]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
ecd75fc8 | 3 | Copyright (C) 1992-2014 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <stdio.h> |
0e9f083f | 23 | #include <string.h> |
14f9c5c9 AS |
24 | #include <ctype.h> |
25 | #include <stdarg.h> | |
26 | #include "demangle.h" | |
4c4b4cd2 PH |
27 | #include "gdb_regex.h" |
28 | #include "frame.h" | |
14f9c5c9 AS |
29 | #include "symtab.h" |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "expression.h" | |
33 | #include "parser-defs.h" | |
34 | #include "language.h" | |
a53b64ea | 35 | #include "varobj.h" |
14f9c5c9 AS |
36 | #include "c-lang.h" |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 | 45 | #include "completer.h" |
53ce3c39 | 46 | #include <sys/stat.h> |
14f9c5c9 | 47 | #include "ui-out.h" |
fe898f56 | 48 | #include "block.h" |
04714b91 | 49 | #include "infcall.h" |
de4f826b | 50 | #include "dictionary.h" |
60250e8b | 51 | #include "exceptions.h" |
f7f9143b JB |
52 | #include "annotate.h" |
53 | #include "valprint.h" | |
9bbc9174 | 54 | #include "source.h" |
0259addd | 55 | #include "observer.h" |
2ba95b9b | 56 | #include "vec.h" |
692465f1 | 57 | #include "stack.h" |
fa864999 | 58 | #include "gdb_vecs.h" |
79d43c61 | 59 | #include "typeprint.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
0fcd72ba | 65 | #include "cli/cli-utils.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 128 | struct symbol *, const struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 150 | const struct block *); |
aeb5907d | 151 | |
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
0d5cff50 | 224 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
852dff6c JB |
272 | |
273 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
274 | \f |
275 | ||
76a01679 | 276 | |
4c4b4cd2 | 277 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
278 | static unsigned int varsize_limit; |
279 | ||
4c4b4cd2 PH |
280 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
281 | returned by a function that does not return a const char *. */ | |
282 | static char *ada_completer_word_break_characters = | |
283 | #ifdef VMS | |
284 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
285 | #else | |
14f9c5c9 | 286 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 287 | #endif |
14f9c5c9 | 288 | |
4c4b4cd2 | 289 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 290 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 291 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 292 | |
4c4b4cd2 PH |
293 | /* Limit on the number of warnings to raise per expression evaluation. */ |
294 | static int warning_limit = 2; | |
295 | ||
296 | /* Number of warning messages issued; reset to 0 by cleanups after | |
297 | expression evaluation. */ | |
298 | static int warnings_issued = 0; | |
299 | ||
300 | static const char *known_runtime_file_name_patterns[] = { | |
301 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | static const char *known_auxiliary_function_name_patterns[] = { | |
305 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
306 | }; | |
307 | ||
308 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
309 | static struct obstack symbol_list_obstack; | |
310 | ||
e802dbe0 JB |
311 | /* Inferior-specific data. */ |
312 | ||
313 | /* Per-inferior data for this module. */ | |
314 | ||
315 | struct ada_inferior_data | |
316 | { | |
317 | /* The ada__tags__type_specific_data type, which is used when decoding | |
318 | tagged types. With older versions of GNAT, this type was directly | |
319 | accessible through a component ("tsd") in the object tag. But this | |
320 | is no longer the case, so we cache it for each inferior. */ | |
321 | struct type *tsd_type; | |
3eecfa55 JB |
322 | |
323 | /* The exception_support_info data. This data is used to determine | |
324 | how to implement support for Ada exception catchpoints in a given | |
325 | inferior. */ | |
326 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
327 | }; |
328 | ||
329 | /* Our key to this module's inferior data. */ | |
330 | static const struct inferior_data *ada_inferior_data; | |
331 | ||
332 | /* A cleanup routine for our inferior data. */ | |
333 | static void | |
334 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
335 | { | |
336 | struct ada_inferior_data *data; | |
337 | ||
338 | data = inferior_data (inf, ada_inferior_data); | |
339 | if (data != NULL) | |
340 | xfree (data); | |
341 | } | |
342 | ||
343 | /* Return our inferior data for the given inferior (INF). | |
344 | ||
345 | This function always returns a valid pointer to an allocated | |
346 | ada_inferior_data structure. If INF's inferior data has not | |
347 | been previously set, this functions creates a new one with all | |
348 | fields set to zero, sets INF's inferior to it, and then returns | |
349 | a pointer to that newly allocated ada_inferior_data. */ | |
350 | ||
351 | static struct ada_inferior_data * | |
352 | get_ada_inferior_data (struct inferior *inf) | |
353 | { | |
354 | struct ada_inferior_data *data; | |
355 | ||
356 | data = inferior_data (inf, ada_inferior_data); | |
357 | if (data == NULL) | |
358 | { | |
41bf6aca | 359 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
360 | set_inferior_data (inf, ada_inferior_data, data); |
361 | } | |
362 | ||
363 | return data; | |
364 | } | |
365 | ||
366 | /* Perform all necessary cleanups regarding our module's inferior data | |
367 | that is required after the inferior INF just exited. */ | |
368 | ||
369 | static void | |
370 | ada_inferior_exit (struct inferior *inf) | |
371 | { | |
372 | ada_inferior_data_cleanup (inf, NULL); | |
373 | set_inferior_data (inf, ada_inferior_data, NULL); | |
374 | } | |
375 | ||
4c4b4cd2 PH |
376 | /* Utilities */ |
377 | ||
720d1a40 | 378 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 379 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
380 | |
381 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
382 | In other words, we really expect the target type of a typedef type to be | |
383 | a non-typedef type. This is particularly true for Ada units, because | |
384 | the language does not have a typedef vs not-typedef distinction. | |
385 | In that respect, the Ada compiler has been trying to eliminate as many | |
386 | typedef definitions in the debugging information, since they generally | |
387 | do not bring any extra information (we still use typedef under certain | |
388 | circumstances related mostly to the GNAT encoding). | |
389 | ||
390 | Unfortunately, we have seen situations where the debugging information | |
391 | generated by the compiler leads to such multiple typedef layers. For | |
392 | instance, consider the following example with stabs: | |
393 | ||
394 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
395 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
396 | ||
397 | This is an error in the debugging information which causes type | |
398 | pck__float_array___XUP to be defined twice, and the second time, | |
399 | it is defined as a typedef of a typedef. | |
400 | ||
401 | This is on the fringe of legality as far as debugging information is | |
402 | concerned, and certainly unexpected. But it is easy to handle these | |
403 | situations correctly, so we can afford to be lenient in this case. */ | |
404 | ||
405 | static struct type * | |
406 | ada_typedef_target_type (struct type *type) | |
407 | { | |
408 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
409 | type = TYPE_TARGET_TYPE (type); | |
410 | return type; | |
411 | } | |
412 | ||
41d27058 JB |
413 | /* Given DECODED_NAME a string holding a symbol name in its |
414 | decoded form (ie using the Ada dotted notation), returns | |
415 | its unqualified name. */ | |
416 | ||
417 | static const char * | |
418 | ada_unqualified_name (const char *decoded_name) | |
419 | { | |
420 | const char *result = strrchr (decoded_name, '.'); | |
421 | ||
422 | if (result != NULL) | |
423 | result++; /* Skip the dot... */ | |
424 | else | |
425 | result = decoded_name; | |
426 | ||
427 | return result; | |
428 | } | |
429 | ||
430 | /* Return a string starting with '<', followed by STR, and '>'. | |
431 | The result is good until the next call. */ | |
432 | ||
433 | static char * | |
434 | add_angle_brackets (const char *str) | |
435 | { | |
436 | static char *result = NULL; | |
437 | ||
438 | xfree (result); | |
88c15c34 | 439 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
440 | return result; |
441 | } | |
96d887e8 | 442 | |
4c4b4cd2 PH |
443 | static char * |
444 | ada_get_gdb_completer_word_break_characters (void) | |
445 | { | |
446 | return ada_completer_word_break_characters; | |
447 | } | |
448 | ||
e79af960 JB |
449 | /* Print an array element index using the Ada syntax. */ |
450 | ||
451 | static void | |
452 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 453 | const struct value_print_options *options) |
e79af960 | 454 | { |
79a45b7d | 455 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
456 | fprintf_filtered (stream, " => "); |
457 | } | |
458 | ||
f27cf670 | 459 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 460 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 461 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 462 | |
f27cf670 AS |
463 | void * |
464 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 465 | { |
d2e4a39e AS |
466 | if (*size < min_size) |
467 | { | |
468 | *size *= 2; | |
469 | if (*size < min_size) | |
4c4b4cd2 | 470 | *size = min_size; |
f27cf670 | 471 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 472 | } |
f27cf670 | 473 | return vect; |
14f9c5c9 AS |
474 | } |
475 | ||
476 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 477 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
478 | |
479 | static int | |
ebf56fd3 | 480 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
481 | { |
482 | int len = strlen (target); | |
5b4ee69b | 483 | |
d2e4a39e | 484 | return |
4c4b4cd2 PH |
485 | (strncmp (field_name, target, len) == 0 |
486 | && (field_name[len] == '\0' | |
487 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
488 | && strcmp (field_name + strlen (field_name) - 6, |
489 | "___XVN") != 0))); | |
14f9c5c9 AS |
490 | } |
491 | ||
492 | ||
872c8b51 JB |
493 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
494 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
495 | and return its index. This function also handles fields whose name | |
496 | have ___ suffixes because the compiler sometimes alters their name | |
497 | by adding such a suffix to represent fields with certain constraints. | |
498 | If the field could not be found, return a negative number if | |
499 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
500 | |
501 | int | |
502 | ada_get_field_index (const struct type *type, const char *field_name, | |
503 | int maybe_missing) | |
504 | { | |
505 | int fieldno; | |
872c8b51 JB |
506 | struct type *struct_type = check_typedef ((struct type *) type); |
507 | ||
508 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
509 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
510 | return fieldno; |
511 | ||
512 | if (!maybe_missing) | |
323e0a4a | 513 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 514 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
515 | |
516 | return -1; | |
517 | } | |
518 | ||
519 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
520 | |
521 | int | |
d2e4a39e | 522 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
523 | { |
524 | if (name == NULL) | |
525 | return 0; | |
d2e4a39e | 526 | else |
14f9c5c9 | 527 | { |
d2e4a39e | 528 | const char *p = strstr (name, "___"); |
5b4ee69b | 529 | |
14f9c5c9 | 530 | if (p == NULL) |
4c4b4cd2 | 531 | return strlen (name); |
14f9c5c9 | 532 | else |
4c4b4cd2 | 533 | return p - name; |
14f9c5c9 AS |
534 | } |
535 | } | |
536 | ||
4c4b4cd2 PH |
537 | /* Return non-zero if SUFFIX is a suffix of STR. |
538 | Return zero if STR is null. */ | |
539 | ||
14f9c5c9 | 540 | static int |
d2e4a39e | 541 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
542 | { |
543 | int len1, len2; | |
5b4ee69b | 544 | |
14f9c5c9 AS |
545 | if (str == NULL) |
546 | return 0; | |
547 | len1 = strlen (str); | |
548 | len2 = strlen (suffix); | |
4c4b4cd2 | 549 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
550 | } |
551 | ||
4c4b4cd2 PH |
552 | /* The contents of value VAL, treated as a value of type TYPE. The |
553 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 554 | |
d2e4a39e | 555 | static struct value * |
4c4b4cd2 | 556 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 557 | { |
61ee279c | 558 | type = ada_check_typedef (type); |
df407dfe | 559 | if (value_type (val) == type) |
4c4b4cd2 | 560 | return val; |
d2e4a39e | 561 | else |
14f9c5c9 | 562 | { |
4c4b4cd2 PH |
563 | struct value *result; |
564 | ||
565 | /* Make sure that the object size is not unreasonable before | |
566 | trying to allocate some memory for it. */ | |
714e53ab | 567 | check_size (type); |
4c4b4cd2 | 568 | |
41e8491f JK |
569 | if (value_lazy (val) |
570 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
571 | result = allocate_value_lazy (type); | |
572 | else | |
573 | { | |
574 | result = allocate_value (type); | |
575 | memcpy (value_contents_raw (result), value_contents (val), | |
576 | TYPE_LENGTH (type)); | |
577 | } | |
74bcbdf3 | 578 | set_value_component_location (result, val); |
9bbda503 AC |
579 | set_value_bitsize (result, value_bitsize (val)); |
580 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 581 | set_value_address (result, value_address (val)); |
eca07816 | 582 | set_value_optimized_out (result, value_optimized_out_const (val)); |
14f9c5c9 AS |
583 | return result; |
584 | } | |
585 | } | |
586 | ||
fc1a4b47 AC |
587 | static const gdb_byte * |
588 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
589 | { |
590 | if (valaddr == NULL) | |
591 | return NULL; | |
592 | else | |
593 | return valaddr + offset; | |
594 | } | |
595 | ||
596 | static CORE_ADDR | |
ebf56fd3 | 597 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
598 | { |
599 | if (address == 0) | |
600 | return 0; | |
d2e4a39e | 601 | else |
14f9c5c9 AS |
602 | return address + offset; |
603 | } | |
604 | ||
4c4b4cd2 PH |
605 | /* Issue a warning (as for the definition of warning in utils.c, but |
606 | with exactly one argument rather than ...), unless the limit on the | |
607 | number of warnings has passed during the evaluation of the current | |
608 | expression. */ | |
a2249542 | 609 | |
77109804 AC |
610 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
611 | provided by "complaint". */ | |
a0b31db1 | 612 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 613 | |
14f9c5c9 | 614 | static void |
a2249542 | 615 | lim_warning (const char *format, ...) |
14f9c5c9 | 616 | { |
a2249542 | 617 | va_list args; |
a2249542 | 618 | |
5b4ee69b | 619 | va_start (args, format); |
4c4b4cd2 PH |
620 | warnings_issued += 1; |
621 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
622 | vwarning (format, args); |
623 | ||
624 | va_end (args); | |
4c4b4cd2 PH |
625 | } |
626 | ||
714e53ab PH |
627 | /* Issue an error if the size of an object of type T is unreasonable, |
628 | i.e. if it would be a bad idea to allocate a value of this type in | |
629 | GDB. */ | |
630 | ||
631 | static void | |
632 | check_size (const struct type *type) | |
633 | { | |
634 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 635 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
636 | } |
637 | ||
0963b4bd | 638 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 639 | static LONGEST |
c3e5cd34 | 640 | max_of_size (int size) |
4c4b4cd2 | 641 | { |
76a01679 | 642 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 643 | |
76a01679 | 644 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
645 | } |
646 | ||
0963b4bd | 647 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 648 | static LONGEST |
c3e5cd34 | 649 | min_of_size (int size) |
4c4b4cd2 | 650 | { |
c3e5cd34 | 651 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
652 | } |
653 | ||
0963b4bd | 654 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 655 | static ULONGEST |
c3e5cd34 | 656 | umax_of_size (int size) |
4c4b4cd2 | 657 | { |
76a01679 | 658 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 659 | |
76a01679 | 660 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
661 | } |
662 | ||
0963b4bd | 663 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
664 | static LONGEST |
665 | max_of_type (struct type *t) | |
4c4b4cd2 | 666 | { |
c3e5cd34 PH |
667 | if (TYPE_UNSIGNED (t)) |
668 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
669 | else | |
670 | return max_of_size (TYPE_LENGTH (t)); | |
671 | } | |
672 | ||
0963b4bd | 673 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
674 | static LONGEST |
675 | min_of_type (struct type *t) | |
676 | { | |
677 | if (TYPE_UNSIGNED (t)) | |
678 | return 0; | |
679 | else | |
680 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
681 | } |
682 | ||
683 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
684 | LONGEST |
685 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 686 | { |
76a01679 | 687 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
688 | { |
689 | case TYPE_CODE_RANGE: | |
690cc4eb | 690 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 691 | case TYPE_CODE_ENUM: |
14e75d8e | 692 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
693 | case TYPE_CODE_BOOL: |
694 | return 1; | |
695 | case TYPE_CODE_CHAR: | |
76a01679 | 696 | case TYPE_CODE_INT: |
690cc4eb | 697 | return max_of_type (type); |
4c4b4cd2 | 698 | default: |
43bbcdc2 | 699 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
700 | } |
701 | } | |
702 | ||
14e75d8e | 703 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
704 | LONGEST |
705 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 706 | { |
76a01679 | 707 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
708 | { |
709 | case TYPE_CODE_RANGE: | |
690cc4eb | 710 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 711 | case TYPE_CODE_ENUM: |
14e75d8e | 712 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
713 | case TYPE_CODE_BOOL: |
714 | return 0; | |
715 | case TYPE_CODE_CHAR: | |
76a01679 | 716 | case TYPE_CODE_INT: |
690cc4eb | 717 | return min_of_type (type); |
4c4b4cd2 | 718 | default: |
43bbcdc2 | 719 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
720 | } |
721 | } | |
722 | ||
723 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 724 | non-range scalar type. */ |
4c4b4cd2 PH |
725 | |
726 | static struct type * | |
18af8284 | 727 | get_base_type (struct type *type) |
4c4b4cd2 PH |
728 | { |
729 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
730 | { | |
76a01679 JB |
731 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
732 | return type; | |
4c4b4cd2 PH |
733 | type = TYPE_TARGET_TYPE (type); |
734 | } | |
735 | return type; | |
14f9c5c9 | 736 | } |
41246937 JB |
737 | |
738 | /* Return a decoded version of the given VALUE. This means returning | |
739 | a value whose type is obtained by applying all the GNAT-specific | |
740 | encondings, making the resulting type a static but standard description | |
741 | of the initial type. */ | |
742 | ||
743 | struct value * | |
744 | ada_get_decoded_value (struct value *value) | |
745 | { | |
746 | struct type *type = ada_check_typedef (value_type (value)); | |
747 | ||
748 | if (ada_is_array_descriptor_type (type) | |
749 | || (ada_is_constrained_packed_array_type (type) | |
750 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
751 | { | |
752 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
753 | value = ada_coerce_to_simple_array_ptr (value); | |
754 | else | |
755 | value = ada_coerce_to_simple_array (value); | |
756 | } | |
757 | else | |
758 | value = ada_to_fixed_value (value); | |
759 | ||
760 | return value; | |
761 | } | |
762 | ||
763 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
764 | Because there is no associated actual value for this type, | |
765 | the resulting type might be a best-effort approximation in | |
766 | the case of dynamic types. */ | |
767 | ||
768 | struct type * | |
769 | ada_get_decoded_type (struct type *type) | |
770 | { | |
771 | type = to_static_fixed_type (type); | |
772 | if (ada_is_constrained_packed_array_type (type)) | |
773 | type = ada_coerce_to_simple_array_type (type); | |
774 | return type; | |
775 | } | |
776 | ||
4c4b4cd2 | 777 | \f |
76a01679 | 778 | |
4c4b4cd2 | 779 | /* Language Selection */ |
14f9c5c9 AS |
780 | |
781 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 782 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 783 | |
14f9c5c9 | 784 | enum language |
ccefe4c4 | 785 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 786 | { |
d2e4a39e | 787 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
788 | (struct objfile *) NULL) != NULL) |
789 | return language_ada; | |
14f9c5c9 AS |
790 | |
791 | return lang; | |
792 | } | |
96d887e8 PH |
793 | |
794 | /* If the main procedure is written in Ada, then return its name. | |
795 | The result is good until the next call. Return NULL if the main | |
796 | procedure doesn't appear to be in Ada. */ | |
797 | ||
798 | char * | |
799 | ada_main_name (void) | |
800 | { | |
801 | struct minimal_symbol *msym; | |
f9bc20b9 | 802 | static char *main_program_name = NULL; |
6c038f32 | 803 | |
96d887e8 PH |
804 | /* For Ada, the name of the main procedure is stored in a specific |
805 | string constant, generated by the binder. Look for that symbol, | |
806 | extract its address, and then read that string. If we didn't find | |
807 | that string, then most probably the main procedure is not written | |
808 | in Ada. */ | |
809 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
810 | ||
811 | if (msym != NULL) | |
812 | { | |
f9bc20b9 JB |
813 | CORE_ADDR main_program_name_addr; |
814 | int err_code; | |
815 | ||
96d887e8 PH |
816 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
817 | if (main_program_name_addr == 0) | |
323e0a4a | 818 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 819 | |
f9bc20b9 JB |
820 | xfree (main_program_name); |
821 | target_read_string (main_program_name_addr, &main_program_name, | |
822 | 1024, &err_code); | |
823 | ||
824 | if (err_code != 0) | |
825 | return NULL; | |
96d887e8 PH |
826 | return main_program_name; |
827 | } | |
828 | ||
829 | /* The main procedure doesn't seem to be in Ada. */ | |
830 | return NULL; | |
831 | } | |
14f9c5c9 | 832 | \f |
4c4b4cd2 | 833 | /* Symbols */ |
d2e4a39e | 834 | |
4c4b4cd2 PH |
835 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
836 | of NULLs. */ | |
14f9c5c9 | 837 | |
d2e4a39e AS |
838 | const struct ada_opname_map ada_opname_table[] = { |
839 | {"Oadd", "\"+\"", BINOP_ADD}, | |
840 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
841 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
842 | {"Odivide", "\"/\"", BINOP_DIV}, | |
843 | {"Omod", "\"mod\"", BINOP_MOD}, | |
844 | {"Orem", "\"rem\"", BINOP_REM}, | |
845 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
846 | {"Olt", "\"<\"", BINOP_LESS}, | |
847 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
848 | {"Ogt", "\">\"", BINOP_GTR}, | |
849 | {"Oge", "\">=\"", BINOP_GEQ}, | |
850 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
851 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
852 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
853 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
854 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
855 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
856 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
857 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
858 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
859 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
860 | {NULL, NULL} | |
14f9c5c9 AS |
861 | }; |
862 | ||
4c4b4cd2 PH |
863 | /* The "encoded" form of DECODED, according to GNAT conventions. |
864 | The result is valid until the next call to ada_encode. */ | |
865 | ||
14f9c5c9 | 866 | char * |
4c4b4cd2 | 867 | ada_encode (const char *decoded) |
14f9c5c9 | 868 | { |
4c4b4cd2 PH |
869 | static char *encoding_buffer = NULL; |
870 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 871 | const char *p; |
14f9c5c9 | 872 | int k; |
d2e4a39e | 873 | |
4c4b4cd2 | 874 | if (decoded == NULL) |
14f9c5c9 AS |
875 | return NULL; |
876 | ||
4c4b4cd2 PH |
877 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
878 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
879 | |
880 | k = 0; | |
4c4b4cd2 | 881 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 882 | { |
cdc7bb92 | 883 | if (*p == '.') |
4c4b4cd2 PH |
884 | { |
885 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
886 | k += 2; | |
887 | } | |
14f9c5c9 | 888 | else if (*p == '"') |
4c4b4cd2 PH |
889 | { |
890 | const struct ada_opname_map *mapping; | |
891 | ||
892 | for (mapping = ada_opname_table; | |
1265e4aa JB |
893 | mapping->encoded != NULL |
894 | && strncmp (mapping->decoded, p, | |
895 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
896 | ; |
897 | if (mapping->encoded == NULL) | |
323e0a4a | 898 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
899 | strcpy (encoding_buffer + k, mapping->encoded); |
900 | k += strlen (mapping->encoded); | |
901 | break; | |
902 | } | |
d2e4a39e | 903 | else |
4c4b4cd2 PH |
904 | { |
905 | encoding_buffer[k] = *p; | |
906 | k += 1; | |
907 | } | |
14f9c5c9 AS |
908 | } |
909 | ||
4c4b4cd2 PH |
910 | encoding_buffer[k] = '\0'; |
911 | return encoding_buffer; | |
14f9c5c9 AS |
912 | } |
913 | ||
914 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
915 | quotes, unfolded, but with the quotes stripped away. Result good |
916 | to next call. */ | |
917 | ||
d2e4a39e AS |
918 | char * |
919 | ada_fold_name (const char *name) | |
14f9c5c9 | 920 | { |
d2e4a39e | 921 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
922 | static size_t fold_buffer_size = 0; |
923 | ||
924 | int len = strlen (name); | |
d2e4a39e | 925 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
926 | |
927 | if (name[0] == '\'') | |
928 | { | |
d2e4a39e AS |
929 | strncpy (fold_buffer, name + 1, len - 2); |
930 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
931 | } |
932 | else | |
933 | { | |
934 | int i; | |
5b4ee69b | 935 | |
14f9c5c9 | 936 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 937 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
938 | } |
939 | ||
940 | return fold_buffer; | |
941 | } | |
942 | ||
529cad9c PH |
943 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
944 | ||
945 | static int | |
946 | is_lower_alphanum (const char c) | |
947 | { | |
948 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
949 | } | |
950 | ||
c90092fe JB |
951 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
952 | This function saves in LEN the length of that same symbol name but | |
953 | without either of these suffixes: | |
29480c32 JB |
954 | . .{DIGIT}+ |
955 | . ${DIGIT}+ | |
956 | . ___{DIGIT}+ | |
957 | . __{DIGIT}+. | |
c90092fe | 958 | |
29480c32 JB |
959 | These are suffixes introduced by the compiler for entities such as |
960 | nested subprogram for instance, in order to avoid name clashes. | |
961 | They do not serve any purpose for the debugger. */ | |
962 | ||
963 | static void | |
964 | ada_remove_trailing_digits (const char *encoded, int *len) | |
965 | { | |
966 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
967 | { | |
968 | int i = *len - 2; | |
5b4ee69b | 969 | |
29480c32 JB |
970 | while (i > 0 && isdigit (encoded[i])) |
971 | i--; | |
972 | if (i >= 0 && encoded[i] == '.') | |
973 | *len = i; | |
974 | else if (i >= 0 && encoded[i] == '$') | |
975 | *len = i; | |
976 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
977 | *len = i - 2; | |
978 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
979 | *len = i - 1; | |
980 | } | |
981 | } | |
982 | ||
983 | /* Remove the suffix introduced by the compiler for protected object | |
984 | subprograms. */ | |
985 | ||
986 | static void | |
987 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
988 | { | |
989 | /* Remove trailing N. */ | |
990 | ||
991 | /* Protected entry subprograms are broken into two | |
992 | separate subprograms: The first one is unprotected, and has | |
993 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 994 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
995 | the protection. Since the P subprograms are internally generated, |
996 | we leave these names undecoded, giving the user a clue that this | |
997 | entity is internal. */ | |
998 | ||
999 | if (*len > 1 | |
1000 | && encoded[*len - 1] == 'N' | |
1001 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1002 | *len = *len - 1; | |
1003 | } | |
1004 | ||
69fadcdf JB |
1005 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1006 | ||
1007 | static void | |
1008 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1009 | { | |
1010 | int i = *len - 1; | |
1011 | ||
1012 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1013 | i--; | |
1014 | ||
1015 | if (encoded[i] != 'X') | |
1016 | return; | |
1017 | ||
1018 | if (i == 0) | |
1019 | return; | |
1020 | ||
1021 | if (isalnum (encoded[i-1])) | |
1022 | *len = i; | |
1023 | } | |
1024 | ||
29480c32 JB |
1025 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1026 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1027 | replaced by ENCODED. | |
14f9c5c9 | 1028 | |
4c4b4cd2 | 1029 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1030 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1031 | is returned. */ |
1032 | ||
1033 | const char * | |
1034 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1035 | { |
1036 | int i, j; | |
1037 | int len0; | |
d2e4a39e | 1038 | const char *p; |
4c4b4cd2 | 1039 | char *decoded; |
14f9c5c9 | 1040 | int at_start_name; |
4c4b4cd2 PH |
1041 | static char *decoding_buffer = NULL; |
1042 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1043 | |
29480c32 JB |
1044 | /* The name of the Ada main procedure starts with "_ada_". |
1045 | This prefix is not part of the decoded name, so skip this part | |
1046 | if we see this prefix. */ | |
4c4b4cd2 PH |
1047 | if (strncmp (encoded, "_ada_", 5) == 0) |
1048 | encoded += 5; | |
14f9c5c9 | 1049 | |
29480c32 JB |
1050 | /* If the name starts with '_', then it is not a properly encoded |
1051 | name, so do not attempt to decode it. Similarly, if the name | |
1052 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1053 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1054 | goto Suppress; |
1055 | ||
4c4b4cd2 | 1056 | len0 = strlen (encoded); |
4c4b4cd2 | 1057 | |
29480c32 JB |
1058 | ada_remove_trailing_digits (encoded, &len0); |
1059 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1060 | |
4c4b4cd2 PH |
1061 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1062 | the suffix is located before the current "end" of ENCODED. We want | |
1063 | to avoid re-matching parts of ENCODED that have previously been | |
1064 | marked as discarded (by decrementing LEN0). */ | |
1065 | p = strstr (encoded, "___"); | |
1066 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1067 | { |
1068 | if (p[3] == 'X') | |
4c4b4cd2 | 1069 | len0 = p - encoded; |
14f9c5c9 | 1070 | else |
4c4b4cd2 | 1071 | goto Suppress; |
14f9c5c9 | 1072 | } |
4c4b4cd2 | 1073 | |
29480c32 JB |
1074 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1075 | is for the body of a task, but that information does not actually | |
1076 | appear in the decoded name. */ | |
1077 | ||
4c4b4cd2 | 1078 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1079 | len0 -= 3; |
76a01679 | 1080 | |
a10967fa JB |
1081 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1082 | from the TKB suffix because it is used for non-anonymous task | |
1083 | bodies. */ | |
1084 | ||
1085 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1086 | len0 -= 2; | |
1087 | ||
29480c32 JB |
1088 | /* Remove trailing "B" suffixes. */ |
1089 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1090 | ||
4c4b4cd2 | 1091 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1092 | len0 -= 1; |
1093 | ||
4c4b4cd2 | 1094 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1095 | |
4c4b4cd2 PH |
1096 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1097 | decoded = decoding_buffer; | |
14f9c5c9 | 1098 | |
29480c32 JB |
1099 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1100 | ||
4c4b4cd2 | 1101 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1102 | { |
4c4b4cd2 PH |
1103 | i = len0 - 2; |
1104 | while ((i >= 0 && isdigit (encoded[i])) | |
1105 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1106 | i -= 1; | |
1107 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1108 | len0 = i - 1; | |
1109 | else if (encoded[i] == '$') | |
1110 | len0 = i; | |
d2e4a39e | 1111 | } |
14f9c5c9 | 1112 | |
29480c32 JB |
1113 | /* The first few characters that are not alphabetic are not part |
1114 | of any encoding we use, so we can copy them over verbatim. */ | |
1115 | ||
4c4b4cd2 PH |
1116 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1117 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1118 | |
1119 | at_start_name = 1; | |
1120 | while (i < len0) | |
1121 | { | |
29480c32 | 1122 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1123 | if (at_start_name && encoded[i] == 'O') |
1124 | { | |
1125 | int k; | |
5b4ee69b | 1126 | |
4c4b4cd2 PH |
1127 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1128 | { | |
1129 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1130 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1131 | op_len - 1) == 0) | |
1132 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1133 | { |
1134 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1135 | at_start_name = 0; | |
1136 | i += op_len; | |
1137 | j += strlen (ada_opname_table[k].decoded); | |
1138 | break; | |
1139 | } | |
1140 | } | |
1141 | if (ada_opname_table[k].encoded != NULL) | |
1142 | continue; | |
1143 | } | |
14f9c5c9 AS |
1144 | at_start_name = 0; |
1145 | ||
529cad9c PH |
1146 | /* Replace "TK__" with "__", which will eventually be translated |
1147 | into "." (just below). */ | |
1148 | ||
4c4b4cd2 PH |
1149 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1150 | i += 2; | |
529cad9c | 1151 | |
29480c32 JB |
1152 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1153 | be translated into "." (just below). These are internal names | |
1154 | generated for anonymous blocks inside which our symbol is nested. */ | |
1155 | ||
1156 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1157 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1158 | && isdigit (encoded [i+4])) | |
1159 | { | |
1160 | int k = i + 5; | |
1161 | ||
1162 | while (k < len0 && isdigit (encoded[k])) | |
1163 | k++; /* Skip any extra digit. */ | |
1164 | ||
1165 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1166 | is indeed followed by "__". */ | |
1167 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1168 | i = k; | |
1169 | } | |
1170 | ||
529cad9c PH |
1171 | /* Remove _E{DIGITS}+[sb] */ |
1172 | ||
1173 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1174 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1175 | one implements the actual entry code, and has a suffix following |
1176 | the convention above; the second one implements the barrier and | |
1177 | uses the same convention as above, except that the 'E' is replaced | |
1178 | by a 'B'. | |
1179 | ||
1180 | Just as above, we do not decode the name of barrier functions | |
1181 | to give the user a clue that the code he is debugging has been | |
1182 | internally generated. */ | |
1183 | ||
1184 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1185 | && isdigit (encoded[i+2])) | |
1186 | { | |
1187 | int k = i + 3; | |
1188 | ||
1189 | while (k < len0 && isdigit (encoded[k])) | |
1190 | k++; | |
1191 | ||
1192 | if (k < len0 | |
1193 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1194 | { | |
1195 | k++; | |
1196 | /* Just as an extra precaution, make sure that if this | |
1197 | suffix is followed by anything else, it is a '_'. | |
1198 | Otherwise, we matched this sequence by accident. */ | |
1199 | if (k == len0 | |
1200 | || (k < len0 && encoded[k] == '_')) | |
1201 | i = k; | |
1202 | } | |
1203 | } | |
1204 | ||
1205 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1206 | the GNAT front-end in protected object subprograms. */ | |
1207 | ||
1208 | if (i < len0 + 3 | |
1209 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1210 | { | |
1211 | /* Backtrack a bit up until we reach either the begining of | |
1212 | the encoded name, or "__". Make sure that we only find | |
1213 | digits or lowercase characters. */ | |
1214 | const char *ptr = encoded + i - 1; | |
1215 | ||
1216 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1217 | ptr--; | |
1218 | if (ptr < encoded | |
1219 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1220 | i++; | |
1221 | } | |
1222 | ||
4c4b4cd2 PH |
1223 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1224 | { | |
29480c32 JB |
1225 | /* This is a X[bn]* sequence not separated from the previous |
1226 | part of the name with a non-alpha-numeric character (in other | |
1227 | words, immediately following an alpha-numeric character), then | |
1228 | verify that it is placed at the end of the encoded name. If | |
1229 | not, then the encoding is not valid and we should abort the | |
1230 | decoding. Otherwise, just skip it, it is used in body-nested | |
1231 | package names. */ | |
4c4b4cd2 PH |
1232 | do |
1233 | i += 1; | |
1234 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1235 | if (i < len0) | |
1236 | goto Suppress; | |
1237 | } | |
cdc7bb92 | 1238 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1239 | { |
29480c32 | 1240 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1241 | decoded[j] = '.'; |
1242 | at_start_name = 1; | |
1243 | i += 2; | |
1244 | j += 1; | |
1245 | } | |
14f9c5c9 | 1246 | else |
4c4b4cd2 | 1247 | { |
29480c32 JB |
1248 | /* It's a character part of the decoded name, so just copy it |
1249 | over. */ | |
4c4b4cd2 PH |
1250 | decoded[j] = encoded[i]; |
1251 | i += 1; | |
1252 | j += 1; | |
1253 | } | |
14f9c5c9 | 1254 | } |
4c4b4cd2 | 1255 | decoded[j] = '\000'; |
14f9c5c9 | 1256 | |
29480c32 JB |
1257 | /* Decoded names should never contain any uppercase character. |
1258 | Double-check this, and abort the decoding if we find one. */ | |
1259 | ||
4c4b4cd2 PH |
1260 | for (i = 0; decoded[i] != '\0'; i += 1) |
1261 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1262 | goto Suppress; |
1263 | ||
4c4b4cd2 PH |
1264 | if (strcmp (decoded, encoded) == 0) |
1265 | return encoded; | |
1266 | else | |
1267 | return decoded; | |
14f9c5c9 AS |
1268 | |
1269 | Suppress: | |
4c4b4cd2 PH |
1270 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1271 | decoded = decoding_buffer; | |
1272 | if (encoded[0] == '<') | |
1273 | strcpy (decoded, encoded); | |
14f9c5c9 | 1274 | else |
88c15c34 | 1275 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1276 | return decoded; |
1277 | ||
1278 | } | |
1279 | ||
1280 | /* Table for keeping permanent unique copies of decoded names. Once | |
1281 | allocated, names in this table are never released. While this is a | |
1282 | storage leak, it should not be significant unless there are massive | |
1283 | changes in the set of decoded names in successive versions of a | |
1284 | symbol table loaded during a single session. */ | |
1285 | static struct htab *decoded_names_store; | |
1286 | ||
1287 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1288 | in the language-specific part of GSYMBOL, if it has not been | |
1289 | previously computed. Tries to save the decoded name in the same | |
1290 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1291 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1292 | GSYMBOL). |
4c4b4cd2 PH |
1293 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1294 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1295 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1296 | |
45e6c716 | 1297 | const char * |
f85f34ed | 1298 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1299 | { |
f85f34ed TT |
1300 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1301 | const char **resultp = | |
1302 | &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1303 | |
f85f34ed | 1304 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1305 | { |
1306 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1307 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1308 | |
f85f34ed | 1309 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1310 | |
f85f34ed TT |
1311 | if (obstack != NULL) |
1312 | *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); | |
1313 | else | |
76a01679 | 1314 | { |
f85f34ed TT |
1315 | /* Sometimes, we can't find a corresponding objfile, in |
1316 | which case, we put the result on the heap. Since we only | |
1317 | decode when needed, we hope this usually does not cause a | |
1318 | significant memory leak (FIXME). */ | |
1319 | ||
76a01679 JB |
1320 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1321 | decoded, INSERT); | |
5b4ee69b | 1322 | |
76a01679 JB |
1323 | if (*slot == NULL) |
1324 | *slot = xstrdup (decoded); | |
1325 | *resultp = *slot; | |
1326 | } | |
4c4b4cd2 | 1327 | } |
14f9c5c9 | 1328 | |
4c4b4cd2 PH |
1329 | return *resultp; |
1330 | } | |
76a01679 | 1331 | |
2c0b251b | 1332 | static char * |
76a01679 | 1333 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1334 | { |
1335 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1336 | } |
1337 | ||
1338 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1339 | suffixes that encode debugging information or leading _ada_ on |
1340 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1341 | information that is ignored). If WILD, then NAME need only match a | |
1342 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1343 | either argument is NULL. */ | |
14f9c5c9 | 1344 | |
2c0b251b | 1345 | static int |
40658b94 | 1346 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1347 | { |
1348 | if (sym_name == NULL || name == NULL) | |
1349 | return 0; | |
1350 | else if (wild) | |
73589123 | 1351 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1352 | else |
1353 | { | |
1354 | int len_name = strlen (name); | |
5b4ee69b | 1355 | |
4c4b4cd2 PH |
1356 | return (strncmp (sym_name, name, len_name) == 0 |
1357 | && is_name_suffix (sym_name + len_name)) | |
1358 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1359 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1360 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1361 | } |
14f9c5c9 | 1362 | } |
14f9c5c9 | 1363 | \f |
d2e4a39e | 1364 | |
4c4b4cd2 | 1365 | /* Arrays */ |
14f9c5c9 | 1366 | |
28c85d6c JB |
1367 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1368 | generated by the GNAT compiler to describe the index type used | |
1369 | for each dimension of an array, check whether it follows the latest | |
1370 | known encoding. If not, fix it up to conform to the latest encoding. | |
1371 | Otherwise, do nothing. This function also does nothing if | |
1372 | INDEX_DESC_TYPE is NULL. | |
1373 | ||
1374 | The GNAT encoding used to describle the array index type evolved a bit. | |
1375 | Initially, the information would be provided through the name of each | |
1376 | field of the structure type only, while the type of these fields was | |
1377 | described as unspecified and irrelevant. The debugger was then expected | |
1378 | to perform a global type lookup using the name of that field in order | |
1379 | to get access to the full index type description. Because these global | |
1380 | lookups can be very expensive, the encoding was later enhanced to make | |
1381 | the global lookup unnecessary by defining the field type as being | |
1382 | the full index type description. | |
1383 | ||
1384 | The purpose of this routine is to allow us to support older versions | |
1385 | of the compiler by detecting the use of the older encoding, and by | |
1386 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1387 | we essentially replace each field's meaningless type by the associated | |
1388 | index subtype). */ | |
1389 | ||
1390 | void | |
1391 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1392 | { | |
1393 | int i; | |
1394 | ||
1395 | if (index_desc_type == NULL) | |
1396 | return; | |
1397 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1398 | ||
1399 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1400 | to check one field only, no need to check them all). If not, return | |
1401 | now. | |
1402 | ||
1403 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1404 | the field type should be a meaningless integer type whose name | |
1405 | is not equal to the field name. */ | |
1406 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1407 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1408 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1409 | return; | |
1410 | ||
1411 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1412 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1413 | { | |
0d5cff50 | 1414 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1415 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1416 | ||
1417 | if (raw_type) | |
1418 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1419 | } | |
1420 | } | |
1421 | ||
4c4b4cd2 | 1422 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1423 | |
d2e4a39e AS |
1424 | static char *bound_name[] = { |
1425 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1426 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1427 | }; | |
1428 | ||
1429 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1430 | ||
4c4b4cd2 | 1431 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1432 | |
14f9c5c9 | 1433 | |
4c4b4cd2 PH |
1434 | /* The desc_* routines return primitive portions of array descriptors |
1435 | (fat pointers). */ | |
14f9c5c9 AS |
1436 | |
1437 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1438 | level of indirection, if needed. */ |
1439 | ||
d2e4a39e AS |
1440 | static struct type * |
1441 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1442 | { |
1443 | if (type == NULL) | |
1444 | return NULL; | |
61ee279c | 1445 | type = ada_check_typedef (type); |
720d1a40 JB |
1446 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1447 | type = ada_typedef_target_type (type); | |
1448 | ||
1265e4aa JB |
1449 | if (type != NULL |
1450 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1451 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1452 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1453 | else |
1454 | return type; | |
1455 | } | |
1456 | ||
4c4b4cd2 PH |
1457 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1458 | ||
14f9c5c9 | 1459 | static int |
d2e4a39e | 1460 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1461 | { |
d2e4a39e | 1462 | return |
14f9c5c9 AS |
1463 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1464 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1465 | } | |
1466 | ||
4c4b4cd2 PH |
1467 | /* The descriptor type for thin pointer type TYPE. */ |
1468 | ||
d2e4a39e AS |
1469 | static struct type * |
1470 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1471 | { |
d2e4a39e | 1472 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1473 | |
14f9c5c9 AS |
1474 | if (base_type == NULL) |
1475 | return NULL; | |
1476 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1477 | return base_type; | |
d2e4a39e | 1478 | else |
14f9c5c9 | 1479 | { |
d2e4a39e | 1480 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1481 | |
14f9c5c9 | 1482 | if (alt_type == NULL) |
4c4b4cd2 | 1483 | return base_type; |
14f9c5c9 | 1484 | else |
4c4b4cd2 | 1485 | return alt_type; |
14f9c5c9 AS |
1486 | } |
1487 | } | |
1488 | ||
4c4b4cd2 PH |
1489 | /* A pointer to the array data for thin-pointer value VAL. */ |
1490 | ||
d2e4a39e AS |
1491 | static struct value * |
1492 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1493 | { |
828292f2 | 1494 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1495 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1496 | |
556bdfd4 UW |
1497 | data_type = lookup_pointer_type (data_type); |
1498 | ||
14f9c5c9 | 1499 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1500 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1501 | else |
42ae5230 | 1502 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1503 | } |
1504 | ||
4c4b4cd2 PH |
1505 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1506 | ||
14f9c5c9 | 1507 | static int |
d2e4a39e | 1508 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1509 | { |
1510 | type = desc_base_type (type); | |
1511 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1512 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1513 | } |
1514 | ||
4c4b4cd2 PH |
1515 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1516 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1517 | |
d2e4a39e AS |
1518 | static struct type * |
1519 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1520 | { |
d2e4a39e | 1521 | struct type *r; |
14f9c5c9 AS |
1522 | |
1523 | type = desc_base_type (type); | |
1524 | ||
1525 | if (type == NULL) | |
1526 | return NULL; | |
1527 | else if (is_thin_pntr (type)) | |
1528 | { | |
1529 | type = thin_descriptor_type (type); | |
1530 | if (type == NULL) | |
4c4b4cd2 | 1531 | return NULL; |
14f9c5c9 AS |
1532 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1533 | if (r != NULL) | |
61ee279c | 1534 | return ada_check_typedef (r); |
14f9c5c9 AS |
1535 | } |
1536 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1537 | { | |
1538 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1539 | if (r != NULL) | |
61ee279c | 1540 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1541 | } |
1542 | return NULL; | |
1543 | } | |
1544 | ||
1545 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1546 | one, a pointer to its bounds data. Otherwise NULL. */ |
1547 | ||
d2e4a39e AS |
1548 | static struct value * |
1549 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1550 | { |
df407dfe | 1551 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1552 | |
d2e4a39e | 1553 | if (is_thin_pntr (type)) |
14f9c5c9 | 1554 | { |
d2e4a39e | 1555 | struct type *bounds_type = |
4c4b4cd2 | 1556 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1557 | LONGEST addr; |
1558 | ||
4cdfadb1 | 1559 | if (bounds_type == NULL) |
323e0a4a | 1560 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1561 | |
1562 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1563 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1564 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1565 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1566 | addr = value_as_long (arr); |
d2e4a39e | 1567 | else |
42ae5230 | 1568 | addr = value_address (arr); |
14f9c5c9 | 1569 | |
d2e4a39e | 1570 | return |
4c4b4cd2 PH |
1571 | value_from_longest (lookup_pointer_type (bounds_type), |
1572 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1573 | } |
1574 | ||
1575 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1576 | { |
1577 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1578 | _("Bad GNAT array descriptor")); | |
1579 | struct type *p_bounds_type = value_type (p_bounds); | |
1580 | ||
1581 | if (p_bounds_type | |
1582 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1583 | { | |
1584 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1585 | ||
1586 | if (TYPE_STUB (target_type)) | |
1587 | p_bounds = value_cast (lookup_pointer_type | |
1588 | (ada_check_typedef (target_type)), | |
1589 | p_bounds); | |
1590 | } | |
1591 | else | |
1592 | error (_("Bad GNAT array descriptor")); | |
1593 | ||
1594 | return p_bounds; | |
1595 | } | |
14f9c5c9 AS |
1596 | else |
1597 | return NULL; | |
1598 | } | |
1599 | ||
4c4b4cd2 PH |
1600 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1601 | position of the field containing the address of the bounds data. */ | |
1602 | ||
14f9c5c9 | 1603 | static int |
d2e4a39e | 1604 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1605 | { |
1606 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1607 | } | |
1608 | ||
1609 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1610 | size of the field containing the address of the bounds data. */ |
1611 | ||
14f9c5c9 | 1612 | static int |
d2e4a39e | 1613 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1614 | { |
1615 | type = desc_base_type (type); | |
1616 | ||
d2e4a39e | 1617 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1618 | return TYPE_FIELD_BITSIZE (type, 1); |
1619 | else | |
61ee279c | 1620 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1621 | } |
1622 | ||
4c4b4cd2 | 1623 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1624 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1625 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1626 | data. */ | |
4c4b4cd2 | 1627 | |
d2e4a39e | 1628 | static struct type * |
556bdfd4 | 1629 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1630 | { |
1631 | type = desc_base_type (type); | |
1632 | ||
4c4b4cd2 | 1633 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1634 | if (is_thin_pntr (type)) |
556bdfd4 | 1635 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1636 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1637 | { |
1638 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1639 | ||
1640 | if (data_type | |
1641 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1642 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1643 | } |
1644 | ||
1645 | return NULL; | |
14f9c5c9 AS |
1646 | } |
1647 | ||
1648 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1649 | its array data. */ | |
4c4b4cd2 | 1650 | |
d2e4a39e AS |
1651 | static struct value * |
1652 | desc_data (struct value *arr) | |
14f9c5c9 | 1653 | { |
df407dfe | 1654 | struct type *type = value_type (arr); |
5b4ee69b | 1655 | |
14f9c5c9 AS |
1656 | if (is_thin_pntr (type)) |
1657 | return thin_data_pntr (arr); | |
1658 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1659 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1660 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1661 | else |
1662 | return NULL; | |
1663 | } | |
1664 | ||
1665 | ||
1666 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1667 | position of the field containing the address of the data. */ |
1668 | ||
14f9c5c9 | 1669 | static int |
d2e4a39e | 1670 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1671 | { |
1672 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1673 | } | |
1674 | ||
1675 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1676 | size of the field containing the address of the data. */ |
1677 | ||
14f9c5c9 | 1678 | static int |
d2e4a39e | 1679 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1680 | { |
1681 | type = desc_base_type (type); | |
1682 | ||
1683 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1684 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1685 | else |
14f9c5c9 AS |
1686 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1687 | } | |
1688 | ||
4c4b4cd2 | 1689 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1690 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1691 | bound, if WHICH is 1. The first bound is I=1. */ |
1692 | ||
d2e4a39e AS |
1693 | static struct value * |
1694 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1695 | { |
d2e4a39e | 1696 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1697 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1698 | } |
1699 | ||
1700 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1701 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1702 | bound, if WHICH is 1. The first bound is I=1. */ |
1703 | ||
14f9c5c9 | 1704 | static int |
d2e4a39e | 1705 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1706 | { |
d2e4a39e | 1707 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1708 | } |
1709 | ||
1710 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1711 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1712 | bound, if WHICH is 1. The first bound is I=1. */ |
1713 | ||
76a01679 | 1714 | static int |
d2e4a39e | 1715 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1716 | { |
1717 | type = desc_base_type (type); | |
1718 | ||
d2e4a39e AS |
1719 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1720 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1721 | else | |
1722 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1723 | } |
1724 | ||
1725 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1726 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1727 | ||
d2e4a39e AS |
1728 | static struct type * |
1729 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1730 | { |
1731 | type = desc_base_type (type); | |
1732 | ||
1733 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1734 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1735 | else | |
14f9c5c9 AS |
1736 | return NULL; |
1737 | } | |
1738 | ||
4c4b4cd2 PH |
1739 | /* The number of index positions in the array-bounds type TYPE. |
1740 | Return 0 if TYPE is NULL. */ | |
1741 | ||
14f9c5c9 | 1742 | static int |
d2e4a39e | 1743 | desc_arity (struct type *type) |
14f9c5c9 AS |
1744 | { |
1745 | type = desc_base_type (type); | |
1746 | ||
1747 | if (type != NULL) | |
1748 | return TYPE_NFIELDS (type) / 2; | |
1749 | return 0; | |
1750 | } | |
1751 | ||
4c4b4cd2 PH |
1752 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1753 | an array descriptor type (representing an unconstrained array | |
1754 | type). */ | |
1755 | ||
76a01679 JB |
1756 | static int |
1757 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1758 | { |
1759 | if (type == NULL) | |
1760 | return 0; | |
61ee279c | 1761 | type = ada_check_typedef (type); |
4c4b4cd2 | 1762 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1763 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1764 | } |
1765 | ||
52ce6436 | 1766 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1767 | * to one. */ |
52ce6436 | 1768 | |
2c0b251b | 1769 | static int |
52ce6436 PH |
1770 | ada_is_array_type (struct type *type) |
1771 | { | |
1772 | while (type != NULL | |
1773 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1774 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1775 | type = TYPE_TARGET_TYPE (type); | |
1776 | return ada_is_direct_array_type (type); | |
1777 | } | |
1778 | ||
4c4b4cd2 | 1779 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1780 | |
14f9c5c9 | 1781 | int |
4c4b4cd2 | 1782 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1783 | { |
1784 | if (type == NULL) | |
1785 | return 0; | |
61ee279c | 1786 | type = ada_check_typedef (type); |
14f9c5c9 | 1787 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1788 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1789 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1790 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1791 | } |
1792 | ||
4c4b4cd2 PH |
1793 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1794 | ||
14f9c5c9 | 1795 | int |
4c4b4cd2 | 1796 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1797 | { |
556bdfd4 | 1798 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1799 | |
1800 | if (type == NULL) | |
1801 | return 0; | |
61ee279c | 1802 | type = ada_check_typedef (type); |
556bdfd4 UW |
1803 | return (data_type != NULL |
1804 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1805 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1806 | } |
1807 | ||
1808 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1809 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1810 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1811 | is still needed. */ |
1812 | ||
14f9c5c9 | 1813 | int |
ebf56fd3 | 1814 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1815 | { |
d2e4a39e | 1816 | return |
14f9c5c9 AS |
1817 | type != NULL |
1818 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1819 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1820 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1821 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1822 | } |
1823 | ||
1824 | ||
4c4b4cd2 | 1825 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1826 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1827 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1828 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1829 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1830 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1831 | a descriptor. */ |
d2e4a39e AS |
1832 | struct type * |
1833 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1834 | { |
ad82864c JB |
1835 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1836 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1837 | |
df407dfe AC |
1838 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1839 | return value_type (arr); | |
d2e4a39e AS |
1840 | |
1841 | if (!bounds) | |
ad82864c JB |
1842 | { |
1843 | struct type *array_type = | |
1844 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1845 | ||
1846 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1847 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1848 | decode_packed_array_bitsize (value_type (arr)); | |
1849 | ||
1850 | return array_type; | |
1851 | } | |
14f9c5c9 AS |
1852 | else |
1853 | { | |
d2e4a39e | 1854 | struct type *elt_type; |
14f9c5c9 | 1855 | int arity; |
d2e4a39e | 1856 | struct value *descriptor; |
14f9c5c9 | 1857 | |
df407dfe AC |
1858 | elt_type = ada_array_element_type (value_type (arr), -1); |
1859 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1860 | |
d2e4a39e | 1861 | if (elt_type == NULL || arity == 0) |
df407dfe | 1862 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1863 | |
1864 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1865 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1866 | return NULL; |
d2e4a39e | 1867 | while (arity > 0) |
4c4b4cd2 | 1868 | { |
e9bb382b UW |
1869 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1870 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1871 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1872 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1873 | |
5b4ee69b | 1874 | arity -= 1; |
df407dfe | 1875 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1876 | longest_to_int (value_as_long (low)), |
1877 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1878 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1879 | |
1880 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1881 | { |
1882 | /* We need to store the element packed bitsize, as well as | |
1883 | recompute the array size, because it was previously | |
1884 | computed based on the unpacked element size. */ | |
1885 | LONGEST lo = value_as_long (low); | |
1886 | LONGEST hi = value_as_long (high); | |
1887 | ||
1888 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1889 | decode_packed_array_bitsize (value_type (arr)); | |
1890 | /* If the array has no element, then the size is already | |
1891 | zero, and does not need to be recomputed. */ | |
1892 | if (lo < hi) | |
1893 | { | |
1894 | int array_bitsize = | |
1895 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1896 | ||
1897 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1898 | } | |
1899 | } | |
4c4b4cd2 | 1900 | } |
14f9c5c9 AS |
1901 | |
1902 | return lookup_pointer_type (elt_type); | |
1903 | } | |
1904 | } | |
1905 | ||
1906 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1907 | Otherwise, returns either a standard GDB array with bounds set |
1908 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1909 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1910 | ||
d2e4a39e AS |
1911 | struct value * |
1912 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1913 | { |
df407dfe | 1914 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1915 | { |
d2e4a39e | 1916 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1917 | |
14f9c5c9 | 1918 | if (arrType == NULL) |
4c4b4cd2 | 1919 | return NULL; |
14f9c5c9 AS |
1920 | return value_cast (arrType, value_copy (desc_data (arr))); |
1921 | } | |
ad82864c JB |
1922 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1923 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1924 | else |
1925 | return arr; | |
1926 | } | |
1927 | ||
1928 | /* If ARR does not represent an array, returns ARR unchanged. | |
1929 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1930 | be ARR itself if it already is in the proper form). */ |
1931 | ||
720d1a40 | 1932 | struct value * |
d2e4a39e | 1933 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1934 | { |
df407dfe | 1935 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1936 | { |
d2e4a39e | 1937 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1938 | |
14f9c5c9 | 1939 | if (arrVal == NULL) |
323e0a4a | 1940 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1941 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1942 | return value_ind (arrVal); |
1943 | } | |
ad82864c JB |
1944 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1945 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1946 | else |
14f9c5c9 AS |
1947 | return arr; |
1948 | } | |
1949 | ||
1950 | /* If TYPE represents a GNAT array type, return it translated to an | |
1951 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1952 | packing). For other types, is the identity. */ |
1953 | ||
d2e4a39e AS |
1954 | struct type * |
1955 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1956 | { |
ad82864c JB |
1957 | if (ada_is_constrained_packed_array_type (type)) |
1958 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1959 | |
1960 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1961 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1962 | |
1963 | return type; | |
14f9c5c9 AS |
1964 | } |
1965 | ||
4c4b4cd2 PH |
1966 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1967 | ||
ad82864c JB |
1968 | static int |
1969 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1970 | { |
1971 | if (type == NULL) | |
1972 | return 0; | |
4c4b4cd2 | 1973 | type = desc_base_type (type); |
61ee279c | 1974 | type = ada_check_typedef (type); |
d2e4a39e | 1975 | return |
14f9c5c9 AS |
1976 | ada_type_name (type) != NULL |
1977 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1978 | } | |
1979 | ||
ad82864c JB |
1980 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1981 | packed-array type. */ | |
1982 | ||
1983 | int | |
1984 | ada_is_constrained_packed_array_type (struct type *type) | |
1985 | { | |
1986 | return ada_is_packed_array_type (type) | |
1987 | && !ada_is_array_descriptor_type (type); | |
1988 | } | |
1989 | ||
1990 | /* Non-zero iff TYPE represents an array descriptor for a | |
1991 | unconstrained packed-array type. */ | |
1992 | ||
1993 | static int | |
1994 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1995 | { | |
1996 | return ada_is_packed_array_type (type) | |
1997 | && ada_is_array_descriptor_type (type); | |
1998 | } | |
1999 | ||
2000 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2001 | return the size of its elements in bits. */ | |
2002 | ||
2003 | static long | |
2004 | decode_packed_array_bitsize (struct type *type) | |
2005 | { | |
0d5cff50 DE |
2006 | const char *raw_name; |
2007 | const char *tail; | |
ad82864c JB |
2008 | long bits; |
2009 | ||
720d1a40 JB |
2010 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2011 | of the fat pointer type. We need the name of the fat pointer type | |
2012 | to do the decoding, so strip the typedef layer. */ | |
2013 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2014 | type = ada_typedef_target_type (type); | |
2015 | ||
2016 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2017 | if (!raw_name) |
2018 | raw_name = ada_type_name (desc_base_type (type)); | |
2019 | ||
2020 | if (!raw_name) | |
2021 | return 0; | |
2022 | ||
2023 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2024 | gdb_assert (tail != NULL); |
ad82864c JB |
2025 | |
2026 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2027 | { | |
2028 | lim_warning | |
2029 | (_("could not understand bit size information on packed array")); | |
2030 | return 0; | |
2031 | } | |
2032 | ||
2033 | return bits; | |
2034 | } | |
2035 | ||
14f9c5c9 AS |
2036 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2037 | in, and that the element size of its ultimate scalar constituents | |
2038 | (that is, either its elements, or, if it is an array of arrays, its | |
2039 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2040 | but with the bit sizes of its elements (and those of any | |
2041 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2042 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2043 | in bits. */ | |
2044 | ||
d2e4a39e | 2045 | static struct type * |
ad82864c | 2046 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2047 | { |
d2e4a39e AS |
2048 | struct type *new_elt_type; |
2049 | struct type *new_type; | |
99b1c762 JB |
2050 | struct type *index_type_desc; |
2051 | struct type *index_type; | |
14f9c5c9 AS |
2052 | LONGEST low_bound, high_bound; |
2053 | ||
61ee279c | 2054 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2055 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2056 | return type; | |
2057 | ||
99b1c762 JB |
2058 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2059 | if (index_type_desc) | |
2060 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2061 | NULL); | |
2062 | else | |
2063 | index_type = TYPE_INDEX_TYPE (type); | |
2064 | ||
e9bb382b | 2065 | new_type = alloc_type_copy (type); |
ad82864c JB |
2066 | new_elt_type = |
2067 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2068 | elt_bits); | |
99b1c762 | 2069 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2070 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2071 | TYPE_NAME (new_type) = ada_type_name (type); | |
2072 | ||
99b1c762 | 2073 | if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2074 | low_bound = high_bound = 0; |
2075 | if (high_bound < low_bound) | |
2076 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2077 | else |
14f9c5c9 AS |
2078 | { |
2079 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2080 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2081 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2082 | } |
2083 | ||
876cecd0 | 2084 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2085 | return new_type; |
2086 | } | |
2087 | ||
ad82864c JB |
2088 | /* The array type encoded by TYPE, where |
2089 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2090 | |
d2e4a39e | 2091 | static struct type * |
ad82864c | 2092 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2093 | { |
0d5cff50 | 2094 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2095 | char *name; |
0d5cff50 | 2096 | const char *tail; |
d2e4a39e | 2097 | struct type *shadow_type; |
14f9c5c9 | 2098 | long bits; |
14f9c5c9 | 2099 | |
727e3d2e JB |
2100 | if (!raw_name) |
2101 | raw_name = ada_type_name (desc_base_type (type)); | |
2102 | ||
2103 | if (!raw_name) | |
2104 | return NULL; | |
2105 | ||
2106 | name = (char *) alloca (strlen (raw_name) + 1); | |
2107 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2108 | type = desc_base_type (type); |
2109 | ||
14f9c5c9 AS |
2110 | memcpy (name, raw_name, tail - raw_name); |
2111 | name[tail - raw_name] = '\000'; | |
2112 | ||
b4ba55a1 JB |
2113 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2114 | ||
2115 | if (shadow_type == NULL) | |
14f9c5c9 | 2116 | { |
323e0a4a | 2117 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2118 | return NULL; |
2119 | } | |
cb249c71 | 2120 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2121 | |
2122 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2123 | { | |
0963b4bd MS |
2124 | lim_warning (_("could not understand bounds " |
2125 | "information on packed array")); | |
14f9c5c9 AS |
2126 | return NULL; |
2127 | } | |
d2e4a39e | 2128 | |
ad82864c JB |
2129 | bits = decode_packed_array_bitsize (type); |
2130 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2131 | } |
2132 | ||
ad82864c JB |
2133 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2134 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2135 | standard GDB array type except that the BITSIZEs of the array |
2136 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2137 | type length is set appropriately. */ |
14f9c5c9 | 2138 | |
d2e4a39e | 2139 | static struct value * |
ad82864c | 2140 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2141 | { |
4c4b4cd2 | 2142 | struct type *type; |
14f9c5c9 | 2143 | |
4c4b4cd2 | 2144 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2145 | |
2146 | /* If our value is a pointer, then dererence it. Make sure that | |
2147 | this operation does not cause the target type to be fixed, as | |
2148 | this would indirectly cause this array to be decoded. The rest | |
2149 | of the routine assumes that the array hasn't been decoded yet, | |
2150 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2151 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2152 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2153 | arr = value_ind (arr); |
4c4b4cd2 | 2154 | |
ad82864c | 2155 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2156 | if (type == NULL) |
2157 | { | |
323e0a4a | 2158 | error (_("can't unpack array")); |
14f9c5c9 AS |
2159 | return NULL; |
2160 | } | |
61ee279c | 2161 | |
50810684 | 2162 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2163 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2164 | { |
2165 | /* This is a (right-justified) modular type representing a packed | |
2166 | array with no wrapper. In order to interpret the value through | |
2167 | the (left-justified) packed array type we just built, we must | |
2168 | first left-justify it. */ | |
2169 | int bit_size, bit_pos; | |
2170 | ULONGEST mod; | |
2171 | ||
df407dfe | 2172 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2173 | bit_size = 0; |
2174 | while (mod > 0) | |
2175 | { | |
2176 | bit_size += 1; | |
2177 | mod >>= 1; | |
2178 | } | |
df407dfe | 2179 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2180 | arr = ada_value_primitive_packed_val (arr, NULL, |
2181 | bit_pos / HOST_CHAR_BIT, | |
2182 | bit_pos % HOST_CHAR_BIT, | |
2183 | bit_size, | |
2184 | type); | |
2185 | } | |
2186 | ||
4c4b4cd2 | 2187 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2188 | } |
2189 | ||
2190 | ||
2191 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2192 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2193 | |
d2e4a39e AS |
2194 | static struct value * |
2195 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2196 | { |
2197 | int i; | |
2198 | int bits, elt_off, bit_off; | |
2199 | long elt_total_bit_offset; | |
d2e4a39e AS |
2200 | struct type *elt_type; |
2201 | struct value *v; | |
14f9c5c9 AS |
2202 | |
2203 | bits = 0; | |
2204 | elt_total_bit_offset = 0; | |
df407dfe | 2205 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2206 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2207 | { |
d2e4a39e | 2208 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2209 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2210 | error | |
0963b4bd MS |
2211 | (_("attempt to do packed indexing of " |
2212 | "something other than a packed array")); | |
14f9c5c9 | 2213 | else |
4c4b4cd2 PH |
2214 | { |
2215 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2216 | LONGEST lowerbound, upperbound; | |
2217 | LONGEST idx; | |
2218 | ||
2219 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2220 | { | |
323e0a4a | 2221 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2222 | lowerbound = upperbound = 0; |
2223 | } | |
2224 | ||
3cb382c9 | 2225 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2226 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2227 | lim_warning (_("packed array index %ld out of bounds"), |
2228 | (long) idx); | |
4c4b4cd2 PH |
2229 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2230 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2231 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2232 | } |
14f9c5c9 AS |
2233 | } |
2234 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2235 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2236 | |
2237 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2238 | bits, elt_type); |
14f9c5c9 AS |
2239 | return v; |
2240 | } | |
2241 | ||
4c4b4cd2 | 2242 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2243 | |
2244 | static int | |
d2e4a39e | 2245 | has_negatives (struct type *type) |
14f9c5c9 | 2246 | { |
d2e4a39e AS |
2247 | switch (TYPE_CODE (type)) |
2248 | { | |
2249 | default: | |
2250 | return 0; | |
2251 | case TYPE_CODE_INT: | |
2252 | return !TYPE_UNSIGNED (type); | |
2253 | case TYPE_CODE_RANGE: | |
2254 | return TYPE_LOW_BOUND (type) < 0; | |
2255 | } | |
14f9c5c9 | 2256 | } |
d2e4a39e | 2257 | |
14f9c5c9 AS |
2258 | |
2259 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2260 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2261 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2262 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2263 | VALADDR is ignored unless OBJ is NULL, in which case, |
2264 | VALADDR+OFFSET must address the start of storage containing the | |
2265 | packed value. The value returned in this case is never an lval. | |
2266 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2267 | |
d2e4a39e | 2268 | struct value * |
fc1a4b47 | 2269 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2270 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2271 | struct type *type) |
14f9c5c9 | 2272 | { |
d2e4a39e | 2273 | struct value *v; |
4c4b4cd2 PH |
2274 | int src, /* Index into the source area */ |
2275 | targ, /* Index into the target area */ | |
2276 | srcBitsLeft, /* Number of source bits left to move */ | |
2277 | nsrc, ntarg, /* Number of source and target bytes */ | |
2278 | unusedLS, /* Number of bits in next significant | |
2279 | byte of source that are unused */ | |
2280 | accumSize; /* Number of meaningful bits in accum */ | |
2281 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2282 | unsigned char *unpacked; |
4c4b4cd2 | 2283 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2284 | unsigned char sign; |
2285 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2286 | /* Transmit bytes from least to most significant; delta is the direction |
2287 | the indices move. */ | |
50810684 | 2288 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2289 | |
61ee279c | 2290 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2291 | |
2292 | if (obj == NULL) | |
2293 | { | |
2294 | v = allocate_value (type); | |
d2e4a39e | 2295 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2296 | } |
9214ee5f | 2297 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2298 | { |
53ba8333 | 2299 | v = value_at (type, value_address (obj)); |
d2e4a39e | 2300 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2301 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2302 | } |
d2e4a39e | 2303 | else |
14f9c5c9 AS |
2304 | { |
2305 | v = allocate_value (type); | |
0fd88904 | 2306 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2307 | } |
d2e4a39e AS |
2308 | |
2309 | if (obj != NULL) | |
14f9c5c9 | 2310 | { |
53ba8333 | 2311 | long new_offset = offset; |
5b4ee69b | 2312 | |
74bcbdf3 | 2313 | set_value_component_location (v, obj); |
9bbda503 AC |
2314 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2315 | set_value_bitsize (v, bit_size); | |
df407dfe | 2316 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2317 | { |
53ba8333 | 2318 | ++new_offset; |
9bbda503 | 2319 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2320 | } |
53ba8333 JB |
2321 | set_value_offset (v, new_offset); |
2322 | ||
2323 | /* Also set the parent value. This is needed when trying to | |
2324 | assign a new value (in inferior memory). */ | |
2325 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2326 | } |
2327 | else | |
9bbda503 | 2328 | set_value_bitsize (v, bit_size); |
0fd88904 | 2329 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2330 | |
2331 | srcBitsLeft = bit_size; | |
2332 | nsrc = len; | |
2333 | ntarg = TYPE_LENGTH (type); | |
2334 | sign = 0; | |
2335 | if (bit_size == 0) | |
2336 | { | |
2337 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2338 | return v; | |
2339 | } | |
50810684 | 2340 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2341 | { |
d2e4a39e | 2342 | src = len - 1; |
1265e4aa JB |
2343 | if (has_negatives (type) |
2344 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2345 | sign = ~0; |
d2e4a39e AS |
2346 | |
2347 | unusedLS = | |
4c4b4cd2 PH |
2348 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2349 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2350 | |
2351 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2352 | { |
2353 | case TYPE_CODE_ARRAY: | |
2354 | case TYPE_CODE_UNION: | |
2355 | case TYPE_CODE_STRUCT: | |
2356 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2357 | accumSize = | |
2358 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2359 | /* ... And are placed at the beginning (most-significant) bytes | |
2360 | of the target. */ | |
529cad9c | 2361 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2362 | ntarg = targ + 1; |
4c4b4cd2 PH |
2363 | break; |
2364 | default: | |
2365 | accumSize = 0; | |
2366 | targ = TYPE_LENGTH (type) - 1; | |
2367 | break; | |
2368 | } | |
14f9c5c9 | 2369 | } |
d2e4a39e | 2370 | else |
14f9c5c9 AS |
2371 | { |
2372 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2373 | ||
2374 | src = targ = 0; | |
2375 | unusedLS = bit_offset; | |
2376 | accumSize = 0; | |
2377 | ||
d2e4a39e | 2378 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2379 | sign = ~0; |
14f9c5c9 | 2380 | } |
d2e4a39e | 2381 | |
14f9c5c9 AS |
2382 | accum = 0; |
2383 | while (nsrc > 0) | |
2384 | { | |
2385 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2386 | part of the value. */ |
d2e4a39e | 2387 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2388 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2389 | 1; | |
2390 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2391 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2392 | |
d2e4a39e | 2393 | accum |= |
4c4b4cd2 | 2394 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2395 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2396 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2397 | { |
2398 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2399 | accumSize -= HOST_CHAR_BIT; | |
2400 | accum >>= HOST_CHAR_BIT; | |
2401 | ntarg -= 1; | |
2402 | targ += delta; | |
2403 | } | |
14f9c5c9 AS |
2404 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2405 | unusedLS = 0; | |
2406 | nsrc -= 1; | |
2407 | src += delta; | |
2408 | } | |
2409 | while (ntarg > 0) | |
2410 | { | |
2411 | accum |= sign << accumSize; | |
2412 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2413 | accumSize -= HOST_CHAR_BIT; | |
2414 | accum >>= HOST_CHAR_BIT; | |
2415 | ntarg -= 1; | |
2416 | targ += delta; | |
2417 | } | |
2418 | ||
2419 | return v; | |
2420 | } | |
d2e4a39e | 2421 | |
14f9c5c9 AS |
2422 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2423 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2424 | not overlap. */ |
14f9c5c9 | 2425 | static void |
fc1a4b47 | 2426 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2427 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2428 | { |
2429 | unsigned int accum, mask; | |
2430 | int accum_bits, chunk_size; | |
2431 | ||
2432 | target += targ_offset / HOST_CHAR_BIT; | |
2433 | targ_offset %= HOST_CHAR_BIT; | |
2434 | source += src_offset / HOST_CHAR_BIT; | |
2435 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2436 | if (bits_big_endian_p) |
14f9c5c9 AS |
2437 | { |
2438 | accum = (unsigned char) *source; | |
2439 | source += 1; | |
2440 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2441 | ||
d2e4a39e | 2442 | while (n > 0) |
4c4b4cd2 PH |
2443 | { |
2444 | int unused_right; | |
5b4ee69b | 2445 | |
4c4b4cd2 PH |
2446 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2447 | accum_bits += HOST_CHAR_BIT; | |
2448 | source += 1; | |
2449 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2450 | if (chunk_size > n) | |
2451 | chunk_size = n; | |
2452 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2453 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2454 | *target = | |
2455 | (*target & ~mask) | |
2456 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2457 | n -= chunk_size; | |
2458 | accum_bits -= chunk_size; | |
2459 | target += 1; | |
2460 | targ_offset = 0; | |
2461 | } | |
14f9c5c9 AS |
2462 | } |
2463 | else | |
2464 | { | |
2465 | accum = (unsigned char) *source >> src_offset; | |
2466 | source += 1; | |
2467 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2468 | ||
d2e4a39e | 2469 | while (n > 0) |
4c4b4cd2 PH |
2470 | { |
2471 | accum = accum + ((unsigned char) *source << accum_bits); | |
2472 | accum_bits += HOST_CHAR_BIT; | |
2473 | source += 1; | |
2474 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2475 | if (chunk_size > n) | |
2476 | chunk_size = n; | |
2477 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2478 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2479 | n -= chunk_size; | |
2480 | accum_bits -= chunk_size; | |
2481 | accum >>= chunk_size; | |
2482 | target += 1; | |
2483 | targ_offset = 0; | |
2484 | } | |
14f9c5c9 AS |
2485 | } |
2486 | } | |
2487 | ||
14f9c5c9 AS |
2488 | /* Store the contents of FROMVAL into the location of TOVAL. |
2489 | Return a new value with the location of TOVAL and contents of | |
2490 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2491 | floating-point or non-scalar types. */ |
14f9c5c9 | 2492 | |
d2e4a39e AS |
2493 | static struct value * |
2494 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2495 | { |
df407dfe AC |
2496 | struct type *type = value_type (toval); |
2497 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2498 | |
52ce6436 PH |
2499 | toval = ada_coerce_ref (toval); |
2500 | fromval = ada_coerce_ref (fromval); | |
2501 | ||
2502 | if (ada_is_direct_array_type (value_type (toval))) | |
2503 | toval = ada_coerce_to_simple_array (toval); | |
2504 | if (ada_is_direct_array_type (value_type (fromval))) | |
2505 | fromval = ada_coerce_to_simple_array (fromval); | |
2506 | ||
88e3b34b | 2507 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2508 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2509 | |
d2e4a39e | 2510 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2511 | && bits > 0 |
d2e4a39e | 2512 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2513 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2514 | { |
df407dfe AC |
2515 | int len = (value_bitpos (toval) |
2516 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2517 | int from_size; |
948f8e3d | 2518 | gdb_byte *buffer = alloca (len); |
d2e4a39e | 2519 | struct value *val; |
42ae5230 | 2520 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2521 | |
2522 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2523 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2524 | |
52ce6436 | 2525 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2526 | from_size = value_bitsize (fromval); |
2527 | if (from_size == 0) | |
2528 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2529 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2530 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2531 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2532 | else |
50810684 UW |
2533 | move_bits (buffer, value_bitpos (toval), |
2534 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2535 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2536 | |
14f9c5c9 | 2537 | val = value_copy (toval); |
0fd88904 | 2538 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2539 | TYPE_LENGTH (type)); |
04624583 | 2540 | deprecated_set_value_type (val, type); |
d2e4a39e | 2541 | |
14f9c5c9 AS |
2542 | return val; |
2543 | } | |
2544 | ||
2545 | return value_assign (toval, fromval); | |
2546 | } | |
2547 | ||
2548 | ||
52ce6436 PH |
2549 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2550 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2551 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2552 | * COMPONENT, and not the inferior's memory. The current contents | |
2553 | * of COMPONENT are ignored. */ | |
2554 | static void | |
2555 | value_assign_to_component (struct value *container, struct value *component, | |
2556 | struct value *val) | |
2557 | { | |
2558 | LONGEST offset_in_container = | |
42ae5230 | 2559 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2560 | int bit_offset_in_container = |
2561 | value_bitpos (component) - value_bitpos (container); | |
2562 | int bits; | |
2563 | ||
2564 | val = value_cast (value_type (component), val); | |
2565 | ||
2566 | if (value_bitsize (component) == 0) | |
2567 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2568 | else | |
2569 | bits = value_bitsize (component); | |
2570 | ||
50810684 | 2571 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2572 | move_bits (value_contents_writeable (container) + offset_in_container, |
2573 | value_bitpos (container) + bit_offset_in_container, | |
2574 | value_contents (val), | |
2575 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2576 | bits, 1); |
52ce6436 PH |
2577 | else |
2578 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2579 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2580 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2581 | } |
2582 | ||
4c4b4cd2 PH |
2583 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2584 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2585 | thereto. */ |
2586 | ||
d2e4a39e AS |
2587 | struct value * |
2588 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2589 | { |
2590 | int k; | |
d2e4a39e AS |
2591 | struct value *elt; |
2592 | struct type *elt_type; | |
14f9c5c9 AS |
2593 | |
2594 | elt = ada_coerce_to_simple_array (arr); | |
2595 | ||
df407dfe | 2596 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2597 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2598 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2599 | return value_subscript_packed (elt, arity, ind); | |
2600 | ||
2601 | for (k = 0; k < arity; k += 1) | |
2602 | { | |
2603 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2604 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2605 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2606 | } |
2607 | return elt; | |
2608 | } | |
2609 | ||
2610 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2611 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2612 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2613 | |
2c0b251b | 2614 | static struct value * |
d2e4a39e | 2615 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2616 | struct value **ind) |
14f9c5c9 AS |
2617 | { |
2618 | int k; | |
2619 | ||
2620 | for (k = 0; k < arity; k += 1) | |
2621 | { | |
2622 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2623 | |
2624 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2625 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2626 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2627 | value_copy (arr)); |
14f9c5c9 | 2628 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2629 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2630 | type = TYPE_TARGET_TYPE (type); |
2631 | } | |
2632 | ||
2633 | return value_ind (arr); | |
2634 | } | |
2635 | ||
0b5d8877 | 2636 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2637 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2638 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2639 | per Ada rules. */ |
0b5d8877 | 2640 | static struct value * |
f5938064 JG |
2641 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2642 | int low, int high) | |
0b5d8877 | 2643 | { |
b0dd7688 | 2644 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2645 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2646 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2647 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2648 | struct type *index_type = |
b0dd7688 | 2649 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2650 | low, high); |
6c038f32 | 2651 | struct type *slice_type = |
b0dd7688 | 2652 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2653 | |
f5938064 | 2654 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2655 | } |
2656 | ||
2657 | ||
2658 | static struct value * | |
2659 | ada_value_slice (struct value *array, int low, int high) | |
2660 | { | |
b0dd7688 | 2661 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2662 | struct type *index_type = |
0b5d8877 | 2663 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2664 | struct type *slice_type = |
0b5d8877 | 2665 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2666 | |
6c038f32 | 2667 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2668 | } |
2669 | ||
14f9c5c9 AS |
2670 | /* If type is a record type in the form of a standard GNAT array |
2671 | descriptor, returns the number of dimensions for type. If arr is a | |
2672 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2673 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2674 | |
2675 | int | |
d2e4a39e | 2676 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2677 | { |
2678 | int arity; | |
2679 | ||
2680 | if (type == NULL) | |
2681 | return 0; | |
2682 | ||
2683 | type = desc_base_type (type); | |
2684 | ||
2685 | arity = 0; | |
d2e4a39e | 2686 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2687 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2688 | else |
2689 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2690 | { |
4c4b4cd2 | 2691 | arity += 1; |
61ee279c | 2692 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2693 | } |
d2e4a39e | 2694 | |
14f9c5c9 AS |
2695 | return arity; |
2696 | } | |
2697 | ||
2698 | /* If TYPE is a record type in the form of a standard GNAT array | |
2699 | descriptor or a simple array type, returns the element type for | |
2700 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2701 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2702 | |
d2e4a39e AS |
2703 | struct type * |
2704 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2705 | { |
2706 | type = desc_base_type (type); | |
2707 | ||
d2e4a39e | 2708 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2709 | { |
2710 | int k; | |
d2e4a39e | 2711 | struct type *p_array_type; |
14f9c5c9 | 2712 | |
556bdfd4 | 2713 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2714 | |
2715 | k = ada_array_arity (type); | |
2716 | if (k == 0) | |
4c4b4cd2 | 2717 | return NULL; |
d2e4a39e | 2718 | |
4c4b4cd2 | 2719 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2720 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2721 | k = nindices; |
d2e4a39e | 2722 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2723 | { |
61ee279c | 2724 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2725 | k -= 1; |
2726 | } | |
14f9c5c9 AS |
2727 | return p_array_type; |
2728 | } | |
2729 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2730 | { | |
2731 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2732 | { |
2733 | type = TYPE_TARGET_TYPE (type); | |
2734 | nindices -= 1; | |
2735 | } | |
14f9c5c9 AS |
2736 | return type; |
2737 | } | |
2738 | ||
2739 | return NULL; | |
2740 | } | |
2741 | ||
4c4b4cd2 | 2742 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2743 | Does not examine memory. Throws an error if N is invalid or TYPE |
2744 | is not an array type. NAME is the name of the Ada attribute being | |
2745 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2746 | the error message. */ | |
14f9c5c9 | 2747 | |
1eea4ebd UW |
2748 | static struct type * |
2749 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2750 | { |
4c4b4cd2 PH |
2751 | struct type *result_type; |
2752 | ||
14f9c5c9 AS |
2753 | type = desc_base_type (type); |
2754 | ||
1eea4ebd UW |
2755 | if (n < 0 || n > ada_array_arity (type)) |
2756 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2757 | |
4c4b4cd2 | 2758 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2759 | { |
2760 | int i; | |
2761 | ||
2762 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2763 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2764 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2765 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2766 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2767 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2768 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2769 | result_type = NULL; | |
14f9c5c9 | 2770 | } |
d2e4a39e | 2771 | else |
1eea4ebd UW |
2772 | { |
2773 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2774 | if (result_type == NULL) | |
2775 | error (_("attempt to take bound of something that is not an array")); | |
2776 | } | |
2777 | ||
2778 | return result_type; | |
14f9c5c9 AS |
2779 | } |
2780 | ||
2781 | /* Given that arr is an array type, returns the lower bound of the | |
2782 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2783 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2784 | array-descriptor type. It works for other arrays with bounds supplied |
2785 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2786 | |
abb68b3e | 2787 | static LONGEST |
fb5e3d5c | 2788 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2789 | { |
8a48ac95 | 2790 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2791 | int i; |
262452ec JK |
2792 | |
2793 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2794 | |
ad82864c JB |
2795 | if (ada_is_constrained_packed_array_type (arr_type)) |
2796 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2797 | |
4c4b4cd2 | 2798 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2799 | return (LONGEST) - which; |
14f9c5c9 AS |
2800 | |
2801 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2802 | type = TYPE_TARGET_TYPE (arr_type); | |
2803 | else | |
2804 | type = arr_type; | |
2805 | ||
2806 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
28c85d6c | 2807 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2808 | if (index_type_desc != NULL) |
28c85d6c JB |
2809 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2810 | NULL); | |
262452ec | 2811 | else |
8a48ac95 JB |
2812 | { |
2813 | struct type *elt_type = check_typedef (type); | |
2814 | ||
2815 | for (i = 1; i < n; i++) | |
2816 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2817 | ||
2818 | index_type = TYPE_INDEX_TYPE (elt_type); | |
2819 | } | |
262452ec | 2820 | |
43bbcdc2 PH |
2821 | return |
2822 | (LONGEST) (which == 0 | |
2823 | ? ada_discrete_type_low_bound (index_type) | |
2824 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2825 | } |
2826 | ||
2827 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2828 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2829 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2830 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2831 | |
1eea4ebd | 2832 | static LONGEST |
4dc81987 | 2833 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2834 | { |
df407dfe | 2835 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2836 | |
ad82864c JB |
2837 | if (ada_is_constrained_packed_array_type (arr_type)) |
2838 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2839 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2840 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2841 | else |
1eea4ebd | 2842 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2843 | } |
2844 | ||
2845 | /* Given that arr is an array value, returns the length of the | |
2846 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2847 | supplied by run-time quantities other than discriminants. |
2848 | Does not work for arrays indexed by enumeration types with representation | |
2849 | clauses at the moment. */ | |
14f9c5c9 | 2850 | |
1eea4ebd | 2851 | static LONGEST |
d2e4a39e | 2852 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2853 | { |
df407dfe | 2854 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2855 | |
ad82864c JB |
2856 | if (ada_is_constrained_packed_array_type (arr_type)) |
2857 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2858 | |
4c4b4cd2 | 2859 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2860 | return (ada_array_bound_from_type (arr_type, n, 1) |
2861 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2862 | else |
1eea4ebd UW |
2863 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2864 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2865 | } |
2866 | ||
2867 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2868 | with bounds LOW to LOW-1. */ | |
2869 | ||
2870 | static struct value * | |
2871 | empty_array (struct type *arr_type, int low) | |
2872 | { | |
b0dd7688 | 2873 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2874 | struct type *index_type = |
b0dd7688 | 2875 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2876 | low, low - 1); |
b0dd7688 | 2877 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2878 | |
0b5d8877 | 2879 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2880 | } |
14f9c5c9 | 2881 | \f |
d2e4a39e | 2882 | |
4c4b4cd2 | 2883 | /* Name resolution */ |
14f9c5c9 | 2884 | |
4c4b4cd2 PH |
2885 | /* The "decoded" name for the user-definable Ada operator corresponding |
2886 | to OP. */ | |
14f9c5c9 | 2887 | |
d2e4a39e | 2888 | static const char * |
4c4b4cd2 | 2889 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2890 | { |
2891 | int i; | |
2892 | ||
4c4b4cd2 | 2893 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2894 | { |
2895 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2896 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2897 | } |
323e0a4a | 2898 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2899 | } |
2900 | ||
2901 | ||
4c4b4cd2 PH |
2902 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2903 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2904 | undefined namespace) and converts operators that are | |
2905 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2906 | non-null, it provides a preferred result type [at the moment, only |
2907 | type void has any effect---causing procedures to be preferred over | |
2908 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2909 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2910 | |
4c4b4cd2 PH |
2911 | static void |
2912 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2913 | { |
30b15541 UW |
2914 | struct type *context_type = NULL; |
2915 | int pc = 0; | |
2916 | ||
2917 | if (void_context_p) | |
2918 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2919 | ||
2920 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2921 | } |
2922 | ||
4c4b4cd2 PH |
2923 | /* Resolve the operator of the subexpression beginning at |
2924 | position *POS of *EXPP. "Resolving" consists of replacing | |
2925 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2926 | with their resolutions, replacing built-in operators with | |
2927 | function calls to user-defined operators, where appropriate, and, | |
2928 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2929 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2930 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2931 | |
d2e4a39e | 2932 | static struct value * |
4c4b4cd2 | 2933 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2934 | struct type *context_type) |
14f9c5c9 AS |
2935 | { |
2936 | int pc = *pos; | |
2937 | int i; | |
4c4b4cd2 | 2938 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2939 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2940 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2941 | int nargs; /* Number of operands. */ | |
52ce6436 | 2942 | int oplen; |
14f9c5c9 AS |
2943 | |
2944 | argvec = NULL; | |
2945 | nargs = 0; | |
2946 | exp = *expp; | |
2947 | ||
52ce6436 PH |
2948 | /* Pass one: resolve operands, saving their types and updating *pos, |
2949 | if needed. */ | |
14f9c5c9 AS |
2950 | switch (op) |
2951 | { | |
4c4b4cd2 PH |
2952 | case OP_FUNCALL: |
2953 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2954 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2955 | *pos += 7; | |
4c4b4cd2 PH |
2956 | else |
2957 | { | |
2958 | *pos += 3; | |
2959 | resolve_subexp (expp, pos, 0, NULL); | |
2960 | } | |
2961 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2962 | break; |
2963 | ||
14f9c5c9 | 2964 | case UNOP_ADDR: |
4c4b4cd2 PH |
2965 | *pos += 1; |
2966 | resolve_subexp (expp, pos, 0, NULL); | |
2967 | break; | |
2968 | ||
52ce6436 PH |
2969 | case UNOP_QUAL: |
2970 | *pos += 3; | |
17466c1a | 2971 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2972 | break; |
2973 | ||
52ce6436 | 2974 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2975 | case OP_ATR_SIZE: |
2976 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2977 | case OP_ATR_FIRST: |
2978 | case OP_ATR_LAST: | |
2979 | case OP_ATR_LENGTH: | |
2980 | case OP_ATR_POS: | |
2981 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2982 | case OP_ATR_MIN: |
2983 | case OP_ATR_MAX: | |
52ce6436 PH |
2984 | case TERNOP_IN_RANGE: |
2985 | case BINOP_IN_BOUNDS: | |
2986 | case UNOP_IN_RANGE: | |
2987 | case OP_AGGREGATE: | |
2988 | case OP_OTHERS: | |
2989 | case OP_CHOICES: | |
2990 | case OP_POSITIONAL: | |
2991 | case OP_DISCRETE_RANGE: | |
2992 | case OP_NAME: | |
2993 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2994 | *pos += oplen; | |
14f9c5c9 AS |
2995 | break; |
2996 | ||
2997 | case BINOP_ASSIGN: | |
2998 | { | |
4c4b4cd2 PH |
2999 | struct value *arg1; |
3000 | ||
3001 | *pos += 1; | |
3002 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3003 | if (arg1 == NULL) | |
3004 | resolve_subexp (expp, pos, 1, NULL); | |
3005 | else | |
df407dfe | 3006 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3007 | break; |
14f9c5c9 AS |
3008 | } |
3009 | ||
4c4b4cd2 | 3010 | case UNOP_CAST: |
4c4b4cd2 PH |
3011 | *pos += 3; |
3012 | nargs = 1; | |
3013 | break; | |
14f9c5c9 | 3014 | |
4c4b4cd2 PH |
3015 | case BINOP_ADD: |
3016 | case BINOP_SUB: | |
3017 | case BINOP_MUL: | |
3018 | case BINOP_DIV: | |
3019 | case BINOP_REM: | |
3020 | case BINOP_MOD: | |
3021 | case BINOP_EXP: | |
3022 | case BINOP_CONCAT: | |
3023 | case BINOP_LOGICAL_AND: | |
3024 | case BINOP_LOGICAL_OR: | |
3025 | case BINOP_BITWISE_AND: | |
3026 | case BINOP_BITWISE_IOR: | |
3027 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3028 | |
4c4b4cd2 PH |
3029 | case BINOP_EQUAL: |
3030 | case BINOP_NOTEQUAL: | |
3031 | case BINOP_LESS: | |
3032 | case BINOP_GTR: | |
3033 | case BINOP_LEQ: | |
3034 | case BINOP_GEQ: | |
14f9c5c9 | 3035 | |
4c4b4cd2 PH |
3036 | case BINOP_REPEAT: |
3037 | case BINOP_SUBSCRIPT: | |
3038 | case BINOP_COMMA: | |
40c8aaa9 JB |
3039 | *pos += 1; |
3040 | nargs = 2; | |
3041 | break; | |
14f9c5c9 | 3042 | |
4c4b4cd2 PH |
3043 | case UNOP_NEG: |
3044 | case UNOP_PLUS: | |
3045 | case UNOP_LOGICAL_NOT: | |
3046 | case UNOP_ABS: | |
3047 | case UNOP_IND: | |
3048 | *pos += 1; | |
3049 | nargs = 1; | |
3050 | break; | |
14f9c5c9 | 3051 | |
4c4b4cd2 PH |
3052 | case OP_LONG: |
3053 | case OP_DOUBLE: | |
3054 | case OP_VAR_VALUE: | |
3055 | *pos += 4; | |
3056 | break; | |
14f9c5c9 | 3057 | |
4c4b4cd2 PH |
3058 | case OP_TYPE: |
3059 | case OP_BOOL: | |
3060 | case OP_LAST: | |
4c4b4cd2 PH |
3061 | case OP_INTERNALVAR: |
3062 | *pos += 3; | |
3063 | break; | |
14f9c5c9 | 3064 | |
4c4b4cd2 PH |
3065 | case UNOP_MEMVAL: |
3066 | *pos += 3; | |
3067 | nargs = 1; | |
3068 | break; | |
3069 | ||
67f3407f DJ |
3070 | case OP_REGISTER: |
3071 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3072 | break; | |
3073 | ||
4c4b4cd2 PH |
3074 | case STRUCTOP_STRUCT: |
3075 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3076 | nargs = 1; | |
3077 | break; | |
3078 | ||
4c4b4cd2 | 3079 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3080 | *pos += 1; |
3081 | nargs = 3; | |
3082 | break; | |
3083 | ||
52ce6436 | 3084 | case OP_STRING: |
14f9c5c9 | 3085 | break; |
4c4b4cd2 PH |
3086 | |
3087 | default: | |
323e0a4a | 3088 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3089 | } |
3090 | ||
76a01679 | 3091 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3092 | for (i = 0; i < nargs; i += 1) |
3093 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3094 | argvec[i] = NULL; | |
3095 | exp = *expp; | |
3096 | ||
3097 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3098 | switch (op) |
3099 | { | |
3100 | default: | |
3101 | break; | |
3102 | ||
14f9c5c9 | 3103 | case OP_VAR_VALUE: |
4c4b4cd2 | 3104 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3105 | { |
3106 | struct ada_symbol_info *candidates; | |
3107 | int n_candidates; | |
3108 | ||
3109 | n_candidates = | |
3110 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3111 | (exp->elts[pc + 2].symbol), | |
3112 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3113 | &candidates); |
76a01679 JB |
3114 | |
3115 | if (n_candidates > 1) | |
3116 | { | |
3117 | /* Types tend to get re-introduced locally, so if there | |
3118 | are any local symbols that are not types, first filter | |
3119 | out all types. */ | |
3120 | int j; | |
3121 | for (j = 0; j < n_candidates; j += 1) | |
3122 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3123 | { | |
3124 | case LOC_REGISTER: | |
3125 | case LOC_ARG: | |
3126 | case LOC_REF_ARG: | |
76a01679 JB |
3127 | case LOC_REGPARM_ADDR: |
3128 | case LOC_LOCAL: | |
76a01679 | 3129 | case LOC_COMPUTED: |
76a01679 JB |
3130 | goto FoundNonType; |
3131 | default: | |
3132 | break; | |
3133 | } | |
3134 | FoundNonType: | |
3135 | if (j < n_candidates) | |
3136 | { | |
3137 | j = 0; | |
3138 | while (j < n_candidates) | |
3139 | { | |
3140 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3141 | { | |
3142 | candidates[j] = candidates[n_candidates - 1]; | |
3143 | n_candidates -= 1; | |
3144 | } | |
3145 | else | |
3146 | j += 1; | |
3147 | } | |
3148 | } | |
3149 | } | |
3150 | ||
3151 | if (n_candidates == 0) | |
323e0a4a | 3152 | error (_("No definition found for %s"), |
76a01679 JB |
3153 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3154 | else if (n_candidates == 1) | |
3155 | i = 0; | |
3156 | else if (deprocedure_p | |
3157 | && !is_nonfunction (candidates, n_candidates)) | |
3158 | { | |
06d5cf63 JB |
3159 | i = ada_resolve_function |
3160 | (candidates, n_candidates, NULL, 0, | |
3161 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3162 | context_type); | |
76a01679 | 3163 | if (i < 0) |
323e0a4a | 3164 | error (_("Could not find a match for %s"), |
76a01679 JB |
3165 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3166 | } | |
3167 | else | |
3168 | { | |
323e0a4a | 3169 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3170 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3171 | user_select_syms (candidates, n_candidates, 1); | |
3172 | i = 0; | |
3173 | } | |
3174 | ||
3175 | exp->elts[pc + 1].block = candidates[i].block; | |
3176 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3177 | if (innermost_block == NULL |
3178 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3179 | innermost_block = candidates[i].block; |
3180 | } | |
3181 | ||
3182 | if (deprocedure_p | |
3183 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3184 | == TYPE_CODE_FUNC)) | |
3185 | { | |
3186 | replace_operator_with_call (expp, pc, 0, 0, | |
3187 | exp->elts[pc + 2].symbol, | |
3188 | exp->elts[pc + 1].block); | |
3189 | exp = *expp; | |
3190 | } | |
14f9c5c9 AS |
3191 | break; |
3192 | ||
3193 | case OP_FUNCALL: | |
3194 | { | |
4c4b4cd2 | 3195 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3196 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3197 | { |
3198 | struct ada_symbol_info *candidates; | |
3199 | int n_candidates; | |
3200 | ||
3201 | n_candidates = | |
76a01679 JB |
3202 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3203 | (exp->elts[pc + 5].symbol), | |
3204 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3205 | &candidates); |
4c4b4cd2 PH |
3206 | if (n_candidates == 1) |
3207 | i = 0; | |
3208 | else | |
3209 | { | |
06d5cf63 JB |
3210 | i = ada_resolve_function |
3211 | (candidates, n_candidates, | |
3212 | argvec, nargs, | |
3213 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3214 | context_type); | |
4c4b4cd2 | 3215 | if (i < 0) |
323e0a4a | 3216 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3217 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3218 | } | |
3219 | ||
3220 | exp->elts[pc + 4].block = candidates[i].block; | |
3221 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3222 | if (innermost_block == NULL |
3223 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3224 | innermost_block = candidates[i].block; |
3225 | } | |
14f9c5c9 AS |
3226 | } |
3227 | break; | |
3228 | case BINOP_ADD: | |
3229 | case BINOP_SUB: | |
3230 | case BINOP_MUL: | |
3231 | case BINOP_DIV: | |
3232 | case BINOP_REM: | |
3233 | case BINOP_MOD: | |
3234 | case BINOP_CONCAT: | |
3235 | case BINOP_BITWISE_AND: | |
3236 | case BINOP_BITWISE_IOR: | |
3237 | case BINOP_BITWISE_XOR: | |
3238 | case BINOP_EQUAL: | |
3239 | case BINOP_NOTEQUAL: | |
3240 | case BINOP_LESS: | |
3241 | case BINOP_GTR: | |
3242 | case BINOP_LEQ: | |
3243 | case BINOP_GEQ: | |
3244 | case BINOP_EXP: | |
3245 | case UNOP_NEG: | |
3246 | case UNOP_PLUS: | |
3247 | case UNOP_LOGICAL_NOT: | |
3248 | case UNOP_ABS: | |
3249 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3250 | { |
3251 | struct ada_symbol_info *candidates; | |
3252 | int n_candidates; | |
3253 | ||
3254 | n_candidates = | |
3255 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3256 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3257 | &candidates); |
4c4b4cd2 | 3258 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3259 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3260 | if (i < 0) |
3261 | break; | |
3262 | ||
76a01679 JB |
3263 | replace_operator_with_call (expp, pc, nargs, 1, |
3264 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3265 | exp = *expp; |
3266 | } | |
14f9c5c9 | 3267 | break; |
4c4b4cd2 PH |
3268 | |
3269 | case OP_TYPE: | |
b3dbf008 | 3270 | case OP_REGISTER: |
4c4b4cd2 | 3271 | return NULL; |
14f9c5c9 AS |
3272 | } |
3273 | ||
3274 | *pos = pc; | |
3275 | return evaluate_subexp_type (exp, pos); | |
3276 | } | |
3277 | ||
3278 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3279 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3280 | a non-pointer. */ |
14f9c5c9 | 3281 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3282 | liberal. */ |
14f9c5c9 AS |
3283 | |
3284 | static int | |
4dc81987 | 3285 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3286 | { |
61ee279c PH |
3287 | ftype = ada_check_typedef (ftype); |
3288 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3289 | |
3290 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3291 | ftype = TYPE_TARGET_TYPE (ftype); | |
3292 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3293 | atype = TYPE_TARGET_TYPE (atype); | |
3294 | ||
d2e4a39e | 3295 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3296 | { |
3297 | default: | |
5b3d5b7d | 3298 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3299 | case TYPE_CODE_PTR: |
3300 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3301 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3302 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3303 | else |
1265e4aa JB |
3304 | return (may_deref |
3305 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3306 | case TYPE_CODE_INT: |
3307 | case TYPE_CODE_ENUM: | |
3308 | case TYPE_CODE_RANGE: | |
3309 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3310 | { |
3311 | case TYPE_CODE_INT: | |
3312 | case TYPE_CODE_ENUM: | |
3313 | case TYPE_CODE_RANGE: | |
3314 | return 1; | |
3315 | default: | |
3316 | return 0; | |
3317 | } | |
14f9c5c9 AS |
3318 | |
3319 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3320 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3321 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3322 | |
3323 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3324 | if (ada_is_array_descriptor_type (ftype)) |
3325 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3326 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3327 | else |
4c4b4cd2 PH |
3328 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3329 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3330 | |
3331 | case TYPE_CODE_UNION: | |
3332 | case TYPE_CODE_FLT: | |
3333 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3334 | } | |
3335 | } | |
3336 | ||
3337 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3338 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3339 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3340 | argument function. */ |
14f9c5c9 AS |
3341 | |
3342 | static int | |
d2e4a39e | 3343 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3344 | { |
3345 | int i; | |
d2e4a39e | 3346 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3347 | |
1265e4aa JB |
3348 | if (SYMBOL_CLASS (func) == LOC_CONST |
3349 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3350 | return (n_actuals == 0); |
3351 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3352 | return 0; | |
3353 | ||
3354 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3355 | return 0; | |
3356 | ||
3357 | for (i = 0; i < n_actuals; i += 1) | |
3358 | { | |
4c4b4cd2 | 3359 | if (actuals[i] == NULL) |
76a01679 JB |
3360 | return 0; |
3361 | else | |
3362 | { | |
5b4ee69b MS |
3363 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3364 | i)); | |
df407dfe | 3365 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3366 | |
76a01679 JB |
3367 | if (!ada_type_match (ftype, atype, 1)) |
3368 | return 0; | |
3369 | } | |
14f9c5c9 AS |
3370 | } |
3371 | return 1; | |
3372 | } | |
3373 | ||
3374 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3375 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3376 | FUNC_TYPE is not a valid function type with a non-null return type | |
3377 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3378 | ||
3379 | static int | |
d2e4a39e | 3380 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3381 | { |
d2e4a39e | 3382 | struct type *return_type; |
14f9c5c9 AS |
3383 | |
3384 | if (func_type == NULL) | |
3385 | return 1; | |
3386 | ||
4c4b4cd2 | 3387 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3388 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3389 | else |
18af8284 | 3390 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3391 | if (return_type == NULL) |
3392 | return 1; | |
3393 | ||
18af8284 | 3394 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3395 | |
3396 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3397 | return context_type == NULL || return_type == context_type; | |
3398 | else if (context_type == NULL) | |
3399 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3400 | else | |
3401 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3402 | } | |
3403 | ||
3404 | ||
4c4b4cd2 | 3405 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3406 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3407 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3408 | that returns that type, then eliminate matches that don't. If | |
3409 | CONTEXT_TYPE is void and there is at least one match that does not | |
3410 | return void, eliminate all matches that do. | |
3411 | ||
14f9c5c9 AS |
3412 | Asks the user if there is more than one match remaining. Returns -1 |
3413 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3414 | solely for messages. May re-arrange and modify SYMS in |
3415 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3416 | |
4c4b4cd2 PH |
3417 | static int |
3418 | ada_resolve_function (struct ada_symbol_info syms[], | |
3419 | int nsyms, struct value **args, int nargs, | |
3420 | const char *name, struct type *context_type) | |
14f9c5c9 | 3421 | { |
30b15541 | 3422 | int fallback; |
14f9c5c9 | 3423 | int k; |
4c4b4cd2 | 3424 | int m; /* Number of hits */ |
14f9c5c9 | 3425 | |
d2e4a39e | 3426 | m = 0; |
30b15541 UW |
3427 | /* In the first pass of the loop, we only accept functions matching |
3428 | context_type. If none are found, we add a second pass of the loop | |
3429 | where every function is accepted. */ | |
3430 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3431 | { |
3432 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3433 | { |
61ee279c | 3434 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3435 | |
3436 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3437 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3438 | { |
3439 | syms[m] = syms[k]; | |
3440 | m += 1; | |
3441 | } | |
3442 | } | |
14f9c5c9 AS |
3443 | } |
3444 | ||
3445 | if (m == 0) | |
3446 | return -1; | |
3447 | else if (m > 1) | |
3448 | { | |
323e0a4a | 3449 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3450 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3451 | return 0; |
3452 | } | |
3453 | return 0; | |
3454 | } | |
3455 | ||
4c4b4cd2 PH |
3456 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3457 | in a listing of choices during disambiguation (see sort_choices, below). | |
3458 | The idea is that overloadings of a subprogram name from the | |
3459 | same package should sort in their source order. We settle for ordering | |
3460 | such symbols by their trailing number (__N or $N). */ | |
3461 | ||
14f9c5c9 | 3462 | static int |
0d5cff50 | 3463 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3464 | { |
3465 | if (N1 == NULL) | |
3466 | return 0; | |
3467 | else if (N0 == NULL) | |
3468 | return 1; | |
3469 | else | |
3470 | { | |
3471 | int k0, k1; | |
5b4ee69b | 3472 | |
d2e4a39e | 3473 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3474 | ; |
d2e4a39e | 3475 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3476 | ; |
d2e4a39e | 3477 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3478 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3479 | { | |
3480 | int n0, n1; | |
5b4ee69b | 3481 | |
4c4b4cd2 PH |
3482 | n0 = k0; |
3483 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3484 | n0 -= 1; | |
3485 | n1 = k1; | |
3486 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3487 | n1 -= 1; | |
3488 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3489 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3490 | } | |
14f9c5c9 AS |
3491 | return (strcmp (N0, N1) < 0); |
3492 | } | |
3493 | } | |
d2e4a39e | 3494 | |
4c4b4cd2 PH |
3495 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3496 | encoded names. */ | |
3497 | ||
d2e4a39e | 3498 | static void |
4c4b4cd2 | 3499 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3500 | { |
4c4b4cd2 | 3501 | int i; |
5b4ee69b | 3502 | |
d2e4a39e | 3503 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3504 | { |
4c4b4cd2 | 3505 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3506 | int j; |
3507 | ||
d2e4a39e | 3508 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3509 | { |
3510 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3511 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3512 | break; | |
3513 | syms[j + 1] = syms[j]; | |
3514 | } | |
d2e4a39e | 3515 | syms[j + 1] = sym; |
14f9c5c9 AS |
3516 | } |
3517 | } | |
3518 | ||
4c4b4cd2 PH |
3519 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3520 | by asking the user (if necessary), returning the number selected, | |
3521 | and setting the first elements of SYMS items. Error if no symbols | |
3522 | selected. */ | |
14f9c5c9 AS |
3523 | |
3524 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3525 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3526 | |
3527 | int | |
4c4b4cd2 | 3528 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3529 | { |
3530 | int i; | |
d2e4a39e | 3531 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3532 | int n_chosen; |
3533 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3534 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3535 | |
3536 | if (max_results < 1) | |
323e0a4a | 3537 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3538 | if (nsyms <= 1) |
3539 | return nsyms; | |
3540 | ||
717d2f5a JB |
3541 | if (select_mode == multiple_symbols_cancel) |
3542 | error (_("\ | |
3543 | canceled because the command is ambiguous\n\ | |
3544 | See set/show multiple-symbol.")); | |
3545 | ||
3546 | /* If select_mode is "all", then return all possible symbols. | |
3547 | Only do that if more than one symbol can be selected, of course. | |
3548 | Otherwise, display the menu as usual. */ | |
3549 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3550 | return nsyms; | |
3551 | ||
323e0a4a | 3552 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3553 | if (max_results > 1) |
323e0a4a | 3554 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3555 | |
4c4b4cd2 | 3556 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3557 | |
3558 | for (i = 0; i < nsyms; i += 1) | |
3559 | { | |
4c4b4cd2 PH |
3560 | if (syms[i].sym == NULL) |
3561 | continue; | |
3562 | ||
3563 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3564 | { | |
76a01679 JB |
3565 | struct symtab_and_line sal = |
3566 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3567 | |
323e0a4a AC |
3568 | if (sal.symtab == NULL) |
3569 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3570 | i + first_choice, | |
3571 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3572 | sal.line); | |
3573 | else | |
3574 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3575 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3576 | symtab_to_filename_for_display (sal.symtab), |
3577 | sal.line); | |
4c4b4cd2 PH |
3578 | continue; |
3579 | } | |
d2e4a39e | 3580 | else |
4c4b4cd2 PH |
3581 | { |
3582 | int is_enumeral = | |
3583 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3584 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3585 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
210bbc17 | 3586 | struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); |
4c4b4cd2 PH |
3587 | |
3588 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3589 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3590 | i + first_choice, |
3591 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3592 | symtab_to_filename_for_display (symtab), |
3593 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3594 | else if (is_enumeral |
3595 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3596 | { |
a3f17187 | 3597 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3598 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3599 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3600 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3601 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3602 | } | |
3603 | else if (symtab != NULL) | |
3604 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3605 | ? _("[%d] %s in %s (enumeral)\n") |
3606 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3607 | i + first_choice, |
3608 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3609 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3610 | else |
3611 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3612 | ? _("[%d] %s (enumeral)\n") |
3613 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3614 | i + first_choice, |
3615 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3616 | } | |
14f9c5c9 | 3617 | } |
d2e4a39e | 3618 | |
14f9c5c9 | 3619 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3620 | "overload-choice"); |
14f9c5c9 AS |
3621 | |
3622 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3623 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3624 | |
3625 | return n_chosen; | |
3626 | } | |
3627 | ||
3628 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3629 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3630 | order in CHOICES[0 .. N-1], and return N. |
3631 | ||
3632 | The user types choices as a sequence of numbers on one line | |
3633 | separated by blanks, encoding them as follows: | |
3634 | ||
4c4b4cd2 | 3635 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3636 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3637 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3638 | ||
4c4b4cd2 | 3639 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3640 | |
3641 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3642 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3643 | |
3644 | int | |
d2e4a39e | 3645 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3646 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3647 | { |
d2e4a39e | 3648 | char *args; |
0bcd0149 | 3649 | char *prompt; |
14f9c5c9 AS |
3650 | int n_chosen; |
3651 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3652 | |
14f9c5c9 AS |
3653 | prompt = getenv ("PS2"); |
3654 | if (prompt == NULL) | |
0bcd0149 | 3655 | prompt = "> "; |
14f9c5c9 | 3656 | |
0bcd0149 | 3657 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3658 | |
14f9c5c9 | 3659 | if (args == NULL) |
323e0a4a | 3660 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3661 | |
3662 | n_chosen = 0; | |
76a01679 | 3663 | |
4c4b4cd2 PH |
3664 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3665 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3666 | while (1) |
3667 | { | |
d2e4a39e | 3668 | char *args2; |
14f9c5c9 AS |
3669 | int choice, j; |
3670 | ||
0fcd72ba | 3671 | args = skip_spaces (args); |
14f9c5c9 | 3672 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3673 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3674 | else if (*args == '\0') |
4c4b4cd2 | 3675 | break; |
14f9c5c9 AS |
3676 | |
3677 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3678 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3679 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3680 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3681 | args = args2; |
3682 | ||
d2e4a39e | 3683 | if (choice == 0) |
323e0a4a | 3684 | error (_("cancelled")); |
14f9c5c9 AS |
3685 | |
3686 | if (choice < first_choice) | |
4c4b4cd2 PH |
3687 | { |
3688 | n_chosen = n_choices; | |
3689 | for (j = 0; j < n_choices; j += 1) | |
3690 | choices[j] = j; | |
3691 | break; | |
3692 | } | |
14f9c5c9 AS |
3693 | choice -= first_choice; |
3694 | ||
d2e4a39e | 3695 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3696 | { |
3697 | } | |
14f9c5c9 AS |
3698 | |
3699 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3700 | { |
3701 | int k; | |
5b4ee69b | 3702 | |
4c4b4cd2 PH |
3703 | for (k = n_chosen - 1; k > j; k -= 1) |
3704 | choices[k + 1] = choices[k]; | |
3705 | choices[j + 1] = choice; | |
3706 | n_chosen += 1; | |
3707 | } | |
14f9c5c9 AS |
3708 | } |
3709 | ||
3710 | if (n_chosen > max_results) | |
323e0a4a | 3711 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3712 | |
14f9c5c9 AS |
3713 | return n_chosen; |
3714 | } | |
3715 | ||
4c4b4cd2 PH |
3716 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3717 | on the function identified by SYM and BLOCK, and taking NARGS | |
3718 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3719 | |
3720 | static void | |
d2e4a39e | 3721 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3722 | int oplen, struct symbol *sym, |
270140bd | 3723 | const struct block *block) |
14f9c5c9 AS |
3724 | { |
3725 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3726 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3727 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3728 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3729 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3730 | struct expression *exp = *expp; |
14f9c5c9 AS |
3731 | |
3732 | newexp->nelts = exp->nelts + 7 - oplen; | |
3733 | newexp->language_defn = exp->language_defn; | |
3489610d | 3734 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3735 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3736 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3737 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3738 | |
3739 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3740 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3741 | ||
3742 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3743 | newexp->elts[pc + 4].block = block; | |
3744 | newexp->elts[pc + 5].symbol = sym; | |
3745 | ||
3746 | *expp = newexp; | |
aacb1f0a | 3747 | xfree (exp); |
d2e4a39e | 3748 | } |
14f9c5c9 AS |
3749 | |
3750 | /* Type-class predicates */ | |
3751 | ||
4c4b4cd2 PH |
3752 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3753 | or FLOAT). */ | |
14f9c5c9 AS |
3754 | |
3755 | static int | |
d2e4a39e | 3756 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3757 | { |
3758 | if (type == NULL) | |
3759 | return 0; | |
d2e4a39e AS |
3760 | else |
3761 | { | |
3762 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3763 | { |
3764 | case TYPE_CODE_INT: | |
3765 | case TYPE_CODE_FLT: | |
3766 | return 1; | |
3767 | case TYPE_CODE_RANGE: | |
3768 | return (type == TYPE_TARGET_TYPE (type) | |
3769 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3770 | default: | |
3771 | return 0; | |
3772 | } | |
d2e4a39e | 3773 | } |
14f9c5c9 AS |
3774 | } |
3775 | ||
4c4b4cd2 | 3776 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3777 | |
3778 | static int | |
d2e4a39e | 3779 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3780 | { |
3781 | if (type == NULL) | |
3782 | return 0; | |
d2e4a39e AS |
3783 | else |
3784 | { | |
3785 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3786 | { |
3787 | case TYPE_CODE_INT: | |
3788 | return 1; | |
3789 | case TYPE_CODE_RANGE: | |
3790 | return (type == TYPE_TARGET_TYPE (type) | |
3791 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3792 | default: | |
3793 | return 0; | |
3794 | } | |
d2e4a39e | 3795 | } |
14f9c5c9 AS |
3796 | } |
3797 | ||
4c4b4cd2 | 3798 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3799 | |
3800 | static int | |
d2e4a39e | 3801 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3802 | { |
3803 | if (type == NULL) | |
3804 | return 0; | |
d2e4a39e AS |
3805 | else |
3806 | { | |
3807 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3808 | { |
3809 | case TYPE_CODE_INT: | |
3810 | case TYPE_CODE_RANGE: | |
3811 | case TYPE_CODE_ENUM: | |
3812 | case TYPE_CODE_FLT: | |
3813 | return 1; | |
3814 | default: | |
3815 | return 0; | |
3816 | } | |
d2e4a39e | 3817 | } |
14f9c5c9 AS |
3818 | } |
3819 | ||
4c4b4cd2 | 3820 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3821 | |
3822 | static int | |
d2e4a39e | 3823 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3824 | { |
3825 | if (type == NULL) | |
3826 | return 0; | |
d2e4a39e AS |
3827 | else |
3828 | { | |
3829 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3830 | { |
3831 | case TYPE_CODE_INT: | |
3832 | case TYPE_CODE_RANGE: | |
3833 | case TYPE_CODE_ENUM: | |
872f0337 | 3834 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3835 | return 1; |
3836 | default: | |
3837 | return 0; | |
3838 | } | |
d2e4a39e | 3839 | } |
14f9c5c9 AS |
3840 | } |
3841 | ||
4c4b4cd2 PH |
3842 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3843 | a user-defined function. Errs on the side of pre-defined operators | |
3844 | (i.e., result 0). */ | |
14f9c5c9 AS |
3845 | |
3846 | static int | |
d2e4a39e | 3847 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3848 | { |
76a01679 | 3849 | struct type *type0 = |
df407dfe | 3850 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3851 | struct type *type1 = |
df407dfe | 3852 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3853 | |
4c4b4cd2 PH |
3854 | if (type0 == NULL) |
3855 | return 0; | |
3856 | ||
14f9c5c9 AS |
3857 | switch (op) |
3858 | { | |
3859 | default: | |
3860 | return 0; | |
3861 | ||
3862 | case BINOP_ADD: | |
3863 | case BINOP_SUB: | |
3864 | case BINOP_MUL: | |
3865 | case BINOP_DIV: | |
d2e4a39e | 3866 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3867 | |
3868 | case BINOP_REM: | |
3869 | case BINOP_MOD: | |
3870 | case BINOP_BITWISE_AND: | |
3871 | case BINOP_BITWISE_IOR: | |
3872 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3873 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3874 | |
3875 | case BINOP_EQUAL: | |
3876 | case BINOP_NOTEQUAL: | |
3877 | case BINOP_LESS: | |
3878 | case BINOP_GTR: | |
3879 | case BINOP_LEQ: | |
3880 | case BINOP_GEQ: | |
d2e4a39e | 3881 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3882 | |
3883 | case BINOP_CONCAT: | |
ee90b9ab | 3884 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3885 | |
3886 | case BINOP_EXP: | |
d2e4a39e | 3887 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3888 | |
3889 | case UNOP_NEG: | |
3890 | case UNOP_PLUS: | |
3891 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3892 | case UNOP_ABS: |
3893 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3894 | |
3895 | } | |
3896 | } | |
3897 | \f | |
4c4b4cd2 | 3898 | /* Renaming */ |
14f9c5c9 | 3899 | |
aeb5907d JB |
3900 | /* NOTES: |
3901 | ||
3902 | 1. In the following, we assume that a renaming type's name may | |
3903 | have an ___XD suffix. It would be nice if this went away at some | |
3904 | point. | |
3905 | 2. We handle both the (old) purely type-based representation of | |
3906 | renamings and the (new) variable-based encoding. At some point, | |
3907 | it is devoutly to be hoped that the former goes away | |
3908 | (FIXME: hilfinger-2007-07-09). | |
3909 | 3. Subprogram renamings are not implemented, although the XRS | |
3910 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3911 | ||
3912 | /* If SYM encodes a renaming, | |
3913 | ||
3914 | <renaming> renames <renamed entity>, | |
3915 | ||
3916 | sets *LEN to the length of the renamed entity's name, | |
3917 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3918 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3919 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3920 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3921 | are undefined). Otherwise, returns a value indicating the category | |
3922 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3923 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3924 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3925 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3926 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3927 | may be NULL, in which case they are not assigned. | |
3928 | ||
3929 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3930 | ||
3931 | enum ada_renaming_category | |
3932 | ada_parse_renaming (struct symbol *sym, | |
3933 | const char **renamed_entity, int *len, | |
3934 | const char **renaming_expr) | |
3935 | { | |
3936 | enum ada_renaming_category kind; | |
3937 | const char *info; | |
3938 | const char *suffix; | |
3939 | ||
3940 | if (sym == NULL) | |
3941 | return ADA_NOT_RENAMING; | |
3942 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3943 | { |
aeb5907d JB |
3944 | default: |
3945 | return ADA_NOT_RENAMING; | |
3946 | case LOC_TYPEDEF: | |
3947 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3948 | renamed_entity, len, renaming_expr); | |
3949 | case LOC_LOCAL: | |
3950 | case LOC_STATIC: | |
3951 | case LOC_COMPUTED: | |
3952 | case LOC_OPTIMIZED_OUT: | |
3953 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3954 | if (info == NULL) | |
3955 | return ADA_NOT_RENAMING; | |
3956 | switch (info[5]) | |
3957 | { | |
3958 | case '_': | |
3959 | kind = ADA_OBJECT_RENAMING; | |
3960 | info += 6; | |
3961 | break; | |
3962 | case 'E': | |
3963 | kind = ADA_EXCEPTION_RENAMING; | |
3964 | info += 7; | |
3965 | break; | |
3966 | case 'P': | |
3967 | kind = ADA_PACKAGE_RENAMING; | |
3968 | info += 7; | |
3969 | break; | |
3970 | case 'S': | |
3971 | kind = ADA_SUBPROGRAM_RENAMING; | |
3972 | info += 7; | |
3973 | break; | |
3974 | default: | |
3975 | return ADA_NOT_RENAMING; | |
3976 | } | |
14f9c5c9 | 3977 | } |
4c4b4cd2 | 3978 | |
aeb5907d JB |
3979 | if (renamed_entity != NULL) |
3980 | *renamed_entity = info; | |
3981 | suffix = strstr (info, "___XE"); | |
3982 | if (suffix == NULL || suffix == info) | |
3983 | return ADA_NOT_RENAMING; | |
3984 | if (len != NULL) | |
3985 | *len = strlen (info) - strlen (suffix); | |
3986 | suffix += 5; | |
3987 | if (renaming_expr != NULL) | |
3988 | *renaming_expr = suffix; | |
3989 | return kind; | |
3990 | } | |
3991 | ||
3992 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3993 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3994 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3995 | ADA_NOT_RENAMING otherwise. */ | |
3996 | static enum ada_renaming_category | |
3997 | parse_old_style_renaming (struct type *type, | |
3998 | const char **renamed_entity, int *len, | |
3999 | const char **renaming_expr) | |
4000 | { | |
4001 | enum ada_renaming_category kind; | |
4002 | const char *name; | |
4003 | const char *info; | |
4004 | const char *suffix; | |
14f9c5c9 | 4005 | |
aeb5907d JB |
4006 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4007 | || TYPE_NFIELDS (type) != 1) | |
4008 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4009 | |
aeb5907d JB |
4010 | name = type_name_no_tag (type); |
4011 | if (name == NULL) | |
4012 | return ADA_NOT_RENAMING; | |
4013 | ||
4014 | name = strstr (name, "___XR"); | |
4015 | if (name == NULL) | |
4016 | return ADA_NOT_RENAMING; | |
4017 | switch (name[5]) | |
4018 | { | |
4019 | case '\0': | |
4020 | case '_': | |
4021 | kind = ADA_OBJECT_RENAMING; | |
4022 | break; | |
4023 | case 'E': | |
4024 | kind = ADA_EXCEPTION_RENAMING; | |
4025 | break; | |
4026 | case 'P': | |
4027 | kind = ADA_PACKAGE_RENAMING; | |
4028 | break; | |
4029 | case 'S': | |
4030 | kind = ADA_SUBPROGRAM_RENAMING; | |
4031 | break; | |
4032 | default: | |
4033 | return ADA_NOT_RENAMING; | |
4034 | } | |
14f9c5c9 | 4035 | |
aeb5907d JB |
4036 | info = TYPE_FIELD_NAME (type, 0); |
4037 | if (info == NULL) | |
4038 | return ADA_NOT_RENAMING; | |
4039 | if (renamed_entity != NULL) | |
4040 | *renamed_entity = info; | |
4041 | suffix = strstr (info, "___XE"); | |
4042 | if (renaming_expr != NULL) | |
4043 | *renaming_expr = suffix + 5; | |
4044 | if (suffix == NULL || suffix == info) | |
4045 | return ADA_NOT_RENAMING; | |
4046 | if (len != NULL) | |
4047 | *len = suffix - info; | |
4048 | return kind; | |
a5ee536b JB |
4049 | } |
4050 | ||
4051 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4052 | be a symbol encoding a renaming expression. BLOCK is the block | |
4053 | used to evaluate the renaming. */ | |
52ce6436 | 4054 | |
a5ee536b JB |
4055 | static struct value * |
4056 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4057 | struct block *block) | |
4058 | { | |
bbc13ae3 | 4059 | const char *sym_name; |
a5ee536b JB |
4060 | struct expression *expr; |
4061 | struct value *value; | |
4062 | struct cleanup *old_chain = NULL; | |
4063 | ||
bbc13ae3 | 4064 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4065 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4066 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4067 | value = evaluate_expression (expr); |
4068 | ||
4069 | do_cleanups (old_chain); | |
4070 | return value; | |
4071 | } | |
14f9c5c9 | 4072 | \f |
d2e4a39e | 4073 | |
4c4b4cd2 | 4074 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4075 | |
4c4b4cd2 | 4076 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4077 | lvalues, and otherwise has the side-effect of allocating memory |
4078 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4079 | |
d2e4a39e | 4080 | static struct value * |
40bc484c | 4081 | ensure_lval (struct value *val) |
14f9c5c9 | 4082 | { |
40bc484c JB |
4083 | if (VALUE_LVAL (val) == not_lval |
4084 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4085 | { |
df407dfe | 4086 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4087 | const CORE_ADDR addr = |
4088 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4089 | |
40bc484c | 4090 | set_value_address (val, addr); |
a84a8a0d | 4091 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4092 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4093 | } |
14f9c5c9 AS |
4094 | |
4095 | return val; | |
4096 | } | |
4097 | ||
4098 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4099 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4100 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4101 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4102 | |
a93c0eb6 | 4103 | struct value * |
40bc484c | 4104 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4105 | { |
df407dfe | 4106 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4107 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4108 | struct type *formal_target = |
4109 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4110 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4111 | struct type *actual_target = |
4112 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4113 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4114 | |
4c4b4cd2 | 4115 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4116 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4117 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4118 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4119 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4120 | { |
a84a8a0d | 4121 | struct value *result; |
5b4ee69b | 4122 | |
14f9c5c9 | 4123 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4124 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4125 | result = desc_data (actual); |
14f9c5c9 | 4126 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4127 | { |
4128 | if (VALUE_LVAL (actual) != lval_memory) | |
4129 | { | |
4130 | struct value *val; | |
5b4ee69b | 4131 | |
df407dfe | 4132 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4133 | val = allocate_value (actual_type); |
990a07ab | 4134 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4135 | (char *) value_contents (actual), |
4c4b4cd2 | 4136 | TYPE_LENGTH (actual_type)); |
40bc484c | 4137 | actual = ensure_lval (val); |
4c4b4cd2 | 4138 | } |
a84a8a0d | 4139 | result = value_addr (actual); |
4c4b4cd2 | 4140 | } |
a84a8a0d JB |
4141 | else |
4142 | return actual; | |
b1af9e97 | 4143 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4144 | } |
4145 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4146 | return ada_value_ind (actual); | |
4147 | ||
4148 | return actual; | |
4149 | } | |
4150 | ||
438c98a1 JB |
4151 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4152 | type TYPE. This is usually an inefficient no-op except on some targets | |
4153 | (such as AVR) where the representation of a pointer and an address | |
4154 | differs. */ | |
4155 | ||
4156 | static CORE_ADDR | |
4157 | value_pointer (struct value *value, struct type *type) | |
4158 | { | |
4159 | struct gdbarch *gdbarch = get_type_arch (type); | |
4160 | unsigned len = TYPE_LENGTH (type); | |
4161 | gdb_byte *buf = alloca (len); | |
4162 | CORE_ADDR addr; | |
4163 | ||
4164 | addr = value_address (value); | |
4165 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4166 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4167 | return addr; | |
4168 | } | |
4169 | ||
14f9c5c9 | 4170 | |
4c4b4cd2 PH |
4171 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4172 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4173 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4174 | to-descriptor type rather than a descriptor type), a struct value * |
4175 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4176 | |
d2e4a39e | 4177 | static struct value * |
40bc484c | 4178 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4179 | { |
d2e4a39e AS |
4180 | struct type *bounds_type = desc_bounds_type (type); |
4181 | struct type *desc_type = desc_base_type (type); | |
4182 | struct value *descriptor = allocate_value (desc_type); | |
4183 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4184 | int i; |
d2e4a39e | 4185 | |
0963b4bd MS |
4186 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4187 | i > 0; i -= 1) | |
14f9c5c9 | 4188 | { |
19f220c3 JK |
4189 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4190 | ada_array_bound (arr, i, 0), | |
4191 | desc_bound_bitpos (bounds_type, i, 0), | |
4192 | desc_bound_bitsize (bounds_type, i, 0)); | |
4193 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4194 | ada_array_bound (arr, i, 1), | |
4195 | desc_bound_bitpos (bounds_type, i, 1), | |
4196 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4197 | } |
d2e4a39e | 4198 | |
40bc484c | 4199 | bounds = ensure_lval (bounds); |
d2e4a39e | 4200 | |
19f220c3 JK |
4201 | modify_field (value_type (descriptor), |
4202 | value_contents_writeable (descriptor), | |
4203 | value_pointer (ensure_lval (arr), | |
4204 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4205 | fat_pntr_data_bitpos (desc_type), | |
4206 | fat_pntr_data_bitsize (desc_type)); | |
4207 | ||
4208 | modify_field (value_type (descriptor), | |
4209 | value_contents_writeable (descriptor), | |
4210 | value_pointer (bounds, | |
4211 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4212 | fat_pntr_bounds_bitpos (desc_type), | |
4213 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4214 | |
40bc484c | 4215 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4216 | |
4217 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4218 | return value_addr (descriptor); | |
4219 | else | |
4220 | return descriptor; | |
4221 | } | |
14f9c5c9 | 4222 | \f |
963a6417 | 4223 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4224 | * used in the public sources. */ |
96d887e8 | 4225 | |
96d887e8 PH |
4226 | static int |
4227 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4228 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4229 | { |
4230 | return 0; | |
4231 | } | |
4232 | ||
4233 | static void | |
4234 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4235 | const struct block *block) |
96d887e8 PH |
4236 | { |
4237 | } | |
4c4b4cd2 PH |
4238 | \f |
4239 | /* Symbol Lookup */ | |
4240 | ||
c0431670 JB |
4241 | /* Return nonzero if wild matching should be used when searching for |
4242 | all symbols matching LOOKUP_NAME. | |
4243 | ||
4244 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4245 | for Ada lookups (see ada_name_for_lookup). */ | |
4246 | ||
4247 | static int | |
4248 | should_use_wild_match (const char *lookup_name) | |
4249 | { | |
4250 | return (strstr (lookup_name, "__") == NULL); | |
4251 | } | |
4252 | ||
4c4b4cd2 PH |
4253 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4254 | given DOMAIN, visible from lexical block BLOCK. */ | |
4255 | ||
4256 | static struct symbol * | |
4257 | standard_lookup (const char *name, const struct block *block, | |
4258 | domain_enum domain) | |
4259 | { | |
acbd605d MGD |
4260 | /* Initialize it just to avoid a GCC false warning. */ |
4261 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4262 | |
2570f2b7 | 4263 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4264 | return sym; |
2570f2b7 UW |
4265 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4266 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4267 | return sym; |
4268 | } | |
4269 | ||
4270 | ||
4271 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4272 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4273 | since they contend in overloading in the same way. */ | |
4274 | static int | |
4275 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4276 | { | |
4277 | int i; | |
4278 | ||
4279 | for (i = 0; i < n; i += 1) | |
4280 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4281 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4282 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4283 | return 1; |
4284 | ||
4285 | return 0; | |
4286 | } | |
4287 | ||
4288 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4289 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4290 | |
4291 | static int | |
d2e4a39e | 4292 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4293 | { |
d2e4a39e | 4294 | if (type0 == type1) |
14f9c5c9 | 4295 | return 1; |
d2e4a39e | 4296 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4297 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4298 | return 0; | |
d2e4a39e | 4299 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4300 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4301 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4302 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4303 | return 1; |
d2e4a39e | 4304 | |
14f9c5c9 AS |
4305 | return 0; |
4306 | } | |
4307 | ||
4308 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4309 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4310 | |
4311 | static int | |
d2e4a39e | 4312 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4313 | { |
4314 | if (sym0 == sym1) | |
4315 | return 1; | |
176620f1 | 4316 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4317 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4318 | return 0; | |
4319 | ||
d2e4a39e | 4320 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4321 | { |
4322 | case LOC_UNDEF: | |
4323 | return 1; | |
4324 | case LOC_TYPEDEF: | |
4325 | { | |
4c4b4cd2 PH |
4326 | struct type *type0 = SYMBOL_TYPE (sym0); |
4327 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4328 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4329 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4330 | int len0 = strlen (name0); |
5b4ee69b | 4331 | |
4c4b4cd2 PH |
4332 | return |
4333 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4334 | && (equiv_types (type0, type1) | |
4335 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4336 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4337 | } |
4338 | case LOC_CONST: | |
4339 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4340 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4341 | default: |
4342 | return 0; | |
14f9c5c9 AS |
4343 | } |
4344 | } | |
4345 | ||
4c4b4cd2 PH |
4346 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4347 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4348 | |
4349 | static void | |
76a01679 JB |
4350 | add_defn_to_vec (struct obstack *obstackp, |
4351 | struct symbol *sym, | |
2570f2b7 | 4352 | struct block *block) |
14f9c5c9 AS |
4353 | { |
4354 | int i; | |
4c4b4cd2 | 4355 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4356 | |
529cad9c PH |
4357 | /* Do not try to complete stub types, as the debugger is probably |
4358 | already scanning all symbols matching a certain name at the | |
4359 | time when this function is called. Trying to replace the stub | |
4360 | type by its associated full type will cause us to restart a scan | |
4361 | which may lead to an infinite recursion. Instead, the client | |
4362 | collecting the matching symbols will end up collecting several | |
4363 | matches, with at least one of them complete. It can then filter | |
4364 | out the stub ones if needed. */ | |
4365 | ||
4c4b4cd2 PH |
4366 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4367 | { | |
4368 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4369 | return; | |
4370 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4371 | { | |
4372 | prevDefns[i].sym = sym; | |
4373 | prevDefns[i].block = block; | |
4c4b4cd2 | 4374 | return; |
76a01679 | 4375 | } |
4c4b4cd2 PH |
4376 | } |
4377 | ||
4378 | { | |
4379 | struct ada_symbol_info info; | |
4380 | ||
4381 | info.sym = sym; | |
4382 | info.block = block; | |
4c4b4cd2 PH |
4383 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4384 | } | |
4385 | } | |
4386 | ||
4387 | /* Number of ada_symbol_info structures currently collected in | |
4388 | current vector in *OBSTACKP. */ | |
4389 | ||
76a01679 JB |
4390 | static int |
4391 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4392 | { |
4393 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4394 | } | |
4395 | ||
4396 | /* Vector of ada_symbol_info structures currently collected in current | |
4397 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4398 | its final address. */ | |
4399 | ||
76a01679 | 4400 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4401 | defns_collected (struct obstack *obstackp, int finish) |
4402 | { | |
4403 | if (finish) | |
4404 | return obstack_finish (obstackp); | |
4405 | else | |
4406 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4407 | } | |
4408 | ||
7c7b6655 TT |
4409 | /* Return a bound minimal symbol matching NAME according to Ada |
4410 | decoding rules. Returns an invalid symbol if there is no such | |
4411 | minimal symbol. Names prefixed with "standard__" are handled | |
4412 | specially: "standard__" is first stripped off, and only static and | |
4413 | global symbols are searched. */ | |
4c4b4cd2 | 4414 | |
7c7b6655 | 4415 | struct bound_minimal_symbol |
96d887e8 | 4416 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4417 | { |
7c7b6655 | 4418 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4419 | struct objfile *objfile; |
96d887e8 | 4420 | struct minimal_symbol *msymbol; |
dc4024cd | 4421 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4422 | |
7c7b6655 TT |
4423 | memset (&result, 0, sizeof (result)); |
4424 | ||
c0431670 JB |
4425 | /* Special case: If the user specifies a symbol name inside package |
4426 | Standard, do a non-wild matching of the symbol name without | |
4427 | the "standard__" prefix. This was primarily introduced in order | |
4428 | to allow the user to specifically access the standard exceptions | |
4429 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4430 | is ambiguous (due to the user defining its own Constraint_Error | |
4431 | entity inside its program). */ | |
96d887e8 | 4432 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4433 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4434 | |
96d887e8 PH |
4435 | ALL_MSYMBOLS (objfile, msymbol) |
4436 | { | |
dc4024cd | 4437 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4438 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4439 | { |
4440 | result.minsym = msymbol; | |
4441 | result.objfile = objfile; | |
4442 | break; | |
4443 | } | |
96d887e8 | 4444 | } |
4c4b4cd2 | 4445 | |
7c7b6655 | 4446 | return result; |
96d887e8 | 4447 | } |
4c4b4cd2 | 4448 | |
96d887e8 PH |
4449 | /* For all subprograms that statically enclose the subprogram of the |
4450 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4451 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4452 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4453 | with a wildcard prefix. */ | |
4c4b4cd2 | 4454 | |
96d887e8 PH |
4455 | static void |
4456 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4457 | const char *name, domain_enum namespace, |
48b78332 | 4458 | int wild_match_p) |
96d887e8 | 4459 | { |
96d887e8 | 4460 | } |
14f9c5c9 | 4461 | |
96d887e8 PH |
4462 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4463 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4464 | |
96d887e8 PH |
4465 | static int |
4466 | is_nondebugging_type (struct type *type) | |
4467 | { | |
0d5cff50 | 4468 | const char *name = ada_type_name (type); |
5b4ee69b | 4469 | |
96d887e8 PH |
4470 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4471 | } | |
4c4b4cd2 | 4472 | |
8f17729f JB |
4473 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4474 | that are deemed "identical" for practical purposes. | |
4475 | ||
4476 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4477 | types and that their number of enumerals is identical (in other | |
4478 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4479 | ||
4480 | static int | |
4481 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4482 | { | |
4483 | int i; | |
4484 | ||
4485 | /* The heuristic we use here is fairly conservative. We consider | |
4486 | that 2 enumerate types are identical if they have the same | |
4487 | number of enumerals and that all enumerals have the same | |
4488 | underlying value and name. */ | |
4489 | ||
4490 | /* All enums in the type should have an identical underlying value. */ | |
4491 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4492 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4493 | return 0; |
4494 | ||
4495 | /* All enumerals should also have the same name (modulo any numerical | |
4496 | suffix). */ | |
4497 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4498 | { | |
0d5cff50 DE |
4499 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4500 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4501 | int len_1 = strlen (name_1); |
4502 | int len_2 = strlen (name_2); | |
4503 | ||
4504 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4505 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4506 | if (len_1 != len_2 | |
4507 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4508 | TYPE_FIELD_NAME (type2, i), | |
4509 | len_1) != 0) | |
4510 | return 0; | |
4511 | } | |
4512 | ||
4513 | return 1; | |
4514 | } | |
4515 | ||
4516 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4517 | that are deemed "identical" for practical purposes. Sometimes, | |
4518 | enumerals are not strictly identical, but their types are so similar | |
4519 | that they can be considered identical. | |
4520 | ||
4521 | For instance, consider the following code: | |
4522 | ||
4523 | type Color is (Black, Red, Green, Blue, White); | |
4524 | type RGB_Color is new Color range Red .. Blue; | |
4525 | ||
4526 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4527 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4528 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4529 | As a result, when an expression references any of the enumeral | |
4530 | by name (Eg. "print green"), the expression is technically | |
4531 | ambiguous and the user should be asked to disambiguate. But | |
4532 | doing so would only hinder the user, since it wouldn't matter | |
4533 | what choice he makes, the outcome would always be the same. | |
4534 | So, for practical purposes, we consider them as the same. */ | |
4535 | ||
4536 | static int | |
4537 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4538 | { | |
4539 | int i; | |
4540 | ||
4541 | /* Before performing a thorough comparison check of each type, | |
4542 | we perform a series of inexpensive checks. We expect that these | |
4543 | checks will quickly fail in the vast majority of cases, and thus | |
4544 | help prevent the unnecessary use of a more expensive comparison. | |
4545 | Said comparison also expects us to make some of these checks | |
4546 | (see ada_identical_enum_types_p). */ | |
4547 | ||
4548 | /* Quick check: All symbols should have an enum type. */ | |
4549 | for (i = 0; i < nsyms; i++) | |
4550 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4551 | return 0; | |
4552 | ||
4553 | /* Quick check: They should all have the same value. */ | |
4554 | for (i = 1; i < nsyms; i++) | |
4555 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4556 | return 0; | |
4557 | ||
4558 | /* Quick check: They should all have the same number of enumerals. */ | |
4559 | for (i = 1; i < nsyms; i++) | |
4560 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4561 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4562 | return 0; | |
4563 | ||
4564 | /* All the sanity checks passed, so we might have a set of | |
4565 | identical enumeration types. Perform a more complete | |
4566 | comparison of the type of each symbol. */ | |
4567 | for (i = 1; i < nsyms; i++) | |
4568 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4569 | SYMBOL_TYPE (syms[0].sym))) | |
4570 | return 0; | |
4571 | ||
4572 | return 1; | |
4573 | } | |
4574 | ||
96d887e8 PH |
4575 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4576 | duplicate other symbols in the list (The only case I know of where | |
4577 | this happens is when object files containing stabs-in-ecoff are | |
4578 | linked with files containing ordinary ecoff debugging symbols (or no | |
4579 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4580 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4581 | |
96d887e8 PH |
4582 | static int |
4583 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4584 | { | |
4585 | int i, j; | |
4c4b4cd2 | 4586 | |
8f17729f JB |
4587 | /* We should never be called with less than 2 symbols, as there |
4588 | cannot be any extra symbol in that case. But it's easy to | |
4589 | handle, since we have nothing to do in that case. */ | |
4590 | if (nsyms < 2) | |
4591 | return nsyms; | |
4592 | ||
96d887e8 PH |
4593 | i = 0; |
4594 | while (i < nsyms) | |
4595 | { | |
a35ddb44 | 4596 | int remove_p = 0; |
339c13b6 JB |
4597 | |
4598 | /* If two symbols have the same name and one of them is a stub type, | |
4599 | the get rid of the stub. */ | |
4600 | ||
4601 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4602 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4603 | { | |
4604 | for (j = 0; j < nsyms; j++) | |
4605 | { | |
4606 | if (j != i | |
4607 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4608 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4609 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4610 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4611 | remove_p = 1; |
339c13b6 JB |
4612 | } |
4613 | } | |
4614 | ||
4615 | /* Two symbols with the same name, same class and same address | |
4616 | should be identical. */ | |
4617 | ||
4618 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4619 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4620 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4621 | { | |
4622 | for (j = 0; j < nsyms; j += 1) | |
4623 | { | |
4624 | if (i != j | |
4625 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4626 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4627 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4628 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4629 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4630 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4631 | remove_p = 1; |
4c4b4cd2 | 4632 | } |
4c4b4cd2 | 4633 | } |
339c13b6 | 4634 | |
a35ddb44 | 4635 | if (remove_p) |
339c13b6 JB |
4636 | { |
4637 | for (j = i + 1; j < nsyms; j += 1) | |
4638 | syms[j - 1] = syms[j]; | |
4639 | nsyms -= 1; | |
4640 | } | |
4641 | ||
96d887e8 | 4642 | i += 1; |
14f9c5c9 | 4643 | } |
8f17729f JB |
4644 | |
4645 | /* If all the remaining symbols are identical enumerals, then | |
4646 | just keep the first one and discard the rest. | |
4647 | ||
4648 | Unlike what we did previously, we do not discard any entry | |
4649 | unless they are ALL identical. This is because the symbol | |
4650 | comparison is not a strict comparison, but rather a practical | |
4651 | comparison. If all symbols are considered identical, then | |
4652 | we can just go ahead and use the first one and discard the rest. | |
4653 | But if we cannot reduce the list to a single element, we have | |
4654 | to ask the user to disambiguate anyways. And if we have to | |
4655 | present a multiple-choice menu, it's less confusing if the list | |
4656 | isn't missing some choices that were identical and yet distinct. */ | |
4657 | if (symbols_are_identical_enums (syms, nsyms)) | |
4658 | nsyms = 1; | |
4659 | ||
96d887e8 | 4660 | return nsyms; |
14f9c5c9 AS |
4661 | } |
4662 | ||
96d887e8 PH |
4663 | /* Given a type that corresponds to a renaming entity, use the type name |
4664 | to extract the scope (package name or function name, fully qualified, | |
4665 | and following the GNAT encoding convention) where this renaming has been | |
4666 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4667 | |
96d887e8 PH |
4668 | static char * |
4669 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4670 | { |
96d887e8 | 4671 | /* The renaming types adhere to the following convention: |
0963b4bd | 4672 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4673 | So, to extract the scope, we search for the "___XR" extension, |
4674 | and then backtrack until we find the first "__". */ | |
76a01679 | 4675 | |
96d887e8 PH |
4676 | const char *name = type_name_no_tag (renaming_type); |
4677 | char *suffix = strstr (name, "___XR"); | |
4678 | char *last; | |
4679 | int scope_len; | |
4680 | char *scope; | |
14f9c5c9 | 4681 | |
96d887e8 PH |
4682 | /* Now, backtrack a bit until we find the first "__". Start looking |
4683 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4684 | |
96d887e8 PH |
4685 | for (last = suffix - 3; last > name; last--) |
4686 | if (last[0] == '_' && last[1] == '_') | |
4687 | break; | |
76a01679 | 4688 | |
96d887e8 | 4689 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4690 | |
96d887e8 PH |
4691 | scope_len = last - name; |
4692 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4693 | |
96d887e8 PH |
4694 | strncpy (scope, name, scope_len); |
4695 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4696 | |
96d887e8 | 4697 | return scope; |
4c4b4cd2 PH |
4698 | } |
4699 | ||
96d887e8 | 4700 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4701 | |
96d887e8 PH |
4702 | static int |
4703 | is_package_name (const char *name) | |
4c4b4cd2 | 4704 | { |
96d887e8 PH |
4705 | /* Here, We take advantage of the fact that no symbols are generated |
4706 | for packages, while symbols are generated for each function. | |
4707 | So the condition for NAME represent a package becomes equivalent | |
4708 | to NAME not existing in our list of symbols. There is only one | |
4709 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4710 | |
96d887e8 | 4711 | char *fun_name; |
76a01679 | 4712 | |
96d887e8 PH |
4713 | /* If it is a function that has not been defined at library level, |
4714 | then we should be able to look it up in the symbols. */ | |
4715 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4716 | return 0; | |
14f9c5c9 | 4717 | |
96d887e8 PH |
4718 | /* Library-level function names start with "_ada_". See if function |
4719 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4720 | |
96d887e8 | 4721 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4722 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4723 | if (strstr (name, "__") != NULL) |
4724 | return 0; | |
4c4b4cd2 | 4725 | |
b435e160 | 4726 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4727 | |
96d887e8 PH |
4728 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4729 | } | |
14f9c5c9 | 4730 | |
96d887e8 | 4731 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4732 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4733 | |
96d887e8 | 4734 | static int |
0d5cff50 | 4735 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4736 | { |
aeb5907d | 4737 | char *scope; |
1509e573 | 4738 | struct cleanup *old_chain; |
aeb5907d JB |
4739 | |
4740 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4741 | return 0; | |
4742 | ||
4743 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 4744 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 4745 | |
96d887e8 PH |
4746 | /* If the rename has been defined in a package, then it is visible. */ |
4747 | if (is_package_name (scope)) | |
1509e573 JB |
4748 | { |
4749 | do_cleanups (old_chain); | |
4750 | return 0; | |
4751 | } | |
14f9c5c9 | 4752 | |
96d887e8 PH |
4753 | /* Check that the rename is in the current function scope by checking |
4754 | that its name starts with SCOPE. */ | |
76a01679 | 4755 | |
96d887e8 PH |
4756 | /* If the function name starts with "_ada_", it means that it is |
4757 | a library-level function. Strip this prefix before doing the | |
4758 | comparison, as the encoding for the renaming does not contain | |
4759 | this prefix. */ | |
4760 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4761 | function_name += 5; | |
f26caa11 | 4762 | |
1509e573 JB |
4763 | { |
4764 | int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0; | |
4765 | ||
4766 | do_cleanups (old_chain); | |
4767 | return is_invisible; | |
4768 | } | |
f26caa11 PH |
4769 | } |
4770 | ||
aeb5907d JB |
4771 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4772 | is not visible from the function associated with CURRENT_BLOCK or | |
4773 | that is superfluous due to the presence of more specific renaming | |
4774 | information. Places surviving symbols in the initial entries of | |
4775 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4776 | |
4777 | Rationale: | |
aeb5907d JB |
4778 | First, in cases where an object renaming is implemented as a |
4779 | reference variable, GNAT may produce both the actual reference | |
4780 | variable and the renaming encoding. In this case, we discard the | |
4781 | latter. | |
4782 | ||
4783 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4784 | entity. Unfortunately, STABS currently does not support the definition |
4785 | of types that are local to a given lexical block, so all renamings types | |
4786 | are emitted at library level. As a consequence, if an application | |
4787 | contains two renaming entities using the same name, and a user tries to | |
4788 | print the value of one of these entities, the result of the ada symbol | |
4789 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4790 | |
96d887e8 PH |
4791 | This function partially covers for this limitation by attempting to |
4792 | remove from the SYMS list renaming symbols that should be visible | |
4793 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4794 | method with the current information available. The implementation | |
4795 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4796 | ||
4797 | - When the user tries to print a rename in a function while there | |
4798 | is another rename entity defined in a package: Normally, the | |
4799 | rename in the function has precedence over the rename in the | |
4800 | package, so the latter should be removed from the list. This is | |
4801 | currently not the case. | |
4802 | ||
4803 | - This function will incorrectly remove valid renames if | |
4804 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4805 | has been changed by an "Export" pragma. As a consequence, | |
4806 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4807 | |
14f9c5c9 | 4808 | static int |
aeb5907d JB |
4809 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4810 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4811 | { |
4812 | struct symbol *current_function; | |
0d5cff50 | 4813 | const char *current_function_name; |
4c4b4cd2 | 4814 | int i; |
aeb5907d JB |
4815 | int is_new_style_renaming; |
4816 | ||
4817 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4818 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4819 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4820 | is_new_style_renaming = 0; |
4821 | for (i = 0; i < nsyms; i += 1) | |
4822 | { | |
4823 | struct symbol *sym = syms[i].sym; | |
270140bd | 4824 | const struct block *block = syms[i].block; |
aeb5907d JB |
4825 | const char *name; |
4826 | const char *suffix; | |
4827 | ||
4828 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4829 | continue; | |
4830 | name = SYMBOL_LINKAGE_NAME (sym); | |
4831 | suffix = strstr (name, "___XR"); | |
4832 | ||
4833 | if (suffix != NULL) | |
4834 | { | |
4835 | int name_len = suffix - name; | |
4836 | int j; | |
5b4ee69b | 4837 | |
aeb5907d JB |
4838 | is_new_style_renaming = 1; |
4839 | for (j = 0; j < nsyms; j += 1) | |
4840 | if (i != j && syms[j].sym != NULL | |
4841 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4842 | name_len) == 0 | |
4843 | && block == syms[j].block) | |
4844 | syms[j].sym = NULL; | |
4845 | } | |
4846 | } | |
4847 | if (is_new_style_renaming) | |
4848 | { | |
4849 | int j, k; | |
4850 | ||
4851 | for (j = k = 0; j < nsyms; j += 1) | |
4852 | if (syms[j].sym != NULL) | |
4853 | { | |
4854 | syms[k] = syms[j]; | |
4855 | k += 1; | |
4856 | } | |
4857 | return k; | |
4858 | } | |
4c4b4cd2 PH |
4859 | |
4860 | /* Extract the function name associated to CURRENT_BLOCK. | |
4861 | Abort if unable to do so. */ | |
76a01679 | 4862 | |
4c4b4cd2 PH |
4863 | if (current_block == NULL) |
4864 | return nsyms; | |
76a01679 | 4865 | |
7f0df278 | 4866 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4867 | if (current_function == NULL) |
4868 | return nsyms; | |
4869 | ||
4870 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4871 | if (current_function_name == NULL) | |
4872 | return nsyms; | |
4873 | ||
4874 | /* Check each of the symbols, and remove it from the list if it is | |
4875 | a type corresponding to a renaming that is out of the scope of | |
4876 | the current block. */ | |
4877 | ||
4878 | i = 0; | |
4879 | while (i < nsyms) | |
4880 | { | |
aeb5907d JB |
4881 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4882 | == ADA_OBJECT_RENAMING | |
4883 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4884 | { |
4885 | int j; | |
5b4ee69b | 4886 | |
aeb5907d | 4887 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4888 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4889 | nsyms -= 1; |
4890 | } | |
4891 | else | |
4892 | i += 1; | |
4893 | } | |
4894 | ||
4895 | return nsyms; | |
4896 | } | |
4897 | ||
339c13b6 JB |
4898 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4899 | whose name and domain match NAME and DOMAIN respectively. | |
4900 | If no match was found, then extend the search to "enclosing" | |
4901 | routines (in other words, if we're inside a nested function, | |
4902 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
4903 | If WILD_MATCH_P is nonzero, perform the naming matching in |
4904 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
4905 | |
4906 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4907 | ||
4908 | static void | |
4909 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4910 | struct block *block, domain_enum domain, | |
d0a8ab18 | 4911 | int wild_match_p) |
339c13b6 JB |
4912 | { |
4913 | int block_depth = 0; | |
4914 | ||
4915 | while (block != NULL) | |
4916 | { | |
4917 | block_depth += 1; | |
d0a8ab18 JB |
4918 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
4919 | wild_match_p); | |
339c13b6 JB |
4920 | |
4921 | /* If we found a non-function match, assume that's the one. */ | |
4922 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4923 | num_defns_collected (obstackp))) | |
4924 | return; | |
4925 | ||
4926 | block = BLOCK_SUPERBLOCK (block); | |
4927 | } | |
4928 | ||
4929 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4930 | enclosing subprogram. */ | |
4931 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 4932 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
4933 | } |
4934 | ||
ccefe4c4 | 4935 | /* An object of this type is used as the user_data argument when |
40658b94 | 4936 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4937 | |
40658b94 | 4938 | struct match_data |
ccefe4c4 | 4939 | { |
40658b94 | 4940 | struct objfile *objfile; |
ccefe4c4 | 4941 | struct obstack *obstackp; |
40658b94 PH |
4942 | struct symbol *arg_sym; |
4943 | int found_sym; | |
ccefe4c4 TT |
4944 | }; |
4945 | ||
40658b94 PH |
4946 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4947 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4948 | containing the obstack that collects the symbol list, the file that SYM | |
4949 | must come from, a flag indicating whether a non-argument symbol has | |
4950 | been found in the current block, and the last argument symbol | |
4951 | passed in SYM within the current block (if any). When SYM is null, | |
4952 | marking the end of a block, the argument symbol is added if no | |
4953 | other has been found. */ | |
ccefe4c4 | 4954 | |
40658b94 PH |
4955 | static int |
4956 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4957 | { |
40658b94 PH |
4958 | struct match_data *data = (struct match_data *) data0; |
4959 | ||
4960 | if (sym == NULL) | |
4961 | { | |
4962 | if (!data->found_sym && data->arg_sym != NULL) | |
4963 | add_defn_to_vec (data->obstackp, | |
4964 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4965 | block); | |
4966 | data->found_sym = 0; | |
4967 | data->arg_sym = NULL; | |
4968 | } | |
4969 | else | |
4970 | { | |
4971 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4972 | return 0; | |
4973 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4974 | data->arg_sym = sym; | |
4975 | else | |
4976 | { | |
4977 | data->found_sym = 1; | |
4978 | add_defn_to_vec (data->obstackp, | |
4979 | fixup_symbol_section (sym, data->objfile), | |
4980 | block); | |
4981 | } | |
4982 | } | |
4983 | return 0; | |
4984 | } | |
4985 | ||
db230ce3 JB |
4986 | /* Implements compare_names, but only applying the comparision using |
4987 | the given CASING. */ | |
5b4ee69b | 4988 | |
40658b94 | 4989 | static int |
db230ce3 JB |
4990 | compare_names_with_case (const char *string1, const char *string2, |
4991 | enum case_sensitivity casing) | |
40658b94 PH |
4992 | { |
4993 | while (*string1 != '\0' && *string2 != '\0') | |
4994 | { | |
db230ce3 JB |
4995 | char c1, c2; |
4996 | ||
40658b94 PH |
4997 | if (isspace (*string1) || isspace (*string2)) |
4998 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
4999 | |
5000 | if (casing == case_sensitive_off) | |
5001 | { | |
5002 | c1 = tolower (*string1); | |
5003 | c2 = tolower (*string2); | |
5004 | } | |
5005 | else | |
5006 | { | |
5007 | c1 = *string1; | |
5008 | c2 = *string2; | |
5009 | } | |
5010 | if (c1 != c2) | |
40658b94 | 5011 | break; |
db230ce3 | 5012 | |
40658b94 PH |
5013 | string1 += 1; |
5014 | string2 += 1; | |
5015 | } | |
db230ce3 | 5016 | |
40658b94 PH |
5017 | switch (*string1) |
5018 | { | |
5019 | case '(': | |
5020 | return strcmp_iw_ordered (string1, string2); | |
5021 | case '_': | |
5022 | if (*string2 == '\0') | |
5023 | { | |
052874e8 | 5024 | if (is_name_suffix (string1)) |
40658b94 PH |
5025 | return 0; |
5026 | else | |
1a1d5513 | 5027 | return 1; |
40658b94 | 5028 | } |
dbb8534f | 5029 | /* FALLTHROUGH */ |
40658b94 PH |
5030 | default: |
5031 | if (*string2 == '(') | |
5032 | return strcmp_iw_ordered (string1, string2); | |
5033 | else | |
db230ce3 JB |
5034 | { |
5035 | if (casing == case_sensitive_off) | |
5036 | return tolower (*string1) - tolower (*string2); | |
5037 | else | |
5038 | return *string1 - *string2; | |
5039 | } | |
40658b94 | 5040 | } |
ccefe4c4 TT |
5041 | } |
5042 | ||
db230ce3 JB |
5043 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5044 | Compatible with strcmp_iw_ordered in that... | |
5045 | ||
5046 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5047 | ||
5048 | ... implies... | |
5049 | ||
5050 | compare_names (STRING1, STRING2) <= 0 | |
5051 | ||
5052 | (they may differ as to what symbols compare equal). */ | |
5053 | ||
5054 | static int | |
5055 | compare_names (const char *string1, const char *string2) | |
5056 | { | |
5057 | int result; | |
5058 | ||
5059 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5060 | a case-insensitive comparison first, and only resort to | |
5061 | a second, case-sensitive, comparison if the first one was | |
5062 | not sufficient to differentiate the two strings. */ | |
5063 | ||
5064 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5065 | if (result == 0) | |
5066 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5067 | ||
5068 | return result; | |
5069 | } | |
5070 | ||
339c13b6 JB |
5071 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5072 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5073 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5074 | ||
5075 | static void | |
40658b94 PH |
5076 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5077 | domain_enum domain, int global, | |
5078 | int is_wild_match) | |
339c13b6 JB |
5079 | { |
5080 | struct objfile *objfile; | |
40658b94 | 5081 | struct match_data data; |
339c13b6 | 5082 | |
6475f2fe | 5083 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5084 | data.obstackp = obstackp; |
339c13b6 | 5085 | |
ccefe4c4 | 5086 | ALL_OBJFILES (objfile) |
40658b94 PH |
5087 | { |
5088 | data.objfile = objfile; | |
5089 | ||
5090 | if (is_wild_match) | |
ade7ed9e | 5091 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
40658b94 PH |
5092 | aux_add_nonlocal_symbols, &data, |
5093 | wild_match, NULL); | |
5094 | else | |
ade7ed9e | 5095 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
40658b94 PH |
5096 | aux_add_nonlocal_symbols, &data, |
5097 | full_match, compare_names); | |
5098 | } | |
5099 | ||
5100 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5101 | { | |
5102 | ALL_OBJFILES (objfile) | |
5103 | { | |
5104 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5105 | strcpy (name1, "_ada_"); | |
5106 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5107 | data.objfile = objfile; | |
ade7ed9e DE |
5108 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5109 | global, | |
0963b4bd MS |
5110 | aux_add_nonlocal_symbols, |
5111 | &data, | |
40658b94 PH |
5112 | full_match, compare_names); |
5113 | } | |
5114 | } | |
339c13b6 JB |
5115 | } |
5116 | ||
4eeaa230 DE |
5117 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5118 | non-zero, enclosing scope and in global scopes, returning the number of | |
5119 | matches. | |
9f88c959 | 5120 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5121 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5122 | any) in which they were found. This vector is transient---good only to |
5123 | the next call of ada_lookup_symbol_list. | |
5124 | ||
5125 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5126 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5127 | is the one match returned (no other matches in that or | |
d9680e73 | 5128 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5129 | surrounding BLOCK0, then these alone are returned. |
5130 | ||
9f88c959 | 5131 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5132 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5133 | |
4eeaa230 DE |
5134 | static int |
5135 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
5136 | domain_enum namespace, | |
5137 | struct ada_symbol_info **results, | |
5138 | int full_search) | |
14f9c5c9 AS |
5139 | { |
5140 | struct symbol *sym; | |
14f9c5c9 | 5141 | struct block *block; |
4c4b4cd2 | 5142 | const char *name; |
82ccd55e | 5143 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5144 | int cacheIfUnique; |
4c4b4cd2 | 5145 | int ndefns; |
14f9c5c9 | 5146 | |
4c4b4cd2 PH |
5147 | obstack_free (&symbol_list_obstack, NULL); |
5148 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5149 | |
14f9c5c9 AS |
5150 | cacheIfUnique = 0; |
5151 | ||
5152 | /* Search specified block and its superiors. */ | |
5153 | ||
4c4b4cd2 | 5154 | name = name0; |
76a01679 JB |
5155 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5156 | needed, but adding const will | |
5157 | have a cascade effect. */ | |
339c13b6 JB |
5158 | |
5159 | /* Special case: If the user specifies a symbol name inside package | |
5160 | Standard, do a non-wild matching of the symbol name without | |
5161 | the "standard__" prefix. This was primarily introduced in order | |
5162 | to allow the user to specifically access the standard exceptions | |
5163 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5164 | is ambiguous (due to the user defining its own Constraint_Error | |
5165 | entity inside its program). */ | |
4c4b4cd2 PH |
5166 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5167 | { | |
4c4b4cd2 PH |
5168 | block = NULL; |
5169 | name = name0 + sizeof ("standard__") - 1; | |
5170 | } | |
5171 | ||
339c13b6 | 5172 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5173 | |
4eeaa230 DE |
5174 | if (block != NULL) |
5175 | { | |
5176 | if (full_search) | |
5177 | { | |
5178 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
5179 | namespace, wild_match_p); | |
5180 | } | |
5181 | else | |
5182 | { | |
5183 | /* In the !full_search case we're are being called by | |
5184 | ada_iterate_over_symbols, and we don't want to search | |
5185 | superblocks. */ | |
5186 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
5187 | namespace, NULL, wild_match_p); | |
5188 | } | |
5189 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5190 | goto done; | |
5191 | } | |
d2e4a39e | 5192 | |
339c13b6 JB |
5193 | /* No non-global symbols found. Check our cache to see if we have |
5194 | already performed this search before. If we have, then return | |
5195 | the same result. */ | |
5196 | ||
14f9c5c9 | 5197 | cacheIfUnique = 1; |
2570f2b7 | 5198 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5199 | { |
5200 | if (sym != NULL) | |
2570f2b7 | 5201 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5202 | goto done; |
5203 | } | |
14f9c5c9 | 5204 | |
339c13b6 JB |
5205 | /* Search symbols from all global blocks. */ |
5206 | ||
40658b94 | 5207 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5208 | wild_match_p); |
d2e4a39e | 5209 | |
4c4b4cd2 | 5210 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5211 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5212 | |
4c4b4cd2 | 5213 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5214 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5215 | wild_match_p); |
14f9c5c9 | 5216 | |
4c4b4cd2 PH |
5217 | done: |
5218 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5219 | *results = defns_collected (&symbol_list_obstack, 1); | |
5220 | ||
5221 | ndefns = remove_extra_symbols (*results, ndefns); | |
5222 | ||
2ad01556 | 5223 | if (ndefns == 0 && full_search) |
2570f2b7 | 5224 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5225 | |
2ad01556 | 5226 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5227 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5228 | |
aeb5907d | 5229 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5230 | |
14f9c5c9 AS |
5231 | return ndefns; |
5232 | } | |
5233 | ||
4eeaa230 DE |
5234 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5235 | in global scopes, returning the number of matches, and setting *RESULTS | |
5236 | to a vector of (SYM,BLOCK) tuples. | |
5237 | See ada_lookup_symbol_list_worker for further details. */ | |
5238 | ||
5239 | int | |
5240 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
5241 | domain_enum domain, struct ada_symbol_info **results) | |
5242 | { | |
5243 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5244 | } | |
5245 | ||
5246 | /* Implementation of the la_iterate_over_symbols method. */ | |
5247 | ||
5248 | static void | |
5249 | ada_iterate_over_symbols (const struct block *block, | |
5250 | const char *name, domain_enum domain, | |
5251 | symbol_found_callback_ftype *callback, | |
5252 | void *data) | |
5253 | { | |
5254 | int ndefs, i; | |
5255 | struct ada_symbol_info *results; | |
5256 | ||
5257 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5258 | for (i = 0; i < ndefs; ++i) | |
5259 | { | |
5260 | if (! (*callback) (results[i].sym, data)) | |
5261 | break; | |
5262 | } | |
5263 | } | |
5264 | ||
f8eba3c6 TT |
5265 | /* If NAME is the name of an entity, return a string that should |
5266 | be used to look that entity up in Ada units. This string should | |
5267 | be deallocated after use using xfree. | |
5268 | ||
5269 | NAME can have any form that the "break" or "print" commands might | |
5270 | recognize. In other words, it does not have to be the "natural" | |
5271 | name, or the "encoded" name. */ | |
5272 | ||
5273 | char * | |
5274 | ada_name_for_lookup (const char *name) | |
5275 | { | |
5276 | char *canon; | |
5277 | int nlen = strlen (name); | |
5278 | ||
5279 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5280 | { | |
5281 | canon = xmalloc (nlen - 1); | |
5282 | memcpy (canon, name + 1, nlen - 2); | |
5283 | canon[nlen - 2] = '\0'; | |
5284 | } | |
5285 | else | |
5286 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5287 | return canon; | |
5288 | } | |
5289 | ||
4e5c77fe JB |
5290 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5291 | to 1, but choosing the first symbol found if there are multiple | |
5292 | choices. | |
5293 | ||
5e2336be JB |
5294 | The result is stored in *INFO, which must be non-NULL. |
5295 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5296 | |
5297 | void | |
5298 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5299 | domain_enum namespace, | |
5e2336be | 5300 | struct ada_symbol_info *info) |
14f9c5c9 | 5301 | { |
4c4b4cd2 | 5302 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5303 | int n_candidates; |
5304 | ||
5e2336be JB |
5305 | gdb_assert (info != NULL); |
5306 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe | 5307 | |
4eeaa230 | 5308 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); |
14f9c5c9 | 5309 | if (n_candidates == 0) |
4e5c77fe | 5310 | return; |
4c4b4cd2 | 5311 | |
5e2336be JB |
5312 | *info = candidates[0]; |
5313 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5314 | } |
aeb5907d JB |
5315 | |
5316 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5317 | scope and in global scopes, or NULL if none. NAME is folded and | |
5318 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5319 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5320 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5321 | ||
aeb5907d JB |
5322 | struct symbol * |
5323 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5324 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5325 | { |
5e2336be | 5326 | struct ada_symbol_info info; |
4e5c77fe | 5327 | |
aeb5907d JB |
5328 | if (is_a_field_of_this != NULL) |
5329 | *is_a_field_of_this = 0; | |
5330 | ||
4e5c77fe | 5331 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5332 | block0, namespace, &info); |
5333 | return info.sym; | |
4c4b4cd2 | 5334 | } |
14f9c5c9 | 5335 | |
4c4b4cd2 PH |
5336 | static struct symbol * |
5337 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5338 | const struct block *block, |
21b556f4 | 5339 | const domain_enum domain) |
4c4b4cd2 | 5340 | { |
94af9270 | 5341 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5342 | } |
5343 | ||
5344 | ||
4c4b4cd2 PH |
5345 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5346 | that is to be ignored for matching purposes. Suffixes of parallel | |
5347 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5348 | are given by any of the regular expressions: |
4c4b4cd2 | 5349 | |
babe1480 JB |
5350 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5351 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5352 | TKB [subprogram suffix for task bodies] |
babe1480 | 5353 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5354 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5355 | |
5356 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5357 | match is performed. This sequence is used to differentiate homonyms, | |
5358 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5359 | |
14f9c5c9 | 5360 | static int |
d2e4a39e | 5361 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5362 | { |
5363 | int k; | |
4c4b4cd2 PH |
5364 | const char *matching; |
5365 | const int len = strlen (str); | |
5366 | ||
babe1480 JB |
5367 | /* Skip optional leading __[0-9]+. */ |
5368 | ||
4c4b4cd2 PH |
5369 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5370 | { | |
babe1480 JB |
5371 | str += 3; |
5372 | while (isdigit (str[0])) | |
5373 | str += 1; | |
4c4b4cd2 | 5374 | } |
babe1480 JB |
5375 | |
5376 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5377 | |
babe1480 | 5378 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5379 | { |
babe1480 | 5380 | matching = str + 1; |
4c4b4cd2 PH |
5381 | while (isdigit (matching[0])) |
5382 | matching += 1; | |
5383 | if (matching[0] == '\0') | |
5384 | return 1; | |
5385 | } | |
5386 | ||
5387 | /* ___[0-9]+ */ | |
babe1480 | 5388 | |
4c4b4cd2 PH |
5389 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5390 | { | |
5391 | matching = str + 3; | |
5392 | while (isdigit (matching[0])) | |
5393 | matching += 1; | |
5394 | if (matching[0] == '\0') | |
5395 | return 1; | |
5396 | } | |
5397 | ||
9ac7f98e JB |
5398 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5399 | ||
5400 | if (strcmp (str, "TKB") == 0) | |
5401 | return 1; | |
5402 | ||
529cad9c PH |
5403 | #if 0 |
5404 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5405 | with a N at the end. Unfortunately, the compiler uses the same |
5406 | convention for other internal types it creates. So treating | |
529cad9c | 5407 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5408 | some regressions. For instance, consider the case of an enumerated |
5409 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5410 | name ends with N. |
5411 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5412 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5413 | to be something like "_N" instead. In the meantime, do not do |
5414 | the following check. */ | |
5415 | /* Protected Object Subprograms */ | |
5416 | if (len == 1 && str [0] == 'N') | |
5417 | return 1; | |
5418 | #endif | |
5419 | ||
5420 | /* _E[0-9]+[bs]$ */ | |
5421 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5422 | { | |
5423 | matching = str + 3; | |
5424 | while (isdigit (matching[0])) | |
5425 | matching += 1; | |
5426 | if ((matching[0] == 'b' || matching[0] == 's') | |
5427 | && matching [1] == '\0') | |
5428 | return 1; | |
5429 | } | |
5430 | ||
4c4b4cd2 PH |
5431 | /* ??? We should not modify STR directly, as we are doing below. This |
5432 | is fine in this case, but may become problematic later if we find | |
5433 | that this alternative did not work, and want to try matching | |
5434 | another one from the begining of STR. Since we modified it, we | |
5435 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5436 | if (str[0] == 'X') |
5437 | { | |
5438 | str += 1; | |
d2e4a39e | 5439 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5440 | { |
5441 | if (str[0] != 'n' && str[0] != 'b') | |
5442 | return 0; | |
5443 | str += 1; | |
5444 | } | |
14f9c5c9 | 5445 | } |
babe1480 | 5446 | |
14f9c5c9 AS |
5447 | if (str[0] == '\000') |
5448 | return 1; | |
babe1480 | 5449 | |
d2e4a39e | 5450 | if (str[0] == '_') |
14f9c5c9 AS |
5451 | { |
5452 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5453 | return 0; |
d2e4a39e | 5454 | if (str[2] == '_') |
4c4b4cd2 | 5455 | { |
61ee279c PH |
5456 | if (strcmp (str + 3, "JM") == 0) |
5457 | return 1; | |
5458 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5459 | the LJM suffix in favor of the JM one. But we will | |
5460 | still accept LJM as a valid suffix for a reasonable | |
5461 | amount of time, just to allow ourselves to debug programs | |
5462 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5463 | if (strcmp (str + 3, "LJM") == 0) |
5464 | return 1; | |
5465 | if (str[3] != 'X') | |
5466 | return 0; | |
1265e4aa JB |
5467 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5468 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5469 | return 1; |
5470 | if (str[4] == 'R' && str[5] != 'T') | |
5471 | return 1; | |
5472 | return 0; | |
5473 | } | |
5474 | if (!isdigit (str[2])) | |
5475 | return 0; | |
5476 | for (k = 3; str[k] != '\0'; k += 1) | |
5477 | if (!isdigit (str[k]) && str[k] != '_') | |
5478 | return 0; | |
14f9c5c9 AS |
5479 | return 1; |
5480 | } | |
4c4b4cd2 | 5481 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5482 | { |
4c4b4cd2 PH |
5483 | for (k = 2; str[k] != '\0'; k += 1) |
5484 | if (!isdigit (str[k]) && str[k] != '_') | |
5485 | return 0; | |
14f9c5c9 AS |
5486 | return 1; |
5487 | } | |
5488 | return 0; | |
5489 | } | |
d2e4a39e | 5490 | |
aeb5907d JB |
5491 | /* Return non-zero if the string starting at NAME and ending before |
5492 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5493 | |
5494 | static int | |
5495 | is_valid_name_for_wild_match (const char *name0) | |
5496 | { | |
5497 | const char *decoded_name = ada_decode (name0); | |
5498 | int i; | |
5499 | ||
5823c3ef JB |
5500 | /* If the decoded name starts with an angle bracket, it means that |
5501 | NAME0 does not follow the GNAT encoding format. It should then | |
5502 | not be allowed as a possible wild match. */ | |
5503 | if (decoded_name[0] == '<') | |
5504 | return 0; | |
5505 | ||
529cad9c PH |
5506 | for (i=0; decoded_name[i] != '\0'; i++) |
5507 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5508 | return 0; | |
5509 | ||
5510 | return 1; | |
5511 | } | |
5512 | ||
73589123 PH |
5513 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5514 | that could start a simple name. Assumes that *NAMEP points into | |
5515 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5516 | |
14f9c5c9 | 5517 | static int |
73589123 | 5518 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5519 | { |
73589123 | 5520 | const char *name = *namep; |
5b4ee69b | 5521 | |
5823c3ef | 5522 | while (1) |
14f9c5c9 | 5523 | { |
aa27d0b3 | 5524 | int t0, t1; |
73589123 PH |
5525 | |
5526 | t0 = *name; | |
5527 | if (t0 == '_') | |
5528 | { | |
5529 | t1 = name[1]; | |
5530 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5531 | { | |
5532 | name += 1; | |
5533 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5534 | break; | |
5535 | else | |
5536 | name += 1; | |
5537 | } | |
aa27d0b3 JB |
5538 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5539 | || name[2] == target0)) | |
73589123 PH |
5540 | { |
5541 | name += 2; | |
5542 | break; | |
5543 | } | |
5544 | else | |
5545 | return 0; | |
5546 | } | |
5547 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5548 | name += 1; | |
5549 | else | |
5823c3ef | 5550 | return 0; |
73589123 PH |
5551 | } |
5552 | ||
5553 | *namep = name; | |
5554 | return 1; | |
5555 | } | |
5556 | ||
5557 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5558 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5559 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5560 | ||
5561 | static int | |
5562 | wild_match (const char *name, const char *patn) | |
5563 | { | |
22e048c9 | 5564 | const char *p; |
73589123 PH |
5565 | const char *name0 = name; |
5566 | ||
5567 | while (1) | |
5568 | { | |
5569 | const char *match = name; | |
5570 | ||
5571 | if (*name == *patn) | |
5572 | { | |
5573 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5574 | if (*p != *name) | |
5575 | break; | |
5576 | if (*p == '\0' && is_name_suffix (name)) | |
5577 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5578 | ||
5579 | if (name[-1] == '_') | |
5580 | name -= 1; | |
5581 | } | |
5582 | if (!advance_wild_match (&name, name0, *patn)) | |
5583 | return 1; | |
96d887e8 | 5584 | } |
96d887e8 PH |
5585 | } |
5586 | ||
40658b94 PH |
5587 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5588 | informational suffix. */ | |
5589 | ||
c4d840bd PH |
5590 | static int |
5591 | full_match (const char *sym_name, const char *search_name) | |
5592 | { | |
40658b94 | 5593 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5594 | } |
5595 | ||
5596 | ||
96d887e8 PH |
5597 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5598 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5599 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5600 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5601 | |
5602 | static void | |
5603 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5604 | struct block *block, const char *name, |
96d887e8 | 5605 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5606 | int wild) |
96d887e8 | 5607 | { |
8157b174 | 5608 | struct block_iterator iter; |
96d887e8 PH |
5609 | int name_len = strlen (name); |
5610 | /* A matching argument symbol, if any. */ | |
5611 | struct symbol *arg_sym; | |
5612 | /* Set true when we find a matching non-argument symbol. */ | |
5613 | int found_sym; | |
5614 | struct symbol *sym; | |
5615 | ||
5616 | arg_sym = NULL; | |
5617 | found_sym = 0; | |
5618 | if (wild) | |
5619 | { | |
8157b174 TT |
5620 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5621 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5622 | { |
5eeb2539 AR |
5623 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5624 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5625 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5626 | { |
2a2d4dc3 AS |
5627 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5628 | continue; | |
5629 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5630 | arg_sym = sym; | |
5631 | else | |
5632 | { | |
76a01679 JB |
5633 | found_sym = 1; |
5634 | add_defn_to_vec (obstackp, | |
5635 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5636 | block); |
76a01679 JB |
5637 | } |
5638 | } | |
5639 | } | |
96d887e8 PH |
5640 | } |
5641 | else | |
5642 | { | |
8157b174 TT |
5643 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5644 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5645 | { |
5eeb2539 AR |
5646 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5647 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5648 | { |
c4d840bd PH |
5649 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5650 | { | |
5651 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5652 | arg_sym = sym; | |
5653 | else | |
2a2d4dc3 | 5654 | { |
c4d840bd PH |
5655 | found_sym = 1; |
5656 | add_defn_to_vec (obstackp, | |
5657 | fixup_symbol_section (sym, objfile), | |
5658 | block); | |
2a2d4dc3 | 5659 | } |
c4d840bd | 5660 | } |
76a01679 JB |
5661 | } |
5662 | } | |
96d887e8 PH |
5663 | } |
5664 | ||
5665 | if (!found_sym && arg_sym != NULL) | |
5666 | { | |
76a01679 JB |
5667 | add_defn_to_vec (obstackp, |
5668 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5669 | block); |
96d887e8 PH |
5670 | } |
5671 | ||
5672 | if (!wild) | |
5673 | { | |
5674 | arg_sym = NULL; | |
5675 | found_sym = 0; | |
5676 | ||
5677 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5678 | { |
5eeb2539 AR |
5679 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5680 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5681 | { |
5682 | int cmp; | |
5683 | ||
5684 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5685 | if (cmp == 0) | |
5686 | { | |
5687 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5688 | if (cmp == 0) | |
5689 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5690 | name_len); | |
5691 | } | |
5692 | ||
5693 | if (cmp == 0 | |
5694 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5695 | { | |
2a2d4dc3 AS |
5696 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5697 | { | |
5698 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5699 | arg_sym = sym; | |
5700 | else | |
5701 | { | |
5702 | found_sym = 1; | |
5703 | add_defn_to_vec (obstackp, | |
5704 | fixup_symbol_section (sym, objfile), | |
5705 | block); | |
5706 | } | |
5707 | } | |
76a01679 JB |
5708 | } |
5709 | } | |
76a01679 | 5710 | } |
96d887e8 PH |
5711 | |
5712 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5713 | They aren't parameters, right? */ | |
5714 | if (!found_sym && arg_sym != NULL) | |
5715 | { | |
5716 | add_defn_to_vec (obstackp, | |
76a01679 | 5717 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5718 | block); |
96d887e8 PH |
5719 | } |
5720 | } | |
5721 | } | |
5722 | \f | |
41d27058 JB |
5723 | |
5724 | /* Symbol Completion */ | |
5725 | ||
5726 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5727 | name in a form that's appropriate for the completion. The result | |
5728 | does not need to be deallocated, but is only good until the next call. | |
5729 | ||
5730 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5731 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5732 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5733 | in its encoded form. */ |
5734 | ||
5735 | static const char * | |
5736 | symbol_completion_match (const char *sym_name, | |
5737 | const char *text, int text_len, | |
6ea35997 | 5738 | int wild_match_p, int encoded_p) |
41d27058 | 5739 | { |
41d27058 JB |
5740 | const int verbatim_match = (text[0] == '<'); |
5741 | int match = 0; | |
5742 | ||
5743 | if (verbatim_match) | |
5744 | { | |
5745 | /* Strip the leading angle bracket. */ | |
5746 | text = text + 1; | |
5747 | text_len--; | |
5748 | } | |
5749 | ||
5750 | /* First, test against the fully qualified name of the symbol. */ | |
5751 | ||
5752 | if (strncmp (sym_name, text, text_len) == 0) | |
5753 | match = 1; | |
5754 | ||
6ea35997 | 5755 | if (match && !encoded_p) |
41d27058 JB |
5756 | { |
5757 | /* One needed check before declaring a positive match is to verify | |
5758 | that iff we are doing a verbatim match, the decoded version | |
5759 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5760 | is not a suitable completion. */ | |
5761 | const char *sym_name_copy = sym_name; | |
5762 | int has_angle_bracket; | |
5763 | ||
5764 | sym_name = ada_decode (sym_name); | |
5765 | has_angle_bracket = (sym_name[0] == '<'); | |
5766 | match = (has_angle_bracket == verbatim_match); | |
5767 | sym_name = sym_name_copy; | |
5768 | } | |
5769 | ||
5770 | if (match && !verbatim_match) | |
5771 | { | |
5772 | /* When doing non-verbatim match, another check that needs to | |
5773 | be done is to verify that the potentially matching symbol name | |
5774 | does not include capital letters, because the ada-mode would | |
5775 | not be able to understand these symbol names without the | |
5776 | angle bracket notation. */ | |
5777 | const char *tmp; | |
5778 | ||
5779 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5780 | if (*tmp != '\0') | |
5781 | match = 0; | |
5782 | } | |
5783 | ||
5784 | /* Second: Try wild matching... */ | |
5785 | ||
e701b3c0 | 5786 | if (!match && wild_match_p) |
41d27058 JB |
5787 | { |
5788 | /* Since we are doing wild matching, this means that TEXT | |
5789 | may represent an unqualified symbol name. We therefore must | |
5790 | also compare TEXT against the unqualified name of the symbol. */ | |
5791 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5792 | ||
5793 | if (strncmp (sym_name, text, text_len) == 0) | |
5794 | match = 1; | |
5795 | } | |
5796 | ||
5797 | /* Finally: If we found a mach, prepare the result to return. */ | |
5798 | ||
5799 | if (!match) | |
5800 | return NULL; | |
5801 | ||
5802 | if (verbatim_match) | |
5803 | sym_name = add_angle_brackets (sym_name); | |
5804 | ||
6ea35997 | 5805 | if (!encoded_p) |
41d27058 JB |
5806 | sym_name = ada_decode (sym_name); |
5807 | ||
5808 | return sym_name; | |
5809 | } | |
5810 | ||
5811 | /* A companion function to ada_make_symbol_completion_list(). | |
5812 | Check if SYM_NAME represents a symbol which name would be suitable | |
5813 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5814 | it is appended at the end of the given string vector SV. | |
5815 | ||
5816 | ORIG_TEXT is the string original string from the user command | |
5817 | that needs to be completed. WORD is the entire command on which | |
5818 | completion should be performed. These two parameters are used to | |
5819 | determine which part of the symbol name should be added to the | |
5820 | completion vector. | |
c0af1706 | 5821 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 5822 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
5823 | encoded formed (in which case the completion should also be |
5824 | encoded). */ | |
5825 | ||
5826 | static void | |
d6565258 | 5827 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5828 | const char *sym_name, |
5829 | const char *text, int text_len, | |
5830 | const char *orig_text, const char *word, | |
cb8e9b97 | 5831 | int wild_match_p, int encoded_p) |
41d27058 JB |
5832 | { |
5833 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 5834 | wild_match_p, encoded_p); |
41d27058 JB |
5835 | char *completion; |
5836 | ||
5837 | if (match == NULL) | |
5838 | return; | |
5839 | ||
5840 | /* We found a match, so add the appropriate completion to the given | |
5841 | string vector. */ | |
5842 | ||
5843 | if (word == orig_text) | |
5844 | { | |
5845 | completion = xmalloc (strlen (match) + 5); | |
5846 | strcpy (completion, match); | |
5847 | } | |
5848 | else if (word > orig_text) | |
5849 | { | |
5850 | /* Return some portion of sym_name. */ | |
5851 | completion = xmalloc (strlen (match) + 5); | |
5852 | strcpy (completion, match + (word - orig_text)); | |
5853 | } | |
5854 | else | |
5855 | { | |
5856 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5857 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5858 | strncpy (completion, word, orig_text - word); | |
5859 | completion[orig_text - word] = '\0'; | |
5860 | strcat (completion, match); | |
5861 | } | |
5862 | ||
d6565258 | 5863 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5864 | } |
5865 | ||
ccefe4c4 | 5866 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 5867 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
5868 | struct add_partial_datum |
5869 | { | |
5870 | VEC(char_ptr) **completions; | |
6f937416 | 5871 | const char *text; |
ccefe4c4 | 5872 | int text_len; |
6f937416 PA |
5873 | const char *text0; |
5874 | const char *word; | |
ccefe4c4 TT |
5875 | int wild_match; |
5876 | int encoded; | |
5877 | }; | |
5878 | ||
bb4142cf DE |
5879 | /* A callback for expand_symtabs_matching. */ |
5880 | ||
7b08b9eb | 5881 | static int |
bb4142cf | 5882 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 TT |
5883 | { |
5884 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5885 | |
5886 | return symbol_completion_match (name, data->text, data->text_len, | |
5887 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5888 | } |
5889 | ||
49c4e619 TT |
5890 | /* Return a list of possible symbol names completing TEXT0. WORD is |
5891 | the entire command on which completion is made. */ | |
41d27058 | 5892 | |
49c4e619 | 5893 | static VEC (char_ptr) * |
6f937416 PA |
5894 | ada_make_symbol_completion_list (const char *text0, const char *word, |
5895 | enum type_code code) | |
41d27058 JB |
5896 | { |
5897 | char *text; | |
5898 | int text_len; | |
b1ed564a JB |
5899 | int wild_match_p; |
5900 | int encoded_p; | |
2ba95b9b | 5901 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5902 | struct symbol *sym; |
5903 | struct symtab *s; | |
41d27058 JB |
5904 | struct minimal_symbol *msymbol; |
5905 | struct objfile *objfile; | |
5906 | struct block *b, *surrounding_static_block = 0; | |
5907 | int i; | |
8157b174 | 5908 | struct block_iterator iter; |
b8fea896 | 5909 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 5910 | |
2f68a895 TT |
5911 | gdb_assert (code == TYPE_CODE_UNDEF); |
5912 | ||
41d27058 JB |
5913 | if (text0[0] == '<') |
5914 | { | |
5915 | text = xstrdup (text0); | |
5916 | make_cleanup (xfree, text); | |
5917 | text_len = strlen (text); | |
b1ed564a JB |
5918 | wild_match_p = 0; |
5919 | encoded_p = 1; | |
41d27058 JB |
5920 | } |
5921 | else | |
5922 | { | |
5923 | text = xstrdup (ada_encode (text0)); | |
5924 | make_cleanup (xfree, text); | |
5925 | text_len = strlen (text); | |
5926 | for (i = 0; i < text_len; i++) | |
5927 | text[i] = tolower (text[i]); | |
5928 | ||
b1ed564a | 5929 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
5930 | /* If the name contains a ".", then the user is entering a fully |
5931 | qualified entity name, and the match must not be done in wild | |
5932 | mode. Similarly, if the user wants to complete what looks like | |
5933 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 5934 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
5935 | } |
5936 | ||
5937 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5938 | { |
ccefe4c4 TT |
5939 | struct add_partial_datum data; |
5940 | ||
5941 | data.completions = &completions; | |
5942 | data.text = text; | |
5943 | data.text_len = text_len; | |
5944 | data.text0 = text0; | |
5945 | data.word = word; | |
b1ed564a JB |
5946 | data.wild_match = wild_match_p; |
5947 | data.encoded = encoded_p; | |
bb4142cf DE |
5948 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN, |
5949 | &data); | |
41d27058 JB |
5950 | } |
5951 | ||
5952 | /* At this point scan through the misc symbol vectors and add each | |
5953 | symbol you find to the list. Eventually we want to ignore | |
5954 | anything that isn't a text symbol (everything else will be | |
5955 | handled by the psymtab code above). */ | |
5956 | ||
5957 | ALL_MSYMBOLS (objfile, msymbol) | |
5958 | { | |
5959 | QUIT; | |
d6565258 | 5960 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
5961 | text, text_len, text0, word, wild_match_p, |
5962 | encoded_p); | |
41d27058 JB |
5963 | } |
5964 | ||
5965 | /* Search upwards from currently selected frame (so that we can | |
5966 | complete on local vars. */ | |
5967 | ||
5968 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5969 | { | |
5970 | if (!BLOCK_SUPERBLOCK (b)) | |
5971 | surrounding_static_block = b; /* For elmin of dups */ | |
5972 | ||
5973 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5974 | { | |
d6565258 | 5975 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5976 | text, text_len, text0, word, |
b1ed564a | 5977 | wild_match_p, encoded_p); |
41d27058 JB |
5978 | } |
5979 | } | |
5980 | ||
5981 | /* Go through the symtabs and check the externs and statics for | |
5982 | symbols which match. */ | |
5983 | ||
5984 | ALL_SYMTABS (objfile, s) | |
5985 | { | |
5986 | QUIT; | |
5987 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5988 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5989 | { | |
d6565258 | 5990 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5991 | text, text_len, text0, word, |
b1ed564a | 5992 | wild_match_p, encoded_p); |
41d27058 JB |
5993 | } |
5994 | } | |
5995 | ||
5996 | ALL_SYMTABS (objfile, s) | |
5997 | { | |
5998 | QUIT; | |
5999 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
6000 | /* Don't do this block twice. */ | |
6001 | if (b == surrounding_static_block) | |
6002 | continue; | |
6003 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6004 | { | |
d6565258 | 6005 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6006 | text, text_len, text0, word, |
b1ed564a | 6007 | wild_match_p, encoded_p); |
41d27058 JB |
6008 | } |
6009 | } | |
6010 | ||
b8fea896 | 6011 | do_cleanups (old_chain); |
49c4e619 | 6012 | return completions; |
41d27058 JB |
6013 | } |
6014 | ||
963a6417 | 6015 | /* Field Access */ |
96d887e8 | 6016 | |
73fb9985 JB |
6017 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6018 | for tagged types. */ | |
6019 | ||
6020 | static int | |
6021 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6022 | { | |
0d5cff50 | 6023 | const char *name; |
73fb9985 JB |
6024 | |
6025 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6026 | return 0; | |
6027 | ||
6028 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6029 | if (name == NULL) | |
6030 | return 0; | |
6031 | ||
6032 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6033 | } | |
6034 | ||
ac4a2da4 JG |
6035 | /* Return non-zero if TYPE is an interface tag. */ |
6036 | ||
6037 | static int | |
6038 | ada_is_interface_tag (struct type *type) | |
6039 | { | |
6040 | const char *name = TYPE_NAME (type); | |
6041 | ||
6042 | if (name == NULL) | |
6043 | return 0; | |
6044 | ||
6045 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6046 | } | |
6047 | ||
963a6417 PH |
6048 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6049 | to be invisible to users. */ | |
96d887e8 | 6050 | |
963a6417 PH |
6051 | int |
6052 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6053 | { |
963a6417 PH |
6054 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6055 | return 1; | |
ffde82bf | 6056 | |
73fb9985 JB |
6057 | /* Check the name of that field. */ |
6058 | { | |
6059 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6060 | ||
6061 | /* Anonymous field names should not be printed. | |
6062 | brobecker/2007-02-20: I don't think this can actually happen | |
6063 | but we don't want to print the value of annonymous fields anyway. */ | |
6064 | if (name == NULL) | |
6065 | return 1; | |
6066 | ||
ffde82bf JB |
6067 | /* Normally, fields whose name start with an underscore ("_") |
6068 | are fields that have been internally generated by the compiler, | |
6069 | and thus should not be printed. The "_parent" field is special, | |
6070 | however: This is a field internally generated by the compiler | |
6071 | for tagged types, and it contains the components inherited from | |
6072 | the parent type. This field should not be printed as is, but | |
6073 | should not be ignored either. */ | |
73fb9985 JB |
6074 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
6075 | return 1; | |
6076 | } | |
6077 | ||
ac4a2da4 JG |
6078 | /* If this is the dispatch table of a tagged type or an interface tag, |
6079 | then ignore. */ | |
73fb9985 | 6080 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6081 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6082 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6083 | return 1; |
6084 | ||
6085 | /* Not a special field, so it should not be ignored. */ | |
6086 | return 0; | |
963a6417 | 6087 | } |
96d887e8 | 6088 | |
963a6417 | 6089 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6090 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6091 | |
963a6417 PH |
6092 | int |
6093 | ada_is_tagged_type (struct type *type, int refok) | |
6094 | { | |
6095 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6096 | } | |
96d887e8 | 6097 | |
963a6417 | 6098 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6099 | |
963a6417 PH |
6100 | int |
6101 | ada_is_tag_type (struct type *type) | |
6102 | { | |
6103 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6104 | return 0; | |
6105 | else | |
96d887e8 | 6106 | { |
963a6417 | 6107 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6108 | |
963a6417 PH |
6109 | return (name != NULL |
6110 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6111 | } |
96d887e8 PH |
6112 | } |
6113 | ||
963a6417 | 6114 | /* The type of the tag on VAL. */ |
76a01679 | 6115 | |
963a6417 PH |
6116 | struct type * |
6117 | ada_tag_type (struct value *val) | |
96d887e8 | 6118 | { |
df407dfe | 6119 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6120 | } |
96d887e8 | 6121 | |
b50d69b5 JG |
6122 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6123 | retired at Ada 05). */ | |
6124 | ||
6125 | static int | |
6126 | is_ada95_tag (struct value *tag) | |
6127 | { | |
6128 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6129 | } | |
6130 | ||
963a6417 | 6131 | /* The value of the tag on VAL. */ |
96d887e8 | 6132 | |
963a6417 PH |
6133 | struct value * |
6134 | ada_value_tag (struct value *val) | |
6135 | { | |
03ee6b2e | 6136 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6137 | } |
6138 | ||
963a6417 PH |
6139 | /* The value of the tag on the object of type TYPE whose contents are |
6140 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6141 | ADDRESS. */ |
96d887e8 | 6142 | |
963a6417 | 6143 | static struct value * |
10a2c479 | 6144 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6145 | const gdb_byte *valaddr, |
963a6417 | 6146 | CORE_ADDR address) |
96d887e8 | 6147 | { |
b5385fc0 | 6148 | int tag_byte_offset; |
963a6417 | 6149 | struct type *tag_type; |
5b4ee69b | 6150 | |
963a6417 | 6151 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6152 | NULL, NULL, NULL)) |
96d887e8 | 6153 | { |
fc1a4b47 | 6154 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6155 | ? NULL |
6156 | : valaddr + tag_byte_offset); | |
963a6417 | 6157 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6158 | |
963a6417 | 6159 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6160 | } |
963a6417 PH |
6161 | return NULL; |
6162 | } | |
96d887e8 | 6163 | |
963a6417 PH |
6164 | static struct type * |
6165 | type_from_tag (struct value *tag) | |
6166 | { | |
6167 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6168 | |
963a6417 PH |
6169 | if (type_name != NULL) |
6170 | return ada_find_any_type (ada_encode (type_name)); | |
6171 | return NULL; | |
6172 | } | |
96d887e8 | 6173 | |
b50d69b5 JG |
6174 | /* Given a value OBJ of a tagged type, return a value of this |
6175 | type at the base address of the object. The base address, as | |
6176 | defined in Ada.Tags, it is the address of the primary tag of | |
6177 | the object, and therefore where the field values of its full | |
6178 | view can be fetched. */ | |
6179 | ||
6180 | struct value * | |
6181 | ada_tag_value_at_base_address (struct value *obj) | |
6182 | { | |
6183 | volatile struct gdb_exception e; | |
6184 | struct value *val; | |
6185 | LONGEST offset_to_top = 0; | |
6186 | struct type *ptr_type, *obj_type; | |
6187 | struct value *tag; | |
6188 | CORE_ADDR base_address; | |
6189 | ||
6190 | obj_type = value_type (obj); | |
6191 | ||
6192 | /* It is the responsability of the caller to deref pointers. */ | |
6193 | ||
6194 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6195 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6196 | return obj; | |
6197 | ||
6198 | tag = ada_value_tag (obj); | |
6199 | if (!tag) | |
6200 | return obj; | |
6201 | ||
6202 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6203 | ||
6204 | if (is_ada95_tag (tag)) | |
6205 | return obj; | |
6206 | ||
6207 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6208 | ptr_type = lookup_pointer_type (ptr_type); | |
6209 | val = value_cast (ptr_type, tag); | |
6210 | if (!val) | |
6211 | return obj; | |
6212 | ||
6213 | /* It is perfectly possible that an exception be raised while | |
6214 | trying to determine the base address, just like for the tag; | |
6215 | see ada_tag_name for more details. We do not print the error | |
6216 | message for the same reason. */ | |
6217 | ||
6218 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6219 | { | |
6220 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6221 | } | |
6222 | ||
6223 | if (e.reason < 0) | |
6224 | return obj; | |
6225 | ||
6226 | /* If offset is null, nothing to do. */ | |
6227 | ||
6228 | if (offset_to_top == 0) | |
6229 | return obj; | |
6230 | ||
6231 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6232 | is not quite clear from the documentation. So do nothing for | |
6233 | now. */ | |
6234 | ||
6235 | if (offset_to_top == -1) | |
6236 | return obj; | |
6237 | ||
6238 | base_address = value_address (obj) - offset_to_top; | |
6239 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6240 | ||
6241 | /* Make sure that we have a proper tag at the new address. | |
6242 | Otherwise, offset_to_top is bogus (which can happen when | |
6243 | the object is not initialized yet). */ | |
6244 | ||
6245 | if (!tag) | |
6246 | return obj; | |
6247 | ||
6248 | obj_type = type_from_tag (tag); | |
6249 | ||
6250 | if (!obj_type) | |
6251 | return obj; | |
6252 | ||
6253 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6254 | } | |
6255 | ||
1b611343 JB |
6256 | /* Return the "ada__tags__type_specific_data" type. */ |
6257 | ||
6258 | static struct type * | |
6259 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6260 | { |
1b611343 | 6261 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6262 | |
1b611343 JB |
6263 | if (data->tsd_type == 0) |
6264 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6265 | return data->tsd_type; | |
6266 | } | |
529cad9c | 6267 | |
1b611343 JB |
6268 | /* Return the TSD (type-specific data) associated to the given TAG. |
6269 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6270 | |
1b611343 | 6271 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6272 | |
1b611343 JB |
6273 | static struct value * |
6274 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6275 | { |
4c4b4cd2 | 6276 | struct value *val; |
1b611343 | 6277 | struct type *type; |
5b4ee69b | 6278 | |
1b611343 JB |
6279 | /* First option: The TSD is simply stored as a field of our TAG. |
6280 | Only older versions of GNAT would use this format, but we have | |
6281 | to test it first, because there are no visible markers for | |
6282 | the current approach except the absence of that field. */ | |
529cad9c | 6283 | |
1b611343 JB |
6284 | val = ada_value_struct_elt (tag, "tsd", 1); |
6285 | if (val) | |
6286 | return val; | |
e802dbe0 | 6287 | |
1b611343 JB |
6288 | /* Try the second representation for the dispatch table (in which |
6289 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6290 | and instead the tsd pointer is stored just before the dispatch | |
6291 | table. */ | |
e802dbe0 | 6292 | |
1b611343 JB |
6293 | type = ada_get_tsd_type (current_inferior()); |
6294 | if (type == NULL) | |
6295 | return NULL; | |
6296 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6297 | val = value_cast (type, tag); | |
6298 | if (val == NULL) | |
6299 | return NULL; | |
6300 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6301 | } |
6302 | ||
1b611343 JB |
6303 | /* Given the TSD of a tag (type-specific data), return a string |
6304 | containing the name of the associated type. | |
6305 | ||
6306 | The returned value is good until the next call. May return NULL | |
6307 | if we are unable to determine the tag name. */ | |
6308 | ||
6309 | static char * | |
6310 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6311 | { |
529cad9c PH |
6312 | static char name[1024]; |
6313 | char *p; | |
1b611343 | 6314 | struct value *val; |
529cad9c | 6315 | |
1b611343 | 6316 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6317 | if (val == NULL) |
1b611343 | 6318 | return NULL; |
4c4b4cd2 PH |
6319 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6320 | for (p = name; *p != '\0'; p += 1) | |
6321 | if (isalpha (*p)) | |
6322 | *p = tolower (*p); | |
1b611343 | 6323 | return name; |
4c4b4cd2 PH |
6324 | } |
6325 | ||
6326 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6327 | a C string. |
6328 | ||
6329 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6330 | determine the name of that tag. The result is good until the next | |
6331 | call. */ | |
4c4b4cd2 PH |
6332 | |
6333 | const char * | |
6334 | ada_tag_name (struct value *tag) | |
6335 | { | |
1b611343 JB |
6336 | volatile struct gdb_exception e; |
6337 | char *name = NULL; | |
5b4ee69b | 6338 | |
df407dfe | 6339 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6340 | return NULL; |
1b611343 JB |
6341 | |
6342 | /* It is perfectly possible that an exception be raised while trying | |
6343 | to determine the TAG's name, even under normal circumstances: | |
6344 | The associated variable may be uninitialized or corrupted, for | |
6345 | instance. We do not let any exception propagate past this point. | |
6346 | instead we return NULL. | |
6347 | ||
6348 | We also do not print the error message either (which often is very | |
6349 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6350 | the caller print a more meaningful message if necessary. */ | |
6351 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6352 | { | |
6353 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6354 | ||
6355 | if (tsd != NULL) | |
6356 | name = ada_tag_name_from_tsd (tsd); | |
6357 | } | |
6358 | ||
6359 | return name; | |
4c4b4cd2 PH |
6360 | } |
6361 | ||
6362 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6363 | |
d2e4a39e | 6364 | struct type * |
ebf56fd3 | 6365 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6366 | { |
6367 | int i; | |
6368 | ||
61ee279c | 6369 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6370 | |
6371 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6372 | return NULL; | |
6373 | ||
6374 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6375 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6376 | { |
6377 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6378 | ||
6379 | /* If the _parent field is a pointer, then dereference it. */ | |
6380 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6381 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6382 | /* If there is a parallel XVS type, get the actual base type. */ | |
6383 | parent_type = ada_get_base_type (parent_type); | |
6384 | ||
6385 | return ada_check_typedef (parent_type); | |
6386 | } | |
14f9c5c9 AS |
6387 | |
6388 | return NULL; | |
6389 | } | |
6390 | ||
4c4b4cd2 PH |
6391 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6392 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6393 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6394 | |
6395 | int | |
ebf56fd3 | 6396 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6397 | { |
61ee279c | 6398 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6399 | |
4c4b4cd2 PH |
6400 | return (name != NULL |
6401 | && (strncmp (name, "PARENT", 6) == 0 | |
6402 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6403 | } |
6404 | ||
4c4b4cd2 | 6405 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6406 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6407 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6408 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6409 | structures. */ |
14f9c5c9 AS |
6410 | |
6411 | int | |
ebf56fd3 | 6412 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6413 | { |
d2e4a39e | 6414 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6415 | |
d2e4a39e | 6416 | return (name != NULL |
4c4b4cd2 PH |
6417 | && (strncmp (name, "PARENT", 6) == 0 |
6418 | || strcmp (name, "REP") == 0 | |
6419 | || strncmp (name, "_parent", 7) == 0 | |
6420 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6421 | } |
6422 | ||
4c4b4cd2 PH |
6423 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6424 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6425 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6426 | |
6427 | int | |
ebf56fd3 | 6428 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6429 | { |
d2e4a39e | 6430 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6431 | |
14f9c5c9 | 6432 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6433 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6434 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6435 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6436 | } |
6437 | ||
6438 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6439 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6440 | returns the type of the controlling discriminant for the variant. |
6441 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6442 | |
d2e4a39e | 6443 | struct type * |
ebf56fd3 | 6444 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6445 | { |
d2e4a39e | 6446 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6447 | |
7c964f07 | 6448 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6449 | } |
6450 | ||
4c4b4cd2 | 6451 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6452 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6453 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6454 | |
6455 | int | |
ebf56fd3 | 6456 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6457 | { |
d2e4a39e | 6458 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6459 | |
14f9c5c9 AS |
6460 | return (name != NULL && name[0] == 'O'); |
6461 | } | |
6462 | ||
6463 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6464 | returns the name of the discriminant controlling the variant. |
6465 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6466 | |
d2e4a39e | 6467 | char * |
ebf56fd3 | 6468 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6469 | { |
d2e4a39e | 6470 | static char *result = NULL; |
14f9c5c9 | 6471 | static size_t result_len = 0; |
d2e4a39e AS |
6472 | struct type *type; |
6473 | const char *name; | |
6474 | const char *discrim_end; | |
6475 | const char *discrim_start; | |
14f9c5c9 AS |
6476 | |
6477 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6478 | type = TYPE_TARGET_TYPE (type0); | |
6479 | else | |
6480 | type = type0; | |
6481 | ||
6482 | name = ada_type_name (type); | |
6483 | ||
6484 | if (name == NULL || name[0] == '\000') | |
6485 | return ""; | |
6486 | ||
6487 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6488 | discrim_end -= 1) | |
6489 | { | |
4c4b4cd2 PH |
6490 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6491 | break; | |
14f9c5c9 AS |
6492 | } |
6493 | if (discrim_end == name) | |
6494 | return ""; | |
6495 | ||
d2e4a39e | 6496 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6497 | discrim_start -= 1) |
6498 | { | |
d2e4a39e | 6499 | if (discrim_start == name + 1) |
4c4b4cd2 | 6500 | return ""; |
76a01679 | 6501 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6502 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6503 | || discrim_start[-1] == '.') | |
6504 | break; | |
14f9c5c9 AS |
6505 | } |
6506 | ||
6507 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6508 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6509 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6510 | return result; |
6511 | } | |
6512 | ||
4c4b4cd2 PH |
6513 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6514 | Put the position of the character just past the number scanned in | |
6515 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6516 | Return 1 if there was a valid number at the given position, and 0 | |
6517 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6518 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6519 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6520 | |
6521 | int | |
d2e4a39e | 6522 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6523 | { |
6524 | ULONGEST RU; | |
6525 | ||
d2e4a39e | 6526 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6527 | return 0; |
6528 | ||
4c4b4cd2 | 6529 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6530 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6531 | LONGEST. */ |
14f9c5c9 AS |
6532 | RU = 0; |
6533 | while (isdigit (str[k])) | |
6534 | { | |
d2e4a39e | 6535 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6536 | k += 1; |
6537 | } | |
6538 | ||
d2e4a39e | 6539 | if (str[k] == 'm') |
14f9c5c9 AS |
6540 | { |
6541 | if (R != NULL) | |
4c4b4cd2 | 6542 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6543 | k += 1; |
6544 | } | |
6545 | else if (R != NULL) | |
6546 | *R = (LONGEST) RU; | |
6547 | ||
4c4b4cd2 | 6548 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6549 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6550 | number representable as a LONGEST (although either would probably work | |
6551 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6552 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6553 | |
6554 | if (new_k != NULL) | |
6555 | *new_k = k; | |
6556 | return 1; | |
6557 | } | |
6558 | ||
4c4b4cd2 PH |
6559 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6560 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6561 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6562 | |
d2e4a39e | 6563 | int |
ebf56fd3 | 6564 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6565 | { |
d2e4a39e | 6566 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6567 | int p; |
6568 | ||
6569 | p = 0; | |
6570 | while (1) | |
6571 | { | |
d2e4a39e | 6572 | switch (name[p]) |
4c4b4cd2 PH |
6573 | { |
6574 | case '\0': | |
6575 | return 0; | |
6576 | case 'S': | |
6577 | { | |
6578 | LONGEST W; | |
5b4ee69b | 6579 | |
4c4b4cd2 PH |
6580 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6581 | return 0; | |
6582 | if (val == W) | |
6583 | return 1; | |
6584 | break; | |
6585 | } | |
6586 | case 'R': | |
6587 | { | |
6588 | LONGEST L, U; | |
5b4ee69b | 6589 | |
4c4b4cd2 PH |
6590 | if (!ada_scan_number (name, p + 1, &L, &p) |
6591 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6592 | return 0; | |
6593 | if (val >= L && val <= U) | |
6594 | return 1; | |
6595 | break; | |
6596 | } | |
6597 | case 'O': | |
6598 | return 1; | |
6599 | default: | |
6600 | return 0; | |
6601 | } | |
6602 | } | |
6603 | } | |
6604 | ||
0963b4bd | 6605 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6606 | |
6607 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6608 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6609 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6610 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6611 | |
4c4b4cd2 | 6612 | static struct value * |
d2e4a39e | 6613 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6614 | struct type *arg_type) |
14f9c5c9 | 6615 | { |
14f9c5c9 AS |
6616 | struct type *type; |
6617 | ||
61ee279c | 6618 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6619 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6620 | ||
4c4b4cd2 | 6621 | /* Handle packed fields. */ |
14f9c5c9 AS |
6622 | |
6623 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6624 | { | |
6625 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6626 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6627 | |
0fd88904 | 6628 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6629 | offset + bit_pos / 8, |
6630 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6631 | } |
6632 | else | |
6633 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6634 | } | |
6635 | ||
52ce6436 PH |
6636 | /* Find field with name NAME in object of type TYPE. If found, |
6637 | set the following for each argument that is non-null: | |
6638 | - *FIELD_TYPE_P to the field's type; | |
6639 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6640 | an object of that type; | |
6641 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6642 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6643 | 0 otherwise; | |
6644 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6645 | fields up to but not including the desired field, or by the total | |
6646 | number of fields if not found. A NULL value of NAME never | |
6647 | matches; the function just counts visible fields in this case. | |
6648 | ||
0963b4bd | 6649 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6650 | |
4c4b4cd2 | 6651 | static int |
0d5cff50 | 6652 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6653 | struct type **field_type_p, |
52ce6436 PH |
6654 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6655 | int *index_p) | |
4c4b4cd2 PH |
6656 | { |
6657 | int i; | |
6658 | ||
61ee279c | 6659 | type = ada_check_typedef (type); |
76a01679 | 6660 | |
52ce6436 PH |
6661 | if (field_type_p != NULL) |
6662 | *field_type_p = NULL; | |
6663 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6664 | *byte_offset_p = 0; |
52ce6436 PH |
6665 | if (bit_offset_p != NULL) |
6666 | *bit_offset_p = 0; | |
6667 | if (bit_size_p != NULL) | |
6668 | *bit_size_p = 0; | |
6669 | ||
6670 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6671 | { |
6672 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6673 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6674 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6675 | |
4c4b4cd2 PH |
6676 | if (t_field_name == NULL) |
6677 | continue; | |
6678 | ||
52ce6436 | 6679 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6680 | { |
6681 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6682 | |
52ce6436 PH |
6683 | if (field_type_p != NULL) |
6684 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6685 | if (byte_offset_p != NULL) | |
6686 | *byte_offset_p = fld_offset; | |
6687 | if (bit_offset_p != NULL) | |
6688 | *bit_offset_p = bit_pos % 8; | |
6689 | if (bit_size_p != NULL) | |
6690 | *bit_size_p = bit_size; | |
76a01679 JB |
6691 | return 1; |
6692 | } | |
4c4b4cd2 PH |
6693 | else if (ada_is_wrapper_field (type, i)) |
6694 | { | |
52ce6436 PH |
6695 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6696 | field_type_p, byte_offset_p, bit_offset_p, | |
6697 | bit_size_p, index_p)) | |
76a01679 JB |
6698 | return 1; |
6699 | } | |
4c4b4cd2 PH |
6700 | else if (ada_is_variant_part (type, i)) |
6701 | { | |
52ce6436 PH |
6702 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6703 | fixed type?? */ | |
4c4b4cd2 | 6704 | int j; |
52ce6436 PH |
6705 | struct type *field_type |
6706 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6707 | |
52ce6436 | 6708 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6709 | { |
76a01679 JB |
6710 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6711 | fld_offset | |
6712 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6713 | field_type_p, byte_offset_p, | |
52ce6436 | 6714 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6715 | return 1; |
4c4b4cd2 PH |
6716 | } |
6717 | } | |
52ce6436 PH |
6718 | else if (index_p != NULL) |
6719 | *index_p += 1; | |
4c4b4cd2 PH |
6720 | } |
6721 | return 0; | |
6722 | } | |
6723 | ||
0963b4bd | 6724 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6725 | |
52ce6436 PH |
6726 | static int |
6727 | num_visible_fields (struct type *type) | |
6728 | { | |
6729 | int n; | |
5b4ee69b | 6730 | |
52ce6436 PH |
6731 | n = 0; |
6732 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6733 | return n; | |
6734 | } | |
14f9c5c9 | 6735 | |
4c4b4cd2 | 6736 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6737 | and search in it assuming it has (class) type TYPE. |
6738 | If found, return value, else return NULL. | |
6739 | ||
4c4b4cd2 | 6740 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6741 | |
4c4b4cd2 | 6742 | static struct value * |
d2e4a39e | 6743 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6744 | struct type *type) |
14f9c5c9 AS |
6745 | { |
6746 | int i; | |
14f9c5c9 | 6747 | |
5b4ee69b | 6748 | type = ada_check_typedef (type); |
52ce6436 | 6749 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 6750 | { |
0d5cff50 | 6751 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6752 | |
6753 | if (t_field_name == NULL) | |
4c4b4cd2 | 6754 | continue; |
14f9c5c9 AS |
6755 | |
6756 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6757 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6758 | |
6759 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6760 | { |
0963b4bd | 6761 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6762 | ada_search_struct_field (name, arg, |
6763 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6764 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6765 | |
4c4b4cd2 PH |
6766 | if (v != NULL) |
6767 | return v; | |
6768 | } | |
14f9c5c9 AS |
6769 | |
6770 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6771 | { |
0963b4bd | 6772 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6773 | int j; |
5b4ee69b MS |
6774 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6775 | i)); | |
4c4b4cd2 PH |
6776 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6777 | ||
52ce6436 | 6778 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6779 | { |
0963b4bd MS |
6780 | struct value *v = ada_search_struct_field /* Force line |
6781 | break. */ | |
06d5cf63 JB |
6782 | (name, arg, |
6783 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6784 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6785 | |
4c4b4cd2 PH |
6786 | if (v != NULL) |
6787 | return v; | |
6788 | } | |
6789 | } | |
14f9c5c9 AS |
6790 | } |
6791 | return NULL; | |
6792 | } | |
d2e4a39e | 6793 | |
52ce6436 PH |
6794 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6795 | int, struct type *); | |
6796 | ||
6797 | ||
6798 | /* Return field #INDEX in ARG, where the index is that returned by | |
6799 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6800 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6801 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6802 | |
6803 | static struct value * | |
6804 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6805 | struct type *type) | |
6806 | { | |
6807 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6808 | } | |
6809 | ||
6810 | ||
6811 | /* Auxiliary function for ada_index_struct_field. Like | |
6812 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6813 | * *INDEX_P. */ |
52ce6436 PH |
6814 | |
6815 | static struct value * | |
6816 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6817 | struct type *type) | |
6818 | { | |
6819 | int i; | |
6820 | type = ada_check_typedef (type); | |
6821 | ||
6822 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6823 | { | |
6824 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6825 | continue; | |
6826 | else if (ada_is_wrapper_field (type, i)) | |
6827 | { | |
0963b4bd | 6828 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6829 | ada_index_struct_field_1 (index_p, arg, |
6830 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6831 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6832 | |
52ce6436 PH |
6833 | if (v != NULL) |
6834 | return v; | |
6835 | } | |
6836 | ||
6837 | else if (ada_is_variant_part (type, i)) | |
6838 | { | |
6839 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6840 | find_struct_field. */ |
52ce6436 PH |
6841 | error (_("Cannot assign this kind of variant record")); |
6842 | } | |
6843 | else if (*index_p == 0) | |
6844 | return ada_value_primitive_field (arg, offset, i, type); | |
6845 | else | |
6846 | *index_p -= 1; | |
6847 | } | |
6848 | return NULL; | |
6849 | } | |
6850 | ||
4c4b4cd2 PH |
6851 | /* Given ARG, a value of type (pointer or reference to a)* |
6852 | structure/union, extract the component named NAME from the ultimate | |
6853 | target structure/union and return it as a value with its | |
f5938064 | 6854 | appropriate type. |
14f9c5c9 | 6855 | |
4c4b4cd2 PH |
6856 | The routine searches for NAME among all members of the structure itself |
6857 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6858 | (e.g., '_parent'). |
6859 | ||
03ee6b2e PH |
6860 | If NO_ERR, then simply return NULL in case of error, rather than |
6861 | calling error. */ | |
14f9c5c9 | 6862 | |
d2e4a39e | 6863 | struct value * |
03ee6b2e | 6864 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6865 | { |
4c4b4cd2 | 6866 | struct type *t, *t1; |
d2e4a39e | 6867 | struct value *v; |
14f9c5c9 | 6868 | |
4c4b4cd2 | 6869 | v = NULL; |
df407dfe | 6870 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6871 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6872 | { | |
6873 | t1 = TYPE_TARGET_TYPE (t); | |
6874 | if (t1 == NULL) | |
03ee6b2e | 6875 | goto BadValue; |
61ee279c | 6876 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6877 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6878 | { |
994b9211 | 6879 | arg = coerce_ref (arg); |
76a01679 JB |
6880 | t = t1; |
6881 | } | |
4c4b4cd2 | 6882 | } |
14f9c5c9 | 6883 | |
4c4b4cd2 PH |
6884 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6885 | { | |
6886 | t1 = TYPE_TARGET_TYPE (t); | |
6887 | if (t1 == NULL) | |
03ee6b2e | 6888 | goto BadValue; |
61ee279c | 6889 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6890 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6891 | { |
6892 | arg = value_ind (arg); | |
6893 | t = t1; | |
6894 | } | |
4c4b4cd2 | 6895 | else |
76a01679 | 6896 | break; |
4c4b4cd2 | 6897 | } |
14f9c5c9 | 6898 | |
4c4b4cd2 | 6899 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6900 | goto BadValue; |
14f9c5c9 | 6901 | |
4c4b4cd2 PH |
6902 | if (t1 == t) |
6903 | v = ada_search_struct_field (name, arg, 0, t); | |
6904 | else | |
6905 | { | |
6906 | int bit_offset, bit_size, byte_offset; | |
6907 | struct type *field_type; | |
6908 | CORE_ADDR address; | |
6909 | ||
76a01679 | 6910 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 6911 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 6912 | else |
b50d69b5 | 6913 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 6914 | |
1ed6ede0 | 6915 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6916 | if (find_struct_field (name, t1, 0, |
6917 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6918 | &bit_size, NULL)) |
76a01679 JB |
6919 | { |
6920 | if (bit_size != 0) | |
6921 | { | |
714e53ab PH |
6922 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6923 | arg = ada_coerce_ref (arg); | |
6924 | else | |
6925 | arg = ada_value_ind (arg); | |
76a01679 JB |
6926 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6927 | bit_offset, bit_size, | |
6928 | field_type); | |
6929 | } | |
6930 | else | |
f5938064 | 6931 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6932 | } |
6933 | } | |
6934 | ||
03ee6b2e PH |
6935 | if (v != NULL || no_err) |
6936 | return v; | |
6937 | else | |
323e0a4a | 6938 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6939 | |
03ee6b2e PH |
6940 | BadValue: |
6941 | if (no_err) | |
6942 | return NULL; | |
6943 | else | |
0963b4bd MS |
6944 | error (_("Attempt to extract a component of " |
6945 | "a value that is not a record.")); | |
14f9c5c9 AS |
6946 | } |
6947 | ||
6948 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6949 | If DISPP is non-null, add its byte displacement from the beginning of a |
6950 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6951 | work for packed fields). |
6952 | ||
6953 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6954 | followed by "___". |
14f9c5c9 | 6955 | |
0963b4bd | 6956 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6957 | be a (pointer or reference)+ to a struct or union, and the |
6958 | ultimate target type will be searched. | |
14f9c5c9 AS |
6959 | |
6960 | Looks recursively into variant clauses and parent types. | |
6961 | ||
4c4b4cd2 PH |
6962 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6963 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6964 | |
4c4b4cd2 | 6965 | static struct type * |
76a01679 JB |
6966 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6967 | int noerr, int *dispp) | |
14f9c5c9 AS |
6968 | { |
6969 | int i; | |
6970 | ||
6971 | if (name == NULL) | |
6972 | goto BadName; | |
6973 | ||
76a01679 | 6974 | if (refok && type != NULL) |
4c4b4cd2 PH |
6975 | while (1) |
6976 | { | |
61ee279c | 6977 | type = ada_check_typedef (type); |
76a01679 JB |
6978 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6979 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6980 | break; | |
6981 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6982 | } |
14f9c5c9 | 6983 | |
76a01679 | 6984 | if (type == NULL |
1265e4aa JB |
6985 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6986 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6987 | { |
4c4b4cd2 | 6988 | if (noerr) |
76a01679 | 6989 | return NULL; |
4c4b4cd2 | 6990 | else |
76a01679 JB |
6991 | { |
6992 | target_terminal_ours (); | |
6993 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6994 | if (type == NULL) |
6995 | error (_("Type (null) is not a structure or union type")); | |
6996 | else | |
6997 | { | |
6998 | /* XXX: type_sprint */ | |
6999 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7000 | type_print (type, "", gdb_stderr, -1); | |
7001 | error (_(" is not a structure or union type")); | |
7002 | } | |
76a01679 | 7003 | } |
14f9c5c9 AS |
7004 | } |
7005 | ||
7006 | type = to_static_fixed_type (type); | |
7007 | ||
7008 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7009 | { | |
0d5cff50 | 7010 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7011 | struct type *t; |
7012 | int disp; | |
d2e4a39e | 7013 | |
14f9c5c9 | 7014 | if (t_field_name == NULL) |
4c4b4cd2 | 7015 | continue; |
14f9c5c9 AS |
7016 | |
7017 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7018 | { |
7019 | if (dispp != NULL) | |
7020 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 7021 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 7022 | } |
14f9c5c9 AS |
7023 | |
7024 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7025 | { |
7026 | disp = 0; | |
7027 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7028 | 0, 1, &disp); | |
7029 | if (t != NULL) | |
7030 | { | |
7031 | if (dispp != NULL) | |
7032 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7033 | return t; | |
7034 | } | |
7035 | } | |
14f9c5c9 AS |
7036 | |
7037 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7038 | { |
7039 | int j; | |
5b4ee69b MS |
7040 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7041 | i)); | |
4c4b4cd2 PH |
7042 | |
7043 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7044 | { | |
b1f33ddd JB |
7045 | /* FIXME pnh 2008/01/26: We check for a field that is |
7046 | NOT wrapped in a struct, since the compiler sometimes | |
7047 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7048 | if the compiler changes this practice. */ |
0d5cff50 | 7049 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7050 | disp = 0; |
b1f33ddd JB |
7051 | if (v_field_name != NULL |
7052 | && field_name_match (v_field_name, name)) | |
7053 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
7054 | else | |
0963b4bd MS |
7055 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7056 | j), | |
b1f33ddd JB |
7057 | name, 0, 1, &disp); |
7058 | ||
4c4b4cd2 PH |
7059 | if (t != NULL) |
7060 | { | |
7061 | if (dispp != NULL) | |
7062 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7063 | return t; | |
7064 | } | |
7065 | } | |
7066 | } | |
14f9c5c9 AS |
7067 | |
7068 | } | |
7069 | ||
7070 | BadName: | |
d2e4a39e | 7071 | if (!noerr) |
14f9c5c9 AS |
7072 | { |
7073 | target_terminal_ours (); | |
7074 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7075 | if (name == NULL) |
7076 | { | |
7077 | /* XXX: type_sprint */ | |
7078 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7079 | type_print (type, "", gdb_stderr, -1); | |
7080 | error (_(" has no component named <null>")); | |
7081 | } | |
7082 | else | |
7083 | { | |
7084 | /* XXX: type_sprint */ | |
7085 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7086 | type_print (type, "", gdb_stderr, -1); | |
7087 | error (_(" has no component named %s"), name); | |
7088 | } | |
14f9c5c9 AS |
7089 | } |
7090 | ||
7091 | return NULL; | |
7092 | } | |
7093 | ||
b1f33ddd JB |
7094 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7095 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7096 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7097 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7098 | |
7099 | static int | |
7100 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7101 | { | |
7102 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7103 | |
b1f33ddd JB |
7104 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7105 | == NULL); | |
7106 | } | |
7107 | ||
7108 | ||
14f9c5c9 AS |
7109 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7110 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7111 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7112 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7113 | |
d2e4a39e | 7114 | int |
ebf56fd3 | 7115 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7116 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7117 | { |
7118 | int others_clause; | |
7119 | int i; | |
d2e4a39e | 7120 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7121 | struct value *outer; |
7122 | struct value *discrim; | |
14f9c5c9 AS |
7123 | LONGEST discrim_val; |
7124 | ||
0c281816 JB |
7125 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
7126 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
7127 | if (discrim == NULL) | |
14f9c5c9 | 7128 | return -1; |
0c281816 | 7129 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7130 | |
7131 | others_clause = -1; | |
7132 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7133 | { | |
7134 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7135 | others_clause = i; |
14f9c5c9 | 7136 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7137 | return i; |
14f9c5c9 AS |
7138 | } |
7139 | ||
7140 | return others_clause; | |
7141 | } | |
d2e4a39e | 7142 | \f |
14f9c5c9 AS |
7143 | |
7144 | ||
4c4b4cd2 | 7145 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7146 | |
7147 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7148 | (i.e., a size that is not statically recorded in the debugging | |
7149 | data) does not accurately reflect the size or layout of the value. | |
7150 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7151 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7152 | |
7153 | /* There is a subtle and tricky problem here. In general, we cannot | |
7154 | determine the size of dynamic records without its data. However, | |
7155 | the 'struct value' data structure, which GDB uses to represent | |
7156 | quantities in the inferior process (the target), requires the size | |
7157 | of the type at the time of its allocation in order to reserve space | |
7158 | for GDB's internal copy of the data. That's why the | |
7159 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7160 | rather than struct value*s. |
14f9c5c9 AS |
7161 | |
7162 | However, GDB's internal history variables ($1, $2, etc.) are | |
7163 | struct value*s containing internal copies of the data that are not, in | |
7164 | general, the same as the data at their corresponding addresses in | |
7165 | the target. Fortunately, the types we give to these values are all | |
7166 | conventional, fixed-size types (as per the strategy described | |
7167 | above), so that we don't usually have to perform the | |
7168 | 'to_fixed_xxx_type' conversions to look at their values. | |
7169 | Unfortunately, there is one exception: if one of the internal | |
7170 | history variables is an array whose elements are unconstrained | |
7171 | records, then we will need to create distinct fixed types for each | |
7172 | element selected. */ | |
7173 | ||
7174 | /* The upshot of all of this is that many routines take a (type, host | |
7175 | address, target address) triple as arguments to represent a value. | |
7176 | The host address, if non-null, is supposed to contain an internal | |
7177 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7178 | target at the target address. */ |
14f9c5c9 AS |
7179 | |
7180 | /* Assuming that VAL0 represents a pointer value, the result of | |
7181 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7182 | dynamic-sized types. */ |
14f9c5c9 | 7183 | |
d2e4a39e AS |
7184 | struct value * |
7185 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7186 | { |
c48db5ca | 7187 | struct value *val = value_ind (val0); |
5b4ee69b | 7188 | |
b50d69b5 JG |
7189 | if (ada_is_tagged_type (value_type (val), 0)) |
7190 | val = ada_tag_value_at_base_address (val); | |
7191 | ||
4c4b4cd2 | 7192 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7193 | } |
7194 | ||
7195 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7196 | qualifiers on VAL0. */ |
7197 | ||
d2e4a39e AS |
7198 | static struct value * |
7199 | ada_coerce_ref (struct value *val0) | |
7200 | { | |
df407dfe | 7201 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7202 | { |
7203 | struct value *val = val0; | |
5b4ee69b | 7204 | |
994b9211 | 7205 | val = coerce_ref (val); |
b50d69b5 JG |
7206 | |
7207 | if (ada_is_tagged_type (value_type (val), 0)) | |
7208 | val = ada_tag_value_at_base_address (val); | |
7209 | ||
4c4b4cd2 | 7210 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7211 | } |
7212 | else | |
14f9c5c9 AS |
7213 | return val0; |
7214 | } | |
7215 | ||
7216 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7217 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7218 | |
7219 | static unsigned int | |
ebf56fd3 | 7220 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7221 | { |
7222 | return (off + alignment - 1) & ~(alignment - 1); | |
7223 | } | |
7224 | ||
4c4b4cd2 | 7225 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7226 | |
7227 | static unsigned int | |
ebf56fd3 | 7228 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7229 | { |
d2e4a39e | 7230 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7231 | int len; |
14f9c5c9 AS |
7232 | int align_offset; |
7233 | ||
64a1bf19 JB |
7234 | /* The field name should never be null, unless the debugging information |
7235 | is somehow malformed. In this case, we assume the field does not | |
7236 | require any alignment. */ | |
7237 | if (name == NULL) | |
7238 | return 1; | |
7239 | ||
7240 | len = strlen (name); | |
7241 | ||
4c4b4cd2 PH |
7242 | if (!isdigit (name[len - 1])) |
7243 | return 1; | |
14f9c5c9 | 7244 | |
d2e4a39e | 7245 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7246 | align_offset = len - 2; |
7247 | else | |
7248 | align_offset = len - 1; | |
7249 | ||
4c4b4cd2 | 7250 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7251 | return TARGET_CHAR_BIT; |
7252 | ||
4c4b4cd2 PH |
7253 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7254 | } | |
7255 | ||
852dff6c | 7256 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7257 | |
852dff6c JB |
7258 | static struct symbol * |
7259 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7260 | { |
7261 | struct symbol *sym; | |
7262 | ||
7263 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
7264 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
7265 | return sym; | |
7266 | ||
7267 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
7268 | return sym; | |
14f9c5c9 AS |
7269 | } |
7270 | ||
dddfab26 UW |
7271 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7272 | solely for types defined by debug info, it will not search the GDB | |
7273 | primitive types. */ | |
4c4b4cd2 | 7274 | |
852dff6c | 7275 | static struct type * |
ebf56fd3 | 7276 | ada_find_any_type (const char *name) |
14f9c5c9 | 7277 | { |
852dff6c | 7278 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7279 | |
14f9c5c9 | 7280 | if (sym != NULL) |
dddfab26 | 7281 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7282 | |
dddfab26 | 7283 | return NULL; |
14f9c5c9 AS |
7284 | } |
7285 | ||
739593e0 JB |
7286 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7287 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7288 | symbol, in which case it is returned. Otherwise, this looks for | |
7289 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7290 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7291 | |
7292 | struct symbol * | |
270140bd | 7293 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7294 | { |
739593e0 | 7295 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7296 | struct symbol *sym; |
7297 | ||
739593e0 JB |
7298 | if (strstr (name, "___XR") != NULL) |
7299 | return name_sym; | |
7300 | ||
aeb5907d JB |
7301 | sym = find_old_style_renaming_symbol (name, block); |
7302 | ||
7303 | if (sym != NULL) | |
7304 | return sym; | |
7305 | ||
0963b4bd | 7306 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7307 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7308 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7309 | return sym; | |
7310 | else | |
7311 | return NULL; | |
7312 | } | |
7313 | ||
7314 | static struct symbol * | |
270140bd | 7315 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7316 | { |
7f0df278 | 7317 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7318 | char *rename; |
7319 | ||
7320 | if (function_sym != NULL) | |
7321 | { | |
7322 | /* If the symbol is defined inside a function, NAME is not fully | |
7323 | qualified. This means we need to prepend the function name | |
7324 | as well as adding the ``___XR'' suffix to build the name of | |
7325 | the associated renaming symbol. */ | |
0d5cff50 | 7326 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7327 | /* Function names sometimes contain suffixes used |
7328 | for instance to qualify nested subprograms. When building | |
7329 | the XR type name, we need to make sure that this suffix is | |
7330 | not included. So do not include any suffix in the function | |
7331 | name length below. */ | |
69fadcdf | 7332 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7333 | const int rename_len = function_name_len + 2 /* "__" */ |
7334 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7335 | |
529cad9c | 7336 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7337 | ada_remove_trailing_digits (function_name, &function_name_len); |
7338 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7339 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7340 | |
4c4b4cd2 PH |
7341 | /* Library-level functions are a special case, as GNAT adds |
7342 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7343 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7344 | have this prefix, so we need to skip this prefix if present. */ |
7345 | if (function_name_len > 5 /* "_ada_" */ | |
7346 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7347 | { |
7348 | function_name += 5; | |
7349 | function_name_len -= 5; | |
7350 | } | |
4c4b4cd2 PH |
7351 | |
7352 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7353 | strncpy (rename, function_name, function_name_len); |
7354 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7355 | "__%s___XR", name); | |
4c4b4cd2 PH |
7356 | } |
7357 | else | |
7358 | { | |
7359 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7360 | |
4c4b4cd2 | 7361 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7362 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7363 | } |
7364 | ||
852dff6c | 7365 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7366 | } |
7367 | ||
14f9c5c9 | 7368 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7369 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7370 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7371 | otherwise return 0. */ |
7372 | ||
14f9c5c9 | 7373 | int |
d2e4a39e | 7374 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7375 | { |
7376 | if (type1 == NULL) | |
7377 | return 1; | |
7378 | else if (type0 == NULL) | |
7379 | return 0; | |
7380 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7381 | return 1; | |
7382 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7383 | return 0; | |
4c4b4cd2 PH |
7384 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7385 | return 1; | |
ad82864c | 7386 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7387 | return 1; |
4c4b4cd2 PH |
7388 | else if (ada_is_array_descriptor_type (type0) |
7389 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7390 | return 1; |
aeb5907d JB |
7391 | else |
7392 | { | |
7393 | const char *type0_name = type_name_no_tag (type0); | |
7394 | const char *type1_name = type_name_no_tag (type1); | |
7395 | ||
7396 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7397 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7398 | return 1; | |
7399 | } | |
14f9c5c9 AS |
7400 | return 0; |
7401 | } | |
7402 | ||
7403 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7404 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7405 | ||
0d5cff50 | 7406 | const char * |
d2e4a39e | 7407 | ada_type_name (struct type *type) |
14f9c5c9 | 7408 | { |
d2e4a39e | 7409 | if (type == NULL) |
14f9c5c9 AS |
7410 | return NULL; |
7411 | else if (TYPE_NAME (type) != NULL) | |
7412 | return TYPE_NAME (type); | |
7413 | else | |
7414 | return TYPE_TAG_NAME (type); | |
7415 | } | |
7416 | ||
b4ba55a1 JB |
7417 | /* Search the list of "descriptive" types associated to TYPE for a type |
7418 | whose name is NAME. */ | |
7419 | ||
7420 | static struct type * | |
7421 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7422 | { | |
7423 | struct type *result; | |
7424 | ||
7425 | /* If there no descriptive-type info, then there is no parallel type | |
7426 | to be found. */ | |
7427 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7428 | return NULL; | |
7429 | ||
7430 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7431 | while (result != NULL) | |
7432 | { | |
0d5cff50 | 7433 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7434 | |
7435 | if (result_name == NULL) | |
7436 | { | |
7437 | warning (_("unexpected null name on descriptive type")); | |
7438 | return NULL; | |
7439 | } | |
7440 | ||
7441 | /* If the names match, stop. */ | |
7442 | if (strcmp (result_name, name) == 0) | |
7443 | break; | |
7444 | ||
7445 | /* Otherwise, look at the next item on the list, if any. */ | |
7446 | if (HAVE_GNAT_AUX_INFO (result)) | |
7447 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7448 | else | |
7449 | result = NULL; | |
7450 | } | |
7451 | ||
7452 | /* If we didn't find a match, see whether this is a packed array. With | |
7453 | older compilers, the descriptive type information is either absent or | |
7454 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7455 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7456 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7457 | return ada_find_any_type (name); |
7458 | ||
7459 | return result; | |
7460 | } | |
7461 | ||
7462 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7463 | descriptive type taken from the debugging information, if available, | |
7464 | and otherwise using the (slower) name-based method. */ | |
7465 | ||
7466 | static struct type * | |
7467 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7468 | { | |
7469 | struct type *result = NULL; | |
7470 | ||
7471 | if (HAVE_GNAT_AUX_INFO (type)) | |
7472 | result = find_parallel_type_by_descriptive_type (type, name); | |
7473 | else | |
7474 | result = ada_find_any_type (name); | |
7475 | ||
7476 | return result; | |
7477 | } | |
7478 | ||
7479 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7480 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7481 | |
d2e4a39e | 7482 | struct type * |
ebf56fd3 | 7483 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7484 | { |
0d5cff50 DE |
7485 | char *name; |
7486 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7487 | int len; |
d2e4a39e | 7488 | |
14f9c5c9 AS |
7489 | if (typename == NULL) |
7490 | return NULL; | |
7491 | ||
7492 | len = strlen (typename); | |
7493 | ||
b4ba55a1 | 7494 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7495 | |
7496 | strcpy (name, typename); | |
7497 | strcpy (name + len, suffix); | |
7498 | ||
b4ba55a1 | 7499 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7500 | } |
7501 | ||
14f9c5c9 | 7502 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7503 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7504 | |
d2e4a39e AS |
7505 | static struct type * |
7506 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7507 | { |
61ee279c | 7508 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7509 | |
7510 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7511 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7512 | return NULL; |
d2e4a39e | 7513 | else |
14f9c5c9 AS |
7514 | { |
7515 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7516 | |
4c4b4cd2 PH |
7517 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7518 | return type; | |
14f9c5c9 | 7519 | else |
4c4b4cd2 | 7520 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7521 | } |
7522 | } | |
7523 | ||
7524 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7525 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7526 | |
d2e4a39e AS |
7527 | static int |
7528 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7529 | { |
7530 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7531 | |
d2e4a39e | 7532 | return name != NULL |
14f9c5c9 AS |
7533 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7534 | && strstr (name, "___XVL") != NULL; | |
7535 | } | |
7536 | ||
4c4b4cd2 PH |
7537 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7538 | represent a variant record type. */ | |
14f9c5c9 | 7539 | |
d2e4a39e | 7540 | static int |
4c4b4cd2 | 7541 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7542 | { |
7543 | int f; | |
7544 | ||
4c4b4cd2 PH |
7545 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7546 | return -1; | |
7547 | ||
7548 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7549 | { | |
7550 | if (ada_is_variant_part (type, f)) | |
7551 | return f; | |
7552 | } | |
7553 | return -1; | |
14f9c5c9 AS |
7554 | } |
7555 | ||
4c4b4cd2 PH |
7556 | /* A record type with no fields. */ |
7557 | ||
d2e4a39e | 7558 | static struct type * |
e9bb382b | 7559 | empty_record (struct type *template) |
14f9c5c9 | 7560 | { |
e9bb382b | 7561 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7562 | |
14f9c5c9 AS |
7563 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7564 | TYPE_NFIELDS (type) = 0; | |
7565 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7566 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7567 | TYPE_NAME (type) = "<empty>"; |
7568 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7569 | TYPE_LENGTH (type) = 0; |
7570 | return type; | |
7571 | } | |
7572 | ||
7573 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7574 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7575 | the beginning of this section) VAL according to GNAT conventions. | |
7576 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7577 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7578 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7579 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7580 | of the variant. |
14f9c5c9 | 7581 | |
4c4b4cd2 PH |
7582 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7583 | length are not statically known are discarded. As a consequence, | |
7584 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7585 | ||
7586 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7587 | variants occupy whole numbers of bytes. However, they need not be | |
7588 | byte-aligned. */ | |
7589 | ||
7590 | struct type * | |
10a2c479 | 7591 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7592 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7593 | CORE_ADDR address, struct value *dval0, |
7594 | int keep_dynamic_fields) | |
14f9c5c9 | 7595 | { |
d2e4a39e AS |
7596 | struct value *mark = value_mark (); |
7597 | struct value *dval; | |
7598 | struct type *rtype; | |
14f9c5c9 | 7599 | int nfields, bit_len; |
4c4b4cd2 | 7600 | int variant_field; |
14f9c5c9 | 7601 | long off; |
d94e4f4f | 7602 | int fld_bit_len; |
14f9c5c9 AS |
7603 | int f; |
7604 | ||
4c4b4cd2 PH |
7605 | /* Compute the number of fields in this record type that are going |
7606 | to be processed: unless keep_dynamic_fields, this includes only | |
7607 | fields whose position and length are static will be processed. */ | |
7608 | if (keep_dynamic_fields) | |
7609 | nfields = TYPE_NFIELDS (type); | |
7610 | else | |
7611 | { | |
7612 | nfields = 0; | |
76a01679 | 7613 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7614 | && !ada_is_variant_part (type, nfields) |
7615 | && !is_dynamic_field (type, nfields)) | |
7616 | nfields++; | |
7617 | } | |
7618 | ||
e9bb382b | 7619 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7620 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7621 | INIT_CPLUS_SPECIFIC (rtype); | |
7622 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7623 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7624 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7625 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7626 | TYPE_NAME (rtype) = ada_type_name (type); | |
7627 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7628 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7629 | |
d2e4a39e AS |
7630 | off = 0; |
7631 | bit_len = 0; | |
4c4b4cd2 PH |
7632 | variant_field = -1; |
7633 | ||
14f9c5c9 AS |
7634 | for (f = 0; f < nfields; f += 1) |
7635 | { | |
6c038f32 PH |
7636 | off = align_value (off, field_alignment (type, f)) |
7637 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7638 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7639 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7640 | |
d2e4a39e | 7641 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7642 | { |
7643 | variant_field = f; | |
d94e4f4f | 7644 | fld_bit_len = 0; |
4c4b4cd2 | 7645 | } |
14f9c5c9 | 7646 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7647 | { |
284614f0 JB |
7648 | const gdb_byte *field_valaddr = valaddr; |
7649 | CORE_ADDR field_address = address; | |
7650 | struct type *field_type = | |
7651 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7652 | ||
4c4b4cd2 | 7653 | if (dval0 == NULL) |
b5304971 JG |
7654 | { |
7655 | /* rtype's length is computed based on the run-time | |
7656 | value of discriminants. If the discriminants are not | |
7657 | initialized, the type size may be completely bogus and | |
0963b4bd | 7658 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7659 | size first before creating the value. */ |
7660 | check_size (rtype); | |
7661 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7662 | } | |
4c4b4cd2 PH |
7663 | else |
7664 | dval = dval0; | |
7665 | ||
284614f0 JB |
7666 | /* If the type referenced by this field is an aligner type, we need |
7667 | to unwrap that aligner type, because its size might not be set. | |
7668 | Keeping the aligner type would cause us to compute the wrong | |
7669 | size for this field, impacting the offset of the all the fields | |
7670 | that follow this one. */ | |
7671 | if (ada_is_aligner_type (field_type)) | |
7672 | { | |
7673 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7674 | ||
7675 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7676 | field_address = cond_offset_target (field_address, field_offset); | |
7677 | field_type = ada_aligned_type (field_type); | |
7678 | } | |
7679 | ||
7680 | field_valaddr = cond_offset_host (field_valaddr, | |
7681 | off / TARGET_CHAR_BIT); | |
7682 | field_address = cond_offset_target (field_address, | |
7683 | off / TARGET_CHAR_BIT); | |
7684 | ||
7685 | /* Get the fixed type of the field. Note that, in this case, | |
7686 | we do not want to get the real type out of the tag: if | |
7687 | the current field is the parent part of a tagged record, | |
7688 | we will get the tag of the object. Clearly wrong: the real | |
7689 | type of the parent is not the real type of the child. We | |
7690 | would end up in an infinite loop. */ | |
7691 | field_type = ada_get_base_type (field_type); | |
7692 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7693 | field_address, dval, 0); | |
27f2a97b JB |
7694 | /* If the field size is already larger than the maximum |
7695 | object size, then the record itself will necessarily | |
7696 | be larger than the maximum object size. We need to make | |
7697 | this check now, because the size might be so ridiculously | |
7698 | large (due to an uninitialized variable in the inferior) | |
7699 | that it would cause an overflow when adding it to the | |
7700 | record size. */ | |
7701 | check_size (field_type); | |
284614f0 JB |
7702 | |
7703 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7704 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7705 | /* The multiplication can potentially overflow. But because |
7706 | the field length has been size-checked just above, and | |
7707 | assuming that the maximum size is a reasonable value, | |
7708 | an overflow should not happen in practice. So rather than | |
7709 | adding overflow recovery code to this already complex code, | |
7710 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7711 | fld_bit_len = |
4c4b4cd2 PH |
7712 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7713 | } | |
14f9c5c9 | 7714 | else |
4c4b4cd2 | 7715 | { |
5ded5331 JB |
7716 | /* Note: If this field's type is a typedef, it is important |
7717 | to preserve the typedef layer. | |
7718 | ||
7719 | Otherwise, we might be transforming a typedef to a fat | |
7720 | pointer (encoding a pointer to an unconstrained array), | |
7721 | into a basic fat pointer (encoding an unconstrained | |
7722 | array). As both types are implemented using the same | |
7723 | structure, the typedef is the only clue which allows us | |
7724 | to distinguish between the two options. Stripping it | |
7725 | would prevent us from printing this field appropriately. */ | |
7726 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
7727 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7728 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7729 | fld_bit_len = |
4c4b4cd2 PH |
7730 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7731 | else | |
5ded5331 JB |
7732 | { |
7733 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
7734 | ||
7735 | /* We need to be careful of typedefs when computing | |
7736 | the length of our field. If this is a typedef, | |
7737 | get the length of the target type, not the length | |
7738 | of the typedef. */ | |
7739 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7740 | field_type = ada_typedef_target_type (field_type); | |
7741 | ||
7742 | fld_bit_len = | |
7743 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
7744 | } | |
4c4b4cd2 | 7745 | } |
14f9c5c9 | 7746 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7747 | bit_len = off + fld_bit_len; |
d94e4f4f | 7748 | off += fld_bit_len; |
4c4b4cd2 PH |
7749 | TYPE_LENGTH (rtype) = |
7750 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7751 | } |
4c4b4cd2 PH |
7752 | |
7753 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7754 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7755 | the record. This can happen in the presence of representation |
7756 | clauses. */ | |
7757 | if (variant_field >= 0) | |
7758 | { | |
7759 | struct type *branch_type; | |
7760 | ||
7761 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7762 | ||
7763 | if (dval0 == NULL) | |
7764 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7765 | else | |
7766 | dval = dval0; | |
7767 | ||
7768 | branch_type = | |
7769 | to_fixed_variant_branch_type | |
7770 | (TYPE_FIELD_TYPE (type, variant_field), | |
7771 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7772 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7773 | if (branch_type == NULL) | |
7774 | { | |
7775 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7776 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7777 | TYPE_NFIELDS (rtype) -= 1; | |
7778 | } | |
7779 | else | |
7780 | { | |
7781 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7782 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7783 | fld_bit_len = | |
7784 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7785 | TARGET_CHAR_BIT; | |
7786 | if (off + fld_bit_len > bit_len) | |
7787 | bit_len = off + fld_bit_len; | |
7788 | TYPE_LENGTH (rtype) = | |
7789 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7790 | } | |
7791 | } | |
7792 | ||
714e53ab PH |
7793 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7794 | should contain the alignment of that record, which should be a strictly | |
7795 | positive value. If null or negative, then something is wrong, most | |
7796 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7797 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7798 | the current RTYPE length might be good enough for our purposes. */ |
7799 | if (TYPE_LENGTH (type) <= 0) | |
7800 | { | |
323e0a4a AC |
7801 | if (TYPE_NAME (rtype)) |
7802 | warning (_("Invalid type size for `%s' detected: %d."), | |
7803 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7804 | else | |
7805 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7806 | TYPE_LENGTH (type)); | |
714e53ab PH |
7807 | } |
7808 | else | |
7809 | { | |
7810 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7811 | TYPE_LENGTH (type)); | |
7812 | } | |
14f9c5c9 AS |
7813 | |
7814 | value_free_to_mark (mark); | |
d2e4a39e | 7815 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7816 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7817 | return rtype; |
7818 | } | |
7819 | ||
4c4b4cd2 PH |
7820 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7821 | of 1. */ | |
14f9c5c9 | 7822 | |
d2e4a39e | 7823 | static struct type * |
fc1a4b47 | 7824 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7825 | CORE_ADDR address, struct value *dval0) |
7826 | { | |
7827 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7828 | address, dval0, 1); | |
7829 | } | |
7830 | ||
7831 | /* An ordinary record type in which ___XVL-convention fields and | |
7832 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7833 | static approximations, containing all possible fields. Uses | |
7834 | no runtime values. Useless for use in values, but that's OK, | |
7835 | since the results are used only for type determinations. Works on both | |
7836 | structs and unions. Representation note: to save space, we memorize | |
7837 | the result of this function in the TYPE_TARGET_TYPE of the | |
7838 | template type. */ | |
7839 | ||
7840 | static struct type * | |
7841 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7842 | { |
7843 | struct type *type; | |
7844 | int nfields; | |
7845 | int f; | |
7846 | ||
4c4b4cd2 PH |
7847 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7848 | return TYPE_TARGET_TYPE (type0); | |
7849 | ||
7850 | nfields = TYPE_NFIELDS (type0); | |
7851 | type = type0; | |
14f9c5c9 AS |
7852 | |
7853 | for (f = 0; f < nfields; f += 1) | |
7854 | { | |
61ee279c | 7855 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7856 | struct type *new_type; |
14f9c5c9 | 7857 | |
4c4b4cd2 PH |
7858 | if (is_dynamic_field (type0, f)) |
7859 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7860 | else |
f192137b | 7861 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7862 | if (type == type0 && new_type != field_type) |
7863 | { | |
e9bb382b | 7864 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7865 | TYPE_CODE (type) = TYPE_CODE (type0); |
7866 | INIT_CPLUS_SPECIFIC (type); | |
7867 | TYPE_NFIELDS (type) = nfields; | |
7868 | TYPE_FIELDS (type) = (struct field *) | |
7869 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7870 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7871 | sizeof (struct field) * nfields); | |
7872 | TYPE_NAME (type) = ada_type_name (type0); | |
7873 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7874 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7875 | TYPE_LENGTH (type) = 0; |
7876 | } | |
7877 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7878 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7879 | } |
14f9c5c9 AS |
7880 | return type; |
7881 | } | |
7882 | ||
4c4b4cd2 | 7883 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7884 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7885 | which should be a non-dynamic-sized record, in which the variant | |
7886 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7887 | for discriminant values in DVAL0, which can be NULL if the record |
7888 | contains the necessary discriminant values. */ | |
7889 | ||
d2e4a39e | 7890 | static struct type * |
fc1a4b47 | 7891 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7892 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7893 | { |
d2e4a39e | 7894 | struct value *mark = value_mark (); |
4c4b4cd2 | 7895 | struct value *dval; |
d2e4a39e | 7896 | struct type *rtype; |
14f9c5c9 AS |
7897 | struct type *branch_type; |
7898 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7899 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7900 | |
4c4b4cd2 | 7901 | if (variant_field == -1) |
14f9c5c9 AS |
7902 | return type; |
7903 | ||
4c4b4cd2 PH |
7904 | if (dval0 == NULL) |
7905 | dval = value_from_contents_and_address (type, valaddr, address); | |
7906 | else | |
7907 | dval = dval0; | |
7908 | ||
e9bb382b | 7909 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7910 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7911 | INIT_CPLUS_SPECIFIC (rtype); |
7912 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7913 | TYPE_FIELDS (rtype) = |
7914 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7915 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7916 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7917 | TYPE_NAME (rtype) = ada_type_name (type); |
7918 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7919 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7920 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7921 | ||
4c4b4cd2 PH |
7922 | branch_type = to_fixed_variant_branch_type |
7923 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7924 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7925 | TYPE_FIELD_BITPOS (type, variant_field) |
7926 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7927 | cond_offset_target (address, |
4c4b4cd2 PH |
7928 | TYPE_FIELD_BITPOS (type, variant_field) |
7929 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7930 | if (branch_type == NULL) |
14f9c5c9 | 7931 | { |
4c4b4cd2 | 7932 | int f; |
5b4ee69b | 7933 | |
4c4b4cd2 PH |
7934 | for (f = variant_field + 1; f < nfields; f += 1) |
7935 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7936 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7937 | } |
7938 | else | |
7939 | { | |
4c4b4cd2 PH |
7940 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7941 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7942 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7943 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7944 | } |
4c4b4cd2 | 7945 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7946 | |
4c4b4cd2 | 7947 | value_free_to_mark (mark); |
14f9c5c9 AS |
7948 | return rtype; |
7949 | } | |
7950 | ||
7951 | /* An ordinary record type (with fixed-length fields) that describes | |
7952 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7953 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7954 | should be in DVAL, a record value; it may be NULL if the object |
7955 | at ADDR itself contains any necessary discriminant values. | |
7956 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7957 | values from the record are needed. Except in the case that DVAL, | |
7958 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7959 | unchecked) is replaced by a particular branch of the variant. | |
7960 | ||
7961 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7962 | is questionable and may be removed. It can arise during the | |
7963 | processing of an unconstrained-array-of-record type where all the | |
7964 | variant branches have exactly the same size. This is because in | |
7965 | such cases, the compiler does not bother to use the XVS convention | |
7966 | when encoding the record. I am currently dubious of this | |
7967 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7968 | |
d2e4a39e | 7969 | static struct type * |
fc1a4b47 | 7970 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7971 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7972 | { |
d2e4a39e | 7973 | struct type *templ_type; |
14f9c5c9 | 7974 | |
876cecd0 | 7975 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7976 | return type0; |
7977 | ||
d2e4a39e | 7978 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7979 | |
7980 | if (templ_type != NULL) | |
7981 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7982 | else if (variant_field_index (type0) >= 0) |
7983 | { | |
7984 | if (dval == NULL && valaddr == NULL && address == 0) | |
7985 | return type0; | |
7986 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7987 | dval); | |
7988 | } | |
14f9c5c9 AS |
7989 | else |
7990 | { | |
876cecd0 | 7991 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7992 | return type0; |
7993 | } | |
7994 | ||
7995 | } | |
7996 | ||
7997 | /* An ordinary record type (with fixed-length fields) that describes | |
7998 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7999 | union type. Any necessary discriminants' values should be in DVAL, | |
8000 | a record value. That is, this routine selects the appropriate | |
8001 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8002 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8003 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8004 | |
d2e4a39e | 8005 | static struct type * |
fc1a4b47 | 8006 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8007 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8008 | { |
8009 | int which; | |
d2e4a39e AS |
8010 | struct type *templ_type; |
8011 | struct type *var_type; | |
14f9c5c9 AS |
8012 | |
8013 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8014 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8015 | else |
14f9c5c9 AS |
8016 | var_type = var_type0; |
8017 | ||
8018 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8019 | ||
8020 | if (templ_type != NULL) | |
8021 | var_type = templ_type; | |
8022 | ||
b1f33ddd JB |
8023 | if (is_unchecked_variant (var_type, value_type (dval))) |
8024 | return var_type0; | |
d2e4a39e AS |
8025 | which = |
8026 | ada_which_variant_applies (var_type, | |
0fd88904 | 8027 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8028 | |
8029 | if (which < 0) | |
e9bb382b | 8030 | return empty_record (var_type); |
14f9c5c9 | 8031 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8032 | return to_fixed_record_type |
d2e4a39e AS |
8033 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8034 | valaddr, address, dval); | |
4c4b4cd2 | 8035 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8036 | return |
8037 | to_fixed_record_type | |
8038 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8039 | else |
8040 | return TYPE_FIELD_TYPE (var_type, which); | |
8041 | } | |
8042 | ||
8043 | /* Assuming that TYPE0 is an array type describing the type of a value | |
8044 | at ADDR, and that DVAL describes a record containing any | |
8045 | discriminants used in TYPE0, returns a type for the value that | |
8046 | contains no dynamic components (that is, no components whose sizes | |
8047 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8048 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8049 | varsize_limit. */ |
14f9c5c9 | 8050 | |
d2e4a39e AS |
8051 | static struct type * |
8052 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8053 | int ignore_too_big) |
14f9c5c9 | 8054 | { |
d2e4a39e AS |
8055 | struct type *index_type_desc; |
8056 | struct type *result; | |
ad82864c | 8057 | int constrained_packed_array_p; |
14f9c5c9 | 8058 | |
b0dd7688 | 8059 | type0 = ada_check_typedef (type0); |
284614f0 | 8060 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8061 | return type0; |
14f9c5c9 | 8062 | |
ad82864c JB |
8063 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8064 | if (constrained_packed_array_p) | |
8065 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8066 | |
14f9c5c9 | 8067 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 8068 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
8069 | if (index_type_desc == NULL) |
8070 | { | |
61ee279c | 8071 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8072 | |
14f9c5c9 | 8073 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8074 | depend on the contents of the array in properly constructed |
8075 | debugging data. */ | |
529cad9c PH |
8076 | /* Create a fixed version of the array element type. |
8077 | We're not providing the address of an element here, | |
e1d5a0d2 | 8078 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8079 | the conversion. This should not be a problem, since arrays of |
8080 | unconstrained objects are not allowed. In particular, all | |
8081 | the elements of an array of a tagged type should all be of | |
8082 | the same type specified in the debugging info. No need to | |
8083 | consult the object tag. */ | |
1ed6ede0 | 8084 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8085 | |
284614f0 JB |
8086 | /* Make sure we always create a new array type when dealing with |
8087 | packed array types, since we're going to fix-up the array | |
8088 | type length and element bitsize a little further down. */ | |
ad82864c | 8089 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8090 | result = type0; |
14f9c5c9 | 8091 | else |
e9bb382b | 8092 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8093 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8094 | } |
8095 | else | |
8096 | { | |
8097 | int i; | |
8098 | struct type *elt_type0; | |
8099 | ||
8100 | elt_type0 = type0; | |
8101 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8102 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8103 | |
8104 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8105 | depend on the contents of the array in properly constructed |
8106 | debugging data. */ | |
529cad9c PH |
8107 | /* Create a fixed version of the array element type. |
8108 | We're not providing the address of an element here, | |
e1d5a0d2 | 8109 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8110 | the conversion. This should not be a problem, since arrays of |
8111 | unconstrained objects are not allowed. In particular, all | |
8112 | the elements of an array of a tagged type should all be of | |
8113 | the same type specified in the debugging info. No need to | |
8114 | consult the object tag. */ | |
1ed6ede0 JB |
8115 | result = |
8116 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8117 | |
8118 | elt_type0 = type0; | |
14f9c5c9 | 8119 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8120 | { |
8121 | struct type *range_type = | |
28c85d6c | 8122 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8123 | |
e9bb382b | 8124 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8125 | result, range_type); |
1ce677a4 | 8126 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8127 | } |
d2e4a39e | 8128 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8129 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8130 | } |
8131 | ||
2e6fda7d JB |
8132 | /* We want to preserve the type name. This can be useful when |
8133 | trying to get the type name of a value that has already been | |
8134 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8135 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8136 | ||
ad82864c | 8137 | if (constrained_packed_array_p) |
284614f0 JB |
8138 | { |
8139 | /* So far, the resulting type has been created as if the original | |
8140 | type was a regular (non-packed) array type. As a result, the | |
8141 | bitsize of the array elements needs to be set again, and the array | |
8142 | length needs to be recomputed based on that bitsize. */ | |
8143 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8144 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8145 | ||
8146 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8147 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8148 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8149 | TYPE_LENGTH (result)++; | |
8150 | } | |
8151 | ||
876cecd0 | 8152 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8153 | return result; |
d2e4a39e | 8154 | } |
14f9c5c9 AS |
8155 | |
8156 | ||
8157 | /* A standard type (containing no dynamically sized components) | |
8158 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8159 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8160 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8161 | ADDRESS or in VALADDR contains these discriminants. |
8162 | ||
1ed6ede0 JB |
8163 | If CHECK_TAG is not null, in the case of tagged types, this function |
8164 | attempts to locate the object's tag and use it to compute the actual | |
8165 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8166 | location of the tag, and therefore compute the tagged type's actual type. | |
8167 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8168 | |
f192137b JB |
8169 | static struct type * |
8170 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8171 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8172 | { |
61ee279c | 8173 | type = ada_check_typedef (type); |
d2e4a39e AS |
8174 | switch (TYPE_CODE (type)) |
8175 | { | |
8176 | default: | |
14f9c5c9 | 8177 | return type; |
d2e4a39e | 8178 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8179 | { |
76a01679 | 8180 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8181 | struct type *fixed_record_type = |
8182 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8183 | |
529cad9c PH |
8184 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8185 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8186 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8187 | type (the parent part of the record may have dynamic fields |
8188 | and the way the location of _tag is expressed may depend on | |
8189 | them). */ | |
529cad9c | 8190 | |
1ed6ede0 | 8191 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8192 | { |
b50d69b5 JG |
8193 | struct value *tag = |
8194 | value_tag_from_contents_and_address | |
8195 | (fixed_record_type, | |
8196 | valaddr, | |
8197 | address); | |
8198 | struct type *real_type = type_from_tag (tag); | |
8199 | struct value *obj = | |
8200 | value_from_contents_and_address (fixed_record_type, | |
8201 | valaddr, | |
8202 | address); | |
76a01679 | 8203 | if (real_type != NULL) |
b50d69b5 JG |
8204 | return to_fixed_record_type |
8205 | (real_type, NULL, | |
8206 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8207 | } |
4af88198 JB |
8208 | |
8209 | /* Check to see if there is a parallel ___XVZ variable. | |
8210 | If there is, then it provides the actual size of our type. */ | |
8211 | else if (ada_type_name (fixed_record_type) != NULL) | |
8212 | { | |
0d5cff50 | 8213 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8214 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8215 | int xvz_found = 0; | |
8216 | LONGEST size; | |
8217 | ||
88c15c34 | 8218 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8219 | size = get_int_var_value (xvz_name, &xvz_found); |
8220 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8221 | { | |
8222 | fixed_record_type = copy_type (fixed_record_type); | |
8223 | TYPE_LENGTH (fixed_record_type) = size; | |
8224 | ||
8225 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8226 | observed this when the debugging info is STABS, and | |
8227 | apparently it is something that is hard to fix. | |
8228 | ||
8229 | In practice, we don't need the actual type definition | |
8230 | at all, because the presence of the XVZ variable allows us | |
8231 | to assume that there must be a XVS type as well, which we | |
8232 | should be able to use later, when we need the actual type | |
8233 | definition. | |
8234 | ||
8235 | In the meantime, pretend that the "fixed" type we are | |
8236 | returning is NOT a stub, because this can cause trouble | |
8237 | when using this type to create new types targeting it. | |
8238 | Indeed, the associated creation routines often check | |
8239 | whether the target type is a stub and will try to replace | |
0963b4bd | 8240 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8241 | might cause the new type to have the wrong size too. |
8242 | Consider the case of an array, for instance, where the size | |
8243 | of the array is computed from the number of elements in | |
8244 | our array multiplied by the size of its element. */ | |
8245 | TYPE_STUB (fixed_record_type) = 0; | |
8246 | } | |
8247 | } | |
1ed6ede0 | 8248 | return fixed_record_type; |
4c4b4cd2 | 8249 | } |
d2e4a39e | 8250 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8251 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8252 | case TYPE_CODE_UNION: |
8253 | if (dval == NULL) | |
4c4b4cd2 | 8254 | return type; |
d2e4a39e | 8255 | else |
4c4b4cd2 | 8256 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8257 | } |
14f9c5c9 AS |
8258 | } |
8259 | ||
f192137b JB |
8260 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8261 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8262 | |
8263 | The typedef layer needs be preserved in order to differentiate between | |
8264 | arrays and array pointers when both types are implemented using the same | |
8265 | fat pointer. In the array pointer case, the pointer is encoded as | |
8266 | a typedef of the pointer type. For instance, considering: | |
8267 | ||
8268 | type String_Access is access String; | |
8269 | S1 : String_Access := null; | |
8270 | ||
8271 | To the debugger, S1 is defined as a typedef of type String. But | |
8272 | to the user, it is a pointer. So if the user tries to print S1, | |
8273 | we should not dereference the array, but print the array address | |
8274 | instead. | |
8275 | ||
8276 | If we didn't preserve the typedef layer, we would lose the fact that | |
8277 | the type is to be presented as a pointer (needs de-reference before | |
8278 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8279 | |
8280 | struct type * | |
8281 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8282 | CORE_ADDR address, struct value *dval, int check_tag) | |
8283 | ||
8284 | { | |
8285 | struct type *fixed_type = | |
8286 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8287 | ||
96dbd2c1 JB |
8288 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8289 | then preserve the typedef layer. | |
8290 | ||
8291 | Implementation note: We can only check the main-type portion of | |
8292 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8293 | from TYPE now returns a type that has the same instance flags | |
8294 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8295 | target type is a "struct", then the typedef elimination will return | |
8296 | a "const" version of the target type. See check_typedef for more | |
8297 | details about how the typedef layer elimination is done. | |
8298 | ||
8299 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8300 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8301 | Perhaps, we could add a check for that and preserve the typedef layer | |
8302 | only in that situation. But this seems unecessary so far, probably | |
8303 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8304 | */ | |
f192137b | 8305 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8306 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8307 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8308 | return type; |
8309 | ||
8310 | return fixed_type; | |
8311 | } | |
8312 | ||
14f9c5c9 | 8313 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8314 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8315 | |
d2e4a39e AS |
8316 | static struct type * |
8317 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8318 | { |
d2e4a39e | 8319 | struct type *type; |
14f9c5c9 AS |
8320 | |
8321 | if (type0 == NULL) | |
8322 | return NULL; | |
8323 | ||
876cecd0 | 8324 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8325 | return type0; |
8326 | ||
61ee279c | 8327 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8328 | |
14f9c5c9 AS |
8329 | switch (TYPE_CODE (type0)) |
8330 | { | |
8331 | default: | |
8332 | return type0; | |
8333 | case TYPE_CODE_STRUCT: | |
8334 | type = dynamic_template_type (type0); | |
d2e4a39e | 8335 | if (type != NULL) |
4c4b4cd2 PH |
8336 | return template_to_static_fixed_type (type); |
8337 | else | |
8338 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8339 | case TYPE_CODE_UNION: |
8340 | type = ada_find_parallel_type (type0, "___XVU"); | |
8341 | if (type != NULL) | |
4c4b4cd2 PH |
8342 | return template_to_static_fixed_type (type); |
8343 | else | |
8344 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8345 | } |
8346 | } | |
8347 | ||
4c4b4cd2 PH |
8348 | /* A static approximation of TYPE with all type wrappers removed. */ |
8349 | ||
d2e4a39e AS |
8350 | static struct type * |
8351 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8352 | { |
8353 | if (ada_is_aligner_type (type)) | |
8354 | { | |
61ee279c | 8355 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8356 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8357 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8358 | |
8359 | return static_unwrap_type (type1); | |
8360 | } | |
d2e4a39e | 8361 | else |
14f9c5c9 | 8362 | { |
d2e4a39e | 8363 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8364 | |
d2e4a39e | 8365 | if (raw_real_type == type) |
4c4b4cd2 | 8366 | return type; |
14f9c5c9 | 8367 | else |
4c4b4cd2 | 8368 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8369 | } |
8370 | } | |
8371 | ||
8372 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8373 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8374 | type Foo; |
8375 | type FooP is access Foo; | |
8376 | V: FooP; | |
8377 | type Foo is array ...; | |
4c4b4cd2 | 8378 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8379 | cross-references to such types, we instead substitute for FooP a |
8380 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8381 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8382 | |
8383 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8384 | exists, otherwise TYPE. */ |
8385 | ||
d2e4a39e | 8386 | struct type * |
61ee279c | 8387 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8388 | { |
727e3d2e JB |
8389 | if (type == NULL) |
8390 | return NULL; | |
8391 | ||
720d1a40 JB |
8392 | /* If our type is a typedef type of a fat pointer, then we're done. |
8393 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8394 | what allows us to distinguish between fat pointers that represent | |
8395 | array types, and fat pointers that represent array access types | |
8396 | (in both cases, the compiler implements them as fat pointers). */ | |
8397 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8398 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8399 | return type; | |
8400 | ||
14f9c5c9 AS |
8401 | CHECK_TYPEDEF (type); |
8402 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8403 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8404 | || TYPE_TAG_NAME (type) == NULL) |
8405 | return type; | |
d2e4a39e | 8406 | else |
14f9c5c9 | 8407 | { |
0d5cff50 | 8408 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8409 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8410 | |
05e522ef JB |
8411 | if (type1 == NULL) |
8412 | return type; | |
8413 | ||
8414 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8415 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8416 | types, only for the typedef-to-array types). If that's the case, |
8417 | strip the typedef layer. */ | |
8418 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8419 | type1 = ada_check_typedef (type1); | |
8420 | ||
8421 | return type1; | |
14f9c5c9 AS |
8422 | } |
8423 | } | |
8424 | ||
8425 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8426 | type TYPE0, but with a standard (static-sized) type that correctly | |
8427 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8428 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8429 | creation of struct values]. */ |
14f9c5c9 | 8430 | |
4c4b4cd2 PH |
8431 | static struct value * |
8432 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8433 | struct value *val0) | |
14f9c5c9 | 8434 | { |
1ed6ede0 | 8435 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8436 | |
14f9c5c9 AS |
8437 | if (type == type0 && val0 != NULL) |
8438 | return val0; | |
d2e4a39e | 8439 | else |
4c4b4cd2 PH |
8440 | return value_from_contents_and_address (type, 0, address); |
8441 | } | |
8442 | ||
8443 | /* A value representing VAL, but with a standard (static-sized) type | |
8444 | that correctly describes it. Does not necessarily create a new | |
8445 | value. */ | |
8446 | ||
0c3acc09 | 8447 | struct value * |
4c4b4cd2 PH |
8448 | ada_to_fixed_value (struct value *val) |
8449 | { | |
c48db5ca JB |
8450 | val = unwrap_value (val); |
8451 | val = ada_to_fixed_value_create (value_type (val), | |
8452 | value_address (val), | |
8453 | val); | |
8454 | return val; | |
14f9c5c9 | 8455 | } |
d2e4a39e | 8456 | \f |
14f9c5c9 | 8457 | |
14f9c5c9 AS |
8458 | /* Attributes */ |
8459 | ||
4c4b4cd2 PH |
8460 | /* Table mapping attribute numbers to names. |
8461 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8462 | |
d2e4a39e | 8463 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8464 | "<?>", |
8465 | ||
d2e4a39e | 8466 | "first", |
14f9c5c9 AS |
8467 | "last", |
8468 | "length", | |
8469 | "image", | |
14f9c5c9 AS |
8470 | "max", |
8471 | "min", | |
4c4b4cd2 PH |
8472 | "modulus", |
8473 | "pos", | |
8474 | "size", | |
8475 | "tag", | |
14f9c5c9 | 8476 | "val", |
14f9c5c9 AS |
8477 | 0 |
8478 | }; | |
8479 | ||
d2e4a39e | 8480 | const char * |
4c4b4cd2 | 8481 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8482 | { |
4c4b4cd2 PH |
8483 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8484 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8485 | else |
8486 | return attribute_names[0]; | |
8487 | } | |
8488 | ||
4c4b4cd2 | 8489 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8490 | |
4c4b4cd2 PH |
8491 | static LONGEST |
8492 | pos_atr (struct value *arg) | |
14f9c5c9 | 8493 | { |
24209737 PH |
8494 | struct value *val = coerce_ref (arg); |
8495 | struct type *type = value_type (val); | |
14f9c5c9 | 8496 | |
d2e4a39e | 8497 | if (!discrete_type_p (type)) |
323e0a4a | 8498 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8499 | |
8500 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8501 | { | |
8502 | int i; | |
24209737 | 8503 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8504 | |
d2e4a39e | 8505 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8506 | { |
14e75d8e | 8507 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8508 | return i; |
8509 | } | |
323e0a4a | 8510 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8511 | } |
8512 | else | |
24209737 | 8513 | return value_as_long (val); |
4c4b4cd2 PH |
8514 | } |
8515 | ||
8516 | static struct value * | |
3cb382c9 | 8517 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8518 | { |
3cb382c9 | 8519 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8520 | } |
8521 | ||
4c4b4cd2 | 8522 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8523 | |
d2e4a39e AS |
8524 | static struct value * |
8525 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8526 | { |
d2e4a39e | 8527 | if (!discrete_type_p (type)) |
323e0a4a | 8528 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8529 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8530 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8531 | |
8532 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8533 | { | |
8534 | long pos = value_as_long (arg); | |
5b4ee69b | 8535 | |
14f9c5c9 | 8536 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8537 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8538 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8539 | } |
8540 | else | |
8541 | return value_from_longest (type, value_as_long (arg)); | |
8542 | } | |
14f9c5c9 | 8543 | \f |
d2e4a39e | 8544 | |
4c4b4cd2 | 8545 | /* Evaluation */ |
14f9c5c9 | 8546 | |
4c4b4cd2 PH |
8547 | /* True if TYPE appears to be an Ada character type. |
8548 | [At the moment, this is true only for Character and Wide_Character; | |
8549 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8550 | |
d2e4a39e AS |
8551 | int |
8552 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8553 | { |
7b9f71f2 JB |
8554 | const char *name; |
8555 | ||
8556 | /* If the type code says it's a character, then assume it really is, | |
8557 | and don't check any further. */ | |
8558 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8559 | return 1; | |
8560 | ||
8561 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8562 | with a known character type name. */ | |
8563 | name = ada_type_name (type); | |
8564 | return (name != NULL | |
8565 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8566 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8567 | && (strcmp (name, "character") == 0 | |
8568 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8569 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8570 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8571 | } |
8572 | ||
4c4b4cd2 | 8573 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8574 | |
8575 | int | |
ebf56fd3 | 8576 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8577 | { |
61ee279c | 8578 | type = ada_check_typedef (type); |
d2e4a39e | 8579 | if (type != NULL |
14f9c5c9 | 8580 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8581 | && (ada_is_simple_array_type (type) |
8582 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8583 | && ada_array_arity (type) == 1) |
8584 | { | |
8585 | struct type *elttype = ada_array_element_type (type, 1); | |
8586 | ||
8587 | return ada_is_character_type (elttype); | |
8588 | } | |
d2e4a39e | 8589 | else |
14f9c5c9 AS |
8590 | return 0; |
8591 | } | |
8592 | ||
5bf03f13 JB |
8593 | /* The compiler sometimes provides a parallel XVS type for a given |
8594 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8595 | but older versions of the compiler have a bug that causes the offset | |
8596 | of its "F" field to be wrong. Following that field in that case | |
8597 | would lead to incorrect results, but this can be worked around | |
8598 | by ignoring the PAD type and using the associated XVS type instead. | |
8599 | ||
8600 | Set to True if the debugger should trust the contents of PAD types. | |
8601 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8602 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8603 | |
8604 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8605 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8606 | distinctive name. */ |
14f9c5c9 AS |
8607 | |
8608 | int | |
ebf56fd3 | 8609 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8610 | { |
61ee279c | 8611 | type = ada_check_typedef (type); |
714e53ab | 8612 | |
5bf03f13 | 8613 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8614 | return 0; |
8615 | ||
14f9c5c9 | 8616 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8617 | && TYPE_NFIELDS (type) == 1 |
8618 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8619 | } |
8620 | ||
8621 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8622 | the parallel type. */ |
14f9c5c9 | 8623 | |
d2e4a39e AS |
8624 | struct type * |
8625 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8626 | { |
d2e4a39e AS |
8627 | struct type *real_type_namer; |
8628 | struct type *raw_real_type; | |
14f9c5c9 AS |
8629 | |
8630 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8631 | return raw_type; | |
8632 | ||
284614f0 JB |
8633 | if (ada_is_aligner_type (raw_type)) |
8634 | /* The encoding specifies that we should always use the aligner type. | |
8635 | So, even if this aligner type has an associated XVS type, we should | |
8636 | simply ignore it. | |
8637 | ||
8638 | According to the compiler gurus, an XVS type parallel to an aligner | |
8639 | type may exist because of a stabs limitation. In stabs, aligner | |
8640 | types are empty because the field has a variable-sized type, and | |
8641 | thus cannot actually be used as an aligner type. As a result, | |
8642 | we need the associated parallel XVS type to decode the type. | |
8643 | Since the policy in the compiler is to not change the internal | |
8644 | representation based on the debugging info format, we sometimes | |
8645 | end up having a redundant XVS type parallel to the aligner type. */ | |
8646 | return raw_type; | |
8647 | ||
14f9c5c9 | 8648 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8649 | if (real_type_namer == NULL |
14f9c5c9 AS |
8650 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8651 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8652 | return raw_type; | |
8653 | ||
f80d3ff2 JB |
8654 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8655 | { | |
8656 | /* This is an older encoding form where the base type needs to be | |
8657 | looked up by name. We prefer the newer enconding because it is | |
8658 | more efficient. */ | |
8659 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8660 | if (raw_real_type == NULL) | |
8661 | return raw_type; | |
8662 | else | |
8663 | return raw_real_type; | |
8664 | } | |
8665 | ||
8666 | /* The field in our XVS type is a reference to the base type. */ | |
8667 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8668 | } |
14f9c5c9 | 8669 | |
4c4b4cd2 | 8670 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8671 | |
d2e4a39e AS |
8672 | struct type * |
8673 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8674 | { |
8675 | if (ada_is_aligner_type (type)) | |
8676 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8677 | else | |
8678 | return ada_get_base_type (type); | |
8679 | } | |
8680 | ||
8681 | ||
8682 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8683 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8684 | |
fc1a4b47 AC |
8685 | const gdb_byte * |
8686 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8687 | { |
d2e4a39e | 8688 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8689 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8690 | valaddr + |
8691 | TYPE_FIELD_BITPOS (type, | |
8692 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8693 | else |
8694 | return valaddr; | |
8695 | } | |
8696 | ||
4c4b4cd2 PH |
8697 | |
8698 | ||
14f9c5c9 | 8699 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8700 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8701 | const char * |
8702 | ada_enum_name (const char *name) | |
14f9c5c9 | 8703 | { |
4c4b4cd2 PH |
8704 | static char *result; |
8705 | static size_t result_len = 0; | |
d2e4a39e | 8706 | char *tmp; |
14f9c5c9 | 8707 | |
4c4b4cd2 PH |
8708 | /* First, unqualify the enumeration name: |
8709 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8710 | all the preceding characters, the unqualified name starts |
76a01679 | 8711 | right after that dot. |
4c4b4cd2 | 8712 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8713 | translates dots into "__". Search forward for double underscores, |
8714 | but stop searching when we hit an overloading suffix, which is | |
8715 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8716 | |
c3e5cd34 PH |
8717 | tmp = strrchr (name, '.'); |
8718 | if (tmp != NULL) | |
4c4b4cd2 PH |
8719 | name = tmp + 1; |
8720 | else | |
14f9c5c9 | 8721 | { |
4c4b4cd2 PH |
8722 | while ((tmp = strstr (name, "__")) != NULL) |
8723 | { | |
8724 | if (isdigit (tmp[2])) | |
8725 | break; | |
8726 | else | |
8727 | name = tmp + 2; | |
8728 | } | |
14f9c5c9 AS |
8729 | } |
8730 | ||
8731 | if (name[0] == 'Q') | |
8732 | { | |
14f9c5c9 | 8733 | int v; |
5b4ee69b | 8734 | |
14f9c5c9 | 8735 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8736 | { |
8737 | if (sscanf (name + 2, "%x", &v) != 1) | |
8738 | return name; | |
8739 | } | |
14f9c5c9 | 8740 | else |
4c4b4cd2 | 8741 | return name; |
14f9c5c9 | 8742 | |
4c4b4cd2 | 8743 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8744 | if (isascii (v) && isprint (v)) |
88c15c34 | 8745 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8746 | else if (name[1] == 'U') |
88c15c34 | 8747 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8748 | else |
88c15c34 | 8749 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8750 | |
8751 | return result; | |
8752 | } | |
d2e4a39e | 8753 | else |
4c4b4cd2 | 8754 | { |
c3e5cd34 PH |
8755 | tmp = strstr (name, "__"); |
8756 | if (tmp == NULL) | |
8757 | tmp = strstr (name, "$"); | |
8758 | if (tmp != NULL) | |
4c4b4cd2 PH |
8759 | { |
8760 | GROW_VECT (result, result_len, tmp - name + 1); | |
8761 | strncpy (result, name, tmp - name); | |
8762 | result[tmp - name] = '\0'; | |
8763 | return result; | |
8764 | } | |
8765 | ||
8766 | return name; | |
8767 | } | |
14f9c5c9 AS |
8768 | } |
8769 | ||
14f9c5c9 AS |
8770 | /* Evaluate the subexpression of EXP starting at *POS as for |
8771 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8772 | expression. */ |
14f9c5c9 | 8773 | |
d2e4a39e AS |
8774 | static struct value * |
8775 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8776 | { |
4b27a620 | 8777 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8778 | } |
8779 | ||
8780 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8781 | value it wraps. */ |
14f9c5c9 | 8782 | |
d2e4a39e AS |
8783 | static struct value * |
8784 | unwrap_value (struct value *val) | |
14f9c5c9 | 8785 | { |
df407dfe | 8786 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8787 | |
14f9c5c9 AS |
8788 | if (ada_is_aligner_type (type)) |
8789 | { | |
de4d072f | 8790 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8791 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8792 | |
14f9c5c9 | 8793 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8794 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8795 | |
8796 | return unwrap_value (v); | |
8797 | } | |
d2e4a39e | 8798 | else |
14f9c5c9 | 8799 | { |
d2e4a39e | 8800 | struct type *raw_real_type = |
61ee279c | 8801 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8802 | |
5bf03f13 JB |
8803 | /* If there is no parallel XVS or XVE type, then the value is |
8804 | already unwrapped. Return it without further modification. */ | |
8805 | if ((type == raw_real_type) | |
8806 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8807 | return val; | |
14f9c5c9 | 8808 | |
d2e4a39e | 8809 | return |
4c4b4cd2 PH |
8810 | coerce_unspec_val_to_type |
8811 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8812 | value_address (val), |
1ed6ede0 | 8813 | NULL, 1)); |
14f9c5c9 AS |
8814 | } |
8815 | } | |
d2e4a39e AS |
8816 | |
8817 | static struct value * | |
8818 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8819 | { |
8820 | LONGEST val; | |
8821 | ||
df407dfe | 8822 | if (type == value_type (arg)) |
14f9c5c9 | 8823 | return arg; |
df407dfe | 8824 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8825 | val = ada_float_to_fixed (type, |
df407dfe | 8826 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8827 | value_as_long (arg))); |
d2e4a39e | 8828 | else |
14f9c5c9 | 8829 | { |
a53b7a21 | 8830 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8831 | |
14f9c5c9 AS |
8832 | val = ada_float_to_fixed (type, argd); |
8833 | } | |
8834 | ||
8835 | return value_from_longest (type, val); | |
8836 | } | |
8837 | ||
d2e4a39e | 8838 | static struct value * |
a53b7a21 | 8839 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8840 | { |
df407dfe | 8841 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8842 | value_as_long (arg)); |
5b4ee69b | 8843 | |
a53b7a21 | 8844 | return value_from_double (type, val); |
14f9c5c9 AS |
8845 | } |
8846 | ||
d99dcf51 JB |
8847 | /* Given two array types T1 and T2, return nonzero iff both arrays |
8848 | contain the same number of elements. */ | |
8849 | ||
8850 | static int | |
8851 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
8852 | { | |
8853 | LONGEST lo1, hi1, lo2, hi2; | |
8854 | ||
8855 | /* Get the array bounds in order to verify that the size of | |
8856 | the two arrays match. */ | |
8857 | if (!get_array_bounds (t1, &lo1, &hi1) | |
8858 | || !get_array_bounds (t2, &lo2, &hi2)) | |
8859 | error (_("unable to determine array bounds")); | |
8860 | ||
8861 | /* To make things easier for size comparison, normalize a bit | |
8862 | the case of empty arrays by making sure that the difference | |
8863 | between upper bound and lower bound is always -1. */ | |
8864 | if (lo1 > hi1) | |
8865 | hi1 = lo1 - 1; | |
8866 | if (lo2 > hi2) | |
8867 | hi2 = lo2 - 1; | |
8868 | ||
8869 | return (hi1 - lo1 == hi2 - lo2); | |
8870 | } | |
8871 | ||
8872 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
8873 | an array with the same number of elements, but with wider integral | |
8874 | elements, return an array "casted" to TYPE. In practice, this | |
8875 | means that the returned array is built by casting each element | |
8876 | of the original array into TYPE's (wider) element type. */ | |
8877 | ||
8878 | static struct value * | |
8879 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
8880 | { | |
8881 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
8882 | LONGEST lo, hi; | |
8883 | struct value *res; | |
8884 | LONGEST i; | |
8885 | ||
8886 | /* Verify that both val and type are arrays of scalars, and | |
8887 | that the size of val's elements is smaller than the size | |
8888 | of type's element. */ | |
8889 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
8890 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
8891 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
8892 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
8893 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
8894 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
8895 | ||
8896 | if (!get_array_bounds (type, &lo, &hi)) | |
8897 | error (_("unable to determine array bounds")); | |
8898 | ||
8899 | res = allocate_value (type); | |
8900 | ||
8901 | /* Promote each array element. */ | |
8902 | for (i = 0; i < hi - lo + 1; i++) | |
8903 | { | |
8904 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
8905 | ||
8906 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
8907 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
8908 | } | |
8909 | ||
8910 | return res; | |
8911 | } | |
8912 | ||
4c4b4cd2 PH |
8913 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8914 | return the converted value. */ | |
8915 | ||
d2e4a39e AS |
8916 | static struct value * |
8917 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8918 | { |
df407dfe | 8919 | struct type *type2 = value_type (val); |
5b4ee69b | 8920 | |
14f9c5c9 AS |
8921 | if (type == type2) |
8922 | return val; | |
8923 | ||
61ee279c PH |
8924 | type2 = ada_check_typedef (type2); |
8925 | type = ada_check_typedef (type); | |
14f9c5c9 | 8926 | |
d2e4a39e AS |
8927 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8928 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8929 | { |
8930 | val = ada_value_ind (val); | |
df407dfe | 8931 | type2 = value_type (val); |
14f9c5c9 AS |
8932 | } |
8933 | ||
d2e4a39e | 8934 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8935 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8936 | { | |
d99dcf51 JB |
8937 | if (!ada_same_array_size_p (type, type2)) |
8938 | error (_("cannot assign arrays of different length")); | |
8939 | ||
8940 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
8941 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
8942 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8943 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
8944 | { | |
8945 | /* Allow implicit promotion of the array elements to | |
8946 | a wider type. */ | |
8947 | return ada_promote_array_of_integrals (type, val); | |
8948 | } | |
8949 | ||
8950 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8951 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 8952 | error (_("Incompatible types in assignment")); |
04624583 | 8953 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8954 | } |
d2e4a39e | 8955 | return val; |
14f9c5c9 AS |
8956 | } |
8957 | ||
4c4b4cd2 PH |
8958 | static struct value * |
8959 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8960 | { | |
8961 | struct value *val; | |
8962 | struct type *type1, *type2; | |
8963 | LONGEST v, v1, v2; | |
8964 | ||
994b9211 AC |
8965 | arg1 = coerce_ref (arg1); |
8966 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8967 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8968 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8969 | |
76a01679 JB |
8970 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8971 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8972 | return value_binop (arg1, arg2, op); |
8973 | ||
76a01679 | 8974 | switch (op) |
4c4b4cd2 PH |
8975 | { |
8976 | case BINOP_MOD: | |
8977 | case BINOP_DIV: | |
8978 | case BINOP_REM: | |
8979 | break; | |
8980 | default: | |
8981 | return value_binop (arg1, arg2, op); | |
8982 | } | |
8983 | ||
8984 | v2 = value_as_long (arg2); | |
8985 | if (v2 == 0) | |
323e0a4a | 8986 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8987 | |
8988 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8989 | return value_binop (arg1, arg2, op); | |
8990 | ||
8991 | v1 = value_as_long (arg1); | |
8992 | switch (op) | |
8993 | { | |
8994 | case BINOP_DIV: | |
8995 | v = v1 / v2; | |
76a01679 JB |
8996 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8997 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8998 | break; |
8999 | case BINOP_REM: | |
9000 | v = v1 % v2; | |
76a01679 JB |
9001 | if (v * v1 < 0) |
9002 | v -= v2; | |
4c4b4cd2 PH |
9003 | break; |
9004 | default: | |
9005 | /* Should not reach this point. */ | |
9006 | v = 0; | |
9007 | } | |
9008 | ||
9009 | val = allocate_value (type1); | |
990a07ab | 9010 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9011 | TYPE_LENGTH (value_type (val)), |
9012 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9013 | return val; |
9014 | } | |
9015 | ||
9016 | static int | |
9017 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9018 | { | |
df407dfe AC |
9019 | if (ada_is_direct_array_type (value_type (arg1)) |
9020 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9021 | { |
f58b38bf JB |
9022 | /* Automatically dereference any array reference before |
9023 | we attempt to perform the comparison. */ | |
9024 | arg1 = ada_coerce_ref (arg1); | |
9025 | arg2 = ada_coerce_ref (arg2); | |
9026 | ||
4c4b4cd2 PH |
9027 | arg1 = ada_coerce_to_simple_array (arg1); |
9028 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9029 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9030 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9031 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9032 | /* FIXME: The following works only for types whose |
76a01679 JB |
9033 | representations use all bits (no padding or undefined bits) |
9034 | and do not have user-defined equality. */ | |
9035 | return | |
df407dfe | 9036 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9037 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9038 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9039 | } |
9040 | return value_equal (arg1, arg2); | |
9041 | } | |
9042 | ||
52ce6436 PH |
9043 | /* Total number of component associations in the aggregate starting at |
9044 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9045 | OP_AGGREGATE. */ |
52ce6436 PH |
9046 | |
9047 | static int | |
9048 | num_component_specs (struct expression *exp, int pc) | |
9049 | { | |
9050 | int n, m, i; | |
5b4ee69b | 9051 | |
52ce6436 PH |
9052 | m = exp->elts[pc + 1].longconst; |
9053 | pc += 3; | |
9054 | n = 0; | |
9055 | for (i = 0; i < m; i += 1) | |
9056 | { | |
9057 | switch (exp->elts[pc].opcode) | |
9058 | { | |
9059 | default: | |
9060 | n += 1; | |
9061 | break; | |
9062 | case OP_CHOICES: | |
9063 | n += exp->elts[pc + 1].longconst; | |
9064 | break; | |
9065 | } | |
9066 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9067 | } | |
9068 | return n; | |
9069 | } | |
9070 | ||
9071 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9072 | component of LHS (a simple array or a record), updating *POS past | |
9073 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9074 | not modify the inferior's memory, nor does it modify LHS (unless | |
9075 | LHS == CONTAINER). */ | |
9076 | ||
9077 | static void | |
9078 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9079 | struct expression *exp, int *pos) | |
9080 | { | |
9081 | struct value *mark = value_mark (); | |
9082 | struct value *elt; | |
5b4ee69b | 9083 | |
52ce6436 PH |
9084 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9085 | { | |
22601c15 UW |
9086 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9087 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9088 | |
52ce6436 PH |
9089 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9090 | } | |
9091 | else | |
9092 | { | |
9093 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9094 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9095 | } |
9096 | ||
9097 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9098 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9099 | else | |
9100 | value_assign_to_component (container, elt, | |
9101 | ada_evaluate_subexp (NULL, exp, pos, | |
9102 | EVAL_NORMAL)); | |
9103 | ||
9104 | value_free_to_mark (mark); | |
9105 | } | |
9106 | ||
9107 | /* Assuming that LHS represents an lvalue having a record or array | |
9108 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9109 | of that aggregate's value to LHS, advancing *POS past the | |
9110 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9111 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9112 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9113 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9114 | |
9115 | static struct value * | |
9116 | assign_aggregate (struct value *container, | |
9117 | struct value *lhs, struct expression *exp, | |
9118 | int *pos, enum noside noside) | |
9119 | { | |
9120 | struct type *lhs_type; | |
9121 | int n = exp->elts[*pos+1].longconst; | |
9122 | LONGEST low_index, high_index; | |
9123 | int num_specs; | |
9124 | LONGEST *indices; | |
9125 | int max_indices, num_indices; | |
52ce6436 | 9126 | int i; |
52ce6436 PH |
9127 | |
9128 | *pos += 3; | |
9129 | if (noside != EVAL_NORMAL) | |
9130 | { | |
52ce6436 PH |
9131 | for (i = 0; i < n; i += 1) |
9132 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9133 | return container; | |
9134 | } | |
9135 | ||
9136 | container = ada_coerce_ref (container); | |
9137 | if (ada_is_direct_array_type (value_type (container))) | |
9138 | container = ada_coerce_to_simple_array (container); | |
9139 | lhs = ada_coerce_ref (lhs); | |
9140 | if (!deprecated_value_modifiable (lhs)) | |
9141 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9142 | ||
9143 | lhs_type = value_type (lhs); | |
9144 | if (ada_is_direct_array_type (lhs_type)) | |
9145 | { | |
9146 | lhs = ada_coerce_to_simple_array (lhs); | |
9147 | lhs_type = value_type (lhs); | |
9148 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9149 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9150 | } |
9151 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9152 | { | |
9153 | low_index = 0; | |
9154 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9155 | } |
9156 | else | |
9157 | error (_("Left-hand side must be array or record.")); | |
9158 | ||
9159 | num_specs = num_component_specs (exp, *pos - 3); | |
9160 | max_indices = 4 * num_specs + 4; | |
9161 | indices = alloca (max_indices * sizeof (indices[0])); | |
9162 | indices[0] = indices[1] = low_index - 1; | |
9163 | indices[2] = indices[3] = high_index + 1; | |
9164 | num_indices = 4; | |
9165 | ||
9166 | for (i = 0; i < n; i += 1) | |
9167 | { | |
9168 | switch (exp->elts[*pos].opcode) | |
9169 | { | |
1fbf5ada JB |
9170 | case OP_CHOICES: |
9171 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9172 | &num_indices, max_indices, | |
9173 | low_index, high_index); | |
9174 | break; | |
9175 | case OP_POSITIONAL: | |
9176 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9177 | &num_indices, max_indices, |
9178 | low_index, high_index); | |
1fbf5ada JB |
9179 | break; |
9180 | case OP_OTHERS: | |
9181 | if (i != n-1) | |
9182 | error (_("Misplaced 'others' clause")); | |
9183 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9184 | num_indices, low_index, high_index); | |
9185 | break; | |
9186 | default: | |
9187 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9188 | } |
9189 | } | |
9190 | ||
9191 | return container; | |
9192 | } | |
9193 | ||
9194 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9195 | construct at *POS, updating *POS past the construct, given that | |
9196 | the positions are relative to lower bound LOW, where HIGH is the | |
9197 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9198 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9199 | assign_aggregate. */ |
52ce6436 PH |
9200 | static void |
9201 | aggregate_assign_positional (struct value *container, | |
9202 | struct value *lhs, struct expression *exp, | |
9203 | int *pos, LONGEST *indices, int *num_indices, | |
9204 | int max_indices, LONGEST low, LONGEST high) | |
9205 | { | |
9206 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9207 | ||
9208 | if (ind - 1 == high) | |
e1d5a0d2 | 9209 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9210 | if (ind <= high) |
9211 | { | |
9212 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9213 | *pos += 3; | |
9214 | assign_component (container, lhs, ind, exp, pos); | |
9215 | } | |
9216 | else | |
9217 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9218 | } | |
9219 | ||
9220 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9221 | construct at *POS, updating *POS past the construct, given that | |
9222 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9223 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9224 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9225 | static void |
9226 | aggregate_assign_from_choices (struct value *container, | |
9227 | struct value *lhs, struct expression *exp, | |
9228 | int *pos, LONGEST *indices, int *num_indices, | |
9229 | int max_indices, LONGEST low, LONGEST high) | |
9230 | { | |
9231 | int j; | |
9232 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9233 | int choice_pos, expr_pc; | |
9234 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9235 | ||
9236 | choice_pos = *pos += 3; | |
9237 | ||
9238 | for (j = 0; j < n_choices; j += 1) | |
9239 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9240 | expr_pc = *pos; | |
9241 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9242 | ||
9243 | for (j = 0; j < n_choices; j += 1) | |
9244 | { | |
9245 | LONGEST lower, upper; | |
9246 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9247 | |
52ce6436 PH |
9248 | if (op == OP_DISCRETE_RANGE) |
9249 | { | |
9250 | choice_pos += 1; | |
9251 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9252 | EVAL_NORMAL)); | |
9253 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9254 | EVAL_NORMAL)); | |
9255 | } | |
9256 | else if (is_array) | |
9257 | { | |
9258 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9259 | EVAL_NORMAL)); | |
9260 | upper = lower; | |
9261 | } | |
9262 | else | |
9263 | { | |
9264 | int ind; | |
0d5cff50 | 9265 | const char *name; |
5b4ee69b | 9266 | |
52ce6436 PH |
9267 | switch (op) |
9268 | { | |
9269 | case OP_NAME: | |
9270 | name = &exp->elts[choice_pos + 2].string; | |
9271 | break; | |
9272 | case OP_VAR_VALUE: | |
9273 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9274 | break; | |
9275 | default: | |
9276 | error (_("Invalid record component association.")); | |
9277 | } | |
9278 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9279 | ind = 0; | |
9280 | if (! find_struct_field (name, value_type (lhs), 0, | |
9281 | NULL, NULL, NULL, NULL, &ind)) | |
9282 | error (_("Unknown component name: %s."), name); | |
9283 | lower = upper = ind; | |
9284 | } | |
9285 | ||
9286 | if (lower <= upper && (lower < low || upper > high)) | |
9287 | error (_("Index in component association out of bounds.")); | |
9288 | ||
9289 | add_component_interval (lower, upper, indices, num_indices, | |
9290 | max_indices); | |
9291 | while (lower <= upper) | |
9292 | { | |
9293 | int pos1; | |
5b4ee69b | 9294 | |
52ce6436 PH |
9295 | pos1 = expr_pc; |
9296 | assign_component (container, lhs, lower, exp, &pos1); | |
9297 | lower += 1; | |
9298 | } | |
9299 | } | |
9300 | } | |
9301 | ||
9302 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9303 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9304 | have not been previously assigned. The index intervals already assigned | |
9305 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9306 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9307 | static void |
9308 | aggregate_assign_others (struct value *container, | |
9309 | struct value *lhs, struct expression *exp, | |
9310 | int *pos, LONGEST *indices, int num_indices, | |
9311 | LONGEST low, LONGEST high) | |
9312 | { | |
9313 | int i; | |
5ce64950 | 9314 | int expr_pc = *pos + 1; |
52ce6436 PH |
9315 | |
9316 | for (i = 0; i < num_indices - 2; i += 2) | |
9317 | { | |
9318 | LONGEST ind; | |
5b4ee69b | 9319 | |
52ce6436 PH |
9320 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9321 | { | |
5ce64950 | 9322 | int localpos; |
5b4ee69b | 9323 | |
5ce64950 MS |
9324 | localpos = expr_pc; |
9325 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9326 | } |
9327 | } | |
9328 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9329 | } | |
9330 | ||
9331 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9332 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9333 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9334 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9335 | static void | |
9336 | add_component_interval (LONGEST low, LONGEST high, | |
9337 | LONGEST* indices, int *size, int max_size) | |
9338 | { | |
9339 | int i, j; | |
5b4ee69b | 9340 | |
52ce6436 PH |
9341 | for (i = 0; i < *size; i += 2) { |
9342 | if (high >= indices[i] && low <= indices[i + 1]) | |
9343 | { | |
9344 | int kh; | |
5b4ee69b | 9345 | |
52ce6436 PH |
9346 | for (kh = i + 2; kh < *size; kh += 2) |
9347 | if (high < indices[kh]) | |
9348 | break; | |
9349 | if (low < indices[i]) | |
9350 | indices[i] = low; | |
9351 | indices[i + 1] = indices[kh - 1]; | |
9352 | if (high > indices[i + 1]) | |
9353 | indices[i + 1] = high; | |
9354 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9355 | *size -= kh - i - 2; | |
9356 | return; | |
9357 | } | |
9358 | else if (high < indices[i]) | |
9359 | break; | |
9360 | } | |
9361 | ||
9362 | if (*size == max_size) | |
9363 | error (_("Internal error: miscounted aggregate components.")); | |
9364 | *size += 2; | |
9365 | for (j = *size-1; j >= i+2; j -= 1) | |
9366 | indices[j] = indices[j - 2]; | |
9367 | indices[i] = low; | |
9368 | indices[i + 1] = high; | |
9369 | } | |
9370 | ||
6e48bd2c JB |
9371 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9372 | is different. */ | |
9373 | ||
9374 | static struct value * | |
9375 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9376 | { | |
9377 | if (type == ada_check_typedef (value_type (arg2))) | |
9378 | return arg2; | |
9379 | ||
9380 | if (ada_is_fixed_point_type (type)) | |
9381 | return (cast_to_fixed (type, arg2)); | |
9382 | ||
9383 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9384 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9385 | |
9386 | return value_cast (type, arg2); | |
9387 | } | |
9388 | ||
284614f0 JB |
9389 | /* Evaluating Ada expressions, and printing their result. |
9390 | ------------------------------------------------------ | |
9391 | ||
21649b50 JB |
9392 | 1. Introduction: |
9393 | ---------------- | |
9394 | ||
284614f0 JB |
9395 | We usually evaluate an Ada expression in order to print its value. |
9396 | We also evaluate an expression in order to print its type, which | |
9397 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9398 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9399 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9400 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9401 | similar. | |
9402 | ||
9403 | Evaluating expressions is a little more complicated for Ada entities | |
9404 | than it is for entities in languages such as C. The main reason for | |
9405 | this is that Ada provides types whose definition might be dynamic. | |
9406 | One example of such types is variant records. Or another example | |
9407 | would be an array whose bounds can only be known at run time. | |
9408 | ||
9409 | The following description is a general guide as to what should be | |
9410 | done (and what should NOT be done) in order to evaluate an expression | |
9411 | involving such types, and when. This does not cover how the semantic | |
9412 | information is encoded by GNAT as this is covered separatly. For the | |
9413 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9414 | in the GNAT sources. | |
9415 | ||
9416 | Ideally, we should embed each part of this description next to its | |
9417 | associated code. Unfortunately, the amount of code is so vast right | |
9418 | now that it's hard to see whether the code handling a particular | |
9419 | situation might be duplicated or not. One day, when the code is | |
9420 | cleaned up, this guide might become redundant with the comments | |
9421 | inserted in the code, and we might want to remove it. | |
9422 | ||
21649b50 JB |
9423 | 2. ``Fixing'' an Entity, the Simple Case: |
9424 | ----------------------------------------- | |
9425 | ||
284614f0 JB |
9426 | When evaluating Ada expressions, the tricky issue is that they may |
9427 | reference entities whose type contents and size are not statically | |
9428 | known. Consider for instance a variant record: | |
9429 | ||
9430 | type Rec (Empty : Boolean := True) is record | |
9431 | case Empty is | |
9432 | when True => null; | |
9433 | when False => Value : Integer; | |
9434 | end case; | |
9435 | end record; | |
9436 | Yes : Rec := (Empty => False, Value => 1); | |
9437 | No : Rec := (empty => True); | |
9438 | ||
9439 | The size and contents of that record depends on the value of the | |
9440 | descriminant (Rec.Empty). At this point, neither the debugging | |
9441 | information nor the associated type structure in GDB are able to | |
9442 | express such dynamic types. So what the debugger does is to create | |
9443 | "fixed" versions of the type that applies to the specific object. | |
9444 | We also informally refer to this opperation as "fixing" an object, | |
9445 | which means creating its associated fixed type. | |
9446 | ||
9447 | Example: when printing the value of variable "Yes" above, its fixed | |
9448 | type would look like this: | |
9449 | ||
9450 | type Rec is record | |
9451 | Empty : Boolean; | |
9452 | Value : Integer; | |
9453 | end record; | |
9454 | ||
9455 | On the other hand, if we printed the value of "No", its fixed type | |
9456 | would become: | |
9457 | ||
9458 | type Rec is record | |
9459 | Empty : Boolean; | |
9460 | end record; | |
9461 | ||
9462 | Things become a little more complicated when trying to fix an entity | |
9463 | with a dynamic type that directly contains another dynamic type, | |
9464 | such as an array of variant records, for instance. There are | |
9465 | two possible cases: Arrays, and records. | |
9466 | ||
21649b50 JB |
9467 | 3. ``Fixing'' Arrays: |
9468 | --------------------- | |
9469 | ||
9470 | The type structure in GDB describes an array in terms of its bounds, | |
9471 | and the type of its elements. By design, all elements in the array | |
9472 | have the same type and we cannot represent an array of variant elements | |
9473 | using the current type structure in GDB. When fixing an array, | |
9474 | we cannot fix the array element, as we would potentially need one | |
9475 | fixed type per element of the array. As a result, the best we can do | |
9476 | when fixing an array is to produce an array whose bounds and size | |
9477 | are correct (allowing us to read it from memory), but without having | |
9478 | touched its element type. Fixing each element will be done later, | |
9479 | when (if) necessary. | |
9480 | ||
9481 | Arrays are a little simpler to handle than records, because the same | |
9482 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9483 | the amount of space actually used by each element differs from element |
21649b50 | 9484 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9485 | |
9486 | type Rec_Array is array (1 .. 2) of Rec; | |
9487 | ||
1b536f04 JB |
9488 | The actual amount of memory occupied by each element might be different |
9489 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9490 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9491 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9492 | the debugging information available, from which we can then determine |
9493 | the array size (we multiply the number of elements of the array by | |
9494 | the size of each element). | |
9495 | ||
9496 | The simplest case is when we have an array of a constrained element | |
9497 | type. For instance, consider the following type declarations: | |
9498 | ||
9499 | type Bounded_String (Max_Size : Integer) is | |
9500 | Length : Integer; | |
9501 | Buffer : String (1 .. Max_Size); | |
9502 | end record; | |
9503 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9504 | ||
9505 | In this case, the compiler describes the array as an array of | |
9506 | variable-size elements (identified by its XVS suffix) for which | |
9507 | the size can be read in the parallel XVZ variable. | |
9508 | ||
9509 | In the case of an array of an unconstrained element type, the compiler | |
9510 | wraps the array element inside a private PAD type. This type should not | |
9511 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9512 | that we also use the adjective "aligner" in our code to designate |
9513 | these wrapper types. | |
9514 | ||
1b536f04 | 9515 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9516 | known. In that case, the PAD type already has the correct size, |
9517 | and the array element should remain unfixed. | |
9518 | ||
9519 | But there are cases when this size is not statically known. | |
9520 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9521 | |
9522 | type Dynamic is array (1 .. Five) of Integer; | |
9523 | type Wrapper (Has_Length : Boolean := False) is record | |
9524 | Data : Dynamic; | |
9525 | case Has_Length is | |
9526 | when True => Length : Integer; | |
9527 | when False => null; | |
9528 | end case; | |
9529 | end record; | |
9530 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9531 | ||
9532 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9533 | Data => (others => 17), | |
9534 | Length => 1)); | |
9535 | ||
9536 | ||
9537 | The debugging info would describe variable Hello as being an | |
9538 | array of a PAD type. The size of that PAD type is not statically | |
9539 | known, but can be determined using a parallel XVZ variable. | |
9540 | In that case, a copy of the PAD type with the correct size should | |
9541 | be used for the fixed array. | |
9542 | ||
21649b50 JB |
9543 | 3. ``Fixing'' record type objects: |
9544 | ---------------------------------- | |
9545 | ||
9546 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9547 | record types. In this case, in order to compute the associated |
9548 | fixed type, we need to determine the size and offset of each of | |
9549 | its components. This, in turn, requires us to compute the fixed | |
9550 | type of each of these components. | |
9551 | ||
9552 | Consider for instance the example: | |
9553 | ||
9554 | type Bounded_String (Max_Size : Natural) is record | |
9555 | Str : String (1 .. Max_Size); | |
9556 | Length : Natural; | |
9557 | end record; | |
9558 | My_String : Bounded_String (Max_Size => 10); | |
9559 | ||
9560 | In that case, the position of field "Length" depends on the size | |
9561 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9562 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9563 | we need to fix the type of field Str. Therefore, fixing a variant |
9564 | record requires us to fix each of its components. | |
9565 | ||
9566 | However, if a component does not have a dynamic size, the component | |
9567 | should not be fixed. In particular, fields that use a PAD type | |
9568 | should not fixed. Here is an example where this might happen | |
9569 | (assuming type Rec above): | |
9570 | ||
9571 | type Container (Big : Boolean) is record | |
9572 | First : Rec; | |
9573 | After : Integer; | |
9574 | case Big is | |
9575 | when True => Another : Integer; | |
9576 | when False => null; | |
9577 | end case; | |
9578 | end record; | |
9579 | My_Container : Container := (Big => False, | |
9580 | First => (Empty => True), | |
9581 | After => 42); | |
9582 | ||
9583 | In that example, the compiler creates a PAD type for component First, | |
9584 | whose size is constant, and then positions the component After just | |
9585 | right after it. The offset of component After is therefore constant | |
9586 | in this case. | |
9587 | ||
9588 | The debugger computes the position of each field based on an algorithm | |
9589 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9590 | preceding it. Let's now imagine that the user is trying to print |
9591 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9592 | end up computing the offset of field After based on the size of the |
9593 | fixed version of field First. And since in our example First has | |
9594 | only one actual field, the size of the fixed type is actually smaller | |
9595 | than the amount of space allocated to that field, and thus we would | |
9596 | compute the wrong offset of field After. | |
9597 | ||
21649b50 JB |
9598 | To make things more complicated, we need to watch out for dynamic |
9599 | components of variant records (identified by the ___XVL suffix in | |
9600 | the component name). Even if the target type is a PAD type, the size | |
9601 | of that type might not be statically known. So the PAD type needs | |
9602 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9603 | we might end up with the wrong size for our component. This can be | |
9604 | observed with the following type declarations: | |
284614f0 JB |
9605 | |
9606 | type Octal is new Integer range 0 .. 7; | |
9607 | type Octal_Array is array (Positive range <>) of Octal; | |
9608 | pragma Pack (Octal_Array); | |
9609 | ||
9610 | type Octal_Buffer (Size : Positive) is record | |
9611 | Buffer : Octal_Array (1 .. Size); | |
9612 | Length : Integer; | |
9613 | end record; | |
9614 | ||
9615 | In that case, Buffer is a PAD type whose size is unset and needs | |
9616 | to be computed by fixing the unwrapped type. | |
9617 | ||
21649b50 JB |
9618 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9619 | ---------------------------------------------------------- | |
9620 | ||
9621 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9622 | thus far, be actually fixed? |
9623 | ||
9624 | The answer is: Only when referencing that element. For instance | |
9625 | when selecting one component of a record, this specific component | |
9626 | should be fixed at that point in time. Or when printing the value | |
9627 | of a record, each component should be fixed before its value gets | |
9628 | printed. Similarly for arrays, the element of the array should be | |
9629 | fixed when printing each element of the array, or when extracting | |
9630 | one element out of that array. On the other hand, fixing should | |
9631 | not be performed on the elements when taking a slice of an array! | |
9632 | ||
9633 | Note that one of the side-effects of miscomputing the offset and | |
9634 | size of each field is that we end up also miscomputing the size | |
9635 | of the containing type. This can have adverse results when computing | |
9636 | the value of an entity. GDB fetches the value of an entity based | |
9637 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9638 | the wrong amount of memory. In the case where the computed size is | |
9639 | too small, GDB fetches too little data to print the value of our | |
9640 | entiry. Results in this case as unpredicatble, as we usually read | |
9641 | past the buffer containing the data =:-o. */ | |
9642 | ||
9643 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9644 | for the Ada language. */ | |
9645 | ||
52ce6436 | 9646 | static struct value * |
ebf56fd3 | 9647 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9648 | int *pos, enum noside noside) |
14f9c5c9 AS |
9649 | { |
9650 | enum exp_opcode op; | |
b5385fc0 | 9651 | int tem; |
14f9c5c9 AS |
9652 | int pc; |
9653 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9654 | struct type *type; | |
52ce6436 | 9655 | int nargs, oplen; |
d2e4a39e | 9656 | struct value **argvec; |
14f9c5c9 | 9657 | |
d2e4a39e AS |
9658 | pc = *pos; |
9659 | *pos += 1; | |
14f9c5c9 AS |
9660 | op = exp->elts[pc].opcode; |
9661 | ||
d2e4a39e | 9662 | switch (op) |
14f9c5c9 AS |
9663 | { |
9664 | default: | |
9665 | *pos -= 1; | |
6e48bd2c | 9666 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
9667 | |
9668 | if (noside == EVAL_NORMAL) | |
9669 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
9670 | |
9671 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9672 | then we need to perform the conversion manually, because | |
9673 | evaluate_subexp_standard doesn't do it. This conversion is | |
9674 | necessary in Ada because the different kinds of float/fixed | |
9675 | types in Ada have different representations. | |
9676 | ||
9677 | Similarly, we need to perform the conversion from OP_LONG | |
9678 | ourselves. */ | |
9679 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9680 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9681 | ||
9682 | return arg1; | |
4c4b4cd2 PH |
9683 | |
9684 | case OP_STRING: | |
9685 | { | |
76a01679 | 9686 | struct value *result; |
5b4ee69b | 9687 | |
76a01679 JB |
9688 | *pos -= 1; |
9689 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9690 | /* The result type will have code OP_STRING, bashed there from | |
9691 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9692 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9693 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9694 | return result; |
4c4b4cd2 | 9695 | } |
14f9c5c9 AS |
9696 | |
9697 | case UNOP_CAST: | |
9698 | (*pos) += 2; | |
9699 | type = exp->elts[pc + 1].type; | |
9700 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9701 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9702 | goto nosideret; |
6e48bd2c | 9703 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9704 | return arg1; |
9705 | ||
4c4b4cd2 PH |
9706 | case UNOP_QUAL: |
9707 | (*pos) += 2; | |
9708 | type = exp->elts[pc + 1].type; | |
9709 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9710 | ||
14f9c5c9 AS |
9711 | case BINOP_ASSIGN: |
9712 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9713 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9714 | { | |
9715 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9716 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9717 | return arg1; | |
9718 | return ada_value_assign (arg1, arg1); | |
9719 | } | |
003f3813 JB |
9720 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9721 | except if the lhs of our assignment is a convenience variable. | |
9722 | In the case of assigning to a convenience variable, the lhs | |
9723 | should be exactly the result of the evaluation of the rhs. */ | |
9724 | type = value_type (arg1); | |
9725 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9726 | type = NULL; | |
9727 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9728 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9729 | return arg1; |
df407dfe AC |
9730 | if (ada_is_fixed_point_type (value_type (arg1))) |
9731 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9732 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9733 | error |
323e0a4a | 9734 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9735 | else |
df407dfe | 9736 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9737 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9738 | |
9739 | case BINOP_ADD: | |
9740 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9741 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9742 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9743 | goto nosideret; |
2ac8a782 JB |
9744 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9745 | return (value_from_longest | |
9746 | (value_type (arg1), | |
9747 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9748 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9749 | || ada_is_fixed_point_type (value_type (arg2))) | |
9750 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9751 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9752 | /* Do the addition, and cast the result to the type of the first |
9753 | argument. We cannot cast the result to a reference type, so if | |
9754 | ARG1 is a reference type, find its underlying type. */ | |
9755 | type = value_type (arg1); | |
9756 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9757 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9758 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9759 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9760 | |
9761 | case BINOP_SUB: | |
9762 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9763 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9764 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9765 | goto nosideret; |
2ac8a782 JB |
9766 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9767 | return (value_from_longest | |
9768 | (value_type (arg1), | |
9769 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9770 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9771 | || ada_is_fixed_point_type (value_type (arg2))) | |
9772 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9773 | error (_("Operands of fixed-point subtraction " |
9774 | "must have the same type")); | |
b7789565 JB |
9775 | /* Do the substraction, and cast the result to the type of the first |
9776 | argument. We cannot cast the result to a reference type, so if | |
9777 | ARG1 is a reference type, find its underlying type. */ | |
9778 | type = value_type (arg1); | |
9779 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9780 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9781 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9782 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9783 | |
9784 | case BINOP_MUL: | |
9785 | case BINOP_DIV: | |
e1578042 JB |
9786 | case BINOP_REM: |
9787 | case BINOP_MOD: | |
14f9c5c9 AS |
9788 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9789 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9790 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9791 | goto nosideret; |
e1578042 | 9792 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9793 | { |
9794 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9795 | return value_zero (value_type (arg1), not_lval); | |
9796 | } | |
14f9c5c9 | 9797 | else |
4c4b4cd2 | 9798 | { |
a53b7a21 | 9799 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9800 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9801 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9802 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9803 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9804 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9805 | return ada_value_binop (arg1, arg2, op); |
9806 | } | |
9807 | ||
4c4b4cd2 PH |
9808 | case BINOP_EQUAL: |
9809 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9810 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9811 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9812 | if (noside == EVAL_SKIP) |
76a01679 | 9813 | goto nosideret; |
4c4b4cd2 | 9814 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9815 | tem = 0; |
4c4b4cd2 | 9816 | else |
f44316fa UW |
9817 | { |
9818 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9819 | tem = ada_value_equal (arg1, arg2); | |
9820 | } | |
4c4b4cd2 | 9821 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9822 | tem = !tem; |
fbb06eb1 UW |
9823 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9824 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9825 | |
9826 | case UNOP_NEG: | |
9827 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9828 | if (noside == EVAL_SKIP) | |
9829 | goto nosideret; | |
df407dfe AC |
9830 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9831 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9832 | else |
f44316fa UW |
9833 | { |
9834 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9835 | return value_neg (arg1); | |
9836 | } | |
4c4b4cd2 | 9837 | |
2330c6c6 JB |
9838 | case BINOP_LOGICAL_AND: |
9839 | case BINOP_LOGICAL_OR: | |
9840 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9841 | { |
9842 | struct value *val; | |
9843 | ||
9844 | *pos -= 1; | |
9845 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9846 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9847 | return value_cast (type, val); | |
000d5124 | 9848 | } |
2330c6c6 JB |
9849 | |
9850 | case BINOP_BITWISE_AND: | |
9851 | case BINOP_BITWISE_IOR: | |
9852 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9853 | { |
9854 | struct value *val; | |
9855 | ||
9856 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9857 | *pos = pc; | |
9858 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9859 | ||
9860 | return value_cast (value_type (arg1), val); | |
9861 | } | |
2330c6c6 | 9862 | |
14f9c5c9 AS |
9863 | case OP_VAR_VALUE: |
9864 | *pos -= 1; | |
6799def4 | 9865 | |
14f9c5c9 | 9866 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9867 | { |
9868 | *pos += 4; | |
9869 | goto nosideret; | |
9870 | } | |
9871 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9872 | /* Only encountered when an unresolved symbol occurs in a |
9873 | context other than a function call, in which case, it is | |
52ce6436 | 9874 | invalid. */ |
323e0a4a | 9875 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9876 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9877 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9878 | { |
0c1f74cf | 9879 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9880 | /* Check to see if this is a tagged type. We also need to handle |
9881 | the case where the type is a reference to a tagged type, but | |
9882 | we have to be careful to exclude pointers to tagged types. | |
9883 | The latter should be shown as usual (as a pointer), whereas | |
9884 | a reference should mostly be transparent to the user. */ | |
9885 | if (ada_is_tagged_type (type, 0) | |
9886 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9887 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9888 | { |
9889 | /* Tagged types are a little special in the fact that the real | |
9890 | type is dynamic and can only be determined by inspecting the | |
9891 | object's tag. This means that we need to get the object's | |
9892 | value first (EVAL_NORMAL) and then extract the actual object | |
9893 | type from its tag. | |
9894 | ||
9895 | Note that we cannot skip the final step where we extract | |
9896 | the object type from its tag, because the EVAL_NORMAL phase | |
9897 | results in dynamic components being resolved into fixed ones. | |
9898 | This can cause problems when trying to print the type | |
9899 | description of tagged types whose parent has a dynamic size: | |
9900 | We use the type name of the "_parent" component in order | |
9901 | to print the name of the ancestor type in the type description. | |
9902 | If that component had a dynamic size, the resolution into | |
9903 | a fixed type would result in the loss of that type name, | |
9904 | thus preventing us from printing the name of the ancestor | |
9905 | type in the type description. */ | |
9906 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
b50d69b5 JG |
9907 | |
9908 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
9909 | { | |
9910 | struct type *actual_type; | |
9911 | ||
9912 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
9913 | if (actual_type == NULL) | |
9914 | /* If, for some reason, we were unable to determine | |
9915 | the actual type from the tag, then use the static | |
9916 | approximation that we just computed as a fallback. | |
9917 | This can happen if the debugging information is | |
9918 | incomplete, for instance. */ | |
9919 | actual_type = type; | |
9920 | return value_zero (actual_type, not_lval); | |
9921 | } | |
9922 | else | |
9923 | { | |
9924 | /* In the case of a ref, ada_coerce_ref takes care | |
9925 | of determining the actual type. But the evaluation | |
9926 | should return a ref as it should be valid to ask | |
9927 | for its address; so rebuild a ref after coerce. */ | |
9928 | arg1 = ada_coerce_ref (arg1); | |
9929 | return value_ref (arg1); | |
9930 | } | |
0c1f74cf JB |
9931 | } |
9932 | ||
4c4b4cd2 PH |
9933 | *pos += 4; |
9934 | return value_zero | |
9935 | (to_static_fixed_type | |
9936 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9937 | not_lval); | |
9938 | } | |
d2e4a39e | 9939 | else |
4c4b4cd2 | 9940 | { |
284614f0 | 9941 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
4c4b4cd2 PH |
9942 | return ada_to_fixed_value (arg1); |
9943 | } | |
9944 | ||
9945 | case OP_FUNCALL: | |
9946 | (*pos) += 2; | |
9947 | ||
9948 | /* Allocate arg vector, including space for the function to be | |
9949 | called in argvec[0] and a terminating NULL. */ | |
9950 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9951 | argvec = | |
9952 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9953 | ||
9954 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9955 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9956 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9957 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9958 | else | |
9959 | { | |
9960 | for (tem = 0; tem <= nargs; tem += 1) | |
9961 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9962 | argvec[tem] = 0; | |
9963 | ||
9964 | if (noside == EVAL_SKIP) | |
9965 | goto nosideret; | |
9966 | } | |
9967 | ||
ad82864c JB |
9968 | if (ada_is_constrained_packed_array_type |
9969 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9970 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9971 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9972 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9973 | /* This is a packed array that has already been fixed, and | |
9974 | therefore already coerced to a simple array. Nothing further | |
9975 | to do. */ | |
9976 | ; | |
df407dfe AC |
9977 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9978 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9979 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9980 | argvec[0] = value_addr (argvec[0]); |
9981 | ||
df407dfe | 9982 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9983 | |
9984 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9985 | them. So, if this is an array typedef (encoding use for array |
9986 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9987 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9988 | type = ada_typedef_target_type (type); | |
9989 | ||
4c4b4cd2 PH |
9990 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9991 | { | |
61ee279c | 9992 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9993 | { |
9994 | case TYPE_CODE_FUNC: | |
61ee279c | 9995 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9996 | break; |
9997 | case TYPE_CODE_ARRAY: | |
9998 | break; | |
9999 | case TYPE_CODE_STRUCT: | |
10000 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10001 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10002 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10003 | break; |
10004 | default: | |
323e0a4a | 10005 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10006 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10007 | break; |
10008 | } | |
10009 | } | |
10010 | ||
10011 | switch (TYPE_CODE (type)) | |
10012 | { | |
10013 | case TYPE_CODE_FUNC: | |
10014 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10015 | { |
10016 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10017 | ||
10018 | if (TYPE_GNU_IFUNC (type)) | |
10019 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10020 | return allocate_value (rtype); | |
10021 | } | |
4c4b4cd2 | 10022 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10023 | case TYPE_CODE_INTERNAL_FUNCTION: |
10024 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10025 | /* We don't know anything about what the internal | |
10026 | function might return, but we have to return | |
10027 | something. */ | |
10028 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10029 | not_lval); | |
10030 | else | |
10031 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10032 | argvec[0], nargs, argvec + 1); | |
10033 | ||
4c4b4cd2 PH |
10034 | case TYPE_CODE_STRUCT: |
10035 | { | |
10036 | int arity; | |
10037 | ||
4c4b4cd2 PH |
10038 | arity = ada_array_arity (type); |
10039 | type = ada_array_element_type (type, nargs); | |
10040 | if (type == NULL) | |
323e0a4a | 10041 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10042 | if (arity != nargs) |
323e0a4a | 10043 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10044 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10045 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10046 | return |
10047 | unwrap_value (ada_value_subscript | |
10048 | (argvec[0], nargs, argvec + 1)); | |
10049 | } | |
10050 | case TYPE_CODE_ARRAY: | |
10051 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10052 | { | |
10053 | type = ada_array_element_type (type, nargs); | |
10054 | if (type == NULL) | |
323e0a4a | 10055 | error (_("element type of array unknown")); |
4c4b4cd2 | 10056 | else |
0a07e705 | 10057 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10058 | } |
10059 | return | |
10060 | unwrap_value (ada_value_subscript | |
10061 | (ada_coerce_to_simple_array (argvec[0]), | |
10062 | nargs, argvec + 1)); | |
10063 | case TYPE_CODE_PTR: /* Pointer to array */ | |
10064 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
10065 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10066 | { | |
10067 | type = ada_array_element_type (type, nargs); | |
10068 | if (type == NULL) | |
323e0a4a | 10069 | error (_("element type of array unknown")); |
4c4b4cd2 | 10070 | else |
0a07e705 | 10071 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10072 | } |
10073 | return | |
10074 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
10075 | nargs, argvec + 1)); | |
10076 | ||
10077 | default: | |
e1d5a0d2 PH |
10078 | error (_("Attempt to index or call something other than an " |
10079 | "array or function")); | |
4c4b4cd2 PH |
10080 | } |
10081 | ||
10082 | case TERNOP_SLICE: | |
10083 | { | |
10084 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10085 | struct value *low_bound_val = | |
10086 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10087 | struct value *high_bound_val = |
10088 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10089 | LONGEST low_bound; | |
10090 | LONGEST high_bound; | |
5b4ee69b | 10091 | |
994b9211 AC |
10092 | low_bound_val = coerce_ref (low_bound_val); |
10093 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10094 | low_bound = pos_atr (low_bound_val); |
10095 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10096 | |
4c4b4cd2 PH |
10097 | if (noside == EVAL_SKIP) |
10098 | goto nosideret; | |
10099 | ||
4c4b4cd2 PH |
10100 | /* If this is a reference to an aligner type, then remove all |
10101 | the aligners. */ | |
df407dfe AC |
10102 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10103 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10104 | TYPE_TARGET_TYPE (value_type (array)) = | |
10105 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10106 | |
ad82864c | 10107 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10108 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10109 | |
10110 | /* If this is a reference to an array or an array lvalue, | |
10111 | convert to a pointer. */ | |
df407dfe AC |
10112 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10113 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10114 | && VALUE_LVAL (array) == lval_memory)) |
10115 | array = value_addr (array); | |
10116 | ||
1265e4aa | 10117 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10118 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10119 | (value_type (array)))) |
0b5d8877 | 10120 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10121 | |
10122 | array = ada_coerce_to_simple_array_ptr (array); | |
10123 | ||
714e53ab PH |
10124 | /* If we have more than one level of pointer indirection, |
10125 | dereference the value until we get only one level. */ | |
df407dfe AC |
10126 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10127 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10128 | == TYPE_CODE_PTR)) |
10129 | array = value_ind (array); | |
10130 | ||
10131 | /* Make sure we really do have an array type before going further, | |
10132 | to avoid a SEGV when trying to get the index type or the target | |
10133 | type later down the road if the debug info generated by | |
10134 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10135 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10136 | error (_("cannot take slice of non-array")); |
714e53ab | 10137 | |
828292f2 JB |
10138 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10139 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10140 | { |
828292f2 JB |
10141 | struct type *type0 = ada_check_typedef (value_type (array)); |
10142 | ||
0b5d8877 | 10143 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10144 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10145 | else |
10146 | { | |
10147 | struct type *arr_type0 = | |
828292f2 | 10148 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10149 | |
f5938064 JG |
10150 | return ada_value_slice_from_ptr (array, arr_type0, |
10151 | longest_to_int (low_bound), | |
10152 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10153 | } |
10154 | } | |
10155 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10156 | return array; | |
10157 | else if (high_bound < low_bound) | |
df407dfe | 10158 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10159 | else |
529cad9c PH |
10160 | return ada_value_slice (array, longest_to_int (low_bound), |
10161 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10162 | } |
14f9c5c9 | 10163 | |
4c4b4cd2 PH |
10164 | case UNOP_IN_RANGE: |
10165 | (*pos) += 2; | |
10166 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10167 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10168 | |
14f9c5c9 | 10169 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10170 | goto nosideret; |
14f9c5c9 | 10171 | |
4c4b4cd2 PH |
10172 | switch (TYPE_CODE (type)) |
10173 | { | |
10174 | default: | |
e1d5a0d2 PH |
10175 | lim_warning (_("Membership test incompletely implemented; " |
10176 | "always returns true")); | |
fbb06eb1 UW |
10177 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10178 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10179 | |
10180 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10181 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10182 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10183 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10184 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10185 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10186 | return | |
10187 | value_from_longest (type, | |
4c4b4cd2 PH |
10188 | (value_less (arg1, arg3) |
10189 | || value_equal (arg1, arg3)) | |
10190 | && (value_less (arg2, arg1) | |
10191 | || value_equal (arg2, arg1))); | |
10192 | } | |
10193 | ||
10194 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10195 | (*pos) += 2; |
4c4b4cd2 PH |
10196 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10197 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10198 | |
4c4b4cd2 PH |
10199 | if (noside == EVAL_SKIP) |
10200 | goto nosideret; | |
14f9c5c9 | 10201 | |
4c4b4cd2 | 10202 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10203 | { |
10204 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10205 | return value_zero (type, not_lval); | |
10206 | } | |
14f9c5c9 | 10207 | |
4c4b4cd2 | 10208 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10209 | |
1eea4ebd UW |
10210 | type = ada_index_type (value_type (arg2), tem, "range"); |
10211 | if (!type) | |
10212 | type = value_type (arg1); | |
14f9c5c9 | 10213 | |
1eea4ebd UW |
10214 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10215 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10216 | |
f44316fa UW |
10217 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10218 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10219 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10220 | return |
fbb06eb1 | 10221 | value_from_longest (type, |
4c4b4cd2 PH |
10222 | (value_less (arg1, arg3) |
10223 | || value_equal (arg1, arg3)) | |
10224 | && (value_less (arg2, arg1) | |
10225 | || value_equal (arg2, arg1))); | |
10226 | ||
10227 | case TERNOP_IN_RANGE: | |
10228 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10229 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10230 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10231 | ||
10232 | if (noside == EVAL_SKIP) | |
10233 | goto nosideret; | |
10234 | ||
f44316fa UW |
10235 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10236 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10237 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10238 | return |
fbb06eb1 | 10239 | value_from_longest (type, |
4c4b4cd2 PH |
10240 | (value_less (arg1, arg3) |
10241 | || value_equal (arg1, arg3)) | |
10242 | && (value_less (arg2, arg1) | |
10243 | || value_equal (arg2, arg1))); | |
10244 | ||
10245 | case OP_ATR_FIRST: | |
10246 | case OP_ATR_LAST: | |
10247 | case OP_ATR_LENGTH: | |
10248 | { | |
76a01679 | 10249 | struct type *type_arg; |
5b4ee69b | 10250 | |
76a01679 JB |
10251 | if (exp->elts[*pos].opcode == OP_TYPE) |
10252 | { | |
10253 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10254 | arg1 = NULL; | |
5bc23cb3 | 10255 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10256 | } |
10257 | else | |
10258 | { | |
10259 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10260 | type_arg = NULL; | |
10261 | } | |
10262 | ||
10263 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10264 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10265 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10266 | *pos += 4; | |
10267 | ||
10268 | if (noside == EVAL_SKIP) | |
10269 | goto nosideret; | |
10270 | ||
10271 | if (type_arg == NULL) | |
10272 | { | |
10273 | arg1 = ada_coerce_ref (arg1); | |
10274 | ||
ad82864c | 10275 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10276 | arg1 = ada_coerce_to_simple_array (arg1); |
10277 | ||
1eea4ebd UW |
10278 | type = ada_index_type (value_type (arg1), tem, |
10279 | ada_attribute_name (op)); | |
10280 | if (type == NULL) | |
10281 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
10282 | |
10283 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10284 | return allocate_value (type); |
76a01679 JB |
10285 | |
10286 | switch (op) | |
10287 | { | |
10288 | default: /* Should never happen. */ | |
323e0a4a | 10289 | error (_("unexpected attribute encountered")); |
76a01679 | 10290 | case OP_ATR_FIRST: |
1eea4ebd UW |
10291 | return value_from_longest |
10292 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10293 | case OP_ATR_LAST: |
1eea4ebd UW |
10294 | return value_from_longest |
10295 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10296 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10297 | return value_from_longest |
10298 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10299 | } |
10300 | } | |
10301 | else if (discrete_type_p (type_arg)) | |
10302 | { | |
10303 | struct type *range_type; | |
0d5cff50 | 10304 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10305 | |
76a01679 JB |
10306 | range_type = NULL; |
10307 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10308 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10309 | if (range_type == NULL) |
10310 | range_type = type_arg; | |
10311 | switch (op) | |
10312 | { | |
10313 | default: | |
323e0a4a | 10314 | error (_("unexpected attribute encountered")); |
76a01679 | 10315 | case OP_ATR_FIRST: |
690cc4eb | 10316 | return value_from_longest |
43bbcdc2 | 10317 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10318 | case OP_ATR_LAST: |
690cc4eb | 10319 | return value_from_longest |
43bbcdc2 | 10320 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10321 | case OP_ATR_LENGTH: |
323e0a4a | 10322 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10323 | } |
10324 | } | |
10325 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10326 | error (_("unimplemented type attribute")); |
76a01679 JB |
10327 | else |
10328 | { | |
10329 | LONGEST low, high; | |
10330 | ||
ad82864c JB |
10331 | if (ada_is_constrained_packed_array_type (type_arg)) |
10332 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10333 | |
1eea4ebd | 10334 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 10335 | if (type == NULL) |
1eea4ebd UW |
10336 | type = builtin_type (exp->gdbarch)->builtin_int; |
10337 | ||
76a01679 JB |
10338 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10339 | return allocate_value (type); | |
10340 | ||
10341 | switch (op) | |
10342 | { | |
10343 | default: | |
323e0a4a | 10344 | error (_("unexpected attribute encountered")); |
76a01679 | 10345 | case OP_ATR_FIRST: |
1eea4ebd | 10346 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10347 | return value_from_longest (type, low); |
10348 | case OP_ATR_LAST: | |
1eea4ebd | 10349 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10350 | return value_from_longest (type, high); |
10351 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10352 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10353 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10354 | return value_from_longest (type, high - low + 1); |
10355 | } | |
10356 | } | |
14f9c5c9 AS |
10357 | } |
10358 | ||
4c4b4cd2 PH |
10359 | case OP_ATR_TAG: |
10360 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10361 | if (noside == EVAL_SKIP) | |
76a01679 | 10362 | goto nosideret; |
4c4b4cd2 PH |
10363 | |
10364 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10365 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10366 | |
10367 | return ada_value_tag (arg1); | |
10368 | ||
10369 | case OP_ATR_MIN: | |
10370 | case OP_ATR_MAX: | |
10371 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10372 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10373 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10374 | if (noside == EVAL_SKIP) | |
76a01679 | 10375 | goto nosideret; |
d2e4a39e | 10376 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10377 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10378 | else |
f44316fa UW |
10379 | { |
10380 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10381 | return value_binop (arg1, arg2, | |
10382 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10383 | } | |
14f9c5c9 | 10384 | |
4c4b4cd2 PH |
10385 | case OP_ATR_MODULUS: |
10386 | { | |
31dedfee | 10387 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10388 | |
5b4ee69b | 10389 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10390 | if (noside == EVAL_SKIP) |
10391 | goto nosideret; | |
4c4b4cd2 | 10392 | |
76a01679 | 10393 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10394 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10395 | |
76a01679 JB |
10396 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10397 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10398 | } |
10399 | ||
10400 | ||
10401 | case OP_ATR_POS: | |
10402 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10403 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10404 | if (noside == EVAL_SKIP) | |
76a01679 | 10405 | goto nosideret; |
3cb382c9 UW |
10406 | type = builtin_type (exp->gdbarch)->builtin_int; |
10407 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10408 | return value_zero (type, not_lval); | |
14f9c5c9 | 10409 | else |
3cb382c9 | 10410 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10411 | |
4c4b4cd2 PH |
10412 | case OP_ATR_SIZE: |
10413 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10414 | type = value_type (arg1); |
10415 | ||
10416 | /* If the argument is a reference, then dereference its type, since | |
10417 | the user is really asking for the size of the actual object, | |
10418 | not the size of the pointer. */ | |
10419 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10420 | type = TYPE_TARGET_TYPE (type); | |
10421 | ||
4c4b4cd2 | 10422 | if (noside == EVAL_SKIP) |
76a01679 | 10423 | goto nosideret; |
4c4b4cd2 | 10424 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10425 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10426 | else |
22601c15 | 10427 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10428 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10429 | |
10430 | case OP_ATR_VAL: | |
10431 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10432 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10433 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10434 | if (noside == EVAL_SKIP) |
76a01679 | 10435 | goto nosideret; |
4c4b4cd2 | 10436 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10437 | return value_zero (type, not_lval); |
4c4b4cd2 | 10438 | else |
76a01679 | 10439 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10440 | |
10441 | case BINOP_EXP: | |
10442 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10443 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10444 | if (noside == EVAL_SKIP) | |
10445 | goto nosideret; | |
10446 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10447 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10448 | else |
f44316fa UW |
10449 | { |
10450 | /* For integer exponentiation operations, | |
10451 | only promote the first argument. */ | |
10452 | if (is_integral_type (value_type (arg2))) | |
10453 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10454 | else | |
10455 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10456 | ||
10457 | return value_binop (arg1, arg2, op); | |
10458 | } | |
4c4b4cd2 PH |
10459 | |
10460 | case UNOP_PLUS: | |
10461 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10462 | if (noside == EVAL_SKIP) | |
10463 | goto nosideret; | |
10464 | else | |
10465 | return arg1; | |
10466 | ||
10467 | case UNOP_ABS: | |
10468 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10469 | if (noside == EVAL_SKIP) | |
10470 | goto nosideret; | |
f44316fa | 10471 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10472 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10473 | return value_neg (arg1); |
14f9c5c9 | 10474 | else |
4c4b4cd2 | 10475 | return arg1; |
14f9c5c9 AS |
10476 | |
10477 | case UNOP_IND: | |
6b0d7253 | 10478 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10479 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10480 | goto nosideret; |
df407dfe | 10481 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10482 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10483 | { |
10484 | if (ada_is_array_descriptor_type (type)) | |
10485 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10486 | { | |
10487 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10488 | |
4c4b4cd2 | 10489 | if (arrType == NULL) |
323e0a4a | 10490 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10491 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10492 | } |
10493 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10494 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10495 | /* In C you can dereference an array to get the 1st elt. */ | |
10496 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10497 | { |
10498 | type = to_static_fixed_type | |
10499 | (ada_aligned_type | |
10500 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10501 | check_size (type); | |
10502 | return value_zero (type, lval_memory); | |
10503 | } | |
4c4b4cd2 | 10504 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10505 | { |
10506 | /* GDB allows dereferencing an int. */ | |
10507 | if (expect_type == NULL) | |
10508 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10509 | lval_memory); | |
10510 | else | |
10511 | { | |
10512 | expect_type = | |
10513 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10514 | return value_zero (expect_type, lval_memory); | |
10515 | } | |
10516 | } | |
4c4b4cd2 | 10517 | else |
323e0a4a | 10518 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10519 | } |
0963b4bd | 10520 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10521 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10522 | |
96967637 JB |
10523 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10524 | /* GDB allows dereferencing an int. If we were given | |
10525 | the expect_type, then use that as the target type. | |
10526 | Otherwise, assume that the target type is an int. */ | |
10527 | { | |
10528 | if (expect_type != NULL) | |
10529 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10530 | arg1)); | |
10531 | else | |
10532 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10533 | (CORE_ADDR) value_as_address (arg1)); | |
10534 | } | |
6b0d7253 | 10535 | |
4c4b4cd2 PH |
10536 | if (ada_is_array_descriptor_type (type)) |
10537 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10538 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10539 | else |
4c4b4cd2 | 10540 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10541 | |
10542 | case STRUCTOP_STRUCT: | |
10543 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10544 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10545 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10546 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10547 | goto nosideret; |
14f9c5c9 | 10548 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10549 | { |
df407dfe | 10550 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10551 | |
76a01679 JB |
10552 | if (ada_is_tagged_type (type1, 1)) |
10553 | { | |
10554 | type = ada_lookup_struct_elt_type (type1, | |
10555 | &exp->elts[pc + 2].string, | |
10556 | 1, 1, NULL); | |
10557 | if (type == NULL) | |
10558 | /* In this case, we assume that the field COULD exist | |
10559 | in some extension of the type. Return an object of | |
10560 | "type" void, which will match any formal | |
0963b4bd | 10561 | (see ada_type_match). */ |
30b15541 UW |
10562 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10563 | lval_memory); | |
76a01679 JB |
10564 | } |
10565 | else | |
10566 | type = | |
10567 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10568 | 0, NULL); | |
10569 | ||
10570 | return value_zero (ada_aligned_type (type), lval_memory); | |
10571 | } | |
14f9c5c9 | 10572 | else |
284614f0 JB |
10573 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10574 | arg1 = unwrap_value (arg1); | |
10575 | return ada_to_fixed_value (arg1); | |
10576 | ||
14f9c5c9 | 10577 | case OP_TYPE: |
4c4b4cd2 PH |
10578 | /* The value is not supposed to be used. This is here to make it |
10579 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10580 | (*pos) += 2; |
10581 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10582 | goto nosideret; |
14f9c5c9 | 10583 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10584 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10585 | else |
323e0a4a | 10586 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10587 | |
10588 | case OP_AGGREGATE: | |
10589 | case OP_CHOICES: | |
10590 | case OP_OTHERS: | |
10591 | case OP_DISCRETE_RANGE: | |
10592 | case OP_POSITIONAL: | |
10593 | case OP_NAME: | |
10594 | if (noside == EVAL_NORMAL) | |
10595 | switch (op) | |
10596 | { | |
10597 | case OP_NAME: | |
10598 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10599 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10600 | case OP_AGGREGATE: |
10601 | error (_("Aggregates only allowed on the right of an assignment")); | |
10602 | default: | |
0963b4bd MS |
10603 | internal_error (__FILE__, __LINE__, |
10604 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10605 | } |
10606 | ||
10607 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10608 | *pos += oplen - 1; | |
10609 | for (tem = 0; tem < nargs; tem += 1) | |
10610 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10611 | goto nosideret; | |
14f9c5c9 AS |
10612 | } |
10613 | ||
10614 | nosideret: | |
22601c15 | 10615 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10616 | } |
14f9c5c9 | 10617 | \f |
d2e4a39e | 10618 | |
4c4b4cd2 | 10619 | /* Fixed point */ |
14f9c5c9 AS |
10620 | |
10621 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10622 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10623 | Otherwise, return NULL. */ |
14f9c5c9 | 10624 | |
d2e4a39e | 10625 | static const char * |
ebf56fd3 | 10626 | fixed_type_info (struct type *type) |
14f9c5c9 | 10627 | { |
d2e4a39e | 10628 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10629 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10630 | ||
d2e4a39e AS |
10631 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10632 | { | |
14f9c5c9 | 10633 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10634 | |
14f9c5c9 | 10635 | if (tail == NULL) |
4c4b4cd2 | 10636 | return NULL; |
d2e4a39e | 10637 | else |
4c4b4cd2 | 10638 | return tail + 5; |
14f9c5c9 AS |
10639 | } |
10640 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10641 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10642 | else | |
10643 | return NULL; | |
10644 | } | |
10645 | ||
4c4b4cd2 | 10646 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10647 | |
10648 | int | |
ebf56fd3 | 10649 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10650 | { |
10651 | return fixed_type_info (type) != NULL; | |
10652 | } | |
10653 | ||
4c4b4cd2 PH |
10654 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10655 | ||
10656 | int | |
10657 | ada_is_system_address_type (struct type *type) | |
10658 | { | |
10659 | return (TYPE_NAME (type) | |
10660 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10661 | } | |
10662 | ||
14f9c5c9 AS |
10663 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10664 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10665 | delta cannot be determined. */ |
14f9c5c9 AS |
10666 | |
10667 | DOUBLEST | |
ebf56fd3 | 10668 | ada_delta (struct type *type) |
14f9c5c9 AS |
10669 | { |
10670 | const char *encoding = fixed_type_info (type); | |
facc390f | 10671 | DOUBLEST num, den; |
14f9c5c9 | 10672 | |
facc390f JB |
10673 | /* Strictly speaking, num and den are encoded as integer. However, |
10674 | they may not fit into a long, and they will have to be converted | |
10675 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10676 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10677 | &num, &den) < 2) | |
14f9c5c9 | 10678 | return -1.0; |
d2e4a39e | 10679 | else |
facc390f | 10680 | return num / den; |
14f9c5c9 AS |
10681 | } |
10682 | ||
10683 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10684 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10685 | |
10686 | static DOUBLEST | |
ebf56fd3 | 10687 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10688 | { |
10689 | const char *encoding = fixed_type_info (type); | |
facc390f | 10690 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10691 | int n; |
d2e4a39e | 10692 | |
facc390f JB |
10693 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10694 | they may not fit into a long, and they will have to be converted | |
10695 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10696 | n = sscanf (encoding, | |
10697 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10698 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10699 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10700 | |
10701 | if (n < 2) | |
10702 | return 1.0; | |
10703 | else if (n == 4) | |
facc390f | 10704 | return num1 / den1; |
d2e4a39e | 10705 | else |
facc390f | 10706 | return num0 / den0; |
14f9c5c9 AS |
10707 | } |
10708 | ||
10709 | ||
10710 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10711 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10712 | |
10713 | DOUBLEST | |
ebf56fd3 | 10714 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10715 | { |
d2e4a39e | 10716 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10717 | } |
10718 | ||
4c4b4cd2 PH |
10719 | /* The representation of a fixed-point value of type TYPE |
10720 | corresponding to the value X. */ | |
14f9c5c9 AS |
10721 | |
10722 | LONGEST | |
ebf56fd3 | 10723 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10724 | { |
10725 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10726 | } | |
10727 | ||
14f9c5c9 | 10728 | \f |
d2e4a39e | 10729 | |
4c4b4cd2 | 10730 | /* Range types */ |
14f9c5c9 AS |
10731 | |
10732 | /* Scan STR beginning at position K for a discriminant name, and | |
10733 | return the value of that discriminant field of DVAL in *PX. If | |
10734 | PNEW_K is not null, put the position of the character beyond the | |
10735 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10736 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10737 | |
10738 | static int | |
07d8f827 | 10739 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10740 | int *pnew_k) |
14f9c5c9 AS |
10741 | { |
10742 | static char *bound_buffer = NULL; | |
10743 | static size_t bound_buffer_len = 0; | |
10744 | char *bound; | |
10745 | char *pend; | |
d2e4a39e | 10746 | struct value *bound_val; |
14f9c5c9 AS |
10747 | |
10748 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10749 | return 0; | |
10750 | ||
d2e4a39e | 10751 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10752 | if (pend == NULL) |
10753 | { | |
d2e4a39e | 10754 | bound = str + k; |
14f9c5c9 AS |
10755 | k += strlen (bound); |
10756 | } | |
d2e4a39e | 10757 | else |
14f9c5c9 | 10758 | { |
d2e4a39e | 10759 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10760 | bound = bound_buffer; |
d2e4a39e AS |
10761 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10762 | bound[pend - (str + k)] = '\0'; | |
10763 | k = pend - str; | |
14f9c5c9 | 10764 | } |
d2e4a39e | 10765 | |
df407dfe | 10766 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10767 | if (bound_val == NULL) |
10768 | return 0; | |
10769 | ||
10770 | *px = value_as_long (bound_val); | |
10771 | if (pnew_k != NULL) | |
10772 | *pnew_k = k; | |
10773 | return 1; | |
10774 | } | |
10775 | ||
10776 | /* Value of variable named NAME in the current environment. If | |
10777 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10778 | otherwise causes an error with message ERR_MSG. */ |
10779 | ||
d2e4a39e AS |
10780 | static struct value * |
10781 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10782 | { |
4c4b4cd2 | 10783 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10784 | int nsyms; |
10785 | ||
4c4b4cd2 | 10786 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 10787 | &syms); |
14f9c5c9 AS |
10788 | |
10789 | if (nsyms != 1) | |
10790 | { | |
10791 | if (err_msg == NULL) | |
4c4b4cd2 | 10792 | return 0; |
14f9c5c9 | 10793 | else |
8a3fe4f8 | 10794 | error (("%s"), err_msg); |
14f9c5c9 AS |
10795 | } |
10796 | ||
4c4b4cd2 | 10797 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10798 | } |
d2e4a39e | 10799 | |
14f9c5c9 | 10800 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10801 | no such variable found, returns 0, and sets *FLAG to 0. If |
10802 | successful, sets *FLAG to 1. */ | |
10803 | ||
14f9c5c9 | 10804 | LONGEST |
4c4b4cd2 | 10805 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10806 | { |
4c4b4cd2 | 10807 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10808 | |
14f9c5c9 AS |
10809 | if (var_val == 0) |
10810 | { | |
10811 | if (flag != NULL) | |
4c4b4cd2 | 10812 | *flag = 0; |
14f9c5c9 AS |
10813 | return 0; |
10814 | } | |
10815 | else | |
10816 | { | |
10817 | if (flag != NULL) | |
4c4b4cd2 | 10818 | *flag = 1; |
14f9c5c9 AS |
10819 | return value_as_long (var_val); |
10820 | } | |
10821 | } | |
d2e4a39e | 10822 | |
14f9c5c9 AS |
10823 | |
10824 | /* Return a range type whose base type is that of the range type named | |
10825 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10826 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10827 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10828 | corresponding range type from debug information; fall back to using it | |
10829 | if symbol lookup fails. If a new type must be created, allocate it | |
10830 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10831 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10832 | |
d2e4a39e | 10833 | static struct type * |
28c85d6c | 10834 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10835 | { |
0d5cff50 | 10836 | const char *name; |
14f9c5c9 | 10837 | struct type *base_type; |
d2e4a39e | 10838 | char *subtype_info; |
14f9c5c9 | 10839 | |
28c85d6c JB |
10840 | gdb_assert (raw_type != NULL); |
10841 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10842 | |
1ce677a4 | 10843 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10844 | base_type = TYPE_TARGET_TYPE (raw_type); |
10845 | else | |
10846 | base_type = raw_type; | |
10847 | ||
28c85d6c | 10848 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10849 | subtype_info = strstr (name, "___XD"); |
10850 | if (subtype_info == NULL) | |
690cc4eb | 10851 | { |
43bbcdc2 PH |
10852 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10853 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10854 | |
690cc4eb PH |
10855 | if (L < INT_MIN || U > INT_MAX) |
10856 | return raw_type; | |
10857 | else | |
28c85d6c | 10858 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10859 | ada_discrete_type_low_bound (raw_type), |
10860 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10861 | } |
14f9c5c9 AS |
10862 | else |
10863 | { | |
10864 | static char *name_buf = NULL; | |
10865 | static size_t name_len = 0; | |
10866 | int prefix_len = subtype_info - name; | |
10867 | LONGEST L, U; | |
10868 | struct type *type; | |
10869 | char *bounds_str; | |
10870 | int n; | |
10871 | ||
10872 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10873 | strncpy (name_buf, name, prefix_len); | |
10874 | name_buf[prefix_len] = '\0'; | |
10875 | ||
10876 | subtype_info += 5; | |
10877 | bounds_str = strchr (subtype_info, '_'); | |
10878 | n = 1; | |
10879 | ||
d2e4a39e | 10880 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10881 | { |
10882 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10883 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10884 | return raw_type; | |
10885 | if (bounds_str[n] == '_') | |
10886 | n += 2; | |
0963b4bd | 10887 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10888 | n += 1; |
10889 | subtype_info += 1; | |
10890 | } | |
d2e4a39e | 10891 | else |
4c4b4cd2 PH |
10892 | { |
10893 | int ok; | |
5b4ee69b | 10894 | |
4c4b4cd2 PH |
10895 | strcpy (name_buf + prefix_len, "___L"); |
10896 | L = get_int_var_value (name_buf, &ok); | |
10897 | if (!ok) | |
10898 | { | |
323e0a4a | 10899 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10900 | L = 1; |
10901 | } | |
10902 | } | |
14f9c5c9 | 10903 | |
d2e4a39e | 10904 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10905 | { |
10906 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10907 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10908 | return raw_type; | |
10909 | } | |
d2e4a39e | 10910 | else |
4c4b4cd2 PH |
10911 | { |
10912 | int ok; | |
5b4ee69b | 10913 | |
4c4b4cd2 PH |
10914 | strcpy (name_buf + prefix_len, "___U"); |
10915 | U = get_int_var_value (name_buf, &ok); | |
10916 | if (!ok) | |
10917 | { | |
323e0a4a | 10918 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10919 | U = L; |
10920 | } | |
10921 | } | |
14f9c5c9 | 10922 | |
28c85d6c | 10923 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10924 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10925 | return type; |
10926 | } | |
10927 | } | |
10928 | ||
4c4b4cd2 PH |
10929 | /* True iff NAME is the name of a range type. */ |
10930 | ||
14f9c5c9 | 10931 | int |
d2e4a39e | 10932 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10933 | { |
10934 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10935 | } |
14f9c5c9 | 10936 | \f |
d2e4a39e | 10937 | |
4c4b4cd2 PH |
10938 | /* Modular types */ |
10939 | ||
10940 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10941 | |
14f9c5c9 | 10942 | int |
d2e4a39e | 10943 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10944 | { |
18af8284 | 10945 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10946 | |
10947 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10948 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10949 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10950 | } |
10951 | ||
4c4b4cd2 PH |
10952 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10953 | ||
61ee279c | 10954 | ULONGEST |
0056e4d5 | 10955 | ada_modulus (struct type *type) |
14f9c5c9 | 10956 | { |
43bbcdc2 | 10957 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10958 | } |
d2e4a39e | 10959 | \f |
f7f9143b JB |
10960 | |
10961 | /* Ada exception catchpoint support: | |
10962 | --------------------------------- | |
10963 | ||
10964 | We support 3 kinds of exception catchpoints: | |
10965 | . catchpoints on Ada exceptions | |
10966 | . catchpoints on unhandled Ada exceptions | |
10967 | . catchpoints on failed assertions | |
10968 | ||
10969 | Exceptions raised during failed assertions, or unhandled exceptions | |
10970 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10971 | However, we can easily differentiate these two special cases, and having | |
10972 | the option to distinguish these two cases from the rest can be useful | |
10973 | to zero-in on certain situations. | |
10974 | ||
10975 | Exception catchpoints are a specialized form of breakpoint, | |
10976 | since they rely on inserting breakpoints inside known routines | |
10977 | of the GNAT runtime. The implementation therefore uses a standard | |
10978 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10979 | of breakpoint_ops. | |
10980 | ||
0259addd JB |
10981 | Support in the runtime for exception catchpoints have been changed |
10982 | a few times already, and these changes affect the implementation | |
10983 | of these catchpoints. In order to be able to support several | |
10984 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10985 | the runtime variant used by the program being debugged. */ |
f7f9143b | 10986 | |
3d0b0fa3 JB |
10987 | /* Ada's standard exceptions. */ |
10988 | ||
10989 | static char *standard_exc[] = { | |
10990 | "constraint_error", | |
10991 | "program_error", | |
10992 | "storage_error", | |
10993 | "tasking_error" | |
10994 | }; | |
10995 | ||
0259addd JB |
10996 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10997 | ||
10998 | /* A structure that describes how to support exception catchpoints | |
10999 | for a given executable. */ | |
11000 | ||
11001 | struct exception_support_info | |
11002 | { | |
11003 | /* The name of the symbol to break on in order to insert | |
11004 | a catchpoint on exceptions. */ | |
11005 | const char *catch_exception_sym; | |
11006 | ||
11007 | /* The name of the symbol to break on in order to insert | |
11008 | a catchpoint on unhandled exceptions. */ | |
11009 | const char *catch_exception_unhandled_sym; | |
11010 | ||
11011 | /* The name of the symbol to break on in order to insert | |
11012 | a catchpoint on failed assertions. */ | |
11013 | const char *catch_assert_sym; | |
11014 | ||
11015 | /* Assuming that the inferior just triggered an unhandled exception | |
11016 | catchpoint, this function is responsible for returning the address | |
11017 | in inferior memory where the name of that exception is stored. | |
11018 | Return zero if the address could not be computed. */ | |
11019 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11020 | }; | |
11021 | ||
11022 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11023 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11024 | ||
11025 | /* The following exception support info structure describes how to | |
11026 | implement exception catchpoints with the latest version of the | |
11027 | Ada runtime (as of 2007-03-06). */ | |
11028 | ||
11029 | static const struct exception_support_info default_exception_support_info = | |
11030 | { | |
11031 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11032 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11033 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11034 | ada_unhandled_exception_name_addr | |
11035 | }; | |
11036 | ||
11037 | /* The following exception support info structure describes how to | |
11038 | implement exception catchpoints with a slightly older version | |
11039 | of the Ada runtime. */ | |
11040 | ||
11041 | static const struct exception_support_info exception_support_info_fallback = | |
11042 | { | |
11043 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11044 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11045 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11046 | ada_unhandled_exception_name_addr_from_raise | |
11047 | }; | |
11048 | ||
f17011e0 JB |
11049 | /* Return nonzero if we can detect the exception support routines |
11050 | described in EINFO. | |
11051 | ||
11052 | This function errors out if an abnormal situation is detected | |
11053 | (for instance, if we find the exception support routines, but | |
11054 | that support is found to be incomplete). */ | |
11055 | ||
11056 | static int | |
11057 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11058 | { | |
11059 | struct symbol *sym; | |
11060 | ||
11061 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11062 | that should be compiled with debugging information. As a result, we | |
11063 | expect to find that symbol in the symtabs. */ | |
11064 | ||
11065 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11066 | if (sym == NULL) | |
a6af7abe JB |
11067 | { |
11068 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11069 | compiled without debugging info, or simply stripped of it. | |
11070 | It happens on some GNU/Linux distributions for instance, where | |
11071 | users have to install a separate debug package in order to get | |
11072 | the runtime's debugging info. In that situation, let the user | |
11073 | know why we cannot insert an Ada exception catchpoint. | |
11074 | ||
11075 | Note: Just for the purpose of inserting our Ada exception | |
11076 | catchpoint, we could rely purely on the associated minimal symbol. | |
11077 | But we would be operating in degraded mode anyway, since we are | |
11078 | still lacking the debugging info needed later on to extract | |
11079 | the name of the exception being raised (this name is printed in | |
11080 | the catchpoint message, and is also used when trying to catch | |
11081 | a specific exception). We do not handle this case for now. */ | |
1c8e84b0 JB |
11082 | struct minimal_symbol *msym |
11083 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); | |
11084 | ||
11085 | if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline) | |
a6af7abe JB |
11086 | error (_("Your Ada runtime appears to be missing some debugging " |
11087 | "information.\nCannot insert Ada exception catchpoint " | |
11088 | "in this configuration.")); | |
11089 | ||
11090 | return 0; | |
11091 | } | |
f17011e0 JB |
11092 | |
11093 | /* Make sure that the symbol we found corresponds to a function. */ | |
11094 | ||
11095 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11096 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11097 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11098 | ||
11099 | return 1; | |
11100 | } | |
11101 | ||
0259addd JB |
11102 | /* Inspect the Ada runtime and determine which exception info structure |
11103 | should be used to provide support for exception catchpoints. | |
11104 | ||
3eecfa55 JB |
11105 | This function will always set the per-inferior exception_info, |
11106 | or raise an error. */ | |
0259addd JB |
11107 | |
11108 | static void | |
11109 | ada_exception_support_info_sniffer (void) | |
11110 | { | |
3eecfa55 | 11111 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11112 | |
11113 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11114 | if (data->exception_info != NULL) |
0259addd JB |
11115 | return; |
11116 | ||
11117 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11118 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11119 | { |
3eecfa55 | 11120 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11121 | return; |
11122 | } | |
11123 | ||
11124 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11125 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11126 | { |
3eecfa55 | 11127 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11128 | return; |
11129 | } | |
11130 | ||
11131 | /* Sometimes, it is normal for us to not be able to find the routine | |
11132 | we are looking for. This happens when the program is linked with | |
11133 | the shared version of the GNAT runtime, and the program has not been | |
11134 | started yet. Inform the user of these two possible causes if | |
11135 | applicable. */ | |
11136 | ||
ccefe4c4 | 11137 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11138 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11139 | ||
11140 | /* If the symbol does not exist, then check that the program is | |
11141 | already started, to make sure that shared libraries have been | |
11142 | loaded. If it is not started, this may mean that the symbol is | |
11143 | in a shared library. */ | |
11144 | ||
11145 | if (ptid_get_pid (inferior_ptid) == 0) | |
11146 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11147 | ||
11148 | /* At this point, we know that we are debugging an Ada program and | |
11149 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11150 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11151 | configurable run time mode, or that a-except as been optimized |
11152 | out by the linker... In any case, at this point it is not worth | |
11153 | supporting this feature. */ | |
11154 | ||
7dda8cff | 11155 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11156 | } |
11157 | ||
f7f9143b JB |
11158 | /* True iff FRAME is very likely to be that of a function that is |
11159 | part of the runtime system. This is all very heuristic, but is | |
11160 | intended to be used as advice as to what frames are uninteresting | |
11161 | to most users. */ | |
11162 | ||
11163 | static int | |
11164 | is_known_support_routine (struct frame_info *frame) | |
11165 | { | |
4ed6b5be | 11166 | struct symtab_and_line sal; |
55b87a52 | 11167 | char *func_name; |
692465f1 | 11168 | enum language func_lang; |
f7f9143b | 11169 | int i; |
f35a17b5 | 11170 | const char *fullname; |
f7f9143b | 11171 | |
4ed6b5be JB |
11172 | /* If this code does not have any debugging information (no symtab), |
11173 | This cannot be any user code. */ | |
f7f9143b | 11174 | |
4ed6b5be | 11175 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11176 | if (sal.symtab == NULL) |
11177 | return 1; | |
11178 | ||
4ed6b5be JB |
11179 | /* If there is a symtab, but the associated source file cannot be |
11180 | located, then assume this is not user code: Selecting a frame | |
11181 | for which we cannot display the code would not be very helpful | |
11182 | for the user. This should also take care of case such as VxWorks | |
11183 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11184 | |
f35a17b5 JK |
11185 | fullname = symtab_to_fullname (sal.symtab); |
11186 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11187 | return 1; |
11188 | ||
4ed6b5be JB |
11189 | /* Check the unit filename againt the Ada runtime file naming. |
11190 | We also check the name of the objfile against the name of some | |
11191 | known system libraries that sometimes come with debugging info | |
11192 | too. */ | |
11193 | ||
f7f9143b JB |
11194 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11195 | { | |
11196 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11197 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11198 | return 1; |
4ed6b5be | 11199 | if (sal.symtab->objfile != NULL |
4262abfb | 11200 | && re_exec (objfile_name (sal.symtab->objfile))) |
4ed6b5be | 11201 | return 1; |
f7f9143b JB |
11202 | } |
11203 | ||
4ed6b5be | 11204 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11205 | |
e9e07ba6 | 11206 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11207 | if (func_name == NULL) |
11208 | return 1; | |
11209 | ||
11210 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11211 | { | |
11212 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11213 | if (re_exec (func_name)) | |
55b87a52 KS |
11214 | { |
11215 | xfree (func_name); | |
11216 | return 1; | |
11217 | } | |
f7f9143b JB |
11218 | } |
11219 | ||
55b87a52 | 11220 | xfree (func_name); |
f7f9143b JB |
11221 | return 0; |
11222 | } | |
11223 | ||
11224 | /* Find the first frame that contains debugging information and that is not | |
11225 | part of the Ada run-time, starting from FI and moving upward. */ | |
11226 | ||
0ef643c8 | 11227 | void |
f7f9143b JB |
11228 | ada_find_printable_frame (struct frame_info *fi) |
11229 | { | |
11230 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11231 | { | |
11232 | if (!is_known_support_routine (fi)) | |
11233 | { | |
11234 | select_frame (fi); | |
11235 | break; | |
11236 | } | |
11237 | } | |
11238 | ||
11239 | } | |
11240 | ||
11241 | /* Assuming that the inferior just triggered an unhandled exception | |
11242 | catchpoint, return the address in inferior memory where the name | |
11243 | of the exception is stored. | |
11244 | ||
11245 | Return zero if the address could not be computed. */ | |
11246 | ||
11247 | static CORE_ADDR | |
11248 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11249 | { |
11250 | return parse_and_eval_address ("e.full_name"); | |
11251 | } | |
11252 | ||
11253 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11254 | should be used when the inferior uses an older version of the runtime, | |
11255 | where the exception name needs to be extracted from a specific frame | |
11256 | several frames up in the callstack. */ | |
11257 | ||
11258 | static CORE_ADDR | |
11259 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11260 | { |
11261 | int frame_level; | |
11262 | struct frame_info *fi; | |
3eecfa55 | 11263 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11264 | struct cleanup *old_chain; |
f7f9143b JB |
11265 | |
11266 | /* To determine the name of this exception, we need to select | |
11267 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11268 | at least 3 levels up, so we simply skip the first 3 frames | |
11269 | without checking the name of their associated function. */ | |
11270 | fi = get_current_frame (); | |
11271 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11272 | if (fi != NULL) | |
11273 | fi = get_prev_frame (fi); | |
11274 | ||
55b87a52 | 11275 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
11276 | while (fi != NULL) |
11277 | { | |
55b87a52 | 11278 | char *func_name; |
692465f1 JB |
11279 | enum language func_lang; |
11280 | ||
e9e07ba6 | 11281 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
11282 | if (func_name != NULL) |
11283 | { | |
11284 | make_cleanup (xfree, func_name); | |
11285 | ||
11286 | if (strcmp (func_name, | |
11287 | data->exception_info->catch_exception_sym) == 0) | |
11288 | break; /* We found the frame we were looking for... */ | |
11289 | fi = get_prev_frame (fi); | |
11290 | } | |
f7f9143b | 11291 | } |
55b87a52 | 11292 | do_cleanups (old_chain); |
f7f9143b JB |
11293 | |
11294 | if (fi == NULL) | |
11295 | return 0; | |
11296 | ||
11297 | select_frame (fi); | |
11298 | return parse_and_eval_address ("id.full_name"); | |
11299 | } | |
11300 | ||
11301 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11302 | (of any type), return the address in inferior memory where the name | |
11303 | of the exception is stored, if applicable. | |
11304 | ||
11305 | Return zero if the address could not be computed, or if not relevant. */ | |
11306 | ||
11307 | static CORE_ADDR | |
761269c8 | 11308 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11309 | struct breakpoint *b) |
11310 | { | |
3eecfa55 JB |
11311 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11312 | ||
f7f9143b JB |
11313 | switch (ex) |
11314 | { | |
761269c8 | 11315 | case ada_catch_exception: |
f7f9143b JB |
11316 | return (parse_and_eval_address ("e.full_name")); |
11317 | break; | |
11318 | ||
761269c8 | 11319 | case ada_catch_exception_unhandled: |
3eecfa55 | 11320 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11321 | break; |
11322 | ||
761269c8 | 11323 | case ada_catch_assert: |
f7f9143b JB |
11324 | return 0; /* Exception name is not relevant in this case. */ |
11325 | break; | |
11326 | ||
11327 | default: | |
11328 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11329 | break; | |
11330 | } | |
11331 | ||
11332 | return 0; /* Should never be reached. */ | |
11333 | } | |
11334 | ||
11335 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11336 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11337 | When an error is intercepted, a warning with the error message is printed, | |
11338 | and zero is returned. */ | |
11339 | ||
11340 | static CORE_ADDR | |
761269c8 | 11341 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11342 | struct breakpoint *b) |
11343 | { | |
bfd189b1 | 11344 | volatile struct gdb_exception e; |
f7f9143b JB |
11345 | CORE_ADDR result = 0; |
11346 | ||
11347 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11348 | { | |
11349 | result = ada_exception_name_addr_1 (ex, b); | |
11350 | } | |
11351 | ||
11352 | if (e.reason < 0) | |
11353 | { | |
11354 | warning (_("failed to get exception name: %s"), e.message); | |
11355 | return 0; | |
11356 | } | |
11357 | ||
11358 | return result; | |
11359 | } | |
11360 | ||
28010a5d PA |
11361 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11362 | ||
11363 | /* Ada catchpoints. | |
11364 | ||
11365 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11366 | stop the target on every exception the program throws. When a user | |
11367 | specifies the name of a specific exception, we translate this | |
11368 | request into a condition expression (in text form), and then parse | |
11369 | it into an expression stored in each of the catchpoint's locations. | |
11370 | We then use this condition to check whether the exception that was | |
11371 | raised is the one the user is interested in. If not, then the | |
11372 | target is resumed again. We store the name of the requested | |
11373 | exception, in order to be able to re-set the condition expression | |
11374 | when symbols change. */ | |
11375 | ||
11376 | /* An instance of this type is used to represent an Ada catchpoint | |
11377 | breakpoint location. It includes a "struct bp_location" as a kind | |
11378 | of base class; users downcast to "struct bp_location *" when | |
11379 | needed. */ | |
11380 | ||
11381 | struct ada_catchpoint_location | |
11382 | { | |
11383 | /* The base class. */ | |
11384 | struct bp_location base; | |
11385 | ||
11386 | /* The condition that checks whether the exception that was raised | |
11387 | is the specific exception the user specified on catchpoint | |
11388 | creation. */ | |
11389 | struct expression *excep_cond_expr; | |
11390 | }; | |
11391 | ||
11392 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11393 | Ada exception catchpoint kinds. */ | |
11394 | ||
11395 | static void | |
11396 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11397 | { | |
11398 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11399 | ||
11400 | xfree (al->excep_cond_expr); | |
11401 | } | |
11402 | ||
11403 | /* The vtable to be used in Ada catchpoint locations. */ | |
11404 | ||
11405 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11406 | { | |
11407 | ada_catchpoint_location_dtor | |
11408 | }; | |
11409 | ||
11410 | /* An instance of this type is used to represent an Ada catchpoint. | |
11411 | It includes a "struct breakpoint" as a kind of base class; users | |
11412 | downcast to "struct breakpoint *" when needed. */ | |
11413 | ||
11414 | struct ada_catchpoint | |
11415 | { | |
11416 | /* The base class. */ | |
11417 | struct breakpoint base; | |
11418 | ||
11419 | /* The name of the specific exception the user specified. */ | |
11420 | char *excep_string; | |
11421 | }; | |
11422 | ||
11423 | /* Parse the exception condition string in the context of each of the | |
11424 | catchpoint's locations, and store them for later evaluation. */ | |
11425 | ||
11426 | static void | |
11427 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11428 | { | |
11429 | struct cleanup *old_chain; | |
11430 | struct bp_location *bl; | |
11431 | char *cond_string; | |
11432 | ||
11433 | /* Nothing to do if there's no specific exception to catch. */ | |
11434 | if (c->excep_string == NULL) | |
11435 | return; | |
11436 | ||
11437 | /* Same if there are no locations... */ | |
11438 | if (c->base.loc == NULL) | |
11439 | return; | |
11440 | ||
11441 | /* Compute the condition expression in text form, from the specific | |
11442 | expection we want to catch. */ | |
11443 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11444 | old_chain = make_cleanup (xfree, cond_string); | |
11445 | ||
11446 | /* Iterate over all the catchpoint's locations, and parse an | |
11447 | expression for each. */ | |
11448 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11449 | { | |
11450 | struct ada_catchpoint_location *ada_loc | |
11451 | = (struct ada_catchpoint_location *) bl; | |
11452 | struct expression *exp = NULL; | |
11453 | ||
11454 | if (!bl->shlib_disabled) | |
11455 | { | |
11456 | volatile struct gdb_exception e; | |
bbc13ae3 | 11457 | const char *s; |
28010a5d PA |
11458 | |
11459 | s = cond_string; | |
11460 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11461 | { | |
1bb9788d TT |
11462 | exp = parse_exp_1 (&s, bl->address, |
11463 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11464 | } |
11465 | if (e.reason < 0) | |
849f2b52 JB |
11466 | { |
11467 | warning (_("failed to reevaluate internal exception condition " | |
11468 | "for catchpoint %d: %s"), | |
11469 | c->base.number, e.message); | |
11470 | /* There is a bug in GCC on sparc-solaris when building with | |
11471 | optimization which causes EXP to change unexpectedly | |
11472 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
11473 | The problem should be fixed starting with GCC 4.9. | |
11474 | In the meantime, work around it by forcing EXP back | |
11475 | to NULL. */ | |
11476 | exp = NULL; | |
11477 | } | |
28010a5d PA |
11478 | } |
11479 | ||
11480 | ada_loc->excep_cond_expr = exp; | |
11481 | } | |
11482 | ||
11483 | do_cleanups (old_chain); | |
11484 | } | |
11485 | ||
11486 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11487 | exception catchpoint kinds. */ | |
11488 | ||
11489 | static void | |
761269c8 | 11490 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11491 | { |
11492 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11493 | ||
11494 | xfree (c->excep_string); | |
348d480f | 11495 | |
2060206e | 11496 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11497 | } |
11498 | ||
11499 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11500 | structure for all exception catchpoint kinds. */ | |
11501 | ||
11502 | static struct bp_location * | |
761269c8 | 11503 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
11504 | struct breakpoint *self) |
11505 | { | |
11506 | struct ada_catchpoint_location *loc; | |
11507 | ||
11508 | loc = XNEW (struct ada_catchpoint_location); | |
11509 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11510 | loc->excep_cond_expr = NULL; | |
11511 | return &loc->base; | |
11512 | } | |
11513 | ||
11514 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11515 | exception catchpoint kinds. */ | |
11516 | ||
11517 | static void | |
761269c8 | 11518 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11519 | { |
11520 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11521 | ||
11522 | /* Call the base class's method. This updates the catchpoint's | |
11523 | locations. */ | |
2060206e | 11524 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11525 | |
11526 | /* Reparse the exception conditional expressions. One for each | |
11527 | location. */ | |
11528 | create_excep_cond_exprs (c); | |
11529 | } | |
11530 | ||
11531 | /* Returns true if we should stop for this breakpoint hit. If the | |
11532 | user specified a specific exception, we only want to cause a stop | |
11533 | if the program thrown that exception. */ | |
11534 | ||
11535 | static int | |
11536 | should_stop_exception (const struct bp_location *bl) | |
11537 | { | |
11538 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11539 | const struct ada_catchpoint_location *ada_loc | |
11540 | = (const struct ada_catchpoint_location *) bl; | |
11541 | volatile struct gdb_exception ex; | |
11542 | int stop; | |
11543 | ||
11544 | /* With no specific exception, should always stop. */ | |
11545 | if (c->excep_string == NULL) | |
11546 | return 1; | |
11547 | ||
11548 | if (ada_loc->excep_cond_expr == NULL) | |
11549 | { | |
11550 | /* We will have a NULL expression if back when we were creating | |
11551 | the expressions, this location's had failed to parse. */ | |
11552 | return 1; | |
11553 | } | |
11554 | ||
11555 | stop = 1; | |
11556 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11557 | { | |
11558 | struct value *mark; | |
11559 | ||
11560 | mark = value_mark (); | |
11561 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11562 | value_free_to_mark (mark); | |
11563 | } | |
11564 | if (ex.reason < 0) | |
11565 | exception_fprintf (gdb_stderr, ex, | |
11566 | _("Error in testing exception condition:\n")); | |
11567 | return stop; | |
11568 | } | |
11569 | ||
11570 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11571 | for all exception catchpoint kinds. */ | |
11572 | ||
11573 | static void | |
761269c8 | 11574 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
11575 | { |
11576 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11577 | } | |
11578 | ||
f7f9143b JB |
11579 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11580 | for all exception catchpoint kinds. */ | |
11581 | ||
11582 | static enum print_stop_action | |
761269c8 | 11583 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11584 | { |
79a45e25 | 11585 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11586 | struct breakpoint *b = bs->breakpoint_at; |
11587 | ||
956a9fb9 | 11588 | annotate_catchpoint (b->number); |
f7f9143b | 11589 | |
956a9fb9 | 11590 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11591 | { |
956a9fb9 JB |
11592 | ui_out_field_string (uiout, "reason", |
11593 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11594 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11595 | } |
11596 | ||
00eb2c4a JB |
11597 | ui_out_text (uiout, |
11598 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11599 | : "\nCatchpoint "); | |
956a9fb9 JB |
11600 | ui_out_field_int (uiout, "bkptno", b->number); |
11601 | ui_out_text (uiout, ", "); | |
f7f9143b | 11602 | |
f7f9143b JB |
11603 | switch (ex) |
11604 | { | |
761269c8 JB |
11605 | case ada_catch_exception: |
11606 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
11607 | { |
11608 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11609 | char exception_name[256]; | |
11610 | ||
11611 | if (addr != 0) | |
11612 | { | |
c714b426 PA |
11613 | read_memory (addr, (gdb_byte *) exception_name, |
11614 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
11615 | exception_name [sizeof (exception_name) - 1] = '\0'; |
11616 | } | |
11617 | else | |
11618 | { | |
11619 | /* For some reason, we were unable to read the exception | |
11620 | name. This could happen if the Runtime was compiled | |
11621 | without debugging info, for instance. In that case, | |
11622 | just replace the exception name by the generic string | |
11623 | "exception" - it will read as "an exception" in the | |
11624 | notification we are about to print. */ | |
967cff16 | 11625 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11626 | } |
11627 | /* In the case of unhandled exception breakpoints, we print | |
11628 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11629 | it clearer to the user which kind of catchpoint just got | |
11630 | hit. We used ui_out_text to make sure that this extra | |
11631 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 11632 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
11633 | ui_out_text (uiout, "unhandled "); |
11634 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11635 | } | |
11636 | break; | |
761269c8 | 11637 | case ada_catch_assert: |
956a9fb9 JB |
11638 | /* In this case, the name of the exception is not really |
11639 | important. Just print "failed assertion" to make it clearer | |
11640 | that his program just hit an assertion-failure catchpoint. | |
11641 | We used ui_out_text because this info does not belong in | |
11642 | the MI output. */ | |
11643 | ui_out_text (uiout, "failed assertion"); | |
11644 | break; | |
f7f9143b | 11645 | } |
956a9fb9 JB |
11646 | ui_out_text (uiout, " at "); |
11647 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11648 | |
11649 | return PRINT_SRC_AND_LOC; | |
11650 | } | |
11651 | ||
11652 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11653 | for all exception catchpoint kinds. */ | |
11654 | ||
11655 | static void | |
761269c8 | 11656 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 11657 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11658 | { |
79a45e25 | 11659 | struct ui_out *uiout = current_uiout; |
28010a5d | 11660 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11661 | struct value_print_options opts; |
11662 | ||
11663 | get_user_print_options (&opts); | |
11664 | if (opts.addressprint) | |
f7f9143b JB |
11665 | { |
11666 | annotate_field (4); | |
5af949e3 | 11667 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11668 | } |
11669 | ||
11670 | annotate_field (5); | |
a6d9a66e | 11671 | *last_loc = b->loc; |
f7f9143b JB |
11672 | switch (ex) |
11673 | { | |
761269c8 | 11674 | case ada_catch_exception: |
28010a5d | 11675 | if (c->excep_string != NULL) |
f7f9143b | 11676 | { |
28010a5d PA |
11677 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11678 | ||
f7f9143b JB |
11679 | ui_out_field_string (uiout, "what", msg); |
11680 | xfree (msg); | |
11681 | } | |
11682 | else | |
11683 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11684 | ||
11685 | break; | |
11686 | ||
761269c8 | 11687 | case ada_catch_exception_unhandled: |
f7f9143b JB |
11688 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
11689 | break; | |
11690 | ||
761269c8 | 11691 | case ada_catch_assert: |
f7f9143b JB |
11692 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
11693 | break; | |
11694 | ||
11695 | default: | |
11696 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11697 | break; | |
11698 | } | |
11699 | } | |
11700 | ||
11701 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11702 | for all exception catchpoint kinds. */ | |
11703 | ||
11704 | static void | |
761269c8 | 11705 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11706 | struct breakpoint *b) |
11707 | { | |
28010a5d | 11708 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11709 | struct ui_out *uiout = current_uiout; |
28010a5d | 11710 | |
00eb2c4a JB |
11711 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11712 | : _("Catchpoint ")); | |
11713 | ui_out_field_int (uiout, "bkptno", b->number); | |
11714 | ui_out_text (uiout, ": "); | |
11715 | ||
f7f9143b JB |
11716 | switch (ex) |
11717 | { | |
761269c8 | 11718 | case ada_catch_exception: |
28010a5d | 11719 | if (c->excep_string != NULL) |
00eb2c4a JB |
11720 | { |
11721 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11722 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11723 | ||
11724 | ui_out_text (uiout, info); | |
11725 | do_cleanups (old_chain); | |
11726 | } | |
f7f9143b | 11727 | else |
00eb2c4a | 11728 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11729 | break; |
11730 | ||
761269c8 | 11731 | case ada_catch_exception_unhandled: |
00eb2c4a | 11732 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11733 | break; |
11734 | ||
761269c8 | 11735 | case ada_catch_assert: |
00eb2c4a | 11736 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11737 | break; |
11738 | ||
11739 | default: | |
11740 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11741 | break; | |
11742 | } | |
11743 | } | |
11744 | ||
6149aea9 PA |
11745 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11746 | for all exception catchpoint kinds. */ | |
11747 | ||
11748 | static void | |
761269c8 | 11749 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
11750 | struct breakpoint *b, struct ui_file *fp) |
11751 | { | |
28010a5d PA |
11752 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11753 | ||
6149aea9 PA |
11754 | switch (ex) |
11755 | { | |
761269c8 | 11756 | case ada_catch_exception: |
6149aea9 | 11757 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
11758 | if (c->excep_string != NULL) |
11759 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11760 | break; |
11761 | ||
761269c8 | 11762 | case ada_catch_exception_unhandled: |
78076abc | 11763 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11764 | break; |
11765 | ||
761269c8 | 11766 | case ada_catch_assert: |
6149aea9 PA |
11767 | fprintf_filtered (fp, "catch assert"); |
11768 | break; | |
11769 | ||
11770 | default: | |
11771 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11772 | } | |
d9b3f62e | 11773 | print_recreate_thread (b, fp); |
6149aea9 PA |
11774 | } |
11775 | ||
f7f9143b JB |
11776 | /* Virtual table for "catch exception" breakpoints. */ |
11777 | ||
28010a5d PA |
11778 | static void |
11779 | dtor_catch_exception (struct breakpoint *b) | |
11780 | { | |
761269c8 | 11781 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
11782 | } |
11783 | ||
11784 | static struct bp_location * | |
11785 | allocate_location_catch_exception (struct breakpoint *self) | |
11786 | { | |
761269c8 | 11787 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
11788 | } |
11789 | ||
11790 | static void | |
11791 | re_set_catch_exception (struct breakpoint *b) | |
11792 | { | |
761269c8 | 11793 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
11794 | } |
11795 | ||
11796 | static void | |
11797 | check_status_catch_exception (bpstat bs) | |
11798 | { | |
761269c8 | 11799 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
11800 | } |
11801 | ||
f7f9143b | 11802 | static enum print_stop_action |
348d480f | 11803 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11804 | { |
761269c8 | 11805 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
11806 | } |
11807 | ||
11808 | static void | |
a6d9a66e | 11809 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11810 | { |
761269c8 | 11811 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
11812 | } |
11813 | ||
11814 | static void | |
11815 | print_mention_catch_exception (struct breakpoint *b) | |
11816 | { | |
761269c8 | 11817 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
11818 | } |
11819 | ||
6149aea9 PA |
11820 | static void |
11821 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11822 | { | |
761269c8 | 11823 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
11824 | } |
11825 | ||
2060206e | 11826 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11827 | |
11828 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11829 | ||
28010a5d PA |
11830 | static void |
11831 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11832 | { | |
761269c8 | 11833 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
11834 | } |
11835 | ||
11836 | static struct bp_location * | |
11837 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11838 | { | |
761269c8 | 11839 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
11840 | } |
11841 | ||
11842 | static void | |
11843 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11844 | { | |
761269c8 | 11845 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
11846 | } |
11847 | ||
11848 | static void | |
11849 | check_status_catch_exception_unhandled (bpstat bs) | |
11850 | { | |
761269c8 | 11851 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
11852 | } |
11853 | ||
f7f9143b | 11854 | static enum print_stop_action |
348d480f | 11855 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11856 | { |
761269c8 | 11857 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
11858 | } |
11859 | ||
11860 | static void | |
a6d9a66e UW |
11861 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11862 | struct bp_location **last_loc) | |
f7f9143b | 11863 | { |
761269c8 | 11864 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11865 | } |
11866 | ||
11867 | static void | |
11868 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11869 | { | |
761269c8 | 11870 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
11871 | } |
11872 | ||
6149aea9 PA |
11873 | static void |
11874 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11875 | struct ui_file *fp) | |
11876 | { | |
761269c8 | 11877 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
11878 | } |
11879 | ||
2060206e | 11880 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11881 | |
11882 | /* Virtual table for "catch assert" breakpoints. */ | |
11883 | ||
28010a5d PA |
11884 | static void |
11885 | dtor_catch_assert (struct breakpoint *b) | |
11886 | { | |
761269c8 | 11887 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
11888 | } |
11889 | ||
11890 | static struct bp_location * | |
11891 | allocate_location_catch_assert (struct breakpoint *self) | |
11892 | { | |
761269c8 | 11893 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
11894 | } |
11895 | ||
11896 | static void | |
11897 | re_set_catch_assert (struct breakpoint *b) | |
11898 | { | |
761269c8 | 11899 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
11900 | } |
11901 | ||
11902 | static void | |
11903 | check_status_catch_assert (bpstat bs) | |
11904 | { | |
761269c8 | 11905 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
11906 | } |
11907 | ||
f7f9143b | 11908 | static enum print_stop_action |
348d480f | 11909 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11910 | { |
761269c8 | 11911 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
11912 | } |
11913 | ||
11914 | static void | |
a6d9a66e | 11915 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11916 | { |
761269c8 | 11917 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
11918 | } |
11919 | ||
11920 | static void | |
11921 | print_mention_catch_assert (struct breakpoint *b) | |
11922 | { | |
761269c8 | 11923 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
11924 | } |
11925 | ||
6149aea9 PA |
11926 | static void |
11927 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11928 | { | |
761269c8 | 11929 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
11930 | } |
11931 | ||
2060206e | 11932 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11933 | |
f7f9143b JB |
11934 | /* Return a newly allocated copy of the first space-separated token |
11935 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11936 | token. | |
11937 | ||
11938 | Return NULL if ARGPS does not contain any more tokens. */ | |
11939 | ||
11940 | static char * | |
11941 | ada_get_next_arg (char **argsp) | |
11942 | { | |
11943 | char *args = *argsp; | |
11944 | char *end; | |
11945 | char *result; | |
11946 | ||
0fcd72ba | 11947 | args = skip_spaces (args); |
f7f9143b JB |
11948 | if (args[0] == '\0') |
11949 | return NULL; /* No more arguments. */ | |
11950 | ||
11951 | /* Find the end of the current argument. */ | |
11952 | ||
0fcd72ba | 11953 | end = skip_to_space (args); |
f7f9143b JB |
11954 | |
11955 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11956 | ||
11957 | *argsp = end; | |
11958 | ||
11959 | /* Make a copy of the current argument and return it. */ | |
11960 | ||
11961 | result = xmalloc (end - args + 1); | |
11962 | strncpy (result, args, end - args); | |
11963 | result[end - args] = '\0'; | |
11964 | ||
11965 | return result; | |
11966 | } | |
11967 | ||
11968 | /* Split the arguments specified in a "catch exception" command. | |
11969 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11970 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
11971 | specified by the user. |
11972 | If a condition is found at the end of the arguments, the condition | |
11973 | expression is stored in COND_STRING (memory must be deallocated | |
11974 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
11975 | |
11976 | static void | |
11977 | catch_ada_exception_command_split (char *args, | |
761269c8 | 11978 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
11979 | char **excep_string, |
11980 | char **cond_string) | |
f7f9143b JB |
11981 | { |
11982 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11983 | char *exception_name; | |
5845583d | 11984 | char *cond = NULL; |
f7f9143b JB |
11985 | |
11986 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
11987 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
11988 | { | |
11989 | /* This is not an exception name; this is the start of a condition | |
11990 | expression for a catchpoint on all exceptions. So, "un-get" | |
11991 | this token, and set exception_name to NULL. */ | |
11992 | xfree (exception_name); | |
11993 | exception_name = NULL; | |
11994 | args -= 2; | |
11995 | } | |
f7f9143b JB |
11996 | make_cleanup (xfree, exception_name); |
11997 | ||
5845583d | 11998 | /* Check to see if we have a condition. */ |
f7f9143b | 11999 | |
0fcd72ba | 12000 | args = skip_spaces (args); |
5845583d JB |
12001 | if (strncmp (args, "if", 2) == 0 |
12002 | && (isspace (args[2]) || args[2] == '\0')) | |
12003 | { | |
12004 | args += 2; | |
12005 | args = skip_spaces (args); | |
12006 | ||
12007 | if (args[0] == '\0') | |
12008 | error (_("Condition missing after `if' keyword")); | |
12009 | cond = xstrdup (args); | |
12010 | make_cleanup (xfree, cond); | |
12011 | ||
12012 | args += strlen (args); | |
12013 | } | |
12014 | ||
12015 | /* Check that we do not have any more arguments. Anything else | |
12016 | is unexpected. */ | |
f7f9143b JB |
12017 | |
12018 | if (args[0] != '\0') | |
12019 | error (_("Junk at end of expression")); | |
12020 | ||
12021 | discard_cleanups (old_chain); | |
12022 | ||
12023 | if (exception_name == NULL) | |
12024 | { | |
12025 | /* Catch all exceptions. */ | |
761269c8 | 12026 | *ex = ada_catch_exception; |
28010a5d | 12027 | *excep_string = NULL; |
f7f9143b JB |
12028 | } |
12029 | else if (strcmp (exception_name, "unhandled") == 0) | |
12030 | { | |
12031 | /* Catch unhandled exceptions. */ | |
761269c8 | 12032 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12033 | *excep_string = NULL; |
f7f9143b JB |
12034 | } |
12035 | else | |
12036 | { | |
12037 | /* Catch a specific exception. */ | |
761269c8 | 12038 | *ex = ada_catch_exception; |
28010a5d | 12039 | *excep_string = exception_name; |
f7f9143b | 12040 | } |
5845583d | 12041 | *cond_string = cond; |
f7f9143b JB |
12042 | } |
12043 | ||
12044 | /* Return the name of the symbol on which we should break in order to | |
12045 | implement a catchpoint of the EX kind. */ | |
12046 | ||
12047 | static const char * | |
761269c8 | 12048 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12049 | { |
3eecfa55 JB |
12050 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12051 | ||
12052 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12053 | |
f7f9143b JB |
12054 | switch (ex) |
12055 | { | |
761269c8 | 12056 | case ada_catch_exception: |
3eecfa55 | 12057 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12058 | break; |
761269c8 | 12059 | case ada_catch_exception_unhandled: |
3eecfa55 | 12060 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12061 | break; |
761269c8 | 12062 | case ada_catch_assert: |
3eecfa55 | 12063 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12064 | break; |
12065 | default: | |
12066 | internal_error (__FILE__, __LINE__, | |
12067 | _("unexpected catchpoint kind (%d)"), ex); | |
12068 | } | |
12069 | } | |
12070 | ||
12071 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12072 | of the EX kind. */ | |
12073 | ||
c0a91b2b | 12074 | static const struct breakpoint_ops * |
761269c8 | 12075 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12076 | { |
12077 | switch (ex) | |
12078 | { | |
761269c8 | 12079 | case ada_catch_exception: |
f7f9143b JB |
12080 | return (&catch_exception_breakpoint_ops); |
12081 | break; | |
761269c8 | 12082 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12083 | return (&catch_exception_unhandled_breakpoint_ops); |
12084 | break; | |
761269c8 | 12085 | case ada_catch_assert: |
f7f9143b JB |
12086 | return (&catch_assert_breakpoint_ops); |
12087 | break; | |
12088 | default: | |
12089 | internal_error (__FILE__, __LINE__, | |
12090 | _("unexpected catchpoint kind (%d)"), ex); | |
12091 | } | |
12092 | } | |
12093 | ||
12094 | /* Return the condition that will be used to match the current exception | |
12095 | being raised with the exception that the user wants to catch. This | |
12096 | assumes that this condition is used when the inferior just triggered | |
12097 | an exception catchpoint. | |
12098 | ||
12099 | The string returned is a newly allocated string that needs to be | |
12100 | deallocated later. */ | |
12101 | ||
12102 | static char * | |
28010a5d | 12103 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12104 | { |
3d0b0fa3 JB |
12105 | int i; |
12106 | ||
0963b4bd | 12107 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12108 | runtime units that have been compiled without debugging info; if |
28010a5d | 12109 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12110 | exception (e.g. "constraint_error") then, during the evaluation |
12111 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12112 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12113 | may then be set only on user-defined exceptions which have the |
12114 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12115 | ||
12116 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12117 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12118 | exception constraint_error" is rewritten into "catch exception |
12119 | standard.constraint_error". | |
12120 | ||
12121 | If an exception named contraint_error is defined in another package of | |
12122 | the inferior program, then the only way to specify this exception as a | |
12123 | breakpoint condition is to use its fully-qualified named: | |
12124 | e.g. my_package.constraint_error. */ | |
12125 | ||
12126 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12127 | { | |
28010a5d | 12128 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12129 | { |
12130 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12131 | excep_string); |
3d0b0fa3 JB |
12132 | } |
12133 | } | |
28010a5d | 12134 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12135 | } |
12136 | ||
12137 | /* Return the symtab_and_line that should be used to insert an exception | |
12138 | catchpoint of the TYPE kind. | |
12139 | ||
28010a5d PA |
12140 | EXCEP_STRING should contain the name of a specific exception that |
12141 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12142 | |
28010a5d PA |
12143 | ADDR_STRING returns the name of the function where the real |
12144 | breakpoint that implements the catchpoints is set, depending on the | |
12145 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12146 | |
12147 | static struct symtab_and_line | |
761269c8 | 12148 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12149 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12150 | { |
12151 | const char *sym_name; | |
12152 | struct symbol *sym; | |
f7f9143b | 12153 | |
0259addd JB |
12154 | /* First, find out which exception support info to use. */ |
12155 | ada_exception_support_info_sniffer (); | |
12156 | ||
12157 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12158 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12159 | sym_name = ada_exception_sym_name (ex); |
12160 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12161 | ||
f17011e0 JB |
12162 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12163 | did not exist, ada_exception_support_info_sniffer would have | |
12164 | raised an exception. | |
f7f9143b | 12165 | |
f17011e0 JB |
12166 | Also, ada_exception_support_info_sniffer should have already |
12167 | verified that SYM is a function symbol. */ | |
12168 | gdb_assert (sym != NULL); | |
12169 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12170 | |
12171 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12172 | *addr_string = xstrdup (sym_name); |
12173 | ||
f7f9143b | 12174 | /* Set OPS. */ |
4b9eee8c | 12175 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12176 | |
f17011e0 | 12177 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12178 | } |
12179 | ||
b4a5b78b | 12180 | /* Create an Ada exception catchpoint. |
f7f9143b | 12181 | |
b4a5b78b | 12182 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12183 | |
2df4d1d5 JB |
12184 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12185 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12186 | of the exception to which this catchpoint applies. When not NULL, | |
12187 | the string must be allocated on the heap, and its deallocation | |
12188 | is no longer the responsibility of the caller. | |
12189 | ||
12190 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12191 | must be allocated on the heap, and its deallocation is no longer | |
12192 | the responsibility of the caller. | |
f7f9143b | 12193 | |
b4a5b78b JB |
12194 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12195 | should be temporary. | |
28010a5d | 12196 | |
b4a5b78b | 12197 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12198 | |
349774ef | 12199 | void |
28010a5d | 12200 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12201 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12202 | char *excep_string, |
5845583d | 12203 | char *cond_string, |
28010a5d | 12204 | int tempflag, |
349774ef | 12205 | int disabled, |
28010a5d PA |
12206 | int from_tty) |
12207 | { | |
12208 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12209 | char *addr_string = NULL; |
12210 | const struct breakpoint_ops *ops = NULL; | |
12211 | struct symtab_and_line sal | |
12212 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12213 | |
12214 | c = XNEW (struct ada_catchpoint); | |
12215 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12216 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12217 | c->excep_string = excep_string; |
12218 | create_excep_cond_exprs (c); | |
5845583d JB |
12219 | if (cond_string != NULL) |
12220 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12221 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12222 | } |
12223 | ||
9ac4176b PA |
12224 | /* Implement the "catch exception" command. */ |
12225 | ||
12226 | static void | |
12227 | catch_ada_exception_command (char *arg, int from_tty, | |
12228 | struct cmd_list_element *command) | |
12229 | { | |
12230 | struct gdbarch *gdbarch = get_current_arch (); | |
12231 | int tempflag; | |
761269c8 | 12232 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12233 | char *excep_string = NULL; |
5845583d | 12234 | char *cond_string = NULL; |
9ac4176b PA |
12235 | |
12236 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12237 | ||
12238 | if (!arg) | |
12239 | arg = ""; | |
b4a5b78b JB |
12240 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12241 | &cond_string); | |
12242 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12243 | excep_string, cond_string, | |
349774ef JB |
12244 | tempflag, 1 /* enabled */, |
12245 | from_tty); | |
9ac4176b PA |
12246 | } |
12247 | ||
b4a5b78b | 12248 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12249 | |
b4a5b78b JB |
12250 | ARGS contains the command's arguments (or the empty string if |
12251 | no arguments were passed). | |
5845583d JB |
12252 | |
12253 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12254 | (the memory needs to be deallocated after use). */ |
5845583d | 12255 | |
b4a5b78b JB |
12256 | static void |
12257 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12258 | { |
5845583d | 12259 | args = skip_spaces (args); |
f7f9143b | 12260 | |
5845583d JB |
12261 | /* Check whether a condition was provided. */ |
12262 | if (strncmp (args, "if", 2) == 0 | |
12263 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12264 | { |
5845583d | 12265 | args += 2; |
0fcd72ba | 12266 | args = skip_spaces (args); |
5845583d JB |
12267 | if (args[0] == '\0') |
12268 | error (_("condition missing after `if' keyword")); | |
12269 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12270 | } |
12271 | ||
5845583d JB |
12272 | /* Otherwise, there should be no other argument at the end of |
12273 | the command. */ | |
12274 | else if (args[0] != '\0') | |
12275 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12276 | } |
12277 | ||
9ac4176b PA |
12278 | /* Implement the "catch assert" command. */ |
12279 | ||
12280 | static void | |
12281 | catch_assert_command (char *arg, int from_tty, | |
12282 | struct cmd_list_element *command) | |
12283 | { | |
12284 | struct gdbarch *gdbarch = get_current_arch (); | |
12285 | int tempflag; | |
5845583d | 12286 | char *cond_string = NULL; |
9ac4176b PA |
12287 | |
12288 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12289 | ||
12290 | if (!arg) | |
12291 | arg = ""; | |
b4a5b78b | 12292 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 12293 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 12294 | NULL, cond_string, |
349774ef JB |
12295 | tempflag, 1 /* enabled */, |
12296 | from_tty); | |
9ac4176b | 12297 | } |
778865d3 JB |
12298 | |
12299 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12300 | ||
12301 | static int | |
12302 | ada_is_exception_sym (struct symbol *sym) | |
12303 | { | |
12304 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
12305 | ||
12306 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
12307 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
12308 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12309 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12310 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
12311 | } | |
12312 | ||
12313 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12314 | Ada exception object. This matches all exceptions except the ones | |
12315 | defined by the Ada language. */ | |
12316 | ||
12317 | static int | |
12318 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12319 | { | |
12320 | int i; | |
12321 | ||
12322 | if (!ada_is_exception_sym (sym)) | |
12323 | return 0; | |
12324 | ||
12325 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12326 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
12327 | return 0; /* A standard exception. */ | |
12328 | ||
12329 | /* Numeric_Error is also a standard exception, so exclude it. | |
12330 | See the STANDARD_EXC description for more details as to why | |
12331 | this exception is not listed in that array. */ | |
12332 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
12333 | return 0; | |
12334 | ||
12335 | return 1; | |
12336 | } | |
12337 | ||
12338 | /* A helper function for qsort, comparing two struct ada_exc_info | |
12339 | objects. | |
12340 | ||
12341 | The comparison is determined first by exception name, and then | |
12342 | by exception address. */ | |
12343 | ||
12344 | static int | |
12345 | compare_ada_exception_info (const void *a, const void *b) | |
12346 | { | |
12347 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
12348 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
12349 | int result; | |
12350 | ||
12351 | result = strcmp (exc_a->name, exc_b->name); | |
12352 | if (result != 0) | |
12353 | return result; | |
12354 | ||
12355 | if (exc_a->addr < exc_b->addr) | |
12356 | return -1; | |
12357 | if (exc_a->addr > exc_b->addr) | |
12358 | return 1; | |
12359 | ||
12360 | return 0; | |
12361 | } | |
12362 | ||
12363 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12364 | routine, but keeping the first SKIP elements untouched. | |
12365 | ||
12366 | All duplicates are also removed. */ | |
12367 | ||
12368 | static void | |
12369 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
12370 | int skip) | |
12371 | { | |
12372 | struct ada_exc_info *to_sort | |
12373 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
12374 | int to_sort_len | |
12375 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
12376 | int i, j; | |
12377 | ||
12378 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
12379 | compare_ada_exception_info); | |
12380 | ||
12381 | for (i = 1, j = 1; i < to_sort_len; i++) | |
12382 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
12383 | to_sort[j++] = to_sort[i]; | |
12384 | to_sort_len = j; | |
12385 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
12386 | } | |
12387 | ||
12388 | /* A function intended as the "name_matcher" callback in the struct | |
12389 | quick_symbol_functions' expand_symtabs_matching method. | |
12390 | ||
12391 | SEARCH_NAME is the symbol's search name. | |
12392 | ||
12393 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
12394 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
12395 | is null, no filtering is performed, and all symbols are a positive | |
12396 | match. */ | |
12397 | ||
12398 | static int | |
12399 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
12400 | { | |
12401 | regex_t *preg = user_data; | |
12402 | ||
12403 | if (preg == NULL) | |
12404 | return 1; | |
12405 | ||
12406 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
12407 | the regular expression used to do the matching refers to | |
12408 | the natural name. So match against the decoded name. */ | |
12409 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
12410 | } | |
12411 | ||
12412 | /* Add all exceptions defined by the Ada standard whose name match | |
12413 | a regular expression. | |
12414 | ||
12415 | If PREG is not NULL, then this regexp_t object is used to | |
12416 | perform the symbol name matching. Otherwise, no name-based | |
12417 | filtering is performed. | |
12418 | ||
12419 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12420 | gets pushed. */ | |
12421 | ||
12422 | static void | |
12423 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12424 | { | |
12425 | int i; | |
12426 | ||
12427 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12428 | { | |
12429 | if (preg == NULL | |
12430 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
12431 | { | |
12432 | struct bound_minimal_symbol msymbol | |
12433 | = ada_lookup_simple_minsym (standard_exc[i]); | |
12434 | ||
12435 | if (msymbol.minsym != NULL) | |
12436 | { | |
12437 | struct ada_exc_info info | |
12438 | = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)}; | |
12439 | ||
12440 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12441 | } | |
12442 | } | |
12443 | } | |
12444 | } | |
12445 | ||
12446 | /* Add all Ada exceptions defined locally and accessible from the given | |
12447 | FRAME. | |
12448 | ||
12449 | If PREG is not NULL, then this regexp_t object is used to | |
12450 | perform the symbol name matching. Otherwise, no name-based | |
12451 | filtering is performed. | |
12452 | ||
12453 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12454 | gets pushed. */ | |
12455 | ||
12456 | static void | |
12457 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
12458 | VEC(ada_exc_info) **exceptions) | |
12459 | { | |
12460 | struct block *block = get_frame_block (frame, 0); | |
12461 | ||
12462 | while (block != 0) | |
12463 | { | |
12464 | struct block_iterator iter; | |
12465 | struct symbol *sym; | |
12466 | ||
12467 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
12468 | { | |
12469 | switch (SYMBOL_CLASS (sym)) | |
12470 | { | |
12471 | case LOC_TYPEDEF: | |
12472 | case LOC_BLOCK: | |
12473 | case LOC_CONST: | |
12474 | break; | |
12475 | default: | |
12476 | if (ada_is_exception_sym (sym)) | |
12477 | { | |
12478 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
12479 | SYMBOL_VALUE_ADDRESS (sym)}; | |
12480 | ||
12481 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12482 | } | |
12483 | } | |
12484 | } | |
12485 | if (BLOCK_FUNCTION (block) != NULL) | |
12486 | break; | |
12487 | block = BLOCK_SUPERBLOCK (block); | |
12488 | } | |
12489 | } | |
12490 | ||
12491 | /* Add all exceptions defined globally whose name name match | |
12492 | a regular expression, excluding standard exceptions. | |
12493 | ||
12494 | The reason we exclude standard exceptions is that they need | |
12495 | to be handled separately: Standard exceptions are defined inside | |
12496 | a runtime unit which is normally not compiled with debugging info, | |
12497 | and thus usually do not show up in our symbol search. However, | |
12498 | if the unit was in fact built with debugging info, we need to | |
12499 | exclude them because they would duplicate the entry we found | |
12500 | during the special loop that specifically searches for those | |
12501 | standard exceptions. | |
12502 | ||
12503 | If PREG is not NULL, then this regexp_t object is used to | |
12504 | perform the symbol name matching. Otherwise, no name-based | |
12505 | filtering is performed. | |
12506 | ||
12507 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12508 | gets pushed. */ | |
12509 | ||
12510 | static void | |
12511 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12512 | { | |
12513 | struct objfile *objfile; | |
12514 | struct symtab *s; | |
12515 | ||
bb4142cf DE |
12516 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, |
12517 | VARIABLES_DOMAIN, preg); | |
778865d3 JB |
12518 | |
12519 | ALL_PRIMARY_SYMTABS (objfile, s) | |
12520 | { | |
12521 | struct blockvector *bv = BLOCKVECTOR (s); | |
12522 | int i; | |
12523 | ||
12524 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
12525 | { | |
12526 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
12527 | struct block_iterator iter; | |
12528 | struct symbol *sym; | |
12529 | ||
12530 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
12531 | if (ada_is_non_standard_exception_sym (sym) | |
12532 | && (preg == NULL | |
12533 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
12534 | 0, NULL, 0) == 0)) | |
12535 | { | |
12536 | struct ada_exc_info info | |
12537 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
12538 | ||
12539 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12540 | } | |
12541 | } | |
12542 | } | |
12543 | } | |
12544 | ||
12545 | /* Implements ada_exceptions_list with the regular expression passed | |
12546 | as a regex_t, rather than a string. | |
12547 | ||
12548 | If not NULL, PREG is used to filter out exceptions whose names | |
12549 | do not match. Otherwise, all exceptions are listed. */ | |
12550 | ||
12551 | static VEC(ada_exc_info) * | |
12552 | ada_exceptions_list_1 (regex_t *preg) | |
12553 | { | |
12554 | VEC(ada_exc_info) *result = NULL; | |
12555 | struct cleanup *old_chain | |
12556 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
12557 | int prev_len; | |
12558 | ||
12559 | /* First, list the known standard exceptions. These exceptions | |
12560 | need to be handled separately, as they are usually defined in | |
12561 | runtime units that have been compiled without debugging info. */ | |
12562 | ||
12563 | ada_add_standard_exceptions (preg, &result); | |
12564 | ||
12565 | /* Next, find all exceptions whose scope is local and accessible | |
12566 | from the currently selected frame. */ | |
12567 | ||
12568 | if (has_stack_frames ()) | |
12569 | { | |
12570 | prev_len = VEC_length (ada_exc_info, result); | |
12571 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
12572 | &result); | |
12573 | if (VEC_length (ada_exc_info, result) > prev_len) | |
12574 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
12575 | } | |
12576 | ||
12577 | /* Add all exceptions whose scope is global. */ | |
12578 | ||
12579 | prev_len = VEC_length (ada_exc_info, result); | |
12580 | ada_add_global_exceptions (preg, &result); | |
12581 | if (VEC_length (ada_exc_info, result) > prev_len) | |
12582 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
12583 | ||
12584 | discard_cleanups (old_chain); | |
12585 | return result; | |
12586 | } | |
12587 | ||
12588 | /* Return a vector of ada_exc_info. | |
12589 | ||
12590 | If REGEXP is NULL, all exceptions are included in the result. | |
12591 | Otherwise, it should contain a valid regular expression, | |
12592 | and only the exceptions whose names match that regular expression | |
12593 | are included in the result. | |
12594 | ||
12595 | The exceptions are sorted in the following order: | |
12596 | - Standard exceptions (defined by the Ada language), in | |
12597 | alphabetical order; | |
12598 | - Exceptions only visible from the current frame, in | |
12599 | alphabetical order; | |
12600 | - Exceptions whose scope is global, in alphabetical order. */ | |
12601 | ||
12602 | VEC(ada_exc_info) * | |
12603 | ada_exceptions_list (const char *regexp) | |
12604 | { | |
12605 | VEC(ada_exc_info) *result = NULL; | |
12606 | struct cleanup *old_chain = NULL; | |
12607 | regex_t reg; | |
12608 | ||
12609 | if (regexp != NULL) | |
12610 | old_chain = compile_rx_or_error (®, regexp, | |
12611 | _("invalid regular expression")); | |
12612 | ||
12613 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
12614 | ||
12615 | if (old_chain != NULL) | |
12616 | do_cleanups (old_chain); | |
12617 | return result; | |
12618 | } | |
12619 | ||
12620 | /* Implement the "info exceptions" command. */ | |
12621 | ||
12622 | static void | |
12623 | info_exceptions_command (char *regexp, int from_tty) | |
12624 | { | |
12625 | VEC(ada_exc_info) *exceptions; | |
12626 | struct cleanup *cleanup; | |
12627 | struct gdbarch *gdbarch = get_current_arch (); | |
12628 | int ix; | |
12629 | struct ada_exc_info *info; | |
12630 | ||
12631 | exceptions = ada_exceptions_list (regexp); | |
12632 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
12633 | ||
12634 | if (regexp != NULL) | |
12635 | printf_filtered | |
12636 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
12637 | else | |
12638 | printf_filtered (_("All defined Ada exceptions:\n")); | |
12639 | ||
12640 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
12641 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
12642 | ||
12643 | do_cleanups (cleanup); | |
12644 | } | |
12645 | ||
4c4b4cd2 PH |
12646 | /* Operators */ |
12647 | /* Information about operators given special treatment in functions | |
12648 | below. */ | |
12649 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
12650 | ||
12651 | #define ADA_OPERATORS \ | |
12652 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
12653 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
12654 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
12655 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
12656 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
12657 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
12658 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
12659 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
12660 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
12661 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
12662 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
12663 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
12664 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
12665 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
12666 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
12667 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
12668 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
12669 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
12670 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
12671 | |
12672 | static void | |
554794dc SDJ |
12673 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
12674 | int *argsp) | |
4c4b4cd2 PH |
12675 | { |
12676 | switch (exp->elts[pc - 1].opcode) | |
12677 | { | |
76a01679 | 12678 | default: |
4c4b4cd2 PH |
12679 | operator_length_standard (exp, pc, oplenp, argsp); |
12680 | break; | |
12681 | ||
12682 | #define OP_DEFN(op, len, args, binop) \ | |
12683 | case op: *oplenp = len; *argsp = args; break; | |
12684 | ADA_OPERATORS; | |
12685 | #undef OP_DEFN | |
52ce6436 PH |
12686 | |
12687 | case OP_AGGREGATE: | |
12688 | *oplenp = 3; | |
12689 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
12690 | break; | |
12691 | ||
12692 | case OP_CHOICES: | |
12693 | *oplenp = 3; | |
12694 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
12695 | break; | |
4c4b4cd2 PH |
12696 | } |
12697 | } | |
12698 | ||
c0201579 JK |
12699 | /* Implementation of the exp_descriptor method operator_check. */ |
12700 | ||
12701 | static int | |
12702 | ada_operator_check (struct expression *exp, int pos, | |
12703 | int (*objfile_func) (struct objfile *objfile, void *data), | |
12704 | void *data) | |
12705 | { | |
12706 | const union exp_element *const elts = exp->elts; | |
12707 | struct type *type = NULL; | |
12708 | ||
12709 | switch (elts[pos].opcode) | |
12710 | { | |
12711 | case UNOP_IN_RANGE: | |
12712 | case UNOP_QUAL: | |
12713 | type = elts[pos + 1].type; | |
12714 | break; | |
12715 | ||
12716 | default: | |
12717 | return operator_check_standard (exp, pos, objfile_func, data); | |
12718 | } | |
12719 | ||
12720 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
12721 | ||
12722 | if (type && TYPE_OBJFILE (type) | |
12723 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
12724 | return 1; | |
12725 | ||
12726 | return 0; | |
12727 | } | |
12728 | ||
4c4b4cd2 PH |
12729 | static char * |
12730 | ada_op_name (enum exp_opcode opcode) | |
12731 | { | |
12732 | switch (opcode) | |
12733 | { | |
76a01679 | 12734 | default: |
4c4b4cd2 | 12735 | return op_name_standard (opcode); |
52ce6436 | 12736 | |
4c4b4cd2 PH |
12737 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
12738 | ADA_OPERATORS; | |
12739 | #undef OP_DEFN | |
52ce6436 PH |
12740 | |
12741 | case OP_AGGREGATE: | |
12742 | return "OP_AGGREGATE"; | |
12743 | case OP_CHOICES: | |
12744 | return "OP_CHOICES"; | |
12745 | case OP_NAME: | |
12746 | return "OP_NAME"; | |
4c4b4cd2 PH |
12747 | } |
12748 | } | |
12749 | ||
12750 | /* As for operator_length, but assumes PC is pointing at the first | |
12751 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 12752 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
12753 | |
12754 | static void | |
76a01679 JB |
12755 | ada_forward_operator_length (struct expression *exp, int pc, |
12756 | int *oplenp, int *argsp) | |
4c4b4cd2 | 12757 | { |
76a01679 | 12758 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
12759 | { |
12760 | default: | |
12761 | *oplenp = *argsp = 0; | |
12762 | break; | |
52ce6436 | 12763 | |
4c4b4cd2 PH |
12764 | #define OP_DEFN(op, len, args, binop) \ |
12765 | case op: *oplenp = len; *argsp = args; break; | |
12766 | ADA_OPERATORS; | |
12767 | #undef OP_DEFN | |
52ce6436 PH |
12768 | |
12769 | case OP_AGGREGATE: | |
12770 | *oplenp = 3; | |
12771 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
12772 | break; | |
12773 | ||
12774 | case OP_CHOICES: | |
12775 | *oplenp = 3; | |
12776 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
12777 | break; | |
12778 | ||
12779 | case OP_STRING: | |
12780 | case OP_NAME: | |
12781 | { | |
12782 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 12783 | |
52ce6436 PH |
12784 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
12785 | *argsp = 0; | |
12786 | break; | |
12787 | } | |
4c4b4cd2 PH |
12788 | } |
12789 | } | |
12790 | ||
12791 | static int | |
12792 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
12793 | { | |
12794 | enum exp_opcode op = exp->elts[elt].opcode; | |
12795 | int oplen, nargs; | |
12796 | int pc = elt; | |
12797 | int i; | |
76a01679 | 12798 | |
4c4b4cd2 PH |
12799 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
12800 | ||
76a01679 | 12801 | switch (op) |
4c4b4cd2 | 12802 | { |
76a01679 | 12803 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12804 | case OP_ATR_FIRST: |
12805 | case OP_ATR_LAST: | |
12806 | case OP_ATR_LENGTH: | |
12807 | case OP_ATR_IMAGE: | |
12808 | case OP_ATR_MAX: | |
12809 | case OP_ATR_MIN: | |
12810 | case OP_ATR_MODULUS: | |
12811 | case OP_ATR_POS: | |
12812 | case OP_ATR_SIZE: | |
12813 | case OP_ATR_TAG: | |
12814 | case OP_ATR_VAL: | |
12815 | break; | |
12816 | ||
12817 | case UNOP_IN_RANGE: | |
12818 | case UNOP_QUAL: | |
323e0a4a AC |
12819 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12820 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12821 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12822 | fprintf_filtered (stream, " ("); | |
12823 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12824 | fprintf_filtered (stream, ")"); | |
12825 | break; | |
12826 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12827 | fprintf_filtered (stream, " (%d)", |
12828 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12829 | break; |
12830 | case TERNOP_IN_RANGE: | |
12831 | break; | |
12832 | ||
52ce6436 PH |
12833 | case OP_AGGREGATE: |
12834 | case OP_OTHERS: | |
12835 | case OP_DISCRETE_RANGE: | |
12836 | case OP_POSITIONAL: | |
12837 | case OP_CHOICES: | |
12838 | break; | |
12839 | ||
12840 | case OP_NAME: | |
12841 | case OP_STRING: | |
12842 | { | |
12843 | char *name = &exp->elts[elt + 2].string; | |
12844 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12845 | |
52ce6436 PH |
12846 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12847 | break; | |
12848 | } | |
12849 | ||
4c4b4cd2 PH |
12850 | default: |
12851 | return dump_subexp_body_standard (exp, stream, elt); | |
12852 | } | |
12853 | ||
12854 | elt += oplen; | |
12855 | for (i = 0; i < nargs; i += 1) | |
12856 | elt = dump_subexp (exp, stream, elt); | |
12857 | ||
12858 | return elt; | |
12859 | } | |
12860 | ||
12861 | /* The Ada extension of print_subexp (q.v.). */ | |
12862 | ||
76a01679 JB |
12863 | static void |
12864 | ada_print_subexp (struct expression *exp, int *pos, | |
12865 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12866 | { |
52ce6436 | 12867 | int oplen, nargs, i; |
4c4b4cd2 PH |
12868 | int pc = *pos; |
12869 | enum exp_opcode op = exp->elts[pc].opcode; | |
12870 | ||
12871 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12872 | ||
52ce6436 | 12873 | *pos += oplen; |
4c4b4cd2 PH |
12874 | switch (op) |
12875 | { | |
12876 | default: | |
52ce6436 | 12877 | *pos -= oplen; |
4c4b4cd2 PH |
12878 | print_subexp_standard (exp, pos, stream, prec); |
12879 | return; | |
12880 | ||
12881 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12882 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12883 | return; | |
12884 | ||
12885 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12886 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12887 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12888 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12889 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12890 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12891 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12892 | fprintf_filtered (stream, "(%ld)", |
12893 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12894 | return; |
12895 | ||
12896 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12897 | if (prec >= PREC_EQUAL) |
76a01679 | 12898 | fputs_filtered ("(", stream); |
323e0a4a | 12899 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12900 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12901 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12902 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12903 | fputs_filtered (" .. ", stream); | |
12904 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12905 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12906 | fputs_filtered (")", stream); |
12907 | return; | |
4c4b4cd2 PH |
12908 | |
12909 | case OP_ATR_FIRST: | |
12910 | case OP_ATR_LAST: | |
12911 | case OP_ATR_LENGTH: | |
12912 | case OP_ATR_IMAGE: | |
12913 | case OP_ATR_MAX: | |
12914 | case OP_ATR_MIN: | |
12915 | case OP_ATR_MODULUS: | |
12916 | case OP_ATR_POS: | |
12917 | case OP_ATR_SIZE: | |
12918 | case OP_ATR_TAG: | |
12919 | case OP_ATR_VAL: | |
4c4b4cd2 | 12920 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12921 | { |
12922 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
12923 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
12924 | &type_print_raw_options); | |
76a01679 JB |
12925 | *pos += 3; |
12926 | } | |
4c4b4cd2 | 12927 | else |
76a01679 | 12928 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12929 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12930 | if (nargs > 1) | |
76a01679 JB |
12931 | { |
12932 | int tem; | |
5b4ee69b | 12933 | |
76a01679 JB |
12934 | for (tem = 1; tem < nargs; tem += 1) |
12935 | { | |
12936 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12937 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12938 | } | |
12939 | fputs_filtered (")", stream); | |
12940 | } | |
4c4b4cd2 | 12941 | return; |
14f9c5c9 | 12942 | |
4c4b4cd2 | 12943 | case UNOP_QUAL: |
4c4b4cd2 PH |
12944 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12945 | fputs_filtered ("'(", stream); | |
12946 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12947 | fputs_filtered (")", stream); | |
12948 | return; | |
14f9c5c9 | 12949 | |
4c4b4cd2 | 12950 | case UNOP_IN_RANGE: |
323e0a4a | 12951 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12952 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12953 | fputs_filtered (" in ", stream); |
79d43c61 TT |
12954 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
12955 | &type_print_raw_options); | |
4c4b4cd2 | 12956 | return; |
52ce6436 PH |
12957 | |
12958 | case OP_DISCRETE_RANGE: | |
12959 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12960 | fputs_filtered ("..", stream); | |
12961 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12962 | return; | |
12963 | ||
12964 | case OP_OTHERS: | |
12965 | fputs_filtered ("others => ", stream); | |
12966 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12967 | return; | |
12968 | ||
12969 | case OP_CHOICES: | |
12970 | for (i = 0; i < nargs-1; i += 1) | |
12971 | { | |
12972 | if (i > 0) | |
12973 | fputs_filtered ("|", stream); | |
12974 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12975 | } | |
12976 | fputs_filtered (" => ", stream); | |
12977 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12978 | return; | |
12979 | ||
12980 | case OP_POSITIONAL: | |
12981 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12982 | return; | |
12983 | ||
12984 | case OP_AGGREGATE: | |
12985 | fputs_filtered ("(", stream); | |
12986 | for (i = 0; i < nargs; i += 1) | |
12987 | { | |
12988 | if (i > 0) | |
12989 | fputs_filtered (", ", stream); | |
12990 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12991 | } | |
12992 | fputs_filtered (")", stream); | |
12993 | return; | |
4c4b4cd2 PH |
12994 | } |
12995 | } | |
14f9c5c9 AS |
12996 | |
12997 | /* Table mapping opcodes into strings for printing operators | |
12998 | and precedences of the operators. */ | |
12999 | ||
d2e4a39e AS |
13000 | static const struct op_print ada_op_print_tab[] = { |
13001 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13002 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13003 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13004 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13005 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13006 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13007 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13008 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13009 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13010 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13011 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13012 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13013 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13014 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13015 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13016 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13017 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13018 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13019 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13020 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13021 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13022 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13023 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13024 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13025 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13026 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13027 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13028 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13029 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13030 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13031 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 13032 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
13033 | }; |
13034 | \f | |
72d5681a PH |
13035 | enum ada_primitive_types { |
13036 | ada_primitive_type_int, | |
13037 | ada_primitive_type_long, | |
13038 | ada_primitive_type_short, | |
13039 | ada_primitive_type_char, | |
13040 | ada_primitive_type_float, | |
13041 | ada_primitive_type_double, | |
13042 | ada_primitive_type_void, | |
13043 | ada_primitive_type_long_long, | |
13044 | ada_primitive_type_long_double, | |
13045 | ada_primitive_type_natural, | |
13046 | ada_primitive_type_positive, | |
13047 | ada_primitive_type_system_address, | |
13048 | nr_ada_primitive_types | |
13049 | }; | |
6c038f32 PH |
13050 | |
13051 | static void | |
d4a9a881 | 13052 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13053 | struct language_arch_info *lai) |
13054 | { | |
d4a9a881 | 13055 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13056 | |
72d5681a | 13057 | lai->primitive_type_vector |
d4a9a881 | 13058 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13059 | struct type *); |
e9bb382b UW |
13060 | |
13061 | lai->primitive_type_vector [ada_primitive_type_int] | |
13062 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13063 | 0, "integer"); | |
13064 | lai->primitive_type_vector [ada_primitive_type_long] | |
13065 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13066 | 0, "long_integer"); | |
13067 | lai->primitive_type_vector [ada_primitive_type_short] | |
13068 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13069 | 0, "short_integer"); | |
13070 | lai->string_char_type | |
13071 | = lai->primitive_type_vector [ada_primitive_type_char] | |
13072 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
13073 | lai->primitive_type_vector [ada_primitive_type_float] | |
13074 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13075 | "float", NULL); | |
13076 | lai->primitive_type_vector [ada_primitive_type_double] | |
13077 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13078 | "long_float", NULL); | |
13079 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13080 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13081 | 0, "long_long_integer"); | |
13082 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13083 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13084 | "long_long_float", NULL); | |
13085 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13086 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13087 | 0, "natural"); | |
13088 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13089 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13090 | 0, "positive"); | |
13091 | lai->primitive_type_vector [ada_primitive_type_void] | |
13092 | = builtin->builtin_void; | |
13093 | ||
13094 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13095 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13096 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13097 | = "system__address"; | |
fbb06eb1 | 13098 | |
47e729a8 | 13099 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13100 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13101 | } |
6c038f32 PH |
13102 | \f |
13103 | /* Language vector */ | |
13104 | ||
13105 | /* Not really used, but needed in the ada_language_defn. */ | |
13106 | ||
13107 | static void | |
6c7a06a3 | 13108 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13109 | { |
6c7a06a3 | 13110 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13111 | } |
13112 | ||
13113 | static int | |
13114 | parse (void) | |
13115 | { | |
13116 | warnings_issued = 0; | |
13117 | return ada_parse (); | |
13118 | } | |
13119 | ||
13120 | static const struct exp_descriptor ada_exp_descriptor = { | |
13121 | ada_print_subexp, | |
13122 | ada_operator_length, | |
c0201579 | 13123 | ada_operator_check, |
6c038f32 PH |
13124 | ada_op_name, |
13125 | ada_dump_subexp_body, | |
13126 | ada_evaluate_subexp | |
13127 | }; | |
13128 | ||
1a119f36 | 13129 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13130 | for Ada. */ |
13131 | ||
1a119f36 JB |
13132 | static symbol_name_cmp_ftype |
13133 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13134 | { |
13135 | if (should_use_wild_match (lookup_name)) | |
13136 | return wild_match; | |
13137 | else | |
13138 | return compare_names; | |
13139 | } | |
13140 | ||
a5ee536b JB |
13141 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13142 | ||
13143 | static struct value * | |
13144 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
13145 | { | |
13146 | struct block *frame_block = NULL; | |
13147 | struct symbol *renaming_sym = NULL; | |
13148 | ||
13149 | /* The only case where default_read_var_value is not sufficient | |
13150 | is when VAR is a renaming... */ | |
13151 | if (frame) | |
13152 | frame_block = get_frame_block (frame, NULL); | |
13153 | if (frame_block) | |
13154 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13155 | if (renaming_sym != NULL) | |
13156 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13157 | ||
13158 | /* This is a typical case where we expect the default_read_var_value | |
13159 | function to work. */ | |
13160 | return default_read_var_value (var, frame); | |
13161 | } | |
13162 | ||
6c038f32 PH |
13163 | const struct language_defn ada_language_defn = { |
13164 | "ada", /* Language name */ | |
6abde28f | 13165 | "Ada", |
6c038f32 | 13166 | language_ada, |
6c038f32 | 13167 | range_check_off, |
6c038f32 PH |
13168 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13169 | that's not quite what this means. */ | |
6c038f32 | 13170 | array_row_major, |
9a044a89 | 13171 | macro_expansion_no, |
6c038f32 PH |
13172 | &ada_exp_descriptor, |
13173 | parse, | |
13174 | ada_error, | |
13175 | resolve, | |
13176 | ada_printchar, /* Print a character constant */ | |
13177 | ada_printstr, /* Function to print string constant */ | |
13178 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13179 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13180 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13181 | ada_val_print, /* Print a value using appropriate syntax */ |
13182 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13183 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13184 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13185 | NULL, /* name_of_this */ |
6c038f32 PH |
13186 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13187 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13188 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13189 | NULL, /* Language specific |
13190 | class_name_from_physname */ | |
6c038f32 PH |
13191 | ada_op_print_tab, /* expression operators for printing */ |
13192 | 0, /* c-style arrays */ | |
13193 | 1, /* String lower bound */ | |
6c038f32 | 13194 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13195 | ada_make_symbol_completion_list, |
72d5681a | 13196 | ada_language_arch_info, |
e79af960 | 13197 | ada_print_array_index, |
41f1b697 | 13198 | default_pass_by_reference, |
ae6a3a4c | 13199 | c_get_string, |
1a119f36 | 13200 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13201 | ada_iterate_over_symbols, |
a53b64ea | 13202 | &ada_varobj_ops, |
6c038f32 PH |
13203 | LANG_MAGIC |
13204 | }; | |
13205 | ||
2c0b251b PA |
13206 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13207 | extern initialize_file_ftype _initialize_ada_language; | |
13208 | ||
5bf03f13 JB |
13209 | /* Command-list for the "set/show ada" prefix command. */ |
13210 | static struct cmd_list_element *set_ada_list; | |
13211 | static struct cmd_list_element *show_ada_list; | |
13212 | ||
13213 | /* Implement the "set ada" prefix command. */ | |
13214 | ||
13215 | static void | |
13216 | set_ada_command (char *arg, int from_tty) | |
13217 | { | |
13218 | printf_unfiltered (_(\ | |
13219 | "\"set ada\" must be followed by the name of a setting.\n")); | |
13220 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
13221 | } | |
13222 | ||
13223 | /* Implement the "show ada" prefix command. */ | |
13224 | ||
13225 | static void | |
13226 | show_ada_command (char *args, int from_tty) | |
13227 | { | |
13228 | cmd_show_list (show_ada_list, from_tty, ""); | |
13229 | } | |
13230 | ||
2060206e PA |
13231 | static void |
13232 | initialize_ada_catchpoint_ops (void) | |
13233 | { | |
13234 | struct breakpoint_ops *ops; | |
13235 | ||
13236 | initialize_breakpoint_ops (); | |
13237 | ||
13238 | ops = &catch_exception_breakpoint_ops; | |
13239 | *ops = bkpt_breakpoint_ops; | |
13240 | ops->dtor = dtor_catch_exception; | |
13241 | ops->allocate_location = allocate_location_catch_exception; | |
13242 | ops->re_set = re_set_catch_exception; | |
13243 | ops->check_status = check_status_catch_exception; | |
13244 | ops->print_it = print_it_catch_exception; | |
13245 | ops->print_one = print_one_catch_exception; | |
13246 | ops->print_mention = print_mention_catch_exception; | |
13247 | ops->print_recreate = print_recreate_catch_exception; | |
13248 | ||
13249 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13250 | *ops = bkpt_breakpoint_ops; | |
13251 | ops->dtor = dtor_catch_exception_unhandled; | |
13252 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13253 | ops->re_set = re_set_catch_exception_unhandled; | |
13254 | ops->check_status = check_status_catch_exception_unhandled; | |
13255 | ops->print_it = print_it_catch_exception_unhandled; | |
13256 | ops->print_one = print_one_catch_exception_unhandled; | |
13257 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13258 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13259 | ||
13260 | ops = &catch_assert_breakpoint_ops; | |
13261 | *ops = bkpt_breakpoint_ops; | |
13262 | ops->dtor = dtor_catch_assert; | |
13263 | ops->allocate_location = allocate_location_catch_assert; | |
13264 | ops->re_set = re_set_catch_assert; | |
13265 | ops->check_status = check_status_catch_assert; | |
13266 | ops->print_it = print_it_catch_assert; | |
13267 | ops->print_one = print_one_catch_assert; | |
13268 | ops->print_mention = print_mention_catch_assert; | |
13269 | ops->print_recreate = print_recreate_catch_assert; | |
13270 | } | |
13271 | ||
d2e4a39e | 13272 | void |
6c038f32 | 13273 | _initialize_ada_language (void) |
14f9c5c9 | 13274 | { |
6c038f32 PH |
13275 | add_language (&ada_language_defn); |
13276 | ||
2060206e PA |
13277 | initialize_ada_catchpoint_ops (); |
13278 | ||
5bf03f13 JB |
13279 | add_prefix_cmd ("ada", no_class, set_ada_command, |
13280 | _("Prefix command for changing Ada-specfic settings"), | |
13281 | &set_ada_list, "set ada ", 0, &setlist); | |
13282 | ||
13283 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
13284 | _("Generic command for showing Ada-specific settings."), | |
13285 | &show_ada_list, "show ada ", 0, &showlist); | |
13286 | ||
13287 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
13288 | &trust_pad_over_xvs, _("\ | |
13289 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
13290 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
13291 | _("\ | |
13292 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
13293 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13294 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13295 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13296 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13297 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13298 | this option to \"off\" unless necessary."), | |
13299 | NULL, NULL, &set_ada_list, &show_ada_list); | |
13300 | ||
9ac4176b PA |
13301 | add_catch_command ("exception", _("\ |
13302 | Catch Ada exceptions, when raised.\n\ | |
13303 | With an argument, catch only exceptions with the given name."), | |
13304 | catch_ada_exception_command, | |
13305 | NULL, | |
13306 | CATCH_PERMANENT, | |
13307 | CATCH_TEMPORARY); | |
13308 | add_catch_command ("assert", _("\ | |
13309 | Catch failed Ada assertions, when raised.\n\ | |
13310 | With an argument, catch only exceptions with the given name."), | |
13311 | catch_assert_command, | |
13312 | NULL, | |
13313 | CATCH_PERMANENT, | |
13314 | CATCH_TEMPORARY); | |
13315 | ||
6c038f32 | 13316 | varsize_limit = 65536; |
6c038f32 | 13317 | |
778865d3 JB |
13318 | add_info ("exceptions", info_exceptions_command, |
13319 | _("\ | |
13320 | List all Ada exception names.\n\ | |
13321 | If a regular expression is passed as an argument, only those matching\n\ | |
13322 | the regular expression are listed.")); | |
13323 | ||
6c038f32 PH |
13324 | obstack_init (&symbol_list_obstack); |
13325 | ||
13326 | decoded_names_store = htab_create_alloc | |
13327 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
13328 | NULL, xcalloc, xfree); | |
6b69afc4 | 13329 | |
e802dbe0 JB |
13330 | /* Setup per-inferior data. */ |
13331 | observer_attach_inferior_exit (ada_inferior_exit); | |
13332 | ada_inferior_data | |
8e260fc0 | 13333 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
14f9c5c9 | 13334 | } |