]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2913 struct type *slice_type =
b0dd7688 2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
5b4ee69b 2926
aa715135
JG
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2930 return value_at_lazy (slice_type, base);
0b5d8877
PH
2931}
2932
2933
2934static struct value *
2935ada_value_slice (struct value *array, int low, int high)
2936{
b0dd7688 2937 struct type *type = ada_check_typedef (value_type (array));
aa715135 2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2941 struct type *slice_type =
0b5d8877 2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
aa715135
JG
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2
PH
3237static void
3238resolve (struct expression **expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
4c4b4cd2 3259resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
ec6a20c2 3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
52ce6436
PH
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
14f9c5c9
AS
3277 switch (op)
3278 {
4c4b4cd2
PH
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
4c4b4cd2
PH
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3289 break;
3290
14f9c5c9 3291 case UNOP_ADDR:
4c4b4cd2
PH
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
52ce6436
PH
3296 case UNOP_QUAL:
3297 *pos += 3;
17466c1a 3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3299 break;
3300
52ce6436 3301 case OP_ATR_MODULUS:
4c4b4cd2
PH
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
4c4b4cd2
PH
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
4c4b4cd2
PH
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
52ce6436
PH
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
14f9c5c9
AS
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
4c4b4cd2
PH
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
df407dfe 3333 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3334 break;
14f9c5c9
AS
3335 }
3336
4c4b4cd2 3337 case UNOP_CAST:
4c4b4cd2
PH
3338 *pos += 3;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
14f9c5c9 3355
4c4b4cd2
PH
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
40c8aaa9
JB
3366 *pos += 1;
3367 nargs = 2;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
14f9c5c9 3378
4c4b4cd2 3379 case OP_LONG:
edd079d9 3380 case OP_FLOAT:
4c4b4cd2 3381 case OP_VAR_VALUE:
74ea4be4 3382 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3383 *pos += 4;
3384 break;
14f9c5c9 3385
4c4b4cd2
PH
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
4c4b4cd2
PH
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
67f3407f
DJ
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
4c4b4cd2
PH
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
4c4b4cd2 3407 case TERNOP_SLICE:
4c4b4cd2
PH
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
52ce6436 3412 case OP_STRING:
14f9c5c9 3413 break;
4c4b4cd2
PH
3414
3415 default:
323e0a4a 3416 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3417 }
3418
8d749320 3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
14f9c5c9 3431 case OP_VAR_VALUE:
4c4b4cd2 3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3433 {
d12307c1 3434 struct block_symbol *candidates;
76a01679
JB
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3441 &candidates);
ec6a20c2 3442 make_cleanup (xfree, candidates);
76a01679
JB
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
d12307c1 3451 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
76a01679
JB
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
76a01679 3458 case LOC_COMPUTED:
76a01679
JB
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
d12307c1 3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
323e0a4a 3481 error (_("No definition found for %s"),
76a01679
JB
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
06d5cf63
JB
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
76a01679 3492 if (i < 0)
323e0a4a 3493 error (_("Could not find a match for %s"),
76a01679
JB
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
323e0a4a 3498 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
14f9c5c9
AS
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
4c4b4cd2 3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3526 {
d12307c1 3527 struct block_symbol *candidates;
4c4b4cd2
PH
3528 int n_candidates;
3529
3530 n_candidates =
76a01679
JB
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3534 &candidates);
ec6a20c2
JB
3535 make_cleanup (xfree, candidates);
3536
4c4b4cd2
PH
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
06d5cf63
JB
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
4c4b4cd2 3546 if (i < 0)
323e0a4a 3547 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3555 innermost_block = candidates[i].block;
3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
d12307c1 3582 struct block_symbol *candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2
JB
3589 make_cleanup (xfree, candidates);
3590
4c4b4cd2 3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3592 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3593 if (i < 0)
3594 break;
3595
d12307c1
PMR
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
4c4b4cd2
PH
3599 exp = *expp;
3600 }
14f9c5c9 3601 break;
4c4b4cd2
PH
3602
3603 case OP_TYPE:
b3dbf008 3604 case OP_REGISTER:
ec6a20c2 3605 do_cleanups (old_chain);
4c4b4cd2 3606 return NULL;
14f9c5c9
AS
3607 }
3608
3609 *pos = pc;
ec6a20c2 3610 do_cleanups (old_chain);
ced9779b
JB
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4043 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
a121b7c1 4046 const char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
d2e4a39e 4118replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4127 struct expression *exp = *expp;
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
aacb1f0a 4144 xfree (exp);
d2e4a39e 4145}
14f9c5c9
AS
4146
4147/* Type-class predicates */
4148
4c4b4cd2
PH
4149/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153numeric_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4c4b4cd2
PH
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
d2e4a39e 4170 }
14f9c5c9
AS
4171}
4172
4c4b4cd2 4173/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176integer_type_p (struct type *type)
14f9c5c9
AS
4177{
4178 if (type == NULL)
4179 return 0;
d2e4a39e
AS
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4c4b4cd2
PH
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
d2e4a39e 4192 }
14f9c5c9
AS
4193}
4194
4c4b4cd2 4195/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4196
4197static int
d2e4a39e 4198scalar_type_p (struct type *type)
14f9c5c9
AS
4199{
4200 if (type == NULL)
4201 return 0;
d2e4a39e
AS
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4c4b4cd2
PH
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
d2e4a39e 4214 }
14f9c5c9
AS
4215}
4216
4c4b4cd2 4217/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4218
4219static int
d2e4a39e 4220discrete_type_p (struct type *type)
14f9c5c9
AS
4221{
4222 if (type == NULL)
4223 return 0;
d2e4a39e
AS
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4c4b4cd2
PH
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
872f0337 4231 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4232 return 1;
4233 default:
4234 return 0;
4235 }
d2e4a39e 4236 }
14f9c5c9
AS
4237}
4238
4c4b4cd2
PH
4239/* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
14f9c5c9
AS
4242
4243static int
d2e4a39e 4244possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4245{
76a01679 4246 struct type *type0 =
df407dfe 4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4248 struct type *type1 =
df407dfe 4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4250
4c4b4cd2
PH
4251 if (type0 == NULL)
4252 return 0;
4253
14f9c5c9
AS
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
d2e4a39e 4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
d2e4a39e 4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
d2e4a39e 4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4279
4280 case BINOP_CONCAT:
ee90b9ab 4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4282
4283 case BINOP_EXP:
d2e4a39e 4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
14f9c5c9
AS
4291
4292 }
4293}
4294\f
4c4b4cd2 4295 /* Renaming */
14f9c5c9 4296
aeb5907d
JB
4297/* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309/* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
0963b4bd 4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328enum ada_renaming_category
4329ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332{
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
14f9c5c9 4340 {
aeb5907d
JB
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
14f9c5c9 4374 }
4c4b4cd2 4375
aeb5907d
JB
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387}
4388
4389/* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393static enum ada_renaming_category
4394parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397{
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
14f9c5c9 4402
aeb5907d
JB
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
14f9c5c9 4406
aeb5907d
JB
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
14f9c5c9 4432
aeb5907d
JB
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
a5ee536b
JB
4446}
4447
4448/* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
52ce6436 4451
a5ee536b
JB
4452static struct value *
4453ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4454 const struct block *block)
a5ee536b 4455{
bbc13ae3 4456 const char *sym_name;
a5ee536b 4457
bbc13ae3 4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
a5ee536b 4461}
14f9c5c9 4462\f
d2e4a39e 4463
4c4b4cd2 4464 /* Evaluation: Function Calls */
14f9c5c9 4465
4c4b4cd2 4466/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4469
d2e4a39e 4470static struct value *
40bc484c 4471ensure_lval (struct value *val)
14f9c5c9 4472{
40bc484c
JB
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4475 {
df407dfe 4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4479
a84a8a0d 4480 VALUE_LVAL (val) = lval_memory;
1a088441 4481 set_value_address (val, addr);
40bc484c 4482 write_memory (addr, value_contents (val), len);
c3e5cd34 4483 }
14f9c5c9
AS
4484
4485 return val;
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
14f9c5c9 4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
cb923fcc 4516 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
5b4ee69b 4521
df407dfe 4522 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4523 val = allocate_value (actual_type);
990a07ab 4524 memcpy ((char *) value_contents_raw (val),
0fd88904 4525 (char *) value_contents (actual),
4c4b4cd2 4526 TYPE_LENGTH (actual_type));
40bc484c 4527 actual = ensure_lval (val);
4c4b4cd2 4528 }
a84a8a0d 4529 result = value_addr (actual);
4c4b4cd2 4530 }
a84a8a0d
JB
4531 else
4532 return actual;
b1af9e97 4533 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
8344af1e
JB
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
14f9c5c9
AS
4547
4548 return actual;
4549}
4550
438c98a1
JB
4551/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556static CORE_ADDR
4557value_pointer (struct value *value, struct type *type)
4558{
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
224c3ddb 4561 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568}
4569
14f9c5c9 4570
4c4b4cd2
PH
4571/* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
14f9c5c9 4576
d2e4a39e 4577static struct value *
40bc484c 4578make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4579{
d2e4a39e
AS
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4584 int i;
d2e4a39e 4585
0963b4bd
MS
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
14f9c5c9 4588 {
19f220c3
JK
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4597 }
d2e4a39e 4598
40bc484c 4599 bounds = ensure_lval (bounds);
d2e4a39e 4600
19f220c3
JK
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4614
40bc484c 4615 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621}
14f9c5c9 4622\f
3d9434b5
JB
4623 /* Symbol Cache Module */
4624
3d9434b5 4625/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4626 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
ee01b665 4635/* Initialize the contents of SYM_CACHE. */
3d9434b5 4636
ee01b665
JB
4637static void
4638ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639{
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642}
3d9434b5 4643
ee01b665
JB
4644/* Free the memory used by SYM_CACHE. */
4645
4646static void
4647ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4648{
ee01b665
JB
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651}
3d9434b5 4652
ee01b665
JB
4653/* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4655
ee01b665
JB
4656static struct ada_symbol_cache *
4657ada_get_symbol_cache (struct program_space *pspace)
4658{
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4660
66c168ae 4661 if (pspace_data->sym_cache == NULL)
ee01b665 4662 {
66c168ae
JB
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4665 }
4666
66c168ae 4667 return pspace_data->sym_cache;
ee01b665 4668}
3d9434b5
JB
4669
4670/* Clear all entries from the symbol cache. */
4671
4672static void
4673ada_clear_symbol_cache (void)
4674{
ee01b665
JB
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4680}
4681
fe978cb0 4682/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return it if found, or NULL otherwise. */
4684
4685static struct cache_entry **
fe978cb0 4686find_entry (const char *name, domain_enum domain)
3d9434b5 4687{
ee01b665
JB
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
ee01b665 4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4694 {
fe978cb0 4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4696 return e;
4697 }
4698 return NULL;
4699}
4700
fe978cb0 4701/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4706
96d887e8 4707static int
fe978cb0 4708lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4709 struct symbol **sym, const struct block **block)
96d887e8 4710{
fe978cb0 4711 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
96d887e8
PH
4720}
4721
3d9434b5 4722/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4723 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4724
96d887e8 4725static void
fe978cb0 4726cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4727 const struct block *block)
96d887e8 4728{
ee01b665
JB
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
1994afbf
DE
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
3d9434b5
JB
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
08be3fe3 4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4746 GLOBAL_BLOCK) != block
08be3fe3 4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4748 STATIC_BLOCK) != block)
3d9434b5
JB
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
224c3ddb
SM
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4758 strcpy (copy, name);
4759 e->sym = sym;
fe978cb0 4760 e->domain = domain;
3d9434b5 4761 e->block = block;
96d887e8 4762}
4c4b4cd2
PH
4763\f
4764 /* Symbol Lookup */
4765
b5ec771e
PA
4766/* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
b5ec771e
PA
4772static symbol_name_match_type
4773name_match_type_from_name (const char *lookup_name)
c0431670 4774{
b5ec771e
PA
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
c0431670
JB
4778}
4779
4c4b4cd2
PH
4780/* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783static struct symbol *
4784standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786{
acbd605d 4787 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4788 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4789
d12307c1
PMR
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
2570f2b7 4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4c4b4cd2
PH
4795}
4796
4797
4798/* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801static int
d12307c1 4802is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4803{
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
d12307c1
PMR
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4810 return 1;
4811
4812 return 0;
4813}
4814
4815/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4816 struct types. Otherwise, they may not. */
14f9c5c9
AS
4817
4818static int
d2e4a39e 4819equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4820{
d2e4a39e 4821 if (type0 == type1)
14f9c5c9 4822 return 1;
d2e4a39e 4823 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
d2e4a39e 4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4830 return 1;
d2e4a39e 4831
14f9c5c9
AS
4832 return 0;
4833}
4834
4835/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4836 no more defined than that of SYM1. */
14f9c5c9
AS
4837
4838static int
d2e4a39e 4839lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4840{
4841 if (sym0 == sym1)
4842 return 1;
176620f1 4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
d2e4a39e 4847 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4c4b4cd2
PH
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4857 int len0 = strlen (name0);
5b4ee69b 4858
4c4b4cd2
PH
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4863 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4868 default:
4869 return 0;
14f9c5c9
AS
4870 }
4871}
4872
d12307c1 4873/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4875
4876static void
76a01679
JB
4877add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
f0c5f9b2 4879 const struct block *block)
14f9c5c9
AS
4880{
4881 int i;
d12307c1 4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4883
529cad9c
PH
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4c4b4cd2
PH
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
d12307c1 4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4896 return;
d12307c1 4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4898 {
d12307c1 4899 prevDefns[i].symbol = sym;
4c4b4cd2 4900 prevDefns[i].block = block;
4c4b4cd2 4901 return;
76a01679 4902 }
4c4b4cd2
PH
4903 }
4904
4905 {
d12307c1 4906 struct block_symbol info;
4c4b4cd2 4907
d12307c1 4908 info.symbol = sym;
4c4b4cd2 4909 info.block = block;
d12307c1 4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4911 }
4912}
4913
d12307c1
PMR
4914/* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4c4b4cd2 4916
76a01679
JB
4917static int
4918num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4919{
d12307c1 4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4921}
4922
d12307c1
PMR
4923/* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4925
d12307c1 4926static struct block_symbol *
4c4b4cd2
PH
4927defns_collected (struct obstack *obstackp, int finish)
4928{
4929 if (finish)
224c3ddb 4930 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4931 else
d12307c1 4932 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4933}
4934
7c7b6655
TT
4935/* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4c4b4cd2 4940
7c7b6655 4941struct bound_minimal_symbol
96d887e8 4942ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4943{
7c7b6655 4944 struct bound_minimal_symbol result;
4c4b4cd2 4945 struct objfile *objfile;
96d887e8 4946 struct minimal_symbol *msymbol;
4c4b4cd2 4947
7c7b6655
TT
4948 memset (&result, 0, sizeof (result));
4949
b5ec771e
PA
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4955
96d887e8
PH
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
b5ec771e 4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
96d887e8 4965 }
4c4b4cd2 4966
7c7b6655 4967 return result;
96d887e8 4968}
4c4b4cd2 4969
96d887e8
PH
4970/* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4c4b4cd2 4975
96d887e8
PH
4976static void
4977add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
96d887e8 4980{
96d887e8 4981}
14f9c5c9 4982
96d887e8
PH
4983/* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
14f9c5c9 4985
96d887e8
PH
4986static int
4987is_nondebugging_type (struct type *type)
4988{
0d5cff50 4989 const char *name = ada_type_name (type);
5b4ee69b 4990
96d887e8
PH
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992}
4c4b4cd2 4993
8f17729f
JB
4994/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001static int
5002ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003{
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
0d5cff50
DE
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035}
5036
5037/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057static int
d12307c1 5058symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5059{
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
d12307c1 5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
d12307c1 5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5091 return 0;
5092
5093 return 1;
5094}
5095
96d887e8
PH
5096/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
4c4b4cd2 5102
96d887e8 5103static int
d12307c1 5104remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5105{
5106 int i, j;
4c4b4cd2 5107
8f17729f
JB
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
96d887e8
PH
5114 i = 0;
5115 while (i < nsyms)
5116 {
a35ddb44 5117 int remove_p = 0;
339c13b6
JB
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
d12307c1
PMR
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
d12307c1
PMR
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5132 remove_p = 1;
339c13b6
JB
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
d12307c1
PMR
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
d12307c1
PMR
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5153 remove_p = 1;
4c4b4cd2 5154 }
4c4b4cd2 5155 }
339c13b6 5156
a35ddb44 5157 if (remove_p)
339c13b6
JB
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
96d887e8 5164 i += 1;
14f9c5c9 5165 }
8f17729f
JB
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
96d887e8 5182 return nsyms;
14f9c5c9
AS
5183}
5184
96d887e8
PH
5185/* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5189
96d887e8
PH
5190static char *
5191xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5192{
96d887e8 5193 /* The renaming types adhere to the following convention:
0963b4bd 5194 <scope>__<rename>___<XR extension>.
96d887e8
PH
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
76a01679 5197
96d887e8 5198 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
96d887e8
PH
5201 int scope_len;
5202 char *scope;
14f9c5c9 5203
96d887e8
PH
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5206
96d887e8
PH
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
76a01679 5210
96d887e8 5211 /* Make a copy of scope and return it. */
14f9c5c9 5212
96d887e8
PH
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5215
96d887e8
PH
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
4c4b4cd2 5218
96d887e8 5219 return scope;
4c4b4cd2
PH
5220}
5221
96d887e8 5222/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5223
96d887e8
PH
5224static int
5225is_package_name (const char *name)
4c4b4cd2 5226{
96d887e8
PH
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
4c4b4cd2 5232
96d887e8 5233 char *fun_name;
76a01679 5234
96d887e8
PH
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
14f9c5c9 5242
96d887e8 5243 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5244 functions names cannot contain "__" in them. */
96d887e8
PH
5245 if (strstr (name, "__") != NULL)
5246 return 0;
4c4b4cd2 5247
b435e160 5248 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5249
96d887e8
PH
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251}
14f9c5c9 5252
96d887e8 5253/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5254 not visible from FUNCTION_NAME. */
14f9c5c9 5255
96d887e8 5256static int
0d5cff50 5257old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5258{
aeb5907d 5259 char *scope;
1509e573 5260 struct cleanup *old_chain;
aeb5907d
JB
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5266 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5267
96d887e8
PH
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
1509e573
JB
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
14f9c5c9 5274
96d887e8
PH
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
76a01679 5277
96d887e8
PH
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
61012eef 5282 if (startswith (function_name, "_ada_"))
96d887e8 5283 function_name += 5;
f26caa11 5284
1509e573 5285 {
61012eef 5286 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
f26caa11
PH
5291}
5292
aeb5907d
JB
5293/* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
96d887e8
PH
5298
5299 Rationale:
aeb5907d
JB
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
f26caa11 5312
96d887e8
PH
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
4c4b4cd2 5329
14f9c5c9 5330static int
d12307c1 5331remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5332 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5333{
5334 struct symbol *current_function;
0d5cff50 5335 const char *current_function_name;
4c4b4cd2 5336 int i;
aeb5907d
JB
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
0963b4bd 5341 First, zero out such symbols, then compress. */
aeb5907d
JB
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
d12307c1 5345 struct symbol *sym = syms[i].symbol;
270140bd 5346 const struct block *block = syms[i].block;
aeb5907d
JB
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5b4ee69b 5359
aeb5907d
JB
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5364 name_len) == 0
5365 && block == syms[j].block)
d12307c1 5366 syms[j].symbol = NULL;
aeb5907d
JB
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5374 if (syms[j].symbol != NULL)
aeb5907d
JB
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
4c4b4cd2
PH
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
76a01679 5384
4c4b4cd2
PH
5385 if (current_block == NULL)
5386 return nsyms;
76a01679 5387
7f0df278 5388 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
d12307c1 5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5404 == ADA_OBJECT_RENAMING
d12307c1 5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5406 {
5407 int j;
5b4ee69b 5408
aeb5907d 5409 for (j = i + 1; j < nsyms; j += 1)
76a01679 5410 syms[j - 1] = syms[j];
4c4b4cd2
PH
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418}
5419
339c13b6
JB
5420/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430static void
b5ec771e
PA
5431ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
339c13b6
JB
5434{
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
b5ec771e 5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5454}
5455
ccefe4c4 5456/* An object of this type is used as the user_data argument when
40658b94 5457 calling the map_matching_symbols method. */
ccefe4c4 5458
40658b94 5459struct match_data
ccefe4c4 5460{
40658b94 5461 struct objfile *objfile;
ccefe4c4 5462 struct obstack *obstackp;
40658b94
PH
5463 struct symbol *arg_sym;
5464 int found_sym;
ccefe4c4
TT
5465};
5466
22cee43f 5467/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
ccefe4c4 5475
40658b94
PH
5476static int
5477aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5478{
40658b94
PH
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505}
5506
b5ec771e
PA
5507/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5510
5511static int
5512ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
b5ec771e
PA
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
22cee43f
PMR
5516{
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
b5ec771e
PA
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
22cee43f
PMR
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
22cee43f
PMR
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
b5ec771e
PA
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
22cee43f
PMR
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562}
5563
db230ce3
JB
5564/* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5b4ee69b 5566
40658b94 5567static int
db230ce3
JB
5568compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
40658b94
PH
5570{
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
db230ce3
JB
5573 char c1, c2;
5574
40658b94
PH
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
40658b94 5589 break;
db230ce3 5590
40658b94
PH
5591 string1 += 1;
5592 string2 += 1;
5593 }
db230ce3 5594
40658b94
PH
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
052874e8 5602 if (is_name_suffix (string1))
40658b94
PH
5603 return 0;
5604 else
1a1d5513 5605 return 1;
40658b94 5606 }
dbb8534f 5607 /* FALLTHROUGH */
40658b94
PH
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
db230ce3
JB
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
40658b94 5618 }
ccefe4c4
TT
5619}
5620
db230ce3
JB
5621/* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632static int
5633compare_names (const char *string1, const char *string2)
5634{
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647}
5648
b5ec771e
PA
5649/* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652static const char *
5653ada_lookup_name (const lookup_name_info &lookup_name)
5654{
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656}
5657
339c13b6 5658/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
339c13b6
JB
5662
5663static void
b5ec771e
PA
5664add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
339c13b6
JB
5667{
5668 struct objfile *objfile;
22cee43f 5669 struct compunit_symtab *cu;
40658b94 5670 struct match_data data;
339c13b6 5671
6475f2fe 5672 memset (&data, 0, sizeof data);
ccefe4c4 5673 data.obstackp = obstackp;
339c13b6 5674
b5ec771e
PA
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
ccefe4c4 5677 ALL_OBJFILES (objfile)
40658b94
PH
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
b5ec771e
PA
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
4186eb54 5684 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5685 symbol_name_match_type::WILD,
5686 NULL);
40658b94 5687 else
b5ec771e
PA
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
4186eb54 5690 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5691 symbol_name_match_type::FULL,
5692 compare_names);
22cee43f
PMR
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
b5ec771e
PA
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
22cee43f
PMR
5701 data.found_sym = 1;
5702 }
40658b94
PH
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
b5ec771e
PA
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
40658b94
PH
5710 ALL_OBJFILES (objfile)
5711 {
40658b94 5712 data.objfile = objfile;
b5ec771e
PA
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
0963b4bd
MS
5715 aux_add_nonlocal_symbols,
5716 &data,
b5ec771e
PA
5717 symbol_name_match_type::FULL,
5718 compare_names);
40658b94
PH
5719 }
5720 }
339c13b6
JB
5721}
5722
b5ec771e
PA
5723/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5726
22cee43f
PMR
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5729 is the one match returned (no other matches in that or
d9680e73 5730 enclosing blocks is returned). If there are any matches in or
22cee43f 5731 surrounding BLOCK, then these alone are returned.
4eeaa230 5732
b5ec771e
PA
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
14f9c5c9 5736
22cee43f
PMR
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740static void
5741ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
b5ec771e 5743 const lookup_name_info &lookup_name,
22cee43f
PMR
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
14f9c5c9
AS
5747{
5748 struct symbol *sym;
14f9c5c9 5749
22cee43f
PMR
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
339c13b6
JB
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
b5ec771e
PA
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
4c4b4cd2 5762
339c13b6 5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5764
4eeaa230
DE
5765 if (block != NULL)
5766 {
5767 if (full_search)
b5ec771e 5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
b5ec771e 5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5775 }
22cee43f
PMR
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
4eeaa230 5778 }
d2e4a39e 5779
339c13b6
JB
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
b5ec771e
PA
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
4c4b4cd2
PH
5786 {
5787 if (sym != NULL)
b5ec771e 5788 add_defn_to_vec (obstackp, sym, block);
22cee43f 5789 return;
4c4b4cd2 5790 }
14f9c5c9 5791
22cee43f
PMR
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
b1eedac9 5794
339c13b6
JB
5795 /* Search symbols from all global blocks. */
5796
b5ec771e 5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5798
4c4b4cd2 5799 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5800 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5801
22cee43f 5802 if (num_defns_collected (obstackp) == 0)
b5ec771e 5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5804}
5805
b5ec771e
PA
5806/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5808 matches.
ec6a20c2 5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5810 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
22cee43f
PMR
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823static int
b5ec771e
PA
5824ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
22cee43f
PMR
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829{
22cee43f
PMR
5830 int syms_from_global_search;
5831 int ndefns;
ec6a20c2
JB
5832 int results_size;
5833 auto_obstack obstack;
22cee43f 5834
ec6a20c2 5835 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5836 domain, full_search, &syms_from_global_search);
14f9c5c9 5837
ec6a20c2
JB
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
b1eedac9 5846 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5848
b1eedac9 5849 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5852
22cee43f 5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5854
14f9c5c9
AS
5855 return ndefns;
5856}
5857
b5ec771e 5858/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5859 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
4eeaa230
DE
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865int
b5ec771e 5866ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5867 domain_enum domain, struct block_symbol **results)
4eeaa230 5868{
b5ec771e
PA
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5873}
5874
5875/* Implementation of the la_iterate_over_symbols method. */
5876
5877static void
14bc53a8 5878ada_iterate_over_symbols
b5ec771e
PA
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
14bc53a8 5881 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5882{
5883 int ndefs, i;
d12307c1 5884 struct block_symbol *results;
ec6a20c2 5885 struct cleanup *old_chain;
4eeaa230
DE
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5888 old_chain = make_cleanup (xfree, results);
5889
4eeaa230
DE
5890 for (i = 0; i < ndefs; ++i)
5891 {
14bc53a8 5892 if (!callback (results[i].symbol))
4eeaa230
DE
5893 break;
5894 }
ec6a20c2
JB
5895
5896 do_cleanups (old_chain);
4eeaa230
DE
5897}
5898
4e5c77fe
JB
5899/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5e2336be
JB
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5905
5906void
5907ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5908 domain_enum domain,
d12307c1 5909 struct block_symbol *info)
14f9c5c9 5910{
d12307c1 5911 struct block_symbol *candidates;
14f9c5c9 5912 int n_candidates;
ec6a20c2 5913 struct cleanup *old_chain;
14f9c5c9 5914
b5ec771e
PA
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5e2336be 5923 gdb_assert (info != NULL);
d12307c1 5924 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5925
b5ec771e
PA
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
ec6a20c2
JB
5928 old_chain = make_cleanup (xfree, candidates);
5929
14f9c5c9 5930 if (n_candidates == 0)
ec6a20c2
JB
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
4c4b4cd2 5935
5e2336be 5936 *info = candidates[0];
d12307c1 5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
ec6a20c2
JB
5938
5939 do_cleanups (old_chain);
4e5c77fe 5940}
aeb5907d
JB
5941
5942/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5945 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
d12307c1 5948struct block_symbol
aeb5907d 5949ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5950 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5951{
d12307c1 5952 struct block_symbol info;
4e5c77fe 5953
aeb5907d
JB
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
4e5c77fe 5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5958 block0, domain, &info);
d12307c1 5959 return info;
4c4b4cd2 5960}
14f9c5c9 5961
d12307c1 5962static struct block_symbol
f606139a
DE
5963ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
76a01679 5965 const struct block *block,
21b556f4 5966 const domain_enum domain)
4c4b4cd2 5967{
d12307c1 5968 struct block_symbol sym;
04dccad0
JB
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5971 if (sym.symbol != NULL)
04dccad0
JB
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
d12307c1
PMR
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
04dccad0
JB
5996 return sym;
5997 }
5998
d12307c1 5999 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
6000}
6001
6002
4c4b4cd2
PH
6003/* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6006 are given by any of the regular expressions:
4c4b4cd2 6007
babe1480
JB
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6010 TKB [subprogram suffix for task bodies]
babe1480 6011 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
4c4b4cd2 6017
14f9c5c9 6018static int
d2e4a39e 6019is_name_suffix (const char *str)
14f9c5c9
AS
6020{
6021 int k;
4c4b4cd2
PH
6022 const char *matching;
6023 const int len = strlen (str);
6024
babe1480
JB
6025 /* Skip optional leading __[0-9]+. */
6026
4c4b4cd2
PH
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
babe1480
JB
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
4c4b4cd2 6032 }
babe1480
JB
6033
6034 /* [.$][0-9]+ */
4c4b4cd2 6035
babe1480 6036 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6037 {
babe1480 6038 matching = str + 1;
4c4b4cd2
PH
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
babe1480 6046
4c4b4cd2
PH
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
9ac7f98e
JB
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
529cad9c
PH
6061#if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
529cad9c 6065 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
0963b4bd 6070 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076#endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
4c4b4cd2
PH
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
d2e4a39e 6097 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
14f9c5c9 6103 }
babe1480 6104
14f9c5c9
AS
6105 if (str[0] == '\000')
6106 return 1;
babe1480 6107
d2e4a39e 6108 if (str[0] == '_')
14f9c5c9
AS
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6111 return 0;
d2e4a39e 6112 if (str[2] == '_')
4c4b4cd2 6113 {
61ee279c
PH
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
4c4b4cd2
PH
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
1265e4aa
JB
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
14f9c5c9
AS
6137 return 1;
6138 }
4c4b4cd2 6139 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6140 {
4c4b4cd2
PH
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
14f9c5c9
AS
6144 return 1;
6145 }
6146 return 0;
6147}
d2e4a39e 6148
aeb5907d
JB
6149/* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
529cad9c
PH
6151
6152static int
6153is_valid_name_for_wild_match (const char *name0)
6154{
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
5823c3ef
JB
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
529cad9c
PH
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169}
6170
73589123
PH
6171/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
4c4b4cd2 6174
14f9c5c9 6175static int
73589123 6176advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6177{
73589123 6178 const char *name = *namep;
5b4ee69b 6179
5823c3ef 6180 while (1)
14f9c5c9 6181 {
aa27d0b3 6182 int t0, t1;
73589123
PH
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
61012eef 6191 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6192 break;
6193 else
6194 name += 1;
6195 }
aa27d0b3
JB
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
73589123
PH
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
5823c3ef 6208 return 0;
73589123
PH
6209 }
6210
6211 *namep = name;
6212 return 1;
6213}
6214
b5ec771e
PA
6215/* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
73589123 6219
b5ec771e 6220static bool
73589123
PH
6221wild_match (const char *name, const char *patn)
6222{
22e048c9 6223 const char *p;
73589123
PH
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6236 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6242 return false;
96d887e8 6243 }
96d887e8
PH
6244}
6245
b5ec771e
PA
6246/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
40658b94 6250
b5ec771e 6251static bool
c4d840bd
PH
6252full_match (const char *sym_name, const char *search_name)
6253{
b5ec771e
PA
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
c4d840bd 6264
b5ec771e
PA
6265 return false;
6266}
c4d840bd 6267
b5ec771e
PA
6268/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6271
6272static void
6273ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
96d887e8 6277{
8157b174 6278 struct block_iterator iter;
96d887e8
PH
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
b5ec771e
PA
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6290 {
b5ec771e
PA
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
96d887e8
PH
6307 }
6308
22cee43f
PMR
6309 /* Handle renamings. */
6310
b5ec771e 6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6312 found_sym = 1;
6313
96d887e8
PH
6314 if (!found_sym && arg_sym != NULL)
6315 {
76a01679
JB
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6318 block);
96d887e8
PH
6319 }
6320
b5ec771e 6321 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
b5ec771e
PA
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6330 {
4186eb54
KS
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
61012eef 6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
2a2d4dc3
AS
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
76a01679
JB
6360 }
6361 }
76a01679 6362 }
96d887e8
PH
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
76a01679 6369 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6370 block);
96d887e8
PH
6371 }
6372 }
6373}
6374\f
41d27058
JB
6375
6376 /* Symbol Completion */
6377
b5ec771e 6378/* See symtab.h. */
41d27058 6379
b5ec771e
PA
6380bool
6381ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
a207cff2 6384 completion_match_result *comp_match_res) const
41d27058 6385{
b5ec771e
PA
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
41d27058
JB
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6393 match = true;
41d27058 6394
b5ec771e 6395 if (match && !m_encoded_p)
41d27058
JB
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
b5ec771e 6402 bool has_angle_bracket;
41d27058
JB
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6406 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6407 sym_name = sym_name_copy;
6408 }
6409
b5ec771e 6410 if (match && !m_verbatim_p)
41d27058
JB
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
b5ec771e 6421 match = false;
41d27058
JB
6422 }
6423
6424 /* Second: Try wild matching... */
6425
b5ec771e 6426 if (!match && m_wild_match_p)
41d27058
JB
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6434 match = true;
41d27058
JB
6435 }
6436
b5ec771e 6437 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6438
6439 if (!match)
b5ec771e 6440 return false;
41d27058 6441
a207cff2 6442 if (comp_match_res != NULL)
b5ec771e 6443 {
a207cff2 6444 std::string &match_str = comp_match_res->match.storage ();
41d27058 6445
b5ec771e 6446 if (!m_encoded_p)
a207cff2 6447 match_str = ada_decode (sym_name);
b5ec771e
PA
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
41d27058 6454
b5ec771e 6455 }
a207cff2
PA
6456
6457 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6458 }
6459
b5ec771e 6460 return true;
41d27058
JB
6461}
6462
b5ec771e 6463/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6464 WORD is the entire command on which completion is made. */
41d27058 6465
eb3ff9a5
PA
6466static void
6467ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6468 complete_symbol_mode mode,
b5ec771e
PA
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
eb3ff9a5 6471 enum type_code code)
41d27058 6472{
41d27058 6473 struct symbol *sym;
43f3e411 6474 struct compunit_symtab *s;
41d27058
JB
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
3977b71f 6477 const struct block *b, *surrounding_static_block = 0;
8157b174 6478 struct block_iterator iter;
b8fea896 6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6480
2f68a895
TT
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
1b026119 6483 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6484
6485 /* First, look at the partial symtab symbols. */
14bc53a8 6486 expand_symtabs_matching (NULL,
b5ec771e
PA
6487 lookup_name,
6488 NULL,
14bc53a8
PA
6489 NULL,
6490 ALL_DOMAIN);
41d27058
JB
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
b5ec771e 6500
f9d67a22
PA
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
b5ec771e
PA
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6507 lookup_name, text, word);
41d27058
JB
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
f9d67a22
PA
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
b5ec771e
PA
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
1b026119 6526 lookup_name, text, word);
41d27058
JB
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
43f3e411 6531 symbols which match. */
41d27058 6532
43f3e411 6533 ALL_COMPUNITS (objfile, s)
41d27058
JB
6534 {
6535 QUIT;
43f3e411 6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
f9d67a22
PA
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
b5ec771e
PA
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
1b026119 6545 lookup_name, text, word);
41d27058
JB
6546 }
6547 }
6548
43f3e411 6549 ALL_COMPUNITS (objfile, s)
41d27058
JB
6550 {
6551 QUIT;
43f3e411 6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
f9d67a22
PA
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
b5ec771e
PA
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
1b026119 6564 lookup_name, text, word);
41d27058
JB
6565 }
6566 }
6567
b8fea896 6568 do_cleanups (old_chain);
41d27058
JB
6569}
6570
963a6417 6571 /* Field Access */
96d887e8 6572
73fb9985
JB
6573/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576static int
6577ada_is_dispatch_table_ptr_type (struct type *type)
6578{
0d5cff50 6579 const char *name;
73fb9985
JB
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589}
6590
ac4a2da4
JG
6591/* Return non-zero if TYPE is an interface tag. */
6592
6593static int
6594ada_is_interface_tag (struct type *type)
6595{
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602}
6603
963a6417
PH
6604/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
96d887e8 6606
963a6417
PH
6607int
6608ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6609{
963a6417
PH
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
ffde82bf 6612
73fb9985
JB
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
ffde82bf
JB
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
61012eef 6630 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6631 return 1;
6632 }
6633
ac4a2da4
JG
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
73fb9985 6636 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
963a6417 6643}
96d887e8 6644
963a6417 6645/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6646 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6647
963a6417
PH
6648int
6649ada_is_tagged_type (struct type *type, int refok)
6650{
988f6b3d 6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6652}
96d887e8 6653
963a6417 6654/* True iff TYPE represents the type of X'Tag */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_tag_type (struct type *type)
6658{
460efde1
JB
6659 type = ada_check_typedef (type);
6660
963a6417
PH
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
96d887e8 6664 {
963a6417 6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6666
963a6417
PH
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6669 }
96d887e8
PH
6670}
6671
963a6417 6672/* The type of the tag on VAL. */
76a01679 6673
963a6417
PH
6674struct type *
6675ada_tag_type (struct value *val)
96d887e8 6676{
988f6b3d 6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6678}
96d887e8 6679
b50d69b5
JG
6680/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683static int
6684is_ada95_tag (struct value *tag)
6685{
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687}
6688
963a6417 6689/* The value of the tag on VAL. */
96d887e8 6690
963a6417
PH
6691struct value *
6692ada_value_tag (struct value *val)
6693{
03ee6b2e 6694 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6695}
6696
963a6417
PH
6697/* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6699 ADDRESS. */
96d887e8 6700
963a6417 6701static struct value *
10a2c479 6702value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6703 const gdb_byte *valaddr,
963a6417 6704 CORE_ADDR address)
96d887e8 6705{
b5385fc0 6706 int tag_byte_offset;
963a6417 6707 struct type *tag_type;
5b4ee69b 6708
963a6417 6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6710 NULL, NULL, NULL))
96d887e8 6711 {
fc1a4b47 6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6713 ? NULL
6714 : valaddr + tag_byte_offset);
963a6417 6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6716
963a6417 6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6718 }
963a6417
PH
6719 return NULL;
6720}
96d887e8 6721
963a6417
PH
6722static struct type *
6723type_from_tag (struct value *tag)
6724{
6725 const char *type_name = ada_tag_name (tag);
5b4ee69b 6726
963a6417
PH
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730}
96d887e8 6731
b50d69b5
JG
6732/* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738struct value *
6739ada_tag_value_at_base_address (struct value *obj)
6740{
b50d69b5
JG
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
08f49010
XR
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6768 if (!val)
6769 return obj;
6770
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6775
492d29ea 6776 TRY
b50d69b5
JG
6777 {
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6779 }
6780
492d29ea
PA
6781 CATCH (e, RETURN_MASK_ERROR)
6782 {
6783 return obj;
6784 }
6785 END_CATCH
b50d69b5
JG
6786
6787 /* If offset is null, nothing to do. */
6788
6789 if (offset_to_top == 0)
6790 return obj;
6791
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6794 now. */
6795
6796 if (offset_to_top == -1)
6797 return obj;
6798
08f49010
XR
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6806
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6809
6810 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6812
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6816
6817 if (!tag)
6818 return obj;
6819
6820 obj_type = type_from_tag (tag);
6821
6822 if (!obj_type)
6823 return obj;
6824
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6826}
6827
1b611343
JB
6828/* Return the "ada__tags__type_specific_data" type. */
6829
6830static struct type *
6831ada_get_tsd_type (struct inferior *inf)
963a6417 6832{
1b611343 6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6834
1b611343
JB
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6838}
529cad9c 6839
1b611343
JB
6840/* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6842
1b611343 6843 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6844
1b611343
JB
6845static struct value *
6846ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6847{
4c4b4cd2 6848 struct value *val;
1b611343 6849 struct type *type;
5b4ee69b 6850
1b611343
JB
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
529cad9c 6855
1b611343
JB
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6857 if (val)
6858 return val;
e802dbe0 6859
1b611343
JB
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6863 table. */
e802dbe0 6864
1b611343
JB
6865 type = ada_get_tsd_type (current_inferior());
6866 if (type == NULL)
6867 return NULL;
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6870 if (val == NULL)
6871 return NULL;
6872 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6873}
6874
1b611343
JB
6875/* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6877
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6880
6881static char *
6882ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6883{
529cad9c
PH
6884 static char name[1024];
6885 char *p;
1b611343 6886 struct value *val;
529cad9c 6887
1b611343 6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6889 if (val == NULL)
1b611343 6890 return NULL;
4c4b4cd2
PH
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6893 if (isalpha (*p))
6894 *p = tolower (*p);
1b611343 6895 return name;
4c4b4cd2
PH
6896}
6897
6898/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6899 a C string.
6900
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6903 call. */
4c4b4cd2
PH
6904
6905const char *
6906ada_tag_name (struct value *tag)
6907{
1b611343 6908 char *name = NULL;
5b4ee69b 6909
df407dfe 6910 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6911 return NULL;
1b611343
JB
6912
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6918
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
492d29ea 6922 TRY
1b611343
JB
6923 {
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6925
6926 if (tsd != NULL)
6927 name = ada_tag_name_from_tsd (tsd);
6928 }
492d29ea
PA
6929 CATCH (e, RETURN_MASK_ERROR)
6930 {
6931 }
6932 END_CATCH
1b611343
JB
6933
6934 return name;
4c4b4cd2
PH
6935}
6936
6937/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6938
d2e4a39e 6939struct type *
ebf56fd3 6940ada_parent_type (struct type *type)
14f9c5c9
AS
6941{
6942 int i;
6943
61ee279c 6944 type = ada_check_typedef (type);
14f9c5c9
AS
6945
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6947 return NULL;
6948
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6951 {
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6953
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6959
6960 return ada_check_typedef (parent_type);
6961 }
14f9c5c9
AS
6962
6963 return NULL;
6964}
6965
4c4b4cd2
PH
6966/* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6969
6970int
ebf56fd3 6971ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6972{
61ee279c 6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6974
4c4b4cd2 6975 return (name != NULL
61012eef
GB
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
14f9c5c9
AS
6978}
6979
4c4b4cd2 6980/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6981 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6982 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6984 structures. */
14f9c5c9
AS
6985
6986int
ebf56fd3 6987ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6988{
d2e4a39e 6989 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6990
dddc0e16
JB
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6992 {
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
6998 a wrapper. */
6999 return 0;
7000 }
7001
d2e4a39e 7002 return (name != NULL
61012eef 7003 && (startswith (name, "PARENT")
4c4b4cd2 7004 || strcmp (name, "REP") == 0
61012eef 7005 || startswith (name, "_parent")
4c4b4cd2 7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7007}
7008
4c4b4cd2
PH
7009/* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
14f9c5c9
AS
7012
7013int
ebf56fd3 7014ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7015{
d2e4a39e 7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7017
14f9c5c9 7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7019 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
14f9c5c9
AS
7022}
7023
7024/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7025 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
14f9c5c9 7028
d2e4a39e 7029struct type *
ebf56fd3 7030ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7031{
a121b7c1 7032 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7033
988f6b3d 7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7035}
7036
4c4b4cd2 7037/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7039 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7040
7041int
ebf56fd3 7042ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7043{
d2e4a39e 7044 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7045
14f9c5c9
AS
7046 return (name != NULL && name[0] == 'O');
7047}
7048
7049/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7052
a121b7c1 7053const char *
ebf56fd3 7054ada_variant_discrim_name (struct type *type0)
14f9c5c9 7055{
d2e4a39e 7056 static char *result = NULL;
14f9c5c9 7057 static size_t result_len = 0;
d2e4a39e
AS
7058 struct type *type;
7059 const char *name;
7060 const char *discrim_end;
7061 const char *discrim_start;
14f9c5c9
AS
7062
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7065 else
7066 type = type0;
7067
7068 name = ada_type_name (type);
7069
7070 if (name == NULL || name[0] == '\000')
7071 return "";
7072
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7074 discrim_end -= 1)
7075 {
61012eef 7076 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7077 break;
14f9c5c9
AS
7078 }
7079 if (discrim_end == name)
7080 return "";
7081
d2e4a39e 7082 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7083 discrim_start -= 1)
7084 {
d2e4a39e 7085 if (discrim_start == name + 1)
4c4b4cd2 7086 return "";
76a01679 7087 if ((discrim_start > name + 3
61012eef 7088 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7089 || discrim_start[-1] == '.')
7090 break;
14f9c5c9
AS
7091 }
7092
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7095 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7096 return result;
7097}
7098
4c4b4cd2
PH
7099/* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
14f9c5c9
AS
7106
7107int
d2e4a39e 7108ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7109{
7110 ULONGEST RU;
7111
d2e4a39e 7112 if (!isdigit (str[k]))
14f9c5c9
AS
7113 return 0;
7114
4c4b4cd2 7115 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7116 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7117 LONGEST. */
14f9c5c9
AS
7118 RU = 0;
7119 while (isdigit (str[k]))
7120 {
d2e4a39e 7121 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7122 k += 1;
7123 }
7124
d2e4a39e 7125 if (str[k] == 'm')
14f9c5c9
AS
7126 {
7127 if (R != NULL)
4c4b4cd2 7128 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7129 k += 1;
7130 }
7131 else if (R != NULL)
7132 *R = (LONGEST) RU;
7133
4c4b4cd2 7134 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7138 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7139
7140 if (new_k != NULL)
7141 *new_k = k;
7142 return 1;
7143}
7144
4c4b4cd2
PH
7145/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7148
d2e4a39e 7149int
ebf56fd3 7150ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7151{
d2e4a39e 7152 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7153 int p;
7154
7155 p = 0;
7156 while (1)
7157 {
d2e4a39e 7158 switch (name[p])
4c4b4cd2
PH
7159 {
7160 case '\0':
7161 return 0;
7162 case 'S':
7163 {
7164 LONGEST W;
5b4ee69b 7165
4c4b4cd2
PH
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7167 return 0;
7168 if (val == W)
7169 return 1;
7170 break;
7171 }
7172 case 'R':
7173 {
7174 LONGEST L, U;
5b4ee69b 7175
4c4b4cd2
PH
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7178 return 0;
7179 if (val >= L && val <= U)
7180 return 1;
7181 break;
7182 }
7183 case 'O':
7184 return 1;
7185 default:
7186 return 0;
7187 }
7188 }
7189}
7190
0963b4bd 7191/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7192
7193/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7197
4c4b4cd2 7198static struct value *
d2e4a39e 7199ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7200 struct type *arg_type)
14f9c5c9 7201{
14f9c5c9
AS
7202 struct type *type;
7203
61ee279c 7204 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7206
4c4b4cd2 7207 /* Handle packed fields. */
14f9c5c9
AS
7208
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7210 {
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7213
0fd88904 7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7217 }
7218 else
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7220}
7221
52ce6436
PH
7222/* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7229 0 otherwise;
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7234
828d5846
XR
7235 Notice that we need to handle when a tagged record hierarchy
7236 has some components with the same name, like in this scenario:
7237
7238 type Top_T is tagged record
7239 N : Integer := 1;
7240 U : Integer := 974;
7241 A : Integer := 48;
7242 end record;
7243
7244 type Middle_T is new Top.Top_T with record
7245 N : Character := 'a';
7246 C : Integer := 3;
7247 end record;
7248
7249 type Bottom_T is new Middle.Middle_T with record
7250 N : Float := 4.0;
7251 C : Character := '5';
7252 X : Integer := 6;
7253 A : Character := 'J';
7254 end record;
7255
7256 Let's say we now have a variable declared and initialized as follow:
7257
7258 TC : Top_A := new Bottom_T;
7259
7260 And then we use this variable to call this function
7261
7262 procedure Assign (Obj: in out Top_T; TV : Integer);
7263
7264 as follow:
7265
7266 Assign (Top_T (B), 12);
7267
7268 Now, we're in the debugger, and we're inside that procedure
7269 then and we want to print the value of obj.c:
7270
7271 Usually, the tagged record or one of the parent type owns the
7272 component to print and there's no issue but in this particular
7273 case, what does it mean to ask for Obj.C? Since the actual
7274 type for object is type Bottom_T, it could mean two things: type
7275 component C from the Middle_T view, but also component C from
7276 Bottom_T. So in that "undefined" case, when the component is
7277 not found in the non-resolved type (which includes all the
7278 components of the parent type), then resolve it and see if we
7279 get better luck once expanded.
7280
7281 In the case of homonyms in the derived tagged type, we don't
7282 guaranty anything, and pick the one that's easiest for us
7283 to program.
7284
0963b4bd 7285 Returns 1 if found, 0 otherwise. */
52ce6436 7286
4c4b4cd2 7287static int
0d5cff50 7288find_struct_field (const char *name, struct type *type, int offset,
76a01679 7289 struct type **field_type_p,
52ce6436
PH
7290 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7291 int *index_p)
4c4b4cd2
PH
7292{
7293 int i;
828d5846 7294 int parent_offset = -1;
4c4b4cd2 7295
61ee279c 7296 type = ada_check_typedef (type);
76a01679 7297
52ce6436
PH
7298 if (field_type_p != NULL)
7299 *field_type_p = NULL;
7300 if (byte_offset_p != NULL)
d5d6fca5 7301 *byte_offset_p = 0;
52ce6436
PH
7302 if (bit_offset_p != NULL)
7303 *bit_offset_p = 0;
7304 if (bit_size_p != NULL)
7305 *bit_size_p = 0;
7306
7307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7308 {
7309 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7310 int fld_offset = offset + bit_pos / 8;
0d5cff50 7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7312
4c4b4cd2
PH
7313 if (t_field_name == NULL)
7314 continue;
7315
828d5846
XR
7316 else if (ada_is_parent_field (type, i))
7317 {
7318 /* This is a field pointing us to the parent type of a tagged
7319 type. As hinted in this function's documentation, we give
7320 preference to fields in the current record first, so what
7321 we do here is just record the index of this field before
7322 we skip it. If it turns out we couldn't find our field
7323 in the current record, then we'll get back to it and search
7324 inside it whether the field might exist in the parent. */
7325
7326 parent_offset = i;
7327 continue;
7328 }
7329
52ce6436 7330 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7331 {
7332 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7333
52ce6436
PH
7334 if (field_type_p != NULL)
7335 *field_type_p = TYPE_FIELD_TYPE (type, i);
7336 if (byte_offset_p != NULL)
7337 *byte_offset_p = fld_offset;
7338 if (bit_offset_p != NULL)
7339 *bit_offset_p = bit_pos % 8;
7340 if (bit_size_p != NULL)
7341 *bit_size_p = bit_size;
76a01679
JB
7342 return 1;
7343 }
4c4b4cd2
PH
7344 else if (ada_is_wrapper_field (type, i))
7345 {
52ce6436
PH
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7347 field_type_p, byte_offset_p, bit_offset_p,
7348 bit_size_p, index_p))
76a01679
JB
7349 return 1;
7350 }
4c4b4cd2
PH
7351 else if (ada_is_variant_part (type, i))
7352 {
52ce6436
PH
7353 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7354 fixed type?? */
4c4b4cd2 7355 int j;
52ce6436
PH
7356 struct type *field_type
7357 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7358
52ce6436 7359 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7360 {
76a01679
JB
7361 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7362 fld_offset
7363 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7364 field_type_p, byte_offset_p,
52ce6436 7365 bit_offset_p, bit_size_p, index_p))
76a01679 7366 return 1;
4c4b4cd2
PH
7367 }
7368 }
52ce6436
PH
7369 else if (index_p != NULL)
7370 *index_p += 1;
4c4b4cd2 7371 }
828d5846
XR
7372
7373 /* Field not found so far. If this is a tagged type which
7374 has a parent, try finding that field in the parent now. */
7375
7376 if (parent_offset != -1)
7377 {
7378 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7379 int fld_offset = offset + bit_pos / 8;
7380
7381 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7382 fld_offset, field_type_p, byte_offset_p,
7383 bit_offset_p, bit_size_p, index_p))
7384 return 1;
7385 }
7386
4c4b4cd2
PH
7387 return 0;
7388}
7389
0963b4bd 7390/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7391
52ce6436
PH
7392static int
7393num_visible_fields (struct type *type)
7394{
7395 int n;
5b4ee69b 7396
52ce6436
PH
7397 n = 0;
7398 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7399 return n;
7400}
14f9c5c9 7401
4c4b4cd2 7402/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7403 and search in it assuming it has (class) type TYPE.
7404 If found, return value, else return NULL.
7405
828d5846
XR
7406 Searches recursively through wrapper fields (e.g., '_parent').
7407
7408 In the case of homonyms in the tagged types, please refer to the
7409 long explanation in find_struct_field's function documentation. */
14f9c5c9 7410
4c4b4cd2 7411static struct value *
108d56a4 7412ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7413 struct type *type)
14f9c5c9
AS
7414{
7415 int i;
828d5846 7416 int parent_offset = -1;
14f9c5c9 7417
5b4ee69b 7418 type = ada_check_typedef (type);
52ce6436 7419 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7420 {
0d5cff50 7421 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7422
7423 if (t_field_name == NULL)
4c4b4cd2 7424 continue;
14f9c5c9 7425
828d5846
XR
7426 else if (ada_is_parent_field (type, i))
7427 {
7428 /* This is a field pointing us to the parent type of a tagged
7429 type. As hinted in this function's documentation, we give
7430 preference to fields in the current record first, so what
7431 we do here is just record the index of this field before
7432 we skip it. If it turns out we couldn't find our field
7433 in the current record, then we'll get back to it and search
7434 inside it whether the field might exist in the parent. */
7435
7436 parent_offset = i;
7437 continue;
7438 }
7439
14f9c5c9 7440 else if (field_name_match (t_field_name, name))
4c4b4cd2 7441 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7442
7443 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7444 {
0963b4bd 7445 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7446 ada_search_struct_field (name, arg,
7447 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7448 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7449
4c4b4cd2
PH
7450 if (v != NULL)
7451 return v;
7452 }
14f9c5c9
AS
7453
7454 else if (ada_is_variant_part (type, i))
4c4b4cd2 7455 {
0963b4bd 7456 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7457 int j;
5b4ee69b
MS
7458 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7459 i));
4c4b4cd2
PH
7460 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7461
52ce6436 7462 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7463 {
0963b4bd
MS
7464 struct value *v = ada_search_struct_field /* Force line
7465 break. */
06d5cf63
JB
7466 (name, arg,
7467 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7468 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7469
4c4b4cd2
PH
7470 if (v != NULL)
7471 return v;
7472 }
7473 }
14f9c5c9 7474 }
828d5846
XR
7475
7476 /* Field not found so far. If this is a tagged type which
7477 has a parent, try finding that field in the parent now. */
7478
7479 if (parent_offset != -1)
7480 {
7481 struct value *v = ada_search_struct_field (
7482 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7483 TYPE_FIELD_TYPE (type, parent_offset));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
14f9c5c9
AS
7489 return NULL;
7490}
d2e4a39e 7491
52ce6436
PH
7492static struct value *ada_index_struct_field_1 (int *, struct value *,
7493 int, struct type *);
7494
7495
7496/* Return field #INDEX in ARG, where the index is that returned by
7497 * find_struct_field through its INDEX_P argument. Adjust the address
7498 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7499 * If found, return value, else return NULL. */
52ce6436
PH
7500
7501static struct value *
7502ada_index_struct_field (int index, struct value *arg, int offset,
7503 struct type *type)
7504{
7505 return ada_index_struct_field_1 (&index, arg, offset, type);
7506}
7507
7508
7509/* Auxiliary function for ada_index_struct_field. Like
7510 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7511 * *INDEX_P. */
52ce6436
PH
7512
7513static struct value *
7514ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7515 struct type *type)
7516{
7517 int i;
7518 type = ada_check_typedef (type);
7519
7520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7521 {
7522 if (TYPE_FIELD_NAME (type, i) == NULL)
7523 continue;
7524 else if (ada_is_wrapper_field (type, i))
7525 {
0963b4bd 7526 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7527 ada_index_struct_field_1 (index_p, arg,
7528 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7529 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7530
52ce6436
PH
7531 if (v != NULL)
7532 return v;
7533 }
7534
7535 else if (ada_is_variant_part (type, i))
7536 {
7537 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7538 find_struct_field. */
52ce6436
PH
7539 error (_("Cannot assign this kind of variant record"));
7540 }
7541 else if (*index_p == 0)
7542 return ada_value_primitive_field (arg, offset, i, type);
7543 else
7544 *index_p -= 1;
7545 }
7546 return NULL;
7547}
7548
4c4b4cd2
PH
7549/* Given ARG, a value of type (pointer or reference to a)*
7550 structure/union, extract the component named NAME from the ultimate
7551 target structure/union and return it as a value with its
f5938064 7552 appropriate type.
14f9c5c9 7553
4c4b4cd2
PH
7554 The routine searches for NAME among all members of the structure itself
7555 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7556 (e.g., '_parent').
7557
03ee6b2e
PH
7558 If NO_ERR, then simply return NULL in case of error, rather than
7559 calling error. */
14f9c5c9 7560
d2e4a39e 7561struct value *
a121b7c1 7562ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7563{
4c4b4cd2 7564 struct type *t, *t1;
d2e4a39e 7565 struct value *v;
14f9c5c9 7566
4c4b4cd2 7567 v = NULL;
df407dfe 7568 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7569 if (TYPE_CODE (t) == TYPE_CODE_REF)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
03ee6b2e 7573 goto BadValue;
61ee279c 7574 t1 = ada_check_typedef (t1);
4c4b4cd2 7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7576 {
994b9211 7577 arg = coerce_ref (arg);
76a01679
JB
7578 t = t1;
7579 }
4c4b4cd2 7580 }
14f9c5c9 7581
4c4b4cd2
PH
7582 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7583 {
7584 t1 = TYPE_TARGET_TYPE (t);
7585 if (t1 == NULL)
03ee6b2e 7586 goto BadValue;
61ee279c 7587 t1 = ada_check_typedef (t1);
4c4b4cd2 7588 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7589 {
7590 arg = value_ind (arg);
7591 t = t1;
7592 }
4c4b4cd2 7593 else
76a01679 7594 break;
4c4b4cd2 7595 }
14f9c5c9 7596
4c4b4cd2 7597 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7598 goto BadValue;
14f9c5c9 7599
4c4b4cd2
PH
7600 if (t1 == t)
7601 v = ada_search_struct_field (name, arg, 0, t);
7602 else
7603 {
7604 int bit_offset, bit_size, byte_offset;
7605 struct type *field_type;
7606 CORE_ADDR address;
7607
76a01679 7608 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7609 address = value_address (ada_value_ind (arg));
4c4b4cd2 7610 else
b50d69b5 7611 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7612
828d5846
XR
7613 /* Check to see if this is a tagged type. We also need to handle
7614 the case where the type is a reference to a tagged type, but
7615 we have to be careful to exclude pointers to tagged types.
7616 The latter should be shown as usual (as a pointer), whereas
7617 a reference should mostly be transparent to the user. */
7618
7619 if (ada_is_tagged_type (t1, 0)
7620 || (TYPE_CODE (t1) == TYPE_CODE_REF
7621 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7622 {
7623 /* We first try to find the searched field in the current type.
7624 If not found then let's look in the fixed type. */
7625
7626 if (!find_struct_field (name, t1, 0,
7627 &field_type, &byte_offset, &bit_offset,
7628 &bit_size, NULL))
7629 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7630 address, NULL, 1);
7631 }
7632 else
7633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7634 address, NULL, 1);
7635
76a01679
JB
7636 if (find_struct_field (name, t1, 0,
7637 &field_type, &byte_offset, &bit_offset,
52ce6436 7638 &bit_size, NULL))
76a01679
JB
7639 {
7640 if (bit_size != 0)
7641 {
714e53ab
PH
7642 if (TYPE_CODE (t) == TYPE_CODE_REF)
7643 arg = ada_coerce_ref (arg);
7644 else
7645 arg = ada_value_ind (arg);
76a01679
JB
7646 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7647 bit_offset, bit_size,
7648 field_type);
7649 }
7650 else
f5938064 7651 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7652 }
7653 }
7654
03ee6b2e
PH
7655 if (v != NULL || no_err)
7656 return v;
7657 else
323e0a4a 7658 error (_("There is no member named %s."), name);
14f9c5c9 7659
03ee6b2e
PH
7660 BadValue:
7661 if (no_err)
7662 return NULL;
7663 else
0963b4bd
MS
7664 error (_("Attempt to extract a component of "
7665 "a value that is not a record."));
14f9c5c9
AS
7666}
7667
3b4de39c 7668/* Return a string representation of type TYPE. */
99bbb428 7669
3b4de39c 7670static std::string
99bbb428
PA
7671type_as_string (struct type *type)
7672{
d7e74731 7673 string_file tmp_stream;
99bbb428 7674
d7e74731 7675 type_print (type, "", &tmp_stream, -1);
99bbb428 7676
d7e74731 7677 return std::move (tmp_stream.string ());
99bbb428
PA
7678}
7679
14f9c5c9 7680/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7681 If DISPP is non-null, add its byte displacement from the beginning of a
7682 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7683 work for packed fields).
7684
7685 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7686 followed by "___".
14f9c5c9 7687
0963b4bd 7688 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7689 be a (pointer or reference)+ to a struct or union, and the
7690 ultimate target type will be searched.
14f9c5c9
AS
7691
7692 Looks recursively into variant clauses and parent types.
7693
828d5846
XR
7694 In the case of homonyms in the tagged types, please refer to the
7695 long explanation in find_struct_field's function documentation.
7696
4c4b4cd2
PH
7697 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7698 TYPE is not a type of the right kind. */
14f9c5c9 7699
4c4b4cd2 7700static struct type *
a121b7c1 7701ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7702 int noerr)
14f9c5c9
AS
7703{
7704 int i;
828d5846 7705 int parent_offset = -1;
14f9c5c9
AS
7706
7707 if (name == NULL)
7708 goto BadName;
7709
76a01679 7710 if (refok && type != NULL)
4c4b4cd2
PH
7711 while (1)
7712 {
61ee279c 7713 type = ada_check_typedef (type);
76a01679
JB
7714 if (TYPE_CODE (type) != TYPE_CODE_PTR
7715 && TYPE_CODE (type) != TYPE_CODE_REF)
7716 break;
7717 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7718 }
14f9c5c9 7719
76a01679 7720 if (type == NULL
1265e4aa
JB
7721 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7722 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7723 {
4c4b4cd2 7724 if (noerr)
76a01679 7725 return NULL;
99bbb428 7726
3b4de39c
PA
7727 error (_("Type %s is not a structure or union type"),
7728 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7729 }
7730
7731 type = to_static_fixed_type (type);
7732
7733 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7734 {
0d5cff50 7735 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7736 struct type *t;
d2e4a39e 7737
14f9c5c9 7738 if (t_field_name == NULL)
4c4b4cd2 7739 continue;
14f9c5c9 7740
828d5846
XR
7741 else if (ada_is_parent_field (type, i))
7742 {
7743 /* This is a field pointing us to the parent type of a tagged
7744 type. As hinted in this function's documentation, we give
7745 preference to fields in the current record first, so what
7746 we do here is just record the index of this field before
7747 we skip it. If it turns out we couldn't find our field
7748 in the current record, then we'll get back to it and search
7749 inside it whether the field might exist in the parent. */
7750
7751 parent_offset = i;
7752 continue;
7753 }
7754
14f9c5c9 7755 else if (field_name_match (t_field_name, name))
988f6b3d 7756 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7757
7758 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7759 {
4c4b4cd2 7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7761 0, 1);
4c4b4cd2 7762 if (t != NULL)
988f6b3d 7763 return t;
4c4b4cd2 7764 }
14f9c5c9
AS
7765
7766 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7767 {
7768 int j;
5b4ee69b
MS
7769 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7770 i));
4c4b4cd2
PH
7771
7772 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7773 {
b1f33ddd
JB
7774 /* FIXME pnh 2008/01/26: We check for a field that is
7775 NOT wrapped in a struct, since the compiler sometimes
7776 generates these for unchecked variant types. Revisit
0963b4bd 7777 if the compiler changes this practice. */
0d5cff50 7778 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7779
b1f33ddd
JB
7780 if (v_field_name != NULL
7781 && field_name_match (v_field_name, name))
460efde1 7782 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7783 else
0963b4bd
MS
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7785 j),
988f6b3d 7786 name, 0, 1);
b1f33ddd 7787
4c4b4cd2 7788 if (t != NULL)
988f6b3d 7789 return t;
4c4b4cd2
PH
7790 }
7791 }
14f9c5c9
AS
7792
7793 }
7794
828d5846
XR
7795 /* Field not found so far. If this is a tagged type which
7796 has a parent, try finding that field in the parent now. */
7797
7798 if (parent_offset != -1)
7799 {
7800 struct type *t;
7801
7802 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7803 name, 0, 1);
7804 if (t != NULL)
7805 return t;
7806 }
7807
14f9c5c9 7808BadName:
d2e4a39e 7809 if (!noerr)
14f9c5c9 7810 {
2b2798cc 7811 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7812
7813 error (_("Type %s has no component named %s"),
3b4de39c 7814 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7815 }
7816
7817 return NULL;
7818}
7819
b1f33ddd
JB
7820/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7821 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7822 represents an unchecked union (that is, the variant part of a
0963b4bd 7823 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7824
7825static int
7826is_unchecked_variant (struct type *var_type, struct type *outer_type)
7827{
a121b7c1 7828 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7829
988f6b3d 7830 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7831}
7832
7833
14f9c5c9
AS
7834/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7835 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7836 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7837 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7838
d2e4a39e 7839int
ebf56fd3 7840ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7841 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7842{
7843 int others_clause;
7844 int i;
a121b7c1 7845 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7846 struct value *outer;
7847 struct value *discrim;
14f9c5c9
AS
7848 LONGEST discrim_val;
7849
012370f6
TT
7850 /* Using plain value_from_contents_and_address here causes problems
7851 because we will end up trying to resolve a type that is currently
7852 being constructed. */
7853 outer = value_from_contents_and_address_unresolved (outer_type,
7854 outer_valaddr, 0);
0c281816
JB
7855 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7856 if (discrim == NULL)
14f9c5c9 7857 return -1;
0c281816 7858 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7859
7860 others_clause = -1;
7861 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7862 {
7863 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7864 others_clause = i;
14f9c5c9 7865 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7866 return i;
14f9c5c9
AS
7867 }
7868
7869 return others_clause;
7870}
d2e4a39e 7871\f
14f9c5c9
AS
7872
7873
4c4b4cd2 7874 /* Dynamic-Sized Records */
14f9c5c9
AS
7875
7876/* Strategy: The type ostensibly attached to a value with dynamic size
7877 (i.e., a size that is not statically recorded in the debugging
7878 data) does not accurately reflect the size or layout of the value.
7879 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7880 conventional types that are constructed on the fly. */
14f9c5c9
AS
7881
7882/* There is a subtle and tricky problem here. In general, we cannot
7883 determine the size of dynamic records without its data. However,
7884 the 'struct value' data structure, which GDB uses to represent
7885 quantities in the inferior process (the target), requires the size
7886 of the type at the time of its allocation in order to reserve space
7887 for GDB's internal copy of the data. That's why the
7888 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7889 rather than struct value*s.
14f9c5c9
AS
7890
7891 However, GDB's internal history variables ($1, $2, etc.) are
7892 struct value*s containing internal copies of the data that are not, in
7893 general, the same as the data at their corresponding addresses in
7894 the target. Fortunately, the types we give to these values are all
7895 conventional, fixed-size types (as per the strategy described
7896 above), so that we don't usually have to perform the
7897 'to_fixed_xxx_type' conversions to look at their values.
7898 Unfortunately, there is one exception: if one of the internal
7899 history variables is an array whose elements are unconstrained
7900 records, then we will need to create distinct fixed types for each
7901 element selected. */
7902
7903/* The upshot of all of this is that many routines take a (type, host
7904 address, target address) triple as arguments to represent a value.
7905 The host address, if non-null, is supposed to contain an internal
7906 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7907 target at the target address. */
14f9c5c9
AS
7908
7909/* Assuming that VAL0 represents a pointer value, the result of
7910 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7911 dynamic-sized types. */
14f9c5c9 7912
d2e4a39e
AS
7913struct value *
7914ada_value_ind (struct value *val0)
14f9c5c9 7915{
c48db5ca 7916 struct value *val = value_ind (val0);
5b4ee69b 7917
b50d69b5
JG
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
4c4b4cd2 7921 return ada_to_fixed_value (val);
14f9c5c9
AS
7922}
7923
7924/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7925 qualifiers on VAL0. */
7926
d2e4a39e
AS
7927static struct value *
7928ada_coerce_ref (struct value *val0)
7929{
df407dfe 7930 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7931 {
7932 struct value *val = val0;
5b4ee69b 7933
994b9211 7934 val = coerce_ref (val);
b50d69b5
JG
7935
7936 if (ada_is_tagged_type (value_type (val), 0))
7937 val = ada_tag_value_at_base_address (val);
7938
4c4b4cd2 7939 return ada_to_fixed_value (val);
d2e4a39e
AS
7940 }
7941 else
14f9c5c9
AS
7942 return val0;
7943}
7944
7945/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7946 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7947
7948static unsigned int
ebf56fd3 7949align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7950{
7951 return (off + alignment - 1) & ~(alignment - 1);
7952}
7953
4c4b4cd2 7954/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7955
7956static unsigned int
ebf56fd3 7957field_alignment (struct type *type, int f)
14f9c5c9 7958{
d2e4a39e 7959 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7960 int len;
14f9c5c9
AS
7961 int align_offset;
7962
64a1bf19
JB
7963 /* The field name should never be null, unless the debugging information
7964 is somehow malformed. In this case, we assume the field does not
7965 require any alignment. */
7966 if (name == NULL)
7967 return 1;
7968
7969 len = strlen (name);
7970
4c4b4cd2
PH
7971 if (!isdigit (name[len - 1]))
7972 return 1;
14f9c5c9 7973
d2e4a39e 7974 if (isdigit (name[len - 2]))
14f9c5c9
AS
7975 align_offset = len - 2;
7976 else
7977 align_offset = len - 1;
7978
61012eef 7979 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7980 return TARGET_CHAR_BIT;
7981
4c4b4cd2
PH
7982 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7983}
7984
852dff6c 7985/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7986
852dff6c
JB
7987static struct symbol *
7988ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7989{
7990 struct symbol *sym;
7991
7992 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7993 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7994 return sym;
7995
4186eb54
KS
7996 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7997 return sym;
14f9c5c9
AS
7998}
7999
dddfab26
UW
8000/* Find a type named NAME. Ignores ambiguity. This routine will look
8001 solely for types defined by debug info, it will not search the GDB
8002 primitive types. */
4c4b4cd2 8003
852dff6c 8004static struct type *
ebf56fd3 8005ada_find_any_type (const char *name)
14f9c5c9 8006{
852dff6c 8007 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8008
14f9c5c9 8009 if (sym != NULL)
dddfab26 8010 return SYMBOL_TYPE (sym);
14f9c5c9 8011
dddfab26 8012 return NULL;
14f9c5c9
AS
8013}
8014
739593e0
JB
8015/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8016 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8017 symbol, in which case it is returned. Otherwise, this looks for
8018 symbols whose name is that of NAME_SYM suffixed with "___XR".
8019 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8020
8021struct symbol *
270140bd 8022ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8023{
739593e0 8024 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8025 struct symbol *sym;
8026
739593e0
JB
8027 if (strstr (name, "___XR") != NULL)
8028 return name_sym;
8029
aeb5907d
JB
8030 sym = find_old_style_renaming_symbol (name, block);
8031
8032 if (sym != NULL)
8033 return sym;
8034
0963b4bd 8035 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8036 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8037 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8038 return sym;
8039 else
8040 return NULL;
8041}
8042
8043static struct symbol *
270140bd 8044find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8045{
7f0df278 8046 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8047 char *rename;
8048
8049 if (function_sym != NULL)
8050 {
8051 /* If the symbol is defined inside a function, NAME is not fully
8052 qualified. This means we need to prepend the function name
8053 as well as adding the ``___XR'' suffix to build the name of
8054 the associated renaming symbol. */
0d5cff50 8055 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8056 /* Function names sometimes contain suffixes used
8057 for instance to qualify nested subprograms. When building
8058 the XR type name, we need to make sure that this suffix is
8059 not included. So do not include any suffix in the function
8060 name length below. */
69fadcdf 8061 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8062 const int rename_len = function_name_len + 2 /* "__" */
8063 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8064
529cad9c 8065 /* Strip the suffix if necessary. */
69fadcdf
JB
8066 ada_remove_trailing_digits (function_name, &function_name_len);
8067 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8068 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8069
4c4b4cd2
PH
8070 /* Library-level functions are a special case, as GNAT adds
8071 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8072 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8073 have this prefix, so we need to skip this prefix if present. */
8074 if (function_name_len > 5 /* "_ada_" */
8075 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8076 {
8077 function_name += 5;
8078 function_name_len -= 5;
8079 }
4c4b4cd2
PH
8080
8081 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8082 strncpy (rename, function_name, function_name_len);
8083 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8084 "__%s___XR", name);
4c4b4cd2
PH
8085 }
8086 else
8087 {
8088 const int rename_len = strlen (name) + 6;
5b4ee69b 8089
4c4b4cd2 8090 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8091 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8092 }
8093
852dff6c 8094 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8095}
8096
14f9c5c9 8097/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8098 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8099 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8100 otherwise return 0. */
8101
14f9c5c9 8102int
d2e4a39e 8103ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8104{
8105 if (type1 == NULL)
8106 return 1;
8107 else if (type0 == NULL)
8108 return 0;
8109 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8110 return 1;
8111 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8112 return 0;
4c4b4cd2
PH
8113 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8114 return 1;
ad82864c 8115 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8116 return 1;
4c4b4cd2
PH
8117 else if (ada_is_array_descriptor_type (type0)
8118 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8119 return 1;
aeb5907d
JB
8120 else
8121 {
8122 const char *type0_name = type_name_no_tag (type0);
8123 const char *type1_name = type_name_no_tag (type1);
8124
8125 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8126 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8127 return 1;
8128 }
14f9c5c9
AS
8129 return 0;
8130}
8131
8132/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8133 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8134
0d5cff50 8135const char *
d2e4a39e 8136ada_type_name (struct type *type)
14f9c5c9 8137{
d2e4a39e 8138 if (type == NULL)
14f9c5c9
AS
8139 return NULL;
8140 else if (TYPE_NAME (type) != NULL)
8141 return TYPE_NAME (type);
8142 else
8143 return TYPE_TAG_NAME (type);
8144}
8145
b4ba55a1
JB
8146/* Search the list of "descriptive" types associated to TYPE for a type
8147 whose name is NAME. */
8148
8149static struct type *
8150find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8151{
931e5bc3 8152 struct type *result, *tmp;
b4ba55a1 8153
c6044dd1
JB
8154 if (ada_ignore_descriptive_types_p)
8155 return NULL;
8156
b4ba55a1
JB
8157 /* If there no descriptive-type info, then there is no parallel type
8158 to be found. */
8159 if (!HAVE_GNAT_AUX_INFO (type))
8160 return NULL;
8161
8162 result = TYPE_DESCRIPTIVE_TYPE (type);
8163 while (result != NULL)
8164 {
0d5cff50 8165 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8166
8167 if (result_name == NULL)
8168 {
8169 warning (_("unexpected null name on descriptive type"));
8170 return NULL;
8171 }
8172
8173 /* If the names match, stop. */
8174 if (strcmp (result_name, name) == 0)
8175 break;
8176
8177 /* Otherwise, look at the next item on the list, if any. */
8178 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8179 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 tmp = NULL;
8182
8183 /* If not found either, try after having resolved the typedef. */
8184 if (tmp != NULL)
8185 result = tmp;
b4ba55a1 8186 else
931e5bc3 8187 {
f168693b 8188 result = check_typedef (result);
931e5bc3
JG
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 result = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 result = NULL;
8193 }
b4ba55a1
JB
8194 }
8195
8196 /* If we didn't find a match, see whether this is a packed array. With
8197 older compilers, the descriptive type information is either absent or
8198 irrelevant when it comes to packed arrays so the above lookup fails.
8199 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8200 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8201 return ada_find_any_type (name);
8202
8203 return result;
8204}
8205
8206/* Find a parallel type to TYPE with the specified NAME, using the
8207 descriptive type taken from the debugging information, if available,
8208 and otherwise using the (slower) name-based method. */
8209
8210static struct type *
8211ada_find_parallel_type_with_name (struct type *type, const char *name)
8212{
8213 struct type *result = NULL;
8214
8215 if (HAVE_GNAT_AUX_INFO (type))
8216 result = find_parallel_type_by_descriptive_type (type, name);
8217 else
8218 result = ada_find_any_type (name);
8219
8220 return result;
8221}
8222
8223/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8224 SUFFIX to the name of TYPE. */
14f9c5c9 8225
d2e4a39e 8226struct type *
ebf56fd3 8227ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8228{
0d5cff50 8229 char *name;
fe978cb0 8230 const char *type_name = ada_type_name (type);
14f9c5c9 8231 int len;
d2e4a39e 8232
fe978cb0 8233 if (type_name == NULL)
14f9c5c9
AS
8234 return NULL;
8235
fe978cb0 8236 len = strlen (type_name);
14f9c5c9 8237
b4ba55a1 8238 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8239
fe978cb0 8240 strcpy (name, type_name);
14f9c5c9
AS
8241 strcpy (name + len, suffix);
8242
b4ba55a1 8243 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8244}
8245
14f9c5c9 8246/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8247 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8248
d2e4a39e
AS
8249static struct type *
8250dynamic_template_type (struct type *type)
14f9c5c9 8251{
61ee279c 8252 type = ada_check_typedef (type);
14f9c5c9
AS
8253
8254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8255 || ada_type_name (type) == NULL)
14f9c5c9 8256 return NULL;
d2e4a39e 8257 else
14f9c5c9
AS
8258 {
8259 int len = strlen (ada_type_name (type));
5b4ee69b 8260
4c4b4cd2
PH
8261 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8262 return type;
14f9c5c9 8263 else
4c4b4cd2 8264 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8265 }
8266}
8267
8268/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8269 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8270
d2e4a39e
AS
8271static int
8272is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8273{
8274 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8275
d2e4a39e 8276 return name != NULL
14f9c5c9
AS
8277 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8278 && strstr (name, "___XVL") != NULL;
8279}
8280
4c4b4cd2
PH
8281/* The index of the variant field of TYPE, or -1 if TYPE does not
8282 represent a variant record type. */
14f9c5c9 8283
d2e4a39e 8284static int
4c4b4cd2 8285variant_field_index (struct type *type)
14f9c5c9
AS
8286{
8287 int f;
8288
4c4b4cd2
PH
8289 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8290 return -1;
8291
8292 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8293 {
8294 if (ada_is_variant_part (type, f))
8295 return f;
8296 }
8297 return -1;
14f9c5c9
AS
8298}
8299
4c4b4cd2
PH
8300/* A record type with no fields. */
8301
d2e4a39e 8302static struct type *
fe978cb0 8303empty_record (struct type *templ)
14f9c5c9 8304{
fe978cb0 8305 struct type *type = alloc_type_copy (templ);
5b4ee69b 8306
14f9c5c9
AS
8307 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8308 TYPE_NFIELDS (type) = 0;
8309 TYPE_FIELDS (type) = NULL;
b1f33ddd 8310 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8311 TYPE_NAME (type) = "<empty>";
8312 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8313 TYPE_LENGTH (type) = 0;
8314 return type;
8315}
8316
8317/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8318 the value of type TYPE at VALADDR or ADDRESS (see comments at
8319 the beginning of this section) VAL according to GNAT conventions.
8320 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8321 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8322 an outer-level type (i.e., as opposed to a branch of a variant.) A
8323 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8324 of the variant.
14f9c5c9 8325
4c4b4cd2
PH
8326 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8327 length are not statically known are discarded. As a consequence,
8328 VALADDR, ADDRESS and DVAL0 are ignored.
8329
8330 NOTE: Limitations: For now, we assume that dynamic fields and
8331 variants occupy whole numbers of bytes. However, they need not be
8332 byte-aligned. */
8333
8334struct type *
10a2c479 8335ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8336 const gdb_byte *valaddr,
4c4b4cd2
PH
8337 CORE_ADDR address, struct value *dval0,
8338 int keep_dynamic_fields)
14f9c5c9 8339{
d2e4a39e
AS
8340 struct value *mark = value_mark ();
8341 struct value *dval;
8342 struct type *rtype;
14f9c5c9 8343 int nfields, bit_len;
4c4b4cd2 8344 int variant_field;
14f9c5c9 8345 long off;
d94e4f4f 8346 int fld_bit_len;
14f9c5c9
AS
8347 int f;
8348
4c4b4cd2
PH
8349 /* Compute the number of fields in this record type that are going
8350 to be processed: unless keep_dynamic_fields, this includes only
8351 fields whose position and length are static will be processed. */
8352 if (keep_dynamic_fields)
8353 nfields = TYPE_NFIELDS (type);
8354 else
8355 {
8356 nfields = 0;
76a01679 8357 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8358 && !ada_is_variant_part (type, nfields)
8359 && !is_dynamic_field (type, nfields))
8360 nfields++;
8361 }
8362
e9bb382b 8363 rtype = alloc_type_copy (type);
14f9c5c9
AS
8364 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8365 INIT_CPLUS_SPECIFIC (rtype);
8366 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8367 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8368 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8369 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8370 TYPE_NAME (rtype) = ada_type_name (type);
8371 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8372 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8373
d2e4a39e
AS
8374 off = 0;
8375 bit_len = 0;
4c4b4cd2
PH
8376 variant_field = -1;
8377
14f9c5c9
AS
8378 for (f = 0; f < nfields; f += 1)
8379 {
6c038f32
PH
8380 off = align_value (off, field_alignment (type, f))
8381 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8382 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8383 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8384
d2e4a39e 8385 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8386 {
8387 variant_field = f;
d94e4f4f 8388 fld_bit_len = 0;
4c4b4cd2 8389 }
14f9c5c9 8390 else if (is_dynamic_field (type, f))
4c4b4cd2 8391 {
284614f0
JB
8392 const gdb_byte *field_valaddr = valaddr;
8393 CORE_ADDR field_address = address;
8394 struct type *field_type =
8395 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8396
4c4b4cd2 8397 if (dval0 == NULL)
b5304971
JG
8398 {
8399 /* rtype's length is computed based on the run-time
8400 value of discriminants. If the discriminants are not
8401 initialized, the type size may be completely bogus and
0963b4bd 8402 GDB may fail to allocate a value for it. So check the
b5304971 8403 size first before creating the value. */
c1b5a1a6 8404 ada_ensure_varsize_limit (rtype);
012370f6
TT
8405 /* Using plain value_from_contents_and_address here
8406 causes problems because we will end up trying to
8407 resolve a type that is currently being
8408 constructed. */
8409 dval = value_from_contents_and_address_unresolved (rtype,
8410 valaddr,
8411 address);
9f1f738a 8412 rtype = value_type (dval);
b5304971 8413 }
4c4b4cd2
PH
8414 else
8415 dval = dval0;
8416
284614f0
JB
8417 /* If the type referenced by this field is an aligner type, we need
8418 to unwrap that aligner type, because its size might not be set.
8419 Keeping the aligner type would cause us to compute the wrong
8420 size for this field, impacting the offset of the all the fields
8421 that follow this one. */
8422 if (ada_is_aligner_type (field_type))
8423 {
8424 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8425
8426 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8427 field_address = cond_offset_target (field_address, field_offset);
8428 field_type = ada_aligned_type (field_type);
8429 }
8430
8431 field_valaddr = cond_offset_host (field_valaddr,
8432 off / TARGET_CHAR_BIT);
8433 field_address = cond_offset_target (field_address,
8434 off / TARGET_CHAR_BIT);
8435
8436 /* Get the fixed type of the field. Note that, in this case,
8437 we do not want to get the real type out of the tag: if
8438 the current field is the parent part of a tagged record,
8439 we will get the tag of the object. Clearly wrong: the real
8440 type of the parent is not the real type of the child. We
8441 would end up in an infinite loop. */
8442 field_type = ada_get_base_type (field_type);
8443 field_type = ada_to_fixed_type (field_type, field_valaddr,
8444 field_address, dval, 0);
27f2a97b
JB
8445 /* If the field size is already larger than the maximum
8446 object size, then the record itself will necessarily
8447 be larger than the maximum object size. We need to make
8448 this check now, because the size might be so ridiculously
8449 large (due to an uninitialized variable in the inferior)
8450 that it would cause an overflow when adding it to the
8451 record size. */
c1b5a1a6 8452 ada_ensure_varsize_limit (field_type);
284614f0
JB
8453
8454 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8456 /* The multiplication can potentially overflow. But because
8457 the field length has been size-checked just above, and
8458 assuming that the maximum size is a reasonable value,
8459 an overflow should not happen in practice. So rather than
8460 adding overflow recovery code to this already complex code,
8461 we just assume that it's not going to happen. */
d94e4f4f 8462 fld_bit_len =
4c4b4cd2
PH
8463 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8464 }
14f9c5c9 8465 else
4c4b4cd2 8466 {
5ded5331
JB
8467 /* Note: If this field's type is a typedef, it is important
8468 to preserve the typedef layer.
8469
8470 Otherwise, we might be transforming a typedef to a fat
8471 pointer (encoding a pointer to an unconstrained array),
8472 into a basic fat pointer (encoding an unconstrained
8473 array). As both types are implemented using the same
8474 structure, the typedef is the only clue which allows us
8475 to distinguish between the two options. Stripping it
8476 would prevent us from printing this field appropriately. */
8477 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8478 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8479 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8480 fld_bit_len =
4c4b4cd2
PH
8481 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8482 else
5ded5331
JB
8483 {
8484 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8485
8486 /* We need to be careful of typedefs when computing
8487 the length of our field. If this is a typedef,
8488 get the length of the target type, not the length
8489 of the typedef. */
8490 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8491 field_type = ada_typedef_target_type (field_type);
8492
8493 fld_bit_len =
8494 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8495 }
4c4b4cd2 8496 }
14f9c5c9 8497 if (off + fld_bit_len > bit_len)
4c4b4cd2 8498 bit_len = off + fld_bit_len;
d94e4f4f 8499 off += fld_bit_len;
4c4b4cd2
PH
8500 TYPE_LENGTH (rtype) =
8501 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8502 }
4c4b4cd2
PH
8503
8504 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8505 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8506 the record. This can happen in the presence of representation
8507 clauses. */
8508 if (variant_field >= 0)
8509 {
8510 struct type *branch_type;
8511
8512 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8513
8514 if (dval0 == NULL)
9f1f738a 8515 {
012370f6
TT
8516 /* Using plain value_from_contents_and_address here causes
8517 problems because we will end up trying to resolve a type
8518 that is currently being constructed. */
8519 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8520 address);
9f1f738a
SA
8521 rtype = value_type (dval);
8522 }
4c4b4cd2
PH
8523 else
8524 dval = dval0;
8525
8526 branch_type =
8527 to_fixed_variant_branch_type
8528 (TYPE_FIELD_TYPE (type, variant_field),
8529 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8530 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8531 if (branch_type == NULL)
8532 {
8533 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8534 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8535 TYPE_NFIELDS (rtype) -= 1;
8536 }
8537 else
8538 {
8539 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8540 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8541 fld_bit_len =
8542 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8543 TARGET_CHAR_BIT;
8544 if (off + fld_bit_len > bit_len)
8545 bit_len = off + fld_bit_len;
8546 TYPE_LENGTH (rtype) =
8547 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8548 }
8549 }
8550
714e53ab
PH
8551 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8552 should contain the alignment of that record, which should be a strictly
8553 positive value. If null or negative, then something is wrong, most
8554 probably in the debug info. In that case, we don't round up the size
0963b4bd 8555 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8556 the current RTYPE length might be good enough for our purposes. */
8557 if (TYPE_LENGTH (type) <= 0)
8558 {
323e0a4a
AC
8559 if (TYPE_NAME (rtype))
8560 warning (_("Invalid type size for `%s' detected: %d."),
8561 TYPE_NAME (rtype), TYPE_LENGTH (type));
8562 else
8563 warning (_("Invalid type size for <unnamed> detected: %d."),
8564 TYPE_LENGTH (type));
714e53ab
PH
8565 }
8566 else
8567 {
8568 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8569 TYPE_LENGTH (type));
8570 }
14f9c5c9
AS
8571
8572 value_free_to_mark (mark);
d2e4a39e 8573 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8574 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8575 return rtype;
8576}
8577
4c4b4cd2
PH
8578/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8579 of 1. */
14f9c5c9 8580
d2e4a39e 8581static struct type *
fc1a4b47 8582template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8583 CORE_ADDR address, struct value *dval0)
8584{
8585 return ada_template_to_fixed_record_type_1 (type, valaddr,
8586 address, dval0, 1);
8587}
8588
8589/* An ordinary record type in which ___XVL-convention fields and
8590 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8591 static approximations, containing all possible fields. Uses
8592 no runtime values. Useless for use in values, but that's OK,
8593 since the results are used only for type determinations. Works on both
8594 structs and unions. Representation note: to save space, we memorize
8595 the result of this function in the TYPE_TARGET_TYPE of the
8596 template type. */
8597
8598static struct type *
8599template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8600{
8601 struct type *type;
8602 int nfields;
8603 int f;
8604
9e195661
PMR
8605 /* No need no do anything if the input type is already fixed. */
8606 if (TYPE_FIXED_INSTANCE (type0))
8607 return type0;
8608
8609 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8610 if (TYPE_TARGET_TYPE (type0) != NULL)
8611 return TYPE_TARGET_TYPE (type0);
8612
9e195661 8613 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8614 type = type0;
9e195661
PMR
8615 nfields = TYPE_NFIELDS (type0);
8616
8617 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8618 recompute all over next time. */
8619 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8620
8621 for (f = 0; f < nfields; f += 1)
8622 {
460efde1 8623 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8624 struct type *new_type;
14f9c5c9 8625
4c4b4cd2 8626 if (is_dynamic_field (type0, f))
460efde1
JB
8627 {
8628 field_type = ada_check_typedef (field_type);
8629 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8630 }
14f9c5c9 8631 else
f192137b 8632 new_type = static_unwrap_type (field_type);
9e195661
PMR
8633
8634 if (new_type != field_type)
8635 {
8636 /* Clone TYPE0 only the first time we get a new field type. */
8637 if (type == type0)
8638 {
8639 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8640 TYPE_CODE (type) = TYPE_CODE (type0);
8641 INIT_CPLUS_SPECIFIC (type);
8642 TYPE_NFIELDS (type) = nfields;
8643 TYPE_FIELDS (type) = (struct field *)
8644 TYPE_ALLOC (type, nfields * sizeof (struct field));
8645 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8646 sizeof (struct field) * nfields);
8647 TYPE_NAME (type) = ada_type_name (type0);
8648 TYPE_TAG_NAME (type) = NULL;
8649 TYPE_FIXED_INSTANCE (type) = 1;
8650 TYPE_LENGTH (type) = 0;
8651 }
8652 TYPE_FIELD_TYPE (type, f) = new_type;
8653 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8654 }
14f9c5c9 8655 }
9e195661 8656
14f9c5c9
AS
8657 return type;
8658}
8659
4c4b4cd2 8660/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8661 whose address in memory is ADDRESS, returns a revision of TYPE,
8662 which should be a non-dynamic-sized record, in which the variant
8663 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8664 for discriminant values in DVAL0, which can be NULL if the record
8665 contains the necessary discriminant values. */
8666
d2e4a39e 8667static struct type *
fc1a4b47 8668to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8669 CORE_ADDR address, struct value *dval0)
14f9c5c9 8670{
d2e4a39e 8671 struct value *mark = value_mark ();
4c4b4cd2 8672 struct value *dval;
d2e4a39e 8673 struct type *rtype;
14f9c5c9
AS
8674 struct type *branch_type;
8675 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8676 int variant_field = variant_field_index (type);
14f9c5c9 8677
4c4b4cd2 8678 if (variant_field == -1)
14f9c5c9
AS
8679 return type;
8680
4c4b4cd2 8681 if (dval0 == NULL)
9f1f738a
SA
8682 {
8683 dval = value_from_contents_and_address (type, valaddr, address);
8684 type = value_type (dval);
8685 }
4c4b4cd2
PH
8686 else
8687 dval = dval0;
8688
e9bb382b 8689 rtype = alloc_type_copy (type);
14f9c5c9 8690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8691 INIT_CPLUS_SPECIFIC (rtype);
8692 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8693 TYPE_FIELDS (rtype) =
8694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8696 sizeof (struct field) * nfields);
14f9c5c9
AS
8697 TYPE_NAME (rtype) = ada_type_name (type);
8698 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8699 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8701
4c4b4cd2
PH
8702 branch_type = to_fixed_variant_branch_type
8703 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8704 cond_offset_host (valaddr,
4c4b4cd2
PH
8705 TYPE_FIELD_BITPOS (type, variant_field)
8706 / TARGET_CHAR_BIT),
d2e4a39e 8707 cond_offset_target (address,
4c4b4cd2
PH
8708 TYPE_FIELD_BITPOS (type, variant_field)
8709 / TARGET_CHAR_BIT), dval);
d2e4a39e 8710 if (branch_type == NULL)
14f9c5c9 8711 {
4c4b4cd2 8712 int f;
5b4ee69b 8713
4c4b4cd2
PH
8714 for (f = variant_field + 1; f < nfields; f += 1)
8715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8716 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8717 }
8718 else
8719 {
4c4b4cd2
PH
8720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8724 }
4c4b4cd2 8725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8726
4c4b4cd2 8727 value_free_to_mark (mark);
14f9c5c9
AS
8728 return rtype;
8729}
8730
8731/* An ordinary record type (with fixed-length fields) that describes
8732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8733 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8734 should be in DVAL, a record value; it may be NULL if the object
8735 at ADDR itself contains any necessary discriminant values.
8736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8737 values from the record are needed. Except in the case that DVAL,
8738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8739 unchecked) is replaced by a particular branch of the variant.
8740
8741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8742 is questionable and may be removed. It can arise during the
8743 processing of an unconstrained-array-of-record type where all the
8744 variant branches have exactly the same size. This is because in
8745 such cases, the compiler does not bother to use the XVS convention
8746 when encoding the record. I am currently dubious of this
8747 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8748
d2e4a39e 8749static struct type *
fc1a4b47 8750to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8751 CORE_ADDR address, struct value *dval)
14f9c5c9 8752{
d2e4a39e 8753 struct type *templ_type;
14f9c5c9 8754
876cecd0 8755 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8756 return type0;
8757
d2e4a39e 8758 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8759
8760 if (templ_type != NULL)
8761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8762 else if (variant_field_index (type0) >= 0)
8763 {
8764 if (dval == NULL && valaddr == NULL && address == 0)
8765 return type0;
8766 return to_record_with_fixed_variant_part (type0, valaddr, address,
8767 dval);
8768 }
14f9c5c9
AS
8769 else
8770 {
876cecd0 8771 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8772 return type0;
8773 }
8774
8775}
8776
8777/* An ordinary record type (with fixed-length fields) that describes
8778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8779 union type. Any necessary discriminants' values should be in DVAL,
8780 a record value. That is, this routine selects the appropriate
8781 branch of the union at ADDR according to the discriminant value
b1f33ddd 8782 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8783 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8784
d2e4a39e 8785static struct type *
fc1a4b47 8786to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8787 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8788{
8789 int which;
d2e4a39e
AS
8790 struct type *templ_type;
8791 struct type *var_type;
14f9c5c9
AS
8792
8793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8794 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8795 else
14f9c5c9
AS
8796 var_type = var_type0;
8797
8798 templ_type = ada_find_parallel_type (var_type, "___XVU");
8799
8800 if (templ_type != NULL)
8801 var_type = templ_type;
8802
b1f33ddd
JB
8803 if (is_unchecked_variant (var_type, value_type (dval)))
8804 return var_type0;
d2e4a39e
AS
8805 which =
8806 ada_which_variant_applies (var_type,
0fd88904 8807 value_type (dval), value_contents (dval));
14f9c5c9
AS
8808
8809 if (which < 0)
e9bb382b 8810 return empty_record (var_type);
14f9c5c9 8811 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8812 return to_fixed_record_type
d2e4a39e
AS
8813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8814 valaddr, address, dval);
4c4b4cd2 8815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8816 return
8817 to_fixed_record_type
8818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8819 else
8820 return TYPE_FIELD_TYPE (var_type, which);
8821}
8822
8908fca5
JB
8823/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8824 ENCODING_TYPE, a type following the GNAT conventions for discrete
8825 type encodings, only carries redundant information. */
8826
8827static int
8828ada_is_redundant_range_encoding (struct type *range_type,
8829 struct type *encoding_type)
8830{
108d56a4 8831 const char *bounds_str;
8908fca5
JB
8832 int n;
8833 LONGEST lo, hi;
8834
8835 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8836
005e2509
JB
8837 if (TYPE_CODE (get_base_type (range_type))
8838 != TYPE_CODE (get_base_type (encoding_type)))
8839 {
8840 /* The compiler probably used a simple base type to describe
8841 the range type instead of the range's actual base type,
8842 expecting us to get the real base type from the encoding
8843 anyway. In this situation, the encoding cannot be ignored
8844 as redundant. */
8845 return 0;
8846 }
8847
8908fca5
JB
8848 if (is_dynamic_type (range_type))
8849 return 0;
8850
8851 if (TYPE_NAME (encoding_type) == NULL)
8852 return 0;
8853
8854 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8855 if (bounds_str == NULL)
8856 return 0;
8857
8858 n = 8; /* Skip "___XDLU_". */
8859 if (!ada_scan_number (bounds_str, n, &lo, &n))
8860 return 0;
8861 if (TYPE_LOW_BOUND (range_type) != lo)
8862 return 0;
8863
8864 n += 2; /* Skip the "__" separator between the two bounds. */
8865 if (!ada_scan_number (bounds_str, n, &hi, &n))
8866 return 0;
8867 if (TYPE_HIGH_BOUND (range_type) != hi)
8868 return 0;
8869
8870 return 1;
8871}
8872
8873/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8874 a type following the GNAT encoding for describing array type
8875 indices, only carries redundant information. */
8876
8877static int
8878ada_is_redundant_index_type_desc (struct type *array_type,
8879 struct type *desc_type)
8880{
8881 struct type *this_layer = check_typedef (array_type);
8882 int i;
8883
8884 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8885 {
8886 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8887 TYPE_FIELD_TYPE (desc_type, i)))
8888 return 0;
8889 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8890 }
8891
8892 return 1;
8893}
8894
14f9c5c9
AS
8895/* Assuming that TYPE0 is an array type describing the type of a value
8896 at ADDR, and that DVAL describes a record containing any
8897 discriminants used in TYPE0, returns a type for the value that
8898 contains no dynamic components (that is, no components whose sizes
8899 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8900 true, gives an error message if the resulting type's size is over
4c4b4cd2 8901 varsize_limit. */
14f9c5c9 8902
d2e4a39e
AS
8903static struct type *
8904to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8905 int ignore_too_big)
14f9c5c9 8906{
d2e4a39e
AS
8907 struct type *index_type_desc;
8908 struct type *result;
ad82864c 8909 int constrained_packed_array_p;
931e5bc3 8910 static const char *xa_suffix = "___XA";
14f9c5c9 8911
b0dd7688 8912 type0 = ada_check_typedef (type0);
284614f0 8913 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8914 return type0;
14f9c5c9 8915
ad82864c
JB
8916 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8917 if (constrained_packed_array_p)
8918 type0 = decode_constrained_packed_array_type (type0);
284614f0 8919
931e5bc3
JG
8920 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8921
8922 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8923 encoding suffixed with 'P' may still be generated. If so,
8924 it should be used to find the XA type. */
8925
8926 if (index_type_desc == NULL)
8927 {
1da0522e 8928 const char *type_name = ada_type_name (type0);
931e5bc3 8929
1da0522e 8930 if (type_name != NULL)
931e5bc3 8931 {
1da0522e 8932 const int len = strlen (type_name);
931e5bc3
JG
8933 char *name = (char *) alloca (len + strlen (xa_suffix));
8934
1da0522e 8935 if (type_name[len - 1] == 'P')
931e5bc3 8936 {
1da0522e 8937 strcpy (name, type_name);
931e5bc3
JG
8938 strcpy (name + len - 1, xa_suffix);
8939 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8940 }
8941 }
8942 }
8943
28c85d6c 8944 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8945 if (index_type_desc != NULL
8946 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8947 {
8948 /* Ignore this ___XA parallel type, as it does not bring any
8949 useful information. This allows us to avoid creating fixed
8950 versions of the array's index types, which would be identical
8951 to the original ones. This, in turn, can also help avoid
8952 the creation of fixed versions of the array itself. */
8953 index_type_desc = NULL;
8954 }
8955
14f9c5c9
AS
8956 if (index_type_desc == NULL)
8957 {
61ee279c 8958 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8959
14f9c5c9 8960 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8961 depend on the contents of the array in properly constructed
8962 debugging data. */
529cad9c
PH
8963 /* Create a fixed version of the array element type.
8964 We're not providing the address of an element here,
e1d5a0d2 8965 and thus the actual object value cannot be inspected to do
529cad9c
PH
8966 the conversion. This should not be a problem, since arrays of
8967 unconstrained objects are not allowed. In particular, all
8968 the elements of an array of a tagged type should all be of
8969 the same type specified in the debugging info. No need to
8970 consult the object tag. */
1ed6ede0 8971 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8972
284614f0
JB
8973 /* Make sure we always create a new array type when dealing with
8974 packed array types, since we're going to fix-up the array
8975 type length and element bitsize a little further down. */
ad82864c 8976 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8977 result = type0;
14f9c5c9 8978 else
e9bb382b 8979 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8980 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8981 }
8982 else
8983 {
8984 int i;
8985 struct type *elt_type0;
8986
8987 elt_type0 = type0;
8988 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8989 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8990
8991 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8992 depend on the contents of the array in properly constructed
8993 debugging data. */
529cad9c
PH
8994 /* Create a fixed version of the array element type.
8995 We're not providing the address of an element here,
e1d5a0d2 8996 and thus the actual object value cannot be inspected to do
529cad9c
PH
8997 the conversion. This should not be a problem, since arrays of
8998 unconstrained objects are not allowed. In particular, all
8999 the elements of an array of a tagged type should all be of
9000 the same type specified in the debugging info. No need to
9001 consult the object tag. */
1ed6ede0
JB
9002 result =
9003 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
9004
9005 elt_type0 = type0;
14f9c5c9 9006 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
9007 {
9008 struct type *range_type =
28c85d6c 9009 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9010
e9bb382b 9011 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9012 result, range_type);
1ce677a4 9013 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9014 }
d2e4a39e 9015 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9016 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9017 }
9018
2e6fda7d
JB
9019 /* We want to preserve the type name. This can be useful when
9020 trying to get the type name of a value that has already been
9021 printed (for instance, if the user did "print VAR; whatis $". */
9022 TYPE_NAME (result) = TYPE_NAME (type0);
9023
ad82864c 9024 if (constrained_packed_array_p)
284614f0
JB
9025 {
9026 /* So far, the resulting type has been created as if the original
9027 type was a regular (non-packed) array type. As a result, the
9028 bitsize of the array elements needs to be set again, and the array
9029 length needs to be recomputed based on that bitsize. */
9030 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9031 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9032
9033 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9034 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9035 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9036 TYPE_LENGTH (result)++;
9037 }
9038
876cecd0 9039 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9040 return result;
d2e4a39e 9041}
14f9c5c9
AS
9042
9043
9044/* A standard type (containing no dynamically sized components)
9045 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9046 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9047 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9048 ADDRESS or in VALADDR contains these discriminants.
9049
1ed6ede0
JB
9050 If CHECK_TAG is not null, in the case of tagged types, this function
9051 attempts to locate the object's tag and use it to compute the actual
9052 type. However, when ADDRESS is null, we cannot use it to determine the
9053 location of the tag, and therefore compute the tagged type's actual type.
9054 So we return the tagged type without consulting the tag. */
529cad9c 9055
f192137b
JB
9056static struct type *
9057ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9058 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9059{
61ee279c 9060 type = ada_check_typedef (type);
d2e4a39e
AS
9061 switch (TYPE_CODE (type))
9062 {
9063 default:
14f9c5c9 9064 return type;
d2e4a39e 9065 case TYPE_CODE_STRUCT:
4c4b4cd2 9066 {
76a01679 9067 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9068 struct type *fixed_record_type =
9069 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9070
529cad9c
PH
9071 /* If STATIC_TYPE is a tagged type and we know the object's address,
9072 then we can determine its tag, and compute the object's actual
0963b4bd 9073 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9074 type (the parent part of the record may have dynamic fields
9075 and the way the location of _tag is expressed may depend on
9076 them). */
529cad9c 9077
1ed6ede0 9078 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9079 {
b50d69b5
JG
9080 struct value *tag =
9081 value_tag_from_contents_and_address
9082 (fixed_record_type,
9083 valaddr,
9084 address);
9085 struct type *real_type = type_from_tag (tag);
9086 struct value *obj =
9087 value_from_contents_and_address (fixed_record_type,
9088 valaddr,
9089 address);
9f1f738a 9090 fixed_record_type = value_type (obj);
76a01679 9091 if (real_type != NULL)
b50d69b5
JG
9092 return to_fixed_record_type
9093 (real_type, NULL,
9094 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9095 }
4af88198
JB
9096
9097 /* Check to see if there is a parallel ___XVZ variable.
9098 If there is, then it provides the actual size of our type. */
9099 else if (ada_type_name (fixed_record_type) != NULL)
9100 {
0d5cff50 9101 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9102 char *xvz_name
9103 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9104 bool xvz_found = false;
4af88198
JB
9105 LONGEST size;
9106
88c15c34 9107 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9108 TRY
9109 {
9110 xvz_found = get_int_var_value (xvz_name, size);
9111 }
9112 CATCH (except, RETURN_MASK_ERROR)
9113 {
9114 /* We found the variable, but somehow failed to read
9115 its value. Rethrow the same error, but with a little
9116 bit more information, to help the user understand
9117 what went wrong (Eg: the variable might have been
9118 optimized out). */
9119 throw_error (except.error,
9120 _("unable to read value of %s (%s)"),
9121 xvz_name, except.message);
9122 }
9123 END_CATCH
9124
9125 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9126 {
9127 fixed_record_type = copy_type (fixed_record_type);
9128 TYPE_LENGTH (fixed_record_type) = size;
9129
9130 /* The FIXED_RECORD_TYPE may have be a stub. We have
9131 observed this when the debugging info is STABS, and
9132 apparently it is something that is hard to fix.
9133
9134 In practice, we don't need the actual type definition
9135 at all, because the presence of the XVZ variable allows us
9136 to assume that there must be a XVS type as well, which we
9137 should be able to use later, when we need the actual type
9138 definition.
9139
9140 In the meantime, pretend that the "fixed" type we are
9141 returning is NOT a stub, because this can cause trouble
9142 when using this type to create new types targeting it.
9143 Indeed, the associated creation routines often check
9144 whether the target type is a stub and will try to replace
0963b4bd 9145 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9146 might cause the new type to have the wrong size too.
9147 Consider the case of an array, for instance, where the size
9148 of the array is computed from the number of elements in
9149 our array multiplied by the size of its element. */
9150 TYPE_STUB (fixed_record_type) = 0;
9151 }
9152 }
1ed6ede0 9153 return fixed_record_type;
4c4b4cd2 9154 }
d2e4a39e 9155 case TYPE_CODE_ARRAY:
4c4b4cd2 9156 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9157 case TYPE_CODE_UNION:
9158 if (dval == NULL)
4c4b4cd2 9159 return type;
d2e4a39e 9160 else
4c4b4cd2 9161 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9162 }
14f9c5c9
AS
9163}
9164
f192137b
JB
9165/* The same as ada_to_fixed_type_1, except that it preserves the type
9166 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9167
9168 The typedef layer needs be preserved in order to differentiate between
9169 arrays and array pointers when both types are implemented using the same
9170 fat pointer. In the array pointer case, the pointer is encoded as
9171 a typedef of the pointer type. For instance, considering:
9172
9173 type String_Access is access String;
9174 S1 : String_Access := null;
9175
9176 To the debugger, S1 is defined as a typedef of type String. But
9177 to the user, it is a pointer. So if the user tries to print S1,
9178 we should not dereference the array, but print the array address
9179 instead.
9180
9181 If we didn't preserve the typedef layer, we would lose the fact that
9182 the type is to be presented as a pointer (needs de-reference before
9183 being printed). And we would also use the source-level type name. */
f192137b
JB
9184
9185struct type *
9186ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9187 CORE_ADDR address, struct value *dval, int check_tag)
9188
9189{
9190 struct type *fixed_type =
9191 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9192
96dbd2c1
JB
9193 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9194 then preserve the typedef layer.
9195
9196 Implementation note: We can only check the main-type portion of
9197 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9198 from TYPE now returns a type that has the same instance flags
9199 as TYPE. For instance, if TYPE is a "typedef const", and its
9200 target type is a "struct", then the typedef elimination will return
9201 a "const" version of the target type. See check_typedef for more
9202 details about how the typedef layer elimination is done.
9203
9204 brobecker/2010-11-19: It seems to me that the only case where it is
9205 useful to preserve the typedef layer is when dealing with fat pointers.
9206 Perhaps, we could add a check for that and preserve the typedef layer
9207 only in that situation. But this seems unecessary so far, probably
9208 because we call check_typedef/ada_check_typedef pretty much everywhere.
9209 */
f192137b 9210 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9211 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9212 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9213 return type;
9214
9215 return fixed_type;
9216}
9217
14f9c5c9 9218/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9219 TYPE0, but based on no runtime data. */
14f9c5c9 9220
d2e4a39e
AS
9221static struct type *
9222to_static_fixed_type (struct type *type0)
14f9c5c9 9223{
d2e4a39e 9224 struct type *type;
14f9c5c9
AS
9225
9226 if (type0 == NULL)
9227 return NULL;
9228
876cecd0 9229 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9230 return type0;
9231
61ee279c 9232 type0 = ada_check_typedef (type0);
d2e4a39e 9233
14f9c5c9
AS
9234 switch (TYPE_CODE (type0))
9235 {
9236 default:
9237 return type0;
9238 case TYPE_CODE_STRUCT:
9239 type = dynamic_template_type (type0);
d2e4a39e 9240 if (type != NULL)
4c4b4cd2
PH
9241 return template_to_static_fixed_type (type);
9242 else
9243 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9244 case TYPE_CODE_UNION:
9245 type = ada_find_parallel_type (type0, "___XVU");
9246 if (type != NULL)
4c4b4cd2
PH
9247 return template_to_static_fixed_type (type);
9248 else
9249 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9250 }
9251}
9252
4c4b4cd2
PH
9253/* A static approximation of TYPE with all type wrappers removed. */
9254
d2e4a39e
AS
9255static struct type *
9256static_unwrap_type (struct type *type)
14f9c5c9
AS
9257{
9258 if (ada_is_aligner_type (type))
9259 {
61ee279c 9260 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9261 if (ada_type_name (type1) == NULL)
4c4b4cd2 9262 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9263
9264 return static_unwrap_type (type1);
9265 }
d2e4a39e 9266 else
14f9c5c9 9267 {
d2e4a39e 9268 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9269
d2e4a39e 9270 if (raw_real_type == type)
4c4b4cd2 9271 return type;
14f9c5c9 9272 else
4c4b4cd2 9273 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9274 }
9275}
9276
9277/* In some cases, incomplete and private types require
4c4b4cd2 9278 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9279 type Foo;
9280 type FooP is access Foo;
9281 V: FooP;
9282 type Foo is array ...;
4c4b4cd2 9283 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9284 cross-references to such types, we instead substitute for FooP a
9285 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9286 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9287
9288/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9289 exists, otherwise TYPE. */
9290
d2e4a39e 9291struct type *
61ee279c 9292ada_check_typedef (struct type *type)
14f9c5c9 9293{
727e3d2e
JB
9294 if (type == NULL)
9295 return NULL;
9296
720d1a40
JB
9297 /* If our type is a typedef type of a fat pointer, then we're done.
9298 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9299 what allows us to distinguish between fat pointers that represent
9300 array types, and fat pointers that represent array access types
9301 (in both cases, the compiler implements them as fat pointers). */
9302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9303 && is_thick_pntr (ada_typedef_target_type (type)))
9304 return type;
9305
f168693b 9306 type = check_typedef (type);
14f9c5c9 9307 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9308 || !TYPE_STUB (type)
14f9c5c9
AS
9309 || TYPE_TAG_NAME (type) == NULL)
9310 return type;
d2e4a39e 9311 else
14f9c5c9 9312 {
0d5cff50 9313 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9314 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9315
05e522ef
JB
9316 if (type1 == NULL)
9317 return type;
9318
9319 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9320 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9321 types, only for the typedef-to-array types). If that's the case,
9322 strip the typedef layer. */
9323 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9324 type1 = ada_check_typedef (type1);
9325
9326 return type1;
14f9c5c9
AS
9327 }
9328}
9329
9330/* A value representing the data at VALADDR/ADDRESS as described by
9331 type TYPE0, but with a standard (static-sized) type that correctly
9332 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9333 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9334 creation of struct values]. */
14f9c5c9 9335
4c4b4cd2
PH
9336static struct value *
9337ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9338 struct value *val0)
14f9c5c9 9339{
1ed6ede0 9340 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9341
14f9c5c9
AS
9342 if (type == type0 && val0 != NULL)
9343 return val0;
d2e4a39e 9344 else
4c4b4cd2
PH
9345 return value_from_contents_and_address (type, 0, address);
9346}
9347
9348/* A value representing VAL, but with a standard (static-sized) type
9349 that correctly describes it. Does not necessarily create a new
9350 value. */
9351
0c3acc09 9352struct value *
4c4b4cd2
PH
9353ada_to_fixed_value (struct value *val)
9354{
c48db5ca
JB
9355 val = unwrap_value (val);
9356 val = ada_to_fixed_value_create (value_type (val),
9357 value_address (val),
9358 val);
9359 return val;
14f9c5c9 9360}
d2e4a39e 9361\f
14f9c5c9 9362
14f9c5c9
AS
9363/* Attributes */
9364
4c4b4cd2
PH
9365/* Table mapping attribute numbers to names.
9366 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9367
d2e4a39e 9368static const char *attribute_names[] = {
14f9c5c9
AS
9369 "<?>",
9370
d2e4a39e 9371 "first",
14f9c5c9
AS
9372 "last",
9373 "length",
9374 "image",
14f9c5c9
AS
9375 "max",
9376 "min",
4c4b4cd2
PH
9377 "modulus",
9378 "pos",
9379 "size",
9380 "tag",
14f9c5c9 9381 "val",
14f9c5c9
AS
9382 0
9383};
9384
d2e4a39e 9385const char *
4c4b4cd2 9386ada_attribute_name (enum exp_opcode n)
14f9c5c9 9387{
4c4b4cd2
PH
9388 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9389 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9390 else
9391 return attribute_names[0];
9392}
9393
4c4b4cd2 9394/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9395
4c4b4cd2
PH
9396static LONGEST
9397pos_atr (struct value *arg)
14f9c5c9 9398{
24209737
PH
9399 struct value *val = coerce_ref (arg);
9400 struct type *type = value_type (val);
aa715135 9401 LONGEST result;
14f9c5c9 9402
d2e4a39e 9403 if (!discrete_type_p (type))
323e0a4a 9404 error (_("'POS only defined on discrete types"));
14f9c5c9 9405
aa715135
JG
9406 if (!discrete_position (type, value_as_long (val), &result))
9407 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9408
aa715135 9409 return result;
4c4b4cd2
PH
9410}
9411
9412static struct value *
3cb382c9 9413value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9414{
3cb382c9 9415 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9416}
9417
4c4b4cd2 9418/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9419
d2e4a39e
AS
9420static struct value *
9421value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9422{
d2e4a39e 9423 if (!discrete_type_p (type))
323e0a4a 9424 error (_("'VAL only defined on discrete types"));
df407dfe 9425 if (!integer_type_p (value_type (arg)))
323e0a4a 9426 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9427
9428 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9429 {
9430 long pos = value_as_long (arg);
5b4ee69b 9431
14f9c5c9 9432 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9433 error (_("argument to 'VAL out of range"));
14e75d8e 9434 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9435 }
9436 else
9437 return value_from_longest (type, value_as_long (arg));
9438}
14f9c5c9 9439\f
d2e4a39e 9440
4c4b4cd2 9441 /* Evaluation */
14f9c5c9 9442
4c4b4cd2
PH
9443/* True if TYPE appears to be an Ada character type.
9444 [At the moment, this is true only for Character and Wide_Character;
9445 It is a heuristic test that could stand improvement]. */
14f9c5c9 9446
d2e4a39e
AS
9447int
9448ada_is_character_type (struct type *type)
14f9c5c9 9449{
7b9f71f2
JB
9450 const char *name;
9451
9452 /* If the type code says it's a character, then assume it really is,
9453 and don't check any further. */
9454 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9455 return 1;
9456
9457 /* Otherwise, assume it's a character type iff it is a discrete type
9458 with a known character type name. */
9459 name = ada_type_name (type);
9460 return (name != NULL
9461 && (TYPE_CODE (type) == TYPE_CODE_INT
9462 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9463 && (strcmp (name, "character") == 0
9464 || strcmp (name, "wide_character") == 0
5a517ebd 9465 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9466 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9467}
9468
4c4b4cd2 9469/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9470
9471int
ebf56fd3 9472ada_is_string_type (struct type *type)
14f9c5c9 9473{
61ee279c 9474 type = ada_check_typedef (type);
d2e4a39e 9475 if (type != NULL
14f9c5c9 9476 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9477 && (ada_is_simple_array_type (type)
9478 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9479 && ada_array_arity (type) == 1)
9480 {
9481 struct type *elttype = ada_array_element_type (type, 1);
9482
9483 return ada_is_character_type (elttype);
9484 }
d2e4a39e 9485 else
14f9c5c9
AS
9486 return 0;
9487}
9488
5bf03f13
JB
9489/* The compiler sometimes provides a parallel XVS type for a given
9490 PAD type. Normally, it is safe to follow the PAD type directly,
9491 but older versions of the compiler have a bug that causes the offset
9492 of its "F" field to be wrong. Following that field in that case
9493 would lead to incorrect results, but this can be worked around
9494 by ignoring the PAD type and using the associated XVS type instead.
9495
9496 Set to True if the debugger should trust the contents of PAD types.
9497 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9498static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9499
9500/* True if TYPE is a struct type introduced by the compiler to force the
9501 alignment of a value. Such types have a single field with a
4c4b4cd2 9502 distinctive name. */
14f9c5c9
AS
9503
9504int
ebf56fd3 9505ada_is_aligner_type (struct type *type)
14f9c5c9 9506{
61ee279c 9507 type = ada_check_typedef (type);
714e53ab 9508
5bf03f13 9509 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9510 return 0;
9511
14f9c5c9 9512 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9513 && TYPE_NFIELDS (type) == 1
9514 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9515}
9516
9517/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9518 the parallel type. */
14f9c5c9 9519
d2e4a39e
AS
9520struct type *
9521ada_get_base_type (struct type *raw_type)
14f9c5c9 9522{
d2e4a39e
AS
9523 struct type *real_type_namer;
9524 struct type *raw_real_type;
14f9c5c9
AS
9525
9526 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9527 return raw_type;
9528
284614f0
JB
9529 if (ada_is_aligner_type (raw_type))
9530 /* The encoding specifies that we should always use the aligner type.
9531 So, even if this aligner type has an associated XVS type, we should
9532 simply ignore it.
9533
9534 According to the compiler gurus, an XVS type parallel to an aligner
9535 type may exist because of a stabs limitation. In stabs, aligner
9536 types are empty because the field has a variable-sized type, and
9537 thus cannot actually be used as an aligner type. As a result,
9538 we need the associated parallel XVS type to decode the type.
9539 Since the policy in the compiler is to not change the internal
9540 representation based on the debugging info format, we sometimes
9541 end up having a redundant XVS type parallel to the aligner type. */
9542 return raw_type;
9543
14f9c5c9 9544 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9545 if (real_type_namer == NULL
14f9c5c9
AS
9546 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9547 || TYPE_NFIELDS (real_type_namer) != 1)
9548 return raw_type;
9549
f80d3ff2
JB
9550 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9551 {
9552 /* This is an older encoding form where the base type needs to be
9553 looked up by name. We prefer the newer enconding because it is
9554 more efficient. */
9555 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9556 if (raw_real_type == NULL)
9557 return raw_type;
9558 else
9559 return raw_real_type;
9560 }
9561
9562 /* The field in our XVS type is a reference to the base type. */
9563 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9564}
14f9c5c9 9565
4c4b4cd2 9566/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9567
d2e4a39e
AS
9568struct type *
9569ada_aligned_type (struct type *type)
14f9c5c9
AS
9570{
9571 if (ada_is_aligner_type (type))
9572 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9573 else
9574 return ada_get_base_type (type);
9575}
9576
9577
9578/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9579 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9580
fc1a4b47
AC
9581const gdb_byte *
9582ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9583{
d2e4a39e 9584 if (ada_is_aligner_type (type))
14f9c5c9 9585 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9586 valaddr +
9587 TYPE_FIELD_BITPOS (type,
9588 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9589 else
9590 return valaddr;
9591}
9592
4c4b4cd2
PH
9593
9594
14f9c5c9 9595/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9596 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9597const char *
9598ada_enum_name (const char *name)
14f9c5c9 9599{
4c4b4cd2
PH
9600 static char *result;
9601 static size_t result_len = 0;
e6a959d6 9602 const char *tmp;
14f9c5c9 9603
4c4b4cd2
PH
9604 /* First, unqualify the enumeration name:
9605 1. Search for the last '.' character. If we find one, then skip
177b42fe 9606 all the preceding characters, the unqualified name starts
76a01679 9607 right after that dot.
4c4b4cd2 9608 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9609 translates dots into "__". Search forward for double underscores,
9610 but stop searching when we hit an overloading suffix, which is
9611 of the form "__" followed by digits. */
4c4b4cd2 9612
c3e5cd34
PH
9613 tmp = strrchr (name, '.');
9614 if (tmp != NULL)
4c4b4cd2
PH
9615 name = tmp + 1;
9616 else
14f9c5c9 9617 {
4c4b4cd2
PH
9618 while ((tmp = strstr (name, "__")) != NULL)
9619 {
9620 if (isdigit (tmp[2]))
9621 break;
9622 else
9623 name = tmp + 2;
9624 }
14f9c5c9
AS
9625 }
9626
9627 if (name[0] == 'Q')
9628 {
14f9c5c9 9629 int v;
5b4ee69b 9630
14f9c5c9 9631 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9632 {
9633 if (sscanf (name + 2, "%x", &v) != 1)
9634 return name;
9635 }
14f9c5c9 9636 else
4c4b4cd2 9637 return name;
14f9c5c9 9638
4c4b4cd2 9639 GROW_VECT (result, result_len, 16);
14f9c5c9 9640 if (isascii (v) && isprint (v))
88c15c34 9641 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9642 else if (name[1] == 'U')
88c15c34 9643 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9644 else
88c15c34 9645 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9646
9647 return result;
9648 }
d2e4a39e 9649 else
4c4b4cd2 9650 {
c3e5cd34
PH
9651 tmp = strstr (name, "__");
9652 if (tmp == NULL)
9653 tmp = strstr (name, "$");
9654 if (tmp != NULL)
4c4b4cd2
PH
9655 {
9656 GROW_VECT (result, result_len, tmp - name + 1);
9657 strncpy (result, name, tmp - name);
9658 result[tmp - name] = '\0';
9659 return result;
9660 }
9661
9662 return name;
9663 }
14f9c5c9
AS
9664}
9665
14f9c5c9
AS
9666/* Evaluate the subexpression of EXP starting at *POS as for
9667 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9668 expression. */
14f9c5c9 9669
d2e4a39e
AS
9670static struct value *
9671evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9672{
4b27a620 9673 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9674}
9675
9676/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9677 value it wraps. */
14f9c5c9 9678
d2e4a39e
AS
9679static struct value *
9680unwrap_value (struct value *val)
14f9c5c9 9681{
df407dfe 9682 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9683
14f9c5c9
AS
9684 if (ada_is_aligner_type (type))
9685 {
de4d072f 9686 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9687 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9688
14f9c5c9 9689 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9690 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9691
9692 return unwrap_value (v);
9693 }
d2e4a39e 9694 else
14f9c5c9 9695 {
d2e4a39e 9696 struct type *raw_real_type =
61ee279c 9697 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9698
5bf03f13
JB
9699 /* If there is no parallel XVS or XVE type, then the value is
9700 already unwrapped. Return it without further modification. */
9701 if ((type == raw_real_type)
9702 && ada_find_parallel_type (type, "___XVE") == NULL)
9703 return val;
14f9c5c9 9704
d2e4a39e 9705 return
4c4b4cd2
PH
9706 coerce_unspec_val_to_type
9707 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9708 value_address (val),
1ed6ede0 9709 NULL, 1));
14f9c5c9
AS
9710 }
9711}
d2e4a39e
AS
9712
9713static struct value *
50eff16b 9714cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9715{
50eff16b
UW
9716 struct value *scale = ada_scaling_factor (value_type (arg));
9717 arg = value_cast (value_type (scale), arg);
14f9c5c9 9718
50eff16b
UW
9719 arg = value_binop (arg, scale, BINOP_MUL);
9720 return value_cast (type, arg);
14f9c5c9
AS
9721}
9722
d2e4a39e 9723static struct value *
50eff16b 9724cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9725{
50eff16b
UW
9726 if (type == value_type (arg))
9727 return arg;
5b4ee69b 9728
50eff16b
UW
9729 struct value *scale = ada_scaling_factor (type);
9730 if (ada_is_fixed_point_type (value_type (arg)))
9731 arg = cast_from_fixed (value_type (scale), arg);
9732 else
9733 arg = value_cast (value_type (scale), arg);
9734
9735 arg = value_binop (arg, scale, BINOP_DIV);
9736 return value_cast (type, arg);
14f9c5c9
AS
9737}
9738
d99dcf51
JB
9739/* Given two array types T1 and T2, return nonzero iff both arrays
9740 contain the same number of elements. */
9741
9742static int
9743ada_same_array_size_p (struct type *t1, struct type *t2)
9744{
9745 LONGEST lo1, hi1, lo2, hi2;
9746
9747 /* Get the array bounds in order to verify that the size of
9748 the two arrays match. */
9749 if (!get_array_bounds (t1, &lo1, &hi1)
9750 || !get_array_bounds (t2, &lo2, &hi2))
9751 error (_("unable to determine array bounds"));
9752
9753 /* To make things easier for size comparison, normalize a bit
9754 the case of empty arrays by making sure that the difference
9755 between upper bound and lower bound is always -1. */
9756 if (lo1 > hi1)
9757 hi1 = lo1 - 1;
9758 if (lo2 > hi2)
9759 hi2 = lo2 - 1;
9760
9761 return (hi1 - lo1 == hi2 - lo2);
9762}
9763
9764/* Assuming that VAL is an array of integrals, and TYPE represents
9765 an array with the same number of elements, but with wider integral
9766 elements, return an array "casted" to TYPE. In practice, this
9767 means that the returned array is built by casting each element
9768 of the original array into TYPE's (wider) element type. */
9769
9770static struct value *
9771ada_promote_array_of_integrals (struct type *type, struct value *val)
9772{
9773 struct type *elt_type = TYPE_TARGET_TYPE (type);
9774 LONGEST lo, hi;
9775 struct value *res;
9776 LONGEST i;
9777
9778 /* Verify that both val and type are arrays of scalars, and
9779 that the size of val's elements is smaller than the size
9780 of type's element. */
9781 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9782 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9783 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9784 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9785 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9786 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9787
9788 if (!get_array_bounds (type, &lo, &hi))
9789 error (_("unable to determine array bounds"));
9790
9791 res = allocate_value (type);
9792
9793 /* Promote each array element. */
9794 for (i = 0; i < hi - lo + 1; i++)
9795 {
9796 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9797
9798 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9799 value_contents_all (elt), TYPE_LENGTH (elt_type));
9800 }
9801
9802 return res;
9803}
9804
4c4b4cd2
PH
9805/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9806 return the converted value. */
9807
d2e4a39e
AS
9808static struct value *
9809coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9810{
df407dfe 9811 struct type *type2 = value_type (val);
5b4ee69b 9812
14f9c5c9
AS
9813 if (type == type2)
9814 return val;
9815
61ee279c
PH
9816 type2 = ada_check_typedef (type2);
9817 type = ada_check_typedef (type);
14f9c5c9 9818
d2e4a39e
AS
9819 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9820 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9821 {
9822 val = ada_value_ind (val);
df407dfe 9823 type2 = value_type (val);
14f9c5c9
AS
9824 }
9825
d2e4a39e 9826 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9827 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9828 {
d99dcf51
JB
9829 if (!ada_same_array_size_p (type, type2))
9830 error (_("cannot assign arrays of different length"));
9831
9832 if (is_integral_type (TYPE_TARGET_TYPE (type))
9833 && is_integral_type (TYPE_TARGET_TYPE (type2))
9834 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9835 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9836 {
9837 /* Allow implicit promotion of the array elements to
9838 a wider type. */
9839 return ada_promote_array_of_integrals (type, val);
9840 }
9841
9842 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9843 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9844 error (_("Incompatible types in assignment"));
04624583 9845 deprecated_set_value_type (val, type);
14f9c5c9 9846 }
d2e4a39e 9847 return val;
14f9c5c9
AS
9848}
9849
4c4b4cd2
PH
9850static struct value *
9851ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9852{
9853 struct value *val;
9854 struct type *type1, *type2;
9855 LONGEST v, v1, v2;
9856
994b9211
AC
9857 arg1 = coerce_ref (arg1);
9858 arg2 = coerce_ref (arg2);
18af8284
JB
9859 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9860 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9861
76a01679
JB
9862 if (TYPE_CODE (type1) != TYPE_CODE_INT
9863 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9864 return value_binop (arg1, arg2, op);
9865
76a01679 9866 switch (op)
4c4b4cd2
PH
9867 {
9868 case BINOP_MOD:
9869 case BINOP_DIV:
9870 case BINOP_REM:
9871 break;
9872 default:
9873 return value_binop (arg1, arg2, op);
9874 }
9875
9876 v2 = value_as_long (arg2);
9877 if (v2 == 0)
323e0a4a 9878 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9879
9880 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9881 return value_binop (arg1, arg2, op);
9882
9883 v1 = value_as_long (arg1);
9884 switch (op)
9885 {
9886 case BINOP_DIV:
9887 v = v1 / v2;
76a01679
JB
9888 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9889 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9890 break;
9891 case BINOP_REM:
9892 v = v1 % v2;
76a01679
JB
9893 if (v * v1 < 0)
9894 v -= v2;
4c4b4cd2
PH
9895 break;
9896 default:
9897 /* Should not reach this point. */
9898 v = 0;
9899 }
9900
9901 val = allocate_value (type1);
990a07ab 9902 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9903 TYPE_LENGTH (value_type (val)),
9904 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9905 return val;
9906}
9907
9908static int
9909ada_value_equal (struct value *arg1, struct value *arg2)
9910{
df407dfe
AC
9911 if (ada_is_direct_array_type (value_type (arg1))
9912 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9913 {
79e8fcaa
JB
9914 struct type *arg1_type, *arg2_type;
9915
f58b38bf
JB
9916 /* Automatically dereference any array reference before
9917 we attempt to perform the comparison. */
9918 arg1 = ada_coerce_ref (arg1);
9919 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9920
4c4b4cd2
PH
9921 arg1 = ada_coerce_to_simple_array (arg1);
9922 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9923
9924 arg1_type = ada_check_typedef (value_type (arg1));
9925 arg2_type = ada_check_typedef (value_type (arg2));
9926
9927 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9928 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9929 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9930 /* FIXME: The following works only for types whose
76a01679
JB
9931 representations use all bits (no padding or undefined bits)
9932 and do not have user-defined equality. */
79e8fcaa
JB
9933 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9934 && memcmp (value_contents (arg1), value_contents (arg2),
9935 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9936 }
9937 return value_equal (arg1, arg2);
9938}
9939
52ce6436
PH
9940/* Total number of component associations in the aggregate starting at
9941 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9942 OP_AGGREGATE. */
52ce6436
PH
9943
9944static int
9945num_component_specs (struct expression *exp, int pc)
9946{
9947 int n, m, i;
5b4ee69b 9948
52ce6436
PH
9949 m = exp->elts[pc + 1].longconst;
9950 pc += 3;
9951 n = 0;
9952 for (i = 0; i < m; i += 1)
9953 {
9954 switch (exp->elts[pc].opcode)
9955 {
9956 default:
9957 n += 1;
9958 break;
9959 case OP_CHOICES:
9960 n += exp->elts[pc + 1].longconst;
9961 break;
9962 }
9963 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9964 }
9965 return n;
9966}
9967
9968/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9969 component of LHS (a simple array or a record), updating *POS past
9970 the expression, assuming that LHS is contained in CONTAINER. Does
9971 not modify the inferior's memory, nor does it modify LHS (unless
9972 LHS == CONTAINER). */
9973
9974static void
9975assign_component (struct value *container, struct value *lhs, LONGEST index,
9976 struct expression *exp, int *pos)
9977{
9978 struct value *mark = value_mark ();
9979 struct value *elt;
0e2da9f0 9980 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9981
0e2da9f0 9982 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9983 {
22601c15
UW
9984 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9985 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9986
52ce6436
PH
9987 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9988 }
9989 else
9990 {
9991 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9992 elt = ada_to_fixed_value (elt);
52ce6436
PH
9993 }
9994
9995 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9996 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9997 else
9998 value_assign_to_component (container, elt,
9999 ada_evaluate_subexp (NULL, exp, pos,
10000 EVAL_NORMAL));
10001
10002 value_free_to_mark (mark);
10003}
10004
10005/* Assuming that LHS represents an lvalue having a record or array
10006 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10007 of that aggregate's value to LHS, advancing *POS past the
10008 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10009 lvalue containing LHS (possibly LHS itself). Does not modify
10010 the inferior's memory, nor does it modify the contents of
0963b4bd 10011 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10012
10013static struct value *
10014assign_aggregate (struct value *container,
10015 struct value *lhs, struct expression *exp,
10016 int *pos, enum noside noside)
10017{
10018 struct type *lhs_type;
10019 int n = exp->elts[*pos+1].longconst;
10020 LONGEST low_index, high_index;
10021 int num_specs;
10022 LONGEST *indices;
10023 int max_indices, num_indices;
52ce6436 10024 int i;
52ce6436
PH
10025
10026 *pos += 3;
10027 if (noside != EVAL_NORMAL)
10028 {
52ce6436
PH
10029 for (i = 0; i < n; i += 1)
10030 ada_evaluate_subexp (NULL, exp, pos, noside);
10031 return container;
10032 }
10033
10034 container = ada_coerce_ref (container);
10035 if (ada_is_direct_array_type (value_type (container)))
10036 container = ada_coerce_to_simple_array (container);
10037 lhs = ada_coerce_ref (lhs);
10038 if (!deprecated_value_modifiable (lhs))
10039 error (_("Left operand of assignment is not a modifiable lvalue."));
10040
0e2da9f0 10041 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10042 if (ada_is_direct_array_type (lhs_type))
10043 {
10044 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10045 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10046 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10047 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10048 }
10049 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10050 {
10051 low_index = 0;
10052 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10053 }
10054 else
10055 error (_("Left-hand side must be array or record."));
10056
10057 num_specs = num_component_specs (exp, *pos - 3);
10058 max_indices = 4 * num_specs + 4;
8d749320 10059 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10060 indices[0] = indices[1] = low_index - 1;
10061 indices[2] = indices[3] = high_index + 1;
10062 num_indices = 4;
10063
10064 for (i = 0; i < n; i += 1)
10065 {
10066 switch (exp->elts[*pos].opcode)
10067 {
1fbf5ada
JB
10068 case OP_CHOICES:
10069 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10070 &num_indices, max_indices,
10071 low_index, high_index);
10072 break;
10073 case OP_POSITIONAL:
10074 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10075 &num_indices, max_indices,
10076 low_index, high_index);
1fbf5ada
JB
10077 break;
10078 case OP_OTHERS:
10079 if (i != n-1)
10080 error (_("Misplaced 'others' clause"));
10081 aggregate_assign_others (container, lhs, exp, pos, indices,
10082 num_indices, low_index, high_index);
10083 break;
10084 default:
10085 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10086 }
10087 }
10088
10089 return container;
10090}
10091
10092/* Assign into the component of LHS indexed by the OP_POSITIONAL
10093 construct at *POS, updating *POS past the construct, given that
10094 the positions are relative to lower bound LOW, where HIGH is the
10095 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10096 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10097 assign_aggregate. */
52ce6436
PH
10098static void
10099aggregate_assign_positional (struct value *container,
10100 struct value *lhs, struct expression *exp,
10101 int *pos, LONGEST *indices, int *num_indices,
10102 int max_indices, LONGEST low, LONGEST high)
10103{
10104 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10105
10106 if (ind - 1 == high)
e1d5a0d2 10107 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10108 if (ind <= high)
10109 {
10110 add_component_interval (ind, ind, indices, num_indices, max_indices);
10111 *pos += 3;
10112 assign_component (container, lhs, ind, exp, pos);
10113 }
10114 else
10115 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10116}
10117
10118/* Assign into the components of LHS indexed by the OP_CHOICES
10119 construct at *POS, updating *POS past the construct, given that
10120 the allowable indices are LOW..HIGH. Record the indices assigned
10121 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10122 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10123static void
10124aggregate_assign_from_choices (struct value *container,
10125 struct value *lhs, struct expression *exp,
10126 int *pos, LONGEST *indices, int *num_indices,
10127 int max_indices, LONGEST low, LONGEST high)
10128{
10129 int j;
10130 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10131 int choice_pos, expr_pc;
10132 int is_array = ada_is_direct_array_type (value_type (lhs));
10133
10134 choice_pos = *pos += 3;
10135
10136 for (j = 0; j < n_choices; j += 1)
10137 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10138 expr_pc = *pos;
10139 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10140
10141 for (j = 0; j < n_choices; j += 1)
10142 {
10143 LONGEST lower, upper;
10144 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10145
52ce6436
PH
10146 if (op == OP_DISCRETE_RANGE)
10147 {
10148 choice_pos += 1;
10149 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10150 EVAL_NORMAL));
10151 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10152 EVAL_NORMAL));
10153 }
10154 else if (is_array)
10155 {
10156 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10157 EVAL_NORMAL));
10158 upper = lower;
10159 }
10160 else
10161 {
10162 int ind;
0d5cff50 10163 const char *name;
5b4ee69b 10164
52ce6436
PH
10165 switch (op)
10166 {
10167 case OP_NAME:
10168 name = &exp->elts[choice_pos + 2].string;
10169 break;
10170 case OP_VAR_VALUE:
10171 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10172 break;
10173 default:
10174 error (_("Invalid record component association."));
10175 }
10176 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10177 ind = 0;
10178 if (! find_struct_field (name, value_type (lhs), 0,
10179 NULL, NULL, NULL, NULL, &ind))
10180 error (_("Unknown component name: %s."), name);
10181 lower = upper = ind;
10182 }
10183
10184 if (lower <= upper && (lower < low || upper > high))
10185 error (_("Index in component association out of bounds."));
10186
10187 add_component_interval (lower, upper, indices, num_indices,
10188 max_indices);
10189 while (lower <= upper)
10190 {
10191 int pos1;
5b4ee69b 10192
52ce6436
PH
10193 pos1 = expr_pc;
10194 assign_component (container, lhs, lower, exp, &pos1);
10195 lower += 1;
10196 }
10197 }
10198}
10199
10200/* Assign the value of the expression in the OP_OTHERS construct in
10201 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10202 have not been previously assigned. The index intervals already assigned
10203 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10204 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10205static void
10206aggregate_assign_others (struct value *container,
10207 struct value *lhs, struct expression *exp,
10208 int *pos, LONGEST *indices, int num_indices,
10209 LONGEST low, LONGEST high)
10210{
10211 int i;
5ce64950 10212 int expr_pc = *pos + 1;
52ce6436
PH
10213
10214 for (i = 0; i < num_indices - 2; i += 2)
10215 {
10216 LONGEST ind;
5b4ee69b 10217
52ce6436
PH
10218 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10219 {
5ce64950 10220 int localpos;
5b4ee69b 10221
5ce64950
MS
10222 localpos = expr_pc;
10223 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10224 }
10225 }
10226 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10227}
10228
10229/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10230 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10231 modifying *SIZE as needed. It is an error if *SIZE exceeds
10232 MAX_SIZE. The resulting intervals do not overlap. */
10233static void
10234add_component_interval (LONGEST low, LONGEST high,
10235 LONGEST* indices, int *size, int max_size)
10236{
10237 int i, j;
5b4ee69b 10238
52ce6436
PH
10239 for (i = 0; i < *size; i += 2) {
10240 if (high >= indices[i] && low <= indices[i + 1])
10241 {
10242 int kh;
5b4ee69b 10243
52ce6436
PH
10244 for (kh = i + 2; kh < *size; kh += 2)
10245 if (high < indices[kh])
10246 break;
10247 if (low < indices[i])
10248 indices[i] = low;
10249 indices[i + 1] = indices[kh - 1];
10250 if (high > indices[i + 1])
10251 indices[i + 1] = high;
10252 memcpy (indices + i + 2, indices + kh, *size - kh);
10253 *size -= kh - i - 2;
10254 return;
10255 }
10256 else if (high < indices[i])
10257 break;
10258 }
10259
10260 if (*size == max_size)
10261 error (_("Internal error: miscounted aggregate components."));
10262 *size += 2;
10263 for (j = *size-1; j >= i+2; j -= 1)
10264 indices[j] = indices[j - 2];
10265 indices[i] = low;
10266 indices[i + 1] = high;
10267}
10268
6e48bd2c
JB
10269/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10270 is different. */
10271
10272static struct value *
b7e22850 10273ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10274{
10275 if (type == ada_check_typedef (value_type (arg2)))
10276 return arg2;
10277
10278 if (ada_is_fixed_point_type (type))
10279 return (cast_to_fixed (type, arg2));
10280
10281 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10282 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10283
10284 return value_cast (type, arg2);
10285}
10286
284614f0
JB
10287/* Evaluating Ada expressions, and printing their result.
10288 ------------------------------------------------------
10289
21649b50
JB
10290 1. Introduction:
10291 ----------------
10292
284614f0
JB
10293 We usually evaluate an Ada expression in order to print its value.
10294 We also evaluate an expression in order to print its type, which
10295 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10296 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10297 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10298 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10299 similar.
10300
10301 Evaluating expressions is a little more complicated for Ada entities
10302 than it is for entities in languages such as C. The main reason for
10303 this is that Ada provides types whose definition might be dynamic.
10304 One example of such types is variant records. Or another example
10305 would be an array whose bounds can only be known at run time.
10306
10307 The following description is a general guide as to what should be
10308 done (and what should NOT be done) in order to evaluate an expression
10309 involving such types, and when. This does not cover how the semantic
10310 information is encoded by GNAT as this is covered separatly. For the
10311 document used as the reference for the GNAT encoding, see exp_dbug.ads
10312 in the GNAT sources.
10313
10314 Ideally, we should embed each part of this description next to its
10315 associated code. Unfortunately, the amount of code is so vast right
10316 now that it's hard to see whether the code handling a particular
10317 situation might be duplicated or not. One day, when the code is
10318 cleaned up, this guide might become redundant with the comments
10319 inserted in the code, and we might want to remove it.
10320
21649b50
JB
10321 2. ``Fixing'' an Entity, the Simple Case:
10322 -----------------------------------------
10323
284614f0
JB
10324 When evaluating Ada expressions, the tricky issue is that they may
10325 reference entities whose type contents and size are not statically
10326 known. Consider for instance a variant record:
10327
10328 type Rec (Empty : Boolean := True) is record
10329 case Empty is
10330 when True => null;
10331 when False => Value : Integer;
10332 end case;
10333 end record;
10334 Yes : Rec := (Empty => False, Value => 1);
10335 No : Rec := (empty => True);
10336
10337 The size and contents of that record depends on the value of the
10338 descriminant (Rec.Empty). At this point, neither the debugging
10339 information nor the associated type structure in GDB are able to
10340 express such dynamic types. So what the debugger does is to create
10341 "fixed" versions of the type that applies to the specific object.
10342 We also informally refer to this opperation as "fixing" an object,
10343 which means creating its associated fixed type.
10344
10345 Example: when printing the value of variable "Yes" above, its fixed
10346 type would look like this:
10347
10348 type Rec is record
10349 Empty : Boolean;
10350 Value : Integer;
10351 end record;
10352
10353 On the other hand, if we printed the value of "No", its fixed type
10354 would become:
10355
10356 type Rec is record
10357 Empty : Boolean;
10358 end record;
10359
10360 Things become a little more complicated when trying to fix an entity
10361 with a dynamic type that directly contains another dynamic type,
10362 such as an array of variant records, for instance. There are
10363 two possible cases: Arrays, and records.
10364
21649b50
JB
10365 3. ``Fixing'' Arrays:
10366 ---------------------
10367
10368 The type structure in GDB describes an array in terms of its bounds,
10369 and the type of its elements. By design, all elements in the array
10370 have the same type and we cannot represent an array of variant elements
10371 using the current type structure in GDB. When fixing an array,
10372 we cannot fix the array element, as we would potentially need one
10373 fixed type per element of the array. As a result, the best we can do
10374 when fixing an array is to produce an array whose bounds and size
10375 are correct (allowing us to read it from memory), but without having
10376 touched its element type. Fixing each element will be done later,
10377 when (if) necessary.
10378
10379 Arrays are a little simpler to handle than records, because the same
10380 amount of memory is allocated for each element of the array, even if
1b536f04 10381 the amount of space actually used by each element differs from element
21649b50 10382 to element. Consider for instance the following array of type Rec:
284614f0
JB
10383
10384 type Rec_Array is array (1 .. 2) of Rec;
10385
1b536f04
JB
10386 The actual amount of memory occupied by each element might be different
10387 from element to element, depending on the value of their discriminant.
21649b50 10388 But the amount of space reserved for each element in the array remains
1b536f04 10389 fixed regardless. So we simply need to compute that size using
21649b50
JB
10390 the debugging information available, from which we can then determine
10391 the array size (we multiply the number of elements of the array by
10392 the size of each element).
10393
10394 The simplest case is when we have an array of a constrained element
10395 type. For instance, consider the following type declarations:
10396
10397 type Bounded_String (Max_Size : Integer) is
10398 Length : Integer;
10399 Buffer : String (1 .. Max_Size);
10400 end record;
10401 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10402
10403 In this case, the compiler describes the array as an array of
10404 variable-size elements (identified by its XVS suffix) for which
10405 the size can be read in the parallel XVZ variable.
10406
10407 In the case of an array of an unconstrained element type, the compiler
10408 wraps the array element inside a private PAD type. This type should not
10409 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10410 that we also use the adjective "aligner" in our code to designate
10411 these wrapper types.
10412
1b536f04 10413 In some cases, the size allocated for each element is statically
21649b50
JB
10414 known. In that case, the PAD type already has the correct size,
10415 and the array element should remain unfixed.
10416
10417 But there are cases when this size is not statically known.
10418 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10419
10420 type Dynamic is array (1 .. Five) of Integer;
10421 type Wrapper (Has_Length : Boolean := False) is record
10422 Data : Dynamic;
10423 case Has_Length is
10424 when True => Length : Integer;
10425 when False => null;
10426 end case;
10427 end record;
10428 type Wrapper_Array is array (1 .. 2) of Wrapper;
10429
10430 Hello : Wrapper_Array := (others => (Has_Length => True,
10431 Data => (others => 17),
10432 Length => 1));
10433
10434
10435 The debugging info would describe variable Hello as being an
10436 array of a PAD type. The size of that PAD type is not statically
10437 known, but can be determined using a parallel XVZ variable.
10438 In that case, a copy of the PAD type with the correct size should
10439 be used for the fixed array.
10440
21649b50
JB
10441 3. ``Fixing'' record type objects:
10442 ----------------------------------
10443
10444 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10445 record types. In this case, in order to compute the associated
10446 fixed type, we need to determine the size and offset of each of
10447 its components. This, in turn, requires us to compute the fixed
10448 type of each of these components.
10449
10450 Consider for instance the example:
10451
10452 type Bounded_String (Max_Size : Natural) is record
10453 Str : String (1 .. Max_Size);
10454 Length : Natural;
10455 end record;
10456 My_String : Bounded_String (Max_Size => 10);
10457
10458 In that case, the position of field "Length" depends on the size
10459 of field Str, which itself depends on the value of the Max_Size
21649b50 10460 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10461 we need to fix the type of field Str. Therefore, fixing a variant
10462 record requires us to fix each of its components.
10463
10464 However, if a component does not have a dynamic size, the component
10465 should not be fixed. In particular, fields that use a PAD type
10466 should not fixed. Here is an example where this might happen
10467 (assuming type Rec above):
10468
10469 type Container (Big : Boolean) is record
10470 First : Rec;
10471 After : Integer;
10472 case Big is
10473 when True => Another : Integer;
10474 when False => null;
10475 end case;
10476 end record;
10477 My_Container : Container := (Big => False,
10478 First => (Empty => True),
10479 After => 42);
10480
10481 In that example, the compiler creates a PAD type for component First,
10482 whose size is constant, and then positions the component After just
10483 right after it. The offset of component After is therefore constant
10484 in this case.
10485
10486 The debugger computes the position of each field based on an algorithm
10487 that uses, among other things, the actual position and size of the field
21649b50
JB
10488 preceding it. Let's now imagine that the user is trying to print
10489 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10490 end up computing the offset of field After based on the size of the
10491 fixed version of field First. And since in our example First has
10492 only one actual field, the size of the fixed type is actually smaller
10493 than the amount of space allocated to that field, and thus we would
10494 compute the wrong offset of field After.
10495
21649b50
JB
10496 To make things more complicated, we need to watch out for dynamic
10497 components of variant records (identified by the ___XVL suffix in
10498 the component name). Even if the target type is a PAD type, the size
10499 of that type might not be statically known. So the PAD type needs
10500 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10501 we might end up with the wrong size for our component. This can be
10502 observed with the following type declarations:
284614f0
JB
10503
10504 type Octal is new Integer range 0 .. 7;
10505 type Octal_Array is array (Positive range <>) of Octal;
10506 pragma Pack (Octal_Array);
10507
10508 type Octal_Buffer (Size : Positive) is record
10509 Buffer : Octal_Array (1 .. Size);
10510 Length : Integer;
10511 end record;
10512
10513 In that case, Buffer is a PAD type whose size is unset and needs
10514 to be computed by fixing the unwrapped type.
10515
21649b50
JB
10516 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10517 ----------------------------------------------------------
10518
10519 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10520 thus far, be actually fixed?
10521
10522 The answer is: Only when referencing that element. For instance
10523 when selecting one component of a record, this specific component
10524 should be fixed at that point in time. Or when printing the value
10525 of a record, each component should be fixed before its value gets
10526 printed. Similarly for arrays, the element of the array should be
10527 fixed when printing each element of the array, or when extracting
10528 one element out of that array. On the other hand, fixing should
10529 not be performed on the elements when taking a slice of an array!
10530
31432a67 10531 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10532 size of each field is that we end up also miscomputing the size
10533 of the containing type. This can have adverse results when computing
10534 the value of an entity. GDB fetches the value of an entity based
10535 on the size of its type, and thus a wrong size causes GDB to fetch
10536 the wrong amount of memory. In the case where the computed size is
10537 too small, GDB fetches too little data to print the value of our
31432a67 10538 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10539 past the buffer containing the data =:-o. */
10540
ced9779b
JB
10541/* Evaluate a subexpression of EXP, at index *POS, and return a value
10542 for that subexpression cast to TO_TYPE. Advance *POS over the
10543 subexpression. */
10544
10545static value *
10546ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10547 enum noside noside, struct type *to_type)
10548{
10549 int pc = *pos;
10550
10551 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10552 || exp->elts[pc].opcode == OP_VAR_VALUE)
10553 {
10554 (*pos) += 4;
10555
10556 value *val;
10557 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10558 {
10559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10560 return value_zero (to_type, not_lval);
10561
10562 val = evaluate_var_msym_value (noside,
10563 exp->elts[pc + 1].objfile,
10564 exp->elts[pc + 2].msymbol);
10565 }
10566 else
10567 val = evaluate_var_value (noside,
10568 exp->elts[pc + 1].block,
10569 exp->elts[pc + 2].symbol);
10570
10571 if (noside == EVAL_SKIP)
10572 return eval_skip_value (exp);
10573
10574 val = ada_value_cast (to_type, val);
10575
10576 /* Follow the Ada language semantics that do not allow taking
10577 an address of the result of a cast (view conversion in Ada). */
10578 if (VALUE_LVAL (val) == lval_memory)
10579 {
10580 if (value_lazy (val))
10581 value_fetch_lazy (val);
10582 VALUE_LVAL (val) = not_lval;
10583 }
10584 return val;
10585 }
10586
10587 value *val = evaluate_subexp (to_type, exp, pos, noside);
10588 if (noside == EVAL_SKIP)
10589 return eval_skip_value (exp);
10590 return ada_value_cast (to_type, val);
10591}
10592
284614f0
JB
10593/* Implement the evaluate_exp routine in the exp_descriptor structure
10594 for the Ada language. */
10595
52ce6436 10596static struct value *
ebf56fd3 10597ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10598 int *pos, enum noside noside)
14f9c5c9
AS
10599{
10600 enum exp_opcode op;
b5385fc0 10601 int tem;
14f9c5c9 10602 int pc;
5ec18f2b 10603 int preeval_pos;
14f9c5c9
AS
10604 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10605 struct type *type;
52ce6436 10606 int nargs, oplen;
d2e4a39e 10607 struct value **argvec;
14f9c5c9 10608
d2e4a39e
AS
10609 pc = *pos;
10610 *pos += 1;
14f9c5c9
AS
10611 op = exp->elts[pc].opcode;
10612
d2e4a39e 10613 switch (op)
14f9c5c9
AS
10614 {
10615 default:
10616 *pos -= 1;
6e48bd2c 10617 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10618
10619 if (noside == EVAL_NORMAL)
10620 arg1 = unwrap_value (arg1);
6e48bd2c 10621
edd079d9 10622 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10623 then we need to perform the conversion manually, because
10624 evaluate_subexp_standard doesn't do it. This conversion is
10625 necessary in Ada because the different kinds of float/fixed
10626 types in Ada have different representations.
10627
10628 Similarly, we need to perform the conversion from OP_LONG
10629 ourselves. */
edd079d9 10630 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10631 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10632
10633 return arg1;
4c4b4cd2
PH
10634
10635 case OP_STRING:
10636 {
76a01679 10637 struct value *result;
5b4ee69b 10638
76a01679
JB
10639 *pos -= 1;
10640 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10641 /* The result type will have code OP_STRING, bashed there from
10642 OP_ARRAY. Bash it back. */
df407dfe
AC
10643 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10644 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10645 return result;
4c4b4cd2 10646 }
14f9c5c9
AS
10647
10648 case UNOP_CAST:
10649 (*pos) += 2;
10650 type = exp->elts[pc + 1].type;
ced9779b 10651 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10652
4c4b4cd2
PH
10653 case UNOP_QUAL:
10654 (*pos) += 2;
10655 type = exp->elts[pc + 1].type;
10656 return ada_evaluate_subexp (type, exp, pos, noside);
10657
14f9c5c9
AS
10658 case BINOP_ASSIGN:
10659 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10660 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10661 {
10662 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10663 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10664 return arg1;
10665 return ada_value_assign (arg1, arg1);
10666 }
003f3813
JB
10667 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10668 except if the lhs of our assignment is a convenience variable.
10669 In the case of assigning to a convenience variable, the lhs
10670 should be exactly the result of the evaluation of the rhs. */
10671 type = value_type (arg1);
10672 if (VALUE_LVAL (arg1) == lval_internalvar)
10673 type = NULL;
10674 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10675 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10676 return arg1;
df407dfe
AC
10677 if (ada_is_fixed_point_type (value_type (arg1)))
10678 arg2 = cast_to_fixed (value_type (arg1), arg2);
10679 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10680 error
323e0a4a 10681 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10682 else
df407dfe 10683 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10684 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10685
10686 case BINOP_ADD:
10687 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10688 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10689 if (noside == EVAL_SKIP)
4c4b4cd2 10690 goto nosideret;
2ac8a782
JB
10691 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10692 return (value_from_longest
10693 (value_type (arg1),
10694 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10695 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10696 return (value_from_longest
10697 (value_type (arg2),
10698 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10699 if ((ada_is_fixed_point_type (value_type (arg1))
10700 || ada_is_fixed_point_type (value_type (arg2)))
10701 && value_type (arg1) != value_type (arg2))
323e0a4a 10702 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10703 /* Do the addition, and cast the result to the type of the first
10704 argument. We cannot cast the result to a reference type, so if
10705 ARG1 is a reference type, find its underlying type. */
10706 type = value_type (arg1);
10707 while (TYPE_CODE (type) == TYPE_CODE_REF)
10708 type = TYPE_TARGET_TYPE (type);
f44316fa 10709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10710 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10711
10712 case BINOP_SUB:
10713 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10714 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10715 if (noside == EVAL_SKIP)
4c4b4cd2 10716 goto nosideret;
2ac8a782
JB
10717 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10718 return (value_from_longest
10719 (value_type (arg1),
10720 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10721 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10722 return (value_from_longest
10723 (value_type (arg2),
10724 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10725 if ((ada_is_fixed_point_type (value_type (arg1))
10726 || ada_is_fixed_point_type (value_type (arg2)))
10727 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10728 error (_("Operands of fixed-point subtraction "
10729 "must have the same type"));
b7789565
JB
10730 /* Do the substraction, and cast the result to the type of the first
10731 argument. We cannot cast the result to a reference type, so if
10732 ARG1 is a reference type, find its underlying type. */
10733 type = value_type (arg1);
10734 while (TYPE_CODE (type) == TYPE_CODE_REF)
10735 type = TYPE_TARGET_TYPE (type);
f44316fa 10736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10737 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10738
10739 case BINOP_MUL:
10740 case BINOP_DIV:
e1578042
JB
10741 case BINOP_REM:
10742 case BINOP_MOD:
14f9c5c9
AS
10743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10745 if (noside == EVAL_SKIP)
4c4b4cd2 10746 goto nosideret;
e1578042 10747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10748 {
10749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10750 return value_zero (value_type (arg1), not_lval);
10751 }
14f9c5c9 10752 else
4c4b4cd2 10753 {
a53b7a21 10754 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10755 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10756 arg1 = cast_from_fixed (type, arg1);
df407dfe 10757 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10758 arg2 = cast_from_fixed (type, arg2);
f44316fa 10759 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10760 return ada_value_binop (arg1, arg2, op);
10761 }
10762
4c4b4cd2
PH
10763 case BINOP_EQUAL:
10764 case BINOP_NOTEQUAL:
14f9c5c9 10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10766 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10767 if (noside == EVAL_SKIP)
76a01679 10768 goto nosideret;
4c4b4cd2 10769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10770 tem = 0;
4c4b4cd2 10771 else
f44316fa
UW
10772 {
10773 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10774 tem = ada_value_equal (arg1, arg2);
10775 }
4c4b4cd2 10776 if (op == BINOP_NOTEQUAL)
76a01679 10777 tem = !tem;
fbb06eb1
UW
10778 type = language_bool_type (exp->language_defn, exp->gdbarch);
10779 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10780
10781 case UNOP_NEG:
10782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10783 if (noside == EVAL_SKIP)
10784 goto nosideret;
df407dfe
AC
10785 else if (ada_is_fixed_point_type (value_type (arg1)))
10786 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10787 else
f44316fa
UW
10788 {
10789 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10790 return value_neg (arg1);
10791 }
4c4b4cd2 10792
2330c6c6
JB
10793 case BINOP_LOGICAL_AND:
10794 case BINOP_LOGICAL_OR:
10795 case UNOP_LOGICAL_NOT:
000d5124
JB
10796 {
10797 struct value *val;
10798
10799 *pos -= 1;
10800 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10801 type = language_bool_type (exp->language_defn, exp->gdbarch);
10802 return value_cast (type, val);
000d5124 10803 }
2330c6c6
JB
10804
10805 case BINOP_BITWISE_AND:
10806 case BINOP_BITWISE_IOR:
10807 case BINOP_BITWISE_XOR:
000d5124
JB
10808 {
10809 struct value *val;
10810
10811 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10812 *pos = pc;
10813 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10814
10815 return value_cast (value_type (arg1), val);
10816 }
2330c6c6 10817
14f9c5c9
AS
10818 case OP_VAR_VALUE:
10819 *pos -= 1;
6799def4 10820
14f9c5c9 10821 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10822 {
10823 *pos += 4;
10824 goto nosideret;
10825 }
da5c522f
JB
10826
10827 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10828 /* Only encountered when an unresolved symbol occurs in a
10829 context other than a function call, in which case, it is
52ce6436 10830 invalid. */
323e0a4a 10831 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10832 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10833
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10835 {
0c1f74cf 10836 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10837 /* Check to see if this is a tagged type. We also need to handle
10838 the case where the type is a reference to a tagged type, but
10839 we have to be careful to exclude pointers to tagged types.
10840 The latter should be shown as usual (as a pointer), whereas
10841 a reference should mostly be transparent to the user. */
10842 if (ada_is_tagged_type (type, 0)
023db19c 10843 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10844 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10845 {
10846 /* Tagged types are a little special in the fact that the real
10847 type is dynamic and can only be determined by inspecting the
10848 object's tag. This means that we need to get the object's
10849 value first (EVAL_NORMAL) and then extract the actual object
10850 type from its tag.
10851
10852 Note that we cannot skip the final step where we extract
10853 the object type from its tag, because the EVAL_NORMAL phase
10854 results in dynamic components being resolved into fixed ones.
10855 This can cause problems when trying to print the type
10856 description of tagged types whose parent has a dynamic size:
10857 We use the type name of the "_parent" component in order
10858 to print the name of the ancestor type in the type description.
10859 If that component had a dynamic size, the resolution into
10860 a fixed type would result in the loss of that type name,
10861 thus preventing us from printing the name of the ancestor
10862 type in the type description. */
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10864
10865 if (TYPE_CODE (type) != TYPE_CODE_REF)
10866 {
10867 struct type *actual_type;
10868
10869 actual_type = type_from_tag (ada_value_tag (arg1));
10870 if (actual_type == NULL)
10871 /* If, for some reason, we were unable to determine
10872 the actual type from the tag, then use the static
10873 approximation that we just computed as a fallback.
10874 This can happen if the debugging information is
10875 incomplete, for instance. */
10876 actual_type = type;
10877 return value_zero (actual_type, not_lval);
10878 }
10879 else
10880 {
10881 /* In the case of a ref, ada_coerce_ref takes care
10882 of determining the actual type. But the evaluation
10883 should return a ref as it should be valid to ask
10884 for its address; so rebuild a ref after coerce. */
10885 arg1 = ada_coerce_ref (arg1);
a65cfae5 10886 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10887 }
10888 }
0c1f74cf 10889
84754697
JB
10890 /* Records and unions for which GNAT encodings have been
10891 generated need to be statically fixed as well.
10892 Otherwise, non-static fixing produces a type where
10893 all dynamic properties are removed, which prevents "ptype"
10894 from being able to completely describe the type.
10895 For instance, a case statement in a variant record would be
10896 replaced by the relevant components based on the actual
10897 value of the discriminants. */
10898 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10899 && dynamic_template_type (type) != NULL)
10900 || (TYPE_CODE (type) == TYPE_CODE_UNION
10901 && ada_find_parallel_type (type, "___XVU") != NULL))
10902 {
10903 *pos += 4;
10904 return value_zero (to_static_fixed_type (type), not_lval);
10905 }
4c4b4cd2 10906 }
da5c522f
JB
10907
10908 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10909 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10910
10911 case OP_FUNCALL:
10912 (*pos) += 2;
10913
10914 /* Allocate arg vector, including space for the function to be
10915 called in argvec[0] and a terminating NULL. */
10916 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10917 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10918
10919 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10920 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10921 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10922 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10923 else
10924 {
10925 for (tem = 0; tem <= nargs; tem += 1)
10926 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10927 argvec[tem] = 0;
10928
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931 }
10932
ad82864c
JB
10933 if (ada_is_constrained_packed_array_type
10934 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10935 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10936 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10937 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10938 /* This is a packed array that has already been fixed, and
10939 therefore already coerced to a simple array. Nothing further
10940 to do. */
10941 ;
e6c2c623
PMR
10942 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10943 {
10944 /* Make sure we dereference references so that all the code below
10945 feels like it's really handling the referenced value. Wrapping
10946 types (for alignment) may be there, so make sure we strip them as
10947 well. */
10948 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10949 }
10950 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10951 && VALUE_LVAL (argvec[0]) == lval_memory)
10952 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10953
df407dfe 10954 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10955
10956 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10957 them. So, if this is an array typedef (encoding use for array
10958 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10959 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10960 type = ada_typedef_target_type (type);
10961
4c4b4cd2
PH
10962 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10963 {
61ee279c 10964 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10965 {
10966 case TYPE_CODE_FUNC:
61ee279c 10967 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10968 break;
10969 case TYPE_CODE_ARRAY:
10970 break;
10971 case TYPE_CODE_STRUCT:
10972 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10973 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10974 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10975 break;
10976 default:
323e0a4a 10977 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10978 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10979 break;
10980 }
10981 }
10982
10983 switch (TYPE_CODE (type))
10984 {
10985 case TYPE_CODE_FUNC:
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10987 {
7022349d
PA
10988 if (TYPE_TARGET_TYPE (type) == NULL)
10989 error_call_unknown_return_type (NULL);
10990 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10991 }
7022349d 10992 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10993 case TYPE_CODE_INTERNAL_FUNCTION:
10994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10995 /* We don't know anything about what the internal
10996 function might return, but we have to return
10997 something. */
10998 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10999 not_lval);
11000 else
11001 return call_internal_function (exp->gdbarch, exp->language_defn,
11002 argvec[0], nargs, argvec + 1);
11003
4c4b4cd2
PH
11004 case TYPE_CODE_STRUCT:
11005 {
11006 int arity;
11007
4c4b4cd2
PH
11008 arity = ada_array_arity (type);
11009 type = ada_array_element_type (type, nargs);
11010 if (type == NULL)
323e0a4a 11011 error (_("cannot subscript or call a record"));
4c4b4cd2 11012 if (arity != nargs)
323e0a4a 11013 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11015 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11016 return
11017 unwrap_value (ada_value_subscript
11018 (argvec[0], nargs, argvec + 1));
11019 }
11020 case TYPE_CODE_ARRAY:
11021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 {
11023 type = ada_array_element_type (type, nargs);
11024 if (type == NULL)
323e0a4a 11025 error (_("element type of array unknown"));
4c4b4cd2 11026 else
0a07e705 11027 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11028 }
11029 return
11030 unwrap_value (ada_value_subscript
11031 (ada_coerce_to_simple_array (argvec[0]),
11032 nargs, argvec + 1));
11033 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11035 {
deede10c 11036 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11037 type = ada_array_element_type (type, nargs);
11038 if (type == NULL)
323e0a4a 11039 error (_("element type of array unknown"));
4c4b4cd2 11040 else
0a07e705 11041 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11042 }
11043 return
deede10c
JB
11044 unwrap_value (ada_value_ptr_subscript (argvec[0],
11045 nargs, argvec + 1));
4c4b4cd2
PH
11046
11047 default:
e1d5a0d2
PH
11048 error (_("Attempt to index or call something other than an "
11049 "array or function"));
4c4b4cd2
PH
11050 }
11051
11052 case TERNOP_SLICE:
11053 {
11054 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 struct value *low_bound_val =
11056 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11057 struct value *high_bound_val =
11058 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11059 LONGEST low_bound;
11060 LONGEST high_bound;
5b4ee69b 11061
994b9211
AC
11062 low_bound_val = coerce_ref (low_bound_val);
11063 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11064 low_bound = value_as_long (low_bound_val);
11065 high_bound = value_as_long (high_bound_val);
963a6417 11066
4c4b4cd2
PH
11067 if (noside == EVAL_SKIP)
11068 goto nosideret;
11069
4c4b4cd2
PH
11070 /* If this is a reference to an aligner type, then remove all
11071 the aligners. */
df407dfe
AC
11072 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11073 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11074 TYPE_TARGET_TYPE (value_type (array)) =
11075 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11076
ad82864c 11077 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11078 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11079
11080 /* If this is a reference to an array or an array lvalue,
11081 convert to a pointer. */
df407dfe
AC
11082 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11083 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11084 && VALUE_LVAL (array) == lval_memory))
11085 array = value_addr (array);
11086
1265e4aa 11087 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11088 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11089 (value_type (array))))
0b5d8877 11090 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11091
11092 array = ada_coerce_to_simple_array_ptr (array);
11093
714e53ab
PH
11094 /* If we have more than one level of pointer indirection,
11095 dereference the value until we get only one level. */
df407dfe
AC
11096 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11097 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11098 == TYPE_CODE_PTR))
11099 array = value_ind (array);
11100
11101 /* Make sure we really do have an array type before going further,
11102 to avoid a SEGV when trying to get the index type or the target
11103 type later down the road if the debug info generated by
11104 the compiler is incorrect or incomplete. */
df407dfe 11105 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11106 error (_("cannot take slice of non-array"));
714e53ab 11107
828292f2
JB
11108 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11109 == TYPE_CODE_PTR)
4c4b4cd2 11110 {
828292f2
JB
11111 struct type *type0 = ada_check_typedef (value_type (array));
11112
0b5d8877 11113 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11114 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11115 else
11116 {
11117 struct type *arr_type0 =
828292f2 11118 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11119
f5938064
JG
11120 return ada_value_slice_from_ptr (array, arr_type0,
11121 longest_to_int (low_bound),
11122 longest_to_int (high_bound));
4c4b4cd2
PH
11123 }
11124 }
11125 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11126 return array;
11127 else if (high_bound < low_bound)
df407dfe 11128 return empty_array (value_type (array), low_bound);
4c4b4cd2 11129 else
529cad9c
PH
11130 return ada_value_slice (array, longest_to_int (low_bound),
11131 longest_to_int (high_bound));
4c4b4cd2 11132 }
14f9c5c9 11133
4c4b4cd2
PH
11134 case UNOP_IN_RANGE:
11135 (*pos) += 2;
11136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11137 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11138
14f9c5c9 11139 if (noside == EVAL_SKIP)
4c4b4cd2 11140 goto nosideret;
14f9c5c9 11141
4c4b4cd2
PH
11142 switch (TYPE_CODE (type))
11143 {
11144 default:
e1d5a0d2
PH
11145 lim_warning (_("Membership test incompletely implemented; "
11146 "always returns true"));
fbb06eb1
UW
11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
11148 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11149
11150 case TYPE_CODE_RANGE:
030b4912
UW
11151 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11152 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11155 type = language_bool_type (exp->language_defn, exp->gdbarch);
11156 return
11157 value_from_longest (type,
4c4b4cd2
PH
11158 (value_less (arg1, arg3)
11159 || value_equal (arg1, arg3))
11160 && (value_less (arg2, arg1)
11161 || value_equal (arg2, arg1)));
11162 }
11163
11164 case BINOP_IN_BOUNDS:
14f9c5c9 11165 (*pos) += 2;
4c4b4cd2
PH
11166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11168
4c4b4cd2
PH
11169 if (noside == EVAL_SKIP)
11170 goto nosideret;
14f9c5c9 11171
4c4b4cd2 11172 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11173 {
11174 type = language_bool_type (exp->language_defn, exp->gdbarch);
11175 return value_zero (type, not_lval);
11176 }
14f9c5c9 11177
4c4b4cd2 11178 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11179
1eea4ebd
UW
11180 type = ada_index_type (value_type (arg2), tem, "range");
11181 if (!type)
11182 type = value_type (arg1);
14f9c5c9 11183
1eea4ebd
UW
11184 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11185 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11186
f44316fa
UW
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11189 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11190 return
fbb06eb1 11191 value_from_longest (type,
4c4b4cd2
PH
11192 (value_less (arg1, arg3)
11193 || value_equal (arg1, arg3))
11194 && (value_less (arg2, arg1)
11195 || value_equal (arg2, arg1)));
11196
11197 case TERNOP_IN_RANGE:
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204
f44316fa
UW
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11207 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11208 return
fbb06eb1 11209 value_from_longest (type,
4c4b4cd2
PH
11210 (value_less (arg1, arg3)
11211 || value_equal (arg1, arg3))
11212 && (value_less (arg2, arg1)
11213 || value_equal (arg2, arg1)));
11214
11215 case OP_ATR_FIRST:
11216 case OP_ATR_LAST:
11217 case OP_ATR_LENGTH:
11218 {
76a01679 11219 struct type *type_arg;
5b4ee69b 11220
76a01679
JB
11221 if (exp->elts[*pos].opcode == OP_TYPE)
11222 {
11223 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11224 arg1 = NULL;
5bc23cb3 11225 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11226 }
11227 else
11228 {
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 type_arg = NULL;
11231 }
11232
11233 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11234 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11235 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11236 *pos += 4;
11237
11238 if (noside == EVAL_SKIP)
11239 goto nosideret;
11240
11241 if (type_arg == NULL)
11242 {
11243 arg1 = ada_coerce_ref (arg1);
11244
ad82864c 11245 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11246 arg1 = ada_coerce_to_simple_array (arg1);
11247
aa4fb036 11248 if (op == OP_ATR_LENGTH)
1eea4ebd 11249 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11250 else
11251 {
11252 type = ada_index_type (value_type (arg1), tem,
11253 ada_attribute_name (op));
11254 if (type == NULL)
11255 type = builtin_type (exp->gdbarch)->builtin_int;
11256 }
76a01679
JB
11257
11258 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11259 return allocate_value (type);
76a01679
JB
11260
11261 switch (op)
11262 {
11263 default: /* Should never happen. */
323e0a4a 11264 error (_("unexpected attribute encountered"));
76a01679 11265 case OP_ATR_FIRST:
1eea4ebd
UW
11266 return value_from_longest
11267 (type, ada_array_bound (arg1, tem, 0));
76a01679 11268 case OP_ATR_LAST:
1eea4ebd
UW
11269 return value_from_longest
11270 (type, ada_array_bound (arg1, tem, 1));
76a01679 11271 case OP_ATR_LENGTH:
1eea4ebd
UW
11272 return value_from_longest
11273 (type, ada_array_length (arg1, tem));
76a01679
JB
11274 }
11275 }
11276 else if (discrete_type_p (type_arg))
11277 {
11278 struct type *range_type;
0d5cff50 11279 const char *name = ada_type_name (type_arg);
5b4ee69b 11280
76a01679
JB
11281 range_type = NULL;
11282 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11283 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11284 if (range_type == NULL)
11285 range_type = type_arg;
11286 switch (op)
11287 {
11288 default:
323e0a4a 11289 error (_("unexpected attribute encountered"));
76a01679 11290 case OP_ATR_FIRST:
690cc4eb 11291 return value_from_longest
43bbcdc2 11292 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11293 case OP_ATR_LAST:
690cc4eb 11294 return value_from_longest
43bbcdc2 11295 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11296 case OP_ATR_LENGTH:
323e0a4a 11297 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11298 }
11299 }
11300 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11301 error (_("unimplemented type attribute"));
76a01679
JB
11302 else
11303 {
11304 LONGEST low, high;
11305
ad82864c
JB
11306 if (ada_is_constrained_packed_array_type (type_arg))
11307 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11308
aa4fb036 11309 if (op == OP_ATR_LENGTH)
1eea4ebd 11310 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11311 else
11312 {
11313 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11314 if (type == NULL)
11315 type = builtin_type (exp->gdbarch)->builtin_int;
11316 }
1eea4ebd 11317
76a01679
JB
11318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11319 return allocate_value (type);
11320
11321 switch (op)
11322 {
11323 default:
323e0a4a 11324 error (_("unexpected attribute encountered"));
76a01679 11325 case OP_ATR_FIRST:
1eea4ebd 11326 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11327 return value_from_longest (type, low);
11328 case OP_ATR_LAST:
1eea4ebd 11329 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11330 return value_from_longest (type, high);
11331 case OP_ATR_LENGTH:
1eea4ebd
UW
11332 low = ada_array_bound_from_type (type_arg, tem, 0);
11333 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11334 return value_from_longest (type, high - low + 1);
11335 }
11336 }
14f9c5c9
AS
11337 }
11338
4c4b4cd2
PH
11339 case OP_ATR_TAG:
11340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11341 if (noside == EVAL_SKIP)
76a01679 11342 goto nosideret;
4c4b4cd2
PH
11343
11344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11345 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11346
11347 return ada_value_tag (arg1);
11348
11349 case OP_ATR_MIN:
11350 case OP_ATR_MAX:
11351 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11354 if (noside == EVAL_SKIP)
76a01679 11355 goto nosideret;
d2e4a39e 11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11357 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11358 else
f44316fa
UW
11359 {
11360 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11361 return value_binop (arg1, arg2,
11362 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11363 }
14f9c5c9 11364
4c4b4cd2
PH
11365 case OP_ATR_MODULUS:
11366 {
31dedfee 11367 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11368
5b4ee69b 11369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11370 if (noside == EVAL_SKIP)
11371 goto nosideret;
4c4b4cd2 11372
76a01679 11373 if (!ada_is_modular_type (type_arg))
323e0a4a 11374 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11375
76a01679
JB
11376 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11377 ada_modulus (type_arg));
4c4b4cd2
PH
11378 }
11379
11380
11381 case OP_ATR_POS:
11382 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11384 if (noside == EVAL_SKIP)
76a01679 11385 goto nosideret;
3cb382c9
UW
11386 type = builtin_type (exp->gdbarch)->builtin_int;
11387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11388 return value_zero (type, not_lval);
14f9c5c9 11389 else
3cb382c9 11390 return value_pos_atr (type, arg1);
14f9c5c9 11391
4c4b4cd2
PH
11392 case OP_ATR_SIZE:
11393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11394 type = value_type (arg1);
11395
11396 /* If the argument is a reference, then dereference its type, since
11397 the user is really asking for the size of the actual object,
11398 not the size of the pointer. */
11399 if (TYPE_CODE (type) == TYPE_CODE_REF)
11400 type = TYPE_TARGET_TYPE (type);
11401
4c4b4cd2 11402 if (noside == EVAL_SKIP)
76a01679 11403 goto nosideret;
4c4b4cd2 11404 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11405 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11406 else
22601c15 11407 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11408 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11409
11410 case OP_ATR_VAL:
11411 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11413 type = exp->elts[pc + 2].type;
14f9c5c9 11414 if (noside == EVAL_SKIP)
76a01679 11415 goto nosideret;
4c4b4cd2 11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11417 return value_zero (type, not_lval);
4c4b4cd2 11418 else
76a01679 11419 return value_val_atr (type, arg1);
4c4b4cd2
PH
11420
11421 case BINOP_EXP:
11422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11423 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11424 if (noside == EVAL_SKIP)
11425 goto nosideret;
11426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11427 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11428 else
f44316fa
UW
11429 {
11430 /* For integer exponentiation operations,
11431 only promote the first argument. */
11432 if (is_integral_type (value_type (arg2)))
11433 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11434 else
11435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11436
11437 return value_binop (arg1, arg2, op);
11438 }
4c4b4cd2
PH
11439
11440 case UNOP_PLUS:
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 if (noside == EVAL_SKIP)
11443 goto nosideret;
11444 else
11445 return arg1;
11446
11447 case UNOP_ABS:
11448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11449 if (noside == EVAL_SKIP)
11450 goto nosideret;
f44316fa 11451 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11452 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11453 return value_neg (arg1);
14f9c5c9 11454 else
4c4b4cd2 11455 return arg1;
14f9c5c9
AS
11456
11457 case UNOP_IND:
5ec18f2b 11458 preeval_pos = *pos;
6b0d7253 11459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11460 if (noside == EVAL_SKIP)
4c4b4cd2 11461 goto nosideret;
df407dfe 11462 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11464 {
11465 if (ada_is_array_descriptor_type (type))
11466 /* GDB allows dereferencing GNAT array descriptors. */
11467 {
11468 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11469
4c4b4cd2 11470 if (arrType == NULL)
323e0a4a 11471 error (_("Attempt to dereference null array pointer."));
00a4c844 11472 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11473 }
11474 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11475 || TYPE_CODE (type) == TYPE_CODE_REF
11476 /* In C you can dereference an array to get the 1st elt. */
11477 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11478 {
5ec18f2b
JG
11479 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11480 only be determined by inspecting the object's tag.
11481 This means that we need to evaluate completely the
11482 expression in order to get its type. */
11483
023db19c
JB
11484 if ((TYPE_CODE (type) == TYPE_CODE_REF
11485 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11486 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11487 {
11488 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11489 EVAL_NORMAL);
11490 type = value_type (ada_value_ind (arg1));
11491 }
11492 else
11493 {
11494 type = to_static_fixed_type
11495 (ada_aligned_type
11496 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11497 }
c1b5a1a6 11498 ada_ensure_varsize_limit (type);
714e53ab
PH
11499 return value_zero (type, lval_memory);
11500 }
4c4b4cd2 11501 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11502 {
11503 /* GDB allows dereferencing an int. */
11504 if (expect_type == NULL)
11505 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11506 lval_memory);
11507 else
11508 {
11509 expect_type =
11510 to_static_fixed_type (ada_aligned_type (expect_type));
11511 return value_zero (expect_type, lval_memory);
11512 }
11513 }
4c4b4cd2 11514 else
323e0a4a 11515 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11516 }
0963b4bd 11517 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11518 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11519
96967637
JB
11520 if (TYPE_CODE (type) == TYPE_CODE_INT)
11521 /* GDB allows dereferencing an int. If we were given
11522 the expect_type, then use that as the target type.
11523 Otherwise, assume that the target type is an int. */
11524 {
11525 if (expect_type != NULL)
11526 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11527 arg1));
11528 else
11529 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11530 (CORE_ADDR) value_as_address (arg1));
11531 }
6b0d7253 11532
4c4b4cd2
PH
11533 if (ada_is_array_descriptor_type (type))
11534 /* GDB allows dereferencing GNAT array descriptors. */
11535 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11536 else
4c4b4cd2 11537 return ada_value_ind (arg1);
14f9c5c9
AS
11538
11539 case STRUCTOP_STRUCT:
11540 tem = longest_to_int (exp->elts[pc + 1].longconst);
11541 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11542 preeval_pos = *pos;
14f9c5c9
AS
11543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11544 if (noside == EVAL_SKIP)
4c4b4cd2 11545 goto nosideret;
14f9c5c9 11546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11547 {
df407dfe 11548 struct type *type1 = value_type (arg1);
5b4ee69b 11549
76a01679
JB
11550 if (ada_is_tagged_type (type1, 1))
11551 {
11552 type = ada_lookup_struct_elt_type (type1,
11553 &exp->elts[pc + 2].string,
988f6b3d 11554 1, 1);
5ec18f2b
JG
11555
11556 /* If the field is not found, check if it exists in the
11557 extension of this object's type. This means that we
11558 need to evaluate completely the expression. */
11559
76a01679 11560 if (type == NULL)
5ec18f2b
JG
11561 {
11562 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11563 EVAL_NORMAL);
11564 arg1 = ada_value_struct_elt (arg1,
11565 &exp->elts[pc + 2].string,
11566 0);
11567 arg1 = unwrap_value (arg1);
11568 type = value_type (ada_to_fixed_value (arg1));
11569 }
76a01679
JB
11570 }
11571 else
11572 type =
11573 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11574 0);
76a01679
JB
11575
11576 return value_zero (ada_aligned_type (type), lval_memory);
11577 }
14f9c5c9 11578 else
a579cd9a
MW
11579 {
11580 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11581 arg1 = unwrap_value (arg1);
11582 return ada_to_fixed_value (arg1);
11583 }
284614f0 11584
14f9c5c9 11585 case OP_TYPE:
4c4b4cd2
PH
11586 /* The value is not supposed to be used. This is here to make it
11587 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11588 (*pos) += 2;
11589 if (noside == EVAL_SKIP)
4c4b4cd2 11590 goto nosideret;
14f9c5c9 11591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11592 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11593 else
323e0a4a 11594 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11595
11596 case OP_AGGREGATE:
11597 case OP_CHOICES:
11598 case OP_OTHERS:
11599 case OP_DISCRETE_RANGE:
11600 case OP_POSITIONAL:
11601 case OP_NAME:
11602 if (noside == EVAL_NORMAL)
11603 switch (op)
11604 {
11605 case OP_NAME:
11606 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11607 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11608 case OP_AGGREGATE:
11609 error (_("Aggregates only allowed on the right of an assignment"));
11610 default:
0963b4bd
MS
11611 internal_error (__FILE__, __LINE__,
11612 _("aggregate apparently mangled"));
52ce6436
PH
11613 }
11614
11615 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11616 *pos += oplen - 1;
11617 for (tem = 0; tem < nargs; tem += 1)
11618 ada_evaluate_subexp (NULL, exp, pos, noside);
11619 goto nosideret;
14f9c5c9
AS
11620 }
11621
11622nosideret:
ced9779b 11623 return eval_skip_value (exp);
14f9c5c9 11624}
14f9c5c9 11625\f
d2e4a39e 11626
4c4b4cd2 11627 /* Fixed point */
14f9c5c9
AS
11628
11629/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11630 type name that encodes the 'small and 'delta information.
4c4b4cd2 11631 Otherwise, return NULL. */
14f9c5c9 11632
d2e4a39e 11633static const char *
ebf56fd3 11634fixed_type_info (struct type *type)
14f9c5c9 11635{
d2e4a39e 11636 const char *name = ada_type_name (type);
14f9c5c9
AS
11637 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11638
d2e4a39e
AS
11639 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11640 {
14f9c5c9 11641 const char *tail = strstr (name, "___XF_");
5b4ee69b 11642
14f9c5c9 11643 if (tail == NULL)
4c4b4cd2 11644 return NULL;
d2e4a39e 11645 else
4c4b4cd2 11646 return tail + 5;
14f9c5c9
AS
11647 }
11648 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11649 return fixed_type_info (TYPE_TARGET_TYPE (type));
11650 else
11651 return NULL;
11652}
11653
4c4b4cd2 11654/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11655
11656int
ebf56fd3 11657ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11658{
11659 return fixed_type_info (type) != NULL;
11660}
11661
4c4b4cd2
PH
11662/* Return non-zero iff TYPE represents a System.Address type. */
11663
11664int
11665ada_is_system_address_type (struct type *type)
11666{
11667 return (TYPE_NAME (type)
11668 && strcmp (TYPE_NAME (type), "system__address") == 0);
11669}
11670
14f9c5c9 11671/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11672 type, return the target floating-point type to be used to represent
11673 of this type during internal computation. */
11674
11675static struct type *
11676ada_scaling_type (struct type *type)
11677{
11678 return builtin_type (get_type_arch (type))->builtin_long_double;
11679}
11680
11681/* Assuming that TYPE is the representation of an Ada fixed-point
11682 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11683 delta cannot be determined. */
14f9c5c9 11684
50eff16b 11685struct value *
ebf56fd3 11686ada_delta (struct type *type)
14f9c5c9
AS
11687{
11688 const char *encoding = fixed_type_info (type);
50eff16b
UW
11689 struct type *scale_type = ada_scaling_type (type);
11690
11691 long long num, den;
11692
11693 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11694 return nullptr;
d2e4a39e 11695 else
50eff16b
UW
11696 return value_binop (value_from_longest (scale_type, num),
11697 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11698}
11699
11700/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11701 factor ('SMALL value) associated with the type. */
14f9c5c9 11702
50eff16b
UW
11703struct value *
11704ada_scaling_factor (struct type *type)
14f9c5c9
AS
11705{
11706 const char *encoding = fixed_type_info (type);
50eff16b
UW
11707 struct type *scale_type = ada_scaling_type (type);
11708
11709 long long num0, den0, num1, den1;
14f9c5c9 11710 int n;
d2e4a39e 11711
50eff16b 11712 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11713 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11714
11715 if (n < 2)
50eff16b 11716 return value_from_longest (scale_type, 1);
14f9c5c9 11717 else if (n == 4)
50eff16b
UW
11718 return value_binop (value_from_longest (scale_type, num1),
11719 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11720 else
50eff16b
UW
11721 return value_binop (value_from_longest (scale_type, num0),
11722 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11723}
11724
14f9c5c9 11725\f
d2e4a39e 11726
4c4b4cd2 11727 /* Range types */
14f9c5c9
AS
11728
11729/* Scan STR beginning at position K for a discriminant name, and
11730 return the value of that discriminant field of DVAL in *PX. If
11731 PNEW_K is not null, put the position of the character beyond the
11732 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11733 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11734
11735static int
108d56a4 11736scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11737 int *pnew_k)
14f9c5c9
AS
11738{
11739 static char *bound_buffer = NULL;
11740 static size_t bound_buffer_len = 0;
5da1a4d3 11741 const char *pstart, *pend, *bound;
d2e4a39e 11742 struct value *bound_val;
14f9c5c9
AS
11743
11744 if (dval == NULL || str == NULL || str[k] == '\0')
11745 return 0;
11746
5da1a4d3
SM
11747 pstart = str + k;
11748 pend = strstr (pstart, "__");
14f9c5c9
AS
11749 if (pend == NULL)
11750 {
5da1a4d3 11751 bound = pstart;
14f9c5c9
AS
11752 k += strlen (bound);
11753 }
d2e4a39e 11754 else
14f9c5c9 11755 {
5da1a4d3
SM
11756 int len = pend - pstart;
11757
11758 /* Strip __ and beyond. */
11759 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11760 strncpy (bound_buffer, pstart, len);
11761 bound_buffer[len] = '\0';
11762
14f9c5c9 11763 bound = bound_buffer;
d2e4a39e 11764 k = pend - str;
14f9c5c9 11765 }
d2e4a39e 11766
df407dfe 11767 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11768 if (bound_val == NULL)
11769 return 0;
11770
11771 *px = value_as_long (bound_val);
11772 if (pnew_k != NULL)
11773 *pnew_k = k;
11774 return 1;
11775}
11776
11777/* Value of variable named NAME in the current environment. If
11778 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11779 otherwise causes an error with message ERR_MSG. */
11780
d2e4a39e 11781static struct value *
edb0c9cb 11782get_var_value (const char *name, const char *err_msg)
14f9c5c9 11783{
b5ec771e 11784 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11785
b5ec771e
PA
11786 struct block_symbol *syms;
11787 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11788 get_selected_block (0),
11789 VAR_DOMAIN, &syms, 1);
ec6a20c2 11790 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11791
11792 if (nsyms != 1)
11793 {
ec6a20c2 11794 do_cleanups (old_chain);
14f9c5c9 11795 if (err_msg == NULL)
4c4b4cd2 11796 return 0;
14f9c5c9 11797 else
8a3fe4f8 11798 error (("%s"), err_msg);
14f9c5c9
AS
11799 }
11800
ec6a20c2
JB
11801 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11802 do_cleanups (old_chain);
11803 return result;
14f9c5c9 11804}
d2e4a39e 11805
edb0c9cb
PA
11806/* Value of integer variable named NAME in the current environment.
11807 If no such variable is found, returns false. Otherwise, sets VALUE
11808 to the variable's value and returns true. */
4c4b4cd2 11809
edb0c9cb
PA
11810bool
11811get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11812{
4c4b4cd2 11813 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11814
14f9c5c9 11815 if (var_val == 0)
edb0c9cb
PA
11816 return false;
11817
11818 value = value_as_long (var_val);
11819 return true;
14f9c5c9 11820}
d2e4a39e 11821
14f9c5c9
AS
11822
11823/* Return a range type whose base type is that of the range type named
11824 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11825 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11826 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11827 corresponding range type from debug information; fall back to using it
11828 if symbol lookup fails. If a new type must be created, allocate it
11829 like ORIG_TYPE was. The bounds information, in general, is encoded
11830 in NAME, the base type given in the named range type. */
14f9c5c9 11831
d2e4a39e 11832static struct type *
28c85d6c 11833to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11834{
0d5cff50 11835 const char *name;
14f9c5c9 11836 struct type *base_type;
108d56a4 11837 const char *subtype_info;
14f9c5c9 11838
28c85d6c
JB
11839 gdb_assert (raw_type != NULL);
11840 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11841
1ce677a4 11842 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11843 base_type = TYPE_TARGET_TYPE (raw_type);
11844 else
11845 base_type = raw_type;
11846
28c85d6c 11847 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11848 subtype_info = strstr (name, "___XD");
11849 if (subtype_info == NULL)
690cc4eb 11850 {
43bbcdc2
PH
11851 LONGEST L = ada_discrete_type_low_bound (raw_type);
11852 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11853
690cc4eb
PH
11854 if (L < INT_MIN || U > INT_MAX)
11855 return raw_type;
11856 else
0c9c3474
SA
11857 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11858 L, U);
690cc4eb 11859 }
14f9c5c9
AS
11860 else
11861 {
11862 static char *name_buf = NULL;
11863 static size_t name_len = 0;
11864 int prefix_len = subtype_info - name;
11865 LONGEST L, U;
11866 struct type *type;
108d56a4 11867 const char *bounds_str;
14f9c5c9
AS
11868 int n;
11869
11870 GROW_VECT (name_buf, name_len, prefix_len + 5);
11871 strncpy (name_buf, name, prefix_len);
11872 name_buf[prefix_len] = '\0';
11873
11874 subtype_info += 5;
11875 bounds_str = strchr (subtype_info, '_');
11876 n = 1;
11877
d2e4a39e 11878 if (*subtype_info == 'L')
4c4b4cd2
PH
11879 {
11880 if (!ada_scan_number (bounds_str, n, &L, &n)
11881 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11882 return raw_type;
11883 if (bounds_str[n] == '_')
11884 n += 2;
0963b4bd 11885 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11886 n += 1;
11887 subtype_info += 1;
11888 }
d2e4a39e 11889 else
4c4b4cd2 11890 {
4c4b4cd2 11891 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11892 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11893 {
323e0a4a 11894 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11895 L = 1;
11896 }
11897 }
14f9c5c9 11898
d2e4a39e 11899 if (*subtype_info == 'U')
4c4b4cd2
PH
11900 {
11901 if (!ada_scan_number (bounds_str, n, &U, &n)
11902 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11903 return raw_type;
11904 }
d2e4a39e 11905 else
4c4b4cd2 11906 {
4c4b4cd2 11907 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11908 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11909 {
323e0a4a 11910 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11911 U = L;
11912 }
11913 }
14f9c5c9 11914
0c9c3474
SA
11915 type = create_static_range_type (alloc_type_copy (raw_type),
11916 base_type, L, U);
f5a91472
JB
11917 /* create_static_range_type alters the resulting type's length
11918 to match the size of the base_type, which is not what we want.
11919 Set it back to the original range type's length. */
11920 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11921 TYPE_NAME (type) = name;
14f9c5c9
AS
11922 return type;
11923 }
11924}
11925
4c4b4cd2
PH
11926/* True iff NAME is the name of a range type. */
11927
14f9c5c9 11928int
d2e4a39e 11929ada_is_range_type_name (const char *name)
14f9c5c9
AS
11930{
11931 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11932}
14f9c5c9 11933\f
d2e4a39e 11934
4c4b4cd2
PH
11935 /* Modular types */
11936
11937/* True iff TYPE is an Ada modular type. */
14f9c5c9 11938
14f9c5c9 11939int
d2e4a39e 11940ada_is_modular_type (struct type *type)
14f9c5c9 11941{
18af8284 11942 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11943
11944 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11945 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11946 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11947}
11948
4c4b4cd2
PH
11949/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11950
61ee279c 11951ULONGEST
0056e4d5 11952ada_modulus (struct type *type)
14f9c5c9 11953{
43bbcdc2 11954 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11955}
d2e4a39e 11956\f
f7f9143b
JB
11957
11958/* Ada exception catchpoint support:
11959 ---------------------------------
11960
11961 We support 3 kinds of exception catchpoints:
11962 . catchpoints on Ada exceptions
11963 . catchpoints on unhandled Ada exceptions
11964 . catchpoints on failed assertions
11965
11966 Exceptions raised during failed assertions, or unhandled exceptions
11967 could perfectly be caught with the general catchpoint on Ada exceptions.
11968 However, we can easily differentiate these two special cases, and having
11969 the option to distinguish these two cases from the rest can be useful
11970 to zero-in on certain situations.
11971
11972 Exception catchpoints are a specialized form of breakpoint,
11973 since they rely on inserting breakpoints inside known routines
11974 of the GNAT runtime. The implementation therefore uses a standard
11975 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11976 of breakpoint_ops.
11977
0259addd
JB
11978 Support in the runtime for exception catchpoints have been changed
11979 a few times already, and these changes affect the implementation
11980 of these catchpoints. In order to be able to support several
11981 variants of the runtime, we use a sniffer that will determine
28010a5d 11982 the runtime variant used by the program being debugged. */
f7f9143b 11983
82eacd52
JB
11984/* Ada's standard exceptions.
11985
11986 The Ada 83 standard also defined Numeric_Error. But there so many
11987 situations where it was unclear from the Ada 83 Reference Manual
11988 (RM) whether Constraint_Error or Numeric_Error should be raised,
11989 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11990 Interpretation saying that anytime the RM says that Numeric_Error
11991 should be raised, the implementation may raise Constraint_Error.
11992 Ada 95 went one step further and pretty much removed Numeric_Error
11993 from the list of standard exceptions (it made it a renaming of
11994 Constraint_Error, to help preserve compatibility when compiling
11995 an Ada83 compiler). As such, we do not include Numeric_Error from
11996 this list of standard exceptions. */
3d0b0fa3 11997
a121b7c1 11998static const char *standard_exc[] = {
3d0b0fa3
JB
11999 "constraint_error",
12000 "program_error",
12001 "storage_error",
12002 "tasking_error"
12003};
12004
0259addd
JB
12005typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12006
12007/* A structure that describes how to support exception catchpoints
12008 for a given executable. */
12009
12010struct exception_support_info
12011{
12012 /* The name of the symbol to break on in order to insert
12013 a catchpoint on exceptions. */
12014 const char *catch_exception_sym;
12015
12016 /* The name of the symbol to break on in order to insert
12017 a catchpoint on unhandled exceptions. */
12018 const char *catch_exception_unhandled_sym;
12019
12020 /* The name of the symbol to break on in order to insert
12021 a catchpoint on failed assertions. */
12022 const char *catch_assert_sym;
12023
12024 /* Assuming that the inferior just triggered an unhandled exception
12025 catchpoint, this function is responsible for returning the address
12026 in inferior memory where the name of that exception is stored.
12027 Return zero if the address could not be computed. */
12028 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12029};
12030
12031static CORE_ADDR ada_unhandled_exception_name_addr (void);
12032static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12033
12034/* The following exception support info structure describes how to
12035 implement exception catchpoints with the latest version of the
12036 Ada runtime (as of 2007-03-06). */
12037
12038static const struct exception_support_info default_exception_support_info =
12039{
12040 "__gnat_debug_raise_exception", /* catch_exception_sym */
12041 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12042 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12043 ada_unhandled_exception_name_addr
12044};
12045
12046/* The following exception support info structure describes how to
12047 implement exception catchpoints with a slightly older version
12048 of the Ada runtime. */
12049
12050static const struct exception_support_info exception_support_info_fallback =
12051{
12052 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12053 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12054 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12055 ada_unhandled_exception_name_addr_from_raise
12056};
12057
f17011e0
JB
12058/* Return nonzero if we can detect the exception support routines
12059 described in EINFO.
12060
12061 This function errors out if an abnormal situation is detected
12062 (for instance, if we find the exception support routines, but
12063 that support is found to be incomplete). */
12064
12065static int
12066ada_has_this_exception_support (const struct exception_support_info *einfo)
12067{
12068 struct symbol *sym;
12069
12070 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12071 that should be compiled with debugging information. As a result, we
12072 expect to find that symbol in the symtabs. */
12073
12074 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12075 if (sym == NULL)
a6af7abe
JB
12076 {
12077 /* Perhaps we did not find our symbol because the Ada runtime was
12078 compiled without debugging info, or simply stripped of it.
12079 It happens on some GNU/Linux distributions for instance, where
12080 users have to install a separate debug package in order to get
12081 the runtime's debugging info. In that situation, let the user
12082 know why we cannot insert an Ada exception catchpoint.
12083
12084 Note: Just for the purpose of inserting our Ada exception
12085 catchpoint, we could rely purely on the associated minimal symbol.
12086 But we would be operating in degraded mode anyway, since we are
12087 still lacking the debugging info needed later on to extract
12088 the name of the exception being raised (this name is printed in
12089 the catchpoint message, and is also used when trying to catch
12090 a specific exception). We do not handle this case for now. */
3b7344d5 12091 struct bound_minimal_symbol msym
1c8e84b0
JB
12092 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093
3b7344d5 12094 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12095 error (_("Your Ada runtime appears to be missing some debugging "
12096 "information.\nCannot insert Ada exception catchpoint "
12097 "in this configuration."));
12098
12099 return 0;
12100 }
f17011e0
JB
12101
12102 /* Make sure that the symbol we found corresponds to a function. */
12103
12104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12105 error (_("Symbol \"%s\" is not a function (class = %d)"),
12106 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12107
12108 return 1;
12109}
12110
0259addd
JB
12111/* Inspect the Ada runtime and determine which exception info structure
12112 should be used to provide support for exception catchpoints.
12113
3eecfa55
JB
12114 This function will always set the per-inferior exception_info,
12115 or raise an error. */
0259addd
JB
12116
12117static void
12118ada_exception_support_info_sniffer (void)
12119{
3eecfa55 12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12121
12122 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12123 if (data->exception_info != NULL)
0259addd
JB
12124 return;
12125
12126 /* Check the latest (default) exception support info. */
f17011e0 12127 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12128 {
3eecfa55 12129 data->exception_info = &default_exception_support_info;
0259addd
JB
12130 return;
12131 }
12132
12133 /* Try our fallback exception suport info. */
f17011e0 12134 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12135 {
3eecfa55 12136 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12137 return;
12138 }
12139
12140 /* Sometimes, it is normal for us to not be able to find the routine
12141 we are looking for. This happens when the program is linked with
12142 the shared version of the GNAT runtime, and the program has not been
12143 started yet. Inform the user of these two possible causes if
12144 applicable. */
12145
ccefe4c4 12146 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12147 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148
12149 /* If the symbol does not exist, then check that the program is
12150 already started, to make sure that shared libraries have been
12151 loaded. If it is not started, this may mean that the symbol is
12152 in a shared library. */
12153
12154 if (ptid_get_pid (inferior_ptid) == 0)
12155 error (_("Unable to insert catchpoint. Try to start the program first."));
12156
12157 /* At this point, we know that we are debugging an Ada program and
12158 that the inferior has been started, but we still are not able to
0963b4bd 12159 find the run-time symbols. That can mean that we are in
0259addd
JB
12160 configurable run time mode, or that a-except as been optimized
12161 out by the linker... In any case, at this point it is not worth
12162 supporting this feature. */
12163
7dda8cff 12164 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12165}
12166
f7f9143b
JB
12167/* True iff FRAME is very likely to be that of a function that is
12168 part of the runtime system. This is all very heuristic, but is
12169 intended to be used as advice as to what frames are uninteresting
12170 to most users. */
12171
12172static int
12173is_known_support_routine (struct frame_info *frame)
12174{
692465f1 12175 enum language func_lang;
f7f9143b 12176 int i;
f35a17b5 12177 const char *fullname;
f7f9143b 12178
4ed6b5be
JB
12179 /* If this code does not have any debugging information (no symtab),
12180 This cannot be any user code. */
f7f9143b 12181
51abb421 12182 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12183 if (sal.symtab == NULL)
12184 return 1;
12185
4ed6b5be
JB
12186 /* If there is a symtab, but the associated source file cannot be
12187 located, then assume this is not user code: Selecting a frame
12188 for which we cannot display the code would not be very helpful
12189 for the user. This should also take care of case such as VxWorks
12190 where the kernel has some debugging info provided for a few units. */
f7f9143b 12191
f35a17b5
JK
12192 fullname = symtab_to_fullname (sal.symtab);
12193 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12194 return 1;
12195
4ed6b5be
JB
12196 /* Check the unit filename againt the Ada runtime file naming.
12197 We also check the name of the objfile against the name of some
12198 known system libraries that sometimes come with debugging info
12199 too. */
12200
f7f9143b
JB
12201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12204 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12205 return 1;
eb822aa6
DE
12206 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12207 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12208 return 1;
f7f9143b
JB
12209 }
12210
4ed6b5be 12211 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12212
c6dc63a1
TT
12213 gdb::unique_xmalloc_ptr<char> func_name
12214 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12215 if (func_name == NULL)
12216 return 1;
12217
12218 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12221 if (re_exec (func_name.get ()))
12222 return 1;
f7f9143b
JB
12223 }
12224
12225 return 0;
12226}
12227
12228/* Find the first frame that contains debugging information and that is not
12229 part of the Ada run-time, starting from FI and moving upward. */
12230
0ef643c8 12231void
f7f9143b
JB
12232ada_find_printable_frame (struct frame_info *fi)
12233{
12234 for (; fi != NULL; fi = get_prev_frame (fi))
12235 {
12236 if (!is_known_support_routine (fi))
12237 {
12238 select_frame (fi);
12239 break;
12240 }
12241 }
12242
12243}
12244
12245/* Assuming that the inferior just triggered an unhandled exception
12246 catchpoint, return the address in inferior memory where the name
12247 of the exception is stored.
12248
12249 Return zero if the address could not be computed. */
12250
12251static CORE_ADDR
12252ada_unhandled_exception_name_addr (void)
0259addd
JB
12253{
12254 return parse_and_eval_address ("e.full_name");
12255}
12256
12257/* Same as ada_unhandled_exception_name_addr, except that this function
12258 should be used when the inferior uses an older version of the runtime,
12259 where the exception name needs to be extracted from a specific frame
12260 several frames up in the callstack. */
12261
12262static CORE_ADDR
12263ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12264{
12265 int frame_level;
12266 struct frame_info *fi;
3eecfa55 12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12268
12269 /* To determine the name of this exception, we need to select
12270 the frame corresponding to RAISE_SYM_NAME. This frame is
12271 at least 3 levels up, so we simply skip the first 3 frames
12272 without checking the name of their associated function. */
12273 fi = get_current_frame ();
12274 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 if (fi != NULL)
12276 fi = get_prev_frame (fi);
12277
12278 while (fi != NULL)
12279 {
692465f1
JB
12280 enum language func_lang;
12281
c6dc63a1
TT
12282 gdb::unique_xmalloc_ptr<char> func_name
12283 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12284 if (func_name != NULL)
12285 {
c6dc63a1 12286 if (strcmp (func_name.get (),
55b87a52
KS
12287 data->exception_info->catch_exception_sym) == 0)
12288 break; /* We found the frame we were looking for... */
12289 fi = get_prev_frame (fi);
12290 }
f7f9143b
JB
12291 }
12292
12293 if (fi == NULL)
12294 return 0;
12295
12296 select_frame (fi);
12297 return parse_and_eval_address ("id.full_name");
12298}
12299
12300/* Assuming the inferior just triggered an Ada exception catchpoint
12301 (of any type), return the address in inferior memory where the name
12302 of the exception is stored, if applicable.
12303
45db7c09
PA
12304 Assumes the selected frame is the current frame.
12305
f7f9143b
JB
12306 Return zero if the address could not be computed, or if not relevant. */
12307
12308static CORE_ADDR
761269c8 12309ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12310 struct breakpoint *b)
12311{
3eecfa55
JB
12312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12313
f7f9143b
JB
12314 switch (ex)
12315 {
761269c8 12316 case ada_catch_exception:
f7f9143b
JB
12317 return (parse_and_eval_address ("e.full_name"));
12318 break;
12319
761269c8 12320 case ada_catch_exception_unhandled:
3eecfa55 12321 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12322 break;
12323
761269c8 12324 case ada_catch_assert:
f7f9143b
JB
12325 return 0; /* Exception name is not relevant in this case. */
12326 break;
12327
12328 default:
12329 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12330 break;
12331 }
12332
12333 return 0; /* Should never be reached. */
12334}
12335
e547c119
JB
12336/* Assuming the inferior is stopped at an exception catchpoint,
12337 return the message which was associated to the exception, if
12338 available. Return NULL if the message could not be retrieved.
12339
12340 The caller must xfree the string after use.
12341
12342 Note: The exception message can be associated to an exception
12343 either through the use of the Raise_Exception function, or
12344 more simply (Ada 2005 and later), via:
12345
12346 raise Exception_Name with "exception message";
12347
12348 */
12349
12350static char *
12351ada_exception_message_1 (void)
12352{
12353 struct value *e_msg_val;
12354 char *e_msg = NULL;
12355 int e_msg_len;
12356 struct cleanup *cleanups;
12357
12358 /* For runtimes that support this feature, the exception message
12359 is passed as an unbounded string argument called "message". */
12360 e_msg_val = parse_and_eval ("message");
12361 if (e_msg_val == NULL)
12362 return NULL; /* Exception message not supported. */
12363
12364 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12365 gdb_assert (e_msg_val != NULL);
12366 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12367
12368 /* If the message string is empty, then treat it as if there was
12369 no exception message. */
12370 if (e_msg_len <= 0)
12371 return NULL;
12372
12373 e_msg = (char *) xmalloc (e_msg_len + 1);
12374 cleanups = make_cleanup (xfree, e_msg);
12375 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12376 e_msg[e_msg_len] = '\0';
12377
12378 discard_cleanups (cleanups);
12379 return e_msg;
12380}
12381
12382/* Same as ada_exception_message_1, except that all exceptions are
12383 contained here (returning NULL instead). */
12384
12385static char *
12386ada_exception_message (void)
12387{
12388 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12389
12390 TRY
12391 {
12392 e_msg = ada_exception_message_1 ();
12393 }
12394 CATCH (e, RETURN_MASK_ERROR)
12395 {
12396 e_msg = NULL;
12397 }
12398 END_CATCH
12399
12400 return e_msg;
12401}
12402
f7f9143b
JB
12403/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12404 any error that ada_exception_name_addr_1 might cause to be thrown.
12405 When an error is intercepted, a warning with the error message is printed,
12406 and zero is returned. */
12407
12408static CORE_ADDR
761269c8 12409ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12410 struct breakpoint *b)
12411{
f7f9143b
JB
12412 CORE_ADDR result = 0;
12413
492d29ea 12414 TRY
f7f9143b
JB
12415 {
12416 result = ada_exception_name_addr_1 (ex, b);
12417 }
12418
492d29ea 12419 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12420 {
12421 warning (_("failed to get exception name: %s"), e.message);
12422 return 0;
12423 }
492d29ea 12424 END_CATCH
f7f9143b
JB
12425
12426 return result;
12427}
12428
28010a5d
PA
12429static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12430
12431/* Ada catchpoints.
12432
12433 In the case of catchpoints on Ada exceptions, the catchpoint will
12434 stop the target on every exception the program throws. When a user
12435 specifies the name of a specific exception, we translate this
12436 request into a condition expression (in text form), and then parse
12437 it into an expression stored in each of the catchpoint's locations.
12438 We then use this condition to check whether the exception that was
12439 raised is the one the user is interested in. If not, then the
12440 target is resumed again. We store the name of the requested
12441 exception, in order to be able to re-set the condition expression
12442 when symbols change. */
12443
12444/* An instance of this type is used to represent an Ada catchpoint
5625a286 12445 breakpoint location. */
28010a5d 12446
5625a286 12447class ada_catchpoint_location : public bp_location
28010a5d 12448{
5625a286
PA
12449public:
12450 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12451 : bp_location (ops, owner)
12452 {}
28010a5d
PA
12453
12454 /* The condition that checks whether the exception that was raised
12455 is the specific exception the user specified on catchpoint
12456 creation. */
4d01a485 12457 expression_up excep_cond_expr;
28010a5d
PA
12458};
12459
12460/* Implement the DTOR method in the bp_location_ops structure for all
12461 Ada exception catchpoint kinds. */
12462
12463static void
12464ada_catchpoint_location_dtor (struct bp_location *bl)
12465{
12466 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12467
4d01a485 12468 al->excep_cond_expr.reset ();
28010a5d
PA
12469}
12470
12471/* The vtable to be used in Ada catchpoint locations. */
12472
12473static const struct bp_location_ops ada_catchpoint_location_ops =
12474{
12475 ada_catchpoint_location_dtor
12476};
12477
c1fc2657 12478/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12479
c1fc2657 12480struct ada_catchpoint : public breakpoint
28010a5d 12481{
c1fc2657 12482 ~ada_catchpoint () override;
28010a5d
PA
12483
12484 /* The name of the specific exception the user specified. */
12485 char *excep_string;
12486};
12487
12488/* Parse the exception condition string in the context of each of the
12489 catchpoint's locations, and store them for later evaluation. */
12490
12491static void
12492create_excep_cond_exprs (struct ada_catchpoint *c)
12493{
12494 struct cleanup *old_chain;
12495 struct bp_location *bl;
12496 char *cond_string;
12497
12498 /* Nothing to do if there's no specific exception to catch. */
12499 if (c->excep_string == NULL)
12500 return;
12501
12502 /* Same if there are no locations... */
c1fc2657 12503 if (c->loc == NULL)
28010a5d
PA
12504 return;
12505
12506 /* Compute the condition expression in text form, from the specific
12507 expection we want to catch. */
12508 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12509 old_chain = make_cleanup (xfree, cond_string);
12510
12511 /* Iterate over all the catchpoint's locations, and parse an
12512 expression for each. */
c1fc2657 12513 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12514 {
12515 struct ada_catchpoint_location *ada_loc
12516 = (struct ada_catchpoint_location *) bl;
4d01a485 12517 expression_up exp;
28010a5d
PA
12518
12519 if (!bl->shlib_disabled)
12520 {
bbc13ae3 12521 const char *s;
28010a5d
PA
12522
12523 s = cond_string;
492d29ea 12524 TRY
28010a5d 12525 {
036e657b
JB
12526 exp = parse_exp_1 (&s, bl->address,
12527 block_for_pc (bl->address),
12528 0);
28010a5d 12529 }
492d29ea 12530 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12531 {
12532 warning (_("failed to reevaluate internal exception condition "
12533 "for catchpoint %d: %s"),
c1fc2657 12534 c->number, e.message);
849f2b52 12535 }
492d29ea 12536 END_CATCH
28010a5d
PA
12537 }
12538
b22e99fd 12539 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12540 }
12541
12542 do_cleanups (old_chain);
12543}
12544
c1fc2657 12545/* ada_catchpoint destructor. */
28010a5d 12546
c1fc2657 12547ada_catchpoint::~ada_catchpoint ()
28010a5d 12548{
c1fc2657 12549 xfree (this->excep_string);
28010a5d
PA
12550}
12551
12552/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12553 structure for all exception catchpoint kinds. */
12554
12555static struct bp_location *
761269c8 12556allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12557 struct breakpoint *self)
12558{
5625a286 12559 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12560}
12561
12562/* Implement the RE_SET method in the breakpoint_ops structure for all
12563 exception catchpoint kinds. */
12564
12565static void
761269c8 12566re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12567{
12568 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12569
12570 /* Call the base class's method. This updates the catchpoint's
12571 locations. */
2060206e 12572 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12573
12574 /* Reparse the exception conditional expressions. One for each
12575 location. */
12576 create_excep_cond_exprs (c);
12577}
12578
12579/* Returns true if we should stop for this breakpoint hit. If the
12580 user specified a specific exception, we only want to cause a stop
12581 if the program thrown that exception. */
12582
12583static int
12584should_stop_exception (const struct bp_location *bl)
12585{
12586 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12587 const struct ada_catchpoint_location *ada_loc
12588 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12589 int stop;
12590
12591 /* With no specific exception, should always stop. */
12592 if (c->excep_string == NULL)
12593 return 1;
12594
12595 if (ada_loc->excep_cond_expr == NULL)
12596 {
12597 /* We will have a NULL expression if back when we were creating
12598 the expressions, this location's had failed to parse. */
12599 return 1;
12600 }
12601
12602 stop = 1;
492d29ea 12603 TRY
28010a5d
PA
12604 {
12605 struct value *mark;
12606
12607 mark = value_mark ();
4d01a485 12608 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12609 value_free_to_mark (mark);
12610 }
492d29ea
PA
12611 CATCH (ex, RETURN_MASK_ALL)
12612 {
12613 exception_fprintf (gdb_stderr, ex,
12614 _("Error in testing exception condition:\n"));
12615 }
12616 END_CATCH
12617
28010a5d
PA
12618 return stop;
12619}
12620
12621/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12622 for all exception catchpoint kinds. */
12623
12624static void
761269c8 12625check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12626{
12627 bs->stop = should_stop_exception (bs->bp_location_at);
12628}
12629
f7f9143b
JB
12630/* Implement the PRINT_IT method in the breakpoint_ops structure
12631 for all exception catchpoint kinds. */
12632
12633static enum print_stop_action
761269c8 12634print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12635{
79a45e25 12636 struct ui_out *uiout = current_uiout;
348d480f 12637 struct breakpoint *b = bs->breakpoint_at;
e547c119 12638 char *exception_message;
348d480f 12639
956a9fb9 12640 annotate_catchpoint (b->number);
f7f9143b 12641
112e8700 12642 if (uiout->is_mi_like_p ())
f7f9143b 12643 {
112e8700 12644 uiout->field_string ("reason",
956a9fb9 12645 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12646 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12647 }
12648
112e8700
SM
12649 uiout->text (b->disposition == disp_del
12650 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12651 uiout->field_int ("bkptno", b->number);
12652 uiout->text (", ");
f7f9143b 12653
45db7c09
PA
12654 /* ada_exception_name_addr relies on the selected frame being the
12655 current frame. Need to do this here because this function may be
12656 called more than once when printing a stop, and below, we'll
12657 select the first frame past the Ada run-time (see
12658 ada_find_printable_frame). */
12659 select_frame (get_current_frame ());
12660
f7f9143b
JB
12661 switch (ex)
12662 {
761269c8
JB
12663 case ada_catch_exception:
12664 case ada_catch_exception_unhandled:
956a9fb9
JB
12665 {
12666 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12667 char exception_name[256];
12668
12669 if (addr != 0)
12670 {
c714b426
PA
12671 read_memory (addr, (gdb_byte *) exception_name,
12672 sizeof (exception_name) - 1);
956a9fb9
JB
12673 exception_name [sizeof (exception_name) - 1] = '\0';
12674 }
12675 else
12676 {
12677 /* For some reason, we were unable to read the exception
12678 name. This could happen if the Runtime was compiled
12679 without debugging info, for instance. In that case,
12680 just replace the exception name by the generic string
12681 "exception" - it will read as "an exception" in the
12682 notification we are about to print. */
967cff16 12683 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12684 }
12685 /* In the case of unhandled exception breakpoints, we print
12686 the exception name as "unhandled EXCEPTION_NAME", to make
12687 it clearer to the user which kind of catchpoint just got
12688 hit. We used ui_out_text to make sure that this extra
12689 info does not pollute the exception name in the MI case. */
761269c8 12690 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12691 uiout->text ("unhandled ");
12692 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12693 }
12694 break;
761269c8 12695 case ada_catch_assert:
956a9fb9
JB
12696 /* In this case, the name of the exception is not really
12697 important. Just print "failed assertion" to make it clearer
12698 that his program just hit an assertion-failure catchpoint.
12699 We used ui_out_text because this info does not belong in
12700 the MI output. */
112e8700 12701 uiout->text ("failed assertion");
956a9fb9 12702 break;
f7f9143b 12703 }
e547c119
JB
12704
12705 exception_message = ada_exception_message ();
12706 if (exception_message != NULL)
12707 {
12708 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12709
12710 uiout->text (" (");
12711 uiout->field_string ("exception-message", exception_message);
12712 uiout->text (")");
12713
12714 do_cleanups (cleanups);
12715 }
12716
112e8700 12717 uiout->text (" at ");
956a9fb9 12718 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12719
12720 return PRINT_SRC_AND_LOC;
12721}
12722
12723/* Implement the PRINT_ONE method in the breakpoint_ops structure
12724 for all exception catchpoint kinds. */
12725
12726static void
761269c8 12727print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12728 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12729{
79a45e25 12730 struct ui_out *uiout = current_uiout;
28010a5d 12731 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12732 struct value_print_options opts;
12733
12734 get_user_print_options (&opts);
12735 if (opts.addressprint)
f7f9143b
JB
12736 {
12737 annotate_field (4);
112e8700 12738 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12739 }
12740
12741 annotate_field (5);
a6d9a66e 12742 *last_loc = b->loc;
f7f9143b
JB
12743 switch (ex)
12744 {
761269c8 12745 case ada_catch_exception:
28010a5d 12746 if (c->excep_string != NULL)
f7f9143b 12747 {
28010a5d
PA
12748 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12749
112e8700 12750 uiout->field_string ("what", msg);
f7f9143b
JB
12751 xfree (msg);
12752 }
12753 else
112e8700 12754 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12755
12756 break;
12757
761269c8 12758 case ada_catch_exception_unhandled:
112e8700 12759 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12760 break;
12761
761269c8 12762 case ada_catch_assert:
112e8700 12763 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12764 break;
12765
12766 default:
12767 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12768 break;
12769 }
12770}
12771
12772/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12773 for all exception catchpoint kinds. */
12774
12775static void
761269c8 12776print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12777 struct breakpoint *b)
12778{
28010a5d 12779 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12780 struct ui_out *uiout = current_uiout;
28010a5d 12781
112e8700 12782 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12783 : _("Catchpoint "));
112e8700
SM
12784 uiout->field_int ("bkptno", b->number);
12785 uiout->text (": ");
00eb2c4a 12786
f7f9143b
JB
12787 switch (ex)
12788 {
761269c8 12789 case ada_catch_exception:
28010a5d 12790 if (c->excep_string != NULL)
00eb2c4a
JB
12791 {
12792 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12793 struct cleanup *old_chain = make_cleanup (xfree, info);
12794
112e8700 12795 uiout->text (info);
00eb2c4a
JB
12796 do_cleanups (old_chain);
12797 }
f7f9143b 12798 else
112e8700 12799 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12800 break;
12801
761269c8 12802 case ada_catch_exception_unhandled:
112e8700 12803 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12804 break;
12805
761269c8 12806 case ada_catch_assert:
112e8700 12807 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12808 break;
12809
12810 default:
12811 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12812 break;
12813 }
12814}
12815
6149aea9
PA
12816/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12817 for all exception catchpoint kinds. */
12818
12819static void
761269c8 12820print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12821 struct breakpoint *b, struct ui_file *fp)
12822{
28010a5d
PA
12823 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12824
6149aea9
PA
12825 switch (ex)
12826 {
761269c8 12827 case ada_catch_exception:
6149aea9 12828 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12829 if (c->excep_string != NULL)
12830 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12831 break;
12832
761269c8 12833 case ada_catch_exception_unhandled:
78076abc 12834 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12835 break;
12836
761269c8 12837 case ada_catch_assert:
6149aea9
PA
12838 fprintf_filtered (fp, "catch assert");
12839 break;
12840
12841 default:
12842 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12843 }
d9b3f62e 12844 print_recreate_thread (b, fp);
6149aea9
PA
12845}
12846
f7f9143b
JB
12847/* Virtual table for "catch exception" breakpoints. */
12848
28010a5d
PA
12849static struct bp_location *
12850allocate_location_catch_exception (struct breakpoint *self)
12851{
761269c8 12852 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12853}
12854
12855static void
12856re_set_catch_exception (struct breakpoint *b)
12857{
761269c8 12858 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12859}
12860
12861static void
12862check_status_catch_exception (bpstat bs)
12863{
761269c8 12864 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12865}
12866
f7f9143b 12867static enum print_stop_action
348d480f 12868print_it_catch_exception (bpstat bs)
f7f9143b 12869{
761269c8 12870 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12871}
12872
12873static void
a6d9a66e 12874print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12875{
761269c8 12876 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12877}
12878
12879static void
12880print_mention_catch_exception (struct breakpoint *b)
12881{
761269c8 12882 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12883}
12884
6149aea9
PA
12885static void
12886print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12887{
761269c8 12888 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12889}
12890
2060206e 12891static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12892
12893/* Virtual table for "catch exception unhandled" breakpoints. */
12894
28010a5d
PA
12895static struct bp_location *
12896allocate_location_catch_exception_unhandled (struct breakpoint *self)
12897{
761269c8 12898 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12899}
12900
12901static void
12902re_set_catch_exception_unhandled (struct breakpoint *b)
12903{
761269c8 12904 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12905}
12906
12907static void
12908check_status_catch_exception_unhandled (bpstat bs)
12909{
761269c8 12910 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12911}
12912
f7f9143b 12913static enum print_stop_action
348d480f 12914print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12915{
761269c8 12916 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12917}
12918
12919static void
a6d9a66e
UW
12920print_one_catch_exception_unhandled (struct breakpoint *b,
12921 struct bp_location **last_loc)
f7f9143b 12922{
761269c8 12923 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12924}
12925
12926static void
12927print_mention_catch_exception_unhandled (struct breakpoint *b)
12928{
761269c8 12929 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12930}
12931
6149aea9
PA
12932static void
12933print_recreate_catch_exception_unhandled (struct breakpoint *b,
12934 struct ui_file *fp)
12935{
761269c8 12936 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12937}
12938
2060206e 12939static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12940
12941/* Virtual table for "catch assert" breakpoints. */
12942
28010a5d
PA
12943static struct bp_location *
12944allocate_location_catch_assert (struct breakpoint *self)
12945{
761269c8 12946 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12947}
12948
12949static void
12950re_set_catch_assert (struct breakpoint *b)
12951{
761269c8 12952 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12953}
12954
12955static void
12956check_status_catch_assert (bpstat bs)
12957{
761269c8 12958 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12959}
12960
f7f9143b 12961static enum print_stop_action
348d480f 12962print_it_catch_assert (bpstat bs)
f7f9143b 12963{
761269c8 12964 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12965}
12966
12967static void
a6d9a66e 12968print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12969{
761269c8 12970 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12971}
12972
12973static void
12974print_mention_catch_assert (struct breakpoint *b)
12975{
761269c8 12976 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12977}
12978
6149aea9
PA
12979static void
12980print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12981{
761269c8 12982 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12983}
12984
2060206e 12985static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12986
f7f9143b
JB
12987/* Return a newly allocated copy of the first space-separated token
12988 in ARGSP, and then adjust ARGSP to point immediately after that
12989 token.
12990
12991 Return NULL if ARGPS does not contain any more tokens. */
12992
12993static char *
a121b7c1 12994ada_get_next_arg (const char **argsp)
f7f9143b 12995{
a121b7c1
PA
12996 const char *args = *argsp;
12997 const char *end;
f7f9143b
JB
12998 char *result;
12999
f1735a53 13000 args = skip_spaces (args);
f7f9143b
JB
13001 if (args[0] == '\0')
13002 return NULL; /* No more arguments. */
13003
13004 /* Find the end of the current argument. */
13005
f1735a53 13006 end = skip_to_space (args);
f7f9143b
JB
13007
13008 /* Adjust ARGSP to point to the start of the next argument. */
13009
13010 *argsp = end;
13011
13012 /* Make a copy of the current argument and return it. */
13013
224c3ddb 13014 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
13015 strncpy (result, args, end - args);
13016 result[end - args] = '\0';
13017
13018 return result;
13019}
13020
13021/* Split the arguments specified in a "catch exception" command.
13022 Set EX to the appropriate catchpoint type.
28010a5d 13023 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
13024 specified by the user.
13025 If a condition is found at the end of the arguments, the condition
13026 expression is stored in COND_STRING (memory must be deallocated
13027 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13028
13029static void
a121b7c1 13030catch_ada_exception_command_split (const char *args,
761269c8 13031 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
13032 char **excep_string,
13033 char **cond_string)
f7f9143b
JB
13034{
13035 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13036 char *exception_name;
5845583d 13037 char *cond = NULL;
f7f9143b
JB
13038
13039 exception_name = ada_get_next_arg (&args);
5845583d
JB
13040 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13041 {
13042 /* This is not an exception name; this is the start of a condition
13043 expression for a catchpoint on all exceptions. So, "un-get"
13044 this token, and set exception_name to NULL. */
13045 xfree (exception_name);
13046 exception_name = NULL;
13047 args -= 2;
13048 }
f7f9143b
JB
13049 make_cleanup (xfree, exception_name);
13050
5845583d 13051 /* Check to see if we have a condition. */
f7f9143b 13052
f1735a53 13053 args = skip_spaces (args);
61012eef 13054 if (startswith (args, "if")
5845583d
JB
13055 && (isspace (args[2]) || args[2] == '\0'))
13056 {
13057 args += 2;
f1735a53 13058 args = skip_spaces (args);
5845583d
JB
13059
13060 if (args[0] == '\0')
13061 error (_("Condition missing after `if' keyword"));
13062 cond = xstrdup (args);
13063 make_cleanup (xfree, cond);
13064
13065 args += strlen (args);
13066 }
13067
13068 /* Check that we do not have any more arguments. Anything else
13069 is unexpected. */
f7f9143b
JB
13070
13071 if (args[0] != '\0')
13072 error (_("Junk at end of expression"));
13073
13074 discard_cleanups (old_chain);
13075
13076 if (exception_name == NULL)
13077 {
13078 /* Catch all exceptions. */
761269c8 13079 *ex = ada_catch_exception;
28010a5d 13080 *excep_string = NULL;
f7f9143b
JB
13081 }
13082 else if (strcmp (exception_name, "unhandled") == 0)
13083 {
13084 /* Catch unhandled exceptions. */
761269c8 13085 *ex = ada_catch_exception_unhandled;
28010a5d 13086 *excep_string = NULL;
f7f9143b
JB
13087 }
13088 else
13089 {
13090 /* Catch a specific exception. */
761269c8 13091 *ex = ada_catch_exception;
28010a5d 13092 *excep_string = exception_name;
f7f9143b 13093 }
5845583d 13094 *cond_string = cond;
f7f9143b
JB
13095}
13096
13097/* Return the name of the symbol on which we should break in order to
13098 implement a catchpoint of the EX kind. */
13099
13100static const char *
761269c8 13101ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13102{
3eecfa55
JB
13103 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13104
13105 gdb_assert (data->exception_info != NULL);
0259addd 13106
f7f9143b
JB
13107 switch (ex)
13108 {
761269c8 13109 case ada_catch_exception:
3eecfa55 13110 return (data->exception_info->catch_exception_sym);
f7f9143b 13111 break;
761269c8 13112 case ada_catch_exception_unhandled:
3eecfa55 13113 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13114 break;
761269c8 13115 case ada_catch_assert:
3eecfa55 13116 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
13117 break;
13118 default:
13119 internal_error (__FILE__, __LINE__,
13120 _("unexpected catchpoint kind (%d)"), ex);
13121 }
13122}
13123
13124/* Return the breakpoint ops "virtual table" used for catchpoints
13125 of the EX kind. */
13126
c0a91b2b 13127static const struct breakpoint_ops *
761269c8 13128ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13129{
13130 switch (ex)
13131 {
761269c8 13132 case ada_catch_exception:
f7f9143b
JB
13133 return (&catch_exception_breakpoint_ops);
13134 break;
761269c8 13135 case ada_catch_exception_unhandled:
f7f9143b
JB
13136 return (&catch_exception_unhandled_breakpoint_ops);
13137 break;
761269c8 13138 case ada_catch_assert:
f7f9143b
JB
13139 return (&catch_assert_breakpoint_ops);
13140 break;
13141 default:
13142 internal_error (__FILE__, __LINE__,
13143 _("unexpected catchpoint kind (%d)"), ex);
13144 }
13145}
13146
13147/* Return the condition that will be used to match the current exception
13148 being raised with the exception that the user wants to catch. This
13149 assumes that this condition is used when the inferior just triggered
13150 an exception catchpoint.
13151
13152 The string returned is a newly allocated string that needs to be
13153 deallocated later. */
13154
13155static char *
28010a5d 13156ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 13157{
3d0b0fa3
JB
13158 int i;
13159
0963b4bd 13160 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13161 runtime units that have been compiled without debugging info; if
28010a5d 13162 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13163 exception (e.g. "constraint_error") then, during the evaluation
13164 of the condition expression, the symbol lookup on this name would
0963b4bd 13165 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13166 may then be set only on user-defined exceptions which have the
13167 same not-fully-qualified name (e.g. my_package.constraint_error).
13168
13169 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13170 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13171 exception constraint_error" is rewritten into "catch exception
13172 standard.constraint_error".
13173
13174 If an exception named contraint_error is defined in another package of
13175 the inferior program, then the only way to specify this exception as a
13176 breakpoint condition is to use its fully-qualified named:
13177 e.g. my_package.constraint_error. */
13178
13179 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13180 {
28010a5d 13181 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13182 {
13183 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13184 excep_string);
3d0b0fa3
JB
13185 }
13186 }
28010a5d 13187 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13188}
13189
13190/* Return the symtab_and_line that should be used to insert an exception
13191 catchpoint of the TYPE kind.
13192
28010a5d
PA
13193 EXCEP_STRING should contain the name of a specific exception that
13194 the catchpoint should catch, or NULL otherwise.
f7f9143b 13195
28010a5d
PA
13196 ADDR_STRING returns the name of the function where the real
13197 breakpoint that implements the catchpoints is set, depending on the
13198 type of catchpoint we need to create. */
f7f9143b
JB
13199
13200static struct symtab_and_line
761269c8 13201ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13202 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13203{
13204 const char *sym_name;
13205 struct symbol *sym;
f7f9143b 13206
0259addd
JB
13207 /* First, find out which exception support info to use. */
13208 ada_exception_support_info_sniffer ();
13209
13210 /* Then lookup the function on which we will break in order to catch
f7f9143b 13211 the Ada exceptions requested by the user. */
f7f9143b
JB
13212 sym_name = ada_exception_sym_name (ex);
13213 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13214
f17011e0
JB
13215 /* We can assume that SYM is not NULL at this stage. If the symbol
13216 did not exist, ada_exception_support_info_sniffer would have
13217 raised an exception.
f7f9143b 13218
f17011e0
JB
13219 Also, ada_exception_support_info_sniffer should have already
13220 verified that SYM is a function symbol. */
13221 gdb_assert (sym != NULL);
13222 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13223
13224 /* Set ADDR_STRING. */
f7f9143b
JB
13225 *addr_string = xstrdup (sym_name);
13226
f7f9143b 13227 /* Set OPS. */
4b9eee8c 13228 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13229
f17011e0 13230 return find_function_start_sal (sym, 1);
f7f9143b
JB
13231}
13232
b4a5b78b 13233/* Create an Ada exception catchpoint.
f7f9143b 13234
b4a5b78b 13235 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13236
2df4d1d5
JB
13237 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13238 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13239 of the exception to which this catchpoint applies. When not NULL,
13240 the string must be allocated on the heap, and its deallocation
13241 is no longer the responsibility of the caller.
13242
13243 COND_STRING, if not NULL, is the catchpoint condition. This string
13244 must be allocated on the heap, and its deallocation is no longer
13245 the responsibility of the caller.
f7f9143b 13246
b4a5b78b
JB
13247 TEMPFLAG, if nonzero, means that the underlying breakpoint
13248 should be temporary.
28010a5d 13249
b4a5b78b 13250 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13251
349774ef 13252void
28010a5d 13253create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13254 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13255 char *excep_string,
5845583d 13256 char *cond_string,
28010a5d 13257 int tempflag,
349774ef 13258 int disabled,
28010a5d
PA
13259 int from_tty)
13260{
f2fc3015 13261 const char *addr_string = NULL;
b4a5b78b
JB
13262 const struct breakpoint_ops *ops = NULL;
13263 struct symtab_and_line sal
13264 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13265
b270e6f9
TT
13266 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13267 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13268 ops, tempflag, disabled, from_tty);
28010a5d 13269 c->excep_string = excep_string;
b270e6f9 13270 create_excep_cond_exprs (c.get ());
5845583d 13271 if (cond_string != NULL)
b270e6f9
TT
13272 set_breakpoint_condition (c.get (), cond_string, from_tty);
13273 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13274}
13275
9ac4176b
PA
13276/* Implement the "catch exception" command. */
13277
13278static void
eb4c3f4a 13279catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13280 struct cmd_list_element *command)
13281{
a121b7c1 13282 const char *arg = arg_entry;
9ac4176b
PA
13283 struct gdbarch *gdbarch = get_current_arch ();
13284 int tempflag;
761269c8 13285 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13286 char *excep_string = NULL;
5845583d 13287 char *cond_string = NULL;
9ac4176b
PA
13288
13289 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13290
13291 if (!arg)
13292 arg = "";
b4a5b78b
JB
13293 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13294 &cond_string);
13295 create_ada_exception_catchpoint (gdbarch, ex_kind,
13296 excep_string, cond_string,
349774ef
JB
13297 tempflag, 1 /* enabled */,
13298 from_tty);
9ac4176b
PA
13299}
13300
b4a5b78b 13301/* Split the arguments specified in a "catch assert" command.
5845583d 13302
b4a5b78b
JB
13303 ARGS contains the command's arguments (or the empty string if
13304 no arguments were passed).
5845583d
JB
13305
13306 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13307 (the memory needs to be deallocated after use). */
5845583d 13308
b4a5b78b 13309static void
a121b7c1 13310catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13311{
f1735a53 13312 args = skip_spaces (args);
f7f9143b 13313
5845583d 13314 /* Check whether a condition was provided. */
61012eef 13315 if (startswith (args, "if")
5845583d 13316 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13317 {
5845583d 13318 args += 2;
f1735a53 13319 args = skip_spaces (args);
5845583d
JB
13320 if (args[0] == '\0')
13321 error (_("condition missing after `if' keyword"));
13322 *cond_string = xstrdup (args);
f7f9143b
JB
13323 }
13324
5845583d
JB
13325 /* Otherwise, there should be no other argument at the end of
13326 the command. */
13327 else if (args[0] != '\0')
13328 error (_("Junk at end of arguments."));
f7f9143b
JB
13329}
13330
9ac4176b
PA
13331/* Implement the "catch assert" command. */
13332
13333static void
eb4c3f4a 13334catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13335 struct cmd_list_element *command)
13336{
a121b7c1 13337 const char *arg = arg_entry;
9ac4176b
PA
13338 struct gdbarch *gdbarch = get_current_arch ();
13339 int tempflag;
5845583d 13340 char *cond_string = NULL;
9ac4176b
PA
13341
13342 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13343
13344 if (!arg)
13345 arg = "";
b4a5b78b 13346 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13347 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13348 NULL, cond_string,
349774ef
JB
13349 tempflag, 1 /* enabled */,
13350 from_tty);
9ac4176b 13351}
778865d3
JB
13352
13353/* Return non-zero if the symbol SYM is an Ada exception object. */
13354
13355static int
13356ada_is_exception_sym (struct symbol *sym)
13357{
13358 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13359
13360 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13361 && SYMBOL_CLASS (sym) != LOC_BLOCK
13362 && SYMBOL_CLASS (sym) != LOC_CONST
13363 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13364 && type_name != NULL && strcmp (type_name, "exception") == 0);
13365}
13366
13367/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13368 Ada exception object. This matches all exceptions except the ones
13369 defined by the Ada language. */
13370
13371static int
13372ada_is_non_standard_exception_sym (struct symbol *sym)
13373{
13374 int i;
13375
13376 if (!ada_is_exception_sym (sym))
13377 return 0;
13378
13379 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13380 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13381 return 0; /* A standard exception. */
13382
13383 /* Numeric_Error is also a standard exception, so exclude it.
13384 See the STANDARD_EXC description for more details as to why
13385 this exception is not listed in that array. */
13386 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13387 return 0;
13388
13389 return 1;
13390}
13391
ab816a27 13392/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13393 objects.
13394
13395 The comparison is determined first by exception name, and then
13396 by exception address. */
13397
ab816a27 13398bool
cc536b21 13399ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13400{
778865d3
JB
13401 int result;
13402
ab816a27
TT
13403 result = strcmp (name, other.name);
13404 if (result < 0)
13405 return true;
13406 if (result == 0 && addr < other.addr)
13407 return true;
13408 return false;
13409}
778865d3 13410
ab816a27 13411bool
cc536b21 13412ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13413{
13414 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13415}
13416
13417/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13418 routine, but keeping the first SKIP elements untouched.
13419
13420 All duplicates are also removed. */
13421
13422static void
ab816a27 13423sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13424 int skip)
13425{
ab816a27
TT
13426 std::sort (exceptions->begin () + skip, exceptions->end ());
13427 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13428 exceptions->end ());
778865d3
JB
13429}
13430
778865d3
JB
13431/* Add all exceptions defined by the Ada standard whose name match
13432 a regular expression.
13433
13434 If PREG is not NULL, then this regexp_t object is used to
13435 perform the symbol name matching. Otherwise, no name-based
13436 filtering is performed.
13437
13438 EXCEPTIONS is a vector of exceptions to which matching exceptions
13439 gets pushed. */
13440
13441static void
2d7cc5c7 13442ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13443 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13444{
13445 int i;
13446
13447 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13448 {
13449 if (preg == NULL
2d7cc5c7 13450 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13451 {
13452 struct bound_minimal_symbol msymbol
13453 = ada_lookup_simple_minsym (standard_exc[i]);
13454
13455 if (msymbol.minsym != NULL)
13456 {
13457 struct ada_exc_info info
77e371c0 13458 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13459
ab816a27 13460 exceptions->push_back (info);
778865d3
JB
13461 }
13462 }
13463 }
13464}
13465
13466/* Add all Ada exceptions defined locally and accessible from the given
13467 FRAME.
13468
13469 If PREG is not NULL, then this regexp_t object is used to
13470 perform the symbol name matching. Otherwise, no name-based
13471 filtering is performed.
13472
13473 EXCEPTIONS is a vector of exceptions to which matching exceptions
13474 gets pushed. */
13475
13476static void
2d7cc5c7
PA
13477ada_add_exceptions_from_frame (compiled_regex *preg,
13478 struct frame_info *frame,
ab816a27 13479 std::vector<ada_exc_info> *exceptions)
778865d3 13480{
3977b71f 13481 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13482
13483 while (block != 0)
13484 {
13485 struct block_iterator iter;
13486 struct symbol *sym;
13487
13488 ALL_BLOCK_SYMBOLS (block, iter, sym)
13489 {
13490 switch (SYMBOL_CLASS (sym))
13491 {
13492 case LOC_TYPEDEF:
13493 case LOC_BLOCK:
13494 case LOC_CONST:
13495 break;
13496 default:
13497 if (ada_is_exception_sym (sym))
13498 {
13499 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13500 SYMBOL_VALUE_ADDRESS (sym)};
13501
ab816a27 13502 exceptions->push_back (info);
778865d3
JB
13503 }
13504 }
13505 }
13506 if (BLOCK_FUNCTION (block) != NULL)
13507 break;
13508 block = BLOCK_SUPERBLOCK (block);
13509 }
13510}
13511
14bc53a8
PA
13512/* Return true if NAME matches PREG or if PREG is NULL. */
13513
13514static bool
2d7cc5c7 13515name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13516{
13517 return (preg == NULL
2d7cc5c7 13518 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13519}
13520
778865d3
JB
13521/* Add all exceptions defined globally whose name name match
13522 a regular expression, excluding standard exceptions.
13523
13524 The reason we exclude standard exceptions is that they need
13525 to be handled separately: Standard exceptions are defined inside
13526 a runtime unit which is normally not compiled with debugging info,
13527 and thus usually do not show up in our symbol search. However,
13528 if the unit was in fact built with debugging info, we need to
13529 exclude them because they would duplicate the entry we found
13530 during the special loop that specifically searches for those
13531 standard exceptions.
13532
13533 If PREG is not NULL, then this regexp_t object is used to
13534 perform the symbol name matching. Otherwise, no name-based
13535 filtering is performed.
13536
13537 EXCEPTIONS is a vector of exceptions to which matching exceptions
13538 gets pushed. */
13539
13540static void
2d7cc5c7 13541ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13542 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13543{
13544 struct objfile *objfile;
43f3e411 13545 struct compunit_symtab *s;
778865d3 13546
14bc53a8
PA
13547 /* In Ada, the symbol "search name" is a linkage name, whereas the
13548 regular expression used to do the matching refers to the natural
13549 name. So match against the decoded name. */
13550 expand_symtabs_matching (NULL,
b5ec771e 13551 lookup_name_info::match_any (),
14bc53a8
PA
13552 [&] (const char *search_name)
13553 {
13554 const char *decoded = ada_decode (search_name);
13555 return name_matches_regex (decoded, preg);
13556 },
13557 NULL,
13558 VARIABLES_DOMAIN);
778865d3 13559
43f3e411 13560 ALL_COMPUNITS (objfile, s)
778865d3 13561 {
43f3e411 13562 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13563 int i;
13564
13565 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13566 {
13567 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13568 struct block_iterator iter;
13569 struct symbol *sym;
13570
13571 ALL_BLOCK_SYMBOLS (b, iter, sym)
13572 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13573 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13574 {
13575 struct ada_exc_info info
13576 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13577
ab816a27 13578 exceptions->push_back (info);
778865d3
JB
13579 }
13580 }
13581 }
13582}
13583
13584/* Implements ada_exceptions_list with the regular expression passed
13585 as a regex_t, rather than a string.
13586
13587 If not NULL, PREG is used to filter out exceptions whose names
13588 do not match. Otherwise, all exceptions are listed. */
13589
ab816a27 13590static std::vector<ada_exc_info>
2d7cc5c7 13591ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13592{
ab816a27 13593 std::vector<ada_exc_info> result;
778865d3
JB
13594 int prev_len;
13595
13596 /* First, list the known standard exceptions. These exceptions
13597 need to be handled separately, as they are usually defined in
13598 runtime units that have been compiled without debugging info. */
13599
13600 ada_add_standard_exceptions (preg, &result);
13601
13602 /* Next, find all exceptions whose scope is local and accessible
13603 from the currently selected frame. */
13604
13605 if (has_stack_frames ())
13606 {
ab816a27 13607 prev_len = result.size ();
778865d3
JB
13608 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13609 &result);
ab816a27 13610 if (result.size () > prev_len)
778865d3
JB
13611 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13612 }
13613
13614 /* Add all exceptions whose scope is global. */
13615
ab816a27 13616 prev_len = result.size ();
778865d3 13617 ada_add_global_exceptions (preg, &result);
ab816a27 13618 if (result.size () > prev_len)
778865d3
JB
13619 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13620
778865d3
JB
13621 return result;
13622}
13623
13624/* Return a vector of ada_exc_info.
13625
13626 If REGEXP is NULL, all exceptions are included in the result.
13627 Otherwise, it should contain a valid regular expression,
13628 and only the exceptions whose names match that regular expression
13629 are included in the result.
13630
13631 The exceptions are sorted in the following order:
13632 - Standard exceptions (defined by the Ada language), in
13633 alphabetical order;
13634 - Exceptions only visible from the current frame, in
13635 alphabetical order;
13636 - Exceptions whose scope is global, in alphabetical order. */
13637
ab816a27 13638std::vector<ada_exc_info>
778865d3
JB
13639ada_exceptions_list (const char *regexp)
13640{
2d7cc5c7
PA
13641 if (regexp == NULL)
13642 return ada_exceptions_list_1 (NULL);
778865d3 13643
2d7cc5c7
PA
13644 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13645 return ada_exceptions_list_1 (&reg);
778865d3
JB
13646}
13647
13648/* Implement the "info exceptions" command. */
13649
13650static void
1d12d88f 13651info_exceptions_command (const char *regexp, int from_tty)
778865d3 13652{
778865d3 13653 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13654
ab816a27 13655 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13656
13657 if (regexp != NULL)
13658 printf_filtered
13659 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13660 else
13661 printf_filtered (_("All defined Ada exceptions:\n"));
13662
ab816a27
TT
13663 for (const ada_exc_info &info : exceptions)
13664 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13665}
13666
4c4b4cd2
PH
13667 /* Operators */
13668/* Information about operators given special treatment in functions
13669 below. */
13670/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13671
13672#define ADA_OPERATORS \
13673 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13674 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13675 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13676 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13680 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13686 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13687 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13688 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13689 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13690 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13691 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13692
13693static void
554794dc
SDJ
13694ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13695 int *argsp)
4c4b4cd2
PH
13696{
13697 switch (exp->elts[pc - 1].opcode)
13698 {
76a01679 13699 default:
4c4b4cd2
PH
13700 operator_length_standard (exp, pc, oplenp, argsp);
13701 break;
13702
13703#define OP_DEFN(op, len, args, binop) \
13704 case op: *oplenp = len; *argsp = args; break;
13705 ADA_OPERATORS;
13706#undef OP_DEFN
52ce6436
PH
13707
13708 case OP_AGGREGATE:
13709 *oplenp = 3;
13710 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13711 break;
13712
13713 case OP_CHOICES:
13714 *oplenp = 3;
13715 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13716 break;
4c4b4cd2
PH
13717 }
13718}
13719
c0201579
JK
13720/* Implementation of the exp_descriptor method operator_check. */
13721
13722static int
13723ada_operator_check (struct expression *exp, int pos,
13724 int (*objfile_func) (struct objfile *objfile, void *data),
13725 void *data)
13726{
13727 const union exp_element *const elts = exp->elts;
13728 struct type *type = NULL;
13729
13730 switch (elts[pos].opcode)
13731 {
13732 case UNOP_IN_RANGE:
13733 case UNOP_QUAL:
13734 type = elts[pos + 1].type;
13735 break;
13736
13737 default:
13738 return operator_check_standard (exp, pos, objfile_func, data);
13739 }
13740
13741 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13742
13743 if (type && TYPE_OBJFILE (type)
13744 && (*objfile_func) (TYPE_OBJFILE (type), data))
13745 return 1;
13746
13747 return 0;
13748}
13749
a121b7c1 13750static const char *
4c4b4cd2
PH
13751ada_op_name (enum exp_opcode opcode)
13752{
13753 switch (opcode)
13754 {
76a01679 13755 default:
4c4b4cd2 13756 return op_name_standard (opcode);
52ce6436 13757
4c4b4cd2
PH
13758#define OP_DEFN(op, len, args, binop) case op: return #op;
13759 ADA_OPERATORS;
13760#undef OP_DEFN
52ce6436
PH
13761
13762 case OP_AGGREGATE:
13763 return "OP_AGGREGATE";
13764 case OP_CHOICES:
13765 return "OP_CHOICES";
13766 case OP_NAME:
13767 return "OP_NAME";
4c4b4cd2
PH
13768 }
13769}
13770
13771/* As for operator_length, but assumes PC is pointing at the first
13772 element of the operator, and gives meaningful results only for the
52ce6436 13773 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13774
13775static void
76a01679
JB
13776ada_forward_operator_length (struct expression *exp, int pc,
13777 int *oplenp, int *argsp)
4c4b4cd2 13778{
76a01679 13779 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13780 {
13781 default:
13782 *oplenp = *argsp = 0;
13783 break;
52ce6436 13784
4c4b4cd2
PH
13785#define OP_DEFN(op, len, args, binop) \
13786 case op: *oplenp = len; *argsp = args; break;
13787 ADA_OPERATORS;
13788#undef OP_DEFN
52ce6436
PH
13789
13790 case OP_AGGREGATE:
13791 *oplenp = 3;
13792 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13793 break;
13794
13795 case OP_CHOICES:
13796 *oplenp = 3;
13797 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13798 break;
13799
13800 case OP_STRING:
13801 case OP_NAME:
13802 {
13803 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13804
52ce6436
PH
13805 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13806 *argsp = 0;
13807 break;
13808 }
4c4b4cd2
PH
13809 }
13810}
13811
13812static int
13813ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13814{
13815 enum exp_opcode op = exp->elts[elt].opcode;
13816 int oplen, nargs;
13817 int pc = elt;
13818 int i;
76a01679 13819
4c4b4cd2
PH
13820 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13821
76a01679 13822 switch (op)
4c4b4cd2 13823 {
76a01679 13824 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13825 case OP_ATR_FIRST:
13826 case OP_ATR_LAST:
13827 case OP_ATR_LENGTH:
13828 case OP_ATR_IMAGE:
13829 case OP_ATR_MAX:
13830 case OP_ATR_MIN:
13831 case OP_ATR_MODULUS:
13832 case OP_ATR_POS:
13833 case OP_ATR_SIZE:
13834 case OP_ATR_TAG:
13835 case OP_ATR_VAL:
13836 break;
13837
13838 case UNOP_IN_RANGE:
13839 case UNOP_QUAL:
323e0a4a
AC
13840 /* XXX: gdb_sprint_host_address, type_sprint */
13841 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13842 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13843 fprintf_filtered (stream, " (");
13844 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13845 fprintf_filtered (stream, ")");
13846 break;
13847 case BINOP_IN_BOUNDS:
52ce6436
PH
13848 fprintf_filtered (stream, " (%d)",
13849 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13850 break;
13851 case TERNOP_IN_RANGE:
13852 break;
13853
52ce6436
PH
13854 case OP_AGGREGATE:
13855 case OP_OTHERS:
13856 case OP_DISCRETE_RANGE:
13857 case OP_POSITIONAL:
13858 case OP_CHOICES:
13859 break;
13860
13861 case OP_NAME:
13862 case OP_STRING:
13863 {
13864 char *name = &exp->elts[elt + 2].string;
13865 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13866
52ce6436
PH
13867 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13868 break;
13869 }
13870
4c4b4cd2
PH
13871 default:
13872 return dump_subexp_body_standard (exp, stream, elt);
13873 }
13874
13875 elt += oplen;
13876 for (i = 0; i < nargs; i += 1)
13877 elt = dump_subexp (exp, stream, elt);
13878
13879 return elt;
13880}
13881
13882/* The Ada extension of print_subexp (q.v.). */
13883
76a01679
JB
13884static void
13885ada_print_subexp (struct expression *exp, int *pos,
13886 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13887{
52ce6436 13888 int oplen, nargs, i;
4c4b4cd2
PH
13889 int pc = *pos;
13890 enum exp_opcode op = exp->elts[pc].opcode;
13891
13892 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13893
52ce6436 13894 *pos += oplen;
4c4b4cd2
PH
13895 switch (op)
13896 {
13897 default:
52ce6436 13898 *pos -= oplen;
4c4b4cd2
PH
13899 print_subexp_standard (exp, pos, stream, prec);
13900 return;
13901
13902 case OP_VAR_VALUE:
4c4b4cd2
PH
13903 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13904 return;
13905
13906 case BINOP_IN_BOUNDS:
323e0a4a 13907 /* XXX: sprint_subexp */
4c4b4cd2 13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13909 fputs_filtered (" in ", stream);
4c4b4cd2 13910 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13911 fputs_filtered ("'range", stream);
4c4b4cd2 13912 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13913 fprintf_filtered (stream, "(%ld)",
13914 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13915 return;
13916
13917 case TERNOP_IN_RANGE:
4c4b4cd2 13918 if (prec >= PREC_EQUAL)
76a01679 13919 fputs_filtered ("(", stream);
323e0a4a 13920 /* XXX: sprint_subexp */
4c4b4cd2 13921 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13922 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13923 print_subexp (exp, pos, stream, PREC_EQUAL);
13924 fputs_filtered (" .. ", stream);
13925 print_subexp (exp, pos, stream, PREC_EQUAL);
13926 if (prec >= PREC_EQUAL)
76a01679
JB
13927 fputs_filtered (")", stream);
13928 return;
4c4b4cd2
PH
13929
13930 case OP_ATR_FIRST:
13931 case OP_ATR_LAST:
13932 case OP_ATR_LENGTH:
13933 case OP_ATR_IMAGE:
13934 case OP_ATR_MAX:
13935 case OP_ATR_MIN:
13936 case OP_ATR_MODULUS:
13937 case OP_ATR_POS:
13938 case OP_ATR_SIZE:
13939 case OP_ATR_TAG:
13940 case OP_ATR_VAL:
4c4b4cd2 13941 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13942 {
13943 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13944 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13945 &type_print_raw_options);
76a01679
JB
13946 *pos += 3;
13947 }
4c4b4cd2 13948 else
76a01679 13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13950 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13951 if (nargs > 1)
76a01679
JB
13952 {
13953 int tem;
5b4ee69b 13954
76a01679
JB
13955 for (tem = 1; tem < nargs; tem += 1)
13956 {
13957 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13958 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13959 }
13960 fputs_filtered (")", stream);
13961 }
4c4b4cd2 13962 return;
14f9c5c9 13963
4c4b4cd2 13964 case UNOP_QUAL:
4c4b4cd2
PH
13965 type_print (exp->elts[pc + 1].type, "", stream, 0);
13966 fputs_filtered ("'(", stream);
13967 print_subexp (exp, pos, stream, PREC_PREFIX);
13968 fputs_filtered (")", stream);
13969 return;
14f9c5c9 13970
4c4b4cd2 13971 case UNOP_IN_RANGE:
323e0a4a 13972 /* XXX: sprint_subexp */
4c4b4cd2 13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13974 fputs_filtered (" in ", stream);
79d43c61
TT
13975 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13976 &type_print_raw_options);
4c4b4cd2 13977 return;
52ce6436
PH
13978
13979 case OP_DISCRETE_RANGE:
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 fputs_filtered ("..", stream);
13982 print_subexp (exp, pos, stream, PREC_SUFFIX);
13983 return;
13984
13985 case OP_OTHERS:
13986 fputs_filtered ("others => ", stream);
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 return;
13989
13990 case OP_CHOICES:
13991 for (i = 0; i < nargs-1; i += 1)
13992 {
13993 if (i > 0)
13994 fputs_filtered ("|", stream);
13995 print_subexp (exp, pos, stream, PREC_SUFFIX);
13996 }
13997 fputs_filtered (" => ", stream);
13998 print_subexp (exp, pos, stream, PREC_SUFFIX);
13999 return;
14000
14001 case OP_POSITIONAL:
14002 print_subexp (exp, pos, stream, PREC_SUFFIX);
14003 return;
14004
14005 case OP_AGGREGATE:
14006 fputs_filtered ("(", stream);
14007 for (i = 0; i < nargs; i += 1)
14008 {
14009 if (i > 0)
14010 fputs_filtered (", ", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 }
14013 fputs_filtered (")", stream);
14014 return;
4c4b4cd2
PH
14015 }
14016}
14f9c5c9
AS
14017
14018/* Table mapping opcodes into strings for printing operators
14019 and precedences of the operators. */
14020
d2e4a39e
AS
14021static const struct op_print ada_op_print_tab[] = {
14022 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14023 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14024 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14025 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14026 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14027 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14028 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14029 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14030 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14031 {">=", BINOP_GEQ, PREC_ORDER, 0},
14032 {">", BINOP_GTR, PREC_ORDER, 0},
14033 {"<", BINOP_LESS, PREC_ORDER, 0},
14034 {">>", BINOP_RSH, PREC_SHIFT, 0},
14035 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14036 {"+", BINOP_ADD, PREC_ADD, 0},
14037 {"-", BINOP_SUB, PREC_ADD, 0},
14038 {"&", BINOP_CONCAT, PREC_ADD, 0},
14039 {"*", BINOP_MUL, PREC_MUL, 0},
14040 {"/", BINOP_DIV, PREC_MUL, 0},
14041 {"rem", BINOP_REM, PREC_MUL, 0},
14042 {"mod", BINOP_MOD, PREC_MUL, 0},
14043 {"**", BINOP_EXP, PREC_REPEAT, 0},
14044 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14045 {"-", UNOP_NEG, PREC_PREFIX, 0},
14046 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14047 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14048 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14049 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14050 {".all", UNOP_IND, PREC_SUFFIX, 1},
14051 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14052 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14053 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14054};
14055\f
72d5681a
PH
14056enum ada_primitive_types {
14057 ada_primitive_type_int,
14058 ada_primitive_type_long,
14059 ada_primitive_type_short,
14060 ada_primitive_type_char,
14061 ada_primitive_type_float,
14062 ada_primitive_type_double,
14063 ada_primitive_type_void,
14064 ada_primitive_type_long_long,
14065 ada_primitive_type_long_double,
14066 ada_primitive_type_natural,
14067 ada_primitive_type_positive,
14068 ada_primitive_type_system_address,
08f49010 14069 ada_primitive_type_storage_offset,
72d5681a
PH
14070 nr_ada_primitive_types
14071};
6c038f32
PH
14072
14073static void
d4a9a881 14074ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14075 struct language_arch_info *lai)
14076{
d4a9a881 14077 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14078
72d5681a 14079 lai->primitive_type_vector
d4a9a881 14080 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14081 struct type *);
e9bb382b
UW
14082
14083 lai->primitive_type_vector [ada_primitive_type_int]
14084 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14085 0, "integer");
14086 lai->primitive_type_vector [ada_primitive_type_long]
14087 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14088 0, "long_integer");
14089 lai->primitive_type_vector [ada_primitive_type_short]
14090 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14091 0, "short_integer");
14092 lai->string_char_type
14093 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14094 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14095 lai->primitive_type_vector [ada_primitive_type_float]
14096 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14097 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14098 lai->primitive_type_vector [ada_primitive_type_double]
14099 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14100 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14101 lai->primitive_type_vector [ada_primitive_type_long_long]
14102 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14103 0, "long_long_integer");
14104 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14105 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14106 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14107 lai->primitive_type_vector [ada_primitive_type_natural]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14109 0, "natural");
14110 lai->primitive_type_vector [ada_primitive_type_positive]
14111 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14112 0, "positive");
14113 lai->primitive_type_vector [ada_primitive_type_void]
14114 = builtin->builtin_void;
14115
14116 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14117 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14118 "void"));
72d5681a
PH
14119 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14120 = "system__address";
fbb06eb1 14121
08f49010
XR
14122 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14123 type. This is a signed integral type whose size is the same as
14124 the size of addresses. */
14125 {
14126 unsigned int addr_length = TYPE_LENGTH
14127 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14128
14129 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14130 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14131 "storage_offset");
14132 }
14133
47e729a8 14134 lai->bool_type_symbol = NULL;
fbb06eb1 14135 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14136}
6c038f32
PH
14137\f
14138 /* Language vector */
14139
14140/* Not really used, but needed in the ada_language_defn. */
14141
14142static void
6c7a06a3 14143emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14144{
6c7a06a3 14145 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14146}
14147
14148static int
410a0ff2 14149parse (struct parser_state *ps)
6c038f32
PH
14150{
14151 warnings_issued = 0;
410a0ff2 14152 return ada_parse (ps);
6c038f32
PH
14153}
14154
14155static const struct exp_descriptor ada_exp_descriptor = {
14156 ada_print_subexp,
14157 ada_operator_length,
c0201579 14158 ada_operator_check,
6c038f32
PH
14159 ada_op_name,
14160 ada_dump_subexp_body,
14161 ada_evaluate_subexp
14162};
14163
b5ec771e
PA
14164/* symbol_name_matcher_ftype adapter for wild_match. */
14165
14166static bool
14167do_wild_match (const char *symbol_search_name,
14168 const lookup_name_info &lookup_name,
a207cff2 14169 completion_match_result *comp_match_res)
b5ec771e
PA
14170{
14171 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14172}
14173
14174/* symbol_name_matcher_ftype adapter for full_match. */
14175
14176static bool
14177do_full_match (const char *symbol_search_name,
14178 const lookup_name_info &lookup_name,
a207cff2 14179 completion_match_result *comp_match_res)
b5ec771e
PA
14180{
14181 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14182}
14183
14184/* Build the Ada lookup name for LOOKUP_NAME. */
14185
14186ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14187{
14188 const std::string &user_name = lookup_name.name ();
14189
14190 if (user_name[0] == '<')
14191 {
14192 if (user_name.back () == '>')
14193 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14194 else
14195 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14196 m_encoded_p = true;
14197 m_verbatim_p = true;
14198 m_wild_match_p = false;
14199 m_standard_p = false;
14200 }
14201 else
14202 {
14203 m_verbatim_p = false;
14204
14205 m_encoded_p = user_name.find ("__") != std::string::npos;
14206
14207 if (!m_encoded_p)
14208 {
14209 const char *folded = ada_fold_name (user_name.c_str ());
14210 const char *encoded = ada_encode_1 (folded, false);
14211 if (encoded != NULL)
14212 m_encoded_name = encoded;
14213 else
14214 m_encoded_name = user_name;
14215 }
14216 else
14217 m_encoded_name = user_name;
14218
14219 /* Handle the 'package Standard' special case. See description
14220 of m_standard_p. */
14221 if (startswith (m_encoded_name.c_str (), "standard__"))
14222 {
14223 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14224 m_standard_p = true;
14225 }
14226 else
14227 m_standard_p = false;
74ccd7f5 14228
b5ec771e
PA
14229 /* If the name contains a ".", then the user is entering a fully
14230 qualified entity name, and the match must not be done in wild
14231 mode. Similarly, if the user wants to complete what looks
14232 like an encoded name, the match must not be done in wild
14233 mode. Also, in the standard__ special case always do
14234 non-wild matching. */
14235 m_wild_match_p
14236 = (lookup_name.match_type () != symbol_name_match_type::FULL
14237 && !m_encoded_p
14238 && !m_standard_p
14239 && user_name.find ('.') == std::string::npos);
14240 }
14241}
14242
14243/* symbol_name_matcher_ftype method for Ada. This only handles
14244 completion mode. */
14245
14246static bool
14247ada_symbol_name_matches (const char *symbol_search_name,
14248 const lookup_name_info &lookup_name,
a207cff2 14249 completion_match_result *comp_match_res)
74ccd7f5 14250{
b5ec771e
PA
14251 return lookup_name.ada ().matches (symbol_search_name,
14252 lookup_name.match_type (),
a207cff2 14253 comp_match_res);
b5ec771e
PA
14254}
14255
14256/* Implement the "la_get_symbol_name_matcher" language_defn method for
14257 Ada. */
14258
14259static symbol_name_matcher_ftype *
14260ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14261{
14262 if (lookup_name.completion_mode ())
14263 return ada_symbol_name_matches;
74ccd7f5 14264 else
b5ec771e
PA
14265 {
14266 if (lookup_name.ada ().wild_match_p ())
14267 return do_wild_match;
14268 else
14269 return do_full_match;
14270 }
74ccd7f5
JB
14271}
14272
a5ee536b
JB
14273/* Implement the "la_read_var_value" language_defn method for Ada. */
14274
14275static struct value *
63e43d3a
PMR
14276ada_read_var_value (struct symbol *var, const struct block *var_block,
14277 struct frame_info *frame)
a5ee536b 14278{
3977b71f 14279 const struct block *frame_block = NULL;
a5ee536b
JB
14280 struct symbol *renaming_sym = NULL;
14281
14282 /* The only case where default_read_var_value is not sufficient
14283 is when VAR is a renaming... */
14284 if (frame)
14285 frame_block = get_frame_block (frame, NULL);
14286 if (frame_block)
14287 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14288 if (renaming_sym != NULL)
14289 return ada_read_renaming_var_value (renaming_sym, frame_block);
14290
14291 /* This is a typical case where we expect the default_read_var_value
14292 function to work. */
63e43d3a 14293 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14294}
14295
56618e20
TT
14296static const char *ada_extensions[] =
14297{
14298 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14299};
14300
47e77640 14301extern const struct language_defn ada_language_defn = {
6c038f32 14302 "ada", /* Language name */
6abde28f 14303 "Ada",
6c038f32 14304 language_ada,
6c038f32 14305 range_check_off,
6c038f32
PH
14306 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14307 that's not quite what this means. */
6c038f32 14308 array_row_major,
9a044a89 14309 macro_expansion_no,
56618e20 14310 ada_extensions,
6c038f32
PH
14311 &ada_exp_descriptor,
14312 parse,
b3f11165 14313 ada_yyerror,
6c038f32
PH
14314 resolve,
14315 ada_printchar, /* Print a character constant */
14316 ada_printstr, /* Function to print string constant */
14317 emit_char, /* Function to print single char (not used) */
6c038f32 14318 ada_print_type, /* Print a type using appropriate syntax */
be942545 14319 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14320 ada_val_print, /* Print a value using appropriate syntax */
14321 ada_value_print, /* Print a top-level value */
a5ee536b 14322 ada_read_var_value, /* la_read_var_value */
6c038f32 14323 NULL, /* Language specific skip_trampoline */
2b2d9e11 14324 NULL, /* name_of_this */
6c038f32
PH
14325 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14326 basic_lookup_transparent_type, /* lookup_transparent_type */
14327 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14328 ada_sniff_from_mangled_name,
0963b4bd
MS
14329 NULL, /* Language specific
14330 class_name_from_physname */
6c038f32
PH
14331 ada_op_print_tab, /* expression operators for printing */
14332 0, /* c-style arrays */
14333 1, /* String lower bound */
6c038f32 14334 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14335 ada_collect_symbol_completion_matches,
72d5681a 14336 ada_language_arch_info,
e79af960 14337 ada_print_array_index,
41f1b697 14338 default_pass_by_reference,
ae6a3a4c 14339 c_get_string,
43cc5389 14340 c_watch_location_expression,
b5ec771e 14341 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14342 ada_iterate_over_symbols,
5ffa0793 14343 default_search_name_hash,
a53b64ea 14344 &ada_varobj_ops,
bb2ec1b3
TT
14345 NULL,
14346 NULL,
6c038f32
PH
14347 LANG_MAGIC
14348};
14349
5bf03f13
JB
14350/* Command-list for the "set/show ada" prefix command. */
14351static struct cmd_list_element *set_ada_list;
14352static struct cmd_list_element *show_ada_list;
14353
14354/* Implement the "set ada" prefix command. */
14355
14356static void
981a3fb3 14357set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14358{
14359 printf_unfiltered (_(\
14360"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14361 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14362}
14363
14364/* Implement the "show ada" prefix command. */
14365
14366static void
981a3fb3 14367show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14368{
14369 cmd_show_list (show_ada_list, from_tty, "");
14370}
14371
2060206e
PA
14372static void
14373initialize_ada_catchpoint_ops (void)
14374{
14375 struct breakpoint_ops *ops;
14376
14377 initialize_breakpoint_ops ();
14378
14379 ops = &catch_exception_breakpoint_ops;
14380 *ops = bkpt_breakpoint_ops;
2060206e
PA
14381 ops->allocate_location = allocate_location_catch_exception;
14382 ops->re_set = re_set_catch_exception;
14383 ops->check_status = check_status_catch_exception;
14384 ops->print_it = print_it_catch_exception;
14385 ops->print_one = print_one_catch_exception;
14386 ops->print_mention = print_mention_catch_exception;
14387 ops->print_recreate = print_recreate_catch_exception;
14388
14389 ops = &catch_exception_unhandled_breakpoint_ops;
14390 *ops = bkpt_breakpoint_ops;
2060206e
PA
14391 ops->allocate_location = allocate_location_catch_exception_unhandled;
14392 ops->re_set = re_set_catch_exception_unhandled;
14393 ops->check_status = check_status_catch_exception_unhandled;
14394 ops->print_it = print_it_catch_exception_unhandled;
14395 ops->print_one = print_one_catch_exception_unhandled;
14396 ops->print_mention = print_mention_catch_exception_unhandled;
14397 ops->print_recreate = print_recreate_catch_exception_unhandled;
14398
14399 ops = &catch_assert_breakpoint_ops;
14400 *ops = bkpt_breakpoint_ops;
2060206e
PA
14401 ops->allocate_location = allocate_location_catch_assert;
14402 ops->re_set = re_set_catch_assert;
14403 ops->check_status = check_status_catch_assert;
14404 ops->print_it = print_it_catch_assert;
14405 ops->print_one = print_one_catch_assert;
14406 ops->print_mention = print_mention_catch_assert;
14407 ops->print_recreate = print_recreate_catch_assert;
14408}
14409
3d9434b5
JB
14410/* This module's 'new_objfile' observer. */
14411
14412static void
14413ada_new_objfile_observer (struct objfile *objfile)
14414{
14415 ada_clear_symbol_cache ();
14416}
14417
14418/* This module's 'free_objfile' observer. */
14419
14420static void
14421ada_free_objfile_observer (struct objfile *objfile)
14422{
14423 ada_clear_symbol_cache ();
14424}
14425
d2e4a39e 14426void
6c038f32 14427_initialize_ada_language (void)
14f9c5c9 14428{
2060206e
PA
14429 initialize_ada_catchpoint_ops ();
14430
5bf03f13
JB
14431 add_prefix_cmd ("ada", no_class, set_ada_command,
14432 _("Prefix command for changing Ada-specfic settings"),
14433 &set_ada_list, "set ada ", 0, &setlist);
14434
14435 add_prefix_cmd ("ada", no_class, show_ada_command,
14436 _("Generic command for showing Ada-specific settings."),
14437 &show_ada_list, "show ada ", 0, &showlist);
14438
14439 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14440 &trust_pad_over_xvs, _("\
14441Enable or disable an optimization trusting PAD types over XVS types"), _("\
14442Show whether an optimization trusting PAD types over XVS types is activated"),
14443 _("\
14444This is related to the encoding used by the GNAT compiler. The debugger\n\
14445should normally trust the contents of PAD types, but certain older versions\n\
14446of GNAT have a bug that sometimes causes the information in the PAD type\n\
14447to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14448work around this bug. It is always safe to turn this option \"off\", but\n\
14449this incurs a slight performance penalty, so it is recommended to NOT change\n\
14450this option to \"off\" unless necessary."),
14451 NULL, NULL, &set_ada_list, &show_ada_list);
14452
d72413e6
PMR
14453 add_setshow_boolean_cmd ("print-signatures", class_vars,
14454 &print_signatures, _("\
14455Enable or disable the output of formal and return types for functions in the \
14456overloads selection menu"), _("\
14457Show whether the output of formal and return types for functions in the \
14458overloads selection menu is activated"),
14459 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14460
9ac4176b
PA
14461 add_catch_command ("exception", _("\
14462Catch Ada exceptions, when raised.\n\
14463With an argument, catch only exceptions with the given name."),
14464 catch_ada_exception_command,
14465 NULL,
14466 CATCH_PERMANENT,
14467 CATCH_TEMPORARY);
14468 add_catch_command ("assert", _("\
14469Catch failed Ada assertions, when raised.\n\
14470With an argument, catch only exceptions with the given name."),
14471 catch_assert_command,
14472 NULL,
14473 CATCH_PERMANENT,
14474 CATCH_TEMPORARY);
14475
6c038f32 14476 varsize_limit = 65536;
6c038f32 14477
778865d3
JB
14478 add_info ("exceptions", info_exceptions_command,
14479 _("\
14480List all Ada exception names.\n\
14481If a regular expression is passed as an argument, only those matching\n\
14482the regular expression are listed."));
14483
c6044dd1
JB
14484 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14485 _("Set Ada maintenance-related variables."),
14486 &maint_set_ada_cmdlist, "maintenance set ada ",
14487 0/*allow-unknown*/, &maintenance_set_cmdlist);
14488
14489 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14490 _("Show Ada maintenance-related variables"),
14491 &maint_show_ada_cmdlist, "maintenance show ada ",
14492 0/*allow-unknown*/, &maintenance_show_cmdlist);
14493
14494 add_setshow_boolean_cmd
14495 ("ignore-descriptive-types", class_maintenance,
14496 &ada_ignore_descriptive_types_p,
14497 _("Set whether descriptive types generated by GNAT should be ignored."),
14498 _("Show whether descriptive types generated by GNAT should be ignored."),
14499 _("\
14500When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14501DWARF attribute."),
14502 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14503
6c038f32
PH
14504 decoded_names_store = htab_create_alloc
14505 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14506 NULL, xcalloc, xfree);
6b69afc4 14507
3d9434b5
JB
14508 /* The ada-lang observers. */
14509 observer_attach_new_objfile (ada_new_objfile_observer);
14510 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14511 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14512
14513 /* Setup various context-specific data. */
e802dbe0 14514 ada_inferior_data
8e260fc0 14515 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14516 ada_pspace_data_handle
14517 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14518}