BINOP_EXP: | |
2784 | case BINOP_CONCAT: | |
2785 | case BINOP_LOGICAL_AND: | |
2786 | case BINOP_LOGICAL_OR: | |
2787 | case BINOP_BITWISE_AND: | |
2788 | case BINOP_BITWISE_IOR: | |
2789 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2790 | |
4c4b4cd2 PH |
2791 | case BINOP_EQUAL: |
2792 | case BINOP_NOTEQUAL: | |
2793 | case BINOP_LESS: | |
2794 | case BINOP_GTR: | |
2795 | case BINOP_LEQ: | |
2796 | case BINOP_GEQ: | |
14f9c5c9 | 2797 | |
4c4b4cd2 PH |
2798 | case BINOP_REPEAT: |
2799 | case BINOP_SUBSCRIPT: | |
2800 | case BINOP_COMMA: | |
40c8aaa9 JB |
2801 | *pos += 1; |
2802 | nargs = 2; | |
2803 | break; | |
14f9c5c9 | 2804 | |
4c4b4cd2 PH |
2805 | case UNOP_NEG: |
2806 | case UNOP_PLUS: | |
2807 | case UNOP_LOGICAL_NOT: | |
2808 | case UNOP_ABS: | |
2809 | case UNOP_IND: | |
2810 | *pos += 1; | |
2811 | nargs = 1; | |
2812 | break; | |
14f9c5c9 | 2813 | |
4c4b4cd2 PH |
2814 | case OP_LONG: |
2815 | case OP_DOUBLE: | |
2816 | case OP_VAR_VALUE: | |
2817 | *pos += 4; | |
2818 | break; | |
14f9c5c9 | 2819 | |
4c4b4cd2 PH |
2820 | case OP_TYPE: |
2821 | case OP_BOOL: | |
2822 | case OP_LAST: | |
4c4b4cd2 PH |
2823 | case OP_INTERNALVAR: |
2824 | *pos += 3; | |
2825 | break; | |
14f9c5c9 | 2826 | |
4c4b4cd2 PH |
2827 | case UNOP_MEMVAL: |
2828 | *pos += 3; | |
2829 | nargs = 1; | |
2830 | break; | |
2831 | ||
67f3407f DJ |
2832 | case OP_REGISTER: |
2833 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2834 | break; | |
2835 | ||
4c4b4cd2 PH |
2836 | case STRUCTOP_STRUCT: |
2837 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2838 | nargs = 1; | |
2839 | break; | |
2840 | ||
4c4b4cd2 | 2841 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2842 | *pos += 1; |
2843 | nargs = 3; | |
2844 | break; | |
2845 | ||
52ce6436 | 2846 | case OP_STRING: |
14f9c5c9 | 2847 | break; |
4c4b4cd2 PH |
2848 | |
2849 | default: | |
323e0a4a | 2850 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2851 | } |
2852 | ||
76a01679 | 2853 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2854 | for (i = 0; i < nargs; i += 1) |
2855 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2856 | argvec[i] = NULL; | |
2857 | exp = *expp; | |
2858 | ||
2859 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2860 | switch (op) |
2861 | { | |
2862 | default: | |
2863 | break; | |
2864 | ||
14f9c5c9 | 2865 | case OP_VAR_VALUE: |
4c4b4cd2 | 2866 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2867 | { |
2868 | struct ada_symbol_info *candidates; | |
2869 | int n_candidates; | |
2870 | ||
2871 | n_candidates = | |
2872 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2873 | (exp->elts[pc + 2].symbol), | |
2874 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2875 | &candidates); | |
2876 | ||
2877 | if (n_candidates > 1) | |
2878 | { | |
2879 | /* Types tend to get re-introduced locally, so if there | |
2880 | are any local symbols that are not types, first filter | |
2881 | out all types. */ | |
2882 | int j; | |
2883 | for (j = 0; j < n_candidates; j += 1) | |
2884 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2885 | { | |
2886 | case LOC_REGISTER: | |
2887 | case LOC_ARG: | |
2888 | case LOC_REF_ARG: | |
76a01679 JB |
2889 | case LOC_REGPARM_ADDR: |
2890 | case LOC_LOCAL: | |
76a01679 | 2891 | case LOC_COMPUTED: |
76a01679 JB |
2892 | goto FoundNonType; |
2893 | default: | |
2894 | break; | |
2895 | } | |
2896 | FoundNonType: | |
2897 | if (j < n_candidates) | |
2898 | { | |
2899 | j = 0; | |
2900 | while (j < n_candidates) | |
2901 | { | |
2902 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2903 | { | |
2904 | candidates[j] = candidates[n_candidates - 1]; | |
2905 | n_candidates -= 1; | |
2906 | } | |
2907 | else | |
2908 | j += 1; | |
2909 | } | |
2910 | } | |
2911 | } | |
2912 | ||
2913 | if (n_candidates == 0) | |
323e0a4a | 2914 | error (_("No definition found for %s"), |
76a01679 JB |
2915 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2916 | else if (n_candidates == 1) | |
2917 | i = 0; | |
2918 | else if (deprocedure_p | |
2919 | && !is_nonfunction (candidates, n_candidates)) | |
2920 | { | |
06d5cf63 JB |
2921 | i = ada_resolve_function |
2922 | (candidates, n_candidates, NULL, 0, | |
2923 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2924 | context_type); | |
76a01679 | 2925 | if (i < 0) |
323e0a4a | 2926 | error (_("Could not find a match for %s"), |
76a01679 JB |
2927 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2928 | } | |
2929 | else | |
2930 | { | |
323e0a4a | 2931 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2932 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2933 | user_select_syms (candidates, n_candidates, 1); | |
2934 | i = 0; | |
2935 | } | |
2936 | ||
2937 | exp->elts[pc + 1].block = candidates[i].block; | |
2938 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2939 | if (innermost_block == NULL |
2940 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2941 | innermost_block = candidates[i].block; |
2942 | } | |
2943 | ||
2944 | if (deprocedure_p | |
2945 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2946 | == TYPE_CODE_FUNC)) | |
2947 | { | |
2948 | replace_operator_with_call (expp, pc, 0, 0, | |
2949 | exp->elts[pc + 2].symbol, | |
2950 | exp->elts[pc + 1].block); | |
2951 | exp = *expp; | |
2952 | } | |
14f9c5c9 AS |
2953 | break; |
2954 | ||
2955 | case OP_FUNCALL: | |
2956 | { | |
4c4b4cd2 | 2957 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2958 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2959 | { |
2960 | struct ada_symbol_info *candidates; | |
2961 | int n_candidates; | |
2962 | ||
2963 | n_candidates = | |
76a01679 JB |
2964 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2965 | (exp->elts[pc + 5].symbol), | |
2966 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2967 | &candidates); | |
4c4b4cd2 PH |
2968 | if (n_candidates == 1) |
2969 | i = 0; | |
2970 | else | |
2971 | { | |
06d5cf63 JB |
2972 | i = ada_resolve_function |
2973 | (candidates, n_candidates, | |
2974 | argvec, nargs, | |
2975 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2976 | context_type); | |
4c4b4cd2 | 2977 | if (i < 0) |
323e0a4a | 2978 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2979 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2980 | } | |
2981 | ||
2982 | exp->elts[pc + 4].block = candidates[i].block; | |
2983 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2984 | if (innermost_block == NULL |
2985 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2986 | innermost_block = candidates[i].block; |
2987 | } | |
14f9c5c9 AS |
2988 | } |
2989 | break; | |
2990 | case BINOP_ADD: | |
2991 | case BINOP_SUB: | |
2992 | case BINOP_MUL: | |
2993 | case BINOP_DIV: | |
2994 | case BINOP_REM: | |
2995 | case BINOP_MOD: | |
2996 | case BINOP_CONCAT: | |
2997 | case BINOP_BITWISE_AND: | |
2998 | case BINOP_BITWISE_IOR: | |
2999 | case BINOP_BITWISE_XOR: | |
3000 | case BINOP_EQUAL: | |
3001 | case BINOP_NOTEQUAL: | |
3002 | case BINOP_LESS: | |
3003 | case BINOP_GTR: | |
3004 | case BINOP_LEQ: | |
3005 | case BINOP_GEQ: | |
3006 | case BINOP_EXP: | |
3007 | case UNOP_NEG: | |
3008 | case UNOP_PLUS: | |
3009 | case UNOP_LOGICAL_NOT: | |
3010 | case UNOP_ABS: | |
3011 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3012 | { |
3013 | struct ada_symbol_info *candidates; | |
3014 | int n_candidates; | |
3015 | ||
3016 | n_candidates = | |
3017 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3018 | (struct block *) NULL, VAR_DOMAIN, | |
3019 | &candidates); | |
3020 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3021 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3022 | if (i < 0) |
3023 | break; | |
3024 | ||
76a01679 JB |
3025 | replace_operator_with_call (expp, pc, nargs, 1, |
3026 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3027 | exp = *expp; |
3028 | } | |
14f9c5c9 | 3029 | break; |
4c4b4cd2 PH |
3030 | |
3031 | case OP_TYPE: | |
b3dbf008 | 3032 | case OP_REGISTER: |
4c4b4cd2 | 3033 | return NULL; |
14f9c5c9 AS |
3034 | } |
3035 | ||
3036 | *pos = pc; | |
3037 | return evaluate_subexp_type (exp, pos); | |
3038 | } | |
3039 | ||
3040 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 PH |
3041 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
3042 | a non-pointer. A type of 'void' (which is never a valid expression type) | |
3043 | by convention matches anything. */ | |
14f9c5c9 | 3044 | /* The term "match" here is rather loose. The match is heuristic and |
4c4b4cd2 | 3045 | liberal. FIXME: TOO liberal, in fact. */ |
14f9c5c9 AS |
3046 | |
3047 | static int | |
4dc81987 | 3048 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3049 | { |
61ee279c PH |
3050 | ftype = ada_check_typedef (ftype); |
3051 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3052 | |
3053 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3054 | ftype = TYPE_TARGET_TYPE (ftype); | |
3055 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3056 | atype = TYPE_TARGET_TYPE (atype); | |
3057 | ||
d2e4a39e | 3058 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID |
14f9c5c9 AS |
3059 | || TYPE_CODE (atype) == TYPE_CODE_VOID) |
3060 | return 1; | |
3061 | ||
d2e4a39e | 3062 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3063 | { |
3064 | default: | |
3065 | return 1; | |
3066 | case TYPE_CODE_PTR: | |
3067 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3068 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3069 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3070 | else |
1265e4aa JB |
3071 | return (may_deref |
3072 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3073 | case TYPE_CODE_INT: |
3074 | case TYPE_CODE_ENUM: | |
3075 | case TYPE_CODE_RANGE: | |
3076 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3077 | { |
3078 | case TYPE_CODE_INT: | |
3079 | case TYPE_CODE_ENUM: | |
3080 | case TYPE_CODE_RANGE: | |
3081 | return 1; | |
3082 | default: | |
3083 | return 0; | |
3084 | } | |
14f9c5c9 AS |
3085 | |
3086 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3087 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3088 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3089 | |
3090 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3091 | if (ada_is_array_descriptor_type (ftype)) |
3092 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3093 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3094 | else |
4c4b4cd2 PH |
3095 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3096 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3097 | |
3098 | case TYPE_CODE_UNION: | |
3099 | case TYPE_CODE_FLT: | |
3100 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3101 | } | |
3102 | } | |
3103 | ||
3104 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3105 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3106 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3107 | argument function. */ |
14f9c5c9 AS |
3108 | |
3109 | static int | |
d2e4a39e | 3110 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3111 | { |
3112 | int i; | |
d2e4a39e | 3113 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3114 | |
1265e4aa JB |
3115 | if (SYMBOL_CLASS (func) == LOC_CONST |
3116 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3117 | return (n_actuals == 0); |
3118 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3119 | return 0; | |
3120 | ||
3121 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3122 | return 0; | |
3123 | ||
3124 | for (i = 0; i < n_actuals; i += 1) | |
3125 | { | |
4c4b4cd2 | 3126 | if (actuals[i] == NULL) |
76a01679 JB |
3127 | return 0; |
3128 | else | |
3129 | { | |
61ee279c | 3130 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3131 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3132 | |
76a01679 JB |
3133 | if (!ada_type_match (ftype, atype, 1)) |
3134 | return 0; | |
3135 | } | |
14f9c5c9 AS |
3136 | } |
3137 | return 1; | |
3138 | } | |
3139 | ||
3140 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3141 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3142 | FUNC_TYPE is not a valid function type with a non-null return type | |
3143 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3144 | ||
3145 | static int | |
d2e4a39e | 3146 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3147 | { |
d2e4a39e | 3148 | struct type *return_type; |
14f9c5c9 AS |
3149 | |
3150 | if (func_type == NULL) | |
3151 | return 1; | |
3152 | ||
4c4b4cd2 PH |
3153 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3154 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3155 | else | |
3156 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3157 | if (return_type == NULL) |
3158 | return 1; | |
3159 | ||
4c4b4cd2 | 3160 | context_type = base_type (context_type); |
14f9c5c9 AS |
3161 | |
3162 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3163 | return context_type == NULL || return_type == context_type; | |
3164 | else if (context_type == NULL) | |
3165 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3166 | else | |
3167 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3168 | } | |
3169 | ||
3170 | ||
4c4b4cd2 | 3171 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3172 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3173 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3174 | that returns that type, then eliminate matches that don't. If | |
3175 | CONTEXT_TYPE is void and there is at least one match that does not | |
3176 | return void, eliminate all matches that do. | |
3177 | ||
14f9c5c9 AS |
3178 | Asks the user if there is more than one match remaining. Returns -1 |
3179 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3180 | solely for messages. May re-arrange and modify SYMS in |
3181 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3182 | |
4c4b4cd2 PH |
3183 | static int |
3184 | ada_resolve_function (struct ada_symbol_info syms[], | |
3185 | int nsyms, struct value **args, int nargs, | |
3186 | const char *name, struct type *context_type) | |
14f9c5c9 AS |
3187 | { |
3188 | int k; | |
4c4b4cd2 | 3189 | int m; /* Number of hits */ |
d2e4a39e AS |
3190 | struct type *fallback; |
3191 | struct type *return_type; | |
14f9c5c9 AS |
3192 | |
3193 | return_type = context_type; | |
3194 | if (context_type == NULL) | |
3195 | fallback = builtin_type_void; | |
3196 | else | |
3197 | fallback = NULL; | |
3198 | ||
d2e4a39e | 3199 | m = 0; |
14f9c5c9 AS |
3200 | while (1) |
3201 | { | |
3202 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3203 | { |
61ee279c | 3204 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3205 | |
3206 | if (ada_args_match (syms[k].sym, args, nargs) | |
3207 | && return_match (type, return_type)) | |
3208 | { | |
3209 | syms[m] = syms[k]; | |
3210 | m += 1; | |
3211 | } | |
3212 | } | |
14f9c5c9 | 3213 | if (m > 0 || return_type == fallback) |
4c4b4cd2 | 3214 | break; |
14f9c5c9 | 3215 | else |
4c4b4cd2 | 3216 | return_type = fallback; |
14f9c5c9 AS |
3217 | } |
3218 | ||
3219 | if (m == 0) | |
3220 | return -1; | |
3221 | else if (m > 1) | |
3222 | { | |
323e0a4a | 3223 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3224 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3225 | return 0; |
3226 | } | |
3227 | return 0; | |
3228 | } | |
3229 | ||
4c4b4cd2 PH |
3230 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3231 | in a listing of choices during disambiguation (see sort_choices, below). | |
3232 | The idea is that overloadings of a subprogram name from the | |
3233 | same package should sort in their source order. We settle for ordering | |
3234 | such symbols by their trailing number (__N or $N). */ | |
3235 | ||
14f9c5c9 | 3236 | static int |
4c4b4cd2 | 3237 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3238 | { |
3239 | if (N1 == NULL) | |
3240 | return 0; | |
3241 | else if (N0 == NULL) | |
3242 | return 1; | |
3243 | else | |
3244 | { | |
3245 | int k0, k1; | |
d2e4a39e | 3246 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3247 | ; |
d2e4a39e | 3248 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3249 | ; |
d2e4a39e | 3250 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3251 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3252 | { | |
3253 | int n0, n1; | |
3254 | n0 = k0; | |
3255 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3256 | n0 -= 1; | |
3257 | n1 = k1; | |
3258 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3259 | n1 -= 1; | |
3260 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3261 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3262 | } | |
14f9c5c9 AS |
3263 | return (strcmp (N0, N1) < 0); |
3264 | } | |
3265 | } | |
d2e4a39e | 3266 | |
4c4b4cd2 PH |
3267 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3268 | encoded names. */ | |
3269 | ||
d2e4a39e | 3270 | static void |
4c4b4cd2 | 3271 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3272 | { |
4c4b4cd2 | 3273 | int i; |
d2e4a39e | 3274 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3275 | { |
4c4b4cd2 | 3276 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3277 | int j; |
3278 | ||
d2e4a39e | 3279 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3280 | { |
3281 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3282 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3283 | break; | |
3284 | syms[j + 1] = syms[j]; | |
3285 | } | |
d2e4a39e | 3286 | syms[j + 1] = sym; |
14f9c5c9 AS |
3287 | } |
3288 | } | |
3289 | ||
4c4b4cd2 PH |
3290 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3291 | by asking the user (if necessary), returning the number selected, | |
3292 | and setting the first elements of SYMS items. Error if no symbols | |
3293 | selected. */ | |
14f9c5c9 AS |
3294 | |
3295 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3296 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3297 | |
3298 | int | |
4c4b4cd2 | 3299 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3300 | { |
3301 | int i; | |
d2e4a39e | 3302 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3303 | int n_chosen; |
3304 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3305 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3306 | |
3307 | if (max_results < 1) | |
323e0a4a | 3308 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3309 | if (nsyms <= 1) |
3310 | return nsyms; | |
3311 | ||
717d2f5a JB |
3312 | if (select_mode == multiple_symbols_cancel) |
3313 | error (_("\ | |
3314 | canceled because the command is ambiguous\n\ | |
3315 | See set/show multiple-symbol.")); | |
3316 | ||
3317 | /* If select_mode is "all", then return all possible symbols. | |
3318 | Only do that if more than one symbol can be selected, of course. | |
3319 | Otherwise, display the menu as usual. */ | |
3320 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3321 | return nsyms; | |
3322 | ||
323e0a4a | 3323 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3324 | if (max_results > 1) |
323e0a4a | 3325 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3326 | |
4c4b4cd2 | 3327 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3328 | |
3329 | for (i = 0; i < nsyms; i += 1) | |
3330 | { | |
4c4b4cd2 PH |
3331 | if (syms[i].sym == NULL) |
3332 | continue; | |
3333 | ||
3334 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3335 | { | |
76a01679 JB |
3336 | struct symtab_and_line sal = |
3337 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3338 | if (sal.symtab == NULL) |
3339 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3340 | i + first_choice, | |
3341 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3342 | sal.line); | |
3343 | else | |
3344 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3345 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3346 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3347 | continue; |
3348 | } | |
d2e4a39e | 3349 | else |
4c4b4cd2 PH |
3350 | { |
3351 | int is_enumeral = | |
3352 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3353 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3354 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
3355 | struct symtab *symtab = symtab_for_sym (syms[i].sym); | |
3356 | ||
3357 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3358 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3359 | i + first_choice, |
3360 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3361 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3362 | else if (is_enumeral |
3363 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3364 | { |
a3f17187 | 3365 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3366 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3367 | gdb_stdout, -1, 0); | |
323e0a4a | 3368 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3369 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3370 | } | |
3371 | else if (symtab != NULL) | |
3372 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3373 | ? _("[%d] %s in %s (enumeral)\n") |
3374 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3375 | i + first_choice, |
3376 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3377 | symtab->filename); | |
3378 | else | |
3379 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3380 | ? _("[%d] %s (enumeral)\n") |
3381 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3382 | i + first_choice, |
3383 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3384 | } | |
14f9c5c9 | 3385 | } |
d2e4a39e | 3386 | |
14f9c5c9 | 3387 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3388 | "overload-choice"); |
14f9c5c9 AS |
3389 | |
3390 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3391 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3392 | |
3393 | return n_chosen; | |
3394 | } | |
3395 | ||
3396 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3397 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3398 | order in CHOICES[0 .. N-1], and return N. |
3399 | ||
3400 | The user types choices as a sequence of numbers on one line | |
3401 | separated by blanks, encoding them as follows: | |
3402 | ||
4c4b4cd2 | 3403 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3404 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3405 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3406 | ||
4c4b4cd2 | 3407 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3408 | |
3409 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3410 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3411 | |
3412 | int | |
d2e4a39e | 3413 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3414 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3415 | { |
d2e4a39e | 3416 | char *args; |
0bcd0149 | 3417 | char *prompt; |
14f9c5c9 AS |
3418 | int n_chosen; |
3419 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3420 | |
14f9c5c9 AS |
3421 | prompt = getenv ("PS2"); |
3422 | if (prompt == NULL) | |
0bcd0149 | 3423 | prompt = "> "; |
14f9c5c9 | 3424 | |
0bcd0149 | 3425 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3426 | |
14f9c5c9 | 3427 | if (args == NULL) |
323e0a4a | 3428 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3429 | |
3430 | n_chosen = 0; | |
76a01679 | 3431 | |
4c4b4cd2 PH |
3432 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3433 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3434 | while (1) |
3435 | { | |
d2e4a39e | 3436 | char *args2; |
14f9c5c9 AS |
3437 | int choice, j; |
3438 | ||
3439 | while (isspace (*args)) | |
4c4b4cd2 | 3440 | args += 1; |
14f9c5c9 | 3441 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3442 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3443 | else if (*args == '\0') |
4c4b4cd2 | 3444 | break; |
14f9c5c9 AS |
3445 | |
3446 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3447 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3448 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3449 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3450 | args = args2; |
3451 | ||
d2e4a39e | 3452 | if (choice == 0) |
323e0a4a | 3453 | error (_("cancelled")); |
14f9c5c9 AS |
3454 | |
3455 | if (choice < first_choice) | |
4c4b4cd2 PH |
3456 | { |
3457 | n_chosen = n_choices; | |
3458 | for (j = 0; j < n_choices; j += 1) | |
3459 | choices[j] = j; | |
3460 | break; | |
3461 | } | |
14f9c5c9 AS |
3462 | choice -= first_choice; |
3463 | ||
d2e4a39e | 3464 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3465 | { |
3466 | } | |
14f9c5c9 AS |
3467 | |
3468 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3469 | { |
3470 | int k; | |
3471 | for (k = n_chosen - 1; k > j; k -= 1) | |
3472 | choices[k + 1] = choices[k]; | |
3473 | choices[j + 1] = choice; | |
3474 | n_chosen += 1; | |
3475 | } | |
14f9c5c9 AS |
3476 | } |
3477 | ||
3478 | if (n_chosen > max_results) | |
323e0a4a | 3479 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3480 | |
14f9c5c9 AS |
3481 | return n_chosen; |
3482 | } | |
3483 | ||
4c4b4cd2 PH |
3484 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3485 | on the function identified by SYM and BLOCK, and taking NARGS | |
3486 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3487 | |
3488 | static void | |
d2e4a39e | 3489 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3490 | int oplen, struct symbol *sym, |
3491 | struct block *block) | |
14f9c5c9 AS |
3492 | { |
3493 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3494 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3495 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3496 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3497 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3498 | struct expression *exp = *expp; |
14f9c5c9 AS |
3499 | |
3500 | newexp->nelts = exp->nelts + 7 - oplen; | |
3501 | newexp->language_defn = exp->language_defn; | |
3502 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3503 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3504 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3505 | |
3506 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3507 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3508 | ||
3509 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3510 | newexp->elts[pc + 4].block = block; | |
3511 | newexp->elts[pc + 5].symbol = sym; | |
3512 | ||
3513 | *expp = newexp; | |
aacb1f0a | 3514 | xfree (exp); |
d2e4a39e | 3515 | } |
14f9c5c9 AS |
3516 | |
3517 | /* Type-class predicates */ | |
3518 | ||
4c4b4cd2 PH |
3519 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3520 | or FLOAT). */ | |
14f9c5c9 AS |
3521 | |
3522 | static int | |
d2e4a39e | 3523 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3524 | { |
3525 | if (type == NULL) | |
3526 | return 0; | |
d2e4a39e AS |
3527 | else |
3528 | { | |
3529 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3530 | { |
3531 | case TYPE_CODE_INT: | |
3532 | case TYPE_CODE_FLT: | |
3533 | return 1; | |
3534 | case TYPE_CODE_RANGE: | |
3535 | return (type == TYPE_TARGET_TYPE (type) | |
3536 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3537 | default: | |
3538 | return 0; | |
3539 | } | |
d2e4a39e | 3540 | } |
14f9c5c9 AS |
3541 | } |
3542 | ||
4c4b4cd2 | 3543 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3544 | |
3545 | static int | |
d2e4a39e | 3546 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3547 | { |
3548 | if (type == NULL) | |
3549 | return 0; | |
d2e4a39e AS |
3550 | else |
3551 | { | |
3552 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3553 | { |
3554 | case TYPE_CODE_INT: | |
3555 | return 1; | |
3556 | case TYPE_CODE_RANGE: | |
3557 | return (type == TYPE_TARGET_TYPE (type) | |
3558 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3559 | default: | |
3560 | return 0; | |
3561 | } | |
d2e4a39e | 3562 | } |
14f9c5c9 AS |
3563 | } |
3564 | ||
4c4b4cd2 | 3565 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3566 | |
3567 | static int | |
d2e4a39e | 3568 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3569 | { |
3570 | if (type == NULL) | |
3571 | return 0; | |
d2e4a39e AS |
3572 | else |
3573 | { | |
3574 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3575 | { |
3576 | case TYPE_CODE_INT: | |
3577 | case TYPE_CODE_RANGE: | |
3578 | case TYPE_CODE_ENUM: | |
3579 | case TYPE_CODE_FLT: | |
3580 | return 1; | |
3581 | default: | |
3582 | return 0; | |
3583 | } | |
d2e4a39e | 3584 | } |
14f9c5c9 AS |
3585 | } |
3586 | ||
4c4b4cd2 | 3587 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3588 | |
3589 | static int | |
d2e4a39e | 3590 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3591 | { |
3592 | if (type == NULL) | |
3593 | return 0; | |
d2e4a39e AS |
3594 | else |
3595 | { | |
3596 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3597 | { |
3598 | case TYPE_CODE_INT: | |
3599 | case TYPE_CODE_RANGE: | |
3600 | case TYPE_CODE_ENUM: | |
3601 | return 1; | |
3602 | default: | |
3603 | return 0; | |
3604 | } | |
d2e4a39e | 3605 | } |
14f9c5c9 AS |
3606 | } |
3607 | ||
4c4b4cd2 PH |
3608 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3609 | a user-defined function. Errs on the side of pre-defined operators | |
3610 | (i.e., result 0). */ | |
14f9c5c9 AS |
3611 | |
3612 | static int | |
d2e4a39e | 3613 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3614 | { |
76a01679 | 3615 | struct type *type0 = |
df407dfe | 3616 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3617 | struct type *type1 = |
df407dfe | 3618 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3619 | |
4c4b4cd2 PH |
3620 | if (type0 == NULL) |
3621 | return 0; | |
3622 | ||
14f9c5c9 AS |
3623 | switch (op) |
3624 | { | |
3625 | default: | |
3626 | return 0; | |
3627 | ||
3628 | case BINOP_ADD: | |
3629 | case BINOP_SUB: | |
3630 | case BINOP_MUL: | |
3631 | case BINOP_DIV: | |
d2e4a39e | 3632 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3633 | |
3634 | case BINOP_REM: | |
3635 | case BINOP_MOD: | |
3636 | case BINOP_BITWISE_AND: | |
3637 | case BINOP_BITWISE_IOR: | |
3638 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3639 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3640 | |
3641 | case BINOP_EQUAL: | |
3642 | case BINOP_NOTEQUAL: | |
3643 | case BINOP_LESS: | |
3644 | case BINOP_GTR: | |
3645 | case BINOP_LEQ: | |
3646 | case BINOP_GEQ: | |
d2e4a39e | 3647 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3648 | |
3649 | case BINOP_CONCAT: | |
ee90b9ab | 3650 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3651 | |
3652 | case BINOP_EXP: | |
d2e4a39e | 3653 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3654 | |
3655 | case UNOP_NEG: | |
3656 | case UNOP_PLUS: | |
3657 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3658 | case UNOP_ABS: |
3659 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3660 | |
3661 | } | |
3662 | } | |
3663 | \f | |
4c4b4cd2 | 3664 | /* Renaming */ |
14f9c5c9 | 3665 | |
aeb5907d JB |
3666 | /* NOTES: |
3667 | ||
3668 | 1. In the following, we assume that a renaming type's name may | |
3669 | have an ___XD suffix. It would be nice if this went away at some | |
3670 | point. | |
3671 | 2. We handle both the (old) purely type-based representation of | |
3672 | renamings and the (new) variable-based encoding. At some point, | |
3673 | it is devoutly to be hoped that the former goes away | |
3674 | (FIXME: hilfinger-2007-07-09). | |
3675 | 3. Subprogram renamings are not implemented, although the XRS | |
3676 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3677 | ||
3678 | /* If SYM encodes a renaming, | |
3679 | ||
3680 | <renaming> renames <renamed entity>, | |
3681 | ||
3682 | sets *LEN to the length of the renamed entity's name, | |
3683 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3684 | the string describing the subcomponent selected from the renamed | |
3685 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3686 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3687 | are undefined). Otherwise, returns a value indicating the category | |
3688 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3689 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3690 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3691 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3692 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3693 | may be NULL, in which case they are not assigned. | |
3694 | ||
3695 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3696 | ||
3697 | enum ada_renaming_category | |
3698 | ada_parse_renaming (struct symbol *sym, | |
3699 | const char **renamed_entity, int *len, | |
3700 | const char **renaming_expr) | |
3701 | { | |
3702 | enum ada_renaming_category kind; | |
3703 | const char *info; | |
3704 | const char *suffix; | |
3705 | ||
3706 | if (sym == NULL) | |
3707 | return ADA_NOT_RENAMING; | |
3708 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3709 | { |
aeb5907d JB |
3710 | default: |
3711 | return ADA_NOT_RENAMING; | |
3712 | case LOC_TYPEDEF: | |
3713 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3714 | renamed_entity, len, renaming_expr); | |
3715 | case LOC_LOCAL: | |
3716 | case LOC_STATIC: | |
3717 | case LOC_COMPUTED: | |
3718 | case LOC_OPTIMIZED_OUT: | |
3719 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3720 | if (info == NULL) | |
3721 | return ADA_NOT_RENAMING; | |
3722 | switch (info[5]) | |
3723 | { | |
3724 | case '_': | |
3725 | kind = ADA_OBJECT_RENAMING; | |
3726 | info += 6; | |
3727 | break; | |
3728 | case 'E': | |
3729 | kind = ADA_EXCEPTION_RENAMING; | |
3730 | info += 7; | |
3731 | break; | |
3732 | case 'P': | |
3733 | kind = ADA_PACKAGE_RENAMING; | |
3734 | info += 7; | |
3735 | break; | |
3736 | case 'S': | |
3737 | kind = ADA_SUBPROGRAM_RENAMING; | |
3738 | info += 7; | |
3739 | break; | |
3740 | default: | |
3741 | return ADA_NOT_RENAMING; | |
3742 | } | |
14f9c5c9 | 3743 | } |
4c4b4cd2 | 3744 | |
aeb5907d JB |
3745 | if (renamed_entity != NULL) |
3746 | *renamed_entity = info; | |
3747 | suffix = strstr (info, "___XE"); | |
3748 | if (suffix == NULL || suffix == info) | |
3749 | return ADA_NOT_RENAMING; | |
3750 | if (len != NULL) | |
3751 | *len = strlen (info) - strlen (suffix); | |
3752 | suffix += 5; | |
3753 | if (renaming_expr != NULL) | |
3754 | *renaming_expr = suffix; | |
3755 | return kind; | |
3756 | } | |
3757 | ||
3758 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3759 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3760 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3761 | ADA_NOT_RENAMING otherwise. */ | |
3762 | static enum ada_renaming_category | |
3763 | parse_old_style_renaming (struct type *type, | |
3764 | const char **renamed_entity, int *len, | |
3765 | const char **renaming_expr) | |
3766 | { | |
3767 | enum ada_renaming_category kind; | |
3768 | const char *name; | |
3769 | const char *info; | |
3770 | const char *suffix; | |
14f9c5c9 | 3771 | |
aeb5907d JB |
3772 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3773 | || TYPE_NFIELDS (type) != 1) | |
3774 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3775 | |
aeb5907d JB |
3776 | name = type_name_no_tag (type); |
3777 | if (name == NULL) | |
3778 | return ADA_NOT_RENAMING; | |
3779 | ||
3780 | name = strstr (name, "___XR"); | |
3781 | if (name == NULL) | |
3782 | return ADA_NOT_RENAMING; | |
3783 | switch (name[5]) | |
3784 | { | |
3785 | case '\0': | |
3786 | case '_': | |
3787 | kind = ADA_OBJECT_RENAMING; | |
3788 | break; | |
3789 | case 'E': | |
3790 | kind = ADA_EXCEPTION_RENAMING; | |
3791 | break; | |
3792 | case 'P': | |
3793 | kind = ADA_PACKAGE_RENAMING; | |
3794 | break; | |
3795 | case 'S': | |
3796 | kind = ADA_SUBPROGRAM_RENAMING; | |
3797 | break; | |
3798 | default: | |
3799 | return ADA_NOT_RENAMING; | |
3800 | } | |
14f9c5c9 | 3801 | |
aeb5907d JB |
3802 | info = TYPE_FIELD_NAME (type, 0); |
3803 | if (info == NULL) | |
3804 | return ADA_NOT_RENAMING; | |
3805 | if (renamed_entity != NULL) | |
3806 | *renamed_entity = info; | |
3807 | suffix = strstr (info, "___XE"); | |
3808 | if (renaming_expr != NULL) | |
3809 | *renaming_expr = suffix + 5; | |
3810 | if (suffix == NULL || suffix == info) | |
3811 | return ADA_NOT_RENAMING; | |
3812 | if (len != NULL) | |
3813 | *len = suffix - info; | |
3814 | return kind; | |
3815 | } | |
52ce6436 | 3816 | |
14f9c5c9 | 3817 | \f |
d2e4a39e | 3818 | |
4c4b4cd2 | 3819 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3820 | |
4c4b4cd2 PH |
3821 | /* Return an lvalue containing the value VAL. This is the identity on |
3822 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3823 | on the stack, using and updating *SP as the stack pointer, and | |
3824 | returning an lvalue whose VALUE_ADDRESS points to the copy. */ | |
14f9c5c9 | 3825 | |
d2e4a39e | 3826 | static struct value * |
4c4b4cd2 | 3827 | ensure_lval (struct value *val, CORE_ADDR *sp) |
14f9c5c9 | 3828 | { |
c3e5cd34 PH |
3829 | if (! VALUE_LVAL (val)) |
3830 | { | |
df407dfe | 3831 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3832 | |
3833 | /* The following is taken from the structure-return code in | |
3834 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3835 | indicated. */ | |
4d1e7dd1 | 3836 | if (gdbarch_inner_than (current_gdbarch, 1, 2)) |
c3e5cd34 PH |
3837 | { |
3838 | /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after | |
3839 | reserving sufficient space. */ | |
3840 | *sp -= len; | |
3841 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3842 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3843 | VALUE_ADDRESS (val) = *sp; | |
3844 | } | |
3845 | else | |
3846 | { | |
3847 | /* Stack grows upward. Align the frame, allocate space, and | |
3848 | then again, re-align the frame. */ | |
3849 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3850 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3851 | VALUE_ADDRESS (val) = *sp; | |
3852 | *sp += len; | |
3853 | if (gdbarch_frame_align_p (current_gdbarch)) | |
3854 | *sp = gdbarch_frame_align (current_gdbarch, *sp); | |
3855 | } | |
a84a8a0d | 3856 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3857 | |
990a07ab | 3858 | write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len); |
c3e5cd34 | 3859 | } |
14f9c5c9 AS |
3860 | |
3861 | return val; | |
3862 | } | |
3863 | ||
3864 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3865 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3866 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3867 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3868 | |
a93c0eb6 JB |
3869 | struct value * |
3870 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
3871 | CORE_ADDR *sp) | |
14f9c5c9 | 3872 | { |
df407dfe | 3873 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3874 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3875 | struct type *formal_target = |
3876 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3877 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3878 | struct type *actual_target = |
3879 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3880 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3881 | |
4c4b4cd2 | 3882 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 AS |
3883 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
3884 | return make_array_descriptor (formal_type, actual, sp); | |
a84a8a0d JB |
3885 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3886 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3887 | { |
a84a8a0d | 3888 | struct value *result; |
14f9c5c9 | 3889 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3890 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3891 | result = desc_data (actual); |
14f9c5c9 | 3892 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3893 | { |
3894 | if (VALUE_LVAL (actual) != lval_memory) | |
3895 | { | |
3896 | struct value *val; | |
df407dfe | 3897 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3898 | val = allocate_value (actual_type); |
990a07ab | 3899 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3900 | (char *) value_contents (actual), |
4c4b4cd2 PH |
3901 | TYPE_LENGTH (actual_type)); |
3902 | actual = ensure_lval (val, sp); | |
3903 | } | |
a84a8a0d | 3904 | result = value_addr (actual); |
4c4b4cd2 | 3905 | } |
a84a8a0d JB |
3906 | else |
3907 | return actual; | |
3908 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3909 | } |
3910 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3911 | return ada_value_ind (actual); | |
3912 | ||
3913 | return actual; | |
3914 | } | |
3915 | ||
3916 | ||
4c4b4cd2 PH |
3917 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3918 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3919 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3920 | to-descriptor type rather than a descriptor type), a struct value * |
3921 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3922 | |
d2e4a39e AS |
3923 | static struct value * |
3924 | make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp) | |
14f9c5c9 | 3925 | { |
d2e4a39e AS |
3926 | struct type *bounds_type = desc_bounds_type (type); |
3927 | struct type *desc_type = desc_base_type (type); | |
3928 | struct value *descriptor = allocate_value (desc_type); | |
3929 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3930 | int i; |
d2e4a39e | 3931 | |
df407dfe | 3932 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3933 | { |
0fd88904 | 3934 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3935 | value_as_long (ada_array_bound (arr, i, 0)), |
3936 | desc_bound_bitpos (bounds_type, i, 0), | |
3937 | desc_bound_bitsize (bounds_type, i, 0)); | |
0fd88904 | 3938 | modify_general_field (value_contents_writeable (bounds), |
4c4b4cd2 PH |
3939 | value_as_long (ada_array_bound (arr, i, 1)), |
3940 | desc_bound_bitpos (bounds_type, i, 1), | |
3941 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3942 | } |
d2e4a39e | 3943 | |
4c4b4cd2 | 3944 | bounds = ensure_lval (bounds, sp); |
d2e4a39e | 3945 | |
0fd88904 | 3946 | modify_general_field (value_contents_writeable (descriptor), |
76a01679 JB |
3947 | VALUE_ADDRESS (ensure_lval (arr, sp)), |
3948 | fat_pntr_data_bitpos (desc_type), | |
3949 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3950 | |
0fd88904 | 3951 | modify_general_field (value_contents_writeable (descriptor), |
4c4b4cd2 PH |
3952 | VALUE_ADDRESS (bounds), |
3953 | fat_pntr_bounds_bitpos (desc_type), | |
3954 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3955 | |
4c4b4cd2 | 3956 | descriptor = ensure_lval (descriptor, sp); |
14f9c5c9 AS |
3957 | |
3958 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3959 | return value_addr (descriptor); | |
3960 | else | |
3961 | return descriptor; | |
3962 | } | |
14f9c5c9 | 3963 | \f |
963a6417 PH |
3964 | /* Dummy definitions for an experimental caching module that is not |
3965 | * used in the public sources. */ | |
96d887e8 | 3966 | |
96d887e8 PH |
3967 | static int |
3968 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3969 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3970 | { |
3971 | return 0; | |
3972 | } | |
3973 | ||
3974 | static void | |
3975 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3976 | struct block *block) |
96d887e8 PH |
3977 | { |
3978 | } | |
4c4b4cd2 PH |
3979 | \f |
3980 | /* Symbol Lookup */ | |
3981 | ||
3982 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3983 | given DOMAIN, visible from lexical block BLOCK. */ | |
3984 | ||
3985 | static struct symbol * | |
3986 | standard_lookup (const char *name, const struct block *block, | |
3987 | domain_enum domain) | |
3988 | { | |
3989 | struct symbol *sym; | |
4c4b4cd2 | 3990 | |
2570f2b7 | 3991 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3992 | return sym; |
2570f2b7 UW |
3993 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3994 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3995 | return sym; |
3996 | } | |
3997 | ||
3998 | ||
3999 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4000 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4001 | since they contend in overloading in the same way. */ | |
4002 | static int | |
4003 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4004 | { | |
4005 | int i; | |
4006 | ||
4007 | for (i = 0; i < n; i += 1) | |
4008 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4009 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4010 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4011 | return 1; |
4012 | ||
4013 | return 0; | |
4014 | } | |
4015 | ||
4016 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4017 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4018 | |
4019 | static int | |
d2e4a39e | 4020 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4021 | { |
d2e4a39e | 4022 | if (type0 == type1) |
14f9c5c9 | 4023 | return 1; |
d2e4a39e | 4024 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4025 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4026 | return 0; | |
d2e4a39e | 4027 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4028 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4029 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4030 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4031 | return 1; |
d2e4a39e | 4032 | |
14f9c5c9 AS |
4033 | return 0; |
4034 | } | |
4035 | ||
4036 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4037 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4038 | |
4039 | static int | |
d2e4a39e | 4040 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4041 | { |
4042 | if (sym0 == sym1) | |
4043 | return 1; | |
176620f1 | 4044 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4045 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4046 | return 0; | |
4047 | ||
d2e4a39e | 4048 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4049 | { |
4050 | case LOC_UNDEF: | |
4051 | return 1; | |
4052 | case LOC_TYPEDEF: | |
4053 | { | |
4c4b4cd2 PH |
4054 | struct type *type0 = SYMBOL_TYPE (sym0); |
4055 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4056 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4057 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4058 | int len0 = strlen (name0); | |
4059 | return | |
4060 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4061 | && (equiv_types (type0, type1) | |
4062 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4063 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4064 | } |
4065 | case LOC_CONST: | |
4066 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4067 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4068 | default: |
4069 | return 0; | |
14f9c5c9 AS |
4070 | } |
4071 | } | |
4072 | ||
4c4b4cd2 PH |
4073 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4074 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4075 | |
4076 | static void | |
76a01679 JB |
4077 | add_defn_to_vec (struct obstack *obstackp, |
4078 | struct symbol *sym, | |
2570f2b7 | 4079 | struct block *block) |
14f9c5c9 AS |
4080 | { |
4081 | int i; | |
4082 | size_t tmp; | |
4c4b4cd2 | 4083 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4084 | |
529cad9c PH |
4085 | /* Do not try to complete stub types, as the debugger is probably |
4086 | already scanning all symbols matching a certain name at the | |
4087 | time when this function is called. Trying to replace the stub | |
4088 | type by its associated full type will cause us to restart a scan | |
4089 | which may lead to an infinite recursion. Instead, the client | |
4090 | collecting the matching symbols will end up collecting several | |
4091 | matches, with at least one of them complete. It can then filter | |
4092 | out the stub ones if needed. */ | |
4093 | ||
4c4b4cd2 PH |
4094 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4095 | { | |
4096 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4097 | return; | |
4098 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4099 | { | |
4100 | prevDefns[i].sym = sym; | |
4101 | prevDefns[i].block = block; | |
4c4b4cd2 | 4102 | return; |
76a01679 | 4103 | } |
4c4b4cd2 PH |
4104 | } |
4105 | ||
4106 | { | |
4107 | struct ada_symbol_info info; | |
4108 | ||
4109 | info.sym = sym; | |
4110 | info.block = block; | |
4c4b4cd2 PH |
4111 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4112 | } | |
4113 | } | |
4114 | ||
4115 | /* Number of ada_symbol_info structures currently collected in | |
4116 | current vector in *OBSTACKP. */ | |
4117 | ||
76a01679 JB |
4118 | static int |
4119 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4120 | { |
4121 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4122 | } | |
4123 | ||
4124 | /* Vector of ada_symbol_info structures currently collected in current | |
4125 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4126 | its final address. */ | |
4127 | ||
76a01679 | 4128 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4129 | defns_collected (struct obstack *obstackp, int finish) |
4130 | { | |
4131 | if (finish) | |
4132 | return obstack_finish (obstackp); | |
4133 | else | |
4134 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4135 | } | |
4136 | ||
96d887e8 PH |
4137 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4138 | Check the global symbols if GLOBAL, the static symbols if not. | |
4139 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4140 | |
96d887e8 PH |
4141 | static struct partial_symbol * |
4142 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4143 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4144 | { |
96d887e8 PH |
4145 | struct partial_symbol **start; |
4146 | int name_len = strlen (name); | |
4147 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4148 | int i; | |
4c4b4cd2 | 4149 | |
96d887e8 | 4150 | if (length == 0) |
4c4b4cd2 | 4151 | { |
96d887e8 | 4152 | return (NULL); |
4c4b4cd2 PH |
4153 | } |
4154 | ||
96d887e8 PH |
4155 | start = (global ? |
4156 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4157 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4158 | |
96d887e8 | 4159 | if (wild) |
4c4b4cd2 | 4160 | { |
96d887e8 PH |
4161 | for (i = 0; i < length; i += 1) |
4162 | { | |
4163 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4164 | |
5eeb2539 AR |
4165 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4166 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4167 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4168 | return psym; |
4169 | } | |
4170 | return NULL; | |
4c4b4cd2 | 4171 | } |
96d887e8 PH |
4172 | else |
4173 | { | |
4174 | if (global) | |
4175 | { | |
4176 | int U; | |
4177 | i = 0; | |
4178 | U = length - 1; | |
4179 | while (U - i > 4) | |
4180 | { | |
4181 | int M = (U + i) >> 1; | |
4182 | struct partial_symbol *psym = start[M]; | |
4183 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4184 | i = M + 1; | |
4185 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4186 | U = M - 1; | |
4187 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4188 | i = M + 1; | |
4189 | else | |
4190 | U = M; | |
4191 | } | |
4192 | } | |
4193 | else | |
4194 | i = 0; | |
4c4b4cd2 | 4195 | |
96d887e8 PH |
4196 | while (i < length) |
4197 | { | |
4198 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4199 | |
5eeb2539 AR |
4200 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4201 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4202 | { |
4203 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4204 | |
96d887e8 PH |
4205 | if (cmp < 0) |
4206 | { | |
4207 | if (global) | |
4208 | break; | |
4209 | } | |
4210 | else if (cmp == 0 | |
4211 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4212 | + name_len)) |
96d887e8 PH |
4213 | return psym; |
4214 | } | |
4215 | i += 1; | |
4216 | } | |
4c4b4cd2 | 4217 | |
96d887e8 PH |
4218 | if (global) |
4219 | { | |
4220 | int U; | |
4221 | i = 0; | |
4222 | U = length - 1; | |
4223 | while (U - i > 4) | |
4224 | { | |
4225 | int M = (U + i) >> 1; | |
4226 | struct partial_symbol *psym = start[M]; | |
4227 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4228 | i = M + 1; | |
4229 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4230 | U = M - 1; | |
4231 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4232 | i = M + 1; | |
4233 | else | |
4234 | U = M; | |
4235 | } | |
4236 | } | |
4237 | else | |
4238 | i = 0; | |
4c4b4cd2 | 4239 | |
96d887e8 PH |
4240 | while (i < length) |
4241 | { | |
4242 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4243 | |
5eeb2539 AR |
4244 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4245 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4246 | { |
4247 | int cmp; | |
4c4b4cd2 | 4248 | |
96d887e8 PH |
4249 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4250 | if (cmp == 0) | |
4251 | { | |
4252 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4253 | if (cmp == 0) | |
4254 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4255 | name_len); |
96d887e8 | 4256 | } |
4c4b4cd2 | 4257 | |
96d887e8 PH |
4258 | if (cmp < 0) |
4259 | { | |
4260 | if (global) | |
4261 | break; | |
4262 | } | |
4263 | else if (cmp == 0 | |
4264 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4265 | + name_len + 5)) |
96d887e8 PH |
4266 | return psym; |
4267 | } | |
4268 | i += 1; | |
4269 | } | |
4270 | } | |
4271 | return NULL; | |
4c4b4cd2 PH |
4272 | } |
4273 | ||
96d887e8 | 4274 | /* Find a symbol table containing symbol SYM or NULL if none. */ |
4c4b4cd2 | 4275 | |
96d887e8 PH |
4276 | static struct symtab * |
4277 | symtab_for_sym (struct symbol *sym) | |
4c4b4cd2 | 4278 | { |
96d887e8 PH |
4279 | struct symtab *s; |
4280 | struct objfile *objfile; | |
4281 | struct block *b; | |
4282 | struct symbol *tmp_sym; | |
4283 | struct dict_iterator iter; | |
4284 | int j; | |
4c4b4cd2 | 4285 | |
11309657 | 4286 | ALL_PRIMARY_SYMTABS (objfile, s) |
96d887e8 PH |
4287 | { |
4288 | switch (SYMBOL_CLASS (sym)) | |
4289 | { | |
4290 | case LOC_CONST: | |
4291 | case LOC_STATIC: | |
4292 | case LOC_TYPEDEF: | |
4293 | case LOC_REGISTER: | |
4294 | case LOC_LABEL: | |
4295 | case LOC_BLOCK: | |
4296 | case LOC_CONST_BYTES: | |
76a01679 JB |
4297 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); |
4298 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4299 | return s; | |
4300 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
4301 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4302 | return s; | |
96d887e8 PH |
4303 | break; |
4304 | default: | |
4305 | break; | |
4306 | } | |
4307 | switch (SYMBOL_CLASS (sym)) | |
4308 | { | |
4309 | case LOC_REGISTER: | |
4310 | case LOC_ARG: | |
4311 | case LOC_REF_ARG: | |
96d887e8 PH |
4312 | case LOC_REGPARM_ADDR: |
4313 | case LOC_LOCAL: | |
4314 | case LOC_TYPEDEF: | |
96d887e8 | 4315 | case LOC_COMPUTED: |
76a01679 JB |
4316 | for (j = FIRST_LOCAL_BLOCK; |
4317 | j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1) | |
4318 | { | |
4319 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j); | |
4320 | ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym) | |
4321 | return s; | |
4322 | } | |
4323 | break; | |
96d887e8 PH |
4324 | default: |
4325 | break; | |
4326 | } | |
4327 | } | |
4328 | return NULL; | |
4c4b4cd2 PH |
4329 | } |
4330 | ||
96d887e8 PH |
4331 | /* Return a minimal symbol matching NAME according to Ada decoding |
4332 | rules. Returns NULL if there is no such minimal symbol. Names | |
4333 | prefixed with "standard__" are handled specially: "standard__" is | |
4334 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4335 | |
96d887e8 PH |
4336 | struct minimal_symbol * |
4337 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4338 | { |
4c4b4cd2 | 4339 | struct objfile *objfile; |
96d887e8 PH |
4340 | struct minimal_symbol *msymbol; |
4341 | int wild_match; | |
4c4b4cd2 | 4342 | |
96d887e8 | 4343 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4344 | { |
96d887e8 | 4345 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4346 | wild_match = 0; |
4c4b4cd2 PH |
4347 | } |
4348 | else | |
96d887e8 | 4349 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4350 | |
96d887e8 PH |
4351 | ALL_MSYMBOLS (objfile, msymbol) |
4352 | { | |
4353 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4354 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4355 | return msymbol; | |
4356 | } | |
4c4b4cd2 | 4357 | |
96d887e8 PH |
4358 | return NULL; |
4359 | } | |
4c4b4cd2 | 4360 | |
96d887e8 PH |
4361 | /* For all subprograms that statically enclose the subprogram of the |
4362 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4363 | and their blocks to the list of data in OBSTACKP, as for | |
4364 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4365 | wildcard prefix. */ | |
4c4b4cd2 | 4366 | |
96d887e8 PH |
4367 | static void |
4368 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4369 | const char *name, domain_enum namespace, |
96d887e8 PH |
4370 | int wild_match) |
4371 | { | |
96d887e8 | 4372 | } |
14f9c5c9 | 4373 | |
96d887e8 PH |
4374 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4375 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4376 | |
96d887e8 PH |
4377 | static int |
4378 | is_nondebugging_type (struct type *type) | |
4379 | { | |
4380 | char *name = ada_type_name (type); | |
4381 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4382 | } | |
4c4b4cd2 | 4383 | |
96d887e8 PH |
4384 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4385 | duplicate other symbols in the list (The only case I know of where | |
4386 | this happens is when object files containing stabs-in-ecoff are | |
4387 | linked with files containing ordinary ecoff debugging symbols (or no | |
4388 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4389 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4390 | |
96d887e8 PH |
4391 | static int |
4392 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4393 | { | |
4394 | int i, j; | |
4c4b4cd2 | 4395 | |
96d887e8 PH |
4396 | i = 0; |
4397 | while (i < nsyms) | |
4398 | { | |
4399 | if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
4400 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC | |
4401 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4402 | { | |
4403 | for (j = 0; j < nsyms; j += 1) | |
4404 | { | |
4405 | if (i != j | |
4406 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4407 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4408 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4409 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4410 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4411 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
4c4b4cd2 | 4412 | { |
96d887e8 PH |
4413 | int k; |
4414 | for (k = i + 1; k < nsyms; k += 1) | |
76a01679 | 4415 | syms[k - 1] = syms[k]; |
96d887e8 PH |
4416 | nsyms -= 1; |
4417 | goto NextSymbol; | |
4c4b4cd2 | 4418 | } |
4c4b4cd2 | 4419 | } |
4c4b4cd2 | 4420 | } |
96d887e8 PH |
4421 | i += 1; |
4422 | NextSymbol: | |
4423 | ; | |
14f9c5c9 | 4424 | } |
96d887e8 | 4425 | return nsyms; |
14f9c5c9 AS |
4426 | } |
4427 | ||
96d887e8 PH |
4428 | /* Given a type that corresponds to a renaming entity, use the type name |
4429 | to extract the scope (package name or function name, fully qualified, | |
4430 | and following the GNAT encoding convention) where this renaming has been | |
4431 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4432 | |
96d887e8 PH |
4433 | static char * |
4434 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4435 | { |
96d887e8 PH |
4436 | /* The renaming types adhere to the following convention: |
4437 | <scope>__<rename>___<XR extension>. | |
4438 | So, to extract the scope, we search for the "___XR" extension, | |
4439 | and then backtrack until we find the first "__". */ | |
76a01679 | 4440 | |
96d887e8 PH |
4441 | const char *name = type_name_no_tag (renaming_type); |
4442 | char *suffix = strstr (name, "___XR"); | |
4443 | char *last; | |
4444 | int scope_len; | |
4445 | char *scope; | |
14f9c5c9 | 4446 | |
96d887e8 PH |
4447 | /* Now, backtrack a bit until we find the first "__". Start looking |
4448 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4449 | |
96d887e8 PH |
4450 | for (last = suffix - 3; last > name; last--) |
4451 | if (last[0] == '_' && last[1] == '_') | |
4452 | break; | |
76a01679 | 4453 | |
96d887e8 | 4454 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4455 | |
96d887e8 PH |
4456 | scope_len = last - name; |
4457 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4458 | |
96d887e8 PH |
4459 | strncpy (scope, name, scope_len); |
4460 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4461 | |
96d887e8 | 4462 | return scope; |
4c4b4cd2 PH |
4463 | } |
4464 | ||
96d887e8 | 4465 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4466 | |
96d887e8 PH |
4467 | static int |
4468 | is_package_name (const char *name) | |
4c4b4cd2 | 4469 | { |
96d887e8 PH |
4470 | /* Here, We take advantage of the fact that no symbols are generated |
4471 | for packages, while symbols are generated for each function. | |
4472 | So the condition for NAME represent a package becomes equivalent | |
4473 | to NAME not existing in our list of symbols. There is only one | |
4474 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4475 | |
96d887e8 | 4476 | char *fun_name; |
76a01679 | 4477 | |
96d887e8 PH |
4478 | /* If it is a function that has not been defined at library level, |
4479 | then we should be able to look it up in the symbols. */ | |
4480 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4481 | return 0; | |
14f9c5c9 | 4482 | |
96d887e8 PH |
4483 | /* Library-level function names start with "_ada_". See if function |
4484 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4485 | |
96d887e8 | 4486 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4487 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4488 | if (strstr (name, "__") != NULL) |
4489 | return 0; | |
4c4b4cd2 | 4490 | |
b435e160 | 4491 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4492 | |
96d887e8 PH |
4493 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4494 | } | |
14f9c5c9 | 4495 | |
96d887e8 | 4496 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4497 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4498 | |
96d887e8 | 4499 | static int |
aeb5907d | 4500 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4501 | { |
aeb5907d JB |
4502 | char *scope; |
4503 | ||
4504 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4505 | return 0; | |
4506 | ||
4507 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4508 | |
96d887e8 | 4509 | make_cleanup (xfree, scope); |
14f9c5c9 | 4510 | |
96d887e8 PH |
4511 | /* If the rename has been defined in a package, then it is visible. */ |
4512 | if (is_package_name (scope)) | |
aeb5907d | 4513 | return 0; |
14f9c5c9 | 4514 | |
96d887e8 PH |
4515 | /* Check that the rename is in the current function scope by checking |
4516 | that its name starts with SCOPE. */ | |
76a01679 | 4517 | |
96d887e8 PH |
4518 | /* If the function name starts with "_ada_", it means that it is |
4519 | a library-level function. Strip this prefix before doing the | |
4520 | comparison, as the encoding for the renaming does not contain | |
4521 | this prefix. */ | |
4522 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4523 | function_name += 5; | |
f26caa11 | 4524 | |
aeb5907d | 4525 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4526 | } |
4527 | ||
aeb5907d JB |
4528 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4529 | is not visible from the function associated with CURRENT_BLOCK or | |
4530 | that is superfluous due to the presence of more specific renaming | |
4531 | information. Places surviving symbols in the initial entries of | |
4532 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4533 | |
4534 | Rationale: | |
aeb5907d JB |
4535 | First, in cases where an object renaming is implemented as a |
4536 | reference variable, GNAT may produce both the actual reference | |
4537 | variable and the renaming encoding. In this case, we discard the | |
4538 | latter. | |
4539 | ||
4540 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4541 | entity. Unfortunately, STABS currently does not support the definition |
4542 | of types that are local to a given lexical block, so all renamings types | |
4543 | are emitted at library level. As a consequence, if an application | |
4544 | contains two renaming entities using the same name, and a user tries to | |
4545 | print the value of one of these entities, the result of the ada symbol | |
4546 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4547 | |
96d887e8 PH |
4548 | This function partially covers for this limitation by attempting to |
4549 | remove from the SYMS list renaming symbols that should be visible | |
4550 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4551 | method with the current information available. The implementation | |
4552 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4553 | ||
4554 | - When the user tries to print a rename in a function while there | |
4555 | is another rename entity defined in a package: Normally, the | |
4556 | rename in the function has precedence over the rename in the | |
4557 | package, so the latter should be removed from the list. This is | |
4558 | currently not the case. | |
4559 | ||
4560 | - This function will incorrectly remove valid renames if | |
4561 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4562 | has been changed by an "Export" pragma. As a consequence, | |
4563 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4564 | |
14f9c5c9 | 4565 | static int |
aeb5907d JB |
4566 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4567 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4568 | { |
4569 | struct symbol *current_function; | |
4570 | char *current_function_name; | |
4571 | int i; | |
aeb5907d JB |
4572 | int is_new_style_renaming; |
4573 | ||
4574 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4575 | a simple variable foo in the same block, discard the latter. | |
4576 | First, zero out such symbols, then compress. */ | |
4577 | is_new_style_renaming = 0; | |
4578 | for (i = 0; i < nsyms; i += 1) | |
4579 | { | |
4580 | struct symbol *sym = syms[i].sym; | |
4581 | struct block *block = syms[i].block; | |
4582 | const char *name; | |
4583 | const char *suffix; | |
4584 | ||
4585 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4586 | continue; | |
4587 | name = SYMBOL_LINKAGE_NAME (sym); | |
4588 | suffix = strstr (name, "___XR"); | |
4589 | ||
4590 | if (suffix != NULL) | |
4591 | { | |
4592 | int name_len = suffix - name; | |
4593 | int j; | |
4594 | is_new_style_renaming = 1; | |
4595 | for (j = 0; j < nsyms; j += 1) | |
4596 | if (i != j && syms[j].sym != NULL | |
4597 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4598 | name_len) == 0 | |
4599 | && block == syms[j].block) | |
4600 | syms[j].sym = NULL; | |
4601 | } | |
4602 | } | |
4603 | if (is_new_style_renaming) | |
4604 | { | |
4605 | int j, k; | |
4606 | ||
4607 | for (j = k = 0; j < nsyms; j += 1) | |
4608 | if (syms[j].sym != NULL) | |
4609 | { | |
4610 | syms[k] = syms[j]; | |
4611 | k += 1; | |
4612 | } | |
4613 | return k; | |
4614 | } | |
4c4b4cd2 PH |
4615 | |
4616 | /* Extract the function name associated to CURRENT_BLOCK. | |
4617 | Abort if unable to do so. */ | |
76a01679 | 4618 | |
4c4b4cd2 PH |
4619 | if (current_block == NULL) |
4620 | return nsyms; | |
76a01679 | 4621 | |
7f0df278 | 4622 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4623 | if (current_function == NULL) |
4624 | return nsyms; | |
4625 | ||
4626 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4627 | if (current_function_name == NULL) | |
4628 | return nsyms; | |
4629 | ||
4630 | /* Check each of the symbols, and remove it from the list if it is | |
4631 | a type corresponding to a renaming that is out of the scope of | |
4632 | the current block. */ | |
4633 | ||
4634 | i = 0; | |
4635 | while (i < nsyms) | |
4636 | { | |
aeb5907d JB |
4637 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4638 | == ADA_OBJECT_RENAMING | |
4639 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4640 | { |
4641 | int j; | |
aeb5907d | 4642 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4643 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4644 | nsyms -= 1; |
4645 | } | |
4646 | else | |
4647 | i += 1; | |
4648 | } | |
4649 | ||
4650 | return nsyms; | |
4651 | } | |
4652 | ||
4653 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing | |
4654 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4655 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4656 | indicating the symbols found and the blocks and symbol tables (if |
4657 | any) in which they were found. This vector are transient---good only to | |
4658 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4659 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4660 | is the one match returned (no other matches in that or | |
4661 | enclosing blocks is returned). If there are any matches in or | |
4662 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4663 | search extends to global and file-scope (static) symbol tables. | |
4664 | Names prefixed with "standard__" are handled specially: "standard__" | |
4665 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4666 | |
4667 | int | |
4c4b4cd2 | 4668 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4669 | domain_enum namespace, |
4670 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4671 | { |
4672 | struct symbol *sym; | |
4673 | struct symtab *s; | |
4674 | struct partial_symtab *ps; | |
4675 | struct blockvector *bv; | |
4676 | struct objfile *objfile; | |
14f9c5c9 | 4677 | struct block *block; |
4c4b4cd2 | 4678 | const char *name; |
14f9c5c9 | 4679 | struct minimal_symbol *msymbol; |
4c4b4cd2 | 4680 | int wild_match; |
14f9c5c9 | 4681 | int cacheIfUnique; |
4c4b4cd2 PH |
4682 | int block_depth; |
4683 | int ndefns; | |
14f9c5c9 | 4684 | |
4c4b4cd2 PH |
4685 | obstack_free (&symbol_list_obstack, NULL); |
4686 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4687 | |
14f9c5c9 AS |
4688 | cacheIfUnique = 0; |
4689 | ||
4690 | /* Search specified block and its superiors. */ | |
4691 | ||
4c4b4cd2 PH |
4692 | wild_match = (strstr (name0, "__") == NULL); |
4693 | name = name0; | |
76a01679 JB |
4694 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4695 | needed, but adding const will | |
4696 | have a cascade effect. */ | |
4c4b4cd2 PH |
4697 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4698 | { | |
4699 | wild_match = 0; | |
4700 | block = NULL; | |
4701 | name = name0 + sizeof ("standard__") - 1; | |
4702 | } | |
4703 | ||
4704 | block_depth = 0; | |
14f9c5c9 AS |
4705 | while (block != NULL) |
4706 | { | |
4c4b4cd2 | 4707 | block_depth += 1; |
76a01679 | 4708 | ada_add_block_symbols (&symbol_list_obstack, block, name, |
2570f2b7 | 4709 | namespace, NULL, wild_match); |
14f9c5c9 | 4710 | |
4c4b4cd2 PH |
4711 | /* If we found a non-function match, assume that's the one. */ |
4712 | if (is_nonfunction (defns_collected (&symbol_list_obstack, 0), | |
76a01679 | 4713 | num_defns_collected (&symbol_list_obstack))) |
4c4b4cd2 | 4714 | goto done; |
14f9c5c9 AS |
4715 | |
4716 | block = BLOCK_SUPERBLOCK (block); | |
4717 | } | |
4718 | ||
4c4b4cd2 PH |
4719 | /* If no luck so far, try to find NAME as a local symbol in some lexically |
4720 | enclosing subprogram. */ | |
4721 | if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2) | |
4722 | add_symbols_from_enclosing_procs (&symbol_list_obstack, | |
76a01679 | 4723 | name, namespace, wild_match); |
4c4b4cd2 PH |
4724 | |
4725 | /* If we found ANY matches among non-global symbols, we're done. */ | |
14f9c5c9 | 4726 | |
4c4b4cd2 | 4727 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4728 | goto done; |
d2e4a39e | 4729 | |
14f9c5c9 | 4730 | cacheIfUnique = 1; |
2570f2b7 | 4731 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4732 | { |
4733 | if (sym != NULL) | |
2570f2b7 | 4734 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4735 | goto done; |
4736 | } | |
14f9c5c9 AS |
4737 | |
4738 | /* Now add symbols from all global blocks: symbol tables, minimal symbol | |
4c4b4cd2 | 4739 | tables, and psymtab's. */ |
14f9c5c9 | 4740 | |
11309657 | 4741 | ALL_PRIMARY_SYMTABS (objfile, s) |
d2e4a39e AS |
4742 | { |
4743 | QUIT; | |
d2e4a39e AS |
4744 | bv = BLOCKVECTOR (s); |
4745 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
76a01679 | 4746 | ada_add_block_symbols (&symbol_list_obstack, block, name, namespace, |
2570f2b7 | 4747 | objfile, wild_match); |
d2e4a39e | 4748 | } |
14f9c5c9 | 4749 | |
4c4b4cd2 | 4750 | if (namespace == VAR_DOMAIN) |
14f9c5c9 AS |
4751 | { |
4752 | ALL_MSYMBOLS (objfile, msymbol) | |
d2e4a39e | 4753 | { |
4c4b4cd2 PH |
4754 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)) |
4755 | { | |
4756 | switch (MSYMBOL_TYPE (msymbol)) | |
4757 | { | |
4758 | case mst_solib_trampoline: | |
4759 | break; | |
4760 | default: | |
4761 | s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)); | |
4762 | if (s != NULL) | |
4763 | { | |
4764 | int ndefns0 = num_defns_collected (&symbol_list_obstack); | |
5823c3ef JB |
4765 | char *raw_name = SYMBOL_LINKAGE_NAME (msymbol); |
4766 | char *name1; | |
4767 | const char *suffix; | |
4c4b4cd2 | 4768 | QUIT; |
5823c3ef JB |
4769 | suffix = strrchr (raw_name, '.'); |
4770 | if (suffix == NULL) | |
4771 | suffix = strrchr (raw_name, '$'); | |
4772 | if (suffix != NULL && is_digits_suffix (suffix + 1)) | |
4773 | { | |
4774 | name1 = alloca (suffix - raw_name + 1); | |
4775 | strncpy (name1, raw_name, suffix - raw_name); | |
4776 | name1[suffix - raw_name] = '\0'; | |
4777 | } | |
4778 | else | |
4779 | name1 = raw_name; | |
4780 | ||
4c4b4cd2 PH |
4781 | bv = BLOCKVECTOR (s); |
4782 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
4783 | ada_add_block_symbols (&symbol_list_obstack, block, | |
5823c3ef | 4784 | name1, namespace, objfile, 0); |
76a01679 | 4785 | |
4c4b4cd2 PH |
4786 | if (num_defns_collected (&symbol_list_obstack) == ndefns0) |
4787 | { | |
4788 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
4789 | ada_add_block_symbols (&symbol_list_obstack, block, | |
5823c3ef | 4790 | name1, namespace, objfile, 0); |
4c4b4cd2 PH |
4791 | } |
4792 | } | |
4793 | } | |
4794 | } | |
d2e4a39e | 4795 | } |
14f9c5c9 | 4796 | } |
d2e4a39e | 4797 | |
14f9c5c9 | 4798 | ALL_PSYMTABS (objfile, ps) |
d2e4a39e AS |
4799 | { |
4800 | QUIT; | |
4801 | if (!ps->readin | |
4c4b4cd2 | 4802 | && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match)) |
d2e4a39e | 4803 | { |
4c4b4cd2 PH |
4804 | s = PSYMTAB_TO_SYMTAB (ps); |
4805 | if (!s->primary) | |
4806 | continue; | |
4807 | bv = BLOCKVECTOR (s); | |
4808 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
4809 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
2570f2b7 | 4810 | namespace, objfile, wild_match); |
d2e4a39e AS |
4811 | } |
4812 | } | |
4813 | ||
4c4b4cd2 | 4814 | /* Now add symbols from all per-file blocks if we've gotten no hits |
14f9c5c9 | 4815 | (Not strictly correct, but perhaps better than an error). |
4c4b4cd2 | 4816 | Do the symtabs first, then check the psymtabs. */ |
d2e4a39e | 4817 | |
4c4b4cd2 | 4818 | if (num_defns_collected (&symbol_list_obstack) == 0) |
14f9c5c9 AS |
4819 | { |
4820 | ||
11309657 | 4821 | ALL_PRIMARY_SYMTABS (objfile, s) |
d2e4a39e | 4822 | { |
4c4b4cd2 | 4823 | QUIT; |
4c4b4cd2 PH |
4824 | bv = BLOCKVECTOR (s); |
4825 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
76a01679 | 4826 | ada_add_block_symbols (&symbol_list_obstack, block, name, namespace, |
2570f2b7 | 4827 | objfile, wild_match); |
d2e4a39e AS |
4828 | } |
4829 | ||
14f9c5c9 | 4830 | ALL_PSYMTABS (objfile, ps) |
d2e4a39e | 4831 | { |
4c4b4cd2 PH |
4832 | QUIT; |
4833 | if (!ps->readin | |
4834 | && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match)) | |
4835 | { | |
4836 | s = PSYMTAB_TO_SYMTAB (ps); | |
4837 | bv = BLOCKVECTOR (s); | |
4838 | if (!s->primary) | |
4839 | continue; | |
4840 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
76a01679 | 4841 | ada_add_block_symbols (&symbol_list_obstack, block, name, |
2570f2b7 | 4842 | namespace, objfile, wild_match); |
4c4b4cd2 | 4843 | } |
d2e4a39e AS |
4844 | } |
4845 | } | |
14f9c5c9 | 4846 | |
4c4b4cd2 PH |
4847 | done: |
4848 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4849 | *results = defns_collected (&symbol_list_obstack, 1); | |
4850 | ||
4851 | ndefns = remove_extra_symbols (*results, ndefns); | |
4852 | ||
d2e4a39e | 4853 | if (ndefns == 0) |
2570f2b7 | 4854 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4855 | |
4c4b4cd2 | 4856 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4857 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4858 | |
aeb5907d | 4859 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4860 | |
14f9c5c9 AS |
4861 | return ndefns; |
4862 | } | |
4863 | ||
d2e4a39e | 4864 | struct symbol * |
aeb5907d | 4865 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4866 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4867 | { |
4c4b4cd2 | 4868 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4869 | int n_candidates; |
4870 | ||
aeb5907d | 4871 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4872 | |
4873 | if (n_candidates == 0) | |
4874 | return NULL; | |
4c4b4cd2 | 4875 | |
aeb5907d JB |
4876 | if (block_found != NULL) |
4877 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4878 | |
21b556f4 | 4879 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4880 | } |
4881 | ||
4882 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4883 | scope and in global scopes, or NULL if none. NAME is folded and | |
4884 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4885 | choosing the first symbol if there are multiple choices. | |
4886 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4887 | table in which the symbol was found (in both cases, these | |
4888 | assignments occur only if the pointers are non-null). */ | |
4889 | struct symbol * | |
4890 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4891 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4892 | { |
4893 | if (is_a_field_of_this != NULL) | |
4894 | *is_a_field_of_this = 0; | |
4895 | ||
4896 | return | |
4897 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4898 | block0, namespace, NULL); |
4c4b4cd2 | 4899 | } |
14f9c5c9 | 4900 | |
4c4b4cd2 PH |
4901 | static struct symbol * |
4902 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4903 | const char *linkage_name, |
4904 | const struct block *block, | |
21b556f4 | 4905 | const domain_enum domain) |
4c4b4cd2 PH |
4906 | { |
4907 | if (linkage_name == NULL) | |
4908 | linkage_name = name; | |
76a01679 | 4909 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4910 | NULL); |
14f9c5c9 AS |
4911 | } |
4912 | ||
4913 | ||
4c4b4cd2 PH |
4914 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4915 | that is to be ignored for matching purposes. Suffixes of parallel | |
4916 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4917 | are given by any of the regular expressions: |
4c4b4cd2 | 4918 | |
babe1480 JB |
4919 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4920 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4921 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4922 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4923 | |
4924 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4925 | match is performed. This sequence is used to differentiate homonyms, | |
4926 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4927 | |
14f9c5c9 | 4928 | static int |
d2e4a39e | 4929 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4930 | { |
4931 | int k; | |
4c4b4cd2 PH |
4932 | const char *matching; |
4933 | const int len = strlen (str); | |
4934 | ||
babe1480 JB |
4935 | /* Skip optional leading __[0-9]+. */ |
4936 | ||
4c4b4cd2 PH |
4937 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4938 | { | |
babe1480 JB |
4939 | str += 3; |
4940 | while (isdigit (str[0])) | |
4941 | str += 1; | |
4c4b4cd2 | 4942 | } |
babe1480 JB |
4943 | |
4944 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4945 | |
babe1480 | 4946 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4947 | { |
babe1480 | 4948 | matching = str + 1; |
4c4b4cd2 PH |
4949 | while (isdigit (matching[0])) |
4950 | matching += 1; | |
4951 | if (matching[0] == '\0') | |
4952 | return 1; | |
4953 | } | |
4954 | ||
4955 | /* ___[0-9]+ */ | |
babe1480 | 4956 | |
4c4b4cd2 PH |
4957 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4958 | { | |
4959 | matching = str + 3; | |
4960 | while (isdigit (matching[0])) | |
4961 | matching += 1; | |
4962 | if (matching[0] == '\0') | |
4963 | return 1; | |
4964 | } | |
4965 | ||
529cad9c PH |
4966 | #if 0 |
4967 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4968 | with a N at the end. Unfortunately, the compiler uses the same | |
4969 | convention for other internal types it creates. So treating | |
4970 | all entity names that end with an "N" as a name suffix causes | |
4971 | some regressions. For instance, consider the case of an enumerated | |
4972 | type. To support the 'Image attribute, it creates an array whose | |
4973 | name ends with N. | |
4974 | Having a single character like this as a suffix carrying some | |
4975 | information is a bit risky. Perhaps we should change the encoding | |
4976 | to be something like "_N" instead. In the meantime, do not do | |
4977 | the following check. */ | |
4978 | /* Protected Object Subprograms */ | |
4979 | if (len == 1 && str [0] == 'N') | |
4980 | return 1; | |
4981 | #endif | |
4982 | ||
4983 | /* _E[0-9]+[bs]$ */ | |
4984 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4985 | { | |
4986 | matching = str + 3; | |
4987 | while (isdigit (matching[0])) | |
4988 | matching += 1; | |
4989 | if ((matching[0] == 'b' || matching[0] == 's') | |
4990 | && matching [1] == '\0') | |
4991 | return 1; | |
4992 | } | |
4993 | ||
4c4b4cd2 PH |
4994 | /* ??? We should not modify STR directly, as we are doing below. This |
4995 | is fine in this case, but may become problematic later if we find | |
4996 | that this alternative did not work, and want to try matching | |
4997 | another one from the begining of STR. Since we modified it, we | |
4998 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4999 | if (str[0] == 'X') |
5000 | { | |
5001 | str += 1; | |
d2e4a39e | 5002 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5003 | { |
5004 | if (str[0] != 'n' && str[0] != 'b') | |
5005 | return 0; | |
5006 | str += 1; | |
5007 | } | |
14f9c5c9 | 5008 | } |
babe1480 | 5009 | |
14f9c5c9 AS |
5010 | if (str[0] == '\000') |
5011 | return 1; | |
babe1480 | 5012 | |
d2e4a39e | 5013 | if (str[0] == '_') |
14f9c5c9 AS |
5014 | { |
5015 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5016 | return 0; |
d2e4a39e | 5017 | if (str[2] == '_') |
4c4b4cd2 | 5018 | { |
61ee279c PH |
5019 | if (strcmp (str + 3, "JM") == 0) |
5020 | return 1; | |
5021 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5022 | the LJM suffix in favor of the JM one. But we will | |
5023 | still accept LJM as a valid suffix for a reasonable | |
5024 | amount of time, just to allow ourselves to debug programs | |
5025 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5026 | if (strcmp (str + 3, "LJM") == 0) |
5027 | return 1; | |
5028 | if (str[3] != 'X') | |
5029 | return 0; | |
1265e4aa JB |
5030 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5031 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5032 | return 1; |
5033 | if (str[4] == 'R' && str[5] != 'T') | |
5034 | return 1; | |
5035 | return 0; | |
5036 | } | |
5037 | if (!isdigit (str[2])) | |
5038 | return 0; | |
5039 | for (k = 3; str[k] != '\0'; k += 1) | |
5040 | if (!isdigit (str[k]) && str[k] != '_') | |
5041 | return 0; | |
14f9c5c9 AS |
5042 | return 1; |
5043 | } | |
4c4b4cd2 | 5044 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5045 | { |
4c4b4cd2 PH |
5046 | for (k = 2; str[k] != '\0'; k += 1) |
5047 | if (!isdigit (str[k]) && str[k] != '_') | |
5048 | return 0; | |
14f9c5c9 AS |
5049 | return 1; |
5050 | } | |
5051 | return 0; | |
5052 | } | |
d2e4a39e | 5053 | |
5823c3ef JB |
5054 | /* Return nonzero if the given string contains only digits. |
5055 | The empty string also matches. */ | |
4c4b4cd2 PH |
5056 | |
5057 | static int | |
5823c3ef | 5058 | is_digits_suffix (const char *str) |
4c4b4cd2 | 5059 | { |
4c4b4cd2 PH |
5060 | while (isdigit (str[0])) |
5061 | str++; | |
5062 | return (str[0] == '\0'); | |
5063 | } | |
5064 | ||
aeb5907d JB |
5065 | /* Return non-zero if the string starting at NAME and ending before |
5066 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5067 | |
5068 | static int | |
5069 | is_valid_name_for_wild_match (const char *name0) | |
5070 | { | |
5071 | const char *decoded_name = ada_decode (name0); | |
5072 | int i; | |
5073 | ||
5823c3ef JB |
5074 | /* If the decoded name starts with an angle bracket, it means that |
5075 | NAME0 does not follow the GNAT encoding format. It should then | |
5076 | not be allowed as a possible wild match. */ | |
5077 | if (decoded_name[0] == '<') | |
5078 | return 0; | |
5079 | ||
529cad9c PH |
5080 | for (i=0; decoded_name[i] != '\0'; i++) |
5081 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5082 | return 0; | |
5083 | ||
5084 | return 1; | |
5085 | } | |
5086 | ||
4c4b4cd2 PH |
5087 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
5088 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
5089 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5090 | true). */ | |
5091 | ||
14f9c5c9 | 5092 | static int |
4c4b4cd2 | 5093 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 5094 | { |
5823c3ef JB |
5095 | char* match; |
5096 | const char* start; | |
5097 | start = name0; | |
5098 | while (1) | |
14f9c5c9 | 5099 | { |
5823c3ef JB |
5100 | match = strstr (start, patn0); |
5101 | if (match == NULL) | |
5102 | return 0; | |
5103 | if ((match == name0 | |
5104 | || match[-1] == '.' | |
5105 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
5106 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
5107 | && is_name_suffix (match + patn_len)) | |
5108 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
5109 | start = match + 1; | |
96d887e8 | 5110 | } |
96d887e8 PH |
5111 | } |
5112 | ||
5113 | ||
5114 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to | |
5115 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
5116 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
5117 | OBJFILE is the section containing BLOCK. | |
5118 | SYMTAB is recorded with each symbol added. */ | |
5119 | ||
5120 | static void | |
5121 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5122 | struct block *block, const char *name, |
96d887e8 | 5123 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5124 | int wild) |
96d887e8 PH |
5125 | { |
5126 | struct dict_iterator iter; | |
5127 | int name_len = strlen (name); | |
5128 | /* A matching argument symbol, if any. */ | |
5129 | struct symbol *arg_sym; | |
5130 | /* Set true when we find a matching non-argument symbol. */ | |
5131 | int found_sym; | |
5132 | struct symbol *sym; | |
5133 | ||
5134 | arg_sym = NULL; | |
5135 | found_sym = 0; | |
5136 | if (wild) | |
5137 | { | |
5138 | struct symbol *sym; | |
5139 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5140 | { |
5eeb2539 AR |
5141 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5142 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 5143 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 5144 | { |
2a2d4dc3 AS |
5145 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5146 | continue; | |
5147 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5148 | arg_sym = sym; | |
5149 | else | |
5150 | { | |
76a01679 JB |
5151 | found_sym = 1; |
5152 | add_defn_to_vec (obstackp, | |
5153 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5154 | block); |
76a01679 JB |
5155 | } |
5156 | } | |
5157 | } | |
96d887e8 PH |
5158 | } |
5159 | else | |
5160 | { | |
5161 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5162 | { |
5eeb2539 AR |
5163 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5164 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5165 | { |
5166 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5167 | if (cmp == 0 | |
5168 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5169 | { | |
2a2d4dc3 AS |
5170 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5171 | { | |
5172 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5173 | arg_sym = sym; | |
5174 | else | |
5175 | { | |
5176 | found_sym = 1; | |
5177 | add_defn_to_vec (obstackp, | |
5178 | fixup_symbol_section (sym, objfile), | |
5179 | block); | |
5180 | } | |
5181 | } | |
76a01679 JB |
5182 | } |
5183 | } | |
5184 | } | |
96d887e8 PH |
5185 | } |
5186 | ||
5187 | if (!found_sym && arg_sym != NULL) | |
5188 | { | |
76a01679 JB |
5189 | add_defn_to_vec (obstackp, |
5190 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5191 | block); |
96d887e8 PH |
5192 | } |
5193 | ||
5194 | if (!wild) | |
5195 | { | |
5196 | arg_sym = NULL; | |
5197 | found_sym = 0; | |
5198 | ||
5199 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5200 | { |
5eeb2539 AR |
5201 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5202 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5203 | { |
5204 | int cmp; | |
5205 | ||
5206 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5207 | if (cmp == 0) | |
5208 | { | |
5209 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5210 | if (cmp == 0) | |
5211 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5212 | name_len); | |
5213 | } | |
5214 | ||
5215 | if (cmp == 0 | |
5216 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5217 | { | |
2a2d4dc3 AS |
5218 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5219 | { | |
5220 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5221 | arg_sym = sym; | |
5222 | else | |
5223 | { | |
5224 | found_sym = 1; | |
5225 | add_defn_to_vec (obstackp, | |
5226 | fixup_symbol_section (sym, objfile), | |
5227 | block); | |
5228 | } | |
5229 | } | |
76a01679 JB |
5230 | } |
5231 | } | |
76a01679 | 5232 | } |
96d887e8 PH |
5233 | |
5234 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5235 | They aren't parameters, right? */ | |
5236 | if (!found_sym && arg_sym != NULL) | |
5237 | { | |
5238 | add_defn_to_vec (obstackp, | |
76a01679 | 5239 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5240 | block); |
96d887e8 PH |
5241 | } |
5242 | } | |
5243 | } | |
5244 | \f | |
41d27058 JB |
5245 | |
5246 | /* Symbol Completion */ | |
5247 | ||
5248 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5249 | name in a form that's appropriate for the completion. The result | |
5250 | does not need to be deallocated, but is only good until the next call. | |
5251 | ||
5252 | TEXT_LEN is equal to the length of TEXT. | |
5253 | Perform a wild match if WILD_MATCH is set. | |
5254 | ENCODED should be set if TEXT represents the start of a symbol name | |
5255 | in its encoded form. */ | |
5256 | ||
5257 | static const char * | |
5258 | symbol_completion_match (const char *sym_name, | |
5259 | const char *text, int text_len, | |
5260 | int wild_match, int encoded) | |
5261 | { | |
5262 | char *result; | |
5263 | const int verbatim_match = (text[0] == '<'); | |
5264 | int match = 0; | |
5265 | ||
5266 | if (verbatim_match) | |
5267 | { | |
5268 | /* Strip the leading angle bracket. */ | |
5269 | text = text + 1; | |
5270 | text_len--; | |
5271 | } | |
5272 | ||
5273 | /* First, test against the fully qualified name of the symbol. */ | |
5274 | ||
5275 | if (strncmp (sym_name, text, text_len) == 0) | |
5276 | match = 1; | |
5277 | ||
5278 | if (match && !encoded) | |
5279 | { | |
5280 | /* One needed check before declaring a positive match is to verify | |
5281 | that iff we are doing a verbatim match, the decoded version | |
5282 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5283 | is not a suitable completion. */ | |
5284 | const char *sym_name_copy = sym_name; | |
5285 | int has_angle_bracket; | |
5286 | ||
5287 | sym_name = ada_decode (sym_name); | |
5288 | has_angle_bracket = (sym_name[0] == '<'); | |
5289 | match = (has_angle_bracket == verbatim_match); | |
5290 | sym_name = sym_name_copy; | |
5291 | } | |
5292 | ||
5293 | if (match && !verbatim_match) | |
5294 | { | |
5295 | /* When doing non-verbatim match, another check that needs to | |
5296 | be done is to verify that the potentially matching symbol name | |
5297 | does not include capital letters, because the ada-mode would | |
5298 | not be able to understand these symbol names without the | |
5299 | angle bracket notation. */ | |
5300 | const char *tmp; | |
5301 | ||
5302 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5303 | if (*tmp != '\0') | |
5304 | match = 0; | |
5305 | } | |
5306 | ||
5307 | /* Second: Try wild matching... */ | |
5308 | ||
5309 | if (!match && wild_match) | |
5310 | { | |
5311 | /* Since we are doing wild matching, this means that TEXT | |
5312 | may represent an unqualified symbol name. We therefore must | |
5313 | also compare TEXT against the unqualified name of the symbol. */ | |
5314 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5315 | ||
5316 | if (strncmp (sym_name, text, text_len) == 0) | |
5317 | match = 1; | |
5318 | } | |
5319 | ||
5320 | /* Finally: If we found a mach, prepare the result to return. */ | |
5321 | ||
5322 | if (!match) | |
5323 | return NULL; | |
5324 | ||
5325 | if (verbatim_match) | |
5326 | sym_name = add_angle_brackets (sym_name); | |
5327 | ||
5328 | if (!encoded) | |
5329 | sym_name = ada_decode (sym_name); | |
5330 | ||
5331 | return sym_name; | |
5332 | } | |
5333 | ||
2ba95b9b JB |
5334 | typedef char *char_ptr; |
5335 | DEF_VEC_P (char_ptr); | |
5336 | ||
41d27058 JB |
5337 | /* A companion function to ada_make_symbol_completion_list(). |
5338 | Check if SYM_NAME represents a symbol which name would be suitable | |
5339 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5340 | it is appended at the end of the given string vector SV. | |
5341 | ||
5342 | ORIG_TEXT is the string original string from the user command | |
5343 | that needs to be completed. WORD is the entire command on which | |
5344 | completion should be performed. These two parameters are used to | |
5345 | determine which part of the symbol name should be added to the | |
5346 | completion vector. | |
5347 | if WILD_MATCH is set, then wild matching is performed. | |
5348 | ENCODED should be set if TEXT represents a symbol name in its | |
5349 | encoded formed (in which case the completion should also be | |
5350 | encoded). */ | |
5351 | ||
5352 | static void | |
d6565258 | 5353 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5354 | const char *sym_name, |
5355 | const char *text, int text_len, | |
5356 | const char *orig_text, const char *word, | |
5357 | int wild_match, int encoded) | |
5358 | { | |
5359 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5360 | wild_match, encoded); | |
5361 | char *completion; | |
5362 | ||
5363 | if (match == NULL) | |
5364 | return; | |
5365 | ||
5366 | /* We found a match, so add the appropriate completion to the given | |
5367 | string vector. */ | |
5368 | ||
5369 | if (word == orig_text) | |
5370 | { | |
5371 | completion = xmalloc (strlen (match) + 5); | |
5372 | strcpy (completion, match); | |
5373 | } | |
5374 | else if (word > orig_text) | |
5375 | { | |
5376 | /* Return some portion of sym_name. */ | |
5377 | completion = xmalloc (strlen (match) + 5); | |
5378 | strcpy (completion, match + (word - orig_text)); | |
5379 | } | |
5380 | else | |
5381 | { | |
5382 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5383 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5384 | strncpy (completion, word, orig_text - word); | |
5385 | completion[orig_text - word] = '\0'; | |
5386 | strcat (completion, match); | |
5387 | } | |
5388 | ||
d6565258 | 5389 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5390 | } |
5391 | ||
5392 | /* Return a list of possible symbol names completing TEXT0. The list | |
5393 | is NULL terminated. WORD is the entire command on which completion | |
5394 | is made. */ | |
5395 | ||
5396 | static char ** | |
5397 | ada_make_symbol_completion_list (char *text0, char *word) | |
5398 | { | |
5399 | char *text; | |
5400 | int text_len; | |
5401 | int wild_match; | |
5402 | int encoded; | |
2ba95b9b | 5403 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5404 | struct symbol *sym; |
5405 | struct symtab *s; | |
5406 | struct partial_symtab *ps; | |
5407 | struct minimal_symbol *msymbol; | |
5408 | struct objfile *objfile; | |
5409 | struct block *b, *surrounding_static_block = 0; | |
5410 | int i; | |
5411 | struct dict_iterator iter; | |
5412 | ||
5413 | if (text0[0] == '<') | |
5414 | { | |
5415 | text = xstrdup (text0); | |
5416 | make_cleanup (xfree, text); | |
5417 | text_len = strlen (text); | |
5418 | wild_match = 0; | |
5419 | encoded = 1; | |
5420 | } | |
5421 | else | |
5422 | { | |
5423 | text = xstrdup (ada_encode (text0)); | |
5424 | make_cleanup (xfree, text); | |
5425 | text_len = strlen (text); | |
5426 | for (i = 0; i < text_len; i++) | |
5427 | text[i] = tolower (text[i]); | |
5428 | ||
5429 | encoded = (strstr (text0, "__") != NULL); | |
5430 | /* If the name contains a ".", then the user is entering a fully | |
5431 | qualified entity name, and the match must not be done in wild | |
5432 | mode. Similarly, if the user wants to complete what looks like | |
5433 | an encoded name, the match must not be done in wild mode. */ | |
5434 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5435 | } | |
5436 | ||
5437 | /* First, look at the partial symtab symbols. */ | |
5438 | ALL_PSYMTABS (objfile, ps) | |
5439 | { | |
5440 | struct partial_symbol **psym; | |
5441 | ||
5442 | /* If the psymtab's been read in we'll get it when we search | |
5443 | through the blockvector. */ | |
5444 | if (ps->readin) | |
5445 | continue; | |
5446 | ||
5447 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5448 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5449 | + ps->n_global_syms); psym++) | |
5450 | { | |
5451 | QUIT; | |
d6565258 | 5452 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5453 | text, text_len, text0, word, |
5454 | wild_match, encoded); | |
5455 | } | |
5456 | ||
5457 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5458 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5459 | + ps->n_static_syms); psym++) | |
5460 | { | |
5461 | QUIT; | |
d6565258 | 5462 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5463 | text, text_len, text0, word, |
5464 | wild_match, encoded); | |
5465 | } | |
5466 | } | |
5467 | ||
5468 | /* At this point scan through the misc symbol vectors and add each | |
5469 | symbol you find to the list. Eventually we want to ignore | |
5470 | anything that isn't a text symbol (everything else will be | |
5471 | handled by the psymtab code above). */ | |
5472 | ||
5473 | ALL_MSYMBOLS (objfile, msymbol) | |
5474 | { | |
5475 | QUIT; | |
d6565258 | 5476 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5477 | text, text_len, text0, word, wild_match, encoded); |
5478 | } | |
5479 | ||
5480 | /* Search upwards from currently selected frame (so that we can | |
5481 | complete on local vars. */ | |
5482 | ||
5483 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5484 | { | |
5485 | if (!BLOCK_SUPERBLOCK (b)) | |
5486 | surrounding_static_block = b; /* For elmin of dups */ | |
5487 | ||
5488 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5489 | { | |
d6565258 | 5490 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5491 | text, text_len, text0, word, |
5492 | wild_match, encoded); | |
5493 | } | |
5494 | } | |
5495 | ||
5496 | /* Go through the symtabs and check the externs and statics for | |
5497 | symbols which match. */ | |
5498 | ||
5499 | ALL_SYMTABS (objfile, s) | |
5500 | { | |
5501 | QUIT; | |
5502 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5503 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5504 | { | |
d6565258 | 5505 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5506 | text, text_len, text0, word, |
5507 | wild_match, encoded); | |
5508 | } | |
5509 | } | |
5510 | ||
5511 | ALL_SYMTABS (objfile, s) | |
5512 | { | |
5513 | QUIT; | |
5514 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5515 | /* Don't do this block twice. */ | |
5516 | if (b == surrounding_static_block) | |
5517 | continue; | |
5518 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5519 | { | |
d6565258 | 5520 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5521 | text, text_len, text0, word, |
5522 | wild_match, encoded); | |
5523 | } | |
5524 | } | |
5525 | ||
5526 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5527 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5528 | |
2ba95b9b JB |
5529 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5530 | return the copy. It's unfortunate that we have to make a copy | |
5531 | of an array that we're about to destroy, but there is nothing much | |
5532 | we can do about it. Fortunately, it's typically not a very large | |
5533 | array. */ | |
5534 | { | |
5535 | const size_t completions_size = | |
5536 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5537 | char **result = malloc (completions_size); | |
5538 | ||
5539 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5540 | ||
5541 | VEC_free (char_ptr, completions); | |
5542 | return result; | |
5543 | } | |
41d27058 JB |
5544 | } |
5545 | ||
963a6417 | 5546 | /* Field Access */ |
96d887e8 | 5547 | |
73fb9985 JB |
5548 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5549 | for tagged types. */ | |
5550 | ||
5551 | static int | |
5552 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5553 | { | |
5554 | char *name; | |
5555 | ||
5556 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5557 | return 0; | |
5558 | ||
5559 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5560 | if (name == NULL) | |
5561 | return 0; | |
5562 | ||
5563 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5564 | } | |
5565 | ||
963a6417 PH |
5566 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5567 | to be invisible to users. */ | |
96d887e8 | 5568 | |
963a6417 PH |
5569 | int |
5570 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5571 | { |
963a6417 PH |
5572 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5573 | return 1; | |
73fb9985 JB |
5574 | |
5575 | /* Check the name of that field. */ | |
5576 | { | |
5577 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5578 | ||
5579 | /* Anonymous field names should not be printed. | |
5580 | brobecker/2007-02-20: I don't think this can actually happen | |
5581 | but we don't want to print the value of annonymous fields anyway. */ | |
5582 | if (name == NULL) | |
5583 | return 1; | |
5584 | ||
5585 | /* A field named "_parent" is internally generated by GNAT for | |
5586 | tagged types, and should not be printed either. */ | |
5587 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5588 | return 1; | |
5589 | } | |
5590 | ||
5591 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5592 | if (ada_is_tagged_type (type, 1) | |
5593 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5594 | return 1; | |
5595 | ||
5596 | /* Not a special field, so it should not be ignored. */ | |
5597 | return 0; | |
963a6417 | 5598 | } |
96d887e8 | 5599 | |
963a6417 PH |
5600 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5601 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5602 | |
963a6417 PH |
5603 | int |
5604 | ada_is_tagged_type (struct type *type, int refok) | |
5605 | { | |
5606 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5607 | } | |
96d887e8 | 5608 | |
963a6417 | 5609 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5610 | |
963a6417 PH |
5611 | int |
5612 | ada_is_tag_type (struct type *type) | |
5613 | { | |
5614 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5615 | return 0; | |
5616 | else | |
96d887e8 | 5617 | { |
963a6417 PH |
5618 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5619 | return (name != NULL | |
5620 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5621 | } |
96d887e8 PH |
5622 | } |
5623 | ||
963a6417 | 5624 | /* The type of the tag on VAL. */ |
76a01679 | 5625 | |
963a6417 PH |
5626 | struct type * |
5627 | ada_tag_type (struct value *val) | |
96d887e8 | 5628 | { |
df407dfe | 5629 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5630 | } |
96d887e8 | 5631 | |
963a6417 | 5632 | /* The value of the tag on VAL. */ |
96d887e8 | 5633 | |
963a6417 PH |
5634 | struct value * |
5635 | ada_value_tag (struct value *val) | |
5636 | { | |
03ee6b2e | 5637 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5638 | } |
5639 | ||
963a6417 PH |
5640 | /* The value of the tag on the object of type TYPE whose contents are |
5641 | saved at VALADDR, if it is non-null, or is at memory address | |
5642 | ADDRESS. */ | |
96d887e8 | 5643 | |
963a6417 | 5644 | static struct value * |
10a2c479 | 5645 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5646 | const gdb_byte *valaddr, |
963a6417 | 5647 | CORE_ADDR address) |
96d887e8 | 5648 | { |
963a6417 PH |
5649 | int tag_byte_offset, dummy1, dummy2; |
5650 | struct type *tag_type; | |
5651 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5652 | NULL, NULL, NULL)) |
96d887e8 | 5653 | { |
fc1a4b47 | 5654 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5655 | ? NULL |
5656 | : valaddr + tag_byte_offset); | |
963a6417 | 5657 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5658 | |
963a6417 | 5659 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5660 | } |
963a6417 PH |
5661 | return NULL; |
5662 | } | |
96d887e8 | 5663 | |
963a6417 PH |
5664 | static struct type * |
5665 | type_from_tag (struct value *tag) | |
5666 | { | |
5667 | const char *type_name = ada_tag_name (tag); | |
5668 | if (type_name != NULL) | |
5669 | return ada_find_any_type (ada_encode (type_name)); | |
5670 | return NULL; | |
5671 | } | |
96d887e8 | 5672 | |
963a6417 PH |
5673 | struct tag_args |
5674 | { | |
5675 | struct value *tag; | |
5676 | char *name; | |
5677 | }; | |
4c4b4cd2 | 5678 | |
529cad9c PH |
5679 | |
5680 | static int ada_tag_name_1 (void *); | |
5681 | static int ada_tag_name_2 (struct tag_args *); | |
5682 | ||
4c4b4cd2 PH |
5683 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5684 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5685 | The value stored in ARGS->name is valid until the next call to | |
5686 | ada_tag_name_1. */ | |
5687 | ||
5688 | static int | |
5689 | ada_tag_name_1 (void *args0) | |
5690 | { | |
5691 | struct tag_args *args = (struct tag_args *) args0; | |
5692 | static char name[1024]; | |
76a01679 | 5693 | char *p; |
4c4b4cd2 PH |
5694 | struct value *val; |
5695 | args->name = NULL; | |
03ee6b2e | 5696 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5697 | if (val == NULL) |
5698 | return ada_tag_name_2 (args); | |
03ee6b2e | 5699 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5700 | if (val == NULL) |
5701 | return 0; | |
5702 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5703 | for (p = name; *p != '\0'; p += 1) | |
5704 | if (isalpha (*p)) | |
5705 | *p = tolower (*p); | |
5706 | args->name = name; | |
5707 | return 0; | |
5708 | } | |
5709 | ||
5710 | /* Utility function for ada_tag_name_1 that tries the second | |
5711 | representation for the dispatch table (in which there is no | |
5712 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5713 | the tsd pointer is stored just before the dispatch table. */ | |
5714 | ||
5715 | static int | |
5716 | ada_tag_name_2 (struct tag_args *args) | |
5717 | { | |
5718 | struct type *info_type; | |
5719 | static char name[1024]; | |
5720 | char *p; | |
5721 | struct value *val, *valp; | |
5722 | ||
5723 | args->name = NULL; | |
5724 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5725 | if (info_type == NULL) | |
5726 | return 0; | |
5727 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5728 | valp = value_cast (info_type, args->tag); | |
5729 | if (valp == NULL) | |
5730 | return 0; | |
89eef114 UW |
5731 | val = value_ind (value_ptradd (valp, |
5732 | value_from_longest (builtin_type_int8, -1))); | |
4c4b4cd2 PH |
5733 | if (val == NULL) |
5734 | return 0; | |
03ee6b2e | 5735 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5736 | if (val == NULL) |
5737 | return 0; | |
5738 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5739 | for (p = name; *p != '\0'; p += 1) | |
5740 | if (isalpha (*p)) | |
5741 | *p = tolower (*p); | |
5742 | args->name = name; | |
5743 | return 0; | |
5744 | } | |
5745 | ||
5746 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5747 | * a C string. */ | |
5748 | ||
5749 | const char * | |
5750 | ada_tag_name (struct value *tag) | |
5751 | { | |
5752 | struct tag_args args; | |
df407dfe | 5753 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5754 | return NULL; |
76a01679 | 5755 | args.tag = tag; |
4c4b4cd2 PH |
5756 | args.name = NULL; |
5757 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5758 | return args.name; | |
5759 | } | |
5760 | ||
5761 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5762 | |
d2e4a39e | 5763 | struct type * |
ebf56fd3 | 5764 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5765 | { |
5766 | int i; | |
5767 | ||
61ee279c | 5768 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5769 | |
5770 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5771 | return NULL; | |
5772 | ||
5773 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5774 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5775 | { |
5776 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5777 | ||
5778 | /* If the _parent field is a pointer, then dereference it. */ | |
5779 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5780 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5781 | /* If there is a parallel XVS type, get the actual base type. */ | |
5782 | parent_type = ada_get_base_type (parent_type); | |
5783 | ||
5784 | return ada_check_typedef (parent_type); | |
5785 | } | |
14f9c5c9 AS |
5786 | |
5787 | return NULL; | |
5788 | } | |
5789 | ||
4c4b4cd2 PH |
5790 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5791 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5792 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5793 | |
5794 | int | |
ebf56fd3 | 5795 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5796 | { |
61ee279c | 5797 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5798 | return (name != NULL |
5799 | && (strncmp (name, "PARENT", 6) == 0 | |
5800 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5801 | } |
5802 | ||
4c4b4cd2 | 5803 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5804 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5805 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5806 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5807 | structures. */ |
14f9c5c9 AS |
5808 | |
5809 | int | |
ebf56fd3 | 5810 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5811 | { |
d2e4a39e AS |
5812 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5813 | return (name != NULL | |
4c4b4cd2 PH |
5814 | && (strncmp (name, "PARENT", 6) == 0 |
5815 | || strcmp (name, "REP") == 0 | |
5816 | || strncmp (name, "_parent", 7) == 0 | |
5817 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5818 | } |
5819 | ||
4c4b4cd2 PH |
5820 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5821 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5822 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5823 | |
5824 | int | |
ebf56fd3 | 5825 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5826 | { |
d2e4a39e | 5827 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5828 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5829 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5830 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5831 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5832 | } |
5833 | ||
5834 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5835 | whose discriminants are contained in the record type OUTER_TYPE, |
14f9c5c9 AS |
5836 | returns the type of the controlling discriminant for the variant. */ |
5837 | ||
d2e4a39e | 5838 | struct type * |
ebf56fd3 | 5839 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5840 | { |
d2e4a39e | 5841 | char *name = ada_variant_discrim_name (var_type); |
76a01679 | 5842 | struct type *type = |
4c4b4cd2 | 5843 | ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5844 | if (type == NULL) |
5845 | return builtin_type_int; | |
5846 | else | |
5847 | return type; | |
5848 | } | |
5849 | ||
4c4b4cd2 | 5850 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5851 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5852 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5853 | |
5854 | int | |
ebf56fd3 | 5855 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5856 | { |
d2e4a39e | 5857 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5858 | return (name != NULL && name[0] == 'O'); |
5859 | } | |
5860 | ||
5861 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5862 | returns the name of the discriminant controlling the variant. |
5863 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5864 | |
d2e4a39e | 5865 | char * |
ebf56fd3 | 5866 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5867 | { |
d2e4a39e | 5868 | static char *result = NULL; |
14f9c5c9 | 5869 | static size_t result_len = 0; |
d2e4a39e AS |
5870 | struct type *type; |
5871 | const char *name; | |
5872 | const char *discrim_end; | |
5873 | const char *discrim_start; | |
14f9c5c9 AS |
5874 | |
5875 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5876 | type = TYPE_TARGET_TYPE (type0); | |
5877 | else | |
5878 | type = type0; | |
5879 | ||
5880 | name = ada_type_name (type); | |
5881 | ||
5882 | if (name == NULL || name[0] == '\000') | |
5883 | return ""; | |
5884 | ||
5885 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5886 | discrim_end -= 1) | |
5887 | { | |
4c4b4cd2 PH |
5888 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5889 | break; | |
14f9c5c9 AS |
5890 | } |
5891 | if (discrim_end == name) | |
5892 | return ""; | |
5893 | ||
d2e4a39e | 5894 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5895 | discrim_start -= 1) |
5896 | { | |
d2e4a39e | 5897 | if (discrim_start == name + 1) |
4c4b4cd2 | 5898 | return ""; |
76a01679 | 5899 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5900 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5901 | || discrim_start[-1] == '.') | |
5902 | break; | |
14f9c5c9 AS |
5903 | } |
5904 | ||
5905 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5906 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5907 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5908 | return result; |
5909 | } | |
5910 | ||
4c4b4cd2 PH |
5911 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5912 | Put the position of the character just past the number scanned in | |
5913 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5914 | Return 1 if there was a valid number at the given position, and 0 | |
5915 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5916 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5917 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5918 | |
5919 | int | |
d2e4a39e | 5920 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5921 | { |
5922 | ULONGEST RU; | |
5923 | ||
d2e4a39e | 5924 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5925 | return 0; |
5926 | ||
4c4b4cd2 | 5927 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5928 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5929 | LONGEST. */ |
14f9c5c9 AS |
5930 | RU = 0; |
5931 | while (isdigit (str[k])) | |
5932 | { | |
d2e4a39e | 5933 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5934 | k += 1; |
5935 | } | |
5936 | ||
d2e4a39e | 5937 | if (str[k] == 'm') |
14f9c5c9 AS |
5938 | { |
5939 | if (R != NULL) | |
4c4b4cd2 | 5940 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5941 | k += 1; |
5942 | } | |
5943 | else if (R != NULL) | |
5944 | *R = (LONGEST) RU; | |
5945 | ||
4c4b4cd2 | 5946 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5947 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5948 | number representable as a LONGEST (although either would probably work | |
5949 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5950 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5951 | |
5952 | if (new_k != NULL) | |
5953 | *new_k = k; | |
5954 | return 1; | |
5955 | } | |
5956 | ||
4c4b4cd2 PH |
5957 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5958 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5959 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5960 | |
d2e4a39e | 5961 | int |
ebf56fd3 | 5962 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5963 | { |
d2e4a39e | 5964 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5965 | int p; |
5966 | ||
5967 | p = 0; | |
5968 | while (1) | |
5969 | { | |
d2e4a39e | 5970 | switch (name[p]) |
4c4b4cd2 PH |
5971 | { |
5972 | case '\0': | |
5973 | return 0; | |
5974 | case 'S': | |
5975 | { | |
5976 | LONGEST W; | |
5977 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5978 | return 0; | |
5979 | if (val == W) | |
5980 | return 1; | |
5981 | break; | |
5982 | } | |
5983 | case 'R': | |
5984 | { | |
5985 | LONGEST L, U; | |
5986 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5987 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5988 | return 0; | |
5989 | if (val >= L && val <= U) | |
5990 | return 1; | |
5991 | break; | |
5992 | } | |
5993 | case 'O': | |
5994 | return 1; | |
5995 | default: | |
5996 | return 0; | |
5997 | } | |
5998 | } | |
5999 | } | |
6000 | ||
6001 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
6002 | ||
6003 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6004 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6005 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6006 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6007 | |
4c4b4cd2 | 6008 | static struct value * |
d2e4a39e | 6009 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6010 | struct type *arg_type) |
14f9c5c9 | 6011 | { |
14f9c5c9 AS |
6012 | struct type *type; |
6013 | ||
61ee279c | 6014 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6015 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6016 | ||
4c4b4cd2 | 6017 | /* Handle packed fields. */ |
14f9c5c9 AS |
6018 | |
6019 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6020 | { | |
6021 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6022 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6023 | |
0fd88904 | 6024 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6025 | offset + bit_pos / 8, |
6026 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6027 | } |
6028 | else | |
6029 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6030 | } | |
6031 | ||
52ce6436 PH |
6032 | /* Find field with name NAME in object of type TYPE. If found, |
6033 | set the following for each argument that is non-null: | |
6034 | - *FIELD_TYPE_P to the field's type; | |
6035 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6036 | an object of that type; | |
6037 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6038 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6039 | 0 otherwise; | |
6040 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6041 | fields up to but not including the desired field, or by the total | |
6042 | number of fields if not found. A NULL value of NAME never | |
6043 | matches; the function just counts visible fields in this case. | |
6044 | ||
6045 | Returns 1 if found, 0 otherwise. */ | |
6046 | ||
4c4b4cd2 | 6047 | static int |
76a01679 JB |
6048 | find_struct_field (char *name, struct type *type, int offset, |
6049 | struct type **field_type_p, | |
52ce6436 PH |
6050 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6051 | int *index_p) | |
4c4b4cd2 PH |
6052 | { |
6053 | int i; | |
6054 | ||
61ee279c | 6055 | type = ada_check_typedef (type); |
76a01679 | 6056 | |
52ce6436 PH |
6057 | if (field_type_p != NULL) |
6058 | *field_type_p = NULL; | |
6059 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6060 | *byte_offset_p = 0; |
52ce6436 PH |
6061 | if (bit_offset_p != NULL) |
6062 | *bit_offset_p = 0; | |
6063 | if (bit_size_p != NULL) | |
6064 | *bit_size_p = 0; | |
6065 | ||
6066 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6067 | { |
6068 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6069 | int fld_offset = offset + bit_pos / 8; | |
6070 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6071 | |
4c4b4cd2 PH |
6072 | if (t_field_name == NULL) |
6073 | continue; | |
6074 | ||
52ce6436 | 6075 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6076 | { |
6077 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
6078 | if (field_type_p != NULL) |
6079 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6080 | if (byte_offset_p != NULL) | |
6081 | *byte_offset_p = fld_offset; | |
6082 | if (bit_offset_p != NULL) | |
6083 | *bit_offset_p = bit_pos % 8; | |
6084 | if (bit_size_p != NULL) | |
6085 | *bit_size_p = bit_size; | |
76a01679 JB |
6086 | return 1; |
6087 | } | |
4c4b4cd2 PH |
6088 | else if (ada_is_wrapper_field (type, i)) |
6089 | { | |
52ce6436 PH |
6090 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6091 | field_type_p, byte_offset_p, bit_offset_p, | |
6092 | bit_size_p, index_p)) | |
76a01679 JB |
6093 | return 1; |
6094 | } | |
4c4b4cd2 PH |
6095 | else if (ada_is_variant_part (type, i)) |
6096 | { | |
52ce6436 PH |
6097 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6098 | fixed type?? */ | |
4c4b4cd2 | 6099 | int j; |
52ce6436 PH |
6100 | struct type *field_type |
6101 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6102 | |
52ce6436 | 6103 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6104 | { |
76a01679 JB |
6105 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6106 | fld_offset | |
6107 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6108 | field_type_p, byte_offset_p, | |
52ce6436 | 6109 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6110 | return 1; |
4c4b4cd2 PH |
6111 | } |
6112 | } | |
52ce6436 PH |
6113 | else if (index_p != NULL) |
6114 | *index_p += 1; | |
4c4b4cd2 PH |
6115 | } |
6116 | return 0; | |
6117 | } | |
6118 | ||
52ce6436 | 6119 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6120 | |
52ce6436 PH |
6121 | static int |
6122 | num_visible_fields (struct type *type) | |
6123 | { | |
6124 | int n; | |
6125 | n = 0; | |
6126 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6127 | return n; | |
6128 | } | |
14f9c5c9 | 6129 | |
4c4b4cd2 | 6130 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6131 | and search in it assuming it has (class) type TYPE. |
6132 | If found, return value, else return NULL. | |
6133 | ||
4c4b4cd2 | 6134 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6135 | |
4c4b4cd2 | 6136 | static struct value * |
d2e4a39e | 6137 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6138 | struct type *type) |
14f9c5c9 AS |
6139 | { |
6140 | int i; | |
61ee279c | 6141 | type = ada_check_typedef (type); |
14f9c5c9 | 6142 | |
52ce6436 | 6143 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6144 | { |
6145 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6146 | ||
6147 | if (t_field_name == NULL) | |
4c4b4cd2 | 6148 | continue; |
14f9c5c9 AS |
6149 | |
6150 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6151 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6152 | |
6153 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6154 | { |
06d5cf63 JB |
6155 | struct value *v = /* Do not let indent join lines here. */ |
6156 | ada_search_struct_field (name, arg, | |
6157 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6158 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
6159 | if (v != NULL) |
6160 | return v; | |
6161 | } | |
14f9c5c9 AS |
6162 | |
6163 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6164 | { |
52ce6436 | 6165 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6166 | int j; |
61ee279c | 6167 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6168 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6169 | ||
52ce6436 | 6170 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6171 | { |
06d5cf63 JB |
6172 | struct value *v = ada_search_struct_field /* Force line break. */ |
6173 | (name, arg, | |
6174 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6175 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
6176 | if (v != NULL) |
6177 | return v; | |
6178 | } | |
6179 | } | |
14f9c5c9 AS |
6180 | } |
6181 | return NULL; | |
6182 | } | |
d2e4a39e | 6183 | |
52ce6436 PH |
6184 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6185 | int, struct type *); | |
6186 | ||
6187 | ||
6188 | /* Return field #INDEX in ARG, where the index is that returned by | |
6189 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6190 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6191 | * If found, return value, else return NULL. */ | |
6192 | ||
6193 | static struct value * | |
6194 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6195 | struct type *type) | |
6196 | { | |
6197 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6198 | } | |
6199 | ||
6200 | ||
6201 | /* Auxiliary function for ada_index_struct_field. Like | |
6202 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6203 | * *INDEX_P. */ | |
6204 | ||
6205 | static struct value * | |
6206 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6207 | struct type *type) | |
6208 | { | |
6209 | int i; | |
6210 | type = ada_check_typedef (type); | |
6211 | ||
6212 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6213 | { | |
6214 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6215 | continue; | |
6216 | else if (ada_is_wrapper_field (type, i)) | |
6217 | { | |
6218 | struct value *v = /* Do not let indent join lines here. */ | |
6219 | ada_index_struct_field_1 (index_p, arg, | |
6220 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6221 | TYPE_FIELD_TYPE (type, i)); | |
6222 | if (v != NULL) | |
6223 | return v; | |
6224 | } | |
6225 | ||
6226 | else if (ada_is_variant_part (type, i)) | |
6227 | { | |
6228 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6229 | find_struct_field. */ | |
6230 | error (_("Cannot assign this kind of variant record")); | |
6231 | } | |
6232 | else if (*index_p == 0) | |
6233 | return ada_value_primitive_field (arg, offset, i, type); | |
6234 | else | |
6235 | *index_p -= 1; | |
6236 | } | |
6237 | return NULL; | |
6238 | } | |
6239 | ||
4c4b4cd2 PH |
6240 | /* Given ARG, a value of type (pointer or reference to a)* |
6241 | structure/union, extract the component named NAME from the ultimate | |
6242 | target structure/union and return it as a value with its | |
6243 | appropriate type. If ARG is a pointer or reference and the field | |
6244 | is not packed, returns a reference to the field, otherwise the | |
6245 | value of the field (an lvalue if ARG is an lvalue). | |
14f9c5c9 | 6246 | |
4c4b4cd2 PH |
6247 | The routine searches for NAME among all members of the structure itself |
6248 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6249 | (e.g., '_parent'). |
6250 | ||
03ee6b2e PH |
6251 | If NO_ERR, then simply return NULL in case of error, rather than |
6252 | calling error. */ | |
14f9c5c9 | 6253 | |
d2e4a39e | 6254 | struct value * |
03ee6b2e | 6255 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6256 | { |
4c4b4cd2 | 6257 | struct type *t, *t1; |
d2e4a39e | 6258 | struct value *v; |
14f9c5c9 | 6259 | |
4c4b4cd2 | 6260 | v = NULL; |
df407dfe | 6261 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6262 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6263 | { | |
6264 | t1 = TYPE_TARGET_TYPE (t); | |
6265 | if (t1 == NULL) | |
03ee6b2e | 6266 | goto BadValue; |
61ee279c | 6267 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6268 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6269 | { |
994b9211 | 6270 | arg = coerce_ref (arg); |
76a01679 JB |
6271 | t = t1; |
6272 | } | |
4c4b4cd2 | 6273 | } |
14f9c5c9 | 6274 | |
4c4b4cd2 PH |
6275 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6276 | { | |
6277 | t1 = TYPE_TARGET_TYPE (t); | |
6278 | if (t1 == NULL) | |
03ee6b2e | 6279 | goto BadValue; |
61ee279c | 6280 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6281 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6282 | { |
6283 | arg = value_ind (arg); | |
6284 | t = t1; | |
6285 | } | |
4c4b4cd2 | 6286 | else |
76a01679 | 6287 | break; |
4c4b4cd2 | 6288 | } |
14f9c5c9 | 6289 | |
4c4b4cd2 | 6290 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6291 | goto BadValue; |
14f9c5c9 | 6292 | |
4c4b4cd2 PH |
6293 | if (t1 == t) |
6294 | v = ada_search_struct_field (name, arg, 0, t); | |
6295 | else | |
6296 | { | |
6297 | int bit_offset, bit_size, byte_offset; | |
6298 | struct type *field_type; | |
6299 | CORE_ADDR address; | |
6300 | ||
76a01679 JB |
6301 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6302 | address = value_as_address (arg); | |
4c4b4cd2 | 6303 | else |
0fd88904 | 6304 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6305 | |
1ed6ede0 | 6306 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6307 | if (find_struct_field (name, t1, 0, |
6308 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6309 | &bit_size, NULL)) |
76a01679 JB |
6310 | { |
6311 | if (bit_size != 0) | |
6312 | { | |
714e53ab PH |
6313 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6314 | arg = ada_coerce_ref (arg); | |
6315 | else | |
6316 | arg = ada_value_ind (arg); | |
76a01679 JB |
6317 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6318 | bit_offset, bit_size, | |
6319 | field_type); | |
6320 | } | |
6321 | else | |
6322 | v = value_from_pointer (lookup_reference_type (field_type), | |
6323 | address + byte_offset); | |
6324 | } | |
6325 | } | |
6326 | ||
03ee6b2e PH |
6327 | if (v != NULL || no_err) |
6328 | return v; | |
6329 | else | |
323e0a4a | 6330 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6331 | |
03ee6b2e PH |
6332 | BadValue: |
6333 | if (no_err) | |
6334 | return NULL; | |
6335 | else | |
6336 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6337 | } |
6338 | ||
6339 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6340 | If DISPP is non-null, add its byte displacement from the beginning of a |
6341 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6342 | work for packed fields). |
6343 | ||
6344 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6345 | followed by "___". |
14f9c5c9 | 6346 | |
4c4b4cd2 PH |
6347 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6348 | be a (pointer or reference)+ to a struct or union, and the | |
6349 | ultimate target type will be searched. | |
14f9c5c9 AS |
6350 | |
6351 | Looks recursively into variant clauses and parent types. | |
6352 | ||
4c4b4cd2 PH |
6353 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6354 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6355 | |
4c4b4cd2 | 6356 | static struct type * |
76a01679 JB |
6357 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6358 | int noerr, int *dispp) | |
14f9c5c9 AS |
6359 | { |
6360 | int i; | |
6361 | ||
6362 | if (name == NULL) | |
6363 | goto BadName; | |
6364 | ||
76a01679 | 6365 | if (refok && type != NULL) |
4c4b4cd2 PH |
6366 | while (1) |
6367 | { | |
61ee279c | 6368 | type = ada_check_typedef (type); |
76a01679 JB |
6369 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6370 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6371 | break; | |
6372 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6373 | } |
14f9c5c9 | 6374 | |
76a01679 | 6375 | if (type == NULL |
1265e4aa JB |
6376 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6377 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6378 | { |
4c4b4cd2 | 6379 | if (noerr) |
76a01679 | 6380 | return NULL; |
4c4b4cd2 | 6381 | else |
76a01679 JB |
6382 | { |
6383 | target_terminal_ours (); | |
6384 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6385 | if (type == NULL) |
6386 | error (_("Type (null) is not a structure or union type")); | |
6387 | else | |
6388 | { | |
6389 | /* XXX: type_sprint */ | |
6390 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6391 | type_print (type, "", gdb_stderr, -1); | |
6392 | error (_(" is not a structure or union type")); | |
6393 | } | |
76a01679 | 6394 | } |
14f9c5c9 AS |
6395 | } |
6396 | ||
6397 | type = to_static_fixed_type (type); | |
6398 | ||
6399 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6400 | { | |
6401 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6402 | struct type *t; | |
6403 | int disp; | |
d2e4a39e | 6404 | |
14f9c5c9 | 6405 | if (t_field_name == NULL) |
4c4b4cd2 | 6406 | continue; |
14f9c5c9 AS |
6407 | |
6408 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6409 | { |
6410 | if (dispp != NULL) | |
6411 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6412 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6413 | } |
14f9c5c9 AS |
6414 | |
6415 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6416 | { |
6417 | disp = 0; | |
6418 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6419 | 0, 1, &disp); | |
6420 | if (t != NULL) | |
6421 | { | |
6422 | if (dispp != NULL) | |
6423 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6424 | return t; | |
6425 | } | |
6426 | } | |
14f9c5c9 AS |
6427 | |
6428 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6429 | { |
6430 | int j; | |
61ee279c | 6431 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6432 | |
6433 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6434 | { | |
6435 | disp = 0; | |
6436 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6437 | name, 0, 1, &disp); | |
6438 | if (t != NULL) | |
6439 | { | |
6440 | if (dispp != NULL) | |
6441 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6442 | return t; | |
6443 | } | |
6444 | } | |
6445 | } | |
14f9c5c9 AS |
6446 | |
6447 | } | |
6448 | ||
6449 | BadName: | |
d2e4a39e | 6450 | if (!noerr) |
14f9c5c9 AS |
6451 | { |
6452 | target_terminal_ours (); | |
6453 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6454 | if (name == NULL) |
6455 | { | |
6456 | /* XXX: type_sprint */ | |
6457 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6458 | type_print (type, "", gdb_stderr, -1); | |
6459 | error (_(" has no component named <null>")); | |
6460 | } | |
6461 | else | |
6462 | { | |
6463 | /* XXX: type_sprint */ | |
6464 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6465 | type_print (type, "", gdb_stderr, -1); | |
6466 | error (_(" has no component named %s"), name); | |
6467 | } | |
14f9c5c9 AS |
6468 | } |
6469 | ||
6470 | return NULL; | |
6471 | } | |
6472 | ||
6473 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), | |
6474 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6475 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6476 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6477 | |
d2e4a39e | 6478 | int |
ebf56fd3 | 6479 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6480 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6481 | { |
6482 | int others_clause; | |
6483 | int i; | |
d2e4a39e | 6484 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6485 | struct value *outer; |
6486 | struct value *discrim; | |
14f9c5c9 AS |
6487 | LONGEST discrim_val; |
6488 | ||
0c281816 JB |
6489 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6490 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6491 | if (discrim == NULL) | |
14f9c5c9 | 6492 | return -1; |
0c281816 | 6493 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6494 | |
6495 | others_clause = -1; | |
6496 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6497 | { | |
6498 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6499 | others_clause = i; |
14f9c5c9 | 6500 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6501 | return i; |
14f9c5c9 AS |
6502 | } |
6503 | ||
6504 | return others_clause; | |
6505 | } | |
d2e4a39e | 6506 | \f |
14f9c5c9 AS |
6507 | |
6508 | ||
4c4b4cd2 | 6509 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6510 | |
6511 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6512 | (i.e., a size that is not statically recorded in the debugging | |
6513 | data) does not accurately reflect the size or layout of the value. | |
6514 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6515 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6516 | |
6517 | /* There is a subtle and tricky problem here. In general, we cannot | |
6518 | determine the size of dynamic records without its data. However, | |
6519 | the 'struct value' data structure, which GDB uses to represent | |
6520 | quantities in the inferior process (the target), requires the size | |
6521 | of the type at the time of its allocation in order to reserve space | |
6522 | for GDB's internal copy of the data. That's why the | |
6523 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6524 | rather than struct value*s. |
14f9c5c9 AS |
6525 | |
6526 | However, GDB's internal history variables ($1, $2, etc.) are | |
6527 | struct value*s containing internal copies of the data that are not, in | |
6528 | general, the same as the data at their corresponding addresses in | |
6529 | the target. Fortunately, the types we give to these values are all | |
6530 | conventional, fixed-size types (as per the strategy described | |
6531 | above), so that we don't usually have to perform the | |
6532 | 'to_fixed_xxx_type' conversions to look at their values. | |
6533 | Unfortunately, there is one exception: if one of the internal | |
6534 | history variables is an array whose elements are unconstrained | |
6535 | records, then we will need to create distinct fixed types for each | |
6536 | element selected. */ | |
6537 | ||
6538 | /* The upshot of all of this is that many routines take a (type, host | |
6539 | address, target address) triple as arguments to represent a value. | |
6540 | The host address, if non-null, is supposed to contain an internal | |
6541 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6542 | target at the target address. */ |
14f9c5c9 AS |
6543 | |
6544 | /* Assuming that VAL0 represents a pointer value, the result of | |
6545 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6546 | dynamic-sized types. */ |
14f9c5c9 | 6547 | |
d2e4a39e AS |
6548 | struct value * |
6549 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6550 | { |
d2e4a39e | 6551 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6552 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6553 | } |
6554 | ||
6555 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6556 | qualifiers on VAL0. */ |
6557 | ||
d2e4a39e AS |
6558 | static struct value * |
6559 | ada_coerce_ref (struct value *val0) | |
6560 | { | |
df407dfe | 6561 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6562 | { |
6563 | struct value *val = val0; | |
994b9211 | 6564 | val = coerce_ref (val); |
d2e4a39e | 6565 | val = unwrap_value (val); |
4c4b4cd2 | 6566 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6567 | } |
6568 | else | |
14f9c5c9 AS |
6569 | return val0; |
6570 | } | |
6571 | ||
6572 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6573 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6574 | |
6575 | static unsigned int | |
ebf56fd3 | 6576 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6577 | { |
6578 | return (off + alignment - 1) & ~(alignment - 1); | |
6579 | } | |
6580 | ||
4c4b4cd2 | 6581 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6582 | |
6583 | static unsigned int | |
ebf56fd3 | 6584 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6585 | { |
d2e4a39e | 6586 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6587 | int len; |
14f9c5c9 AS |
6588 | int align_offset; |
6589 | ||
64a1bf19 JB |
6590 | /* The field name should never be null, unless the debugging information |
6591 | is somehow malformed. In this case, we assume the field does not | |
6592 | require any alignment. */ | |
6593 | if (name == NULL) | |
6594 | return 1; | |
6595 | ||
6596 | len = strlen (name); | |
6597 | ||
4c4b4cd2 PH |
6598 | if (!isdigit (name[len - 1])) |
6599 | return 1; | |
14f9c5c9 | 6600 | |
d2e4a39e | 6601 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6602 | align_offset = len - 2; |
6603 | else | |
6604 | align_offset = len - 1; | |
6605 | ||
4c4b4cd2 | 6606 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6607 | return TARGET_CHAR_BIT; |
6608 | ||
4c4b4cd2 PH |
6609 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6610 | } | |
6611 | ||
6612 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6613 | ||
6614 | struct symbol * | |
6615 | ada_find_any_symbol (const char *name) | |
6616 | { | |
6617 | struct symbol *sym; | |
6618 | ||
6619 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6620 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6621 | return sym; | |
6622 | ||
6623 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6624 | return sym; | |
14f9c5c9 AS |
6625 | } |
6626 | ||
6627 | /* Find a type named NAME. Ignores ambiguity. */ | |
4c4b4cd2 | 6628 | |
d2e4a39e | 6629 | struct type * |
ebf56fd3 | 6630 | ada_find_any_type (const char *name) |
14f9c5c9 | 6631 | { |
4c4b4cd2 | 6632 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6633 | |
14f9c5c9 AS |
6634 | if (sym != NULL) |
6635 | return SYMBOL_TYPE (sym); | |
6636 | ||
6637 | return NULL; | |
6638 | } | |
6639 | ||
aeb5907d JB |
6640 | /* Given NAME and an associated BLOCK, search all symbols for |
6641 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6642 | associated to NAME. Return this symbol if found, return |
6643 | NULL otherwise. */ | |
6644 | ||
6645 | struct symbol * | |
6646 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6647 | { |
6648 | struct symbol *sym; | |
6649 | ||
6650 | sym = find_old_style_renaming_symbol (name, block); | |
6651 | ||
6652 | if (sym != NULL) | |
6653 | return sym; | |
6654 | ||
6655 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6656 | sym = ada_find_any_symbol (name); | |
6657 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6658 | return sym; | |
6659 | else | |
6660 | return NULL; | |
6661 | } | |
6662 | ||
6663 | static struct symbol * | |
6664 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6665 | { |
7f0df278 | 6666 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6667 | char *rename; |
6668 | ||
6669 | if (function_sym != NULL) | |
6670 | { | |
6671 | /* If the symbol is defined inside a function, NAME is not fully | |
6672 | qualified. This means we need to prepend the function name | |
6673 | as well as adding the ``___XR'' suffix to build the name of | |
6674 | the associated renaming symbol. */ | |
6675 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6676 | /* Function names sometimes contain suffixes used |
6677 | for instance to qualify nested subprograms. When building | |
6678 | the XR type name, we need to make sure that this suffix is | |
6679 | not included. So do not include any suffix in the function | |
6680 | name length below. */ | |
6681 | const int function_name_len = ada_name_prefix_len (function_name); | |
76a01679 JB |
6682 | const int rename_len = function_name_len + 2 /* "__" */ |
6683 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6684 | |
529cad9c PH |
6685 | /* Strip the suffix if necessary. */ |
6686 | function_name[function_name_len] = '\0'; | |
6687 | ||
4c4b4cd2 PH |
6688 | /* Library-level functions are a special case, as GNAT adds |
6689 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6690 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6691 | have this prefix, so we need to skip this prefix if present. */ |
6692 | if (function_name_len > 5 /* "_ada_" */ | |
6693 | && strstr (function_name, "_ada_") == function_name) | |
6694 | function_name = function_name + 5; | |
6695 | ||
6696 | rename = (char *) alloca (rename_len * sizeof (char)); | |
6697 | sprintf (rename, "%s__%s___XR", function_name, name); | |
6698 | } | |
6699 | else | |
6700 | { | |
6701 | const int rename_len = strlen (name) + 6; | |
6702 | rename = (char *) alloca (rename_len * sizeof (char)); | |
6703 | sprintf (rename, "%s___XR", name); | |
6704 | } | |
6705 | ||
6706 | return ada_find_any_symbol (rename); | |
6707 | } | |
6708 | ||
14f9c5c9 | 6709 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6710 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6711 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6712 | otherwise return 0. */ |
6713 | ||
14f9c5c9 | 6714 | int |
d2e4a39e | 6715 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6716 | { |
6717 | if (type1 == NULL) | |
6718 | return 1; | |
6719 | else if (type0 == NULL) | |
6720 | return 0; | |
6721 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6722 | return 1; | |
6723 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6724 | return 0; | |
4c4b4cd2 PH |
6725 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6726 | return 1; | |
14f9c5c9 AS |
6727 | else if (ada_is_packed_array_type (type0)) |
6728 | return 1; | |
4c4b4cd2 PH |
6729 | else if (ada_is_array_descriptor_type (type0) |
6730 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6731 | return 1; |
aeb5907d JB |
6732 | else |
6733 | { | |
6734 | const char *type0_name = type_name_no_tag (type0); | |
6735 | const char *type1_name = type_name_no_tag (type1); | |
6736 | ||
6737 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6738 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6739 | return 1; | |
6740 | } | |
14f9c5c9 AS |
6741 | return 0; |
6742 | } | |
6743 | ||
6744 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6745 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6746 | ||
d2e4a39e AS |
6747 | char * |
6748 | ada_type_name (struct type *type) | |
14f9c5c9 | 6749 | { |
d2e4a39e | 6750 | if (type == NULL) |
14f9c5c9 AS |
6751 | return NULL; |
6752 | else if (TYPE_NAME (type) != NULL) | |
6753 | return TYPE_NAME (type); | |
6754 | else | |
6755 | return TYPE_TAG_NAME (type); | |
6756 | } | |
6757 | ||
6758 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6759 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6760 | |
d2e4a39e | 6761 | struct type * |
ebf56fd3 | 6762 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6763 | { |
d2e4a39e | 6764 | static char *name; |
14f9c5c9 | 6765 | static size_t name_len = 0; |
14f9c5c9 | 6766 | int len; |
d2e4a39e AS |
6767 | char *typename = ada_type_name (type); |
6768 | ||
14f9c5c9 AS |
6769 | if (typename == NULL) |
6770 | return NULL; | |
6771 | ||
6772 | len = strlen (typename); | |
6773 | ||
d2e4a39e | 6774 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6775 | |
6776 | strcpy (name, typename); | |
6777 | strcpy (name + len, suffix); | |
6778 | ||
6779 | return ada_find_any_type (name); | |
6780 | } | |
6781 | ||
6782 | ||
6783 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6784 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6785 | |
d2e4a39e AS |
6786 | static struct type * |
6787 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6788 | { |
61ee279c | 6789 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6790 | |
6791 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6792 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6793 | return NULL; |
d2e4a39e | 6794 | else |
14f9c5c9 AS |
6795 | { |
6796 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6797 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6798 | return type; | |
14f9c5c9 | 6799 | else |
4c4b4cd2 | 6800 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6801 | } |
6802 | } | |
6803 | ||
6804 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6805 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6806 | |
d2e4a39e AS |
6807 | static int |
6808 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6809 | { |
6810 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6811 | return name != NULL |
14f9c5c9 AS |
6812 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6813 | && strstr (name, "___XVL") != NULL; | |
6814 | } | |
6815 | ||
4c4b4cd2 PH |
6816 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6817 | represent a variant record type. */ | |
14f9c5c9 | 6818 | |
d2e4a39e | 6819 | static int |
4c4b4cd2 | 6820 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6821 | { |
6822 | int f; | |
6823 | ||
4c4b4cd2 PH |
6824 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6825 | return -1; | |
6826 | ||
6827 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6828 | { | |
6829 | if (ada_is_variant_part (type, f)) | |
6830 | return f; | |
6831 | } | |
6832 | return -1; | |
14f9c5c9 AS |
6833 | } |
6834 | ||
4c4b4cd2 PH |
6835 | /* A record type with no fields. */ |
6836 | ||
d2e4a39e AS |
6837 | static struct type * |
6838 | empty_record (struct objfile *objfile) | |
14f9c5c9 | 6839 | { |
d2e4a39e | 6840 | struct type *type = alloc_type (objfile); |
14f9c5c9 AS |
6841 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6842 | TYPE_NFIELDS (type) = 0; | |
6843 | TYPE_FIELDS (type) = NULL; | |
6844 | TYPE_NAME (type) = "<empty>"; | |
6845 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6846 | TYPE_LENGTH (type) = 0; |
6847 | return type; | |
6848 | } | |
6849 | ||
6850 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6851 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6852 | the beginning of this section) VAL according to GNAT conventions. | |
6853 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6854 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6855 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6856 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6857 | of the variant. |
14f9c5c9 | 6858 | |
4c4b4cd2 PH |
6859 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6860 | length are not statically known are discarded. As a consequence, | |
6861 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6862 | ||
6863 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6864 | variants occupy whole numbers of bytes. However, they need not be | |
6865 | byte-aligned. */ | |
6866 | ||
6867 | struct type * | |
10a2c479 | 6868 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6869 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6870 | CORE_ADDR address, struct value *dval0, |
6871 | int keep_dynamic_fields) | |
14f9c5c9 | 6872 | { |
d2e4a39e AS |
6873 | struct value *mark = value_mark (); |
6874 | struct value *dval; | |
6875 | struct type *rtype; | |
14f9c5c9 | 6876 | int nfields, bit_len; |
4c4b4cd2 | 6877 | int variant_field; |
14f9c5c9 | 6878 | long off; |
4c4b4cd2 | 6879 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6880 | int f; |
6881 | ||
4c4b4cd2 PH |
6882 | /* Compute the number of fields in this record type that are going |
6883 | to be processed: unless keep_dynamic_fields, this includes only | |
6884 | fields whose position and length are static will be processed. */ | |
6885 | if (keep_dynamic_fields) | |
6886 | nfields = TYPE_NFIELDS (type); | |
6887 | else | |
6888 | { | |
6889 | nfields = 0; | |
76a01679 | 6890 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6891 | && !ada_is_variant_part (type, nfields) |
6892 | && !is_dynamic_field (type, nfields)) | |
6893 | nfields++; | |
6894 | } | |
6895 | ||
14f9c5c9 AS |
6896 | rtype = alloc_type (TYPE_OBJFILE (type)); |
6897 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6898 | INIT_CPLUS_SPECIFIC (rtype); | |
6899 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6900 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6901 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6902 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6903 | TYPE_NAME (rtype) = ada_type_name (type); | |
6904 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6905 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6906 | |
d2e4a39e AS |
6907 | off = 0; |
6908 | bit_len = 0; | |
4c4b4cd2 PH |
6909 | variant_field = -1; |
6910 | ||
14f9c5c9 AS |
6911 | for (f = 0; f < nfields; f += 1) |
6912 | { | |
6c038f32 PH |
6913 | off = align_value (off, field_alignment (type, f)) |
6914 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6915 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6916 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6917 | |
d2e4a39e | 6918 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6919 | { |
6920 | variant_field = f; | |
6921 | fld_bit_len = bit_incr = 0; | |
6922 | } | |
14f9c5c9 | 6923 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 PH |
6924 | { |
6925 | if (dval0 == NULL) | |
6926 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6927 | else | |
6928 | dval = dval0; | |
6929 | ||
1ed6ede0 JB |
6930 | /* Get the fixed type of the field. Note that, in this case, we |
6931 | do not want to get the real type out of the tag: if the current | |
6932 | field is the parent part of a tagged record, we will get the | |
6933 | tag of the object. Clearly wrong: the real type of the parent | |
6934 | is not the real type of the child. We would end up in an infinite | |
6935 | loop. */ | |
4c4b4cd2 PH |
6936 | TYPE_FIELD_TYPE (rtype, f) = |
6937 | ada_to_fixed_type | |
6938 | (ada_get_base_type | |
6939 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))), | |
6940 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
1ed6ede0 | 6941 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0); |
4c4b4cd2 PH |
6942 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6943 | bit_incr = fld_bit_len = | |
6944 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6945 | } | |
14f9c5c9 | 6946 | else |
4c4b4cd2 PH |
6947 | { |
6948 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6949 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6950 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6951 | bit_incr = fld_bit_len = | |
6952 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6953 | else | |
6954 | bit_incr = fld_bit_len = | |
6955 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6956 | } | |
14f9c5c9 | 6957 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6958 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6959 | off += bit_incr; |
4c4b4cd2 PH |
6960 | TYPE_LENGTH (rtype) = |
6961 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6962 | } |
4c4b4cd2 PH |
6963 | |
6964 | /* We handle the variant part, if any, at the end because of certain | |
6965 | odd cases in which it is re-ordered so as NOT the last field of | |
6966 | the record. This can happen in the presence of representation | |
6967 | clauses. */ | |
6968 | if (variant_field >= 0) | |
6969 | { | |
6970 | struct type *branch_type; | |
6971 | ||
6972 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6973 | ||
6974 | if (dval0 == NULL) | |
6975 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6976 | else | |
6977 | dval = dval0; | |
6978 | ||
6979 | branch_type = | |
6980 | to_fixed_variant_branch_type | |
6981 | (TYPE_FIELD_TYPE (type, variant_field), | |
6982 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6983 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6984 | if (branch_type == NULL) | |
6985 | { | |
6986 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6987 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6988 | TYPE_NFIELDS (rtype) -= 1; | |
6989 | } | |
6990 | else | |
6991 | { | |
6992 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6993 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6994 | fld_bit_len = | |
6995 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6996 | TARGET_CHAR_BIT; | |
6997 | if (off + fld_bit_len > bit_len) | |
6998 | bit_len = off + fld_bit_len; | |
6999 | TYPE_LENGTH (rtype) = | |
7000 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7001 | } | |
7002 | } | |
7003 | ||
714e53ab PH |
7004 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7005 | should contain the alignment of that record, which should be a strictly | |
7006 | positive value. If null or negative, then something is wrong, most | |
7007 | probably in the debug info. In that case, we don't round up the size | |
7008 | of the resulting type. If this record is not part of another structure, | |
7009 | the current RTYPE length might be good enough for our purposes. */ | |
7010 | if (TYPE_LENGTH (type) <= 0) | |
7011 | { | |
323e0a4a AC |
7012 | if (TYPE_NAME (rtype)) |
7013 | warning (_("Invalid type size for `%s' detected: %d."), | |
7014 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7015 | else | |
7016 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7017 | TYPE_LENGTH (type)); | |
714e53ab PH |
7018 | } |
7019 | else | |
7020 | { | |
7021 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7022 | TYPE_LENGTH (type)); | |
7023 | } | |
14f9c5c9 AS |
7024 | |
7025 | value_free_to_mark (mark); | |
d2e4a39e | 7026 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7027 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7028 | return rtype; |
7029 | } | |
7030 | ||
4c4b4cd2 PH |
7031 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7032 | of 1. */ | |
14f9c5c9 | 7033 | |
d2e4a39e | 7034 | static struct type * |
fc1a4b47 | 7035 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7036 | CORE_ADDR address, struct value *dval0) |
7037 | { | |
7038 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7039 | address, dval0, 1); | |
7040 | } | |
7041 | ||
7042 | /* An ordinary record type in which ___XVL-convention fields and | |
7043 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7044 | static approximations, containing all possible fields. Uses | |
7045 | no runtime values. Useless for use in values, but that's OK, | |
7046 | since the results are used only for type determinations. Works on both | |
7047 | structs and unions. Representation note: to save space, we memorize | |
7048 | the result of this function in the TYPE_TARGET_TYPE of the | |
7049 | template type. */ | |
7050 | ||
7051 | static struct type * | |
7052 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7053 | { |
7054 | struct type *type; | |
7055 | int nfields; | |
7056 | int f; | |
7057 | ||
4c4b4cd2 PH |
7058 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7059 | return TYPE_TARGET_TYPE (type0); | |
7060 | ||
7061 | nfields = TYPE_NFIELDS (type0); | |
7062 | type = type0; | |
14f9c5c9 AS |
7063 | |
7064 | for (f = 0; f < nfields; f += 1) | |
7065 | { | |
61ee279c | 7066 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7067 | struct type *new_type; |
14f9c5c9 | 7068 | |
4c4b4cd2 PH |
7069 | if (is_dynamic_field (type0, f)) |
7070 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7071 | else |
f192137b | 7072 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7073 | if (type == type0 && new_type != field_type) |
7074 | { | |
7075 | TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0)); | |
7076 | TYPE_CODE (type) = TYPE_CODE (type0); | |
7077 | INIT_CPLUS_SPECIFIC (type); | |
7078 | TYPE_NFIELDS (type) = nfields; | |
7079 | TYPE_FIELDS (type) = (struct field *) | |
7080 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7081 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7082 | sizeof (struct field) * nfields); | |
7083 | TYPE_NAME (type) = ada_type_name (type0); | |
7084 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7085 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7086 | TYPE_LENGTH (type) = 0; |
7087 | } | |
7088 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7089 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7090 | } |
14f9c5c9 AS |
7091 | return type; |
7092 | } | |
7093 | ||
4c4b4cd2 | 7094 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7095 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7096 | which should be a non-dynamic-sized record, in which the variant | |
7097 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7098 | for discriminant values in DVAL0, which can be NULL if the record |
7099 | contains the necessary discriminant values. */ | |
7100 | ||
d2e4a39e | 7101 | static struct type * |
fc1a4b47 | 7102 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7103 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7104 | { |
d2e4a39e | 7105 | struct value *mark = value_mark (); |
4c4b4cd2 | 7106 | struct value *dval; |
d2e4a39e | 7107 | struct type *rtype; |
14f9c5c9 AS |
7108 | struct type *branch_type; |
7109 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7110 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7111 | |
4c4b4cd2 | 7112 | if (variant_field == -1) |
14f9c5c9 AS |
7113 | return type; |
7114 | ||
4c4b4cd2 PH |
7115 | if (dval0 == NULL) |
7116 | dval = value_from_contents_and_address (type, valaddr, address); | |
7117 | else | |
7118 | dval = dval0; | |
7119 | ||
14f9c5c9 AS |
7120 | rtype = alloc_type (TYPE_OBJFILE (type)); |
7121 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
4c4b4cd2 PH |
7122 | INIT_CPLUS_SPECIFIC (rtype); |
7123 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7124 | TYPE_FIELDS (rtype) = |
7125 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7126 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7127 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7128 | TYPE_NAME (rtype) = ada_type_name (type); |
7129 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7130 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7131 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7132 | ||
4c4b4cd2 PH |
7133 | branch_type = to_fixed_variant_branch_type |
7134 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7135 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7136 | TYPE_FIELD_BITPOS (type, variant_field) |
7137 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7138 | cond_offset_target (address, |
4c4b4cd2 PH |
7139 | TYPE_FIELD_BITPOS (type, variant_field) |
7140 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7141 | if (branch_type == NULL) |
14f9c5c9 | 7142 | { |
4c4b4cd2 PH |
7143 | int f; |
7144 | for (f = variant_field + 1; f < nfields; f += 1) | |
7145 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7146 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7147 | } |
7148 | else | |
7149 | { | |
4c4b4cd2 PH |
7150 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7151 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7152 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7153 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7154 | } |
4c4b4cd2 | 7155 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7156 | |
4c4b4cd2 | 7157 | value_free_to_mark (mark); |
14f9c5c9 AS |
7158 | return rtype; |
7159 | } | |
7160 | ||
7161 | /* An ordinary record type (with fixed-length fields) that describes | |
7162 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7163 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7164 | should be in DVAL, a record value; it may be NULL if the object |
7165 | at ADDR itself contains any necessary discriminant values. | |
7166 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7167 | values from the record are needed. Except in the case that DVAL, | |
7168 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7169 | unchecked) is replaced by a particular branch of the variant. | |
7170 | ||
7171 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7172 | is questionable and may be removed. It can arise during the | |
7173 | processing of an unconstrained-array-of-record type where all the | |
7174 | variant branches have exactly the same size. This is because in | |
7175 | such cases, the compiler does not bother to use the XVS convention | |
7176 | when encoding the record. I am currently dubious of this | |
7177 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7178 | |
d2e4a39e | 7179 | static struct type * |
fc1a4b47 | 7180 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7181 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7182 | { |
d2e4a39e | 7183 | struct type *templ_type; |
14f9c5c9 | 7184 | |
876cecd0 | 7185 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7186 | return type0; |
7187 | ||
d2e4a39e | 7188 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7189 | |
7190 | if (templ_type != NULL) | |
7191 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7192 | else if (variant_field_index (type0) >= 0) |
7193 | { | |
7194 | if (dval == NULL && valaddr == NULL && address == 0) | |
7195 | return type0; | |
7196 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7197 | dval); | |
7198 | } | |
14f9c5c9 AS |
7199 | else |
7200 | { | |
876cecd0 | 7201 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7202 | return type0; |
7203 | } | |
7204 | ||
7205 | } | |
7206 | ||
7207 | /* An ordinary record type (with fixed-length fields) that describes | |
7208 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7209 | union type. Any necessary discriminants' values should be in DVAL, | |
7210 | a record value. That is, this routine selects the appropriate | |
7211 | branch of the union at ADDR according to the discriminant value | |
4c4b4cd2 | 7212 | indicated in the union's type name. */ |
14f9c5c9 | 7213 | |
d2e4a39e | 7214 | static struct type * |
fc1a4b47 | 7215 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7216 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7217 | { |
7218 | int which; | |
d2e4a39e AS |
7219 | struct type *templ_type; |
7220 | struct type *var_type; | |
14f9c5c9 AS |
7221 | |
7222 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7223 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7224 | else |
14f9c5c9 AS |
7225 | var_type = var_type0; |
7226 | ||
7227 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7228 | ||
7229 | if (templ_type != NULL) | |
7230 | var_type = templ_type; | |
7231 | ||
d2e4a39e AS |
7232 | which = |
7233 | ada_which_variant_applies (var_type, | |
0fd88904 | 7234 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7235 | |
7236 | if (which < 0) | |
7237 | return empty_record (TYPE_OBJFILE (var_type)); | |
7238 | else if (is_dynamic_field (var_type, which)) | |
4c4b4cd2 | 7239 | return to_fixed_record_type |
d2e4a39e AS |
7240 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7241 | valaddr, address, dval); | |
4c4b4cd2 | 7242 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7243 | return |
7244 | to_fixed_record_type | |
7245 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7246 | else |
7247 | return TYPE_FIELD_TYPE (var_type, which); | |
7248 | } | |
7249 | ||
7250 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7251 | at ADDR, and that DVAL describes a record containing any | |
7252 | discriminants used in TYPE0, returns a type for the value that | |
7253 | contains no dynamic components (that is, no components whose sizes | |
7254 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7255 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7256 | varsize_limit. */ |
14f9c5c9 | 7257 | |
d2e4a39e AS |
7258 | static struct type * |
7259 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7260 | int ignore_too_big) |
14f9c5c9 | 7261 | { |
d2e4a39e AS |
7262 | struct type *index_type_desc; |
7263 | struct type *result; | |
14f9c5c9 | 7264 | |
4c4b4cd2 | 7265 | if (ada_is_packed_array_type (type0) /* revisit? */ |
876cecd0 | 7266 | || TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7267 | return type0; |
14f9c5c9 AS |
7268 | |
7269 | index_type_desc = ada_find_parallel_type (type0, "___XA"); | |
7270 | if (index_type_desc == NULL) | |
7271 | { | |
61ee279c | 7272 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7273 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7274 | depend on the contents of the array in properly constructed |
7275 | debugging data. */ | |
529cad9c PH |
7276 | /* Create a fixed version of the array element type. |
7277 | We're not providing the address of an element here, | |
e1d5a0d2 | 7278 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7279 | the conversion. This should not be a problem, since arrays of |
7280 | unconstrained objects are not allowed. In particular, all | |
7281 | the elements of an array of a tagged type should all be of | |
7282 | the same type specified in the debugging info. No need to | |
7283 | consult the object tag. */ | |
1ed6ede0 | 7284 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 AS |
7285 | |
7286 | if (elt_type0 == elt_type) | |
4c4b4cd2 | 7287 | result = type0; |
14f9c5c9 | 7288 | else |
4c4b4cd2 PH |
7289 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), |
7290 | elt_type, TYPE_INDEX_TYPE (type0)); | |
14f9c5c9 AS |
7291 | } |
7292 | else | |
7293 | { | |
7294 | int i; | |
7295 | struct type *elt_type0; | |
7296 | ||
7297 | elt_type0 = type0; | |
7298 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7299 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7300 | |
7301 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7302 | depend on the contents of the array in properly constructed |
7303 | debugging data. */ | |
529cad9c PH |
7304 | /* Create a fixed version of the array element type. |
7305 | We're not providing the address of an element here, | |
e1d5a0d2 | 7306 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7307 | the conversion. This should not be a problem, since arrays of |
7308 | unconstrained objects are not allowed. In particular, all | |
7309 | the elements of an array of a tagged type should all be of | |
7310 | the same type specified in the debugging info. No need to | |
7311 | consult the object tag. */ | |
1ed6ede0 JB |
7312 | result = |
7313 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
14f9c5c9 | 7314 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7315 | { |
7316 | struct type *range_type = | |
7317 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
7318 | dval, TYPE_OBJFILE (type0)); | |
7319 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
7320 | result, range_type); | |
7321 | } | |
d2e4a39e | 7322 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7323 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7324 | } |
7325 | ||
876cecd0 | 7326 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7327 | return result; |
d2e4a39e | 7328 | } |
14f9c5c9 AS |
7329 | |
7330 | ||
7331 | /* A standard type (containing no dynamically sized components) | |
7332 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7333 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7334 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7335 | ADDRESS or in VALADDR contains these discriminants. |
7336 | ||
1ed6ede0 JB |
7337 | If CHECK_TAG is not null, in the case of tagged types, this function |
7338 | attempts to locate the object's tag and use it to compute the actual | |
7339 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7340 | location of the tag, and therefore compute the tagged type's actual type. | |
7341 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7342 | |
f192137b JB |
7343 | static struct type * |
7344 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7345 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7346 | { |
61ee279c | 7347 | type = ada_check_typedef (type); |
d2e4a39e AS |
7348 | switch (TYPE_CODE (type)) |
7349 | { | |
7350 | default: | |
14f9c5c9 | 7351 | return type; |
d2e4a39e | 7352 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7353 | { |
76a01679 | 7354 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7355 | struct type *fixed_record_type = |
7356 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7357 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7358 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7359 | type from there. Note that we have to use the fixed record |
7360 | type (the parent part of the record may have dynamic fields | |
7361 | and the way the location of _tag is expressed may depend on | |
7362 | them). */ | |
529cad9c | 7363 | |
1ed6ede0 | 7364 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7365 | { |
7366 | struct type *real_type = | |
1ed6ede0 JB |
7367 | type_from_tag (value_tag_from_contents_and_address |
7368 | (fixed_record_type, | |
7369 | valaddr, | |
7370 | address)); | |
76a01679 | 7371 | if (real_type != NULL) |
1ed6ede0 | 7372 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7373 | } |
1ed6ede0 | 7374 | return fixed_record_type; |
4c4b4cd2 | 7375 | } |
d2e4a39e | 7376 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7377 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7378 | case TYPE_CODE_UNION: |
7379 | if (dval == NULL) | |
4c4b4cd2 | 7380 | return type; |
d2e4a39e | 7381 | else |
4c4b4cd2 | 7382 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7383 | } |
14f9c5c9 AS |
7384 | } |
7385 | ||
f192137b JB |
7386 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7387 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7388 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7389 | ||
7390 | struct type * | |
7391 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7392 | CORE_ADDR address, struct value *dval, int check_tag) | |
7393 | ||
7394 | { | |
7395 | struct type *fixed_type = | |
7396 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7397 | ||
7398 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7399 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7400 | return type; | |
7401 | ||
7402 | return fixed_type; | |
7403 | } | |
7404 | ||
14f9c5c9 | 7405 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7406 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7407 | |
d2e4a39e AS |
7408 | static struct type * |
7409 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7410 | { |
d2e4a39e | 7411 | struct type *type; |
14f9c5c9 AS |
7412 | |
7413 | if (type0 == NULL) | |
7414 | return NULL; | |
7415 | ||
876cecd0 | 7416 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7417 | return type0; |
7418 | ||
61ee279c | 7419 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7420 | |
14f9c5c9 AS |
7421 | switch (TYPE_CODE (type0)) |
7422 | { | |
7423 | default: | |
7424 | return type0; | |
7425 | case TYPE_CODE_STRUCT: | |
7426 | type = dynamic_template_type (type0); | |
d2e4a39e | 7427 | if (type != NULL) |
4c4b4cd2 PH |
7428 | return template_to_static_fixed_type (type); |
7429 | else | |
7430 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7431 | case TYPE_CODE_UNION: |
7432 | type = ada_find_parallel_type (type0, "___XVU"); | |
7433 | if (type != NULL) | |
4c4b4cd2 PH |
7434 | return template_to_static_fixed_type (type); |
7435 | else | |
7436 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7437 | } |
7438 | } | |
7439 | ||
4c4b4cd2 PH |
7440 | /* A static approximation of TYPE with all type wrappers removed. */ |
7441 | ||
d2e4a39e AS |
7442 | static struct type * |
7443 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7444 | { |
7445 | if (ada_is_aligner_type (type)) | |
7446 | { | |
61ee279c | 7447 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7448 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7449 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7450 | |
7451 | return static_unwrap_type (type1); | |
7452 | } | |
d2e4a39e | 7453 | else |
14f9c5c9 | 7454 | { |
d2e4a39e AS |
7455 | struct type *raw_real_type = ada_get_base_type (type); |
7456 | if (raw_real_type == type) | |
4c4b4cd2 | 7457 | return type; |
14f9c5c9 | 7458 | else |
4c4b4cd2 | 7459 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7460 | } |
7461 | } | |
7462 | ||
7463 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7464 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7465 | type Foo; |
7466 | type FooP is access Foo; | |
7467 | V: FooP; | |
7468 | type Foo is array ...; | |
4c4b4cd2 | 7469 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7470 | cross-references to such types, we instead substitute for FooP a |
7471 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7472 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7473 | |
7474 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7475 | exists, otherwise TYPE. */ |
7476 | ||
d2e4a39e | 7477 | struct type * |
61ee279c | 7478 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7479 | { |
727e3d2e JB |
7480 | if (type == NULL) |
7481 | return NULL; | |
7482 | ||
14f9c5c9 AS |
7483 | CHECK_TYPEDEF (type); |
7484 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7485 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7486 | || TYPE_TAG_NAME (type) == NULL) |
7487 | return type; | |
d2e4a39e | 7488 | else |
14f9c5c9 | 7489 | { |
d2e4a39e AS |
7490 | char *name = TYPE_TAG_NAME (type); |
7491 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7492 | return (type1 == NULL) ? type : type1; |
7493 | } | |
7494 | } | |
7495 | ||
7496 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7497 | type TYPE0, but with a standard (static-sized) type that correctly | |
7498 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7499 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7500 | creation of struct values]. */ |
14f9c5c9 | 7501 | |
4c4b4cd2 PH |
7502 | static struct value * |
7503 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7504 | struct value *val0) | |
14f9c5c9 | 7505 | { |
1ed6ede0 | 7506 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7507 | if (type == type0 && val0 != NULL) |
7508 | return val0; | |
d2e4a39e | 7509 | else |
4c4b4cd2 PH |
7510 | return value_from_contents_and_address (type, 0, address); |
7511 | } | |
7512 | ||
7513 | /* A value representing VAL, but with a standard (static-sized) type | |
7514 | that correctly describes it. Does not necessarily create a new | |
7515 | value. */ | |
7516 | ||
7517 | static struct value * | |
7518 | ada_to_fixed_value (struct value *val) | |
7519 | { | |
df407dfe AC |
7520 | return ada_to_fixed_value_create (value_type (val), |
7521 | VALUE_ADDRESS (val) + value_offset (val), | |
4c4b4cd2 | 7522 | val); |
14f9c5c9 AS |
7523 | } |
7524 | ||
4c4b4cd2 | 7525 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7526 | chosen to approximate the real type of VAL as well as possible, but |
7527 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7528 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7529 | |
d2e4a39e AS |
7530 | struct value * |
7531 | ada_to_static_fixed_value (struct value *val) | |
14f9c5c9 | 7532 | { |
d2e4a39e | 7533 | struct type *type = |
df407dfe AC |
7534 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7535 | if (type == value_type (val)) | |
14f9c5c9 AS |
7536 | return val; |
7537 | else | |
4c4b4cd2 | 7538 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7539 | } |
d2e4a39e | 7540 | \f |
14f9c5c9 | 7541 | |
14f9c5c9 AS |
7542 | /* Attributes */ |
7543 | ||
4c4b4cd2 PH |
7544 | /* Table mapping attribute numbers to names. |
7545 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7546 | |
d2e4a39e | 7547 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7548 | "<?>", |
7549 | ||
d2e4a39e | 7550 | "first", |
14f9c5c9 AS |
7551 | "last", |
7552 | "length", | |
7553 | "image", | |
14f9c5c9 AS |
7554 | "max", |
7555 | "min", | |
4c4b4cd2 PH |
7556 | "modulus", |
7557 | "pos", | |
7558 | "size", | |
7559 | "tag", | |
14f9c5c9 | 7560 | "val", |
14f9c5c9 AS |
7561 | 0 |
7562 | }; | |
7563 | ||
d2e4a39e | 7564 | const char * |
4c4b4cd2 | 7565 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7566 | { |
4c4b4cd2 PH |
7567 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7568 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7569 | else |
7570 | return attribute_names[0]; | |
7571 | } | |
7572 | ||
4c4b4cd2 | 7573 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7574 | |
4c4b4cd2 PH |
7575 | static LONGEST |
7576 | pos_atr (struct value *arg) | |
14f9c5c9 | 7577 | { |
24209737 PH |
7578 | struct value *val = coerce_ref (arg); |
7579 | struct type *type = value_type (val); | |
14f9c5c9 | 7580 | |
d2e4a39e | 7581 | if (!discrete_type_p (type)) |
323e0a4a | 7582 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7583 | |
7584 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7585 | { | |
7586 | int i; | |
24209737 | 7587 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7588 | |
d2e4a39e | 7589 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7590 | { |
7591 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7592 | return i; | |
7593 | } | |
323e0a4a | 7594 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7595 | } |
7596 | else | |
24209737 | 7597 | return value_as_long (val); |
4c4b4cd2 PH |
7598 | } |
7599 | ||
7600 | static struct value * | |
7601 | value_pos_atr (struct value *arg) | |
7602 | { | |
72d5681a | 7603 | return value_from_longest (builtin_type_int, pos_atr (arg)); |
14f9c5c9 AS |
7604 | } |
7605 | ||
4c4b4cd2 | 7606 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7607 | |
d2e4a39e AS |
7608 | static struct value * |
7609 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7610 | { |
d2e4a39e | 7611 | if (!discrete_type_p (type)) |
323e0a4a | 7612 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7613 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7614 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7615 | |
7616 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7617 | { | |
7618 | long pos = value_as_long (arg); | |
7619 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7620 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7621 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7622 | } |
7623 | else | |
7624 | return value_from_longest (type, value_as_long (arg)); | |
7625 | } | |
14f9c5c9 | 7626 | \f |
d2e4a39e | 7627 | |
4c4b4cd2 | 7628 | /* Evaluation */ |
14f9c5c9 | 7629 | |
4c4b4cd2 PH |
7630 | /* True if TYPE appears to be an Ada character type. |
7631 | [At the moment, this is true only for Character and Wide_Character; | |
7632 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7633 | |
d2e4a39e AS |
7634 | int |
7635 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7636 | { |
7b9f71f2 JB |
7637 | const char *name; |
7638 | ||
7639 | /* If the type code says it's a character, then assume it really is, | |
7640 | and don't check any further. */ | |
7641 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7642 | return 1; | |
7643 | ||
7644 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7645 | with a known character type name. */ | |
7646 | name = ada_type_name (type); | |
7647 | return (name != NULL | |
7648 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7649 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7650 | && (strcmp (name, "character") == 0 | |
7651 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7652 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7653 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7654 | } |
7655 | ||
4c4b4cd2 | 7656 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7657 | |
7658 | int | |
ebf56fd3 | 7659 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7660 | { |
61ee279c | 7661 | type = ada_check_typedef (type); |
d2e4a39e | 7662 | if (type != NULL |
14f9c5c9 | 7663 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7664 | && (ada_is_simple_array_type (type) |
7665 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7666 | && ada_array_arity (type) == 1) |
7667 | { | |
7668 | struct type *elttype = ada_array_element_type (type, 1); | |
7669 | ||
7670 | return ada_is_character_type (elttype); | |
7671 | } | |
d2e4a39e | 7672 | else |
14f9c5c9 AS |
7673 | return 0; |
7674 | } | |
7675 | ||
7676 | ||
7677 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7678 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7679 | distinctive name. */ |
14f9c5c9 AS |
7680 | |
7681 | int | |
ebf56fd3 | 7682 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7683 | { |
61ee279c | 7684 | type = ada_check_typedef (type); |
714e53ab PH |
7685 | |
7686 | /* If we can find a parallel XVS type, then the XVS type should | |
7687 | be used instead of this type. And hence, this is not an aligner | |
7688 | type. */ | |
7689 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7690 | return 0; | |
7691 | ||
14f9c5c9 | 7692 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7693 | && TYPE_NFIELDS (type) == 1 |
7694 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7695 | } |
7696 | ||
7697 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7698 | the parallel type. */ |
14f9c5c9 | 7699 | |
d2e4a39e AS |
7700 | struct type * |
7701 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7702 | { |
d2e4a39e AS |
7703 | struct type *real_type_namer; |
7704 | struct type *raw_real_type; | |
14f9c5c9 AS |
7705 | |
7706 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7707 | return raw_type; | |
7708 | ||
7709 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); | |
d2e4a39e | 7710 | if (real_type_namer == NULL |
14f9c5c9 AS |
7711 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7712 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7713 | return raw_type; | |
7714 | ||
7715 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7716 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7717 | return raw_type; |
7718 | else | |
7719 | return raw_real_type; | |
d2e4a39e | 7720 | } |
14f9c5c9 | 7721 | |
4c4b4cd2 | 7722 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7723 | |
d2e4a39e AS |
7724 | struct type * |
7725 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7726 | { |
7727 | if (ada_is_aligner_type (type)) | |
7728 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7729 | else | |
7730 | return ada_get_base_type (type); | |
7731 | } | |
7732 | ||
7733 | ||
7734 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7735 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7736 | |
fc1a4b47 AC |
7737 | const gdb_byte * |
7738 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7739 | { |
d2e4a39e | 7740 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7741 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7742 | valaddr + |
7743 | TYPE_FIELD_BITPOS (type, | |
7744 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7745 | else |
7746 | return valaddr; | |
7747 | } | |
7748 | ||
4c4b4cd2 PH |
7749 | |
7750 | ||
14f9c5c9 | 7751 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7752 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7753 | const char * |
7754 | ada_enum_name (const char *name) | |
14f9c5c9 | 7755 | { |
4c4b4cd2 PH |
7756 | static char *result; |
7757 | static size_t result_len = 0; | |
d2e4a39e | 7758 | char *tmp; |
14f9c5c9 | 7759 | |
4c4b4cd2 PH |
7760 | /* First, unqualify the enumeration name: |
7761 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7762 | all the preceeding characters, the unqualified name starts |
7763 | right after that dot. | |
4c4b4cd2 | 7764 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7765 | translates dots into "__". Search forward for double underscores, |
7766 | but stop searching when we hit an overloading suffix, which is | |
7767 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7768 | |
c3e5cd34 PH |
7769 | tmp = strrchr (name, '.'); |
7770 | if (tmp != NULL) | |
4c4b4cd2 PH |
7771 | name = tmp + 1; |
7772 | else | |
14f9c5c9 | 7773 | { |
4c4b4cd2 PH |
7774 | while ((tmp = strstr (name, "__")) != NULL) |
7775 | { | |
7776 | if (isdigit (tmp[2])) | |
7777 | break; | |
7778 | else | |
7779 | name = tmp + 2; | |
7780 | } | |
14f9c5c9 AS |
7781 | } |
7782 | ||
7783 | if (name[0] == 'Q') | |
7784 | { | |
14f9c5c9 AS |
7785 | int v; |
7786 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7787 | { |
7788 | if (sscanf (name + 2, "%x", &v) != 1) | |
7789 | return name; | |
7790 | } | |
14f9c5c9 | 7791 | else |
4c4b4cd2 | 7792 | return name; |
14f9c5c9 | 7793 | |
4c4b4cd2 | 7794 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7795 | if (isascii (v) && isprint (v)) |
4c4b4cd2 | 7796 | sprintf (result, "'%c'", v); |
14f9c5c9 | 7797 | else if (name[1] == 'U') |
4c4b4cd2 | 7798 | sprintf (result, "[\"%02x\"]", v); |
14f9c5c9 | 7799 | else |
4c4b4cd2 | 7800 | sprintf (result, "[\"%04x\"]", v); |
14f9c5c9 AS |
7801 | |
7802 | return result; | |
7803 | } | |
d2e4a39e | 7804 | else |
4c4b4cd2 | 7805 | { |
c3e5cd34 PH |
7806 | tmp = strstr (name, "__"); |
7807 | if (tmp == NULL) | |
7808 | tmp = strstr (name, "$"); | |
7809 | if (tmp != NULL) | |
4c4b4cd2 PH |
7810 | { |
7811 | GROW_VECT (result, result_len, tmp - name + 1); | |
7812 | strncpy (result, name, tmp - name); | |
7813 | result[tmp - name] = '\0'; | |
7814 | return result; | |
7815 | } | |
7816 | ||
7817 | return name; | |
7818 | } | |
14f9c5c9 AS |
7819 | } |
7820 | ||
d2e4a39e | 7821 | static struct value * |
ebf56fd3 | 7822 | evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos, |
4c4b4cd2 | 7823 | enum noside noside) |
14f9c5c9 | 7824 | { |
76a01679 | 7825 | return (*exp->language_defn->la_exp_desc->evaluate_exp) |
4c4b4cd2 | 7826 | (expect_type, exp, pos, noside); |
14f9c5c9 AS |
7827 | } |
7828 | ||
7829 | /* Evaluate the subexpression of EXP starting at *POS as for | |
7830 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7831 | expression. */ |
14f9c5c9 | 7832 | |
d2e4a39e AS |
7833 | static struct value * |
7834 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7835 | { |
4c4b4cd2 | 7836 | return (*exp->language_defn->la_exp_desc->evaluate_exp) |
14f9c5c9 AS |
7837 | (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
7838 | } | |
7839 | ||
7840 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7841 | value it wraps. */ |
14f9c5c9 | 7842 | |
d2e4a39e AS |
7843 | static struct value * |
7844 | unwrap_value (struct value *val) | |
14f9c5c9 | 7845 | { |
df407dfe | 7846 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7847 | if (ada_is_aligner_type (type)) |
7848 | { | |
de4d072f | 7849 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7850 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7851 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7852 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7853 | |
7854 | return unwrap_value (v); | |
7855 | } | |
d2e4a39e | 7856 | else |
14f9c5c9 | 7857 | { |
d2e4a39e | 7858 | struct type *raw_real_type = |
61ee279c | 7859 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7860 | |
14f9c5c9 | 7861 | if (type == raw_real_type) |
4c4b4cd2 | 7862 | return val; |
14f9c5c9 | 7863 | |
d2e4a39e | 7864 | return |
4c4b4cd2 PH |
7865 | coerce_unspec_val_to_type |
7866 | (val, ada_to_fixed_type (raw_real_type, 0, | |
df407dfe | 7867 | VALUE_ADDRESS (val) + value_offset (val), |
1ed6ede0 | 7868 | NULL, 1)); |
14f9c5c9 AS |
7869 | } |
7870 | } | |
d2e4a39e AS |
7871 | |
7872 | static struct value * | |
7873 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7874 | { |
7875 | LONGEST val; | |
7876 | ||
df407dfe | 7877 | if (type == value_type (arg)) |
14f9c5c9 | 7878 | return arg; |
df407dfe | 7879 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7880 | val = ada_float_to_fixed (type, |
df407dfe | 7881 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7882 | value_as_long (arg))); |
d2e4a39e | 7883 | else |
14f9c5c9 | 7884 | { |
a53b7a21 | 7885 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7886 | val = ada_float_to_fixed (type, argd); |
7887 | } | |
7888 | ||
7889 | return value_from_longest (type, val); | |
7890 | } | |
7891 | ||
d2e4a39e | 7892 | static struct value * |
a53b7a21 | 7893 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7894 | { |
df407dfe | 7895 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7896 | value_as_long (arg)); |
a53b7a21 | 7897 | return value_from_double (type, val); |
14f9c5c9 AS |
7898 | } |
7899 | ||
4c4b4cd2 PH |
7900 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7901 | return the converted value. */ | |
7902 | ||
d2e4a39e AS |
7903 | static struct value * |
7904 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7905 | { |
df407dfe | 7906 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7907 | if (type == type2) |
7908 | return val; | |
7909 | ||
61ee279c PH |
7910 | type2 = ada_check_typedef (type2); |
7911 | type = ada_check_typedef (type); | |
14f9c5c9 | 7912 | |
d2e4a39e AS |
7913 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7914 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7915 | { |
7916 | val = ada_value_ind (val); | |
df407dfe | 7917 | type2 = value_type (val); |
14f9c5c9 AS |
7918 | } |
7919 | ||
d2e4a39e | 7920 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7921 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7922 | { | |
7923 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7924 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7925 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7926 | error (_("Incompatible types in assignment")); |
04624583 | 7927 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7928 | } |
d2e4a39e | 7929 | return val; |
14f9c5c9 AS |
7930 | } |
7931 | ||
4c4b4cd2 PH |
7932 | static struct value * |
7933 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7934 | { | |
7935 | struct value *val; | |
7936 | struct type *type1, *type2; | |
7937 | LONGEST v, v1, v2; | |
7938 | ||
994b9211 AC |
7939 | arg1 = coerce_ref (arg1); |
7940 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7941 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7942 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7943 | |
76a01679 JB |
7944 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7945 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7946 | return value_binop (arg1, arg2, op); |
7947 | ||
76a01679 | 7948 | switch (op) |
4c4b4cd2 PH |
7949 | { |
7950 | case BINOP_MOD: | |
7951 | case BINOP_DIV: | |
7952 | case BINOP_REM: | |
7953 | break; | |
7954 | default: | |
7955 | return value_binop (arg1, arg2, op); | |
7956 | } | |
7957 | ||
7958 | v2 = value_as_long (arg2); | |
7959 | if (v2 == 0) | |
323e0a4a | 7960 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7961 | |
7962 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7963 | return value_binop (arg1, arg2, op); | |
7964 | ||
7965 | v1 = value_as_long (arg1); | |
7966 | switch (op) | |
7967 | { | |
7968 | case BINOP_DIV: | |
7969 | v = v1 / v2; | |
76a01679 JB |
7970 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
7971 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
7972 | break; |
7973 | case BINOP_REM: | |
7974 | v = v1 % v2; | |
76a01679 JB |
7975 | if (v * v1 < 0) |
7976 | v -= v2; | |
4c4b4cd2 PH |
7977 | break; |
7978 | default: | |
7979 | /* Should not reach this point. */ | |
7980 | v = 0; | |
7981 | } | |
7982 | ||
7983 | val = allocate_value (type1); | |
990a07ab | 7984 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 7985 | TYPE_LENGTH (value_type (val)), v); |
4c4b4cd2 PH |
7986 | return val; |
7987 | } | |
7988 | ||
7989 | static int | |
7990 | ada_value_equal (struct value *arg1, struct value *arg2) | |
7991 | { | |
df407dfe AC |
7992 | if (ada_is_direct_array_type (value_type (arg1)) |
7993 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 7994 | { |
f58b38bf JB |
7995 | /* Automatically dereference any array reference before |
7996 | we attempt to perform the comparison. */ | |
7997 | arg1 = ada_coerce_ref (arg1); | |
7998 | arg2 = ada_coerce_ref (arg2); | |
7999 | ||
4c4b4cd2 PH |
8000 | arg1 = ada_coerce_to_simple_array (arg1); |
8001 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8002 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8003 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8004 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8005 | /* FIXME: The following works only for types whose |
76a01679 JB |
8006 | representations use all bits (no padding or undefined bits) |
8007 | and do not have user-defined equality. */ | |
8008 | return | |
df407dfe | 8009 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8010 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8011 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8012 | } |
8013 | return value_equal (arg1, arg2); | |
8014 | } | |
8015 | ||
52ce6436 PH |
8016 | /* Total number of component associations in the aggregate starting at |
8017 | index PC in EXP. Assumes that index PC is the start of an | |
8018 | OP_AGGREGATE. */ | |
8019 | ||
8020 | static int | |
8021 | num_component_specs (struct expression *exp, int pc) | |
8022 | { | |
8023 | int n, m, i; | |
8024 | m = exp->elts[pc + 1].longconst; | |
8025 | pc += 3; | |
8026 | n = 0; | |
8027 | for (i = 0; i < m; i += 1) | |
8028 | { | |
8029 | switch (exp->elts[pc].opcode) | |
8030 | { | |
8031 | default: | |
8032 | n += 1; | |
8033 | break; | |
8034 | case OP_CHOICES: | |
8035 | n += exp->elts[pc + 1].longconst; | |
8036 | break; | |
8037 | } | |
8038 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8039 | } | |
8040 | return n; | |
8041 | } | |
8042 | ||
8043 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8044 | component of LHS (a simple array or a record), updating *POS past | |
8045 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8046 | not modify the inferior's memory, nor does it modify LHS (unless | |
8047 | LHS == CONTAINER). */ | |
8048 | ||
8049 | static void | |
8050 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8051 | struct expression *exp, int *pos) | |
8052 | { | |
8053 | struct value *mark = value_mark (); | |
8054 | struct value *elt; | |
8055 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8056 | { | |
8057 | struct value *index_val = value_from_longest (builtin_type_int, index); | |
8058 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); | |
8059 | } | |
8060 | else | |
8061 | { | |
8062 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8063 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8064 | } | |
8065 | ||
8066 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8067 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8068 | else | |
8069 | value_assign_to_component (container, elt, | |
8070 | ada_evaluate_subexp (NULL, exp, pos, | |
8071 | EVAL_NORMAL)); | |
8072 | ||
8073 | value_free_to_mark (mark); | |
8074 | } | |
8075 | ||
8076 | /* Assuming that LHS represents an lvalue having a record or array | |
8077 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8078 | of that aggregate's value to LHS, advancing *POS past the | |
8079 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8080 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8081 | the inferior's memory, nor does it modify the contents of | |
8082 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8083 | ||
8084 | static struct value * | |
8085 | assign_aggregate (struct value *container, | |
8086 | struct value *lhs, struct expression *exp, | |
8087 | int *pos, enum noside noside) | |
8088 | { | |
8089 | struct type *lhs_type; | |
8090 | int n = exp->elts[*pos+1].longconst; | |
8091 | LONGEST low_index, high_index; | |
8092 | int num_specs; | |
8093 | LONGEST *indices; | |
8094 | int max_indices, num_indices; | |
8095 | int is_array_aggregate; | |
8096 | int i; | |
8097 | struct value *mark = value_mark (); | |
8098 | ||
8099 | *pos += 3; | |
8100 | if (noside != EVAL_NORMAL) | |
8101 | { | |
8102 | int i; | |
8103 | for (i = 0; i < n; i += 1) | |
8104 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8105 | return container; | |
8106 | } | |
8107 | ||
8108 | container = ada_coerce_ref (container); | |
8109 | if (ada_is_direct_array_type (value_type (container))) | |
8110 | container = ada_coerce_to_simple_array (container); | |
8111 | lhs = ada_coerce_ref (lhs); | |
8112 | if (!deprecated_value_modifiable (lhs)) | |
8113 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8114 | ||
8115 | lhs_type = value_type (lhs); | |
8116 | if (ada_is_direct_array_type (lhs_type)) | |
8117 | { | |
8118 | lhs = ada_coerce_to_simple_array (lhs); | |
8119 | lhs_type = value_type (lhs); | |
8120 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8121 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8122 | is_array_aggregate = 1; | |
8123 | } | |
8124 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8125 | { | |
8126 | low_index = 0; | |
8127 | high_index = num_visible_fields (lhs_type) - 1; | |
8128 | is_array_aggregate = 0; | |
8129 | } | |
8130 | else | |
8131 | error (_("Left-hand side must be array or record.")); | |
8132 | ||
8133 | num_specs = num_component_specs (exp, *pos - 3); | |
8134 | max_indices = 4 * num_specs + 4; | |
8135 | indices = alloca (max_indices * sizeof (indices[0])); | |
8136 | indices[0] = indices[1] = low_index - 1; | |
8137 | indices[2] = indices[3] = high_index + 1; | |
8138 | num_indices = 4; | |
8139 | ||
8140 | for (i = 0; i < n; i += 1) | |
8141 | { | |
8142 | switch (exp->elts[*pos].opcode) | |
8143 | { | |
8144 | case OP_CHOICES: | |
8145 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8146 | &num_indices, max_indices, | |
8147 | low_index, high_index); | |
8148 | break; | |
8149 | case OP_POSITIONAL: | |
8150 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8151 | &num_indices, max_indices, | |
8152 | low_index, high_index); | |
8153 | break; | |
8154 | case OP_OTHERS: | |
8155 | if (i != n-1) | |
8156 | error (_("Misplaced 'others' clause")); | |
8157 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8158 | num_indices, low_index, high_index); | |
8159 | break; | |
8160 | default: | |
8161 | error (_("Internal error: bad aggregate clause")); | |
8162 | } | |
8163 | } | |
8164 | ||
8165 | return container; | |
8166 | } | |
8167 | ||
8168 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8169 | construct at *POS, updating *POS past the construct, given that | |
8170 | the positions are relative to lower bound LOW, where HIGH is the | |
8171 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8172 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8173 | assign_aggregate. */ | |
8174 | static void | |
8175 | aggregate_assign_positional (struct value *container, | |
8176 | struct value *lhs, struct expression *exp, | |
8177 | int *pos, LONGEST *indices, int *num_indices, | |
8178 | int max_indices, LONGEST low, LONGEST high) | |
8179 | { | |
8180 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8181 | ||
8182 | if (ind - 1 == high) | |
e1d5a0d2 | 8183 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8184 | if (ind <= high) |
8185 | { | |
8186 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8187 | *pos += 3; | |
8188 | assign_component (container, lhs, ind, exp, pos); | |
8189 | } | |
8190 | else | |
8191 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8192 | } | |
8193 | ||
8194 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8195 | construct at *POS, updating *POS past the construct, given that | |
8196 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8197 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8198 | needed. CONTAINER is as for assign_aggregate. */ | |
8199 | static void | |
8200 | aggregate_assign_from_choices (struct value *container, | |
8201 | struct value *lhs, struct expression *exp, | |
8202 | int *pos, LONGEST *indices, int *num_indices, | |
8203 | int max_indices, LONGEST low, LONGEST high) | |
8204 | { | |
8205 | int j; | |
8206 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8207 | int choice_pos, expr_pc; | |
8208 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8209 | ||
8210 | choice_pos = *pos += 3; | |
8211 | ||
8212 | for (j = 0; j < n_choices; j += 1) | |
8213 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8214 | expr_pc = *pos; | |
8215 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8216 | ||
8217 | for (j = 0; j < n_choices; j += 1) | |
8218 | { | |
8219 | LONGEST lower, upper; | |
8220 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8221 | if (op == OP_DISCRETE_RANGE) | |
8222 | { | |
8223 | choice_pos += 1; | |
8224 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8225 | EVAL_NORMAL)); | |
8226 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8227 | EVAL_NORMAL)); | |
8228 | } | |
8229 | else if (is_array) | |
8230 | { | |
8231 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8232 | EVAL_NORMAL)); | |
8233 | upper = lower; | |
8234 | } | |
8235 | else | |
8236 | { | |
8237 | int ind; | |
8238 | char *name; | |
8239 | switch (op) | |
8240 | { | |
8241 | case OP_NAME: | |
8242 | name = &exp->elts[choice_pos + 2].string; | |
8243 | break; | |
8244 | case OP_VAR_VALUE: | |
8245 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8246 | break; | |
8247 | default: | |
8248 | error (_("Invalid record component association.")); | |
8249 | } | |
8250 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8251 | ind = 0; | |
8252 | if (! find_struct_field (name, value_type (lhs), 0, | |
8253 | NULL, NULL, NULL, NULL, &ind)) | |
8254 | error (_("Unknown component name: %s."), name); | |
8255 | lower = upper = ind; | |
8256 | } | |
8257 | ||
8258 | if (lower <= upper && (lower < low || upper > high)) | |
8259 | error (_("Index in component association out of bounds.")); | |
8260 | ||
8261 | add_component_interval (lower, upper, indices, num_indices, | |
8262 | max_indices); | |
8263 | while (lower <= upper) | |
8264 | { | |
8265 | int pos1; | |
8266 | pos1 = expr_pc; | |
8267 | assign_component (container, lhs, lower, exp, &pos1); | |
8268 | lower += 1; | |
8269 | } | |
8270 | } | |
8271 | } | |
8272 | ||
8273 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8274 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8275 | have not been previously assigned. The index intervals already assigned | |
8276 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8277 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8278 | static void | |
8279 | aggregate_assign_others (struct value *container, | |
8280 | struct value *lhs, struct expression *exp, | |
8281 | int *pos, LONGEST *indices, int num_indices, | |
8282 | LONGEST low, LONGEST high) | |
8283 | { | |
8284 | int i; | |
8285 | int expr_pc = *pos+1; | |
8286 | ||
8287 | for (i = 0; i < num_indices - 2; i += 2) | |
8288 | { | |
8289 | LONGEST ind; | |
8290 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8291 | { | |
8292 | int pos; | |
8293 | pos = expr_pc; | |
8294 | assign_component (container, lhs, ind, exp, &pos); | |
8295 | } | |
8296 | } | |
8297 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8298 | } | |
8299 | ||
8300 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8301 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8302 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8303 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8304 | static void | |
8305 | add_component_interval (LONGEST low, LONGEST high, | |
8306 | LONGEST* indices, int *size, int max_size) | |
8307 | { | |
8308 | int i, j; | |
8309 | for (i = 0; i < *size; i += 2) { | |
8310 | if (high >= indices[i] && low <= indices[i + 1]) | |
8311 | { | |
8312 | int kh; | |
8313 | for (kh = i + 2; kh < *size; kh += 2) | |
8314 | if (high < indices[kh]) | |
8315 | break; | |
8316 | if (low < indices[i]) | |
8317 | indices[i] = low; | |
8318 | indices[i + 1] = indices[kh - 1]; | |
8319 | if (high > indices[i + 1]) | |
8320 | indices[i + 1] = high; | |
8321 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8322 | *size -= kh - i - 2; | |
8323 | return; | |
8324 | } | |
8325 | else if (high < indices[i]) | |
8326 | break; | |
8327 | } | |
8328 | ||
8329 | if (*size == max_size) | |
8330 | error (_("Internal error: miscounted aggregate components.")); | |
8331 | *size += 2; | |
8332 | for (j = *size-1; j >= i+2; j -= 1) | |
8333 | indices[j] = indices[j - 2]; | |
8334 | indices[i] = low; | |
8335 | indices[i + 1] = high; | |
8336 | } | |
8337 | ||
6e48bd2c JB |
8338 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8339 | is different. */ | |
8340 | ||
8341 | static struct value * | |
8342 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8343 | { | |
8344 | if (type == ada_check_typedef (value_type (arg2))) | |
8345 | return arg2; | |
8346 | ||
8347 | if (ada_is_fixed_point_type (type)) | |
8348 | return (cast_to_fixed (type, arg2)); | |
8349 | ||
8350 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8351 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8352 | |
8353 | return value_cast (type, arg2); | |
8354 | } | |
8355 | ||
52ce6436 | 8356 | static struct value * |
ebf56fd3 | 8357 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8358 | int *pos, enum noside noside) |
14f9c5c9 AS |
8359 | { |
8360 | enum exp_opcode op; | |
14f9c5c9 AS |
8361 | int tem, tem2, tem3; |
8362 | int pc; | |
8363 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8364 | struct type *type; | |
52ce6436 | 8365 | int nargs, oplen; |
d2e4a39e | 8366 | struct value **argvec; |
14f9c5c9 | 8367 | |
d2e4a39e AS |
8368 | pc = *pos; |
8369 | *pos += 1; | |
14f9c5c9 AS |
8370 | op = exp->elts[pc].opcode; |
8371 | ||
d2e4a39e | 8372 | switch (op) |
14f9c5c9 AS |
8373 | { |
8374 | default: | |
8375 | *pos -= 1; | |
6e48bd2c JB |
8376 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8377 | arg1 = unwrap_value (arg1); | |
8378 | ||
8379 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8380 | then we need to perform the conversion manually, because | |
8381 | evaluate_subexp_standard doesn't do it. This conversion is | |
8382 | necessary in Ada because the different kinds of float/fixed | |
8383 | types in Ada have different representations. | |
8384 | ||
8385 | Similarly, we need to perform the conversion from OP_LONG | |
8386 | ourselves. */ | |
8387 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8388 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8389 | ||
8390 | return arg1; | |
4c4b4cd2 PH |
8391 | |
8392 | case OP_STRING: | |
8393 | { | |
76a01679 JB |
8394 | struct value *result; |
8395 | *pos -= 1; | |
8396 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8397 | /* The result type will have code OP_STRING, bashed there from | |
8398 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8399 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8400 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8401 | return result; |
4c4b4cd2 | 8402 | } |
14f9c5c9 AS |
8403 | |
8404 | case UNOP_CAST: | |
8405 | (*pos) += 2; | |
8406 | type = exp->elts[pc + 1].type; | |
8407 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8408 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8409 | goto nosideret; |
6e48bd2c | 8410 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8411 | return arg1; |
8412 | ||
4c4b4cd2 PH |
8413 | case UNOP_QUAL: |
8414 | (*pos) += 2; | |
8415 | type = exp->elts[pc + 1].type; | |
8416 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8417 | ||
14f9c5c9 AS |
8418 | case BINOP_ASSIGN: |
8419 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8420 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8421 | { | |
8422 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8423 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8424 | return arg1; | |
8425 | return ada_value_assign (arg1, arg1); | |
8426 | } | |
003f3813 JB |
8427 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8428 | except if the lhs of our assignment is a convenience variable. | |
8429 | In the case of assigning to a convenience variable, the lhs | |
8430 | should be exactly the result of the evaluation of the rhs. */ | |
8431 | type = value_type (arg1); | |
8432 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8433 | type = NULL; | |
8434 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8435 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8436 | return arg1; |
df407dfe AC |
8437 | if (ada_is_fixed_point_type (value_type (arg1))) |
8438 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8439 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8440 | error |
323e0a4a | 8441 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8442 | else |
df407dfe | 8443 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8444 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8445 | |
8446 | case BINOP_ADD: | |
8447 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8448 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8449 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8450 | goto nosideret; |
2ac8a782 JB |
8451 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8452 | return (value_from_longest | |
8453 | (value_type (arg1), | |
8454 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8455 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8456 | || ada_is_fixed_point_type (value_type (arg2))) | |
8457 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8458 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8459 | /* Do the addition, and cast the result to the type of the first |
8460 | argument. We cannot cast the result to a reference type, so if | |
8461 | ARG1 is a reference type, find its underlying type. */ | |
8462 | type = value_type (arg1); | |
8463 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8464 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8465 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8466 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8467 | |
8468 | case BINOP_SUB: | |
8469 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8470 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8471 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8472 | goto nosideret; |
2ac8a782 JB |
8473 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8474 | return (value_from_longest | |
8475 | (value_type (arg1), | |
8476 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8477 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8478 | || ada_is_fixed_point_type (value_type (arg2))) | |
8479 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8480 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8481 | /* Do the substraction, and cast the result to the type of the first |
8482 | argument. We cannot cast the result to a reference type, so if | |
8483 | ARG1 is a reference type, find its underlying type. */ | |
8484 | type = value_type (arg1); | |
8485 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8486 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8487 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8488 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8489 | |
8490 | case BINOP_MUL: | |
8491 | case BINOP_DIV: | |
8492 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8493 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8494 | if (noside == EVAL_SKIP) | |
4c4b4cd2 PH |
8495 | goto nosideret; |
8496 | else if (noside == EVAL_AVOID_SIDE_EFFECTS | |
76a01679 | 8497 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) |
df407dfe | 8498 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 8499 | else |
4c4b4cd2 | 8500 | { |
a53b7a21 | 8501 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8502 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8503 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8504 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8505 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8506 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8507 | return ada_value_binop (arg1, arg2, op); |
8508 | } | |
8509 | ||
8510 | case BINOP_REM: | |
8511 | case BINOP_MOD: | |
8512 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8513 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8514 | if (noside == EVAL_SKIP) | |
76a01679 | 8515 | goto nosideret; |
4c4b4cd2 | 8516 | else if (noside == EVAL_AVOID_SIDE_EFFECTS |
76a01679 | 8517 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) |
df407dfe | 8518 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 8519 | else |
f44316fa UW |
8520 | { |
8521 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8522 | return ada_value_binop (arg1, arg2, op); | |
8523 | } | |
14f9c5c9 | 8524 | |
4c4b4cd2 PH |
8525 | case BINOP_EQUAL: |
8526 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8527 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8528 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8529 | if (noside == EVAL_SKIP) |
76a01679 | 8530 | goto nosideret; |
4c4b4cd2 | 8531 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8532 | tem = 0; |
4c4b4cd2 | 8533 | else |
f44316fa UW |
8534 | { |
8535 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8536 | tem = ada_value_equal (arg1, arg2); | |
8537 | } | |
4c4b4cd2 | 8538 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8539 | tem = !tem; |
fbb06eb1 UW |
8540 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8541 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8542 | |
8543 | case UNOP_NEG: | |
8544 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8545 | if (noside == EVAL_SKIP) | |
8546 | goto nosideret; | |
df407dfe AC |
8547 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8548 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8549 | else |
f44316fa UW |
8550 | { |
8551 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8552 | return value_neg (arg1); | |
8553 | } | |
4c4b4cd2 | 8554 | |
2330c6c6 JB |
8555 | case BINOP_LOGICAL_AND: |
8556 | case BINOP_LOGICAL_OR: | |
8557 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8558 | { |
8559 | struct value *val; | |
8560 | ||
8561 | *pos -= 1; | |
8562 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8563 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8564 | return value_cast (type, val); | |
000d5124 | 8565 | } |
2330c6c6 JB |
8566 | |
8567 | case BINOP_BITWISE_AND: | |
8568 | case BINOP_BITWISE_IOR: | |
8569 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8570 | { |
8571 | struct value *val; | |
8572 | ||
8573 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8574 | *pos = pc; | |
8575 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8576 | ||
8577 | return value_cast (value_type (arg1), val); | |
8578 | } | |
2330c6c6 | 8579 | |
14f9c5c9 AS |
8580 | case OP_VAR_VALUE: |
8581 | *pos -= 1; | |
6799def4 | 8582 | |
14f9c5c9 | 8583 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8584 | { |
8585 | *pos += 4; | |
8586 | goto nosideret; | |
8587 | } | |
8588 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8589 | /* Only encountered when an unresolved symbol occurs in a |
8590 | context other than a function call, in which case, it is | |
52ce6436 | 8591 | invalid. */ |
323e0a4a | 8592 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8593 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8594 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8595 | { |
0c1f74cf JB |
8596 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
8597 | if (ada_is_tagged_type (type, 0)) | |
8598 | { | |
8599 | /* Tagged types are a little special in the fact that the real | |
8600 | type is dynamic and can only be determined by inspecting the | |
8601 | object's tag. This means that we need to get the object's | |
8602 | value first (EVAL_NORMAL) and then extract the actual object | |
8603 | type from its tag. | |
8604 | ||
8605 | Note that we cannot skip the final step where we extract | |
8606 | the object type from its tag, because the EVAL_NORMAL phase | |
8607 | results in dynamic components being resolved into fixed ones. | |
8608 | This can cause problems when trying to print the type | |
8609 | description of tagged types whose parent has a dynamic size: | |
8610 | We use the type name of the "_parent" component in order | |
8611 | to print the name of the ancestor type in the type description. | |
8612 | If that component had a dynamic size, the resolution into | |
8613 | a fixed type would result in the loss of that type name, | |
8614 | thus preventing us from printing the name of the ancestor | |
8615 | type in the type description. */ | |
8616 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
8617 | return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval); | |
8618 | } | |
8619 | ||
4c4b4cd2 PH |
8620 | *pos += 4; |
8621 | return value_zero | |
8622 | (to_static_fixed_type | |
8623 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8624 | not_lval); | |
8625 | } | |
d2e4a39e | 8626 | else |
4c4b4cd2 PH |
8627 | { |
8628 | arg1 = | |
8629 | unwrap_value (evaluate_subexp_standard | |
8630 | (expect_type, exp, pos, noside)); | |
8631 | return ada_to_fixed_value (arg1); | |
8632 | } | |
8633 | ||
8634 | case OP_FUNCALL: | |
8635 | (*pos) += 2; | |
8636 | ||
8637 | /* Allocate arg vector, including space for the function to be | |
8638 | called in argvec[0] and a terminating NULL. */ | |
8639 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8640 | argvec = | |
8641 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8642 | ||
8643 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8644 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8645 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8646 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8647 | else | |
8648 | { | |
8649 | for (tem = 0; tem <= nargs; tem += 1) | |
8650 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8651 | argvec[tem] = 0; | |
8652 | ||
8653 | if (noside == EVAL_SKIP) | |
8654 | goto nosideret; | |
8655 | } | |
8656 | ||
df407dfe | 8657 | if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0])))) |
4c4b4cd2 | 8658 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
df407dfe AC |
8659 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8660 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8661 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8662 | argvec[0] = value_addr (argvec[0]); |
8663 | ||
df407dfe | 8664 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8665 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8666 | { | |
61ee279c | 8667 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8668 | { |
8669 | case TYPE_CODE_FUNC: | |
61ee279c | 8670 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8671 | break; |
8672 | case TYPE_CODE_ARRAY: | |
8673 | break; | |
8674 | case TYPE_CODE_STRUCT: | |
8675 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8676 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8677 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8678 | break; |
8679 | default: | |
323e0a4a | 8680 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8681 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8682 | break; |
8683 | } | |
8684 | } | |
8685 | ||
8686 | switch (TYPE_CODE (type)) | |
8687 | { | |
8688 | case TYPE_CODE_FUNC: | |
8689 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8690 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8691 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8692 | case TYPE_CODE_STRUCT: | |
8693 | { | |
8694 | int arity; | |
8695 | ||
4c4b4cd2 PH |
8696 | arity = ada_array_arity (type); |
8697 | type = ada_array_element_type (type, nargs); | |
8698 | if (type == NULL) | |
323e0a4a | 8699 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8700 | if (arity != nargs) |
323e0a4a | 8701 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8702 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8703 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8704 | return |
8705 | unwrap_value (ada_value_subscript | |
8706 | (argvec[0], nargs, argvec + 1)); | |
8707 | } | |
8708 | case TYPE_CODE_ARRAY: | |
8709 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8710 | { | |
8711 | type = ada_array_element_type (type, nargs); | |
8712 | if (type == NULL) | |
323e0a4a | 8713 | error (_("element type of array unknown")); |
4c4b4cd2 | 8714 | else |
0a07e705 | 8715 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8716 | } |
8717 | return | |
8718 | unwrap_value (ada_value_subscript | |
8719 | (ada_coerce_to_simple_array (argvec[0]), | |
8720 | nargs, argvec + 1)); | |
8721 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8722 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8723 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8724 | { | |
8725 | type = ada_array_element_type (type, nargs); | |
8726 | if (type == NULL) | |
323e0a4a | 8727 | error (_("element type of array unknown")); |
4c4b4cd2 | 8728 | else |
0a07e705 | 8729 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8730 | } |
8731 | return | |
8732 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8733 | nargs, argvec + 1)); | |
8734 | ||
8735 | default: | |
e1d5a0d2 PH |
8736 | error (_("Attempt to index or call something other than an " |
8737 | "array or function")); | |
4c4b4cd2 PH |
8738 | } |
8739 | ||
8740 | case TERNOP_SLICE: | |
8741 | { | |
8742 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8743 | struct value *low_bound_val = | |
8744 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8745 | struct value *high_bound_val = |
8746 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8747 | LONGEST low_bound; | |
8748 | LONGEST high_bound; | |
994b9211 AC |
8749 | low_bound_val = coerce_ref (low_bound_val); |
8750 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8751 | low_bound = pos_atr (low_bound_val); |
8752 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8753 | |
4c4b4cd2 PH |
8754 | if (noside == EVAL_SKIP) |
8755 | goto nosideret; | |
8756 | ||
4c4b4cd2 PH |
8757 | /* If this is a reference to an aligner type, then remove all |
8758 | the aligners. */ | |
df407dfe AC |
8759 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8760 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8761 | TYPE_TARGET_TYPE (value_type (array)) = | |
8762 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8763 | |
df407dfe | 8764 | if (ada_is_packed_array_type (value_type (array))) |
323e0a4a | 8765 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8766 | |
8767 | /* If this is a reference to an array or an array lvalue, | |
8768 | convert to a pointer. */ | |
df407dfe AC |
8769 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8770 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8771 | && VALUE_LVAL (array) == lval_memory)) |
8772 | array = value_addr (array); | |
8773 | ||
1265e4aa | 8774 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8775 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8776 | (value_type (array)))) |
0b5d8877 | 8777 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8778 | |
8779 | array = ada_coerce_to_simple_array_ptr (array); | |
8780 | ||
714e53ab PH |
8781 | /* If we have more than one level of pointer indirection, |
8782 | dereference the value until we get only one level. */ | |
df407dfe AC |
8783 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
8784 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
8785 | == TYPE_CODE_PTR)) |
8786 | array = value_ind (array); | |
8787 | ||
8788 | /* Make sure we really do have an array type before going further, | |
8789 | to avoid a SEGV when trying to get the index type or the target | |
8790 | type later down the road if the debug info generated by | |
8791 | the compiler is incorrect or incomplete. */ | |
df407dfe | 8792 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 8793 | error (_("cannot take slice of non-array")); |
714e53ab | 8794 | |
df407dfe | 8795 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 8796 | { |
0b5d8877 | 8797 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 8798 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
8799 | low_bound); |
8800 | else | |
8801 | { | |
8802 | struct type *arr_type0 = | |
df407dfe | 8803 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 8804 | NULL, 1); |
0b5d8877 | 8805 | return ada_value_slice_ptr (array, arr_type0, |
529cad9c PH |
8806 | longest_to_int (low_bound), |
8807 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
8808 | } |
8809 | } | |
8810 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8811 | return array; | |
8812 | else if (high_bound < low_bound) | |
df407dfe | 8813 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 8814 | else |
529cad9c PH |
8815 | return ada_value_slice (array, longest_to_int (low_bound), |
8816 | longest_to_int (high_bound)); | |
4c4b4cd2 | 8817 | } |
14f9c5c9 | 8818 | |
4c4b4cd2 PH |
8819 | case UNOP_IN_RANGE: |
8820 | (*pos) += 2; | |
8821 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8822 | type = exp->elts[pc + 1].type; | |
14f9c5c9 | 8823 | |
14f9c5c9 | 8824 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 8825 | goto nosideret; |
14f9c5c9 | 8826 | |
4c4b4cd2 PH |
8827 | switch (TYPE_CODE (type)) |
8828 | { | |
8829 | default: | |
e1d5a0d2 PH |
8830 | lim_warning (_("Membership test incompletely implemented; " |
8831 | "always returns true")); | |
fbb06eb1 UW |
8832 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8833 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
8834 | |
8835 | case TYPE_CODE_RANGE: | |
030b4912 UW |
8836 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
8837 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
8838 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
8839 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
8840 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8841 | return | |
8842 | value_from_longest (type, | |
4c4b4cd2 PH |
8843 | (value_less (arg1, arg3) |
8844 | || value_equal (arg1, arg3)) | |
8845 | && (value_less (arg2, arg1) | |
8846 | || value_equal (arg2, arg1))); | |
8847 | } | |
8848 | ||
8849 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 8850 | (*pos) += 2; |
4c4b4cd2 PH |
8851 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8852 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 8853 | |
4c4b4cd2 PH |
8854 | if (noside == EVAL_SKIP) |
8855 | goto nosideret; | |
14f9c5c9 | 8856 | |
4c4b4cd2 | 8857 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
8858 | { |
8859 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
8860 | return value_zero (type, not_lval); | |
8861 | } | |
14f9c5c9 | 8862 | |
4c4b4cd2 | 8863 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 8864 | |
df407dfe | 8865 | if (tem < 1 || tem > ada_array_arity (value_type (arg2))) |
323e0a4a | 8866 | error (_("invalid dimension number to 'range")); |
14f9c5c9 | 8867 | |
4c4b4cd2 PH |
8868 | arg3 = ada_array_bound (arg2, tem, 1); |
8869 | arg2 = ada_array_bound (arg2, tem, 0); | |
d2e4a39e | 8870 | |
f44316fa UW |
8871 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
8872 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 8873 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 8874 | return |
fbb06eb1 | 8875 | value_from_longest (type, |
4c4b4cd2 PH |
8876 | (value_less (arg1, arg3) |
8877 | || value_equal (arg1, arg3)) | |
8878 | && (value_less (arg2, arg1) | |
8879 | || value_equal (arg2, arg1))); | |
8880 | ||
8881 | case TERNOP_IN_RANGE: | |
8882 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8883 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8884 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8885 | ||
8886 | if (noside == EVAL_SKIP) | |
8887 | goto nosideret; | |
8888 | ||
f44316fa UW |
8889 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
8890 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 8891 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 8892 | return |
fbb06eb1 | 8893 | value_from_longest (type, |
4c4b4cd2 PH |
8894 | (value_less (arg1, arg3) |
8895 | || value_equal (arg1, arg3)) | |
8896 | && (value_less (arg2, arg1) | |
8897 | || value_equal (arg2, arg1))); | |
8898 | ||
8899 | case OP_ATR_FIRST: | |
8900 | case OP_ATR_LAST: | |
8901 | case OP_ATR_LENGTH: | |
8902 | { | |
76a01679 JB |
8903 | struct type *type_arg; |
8904 | if (exp->elts[*pos].opcode == OP_TYPE) | |
8905 | { | |
8906 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
8907 | arg1 = NULL; | |
8908 | type_arg = exp->elts[pc + 2].type; | |
8909 | } | |
8910 | else | |
8911 | { | |
8912 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8913 | type_arg = NULL; | |
8914 | } | |
8915 | ||
8916 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 8917 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
8918 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
8919 | *pos += 4; | |
8920 | ||
8921 | if (noside == EVAL_SKIP) | |
8922 | goto nosideret; | |
8923 | ||
8924 | if (type_arg == NULL) | |
8925 | { | |
8926 | arg1 = ada_coerce_ref (arg1); | |
8927 | ||
df407dfe | 8928 | if (ada_is_packed_array_type (value_type (arg1))) |
76a01679 JB |
8929 | arg1 = ada_coerce_to_simple_array (arg1); |
8930 | ||
df407dfe | 8931 | if (tem < 1 || tem > ada_array_arity (value_type (arg1))) |
323e0a4a | 8932 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
8933 | ada_attribute_name (op)); |
8934 | ||
8935 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8936 | { | |
df407dfe | 8937 | type = ada_index_type (value_type (arg1), tem); |
76a01679 JB |
8938 | if (type == NULL) |
8939 | error | |
323e0a4a | 8940 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
8941 | return allocate_value (type); |
8942 | } | |
8943 | ||
8944 | switch (op) | |
8945 | { | |
8946 | default: /* Should never happen. */ | |
323e0a4a | 8947 | error (_("unexpected attribute encountered")); |
76a01679 JB |
8948 | case OP_ATR_FIRST: |
8949 | return ada_array_bound (arg1, tem, 0); | |
8950 | case OP_ATR_LAST: | |
8951 | return ada_array_bound (arg1, tem, 1); | |
8952 | case OP_ATR_LENGTH: | |
8953 | return ada_array_length (arg1, tem); | |
8954 | } | |
8955 | } | |
8956 | else if (discrete_type_p (type_arg)) | |
8957 | { | |
8958 | struct type *range_type; | |
8959 | char *name = ada_type_name (type_arg); | |
8960 | range_type = NULL; | |
8961 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
8962 | range_type = | |
8963 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
8964 | if (range_type == NULL) | |
8965 | range_type = type_arg; | |
8966 | switch (op) | |
8967 | { | |
8968 | default: | |
323e0a4a | 8969 | error (_("unexpected attribute encountered")); |
76a01679 | 8970 | case OP_ATR_FIRST: |
690cc4eb PH |
8971 | return value_from_longest |
8972 | (range_type, discrete_type_low_bound (range_type)); | |
76a01679 | 8973 | case OP_ATR_LAST: |
690cc4eb PH |
8974 | return value_from_longest |
8975 | (range_type, discrete_type_high_bound (range_type)); | |
76a01679 | 8976 | case OP_ATR_LENGTH: |
323e0a4a | 8977 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
8978 | } |
8979 | } | |
8980 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 8981 | error (_("unimplemented type attribute")); |
76a01679 JB |
8982 | else |
8983 | { | |
8984 | LONGEST low, high; | |
8985 | ||
8986 | if (ada_is_packed_array_type (type_arg)) | |
8987 | type_arg = decode_packed_array_type (type_arg); | |
8988 | ||
8989 | if (tem < 1 || tem > ada_array_arity (type_arg)) | |
323e0a4a | 8990 | error (_("invalid dimension number to '%s"), |
76a01679 JB |
8991 | ada_attribute_name (op)); |
8992 | ||
8993 | type = ada_index_type (type_arg, tem); | |
8994 | if (type == NULL) | |
8995 | error | |
323e0a4a | 8996 | (_("attempt to take bound of something that is not an array")); |
76a01679 JB |
8997 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
8998 | return allocate_value (type); | |
8999 | ||
9000 | switch (op) | |
9001 | { | |
9002 | default: | |
323e0a4a | 9003 | error (_("unexpected attribute encountered")); |
76a01679 JB |
9004 | case OP_ATR_FIRST: |
9005 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9006 | return value_from_longest (type, low); | |
9007 | case OP_ATR_LAST: | |
9008 | high = ada_array_bound_from_type (type_arg, tem, 1, &type); | |
9009 | return value_from_longest (type, high); | |
9010 | case OP_ATR_LENGTH: | |
9011 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
9012 | high = ada_array_bound_from_type (type_arg, tem, 1, NULL); | |
9013 | return value_from_longest (type, high - low + 1); | |
9014 | } | |
9015 | } | |
14f9c5c9 AS |
9016 | } |
9017 | ||
4c4b4cd2 PH |
9018 | case OP_ATR_TAG: |
9019 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9020 | if (noside == EVAL_SKIP) | |
76a01679 | 9021 | goto nosideret; |
4c4b4cd2 PH |
9022 | |
9023 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9024 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9025 | |
9026 | return ada_value_tag (arg1); | |
9027 | ||
9028 | case OP_ATR_MIN: | |
9029 | case OP_ATR_MAX: | |
9030 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9031 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9032 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9033 | if (noside == EVAL_SKIP) | |
76a01679 | 9034 | goto nosideret; |
d2e4a39e | 9035 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9036 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9037 | else |
f44316fa UW |
9038 | { |
9039 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9040 | return value_binop (arg1, arg2, | |
9041 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9042 | } | |
14f9c5c9 | 9043 | |
4c4b4cd2 PH |
9044 | case OP_ATR_MODULUS: |
9045 | { | |
76a01679 JB |
9046 | struct type *type_arg = exp->elts[pc + 2].type; |
9047 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
4c4b4cd2 | 9048 | |
76a01679 JB |
9049 | if (noside == EVAL_SKIP) |
9050 | goto nosideret; | |
4c4b4cd2 | 9051 | |
76a01679 | 9052 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9053 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9054 | |
76a01679 JB |
9055 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9056 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9057 | } |
9058 | ||
9059 | ||
9060 | case OP_ATR_POS: | |
9061 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9062 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9063 | if (noside == EVAL_SKIP) | |
76a01679 | 9064 | goto nosideret; |
4c4b4cd2 | 9065 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
72d5681a | 9066 | return value_zero (builtin_type_int, not_lval); |
14f9c5c9 | 9067 | else |
76a01679 | 9068 | return value_pos_atr (arg1); |
14f9c5c9 | 9069 | |
4c4b4cd2 PH |
9070 | case OP_ATR_SIZE: |
9071 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9072 | if (noside == EVAL_SKIP) | |
76a01679 | 9073 | goto nosideret; |
4c4b4cd2 | 9074 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
6d2e05aa | 9075 | return value_zero (builtin_type_int32, not_lval); |
4c4b4cd2 | 9076 | else |
6d2e05aa | 9077 | return value_from_longest (builtin_type_int32, |
76a01679 | 9078 | TARGET_CHAR_BIT |
df407dfe | 9079 | * TYPE_LENGTH (value_type (arg1))); |
4c4b4cd2 PH |
9080 | |
9081 | case OP_ATR_VAL: | |
9082 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9083 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9084 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9085 | if (noside == EVAL_SKIP) |
76a01679 | 9086 | goto nosideret; |
4c4b4cd2 | 9087 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9088 | return value_zero (type, not_lval); |
4c4b4cd2 | 9089 | else |
76a01679 | 9090 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9091 | |
9092 | case BINOP_EXP: | |
9093 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9094 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9095 | if (noside == EVAL_SKIP) | |
9096 | goto nosideret; | |
9097 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9098 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9099 | else |
f44316fa UW |
9100 | { |
9101 | /* For integer exponentiation operations, | |
9102 | only promote the first argument. */ | |
9103 | if (is_integral_type (value_type (arg2))) | |
9104 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9105 | else | |
9106 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9107 | ||
9108 | return value_binop (arg1, arg2, op); | |
9109 | } | |
4c4b4cd2 PH |
9110 | |
9111 | case UNOP_PLUS: | |
9112 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9113 | if (noside == EVAL_SKIP) | |
9114 | goto nosideret; | |
9115 | else | |
9116 | return arg1; | |
9117 | ||
9118 | case UNOP_ABS: | |
9119 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9120 | if (noside == EVAL_SKIP) | |
9121 | goto nosideret; | |
f44316fa | 9122 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9123 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9124 | return value_neg (arg1); |
14f9c5c9 | 9125 | else |
4c4b4cd2 | 9126 | return arg1; |
14f9c5c9 AS |
9127 | |
9128 | case UNOP_IND: | |
9129 | if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) | |
61ee279c | 9130 | expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type)); |
14f9c5c9 AS |
9131 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
9132 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9133 | goto nosideret; |
df407dfe | 9134 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9135 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9136 | { |
9137 | if (ada_is_array_descriptor_type (type)) | |
9138 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9139 | { | |
9140 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9141 | if (arrType == NULL) | |
323e0a4a | 9142 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9143 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9144 | } |
9145 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9146 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9147 | /* In C you can dereference an array to get the 1st elt. */ | |
9148 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9149 | { |
9150 | type = to_static_fixed_type | |
9151 | (ada_aligned_type | |
9152 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9153 | check_size (type); | |
9154 | return value_zero (type, lval_memory); | |
9155 | } | |
4c4b4cd2 PH |
9156 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
9157 | /* GDB allows dereferencing an int. */ | |
22fe0fbb UW |
9158 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, |
9159 | lval_memory); | |
4c4b4cd2 | 9160 | else |
323e0a4a | 9161 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9162 | } |
76a01679 | 9163 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9164 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9165 | |
4c4b4cd2 PH |
9166 | if (ada_is_array_descriptor_type (type)) |
9167 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9168 | return ada_coerce_to_simple_array (arg1); | |
22fe0fbb UW |
9169 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
9170 | /* GDB allows dereferencing an int. */ | |
9171 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9172 | (CORE_ADDR) value_as_address (arg1)); | |
14f9c5c9 | 9173 | else |
4c4b4cd2 | 9174 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9175 | |
9176 | case STRUCTOP_STRUCT: | |
9177 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9178 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9179 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9180 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9181 | goto nosideret; |
14f9c5c9 | 9182 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9183 | { |
df407dfe | 9184 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9185 | if (ada_is_tagged_type (type1, 1)) |
9186 | { | |
9187 | type = ada_lookup_struct_elt_type (type1, | |
9188 | &exp->elts[pc + 2].string, | |
9189 | 1, 1, NULL); | |
9190 | if (type == NULL) | |
9191 | /* In this case, we assume that the field COULD exist | |
9192 | in some extension of the type. Return an object of | |
9193 | "type" void, which will match any formal | |
9194 | (see ada_type_match). */ | |
9195 | return value_zero (builtin_type_void, lval_memory); | |
9196 | } | |
9197 | else | |
9198 | type = | |
9199 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9200 | 0, NULL); | |
9201 | ||
9202 | return value_zero (ada_aligned_type (type), lval_memory); | |
9203 | } | |
14f9c5c9 | 9204 | else |
76a01679 JB |
9205 | return |
9206 | ada_to_fixed_value (unwrap_value | |
9207 | (ada_value_struct_elt | |
03ee6b2e | 9208 | (arg1, &exp->elts[pc + 2].string, 0))); |
14f9c5c9 | 9209 | case OP_TYPE: |
4c4b4cd2 PH |
9210 | /* The value is not supposed to be used. This is here to make it |
9211 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9212 | (*pos) += 2; |
9213 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9214 | goto nosideret; |
14f9c5c9 | 9215 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9216 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9217 | else |
323e0a4a | 9218 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9219 | |
9220 | case OP_AGGREGATE: | |
9221 | case OP_CHOICES: | |
9222 | case OP_OTHERS: | |
9223 | case OP_DISCRETE_RANGE: | |
9224 | case OP_POSITIONAL: | |
9225 | case OP_NAME: | |
9226 | if (noside == EVAL_NORMAL) | |
9227 | switch (op) | |
9228 | { | |
9229 | case OP_NAME: | |
9230 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9231 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9232 | case OP_AGGREGATE: |
9233 | error (_("Aggregates only allowed on the right of an assignment")); | |
9234 | default: | |
e1d5a0d2 | 9235 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9236 | } |
9237 | ||
9238 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9239 | *pos += oplen - 1; | |
9240 | for (tem = 0; tem < nargs; tem += 1) | |
9241 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9242 | goto nosideret; | |
14f9c5c9 AS |
9243 | } |
9244 | ||
9245 | nosideret: | |
cb18ec49 | 9246 | return value_from_longest (builtin_type_int8, (LONGEST) 1); |
14f9c5c9 | 9247 | } |
14f9c5c9 | 9248 | \f |
d2e4a39e | 9249 | |
4c4b4cd2 | 9250 | /* Fixed point */ |
14f9c5c9 AS |
9251 | |
9252 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9253 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9254 | Otherwise, return NULL. */ |
14f9c5c9 | 9255 | |
d2e4a39e | 9256 | static const char * |
ebf56fd3 | 9257 | fixed_type_info (struct type *type) |
14f9c5c9 | 9258 | { |
d2e4a39e | 9259 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9260 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9261 | ||
d2e4a39e AS |
9262 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9263 | { | |
14f9c5c9 AS |
9264 | const char *tail = strstr (name, "___XF_"); |
9265 | if (tail == NULL) | |
4c4b4cd2 | 9266 | return NULL; |
d2e4a39e | 9267 | else |
4c4b4cd2 | 9268 | return tail + 5; |
14f9c5c9 AS |
9269 | } |
9270 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9271 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9272 | else | |
9273 | return NULL; | |
9274 | } | |
9275 | ||
4c4b4cd2 | 9276 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9277 | |
9278 | int | |
ebf56fd3 | 9279 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9280 | { |
9281 | return fixed_type_info (type) != NULL; | |
9282 | } | |
9283 | ||
4c4b4cd2 PH |
9284 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9285 | ||
9286 | int | |
9287 | ada_is_system_address_type (struct type *type) | |
9288 | { | |
9289 | return (TYPE_NAME (type) | |
9290 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9291 | } | |
9292 | ||
14f9c5c9 AS |
9293 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9294 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9295 | delta cannot be determined. */ |
14f9c5c9 AS |
9296 | |
9297 | DOUBLEST | |
ebf56fd3 | 9298 | ada_delta (struct type *type) |
14f9c5c9 AS |
9299 | { |
9300 | const char *encoding = fixed_type_info (type); | |
9301 | long num, den; | |
9302 | ||
9303 | if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2) | |
9304 | return -1.0; | |
d2e4a39e | 9305 | else |
14f9c5c9 AS |
9306 | return (DOUBLEST) num / (DOUBLEST) den; |
9307 | } | |
9308 | ||
9309 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9310 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9311 | |
9312 | static DOUBLEST | |
ebf56fd3 | 9313 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9314 | { |
9315 | const char *encoding = fixed_type_info (type); | |
9316 | unsigned long num0, den0, num1, den1; | |
9317 | int n; | |
d2e4a39e | 9318 | |
14f9c5c9 AS |
9319 | n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1); |
9320 | ||
9321 | if (n < 2) | |
9322 | return 1.0; | |
9323 | else if (n == 4) | |
9324 | return (DOUBLEST) num1 / (DOUBLEST) den1; | |
d2e4a39e | 9325 | else |
14f9c5c9 AS |
9326 | return (DOUBLEST) num0 / (DOUBLEST) den0; |
9327 | } | |
9328 | ||
9329 | ||
9330 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9331 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9332 | |
9333 | DOUBLEST | |
ebf56fd3 | 9334 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9335 | { |
d2e4a39e | 9336 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9337 | } |
9338 | ||
4c4b4cd2 PH |
9339 | /* The representation of a fixed-point value of type TYPE |
9340 | corresponding to the value X. */ | |
14f9c5c9 AS |
9341 | |
9342 | LONGEST | |
ebf56fd3 | 9343 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9344 | { |
9345 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9346 | } | |
9347 | ||
9348 | ||
4c4b4cd2 | 9349 | /* VAX floating formats */ |
14f9c5c9 AS |
9350 | |
9351 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9352 | types. */ |
9353 | ||
14f9c5c9 | 9354 | int |
d2e4a39e | 9355 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9356 | { |
d2e4a39e | 9357 | int name_len = |
14f9c5c9 | 9358 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9359 | return |
14f9c5c9 | 9360 | name_len > 6 |
d2e4a39e | 9361 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9362 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9363 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9364 | } |
9365 | ||
9366 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9367 | ada_is_vax_floating_point. */ |
9368 | ||
14f9c5c9 | 9369 | int |
d2e4a39e | 9370 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9371 | { |
d2e4a39e | 9372 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9373 | } |
9374 | ||
4c4b4cd2 | 9375 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9376 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9377 | ada_is_vax_floating_type (TYPE). */ |
9378 | ||
d2e4a39e AS |
9379 | struct value * |
9380 | ada_vax_float_print_function (struct type *type) | |
9381 | { | |
9382 | switch (ada_vax_float_type_suffix (type)) | |
9383 | { | |
9384 | case 'F': | |
9385 | return get_var_value ("DEBUG_STRING_F", 0); | |
9386 | case 'D': | |
9387 | return get_var_value ("DEBUG_STRING_D", 0); | |
9388 | case 'G': | |
9389 | return get_var_value ("DEBUG_STRING_G", 0); | |
9390 | default: | |
323e0a4a | 9391 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9392 | } |
14f9c5c9 | 9393 | } |
14f9c5c9 | 9394 | \f |
d2e4a39e | 9395 | |
4c4b4cd2 | 9396 | /* Range types */ |
14f9c5c9 AS |
9397 | |
9398 | /* Scan STR beginning at position K for a discriminant name, and | |
9399 | return the value of that discriminant field of DVAL in *PX. If | |
9400 | PNEW_K is not null, put the position of the character beyond the | |
9401 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9402 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9403 | |
9404 | static int | |
07d8f827 | 9405 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9406 | int *pnew_k) |
14f9c5c9 AS |
9407 | { |
9408 | static char *bound_buffer = NULL; | |
9409 | static size_t bound_buffer_len = 0; | |
9410 | char *bound; | |
9411 | char *pend; | |
d2e4a39e | 9412 | struct value *bound_val; |
14f9c5c9 AS |
9413 | |
9414 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9415 | return 0; | |
9416 | ||
d2e4a39e | 9417 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9418 | if (pend == NULL) |
9419 | { | |
d2e4a39e | 9420 | bound = str + k; |
14f9c5c9 AS |
9421 | k += strlen (bound); |
9422 | } | |
d2e4a39e | 9423 | else |
14f9c5c9 | 9424 | { |
d2e4a39e | 9425 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9426 | bound = bound_buffer; |
d2e4a39e AS |
9427 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9428 | bound[pend - (str + k)] = '\0'; | |
9429 | k = pend - str; | |
14f9c5c9 | 9430 | } |
d2e4a39e | 9431 | |
df407dfe | 9432 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9433 | if (bound_val == NULL) |
9434 | return 0; | |
9435 | ||
9436 | *px = value_as_long (bound_val); | |
9437 | if (pnew_k != NULL) | |
9438 | *pnew_k = k; | |
9439 | return 1; | |
9440 | } | |
9441 | ||
9442 | /* Value of variable named NAME in the current environment. If | |
9443 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9444 | otherwise causes an error with message ERR_MSG. */ |
9445 | ||
d2e4a39e AS |
9446 | static struct value * |
9447 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9448 | { |
4c4b4cd2 | 9449 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9450 | int nsyms; |
9451 | ||
4c4b4cd2 PH |
9452 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9453 | &syms); | |
14f9c5c9 AS |
9454 | |
9455 | if (nsyms != 1) | |
9456 | { | |
9457 | if (err_msg == NULL) | |
4c4b4cd2 | 9458 | return 0; |
14f9c5c9 | 9459 | else |
8a3fe4f8 | 9460 | error (("%s"), err_msg); |
14f9c5c9 AS |
9461 | } |
9462 | ||
4c4b4cd2 | 9463 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9464 | } |
d2e4a39e | 9465 | |
14f9c5c9 | 9466 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9467 | no such variable found, returns 0, and sets *FLAG to 0. If |
9468 | successful, sets *FLAG to 1. */ | |
9469 | ||
14f9c5c9 | 9470 | LONGEST |
4c4b4cd2 | 9471 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9472 | { |
4c4b4cd2 | 9473 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9474 | |
14f9c5c9 AS |
9475 | if (var_val == 0) |
9476 | { | |
9477 | if (flag != NULL) | |
4c4b4cd2 | 9478 | *flag = 0; |
14f9c5c9 AS |
9479 | return 0; |
9480 | } | |
9481 | else | |
9482 | { | |
9483 | if (flag != NULL) | |
4c4b4cd2 | 9484 | *flag = 1; |
14f9c5c9 AS |
9485 | return value_as_long (var_val); |
9486 | } | |
9487 | } | |
d2e4a39e | 9488 | |
14f9c5c9 AS |
9489 | |
9490 | /* Return a range type whose base type is that of the range type named | |
9491 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9492 | from NAME according to the GNAT range encoding conventions. |
14f9c5c9 AS |
9493 | Extract discriminant values, if needed, from DVAL. If a new type |
9494 | must be created, allocate in OBJFILE's space. The bounds | |
9495 | information, in general, is encoded in NAME, the base type given in | |
4c4b4cd2 | 9496 | the named range type. */ |
14f9c5c9 | 9497 | |
d2e4a39e | 9498 | static struct type * |
ebf56fd3 | 9499 | to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile) |
14f9c5c9 AS |
9500 | { |
9501 | struct type *raw_type = ada_find_any_type (name); | |
9502 | struct type *base_type; | |
d2e4a39e | 9503 | char *subtype_info; |
14f9c5c9 AS |
9504 | |
9505 | if (raw_type == NULL) | |
9506 | base_type = builtin_type_int; | |
9507 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) | |
9508 | base_type = TYPE_TARGET_TYPE (raw_type); | |
9509 | else | |
9510 | base_type = raw_type; | |
9511 | ||
9512 | subtype_info = strstr (name, "___XD"); | |
9513 | if (subtype_info == NULL) | |
690cc4eb PH |
9514 | { |
9515 | LONGEST L = discrete_type_low_bound (raw_type); | |
9516 | LONGEST U = discrete_type_high_bound (raw_type); | |
9517 | if (L < INT_MIN || U > INT_MAX) | |
9518 | return raw_type; | |
9519 | else | |
9520 | return create_range_type (alloc_type (objfile), raw_type, | |
9521 | discrete_type_low_bound (raw_type), | |
9522 | discrete_type_high_bound (raw_type)); | |
9523 | } | |
14f9c5c9 AS |
9524 | else |
9525 | { | |
9526 | static char *name_buf = NULL; | |
9527 | static size_t name_len = 0; | |
9528 | int prefix_len = subtype_info - name; | |
9529 | LONGEST L, U; | |
9530 | struct type *type; | |
9531 | char *bounds_str; | |
9532 | int n; | |
9533 | ||
9534 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9535 | strncpy (name_buf, name, prefix_len); | |
9536 | name_buf[prefix_len] = '\0'; | |
9537 | ||
9538 | subtype_info += 5; | |
9539 | bounds_str = strchr (subtype_info, '_'); | |
9540 | n = 1; | |
9541 | ||
d2e4a39e | 9542 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9543 | { |
9544 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9545 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9546 | return raw_type; | |
9547 | if (bounds_str[n] == '_') | |
9548 | n += 2; | |
9549 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9550 | n += 1; | |
9551 | subtype_info += 1; | |
9552 | } | |
d2e4a39e | 9553 | else |
4c4b4cd2 PH |
9554 | { |
9555 | int ok; | |
9556 | strcpy (name_buf + prefix_len, "___L"); | |
9557 | L = get_int_var_value (name_buf, &ok); | |
9558 | if (!ok) | |
9559 | { | |
323e0a4a | 9560 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9561 | L = 1; |
9562 | } | |
9563 | } | |
14f9c5c9 | 9564 | |
d2e4a39e | 9565 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9566 | { |
9567 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9568 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9569 | return raw_type; | |
9570 | } | |
d2e4a39e | 9571 | else |
4c4b4cd2 PH |
9572 | { |
9573 | int ok; | |
9574 | strcpy (name_buf + prefix_len, "___U"); | |
9575 | U = get_int_var_value (name_buf, &ok); | |
9576 | if (!ok) | |
9577 | { | |
323e0a4a | 9578 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9579 | U = L; |
9580 | } | |
9581 | } | |
14f9c5c9 | 9582 | |
d2e4a39e | 9583 | if (objfile == NULL) |
4c4b4cd2 | 9584 | objfile = TYPE_OBJFILE (base_type); |
14f9c5c9 | 9585 | type = create_range_type (alloc_type (objfile), base_type, L, U); |
d2e4a39e | 9586 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9587 | return type; |
9588 | } | |
9589 | } | |
9590 | ||
4c4b4cd2 PH |
9591 | /* True iff NAME is the name of a range type. */ |
9592 | ||
14f9c5c9 | 9593 | int |
d2e4a39e | 9594 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9595 | { |
9596 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9597 | } |
14f9c5c9 | 9598 | \f |
d2e4a39e | 9599 | |
4c4b4cd2 PH |
9600 | /* Modular types */ |
9601 | ||
9602 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9603 | |
14f9c5c9 | 9604 | int |
d2e4a39e | 9605 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9606 | { |
4c4b4cd2 | 9607 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9608 | |
9609 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9610 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9611 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9612 | } |
9613 | ||
4c4b4cd2 PH |
9614 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9615 | ||
61ee279c | 9616 | ULONGEST |
d2e4a39e | 9617 | ada_modulus (struct type * type) |
14f9c5c9 | 9618 | { |
61ee279c | 9619 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9620 | } |
d2e4a39e | 9621 | \f |
f7f9143b JB |
9622 | |
9623 | /* Ada exception catchpoint support: | |
9624 | --------------------------------- | |
9625 | ||
9626 | We support 3 kinds of exception catchpoints: | |
9627 | . catchpoints on Ada exceptions | |
9628 | . catchpoints on unhandled Ada exceptions | |
9629 | . catchpoints on failed assertions | |
9630 | ||
9631 | Exceptions raised during failed assertions, or unhandled exceptions | |
9632 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9633 | However, we can easily differentiate these two special cases, and having | |
9634 | the option to distinguish these two cases from the rest can be useful | |
9635 | to zero-in on certain situations. | |
9636 | ||
9637 | Exception catchpoints are a specialized form of breakpoint, | |
9638 | since they rely on inserting breakpoints inside known routines | |
9639 | of the GNAT runtime. The implementation therefore uses a standard | |
9640 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9641 | of breakpoint_ops. | |
9642 | ||
0259addd JB |
9643 | Support in the runtime for exception catchpoints have been changed |
9644 | a few times already, and these changes affect the implementation | |
9645 | of these catchpoints. In order to be able to support several | |
9646 | variants of the runtime, we use a sniffer that will determine | |
9647 | the runtime variant used by the program being debugged. | |
9648 | ||
f7f9143b JB |
9649 | At this time, we do not support the use of conditions on Ada exception |
9650 | catchpoints. The COND and COND_STRING fields are therefore set | |
9651 | to NULL (most of the time, see below). | |
9652 | ||
9653 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9654 | ||
9655 | When a user specifies the name of a specific exception in the case | |
9656 | of catchpoints on Ada exceptions, we store the name of that exception | |
9657 | in the EXP_STRING. We then translate this request into an actual | |
9658 | condition stored in COND_STRING, and then parse it into an expression | |
9659 | stored in COND. */ | |
9660 | ||
9661 | /* The different types of catchpoints that we introduced for catching | |
9662 | Ada exceptions. */ | |
9663 | ||
9664 | enum exception_catchpoint_kind | |
9665 | { | |
9666 | ex_catch_exception, | |
9667 | ex_catch_exception_unhandled, | |
9668 | ex_catch_assert | |
9669 | }; | |
9670 | ||
0259addd JB |
9671 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9672 | ||
9673 | /* A structure that describes how to support exception catchpoints | |
9674 | for a given executable. */ | |
9675 | ||
9676 | struct exception_support_info | |
9677 | { | |
9678 | /* The name of the symbol to break on in order to insert | |
9679 | a catchpoint on exceptions. */ | |
9680 | const char *catch_exception_sym; | |
9681 | ||
9682 | /* The name of the symbol to break on in order to insert | |
9683 | a catchpoint on unhandled exceptions. */ | |
9684 | const char *catch_exception_unhandled_sym; | |
9685 | ||
9686 | /* The name of the symbol to break on in order to insert | |
9687 | a catchpoint on failed assertions. */ | |
9688 | const char *catch_assert_sym; | |
9689 | ||
9690 | /* Assuming that the inferior just triggered an unhandled exception | |
9691 | catchpoint, this function is responsible for returning the address | |
9692 | in inferior memory where the name of that exception is stored. | |
9693 | Return zero if the address could not be computed. */ | |
9694 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9695 | }; | |
9696 | ||
9697 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9698 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9699 | ||
9700 | /* The following exception support info structure describes how to | |
9701 | implement exception catchpoints with the latest version of the | |
9702 | Ada runtime (as of 2007-03-06). */ | |
9703 | ||
9704 | static const struct exception_support_info default_exception_support_info = | |
9705 | { | |
9706 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9707 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9708 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9709 | ada_unhandled_exception_name_addr | |
9710 | }; | |
9711 | ||
9712 | /* The following exception support info structure describes how to | |
9713 | implement exception catchpoints with a slightly older version | |
9714 | of the Ada runtime. */ | |
9715 | ||
9716 | static const struct exception_support_info exception_support_info_fallback = | |
9717 | { | |
9718 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
9719 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9720 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9721 | ada_unhandled_exception_name_addr_from_raise | |
9722 | }; | |
9723 | ||
9724 | /* For each executable, we sniff which exception info structure to use | |
9725 | and cache it in the following global variable. */ | |
9726 | ||
9727 | static const struct exception_support_info *exception_info = NULL; | |
9728 | ||
9729 | /* Inspect the Ada runtime and determine which exception info structure | |
9730 | should be used to provide support for exception catchpoints. | |
9731 | ||
9732 | This function will always set exception_info, or raise an error. */ | |
9733 | ||
9734 | static void | |
9735 | ada_exception_support_info_sniffer (void) | |
9736 | { | |
9737 | struct symbol *sym; | |
9738 | ||
9739 | /* If the exception info is already known, then no need to recompute it. */ | |
9740 | if (exception_info != NULL) | |
9741 | return; | |
9742 | ||
9743 | /* Check the latest (default) exception support info. */ | |
9744 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
9745 | NULL, VAR_DOMAIN); | |
9746 | if (sym != NULL) | |
9747 | { | |
9748 | exception_info = &default_exception_support_info; | |
9749 | return; | |
9750 | } | |
9751 | ||
9752 | /* Try our fallback exception suport info. */ | |
9753 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
9754 | NULL, VAR_DOMAIN); | |
9755 | if (sym != NULL) | |
9756 | { | |
9757 | exception_info = &exception_support_info_fallback; | |
9758 | return; | |
9759 | } | |
9760 | ||
9761 | /* Sometimes, it is normal for us to not be able to find the routine | |
9762 | we are looking for. This happens when the program is linked with | |
9763 | the shared version of the GNAT runtime, and the program has not been | |
9764 | started yet. Inform the user of these two possible causes if | |
9765 | applicable. */ | |
9766 | ||
9767 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
9768 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
9769 | ||
9770 | /* If the symbol does not exist, then check that the program is | |
9771 | already started, to make sure that shared libraries have been | |
9772 | loaded. If it is not started, this may mean that the symbol is | |
9773 | in a shared library. */ | |
9774 | ||
9775 | if (ptid_get_pid (inferior_ptid) == 0) | |
9776 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
9777 | ||
9778 | /* At this point, we know that we are debugging an Ada program and | |
9779 | that the inferior has been started, but we still are not able to | |
9780 | find the run-time symbols. That can mean that we are in | |
9781 | configurable run time mode, or that a-except as been optimized | |
9782 | out by the linker... In any case, at this point it is not worth | |
9783 | supporting this feature. */ | |
9784 | ||
9785 | error (_("Cannot insert catchpoints in this configuration.")); | |
9786 | } | |
9787 | ||
9788 | /* An observer of "executable_changed" events. | |
9789 | Its role is to clear certain cached values that need to be recomputed | |
9790 | each time a new executable is loaded by GDB. */ | |
9791 | ||
9792 | static void | |
781b42b0 | 9793 | ada_executable_changed_observer (void) |
0259addd JB |
9794 | { |
9795 | /* If the executable changed, then it is possible that the Ada runtime | |
9796 | is different. So we need to invalidate the exception support info | |
9797 | cache. */ | |
9798 | exception_info = NULL; | |
9799 | } | |
9800 | ||
f7f9143b JB |
9801 | /* Return the name of the function at PC, NULL if could not find it. |
9802 | This function only checks the debugging information, not the symbol | |
9803 | table. */ | |
9804 | ||
9805 | static char * | |
9806 | function_name_from_pc (CORE_ADDR pc) | |
9807 | { | |
9808 | char *func_name; | |
9809 | ||
9810 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
9811 | return NULL; | |
9812 | ||
9813 | return func_name; | |
9814 | } | |
9815 | ||
9816 | /* True iff FRAME is very likely to be that of a function that is | |
9817 | part of the runtime system. This is all very heuristic, but is | |
9818 | intended to be used as advice as to what frames are uninteresting | |
9819 | to most users. */ | |
9820 | ||
9821 | static int | |
9822 | is_known_support_routine (struct frame_info *frame) | |
9823 | { | |
4ed6b5be | 9824 | struct symtab_and_line sal; |
f7f9143b JB |
9825 | char *func_name; |
9826 | int i; | |
f7f9143b | 9827 | |
4ed6b5be JB |
9828 | /* If this code does not have any debugging information (no symtab), |
9829 | This cannot be any user code. */ | |
f7f9143b | 9830 | |
4ed6b5be | 9831 | find_frame_sal (frame, &sal); |
f7f9143b JB |
9832 | if (sal.symtab == NULL) |
9833 | return 1; | |
9834 | ||
4ed6b5be JB |
9835 | /* If there is a symtab, but the associated source file cannot be |
9836 | located, then assume this is not user code: Selecting a frame | |
9837 | for which we cannot display the code would not be very helpful | |
9838 | for the user. This should also take care of case such as VxWorks | |
9839 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 9840 | |
9bbc9174 | 9841 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
9842 | return 1; |
9843 | ||
4ed6b5be JB |
9844 | /* Check the unit filename againt the Ada runtime file naming. |
9845 | We also check the name of the objfile against the name of some | |
9846 | known system libraries that sometimes come with debugging info | |
9847 | too. */ | |
9848 | ||
f7f9143b JB |
9849 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
9850 | { | |
9851 | re_comp (known_runtime_file_name_patterns[i]); | |
9852 | if (re_exec (sal.symtab->filename)) | |
9853 | return 1; | |
4ed6b5be JB |
9854 | if (sal.symtab->objfile != NULL |
9855 | && re_exec (sal.symtab->objfile->name)) | |
9856 | return 1; | |
f7f9143b JB |
9857 | } |
9858 | ||
4ed6b5be | 9859 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 9860 | |
4ed6b5be | 9861 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
9862 | if (func_name == NULL) |
9863 | return 1; | |
9864 | ||
9865 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
9866 | { | |
9867 | re_comp (known_auxiliary_function_name_patterns[i]); | |
9868 | if (re_exec (func_name)) | |
9869 | return 1; | |
9870 | } | |
9871 | ||
9872 | return 0; | |
9873 | } | |
9874 | ||
9875 | /* Find the first frame that contains debugging information and that is not | |
9876 | part of the Ada run-time, starting from FI and moving upward. */ | |
9877 | ||
9878 | static void | |
9879 | ada_find_printable_frame (struct frame_info *fi) | |
9880 | { | |
9881 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
9882 | { | |
9883 | if (!is_known_support_routine (fi)) | |
9884 | { | |
9885 | select_frame (fi); | |
9886 | break; | |
9887 | } | |
9888 | } | |
9889 | ||
9890 | } | |
9891 | ||
9892 | /* Assuming that the inferior just triggered an unhandled exception | |
9893 | catchpoint, return the address in inferior memory where the name | |
9894 | of the exception is stored. | |
9895 | ||
9896 | Return zero if the address could not be computed. */ | |
9897 | ||
9898 | static CORE_ADDR | |
9899 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
9900 | { |
9901 | return parse_and_eval_address ("e.full_name"); | |
9902 | } | |
9903 | ||
9904 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
9905 | should be used when the inferior uses an older version of the runtime, | |
9906 | where the exception name needs to be extracted from a specific frame | |
9907 | several frames up in the callstack. */ | |
9908 | ||
9909 | static CORE_ADDR | |
9910 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
9911 | { |
9912 | int frame_level; | |
9913 | struct frame_info *fi; | |
9914 | ||
9915 | /* To determine the name of this exception, we need to select | |
9916 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
9917 | at least 3 levels up, so we simply skip the first 3 frames | |
9918 | without checking the name of their associated function. */ | |
9919 | fi = get_current_frame (); | |
9920 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
9921 | if (fi != NULL) | |
9922 | fi = get_prev_frame (fi); | |
9923 | ||
9924 | while (fi != NULL) | |
9925 | { | |
9926 | const char *func_name = | |
9927 | function_name_from_pc (get_frame_address_in_block (fi)); | |
9928 | if (func_name != NULL | |
0259addd | 9929 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
9930 | break; /* We found the frame we were looking for... */ |
9931 | fi = get_prev_frame (fi); | |
9932 | } | |
9933 | ||
9934 | if (fi == NULL) | |
9935 | return 0; | |
9936 | ||
9937 | select_frame (fi); | |
9938 | return parse_and_eval_address ("id.full_name"); | |
9939 | } | |
9940 | ||
9941 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
9942 | (of any type), return the address in inferior memory where the name | |
9943 | of the exception is stored, if applicable. | |
9944 | ||
9945 | Return zero if the address could not be computed, or if not relevant. */ | |
9946 | ||
9947 | static CORE_ADDR | |
9948 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
9949 | struct breakpoint *b) | |
9950 | { | |
9951 | switch (ex) | |
9952 | { | |
9953 | case ex_catch_exception: | |
9954 | return (parse_and_eval_address ("e.full_name")); | |
9955 | break; | |
9956 | ||
9957 | case ex_catch_exception_unhandled: | |
0259addd | 9958 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
9959 | break; |
9960 | ||
9961 | case ex_catch_assert: | |
9962 | return 0; /* Exception name is not relevant in this case. */ | |
9963 | break; | |
9964 | ||
9965 | default: | |
9966 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
9967 | break; | |
9968 | } | |
9969 | ||
9970 | return 0; /* Should never be reached. */ | |
9971 | } | |
9972 | ||
9973 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
9974 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
9975 | When an error is intercepted, a warning with the error message is printed, | |
9976 | and zero is returned. */ | |
9977 | ||
9978 | static CORE_ADDR | |
9979 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
9980 | struct breakpoint *b) | |
9981 | { | |
9982 | struct gdb_exception e; | |
9983 | CORE_ADDR result = 0; | |
9984 | ||
9985 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
9986 | { | |
9987 | result = ada_exception_name_addr_1 (ex, b); | |
9988 | } | |
9989 | ||
9990 | if (e.reason < 0) | |
9991 | { | |
9992 | warning (_("failed to get exception name: %s"), e.message); | |
9993 | return 0; | |
9994 | } | |
9995 | ||
9996 | return result; | |
9997 | } | |
9998 | ||
9999 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10000 | for all exception catchpoint kinds. */ | |
10001 | ||
10002 | static enum print_stop_action | |
10003 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10004 | { | |
10005 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10006 | char exception_name[256]; | |
10007 | ||
10008 | if (addr != 0) | |
10009 | { | |
10010 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10011 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10012 | } | |
10013 | ||
10014 | ada_find_printable_frame (get_current_frame ()); | |
10015 | ||
10016 | annotate_catchpoint (b->number); | |
10017 | switch (ex) | |
10018 | { | |
10019 | case ex_catch_exception: | |
10020 | if (addr != 0) | |
10021 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10022 | b->number, exception_name); | |
10023 | else | |
10024 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10025 | break; | |
10026 | case ex_catch_exception_unhandled: | |
10027 | if (addr != 0) | |
10028 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10029 | b->number, exception_name); | |
10030 | else | |
10031 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10032 | b->number); | |
10033 | break; | |
10034 | case ex_catch_assert: | |
10035 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10036 | b->number); | |
10037 | break; | |
10038 | } | |
10039 | ||
10040 | return PRINT_SRC_AND_LOC; | |
10041 | } | |
10042 | ||
10043 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10044 | for all exception catchpoint kinds. */ | |
10045 | ||
10046 | static void | |
10047 | print_one_exception (enum exception_catchpoint_kind ex, | |
10048 | struct breakpoint *b, CORE_ADDR *last_addr) | |
10049 | { | |
10050 | if (addressprint) | |
10051 | { | |
10052 | annotate_field (4); | |
10053 | ui_out_field_core_addr (uiout, "addr", b->loc->address); | |
10054 | } | |
10055 | ||
10056 | annotate_field (5); | |
10057 | *last_addr = b->loc->address; | |
10058 | switch (ex) | |
10059 | { | |
10060 | case ex_catch_exception: | |
10061 | if (b->exp_string != NULL) | |
10062 | { | |
10063 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10064 | ||
10065 | ui_out_field_string (uiout, "what", msg); | |
10066 | xfree (msg); | |
10067 | } | |
10068 | else | |
10069 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10070 | ||
10071 | break; | |
10072 | ||
10073 | case ex_catch_exception_unhandled: | |
10074 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10075 | break; | |
10076 | ||
10077 | case ex_catch_assert: | |
10078 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10079 | break; | |
10080 | ||
10081 | default: | |
10082 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10083 | break; | |
10084 | } | |
10085 | } | |
10086 | ||
10087 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10088 | for all exception catchpoint kinds. */ | |
10089 | ||
10090 | static void | |
10091 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10092 | struct breakpoint *b) | |
10093 | { | |
10094 | switch (ex) | |
10095 | { | |
10096 | case ex_catch_exception: | |
10097 | if (b->exp_string != NULL) | |
10098 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10099 | b->number, b->exp_string); | |
10100 | else | |
10101 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10102 | ||
10103 | break; | |
10104 | ||
10105 | case ex_catch_exception_unhandled: | |
10106 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10107 | b->number); | |
10108 | break; | |
10109 | ||
10110 | case ex_catch_assert: | |
10111 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10112 | break; | |
10113 | ||
10114 | default: | |
10115 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10116 | break; | |
10117 | } | |
10118 | } | |
10119 | ||
10120 | /* Virtual table for "catch exception" breakpoints. */ | |
10121 | ||
10122 | static enum print_stop_action | |
10123 | print_it_catch_exception (struct breakpoint *b) | |
10124 | { | |
10125 | return print_it_exception (ex_catch_exception, b); | |
10126 | } | |
10127 | ||
10128 | static void | |
10129 | print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr) | |
10130 | { | |
10131 | print_one_exception (ex_catch_exception, b, last_addr); | |
10132 | } | |
10133 | ||
10134 | static void | |
10135 | print_mention_catch_exception (struct breakpoint *b) | |
10136 | { | |
10137 | print_mention_exception (ex_catch_exception, b); | |
10138 | } | |
10139 | ||
10140 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10141 | { | |
10142 | print_it_catch_exception, | |
10143 | print_one_catch_exception, | |
10144 | print_mention_catch_exception | |
10145 | }; | |
10146 | ||
10147 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10148 | ||
10149 | static enum print_stop_action | |
10150 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10151 | { | |
10152 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10153 | } | |
10154 | ||
10155 | static void | |
10156 | print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr) | |
10157 | { | |
10158 | print_one_exception (ex_catch_exception_unhandled, b, last_addr); | |
10159 | } | |
10160 | ||
10161 | static void | |
10162 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10163 | { | |
10164 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10165 | } | |
10166 | ||
10167 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
10168 | print_it_catch_exception_unhandled, | |
10169 | print_one_catch_exception_unhandled, | |
10170 | print_mention_catch_exception_unhandled | |
10171 | }; | |
10172 | ||
10173 | /* Virtual table for "catch assert" breakpoints. */ | |
10174 | ||
10175 | static enum print_stop_action | |
10176 | print_it_catch_assert (struct breakpoint *b) | |
10177 | { | |
10178 | return print_it_exception (ex_catch_assert, b); | |
10179 | } | |
10180 | ||
10181 | static void | |
10182 | print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr) | |
10183 | { | |
10184 | print_one_exception (ex_catch_assert, b, last_addr); | |
10185 | } | |
10186 | ||
10187 | static void | |
10188 | print_mention_catch_assert (struct breakpoint *b) | |
10189 | { | |
10190 | print_mention_exception (ex_catch_assert, b); | |
10191 | } | |
10192 | ||
10193 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
10194 | print_it_catch_assert, | |
10195 | print_one_catch_assert, | |
10196 | print_mention_catch_assert | |
10197 | }; | |
10198 | ||
10199 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10200 | ||
10201 | int | |
10202 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10203 | { | |
10204 | return (b->ops == &catch_exception_breakpoint_ops | |
10205 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10206 | || b->ops == &catch_assert_breakpoint_ops); | |
10207 | } | |
10208 | ||
f7f9143b JB |
10209 | /* Return a newly allocated copy of the first space-separated token |
10210 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10211 | token. | |
10212 | ||
10213 | Return NULL if ARGPS does not contain any more tokens. */ | |
10214 | ||
10215 | static char * | |
10216 | ada_get_next_arg (char **argsp) | |
10217 | { | |
10218 | char *args = *argsp; | |
10219 | char *end; | |
10220 | char *result; | |
10221 | ||
10222 | /* Skip any leading white space. */ | |
10223 | ||
10224 | while (isspace (*args)) | |
10225 | args++; | |
10226 | ||
10227 | if (args[0] == '\0') | |
10228 | return NULL; /* No more arguments. */ | |
10229 | ||
10230 | /* Find the end of the current argument. */ | |
10231 | ||
10232 | end = args; | |
10233 | while (*end != '\0' && !isspace (*end)) | |
10234 | end++; | |
10235 | ||
10236 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10237 | ||
10238 | *argsp = end; | |
10239 | ||
10240 | /* Make a copy of the current argument and return it. */ | |
10241 | ||
10242 | result = xmalloc (end - args + 1); | |
10243 | strncpy (result, args, end - args); | |
10244 | result[end - args] = '\0'; | |
10245 | ||
10246 | return result; | |
10247 | } | |
10248 | ||
10249 | /* Split the arguments specified in a "catch exception" command. | |
10250 | Set EX to the appropriate catchpoint type. | |
10251 | Set EXP_STRING to the name of the specific exception if | |
10252 | specified by the user. */ | |
10253 | ||
10254 | static void | |
10255 | catch_ada_exception_command_split (char *args, | |
10256 | enum exception_catchpoint_kind *ex, | |
10257 | char **exp_string) | |
10258 | { | |
10259 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10260 | char *exception_name; | |
10261 | ||
10262 | exception_name = ada_get_next_arg (&args); | |
10263 | make_cleanup (xfree, exception_name); | |
10264 | ||
10265 | /* Check that we do not have any more arguments. Anything else | |
10266 | is unexpected. */ | |
10267 | ||
10268 | while (isspace (*args)) | |
10269 | args++; | |
10270 | ||
10271 | if (args[0] != '\0') | |
10272 | error (_("Junk at end of expression")); | |
10273 | ||
10274 | discard_cleanups (old_chain); | |
10275 | ||
10276 | if (exception_name == NULL) | |
10277 | { | |
10278 | /* Catch all exceptions. */ | |
10279 | *ex = ex_catch_exception; | |
10280 | *exp_string = NULL; | |
10281 | } | |
10282 | else if (strcmp (exception_name, "unhandled") == 0) | |
10283 | { | |
10284 | /* Catch unhandled exceptions. */ | |
10285 | *ex = ex_catch_exception_unhandled; | |
10286 | *exp_string = NULL; | |
10287 | } | |
10288 | else | |
10289 | { | |
10290 | /* Catch a specific exception. */ | |
10291 | *ex = ex_catch_exception; | |
10292 | *exp_string = exception_name; | |
10293 | } | |
10294 | } | |
10295 | ||
10296 | /* Return the name of the symbol on which we should break in order to | |
10297 | implement a catchpoint of the EX kind. */ | |
10298 | ||
10299 | static const char * | |
10300 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10301 | { | |
0259addd JB |
10302 | gdb_assert (exception_info != NULL); |
10303 | ||
f7f9143b JB |
10304 | switch (ex) |
10305 | { | |
10306 | case ex_catch_exception: | |
0259addd | 10307 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10308 | break; |
10309 | case ex_catch_exception_unhandled: | |
0259addd | 10310 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10311 | break; |
10312 | case ex_catch_assert: | |
0259addd | 10313 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10314 | break; |
10315 | default: | |
10316 | internal_error (__FILE__, __LINE__, | |
10317 | _("unexpected catchpoint kind (%d)"), ex); | |
10318 | } | |
10319 | } | |
10320 | ||
10321 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10322 | of the EX kind. */ | |
10323 | ||
10324 | static struct breakpoint_ops * | |
4b9eee8c | 10325 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10326 | { |
10327 | switch (ex) | |
10328 | { | |
10329 | case ex_catch_exception: | |
10330 | return (&catch_exception_breakpoint_ops); | |
10331 | break; | |
10332 | case ex_catch_exception_unhandled: | |
10333 | return (&catch_exception_unhandled_breakpoint_ops); | |
10334 | break; | |
10335 | case ex_catch_assert: | |
10336 | return (&catch_assert_breakpoint_ops); | |
10337 | break; | |
10338 | default: | |
10339 | internal_error (__FILE__, __LINE__, | |
10340 | _("unexpected catchpoint kind (%d)"), ex); | |
10341 | } | |
10342 | } | |
10343 | ||
10344 | /* Return the condition that will be used to match the current exception | |
10345 | being raised with the exception that the user wants to catch. This | |
10346 | assumes that this condition is used when the inferior just triggered | |
10347 | an exception catchpoint. | |
10348 | ||
10349 | The string returned is a newly allocated string that needs to be | |
10350 | deallocated later. */ | |
10351 | ||
10352 | static char * | |
10353 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10354 | { | |
10355 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); | |
10356 | } | |
10357 | ||
10358 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10359 | ||
10360 | static struct expression * | |
10361 | ada_parse_catchpoint_condition (char *cond_string, | |
10362 | struct symtab_and_line sal) | |
10363 | { | |
10364 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10365 | } | |
10366 | ||
10367 | /* Return the symtab_and_line that should be used to insert an exception | |
10368 | catchpoint of the TYPE kind. | |
10369 | ||
10370 | EX_STRING should contain the name of a specific exception | |
10371 | that the catchpoint should catch, or NULL otherwise. | |
10372 | ||
10373 | The idea behind all the remaining parameters is that their names match | |
10374 | the name of certain fields in the breakpoint structure that are used to | |
10375 | handle exception catchpoints. This function returns the value to which | |
10376 | these fields should be set, depending on the type of catchpoint we need | |
10377 | to create. | |
10378 | ||
10379 | If COND and COND_STRING are both non-NULL, any value they might | |
10380 | hold will be free'ed, and then replaced by newly allocated ones. | |
10381 | These parameters are left untouched otherwise. */ | |
10382 | ||
10383 | static struct symtab_and_line | |
10384 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10385 | char **addr_string, char **cond_string, | |
10386 | struct expression **cond, struct breakpoint_ops **ops) | |
10387 | { | |
10388 | const char *sym_name; | |
10389 | struct symbol *sym; | |
10390 | struct symtab_and_line sal; | |
10391 | ||
0259addd JB |
10392 | /* First, find out which exception support info to use. */ |
10393 | ada_exception_support_info_sniffer (); | |
10394 | ||
10395 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10396 | the Ada exceptions requested by the user. */ |
10397 | ||
10398 | sym_name = ada_exception_sym_name (ex); | |
10399 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10400 | ||
10401 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10402 | that should be compiled with debugging information. As a result, we | |
10403 | expect to find that symbol in the symtabs. If we don't find it, then | |
10404 | the target most likely does not support Ada exceptions, or we cannot | |
10405 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10406 | loaded yet. */ | |
10407 | ||
10408 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10409 | in such a way that no debugging information is produced for the symbol | |
10410 | we are looking for. In this case, we could search the minimal symbols | |
10411 | as a fall-back mechanism. This would still be operating in degraded | |
10412 | mode, however, as we would still be missing the debugging information | |
10413 | that is needed in order to extract the name of the exception being | |
10414 | raised (this name is printed in the catchpoint message, and is also | |
10415 | used when trying to catch a specific exception). We do not handle | |
10416 | this case for now. */ | |
10417 | ||
10418 | if (sym == NULL) | |
0259addd | 10419 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10420 | |
10421 | /* Make sure that the symbol we found corresponds to a function. */ | |
10422 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10423 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10424 | sym_name, SYMBOL_CLASS (sym)); | |
10425 | ||
10426 | sal = find_function_start_sal (sym, 1); | |
10427 | ||
10428 | /* Set ADDR_STRING. */ | |
10429 | ||
10430 | *addr_string = xstrdup (sym_name); | |
10431 | ||
10432 | /* Set the COND and COND_STRING (if not NULL). */ | |
10433 | ||
10434 | if (cond_string != NULL && cond != NULL) | |
10435 | { | |
10436 | if (*cond_string != NULL) | |
10437 | { | |
10438 | xfree (*cond_string); | |
10439 | *cond_string = NULL; | |
10440 | } | |
10441 | if (*cond != NULL) | |
10442 | { | |
10443 | xfree (*cond); | |
10444 | *cond = NULL; | |
10445 | } | |
10446 | if (exp_string != NULL) | |
10447 | { | |
10448 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10449 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10450 | } | |
10451 | } | |
10452 | ||
10453 | /* Set OPS. */ | |
4b9eee8c | 10454 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10455 | |
10456 | return sal; | |
10457 | } | |
10458 | ||
10459 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10460 | ||
10461 | Set TYPE to the appropriate exception catchpoint type. | |
10462 | If the user asked the catchpoint to catch only a specific | |
10463 | exception, then save the exception name in ADDR_STRING. | |
10464 | ||
10465 | See ada_exception_sal for a description of all the remaining | |
10466 | function arguments of this function. */ | |
10467 | ||
10468 | struct symtab_and_line | |
10469 | ada_decode_exception_location (char *args, char **addr_string, | |
10470 | char **exp_string, char **cond_string, | |
10471 | struct expression **cond, | |
10472 | struct breakpoint_ops **ops) | |
10473 | { | |
10474 | enum exception_catchpoint_kind ex; | |
10475 | ||
10476 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10477 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10478 | cond, ops); | |
10479 | } | |
10480 | ||
10481 | struct symtab_and_line | |
10482 | ada_decode_assert_location (char *args, char **addr_string, | |
10483 | struct breakpoint_ops **ops) | |
10484 | { | |
10485 | /* Check that no argument where provided at the end of the command. */ | |
10486 | ||
10487 | if (args != NULL) | |
10488 | { | |
10489 | while (isspace (*args)) | |
10490 | args++; | |
10491 | if (*args != '\0') | |
10492 | error (_("Junk at end of arguments.")); | |
10493 | } | |
10494 | ||
10495 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10496 | ops); | |
10497 | } | |
10498 | ||
4c4b4cd2 PH |
10499 | /* Operators */ |
10500 | /* Information about operators given special treatment in functions | |
10501 | below. */ | |
10502 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10503 | ||
10504 | #define ADA_OPERATORS \ | |
10505 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10506 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10507 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10508 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10509 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10510 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10511 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10512 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10513 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10514 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10515 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10516 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10517 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10518 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10519 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10520 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10521 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10522 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10523 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10524 | |
10525 | static void | |
10526 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10527 | { | |
10528 | switch (exp->elts[pc - 1].opcode) | |
10529 | { | |
76a01679 | 10530 | default: |
4c4b4cd2 PH |
10531 | operator_length_standard (exp, pc, oplenp, argsp); |
10532 | break; | |
10533 | ||
10534 | #define OP_DEFN(op, len, args, binop) \ | |
10535 | case op: *oplenp = len; *argsp = args; break; | |
10536 | ADA_OPERATORS; | |
10537 | #undef OP_DEFN | |
52ce6436 PH |
10538 | |
10539 | case OP_AGGREGATE: | |
10540 | *oplenp = 3; | |
10541 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10542 | break; | |
10543 | ||
10544 | case OP_CHOICES: | |
10545 | *oplenp = 3; | |
10546 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10547 | break; | |
4c4b4cd2 PH |
10548 | } |
10549 | } | |
10550 | ||
10551 | static char * | |
10552 | ada_op_name (enum exp_opcode opcode) | |
10553 | { | |
10554 | switch (opcode) | |
10555 | { | |
76a01679 | 10556 | default: |
4c4b4cd2 | 10557 | return op_name_standard (opcode); |
52ce6436 | 10558 | |
4c4b4cd2 PH |
10559 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10560 | ADA_OPERATORS; | |
10561 | #undef OP_DEFN | |
52ce6436 PH |
10562 | |
10563 | case OP_AGGREGATE: | |
10564 | return "OP_AGGREGATE"; | |
10565 | case OP_CHOICES: | |
10566 | return "OP_CHOICES"; | |
10567 | case OP_NAME: | |
10568 | return "OP_NAME"; | |
4c4b4cd2 PH |
10569 | } |
10570 | } | |
10571 | ||
10572 | /* As for operator_length, but assumes PC is pointing at the first | |
10573 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10574 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10575 | |
10576 | static void | |
76a01679 JB |
10577 | ada_forward_operator_length (struct expression *exp, int pc, |
10578 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10579 | { |
76a01679 | 10580 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10581 | { |
10582 | default: | |
10583 | *oplenp = *argsp = 0; | |
10584 | break; | |
52ce6436 | 10585 | |
4c4b4cd2 PH |
10586 | #define OP_DEFN(op, len, args, binop) \ |
10587 | case op: *oplenp = len; *argsp = args; break; | |
10588 | ADA_OPERATORS; | |
10589 | #undef OP_DEFN | |
52ce6436 PH |
10590 | |
10591 | case OP_AGGREGATE: | |
10592 | *oplenp = 3; | |
10593 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10594 | break; | |
10595 | ||
10596 | case OP_CHOICES: | |
10597 | *oplenp = 3; | |
10598 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10599 | break; | |
10600 | ||
10601 | case OP_STRING: | |
10602 | case OP_NAME: | |
10603 | { | |
10604 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10605 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10606 | *argsp = 0; | |
10607 | break; | |
10608 | } | |
4c4b4cd2 PH |
10609 | } |
10610 | } | |
10611 | ||
10612 | static int | |
10613 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10614 | { | |
10615 | enum exp_opcode op = exp->elts[elt].opcode; | |
10616 | int oplen, nargs; | |
10617 | int pc = elt; | |
10618 | int i; | |
76a01679 | 10619 | |
4c4b4cd2 PH |
10620 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10621 | ||
76a01679 | 10622 | switch (op) |
4c4b4cd2 | 10623 | { |
76a01679 | 10624 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10625 | case OP_ATR_FIRST: |
10626 | case OP_ATR_LAST: | |
10627 | case OP_ATR_LENGTH: | |
10628 | case OP_ATR_IMAGE: | |
10629 | case OP_ATR_MAX: | |
10630 | case OP_ATR_MIN: | |
10631 | case OP_ATR_MODULUS: | |
10632 | case OP_ATR_POS: | |
10633 | case OP_ATR_SIZE: | |
10634 | case OP_ATR_TAG: | |
10635 | case OP_ATR_VAL: | |
10636 | break; | |
10637 | ||
10638 | case UNOP_IN_RANGE: | |
10639 | case UNOP_QUAL: | |
323e0a4a AC |
10640 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10641 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10642 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10643 | fprintf_filtered (stream, " ("); | |
10644 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10645 | fprintf_filtered (stream, ")"); | |
10646 | break; | |
10647 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10648 | fprintf_filtered (stream, " (%d)", |
10649 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10650 | break; |
10651 | case TERNOP_IN_RANGE: | |
10652 | break; | |
10653 | ||
52ce6436 PH |
10654 | case OP_AGGREGATE: |
10655 | case OP_OTHERS: | |
10656 | case OP_DISCRETE_RANGE: | |
10657 | case OP_POSITIONAL: | |
10658 | case OP_CHOICES: | |
10659 | break; | |
10660 | ||
10661 | case OP_NAME: | |
10662 | case OP_STRING: | |
10663 | { | |
10664 | char *name = &exp->elts[elt + 2].string; | |
10665 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10666 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10667 | break; | |
10668 | } | |
10669 | ||
4c4b4cd2 PH |
10670 | default: |
10671 | return dump_subexp_body_standard (exp, stream, elt); | |
10672 | } | |
10673 | ||
10674 | elt += oplen; | |
10675 | for (i = 0; i < nargs; i += 1) | |
10676 | elt = dump_subexp (exp, stream, elt); | |
10677 | ||
10678 | return elt; | |
10679 | } | |
10680 | ||
10681 | /* The Ada extension of print_subexp (q.v.). */ | |
10682 | ||
76a01679 JB |
10683 | static void |
10684 | ada_print_subexp (struct expression *exp, int *pos, | |
10685 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 10686 | { |
52ce6436 | 10687 | int oplen, nargs, i; |
4c4b4cd2 PH |
10688 | int pc = *pos; |
10689 | enum exp_opcode op = exp->elts[pc].opcode; | |
10690 | ||
10691 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10692 | ||
52ce6436 | 10693 | *pos += oplen; |
4c4b4cd2 PH |
10694 | switch (op) |
10695 | { | |
10696 | default: | |
52ce6436 | 10697 | *pos -= oplen; |
4c4b4cd2 PH |
10698 | print_subexp_standard (exp, pos, stream, prec); |
10699 | return; | |
10700 | ||
10701 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
10702 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
10703 | return; | |
10704 | ||
10705 | case BINOP_IN_BOUNDS: | |
323e0a4a | 10706 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10707 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10708 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 10709 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10710 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 10711 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
10712 | fprintf_filtered (stream, "(%ld)", |
10713 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
10714 | return; |
10715 | ||
10716 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 10717 | if (prec >= PREC_EQUAL) |
76a01679 | 10718 | fputs_filtered ("(", stream); |
323e0a4a | 10719 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10720 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10721 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
10722 | print_subexp (exp, pos, stream, PREC_EQUAL); |
10723 | fputs_filtered (" .. ", stream); | |
10724 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
10725 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
10726 | fputs_filtered (")", stream); |
10727 | return; | |
4c4b4cd2 PH |
10728 | |
10729 | case OP_ATR_FIRST: | |
10730 | case OP_ATR_LAST: | |
10731 | case OP_ATR_LENGTH: | |
10732 | case OP_ATR_IMAGE: | |
10733 | case OP_ATR_MAX: | |
10734 | case OP_ATR_MIN: | |
10735 | case OP_ATR_MODULUS: | |
10736 | case OP_ATR_POS: | |
10737 | case OP_ATR_SIZE: | |
10738 | case OP_ATR_TAG: | |
10739 | case OP_ATR_VAL: | |
4c4b4cd2 | 10740 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
10741 | { |
10742 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
10743 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
10744 | *pos += 3; | |
10745 | } | |
4c4b4cd2 | 10746 | else |
76a01679 | 10747 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
10748 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
10749 | if (nargs > 1) | |
76a01679 JB |
10750 | { |
10751 | int tem; | |
10752 | for (tem = 1; tem < nargs; tem += 1) | |
10753 | { | |
10754 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
10755 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
10756 | } | |
10757 | fputs_filtered (")", stream); | |
10758 | } | |
4c4b4cd2 | 10759 | return; |
14f9c5c9 | 10760 | |
4c4b4cd2 | 10761 | case UNOP_QUAL: |
4c4b4cd2 PH |
10762 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
10763 | fputs_filtered ("'(", stream); | |
10764 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
10765 | fputs_filtered (")", stream); | |
10766 | return; | |
14f9c5c9 | 10767 | |
4c4b4cd2 | 10768 | case UNOP_IN_RANGE: |
323e0a4a | 10769 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10770 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10771 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
10772 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
10773 | return; | |
52ce6436 PH |
10774 | |
10775 | case OP_DISCRETE_RANGE: | |
10776 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10777 | fputs_filtered ("..", stream); | |
10778 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10779 | return; | |
10780 | ||
10781 | case OP_OTHERS: | |
10782 | fputs_filtered ("others => ", stream); | |
10783 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10784 | return; | |
10785 | ||
10786 | case OP_CHOICES: | |
10787 | for (i = 0; i < nargs-1; i += 1) | |
10788 | { | |
10789 | if (i > 0) | |
10790 | fputs_filtered ("|", stream); | |
10791 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10792 | } | |
10793 | fputs_filtered (" => ", stream); | |
10794 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10795 | return; | |
10796 | ||
10797 | case OP_POSITIONAL: | |
10798 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10799 | return; | |
10800 | ||
10801 | case OP_AGGREGATE: | |
10802 | fputs_filtered ("(", stream); | |
10803 | for (i = 0; i < nargs; i += 1) | |
10804 | { | |
10805 | if (i > 0) | |
10806 | fputs_filtered (", ", stream); | |
10807 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
10808 | } | |
10809 | fputs_filtered (")", stream); | |
10810 | return; | |
4c4b4cd2 PH |
10811 | } |
10812 | } | |
14f9c5c9 AS |
10813 | |
10814 | /* Table mapping opcodes into strings for printing operators | |
10815 | and precedences of the operators. */ | |
10816 | ||
d2e4a39e AS |
10817 | static const struct op_print ada_op_print_tab[] = { |
10818 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
10819 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
10820 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
10821 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
10822 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
10823 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
10824 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
10825 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
10826 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
10827 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
10828 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
10829 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
10830 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
10831 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
10832 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
10833 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
10834 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
10835 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
10836 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
10837 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
10838 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
10839 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
10840 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
10841 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
10842 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
10843 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
10844 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
10845 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
10846 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
10847 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
10848 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 10849 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
10850 | }; |
10851 | \f | |
72d5681a PH |
10852 | enum ada_primitive_types { |
10853 | ada_primitive_type_int, | |
10854 | ada_primitive_type_long, | |
10855 | ada_primitive_type_short, | |
10856 | ada_primitive_type_char, | |
10857 | ada_primitive_type_float, | |
10858 | ada_primitive_type_double, | |
10859 | ada_primitive_type_void, | |
10860 | ada_primitive_type_long_long, | |
10861 | ada_primitive_type_long_double, | |
10862 | ada_primitive_type_natural, | |
10863 | ada_primitive_type_positive, | |
10864 | ada_primitive_type_system_address, | |
10865 | nr_ada_primitive_types | |
10866 | }; | |
6c038f32 PH |
10867 | |
10868 | static void | |
d4a9a881 | 10869 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
10870 | struct language_arch_info *lai) |
10871 | { | |
d4a9a881 | 10872 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 10873 | lai->primitive_type_vector |
d4a9a881 | 10874 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a PH |
10875 | struct type *); |
10876 | lai->primitive_type_vector [ada_primitive_type_int] = | |
9a76efb6 | 10877 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10878 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10879 | 0, "integer", (struct objfile *) NULL); |
72d5681a | 10880 | lai->primitive_type_vector [ada_primitive_type_long] = |
9a76efb6 | 10881 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10882 | gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10883 | 0, "long_integer", (struct objfile *) NULL); |
72d5681a | 10884 | lai->primitive_type_vector [ada_primitive_type_short] = |
9a76efb6 | 10885 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10886 | gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10887 | 0, "short_integer", (struct objfile *) NULL); |
61ee279c PH |
10888 | lai->string_char_type = |
10889 | lai->primitive_type_vector [ada_primitive_type_char] = | |
6c038f32 PH |
10890 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, |
10891 | 0, "character", (struct objfile *) NULL); | |
72d5681a | 10892 | lai->primitive_type_vector [ada_primitive_type_float] = |
ea06eb3d | 10893 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10894 | gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT, |
6c038f32 | 10895 | 0, "float", (struct objfile *) NULL); |
72d5681a | 10896 | lai->primitive_type_vector [ada_primitive_type_double] = |
ea06eb3d | 10897 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10898 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10899 | 0, "long_float", (struct objfile *) NULL); |
72d5681a | 10900 | lai->primitive_type_vector [ada_primitive_type_long_long] = |
9a76efb6 | 10901 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10902 | gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10903 | 0, "long_long_integer", (struct objfile *) NULL); |
72d5681a | 10904 | lai->primitive_type_vector [ada_primitive_type_long_double] = |
ea06eb3d | 10905 | init_type (TYPE_CODE_FLT, |
d4a9a881 | 10906 | gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT, |
6c038f32 | 10907 | 0, "long_long_float", (struct objfile *) NULL); |
72d5681a | 10908 | lai->primitive_type_vector [ada_primitive_type_natural] = |
9a76efb6 | 10909 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10910 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10911 | 0, "natural", (struct objfile *) NULL); |
72d5681a | 10912 | lai->primitive_type_vector [ada_primitive_type_positive] = |
9a76efb6 | 10913 | init_type (TYPE_CODE_INT, |
d4a9a881 | 10914 | gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT, |
9a76efb6 | 10915 | 0, "positive", (struct objfile *) NULL); |
72d5681a | 10916 | lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void; |
6c038f32 | 10917 | |
72d5681a | 10918 | lai->primitive_type_vector [ada_primitive_type_system_address] = |
6c038f32 PH |
10919 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", |
10920 | (struct objfile *) NULL)); | |
72d5681a PH |
10921 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
10922 | = "system__address"; | |
fbb06eb1 UW |
10923 | |
10924 | lai->bool_type_symbol = "boolean"; | |
10925 | lai->bool_type_default = builtin->builtin_bool; | |
6c038f32 | 10926 | } |
6c038f32 PH |
10927 | \f |
10928 | /* Language vector */ | |
10929 | ||
10930 | /* Not really used, but needed in the ada_language_defn. */ | |
10931 | ||
10932 | static void | |
10933 | emit_char (int c, struct ui_file *stream, int quoter) | |
10934 | { | |
10935 | ada_emit_char (c, stream, quoter, 1); | |
10936 | } | |
10937 | ||
10938 | static int | |
10939 | parse (void) | |
10940 | { | |
10941 | warnings_issued = 0; | |
10942 | return ada_parse (); | |
10943 | } | |
10944 | ||
10945 | static const struct exp_descriptor ada_exp_descriptor = { | |
10946 | ada_print_subexp, | |
10947 | ada_operator_length, | |
10948 | ada_op_name, | |
10949 | ada_dump_subexp_body, | |
10950 | ada_evaluate_subexp | |
10951 | }; | |
10952 | ||
10953 | const struct language_defn ada_language_defn = { | |
10954 | "ada", /* Language name */ | |
10955 | language_ada, | |
6c038f32 PH |
10956 | range_check_off, |
10957 | type_check_off, | |
10958 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
10959 | that's not quite what this means. */ | |
6c038f32 PH |
10960 | array_row_major, |
10961 | &ada_exp_descriptor, | |
10962 | parse, | |
10963 | ada_error, | |
10964 | resolve, | |
10965 | ada_printchar, /* Print a character constant */ | |
10966 | ada_printstr, /* Function to print string constant */ | |
10967 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 PH |
10968 | ada_print_type, /* Print a type using appropriate syntax */ |
10969 | ada_val_print, /* Print a value using appropriate syntax */ | |
10970 | ada_value_print, /* Print a top-level value */ | |
10971 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 10972 | NULL, /* name_of_this */ |
6c038f32 PH |
10973 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
10974 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
10975 | ada_la_decode, /* Language specific symbol demangler */ | |
10976 | NULL, /* Language specific class_name_from_physname */ | |
10977 | ada_op_print_tab, /* expression operators for printing */ | |
10978 | 0, /* c-style arrays */ | |
10979 | 1, /* String lower bound */ | |
6c038f32 | 10980 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 10981 | ada_make_symbol_completion_list, |
72d5681a | 10982 | ada_language_arch_info, |
e79af960 | 10983 | ada_print_array_index, |
41f1b697 | 10984 | default_pass_by_reference, |
6c038f32 PH |
10985 | LANG_MAGIC |
10986 | }; | |
10987 | ||
d2e4a39e | 10988 | void |
6c038f32 | 10989 | _initialize_ada_language (void) |
14f9c5c9 | 10990 | { |
6c038f32 PH |
10991 | add_language (&ada_language_defn); |
10992 | ||
10993 | varsize_limit = 65536; | |
6c038f32 PH |
10994 | |
10995 | obstack_init (&symbol_list_obstack); | |
10996 | ||
10997 | decoded_names_store = htab_create_alloc | |
10998 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
10999 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11000 | |
11001 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11002 | } |