]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Don't include symtab.h from expression.h
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
0747795c 52#include "common/vec.h"
692465f1 53#include "stack.h"
0747795c 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
4c4b4cd2
PH
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
14f9c5c9 195
d2e4a39e 196static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 197
d2e4a39e 198static int equiv_types (struct type *, struct type *);
14f9c5c9 199
d2e4a39e 200static int is_name_suffix (const char *);
14f9c5c9 201
73589123
PH
202static int advance_wild_match (const char **, const char *, int);
203
b5ec771e 204static bool wild_match (const char *name, const char *patn);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
108d56a4 217static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
0d5cff50 223static int find_struct_field (const char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2 225
d12307c1 226static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
268
269static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
67cb5b2d 317static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
c6044dd1
JB
343/* Maintenance-related settings for this module. */
344
345static struct cmd_list_element *maint_set_ada_cmdlist;
346static struct cmd_list_element *maint_show_ada_cmdlist;
347
348/* Implement the "maintenance set ada" (prefix) command. */
349
350static void
981a3fb3 351maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 352{
635c7e8a
TT
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
c6044dd1
JB
355}
356
357/* Implement the "maintenance show ada" (prefix) command. */
358
359static void
981a3fb3 360maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
361{
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363}
364
365/* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367static int ada_ignore_descriptive_types_p = 0;
368
e802dbe0
JB
369 /* Inferior-specific data. */
370
371/* Per-inferior data for this module. */
372
373struct ada_inferior_data
374{
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
3eecfa55
JB
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
e802dbe0
JB
385};
386
387/* Our key to this module's inferior data. */
388static const struct inferior_data *ada_inferior_data;
389
390/* A cleanup routine for our inferior data. */
391static void
392ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393{
394 struct ada_inferior_data *data;
395
9a3c8263 396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
397 if (data != NULL)
398 xfree (data);
399}
400
401/* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409static struct ada_inferior_data *
410get_ada_inferior_data (struct inferior *inf)
411{
412 struct ada_inferior_data *data;
413
9a3c8263 414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
415 if (data == NULL)
416 {
41bf6aca 417 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422}
423
424/* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427static void
428ada_inferior_exit (struct inferior *inf)
429{
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432}
433
ee01b665
JB
434
435 /* program-space-specific data. */
436
437/* This module's per-program-space data. */
438struct ada_pspace_data
439{
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442};
443
444/* Key to our per-program-space data. */
445static const struct program_space_data *ada_pspace_data_handle;
446
447/* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452static struct ada_pspace_data *
453get_ada_pspace_data (struct program_space *pspace)
454{
455 struct ada_pspace_data *data;
456
9a3c8263
SM
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
9a3c8263 473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
39e7af3e 542/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 543
39e7af3e 544static std::string
41d27058
JB
545add_angle_brackets (const char *str)
546{
39e7af3e 547 return string_printf ("<%s>", str);
41d27058 548}
96d887e8 549
67cb5b2d 550static const char *
4c4b4cd2
PH
551ada_get_gdb_completer_word_break_characters (void)
552{
553 return ada_completer_word_break_characters;
554}
555
e79af960
JB
556/* Print an array element index using the Ada syntax. */
557
558static void
559ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 560 const struct value_print_options *options)
e79af960 561{
79a45b7d 562 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
563 fprintf_filtered (stream, " => ");
564}
565
e2b7af72
JB
566/* la_watch_location_expression for Ada. */
567
568gdb::unique_xmalloc_ptr<char>
569ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570{
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575}
576
f27cf670 577/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 579 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 580
f27cf670
AS
581void *
582grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 583{
d2e4a39e
AS
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
4c4b4cd2 588 *size = min_size;
f27cf670 589 vect = xrealloc (vect, *size * element_size);
d2e4a39e 590 }
f27cf670 591 return vect;
14f9c5c9
AS
592}
593
594/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 595 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
596
597static int
ebf56fd3 598field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
599{
600 int len = strlen (target);
5b4ee69b 601
d2e4a39e 602 return
4c4b4cd2
PH
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
61012eef 605 || (startswith (field_name + len, "___")
76a01679
JB
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
14f9c5c9
AS
608}
609
610
872c8b51
JB
611/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
618
619int
620ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622{
623 int fieldno;
872c8b51
JB
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
628 return fieldno;
629
630 if (!maybe_missing)
323e0a4a 631 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 632 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
633
634 return -1;
635}
636
637/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
638
639int
d2e4a39e 640ada_name_prefix_len (const char *name)
14f9c5c9
AS
641{
642 if (name == NULL)
643 return 0;
d2e4a39e 644 else
14f9c5c9 645 {
d2e4a39e 646 const char *p = strstr (name, "___");
5b4ee69b 647
14f9c5c9 648 if (p == NULL)
4c4b4cd2 649 return strlen (name);
14f9c5c9 650 else
4c4b4cd2 651 return p - name;
14f9c5c9
AS
652 }
653}
654
4c4b4cd2
PH
655/* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
14f9c5c9 658static int
d2e4a39e 659is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
660{
661 int len1, len2;
5b4ee69b 662
14f9c5c9
AS
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
4c4b4cd2 667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
668}
669
4c4b4cd2
PH
670/* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
14f9c5c9 672
d2e4a39e 673static struct value *
4c4b4cd2 674coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 675{
61ee279c 676 type = ada_check_typedef (type);
df407dfe 677 if (value_type (val) == type)
4c4b4cd2 678 return val;
d2e4a39e 679 else
14f9c5c9 680 {
4c4b4cd2
PH
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
c1b5a1a6 685 ada_ensure_varsize_limit (type);
4c4b4cd2 686
41e8491f
JK
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
9a0dc9e3 693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 694 }
74bcbdf3 695 set_value_component_location (result, val);
9bbda503
AC
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
42ae5230 698 set_value_address (result, value_address (val));
14f9c5c9
AS
699 return result;
700 }
701}
702
fc1a4b47
AC
703static const gdb_byte *
704cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
705{
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710}
711
712static CORE_ADDR
ebf56fd3 713cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
714{
715 if (address == 0)
716 return 0;
d2e4a39e 717 else
14f9c5c9
AS
718 return address + offset;
719}
720
4c4b4cd2
PH
721/* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
a2249542 725
77109804
AC
726/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
a0b31db1 728static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 729
14f9c5c9 730static void
a2249542 731lim_warning (const char *format, ...)
14f9c5c9 732{
a2249542 733 va_list args;
a2249542 734
5b4ee69b 735 va_start (args, format);
4c4b4cd2
PH
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
a2249542
MK
738 vwarning (format, args);
739
740 va_end (args);
4c4b4cd2
PH
741}
742
714e53ab
PH
743/* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
c1b5a1a6
JB
747void
748ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
749{
750 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 751 error (_("object size is larger than varsize-limit"));
714e53ab
PH
752}
753
0963b4bd 754/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756max_of_size (int size)
4c4b4cd2 757{
76a01679 758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 759
76a01679 760 return top_bit | (top_bit - 1);
4c4b4cd2
PH
761}
762
0963b4bd 763/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 764static LONGEST
c3e5cd34 765min_of_size (int size)
4c4b4cd2 766{
c3e5cd34 767 return -max_of_size (size) - 1;
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 771static ULONGEST
c3e5cd34 772umax_of_size (int size)
4c4b4cd2 773{
76a01679 774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 775
76a01679 776 return top_bit | (top_bit - 1);
4c4b4cd2
PH
777}
778
0963b4bd 779/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
780static LONGEST
781max_of_type (struct type *t)
4c4b4cd2 782{
c3e5cd34
PH
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787}
788
0963b4bd 789/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
790static LONGEST
791min_of_type (struct type *t)
792{
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
797}
798
799/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
800LONGEST
801ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 802{
c3345124 803 type = resolve_dynamic_type (type, NULL, 0);
76a01679 804 switch (TYPE_CODE (type))
4c4b4cd2
PH
805 {
806 case TYPE_CODE_RANGE:
690cc4eb 807 return TYPE_HIGH_BOUND (type);
4c4b4cd2 808 case TYPE_CODE_ENUM:
14e75d8e 809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
76a01679 813 case TYPE_CODE_INT:
690cc4eb 814 return max_of_type (type);
4c4b4cd2 815 default:
43bbcdc2 816 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
817 }
818}
819
14e75d8e 820/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
821LONGEST
822ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 823{
c3345124 824 type = resolve_dynamic_type (type, NULL, 0);
76a01679 825 switch (TYPE_CODE (type))
4c4b4cd2
PH
826 {
827 case TYPE_CODE_RANGE:
690cc4eb 828 return TYPE_LOW_BOUND (type);
4c4b4cd2 829 case TYPE_CODE_ENUM:
14e75d8e 830 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
76a01679 834 case TYPE_CODE_INT:
690cc4eb 835 return min_of_type (type);
4c4b4cd2 836 default:
43bbcdc2 837 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
838 }
839}
840
841/* The identity on non-range types. For range types, the underlying
76a01679 842 non-range scalar type. */
4c4b4cd2
PH
843
844static struct type *
18af8284 845get_base_type (struct type *type)
4c4b4cd2
PH
846{
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
76a01679
JB
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
4c4b4cd2
PH
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
14f9c5c9 854}
41246937
JB
855
856/* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861struct value *
862ada_get_decoded_value (struct value *value)
863{
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879}
880
881/* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886struct type *
887ada_get_decoded_type (struct type *type)
888{
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893}
894
4c4b4cd2 895\f
76a01679 896
4c4b4cd2 897 /* Language Selection */
14f9c5c9
AS
898
899/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 900 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 901
14f9c5c9 902enum language
ccefe4c4 903ada_update_initial_language (enum language lang)
14f9c5c9 904{
d2e4a39e 905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 906 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 907 return language_ada;
14f9c5c9
AS
908
909 return lang;
910}
96d887e8
PH
911
912/* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916char *
917ada_main_name (void)
918{
3b7344d5 919 struct bound_minimal_symbol msym;
e83e4e24 920 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 921
96d887e8
PH
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
3b7344d5 929 if (msym.minsym != NULL)
96d887e8 930 {
f9bc20b9
JB
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
77e371c0 934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 935 if (main_program_name_addr == 0)
323e0a4a 936 error (_("Invalid address for Ada main program name."));
96d887e8 937
f9bc20b9
JB
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
e83e4e24 943 return main_program_name.get ();
96d887e8
PH
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
0d81f350
JG
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
29480c32
JB
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
61012eef 1184 if (startswith (encoded, "_ada_"))
4c4b4cd2 1185 encoded += 5;
14f9c5c9 1186
29480c32
JB
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
4c4b4cd2 1190 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1191 goto Suppress;
1192
4c4b4cd2 1193 len0 = strlen (encoded);
4c4b4cd2 1194
29480c32
JB
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1197
4c4b4cd2
PH
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1204 {
1205 if (p[3] == 'X')
4c4b4cd2 1206 len0 = p - encoded;
14f9c5c9 1207 else
4c4b4cd2 1208 goto Suppress;
14f9c5c9 1209 }
4c4b4cd2 1210
29480c32
JB
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
61012eef 1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1216 len0 -= 3;
76a01679 1217
a10967fa
JB
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
61012eef 1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1223 len0 -= 2;
1224
29480c32
JB
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
61012eef 1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1229 len0 -= 1;
1230
4c4b4cd2 1231 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1232
4c4b4cd2
PH
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
14f9c5c9 1235
29480c32
JB
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
4c4b4cd2 1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1239 {
4c4b4cd2
PH
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
d2e4a39e 1248 }
14f9c5c9 1249
29480c32
JB
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
4c4b4cd2
PH
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
14f9c5c9
AS
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
29480c32 1259 /* Is this a symbol function? */
4c4b4cd2
PH
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
5b4ee69b 1263
4c4b4cd2
PH
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
14f9c5c9
AS
1281 at_start_name = 0;
1282
529cad9c
PH
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
61012eef 1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1287 i += 2;
529cad9c 1288
29480c32
JB
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
529cad9c
PH
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1311 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
4c4b4cd2
PH
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
29480c32
JB
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
4c4b4cd2
PH
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
cdc7bb92 1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1376 {
29480c32 1377 /* Replace '__' by '.'. */
4c4b4cd2
PH
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
14f9c5c9 1383 else
4c4b4cd2 1384 {
29480c32
JB
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
4c4b4cd2
PH
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
14f9c5c9 1391 }
4c4b4cd2 1392 decoded[j] = '\000';
14f9c5c9 1393
29480c32
JB
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
4c4b4cd2
PH
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1399 goto Suppress;
1400
4c4b4cd2
PH
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
14f9c5c9
AS
1405
1406Suppress:
4c4b4cd2
PH
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
14f9c5c9 1411 else
88c15c34 1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1413 return decoded;
1414
1415}
1416
1417/* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422static struct htab *decoded_names_store;
1423
1424/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1429 GSYMBOL).
4c4b4cd2
PH
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1432 when a decoded name is cached in it. */
4c4b4cd2 1433
45e6c716 1434const char *
f85f34ed 1435ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1436{
f85f34ed
TT
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
615b3f62 1439 &gsymbol->language_specific.demangled_name;
5b4ee69b 1440
f85f34ed 1441 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1444 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1445
f85f34ed 1446 gsymbol->ada_mangled = 1;
5b4ee69b 1447
f85f34ed 1448 if (obstack != NULL)
224c3ddb
SM
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1451 else
76a01679 1452 {
f85f34ed
TT
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
76a01679
JB
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
5b4ee69b 1460
76a01679
JB
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
4c4b4cd2 1465 }
14f9c5c9 1466
4c4b4cd2
PH
1467 return *resultp;
1468}
76a01679 1469
2c0b251b 1470static char *
76a01679 1471ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1472{
1473 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1474}
1475
8b302db8
TT
1476/* Implement la_sniff_from_mangled_name for Ada. */
1477
1478static int
1479ada_sniff_from_mangled_name (const char *mangled, char **out)
1480{
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513}
1514
14f9c5c9 1515\f
d2e4a39e 1516
4c4b4cd2 1517 /* Arrays */
14f9c5c9 1518
28c85d6c
JB
1519/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542void
1543ada_fixup_array_indexes_type (struct type *index_desc_type)
1544{
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
0d5cff50 1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572}
1573
4c4b4cd2 1574/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1575
a121b7c1 1576static const char *bound_name[] = {
d2e4a39e 1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579};
1580
1581/* Maximum number of array dimensions we are prepared to handle. */
1582
4c4b4cd2 1583#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1584
14f9c5c9 1585
4c4b4cd2
PH
1586/* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
14f9c5c9
AS
1588
1589/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1590 level of indirection, if needed. */
1591
d2e4a39e
AS
1592static struct type *
1593desc_base_type (struct type *type)
14f9c5c9
AS
1594{
1595 if (type == NULL)
1596 return NULL;
61ee279c 1597 type = ada_check_typedef (type);
720d1a40
JB
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1265e4aa
JB
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1605 else
1606 return type;
1607}
1608
4c4b4cd2
PH
1609/* True iff TYPE indicates a "thin" array pointer type. */
1610
14f9c5c9 1611static int
d2e4a39e 1612is_thin_pntr (struct type *type)
14f9c5c9 1613{
d2e4a39e 1614 return
14f9c5c9
AS
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617}
1618
4c4b4cd2
PH
1619/* The descriptor type for thin pointer type TYPE. */
1620
d2e4a39e
AS
1621static struct type *
1622thin_descriptor_type (struct type *type)
14f9c5c9 1623{
d2e4a39e 1624 struct type *base_type = desc_base_type (type);
5b4ee69b 1625
14f9c5c9
AS
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
d2e4a39e 1630 else
14f9c5c9 1631 {
d2e4a39e 1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1633
14f9c5c9 1634 if (alt_type == NULL)
4c4b4cd2 1635 return base_type;
14f9c5c9 1636 else
4c4b4cd2 1637 return alt_type;
14f9c5c9
AS
1638 }
1639}
1640
4c4b4cd2
PH
1641/* A pointer to the array data for thin-pointer value VAL. */
1642
d2e4a39e
AS
1643static struct value *
1644thin_data_pntr (struct value *val)
14f9c5c9 1645{
828292f2 1646 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1648
556bdfd4
UW
1649 data_type = lookup_pointer_type (data_type);
1650
14f9c5c9 1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1652 return value_cast (data_type, value_copy (val));
d2e4a39e 1653 else
42ae5230 1654 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1655}
1656
4c4b4cd2
PH
1657/* True iff TYPE indicates a "thick" array pointer type. */
1658
14f9c5c9 1659static int
d2e4a39e 1660is_thick_pntr (struct type *type)
14f9c5c9
AS
1661{
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1665}
1666
4c4b4cd2
PH
1667/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1669
d2e4a39e
AS
1670static struct type *
1671desc_bounds_type (struct type *type)
14f9c5c9 1672{
d2e4a39e 1673 struct type *r;
14f9c5c9
AS
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
4c4b4cd2 1683 return NULL;
14f9c5c9
AS
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
61ee279c 1686 return ada_check_typedef (r);
14f9c5c9
AS
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
61ee279c 1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1693 }
1694 return NULL;
1695}
1696
1697/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
d2e4a39e
AS
1700static struct value *
1701desc_bounds (struct value *arr)
14f9c5c9 1702{
df407dfe 1703 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1704
d2e4a39e 1705 if (is_thin_pntr (type))
14f9c5c9 1706 {
d2e4a39e 1707 struct type *bounds_type =
4c4b4cd2 1708 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1709 LONGEST addr;
1710
4cdfadb1 1711 if (bounds_type == NULL)
323e0a4a 1712 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1713
1714 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1715 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1716 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1718 addr = value_as_long (arr);
d2e4a39e 1719 else
42ae5230 1720 addr = value_address (arr);
14f9c5c9 1721
d2e4a39e 1722 return
4c4b4cd2
PH
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1725 }
1726
1727 else if (is_thick_pntr (type))
05e522ef
JB
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
14f9c5c9
AS
1748 else
1749 return NULL;
1750}
1751
4c4b4cd2
PH
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1757{
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759}
1760
1761/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1762 size of the field containing the address of the bounds data. */
1763
14f9c5c9 1764static int
d2e4a39e 1765fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1766{
1767 type = desc_base_type (type);
1768
d2e4a39e 1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
61ee279c 1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1773}
1774
4c4b4cd2 1775/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
4c4b4cd2 1779
d2e4a39e 1780static struct type *
556bdfd4 1781desc_data_target_type (struct type *type)
14f9c5c9
AS
1782{
1783 type = desc_base_type (type);
1784
4c4b4cd2 1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1786 if (is_thin_pntr (type))
556bdfd4 1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1788 else if (is_thick_pntr (type))
556bdfd4
UW
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1795 }
1796
1797 return NULL;
14f9c5c9
AS
1798}
1799
1800/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
4c4b4cd2 1802
d2e4a39e
AS
1803static struct value *
1804desc_data (struct value *arr)
14f9c5c9 1805{
df407dfe 1806 struct type *type = value_type (arr);
5b4ee69b 1807
14f9c5c9
AS
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
d2e4a39e 1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1812 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1813 else
1814 return NULL;
1815}
1816
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 position of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1823{
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825}
1826
1827/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1828 size of the field containing the address of the data. */
1829
14f9c5c9 1830static int
d2e4a39e 1831fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1832{
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1837 else
14f9c5c9
AS
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839}
1840
4c4b4cd2 1841/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
d2e4a39e
AS
1845static struct value *
1846desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1847{
d2e4a39e 1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1849 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1850}
1851
1852/* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
14f9c5c9 1856static int
d2e4a39e 1857desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1858{
d2e4a39e 1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1860}
1861
1862/* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
76a01679 1866static int
d2e4a39e 1867desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1868{
1869 type = desc_base_type (type);
1870
d2e4a39e
AS
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1875}
1876
1877/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
d2e4a39e
AS
1880static struct type *
1881desc_index_type (struct type *type, int i)
14f9c5c9
AS
1882{
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
14f9c5c9
AS
1888 return NULL;
1889}
1890
4c4b4cd2
PH
1891/* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
14f9c5c9 1894static int
d2e4a39e 1895desc_arity (struct type *type)
14f9c5c9
AS
1896{
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902}
1903
4c4b4cd2
PH
1904/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
76a01679
JB
1908static int
1909ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1910{
1911 if (type == NULL)
1912 return 0;
61ee279c 1913 type = ada_check_typedef (type);
4c4b4cd2 1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1915 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1916}
1917
52ce6436 1918/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1919 * to one. */
52ce6436 1920
2c0b251b 1921static int
52ce6436
PH
1922ada_is_array_type (struct type *type)
1923{
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929}
1930
4c4b4cd2 1931/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1932
14f9c5c9 1933int
4c4b4cd2 1934ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1935{
1936 if (type == NULL)
1937 return 0;
61ee279c 1938 type = ada_check_typedef (type);
14f9c5c9 1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1943}
1944
4c4b4cd2
PH
1945/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
14f9c5c9 1947int
4c4b4cd2 1948ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1949{
556bdfd4 1950 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1951
1952 if (type == NULL)
1953 return 0;
61ee279c 1954 type = ada_check_typedef (type);
556bdfd4
UW
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1958}
1959
1960/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1961 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1962 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1963 is still needed. */
1964
14f9c5c9 1965int
ebf56fd3 1966ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1967{
d2e4a39e 1968 return
14f9c5c9
AS
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1974}
1975
1976
4c4b4cd2 1977/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1978 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1980 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1983 a descriptor. */
d2e4a39e
AS
1984struct type *
1985ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1986{
ad82864c
JB
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1989
df407dfe
AC
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
d2e4a39e
AS
1992
1993 if (!bounds)
ad82864c
JB
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
14f9c5c9
AS
2004 else
2005 {
d2e4a39e 2006 struct type *elt_type;
14f9c5c9 2007 int arity;
d2e4a39e 2008 struct value *descriptor;
14f9c5c9 2009
df407dfe
AC
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
14f9c5c9 2012
d2e4a39e 2013 if (elt_type == NULL || arity == 0)
df407dfe 2014 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2015
2016 descriptor = desc_bounds (arr);
d2e4a39e 2017 if (value_as_long (descriptor) == 0)
4c4b4cd2 2018 return NULL;
d2e4a39e 2019 while (arity > 0)
4c4b4cd2 2020 {
e9bb382b
UW
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2025
5b4ee69b 2026 arity -= 1;
0c9c3474
SA
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
4c4b4cd2 2030 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
4c4b4cd2 2052 }
14f9c5c9
AS
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056}
2057
2058/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
d2e4a39e
AS
2063struct value *
2064ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2065{
df407dfe 2066 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2067 {
d2e4a39e 2068 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2069
14f9c5c9 2070 if (arrType == NULL)
4c4b4cd2 2071 return NULL;
14f9c5c9
AS
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
ad82864c
JB
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2076 else
2077 return arr;
2078}
2079
2080/* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2082 be ARR itself if it already is in the proper form). */
2083
720d1a40 2084struct value *
d2e4a39e 2085ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2086{
df407dfe 2087 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2088 {
d2e4a39e 2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2090
14f9c5c9 2091 if (arrVal == NULL)
323e0a4a 2092 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2094 return value_ind (arrVal);
2095 }
ad82864c
JB
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
d2e4a39e 2098 else
14f9c5c9
AS
2099 return arr;
2100}
2101
2102/* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2104 packing). For other types, is the identity. */
2105
d2e4a39e
AS
2106struct type *
2107ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2108{
ad82864c
JB
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
17280b9f
UW
2111
2112 if (ada_is_array_descriptor_type (type))
556bdfd4 2113 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2114
2115 return type;
14f9c5c9
AS
2116}
2117
4c4b4cd2
PH
2118/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
ad82864c
JB
2120static int
2121ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2122{
2123 if (type == NULL)
2124 return 0;
4c4b4cd2 2125 type = desc_base_type (type);
61ee279c 2126 type = ada_check_typedef (type);
d2e4a39e 2127 return
14f9c5c9
AS
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130}
2131
ad82864c
JB
2132/* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135int
2136ada_is_constrained_packed_array_type (struct type *type)
2137{
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140}
2141
2142/* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145static int
2146ada_is_unconstrained_packed_array_type (struct type *type)
2147{
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150}
2151
2152/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155static long
2156decode_packed_array_bitsize (struct type *type)
2157{
0d5cff50
DE
2158 const char *raw_name;
2159 const char *tail;
ad82864c
JB
2160 long bits;
2161
720d1a40
JB
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
720d1a40 2176 gdb_assert (tail != NULL);
ad82864c
JB
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186}
2187
14f9c5c9
AS
2188/* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
4c4b4cd2 2204
d2e4a39e 2205static struct type *
ad82864c 2206constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2207{
d2e4a39e
AS
2208 struct type *new_elt_type;
2209 struct type *new_type;
99b1c762
JB
2210 struct type *index_type_desc;
2211 struct type *index_type;
14f9c5c9
AS
2212 LONGEST low_bound, high_bound;
2213
61ee279c 2214 type = ada_check_typedef (type);
14f9c5c9
AS
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
99b1c762
JB
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
e9bb382b 2225 new_type = alloc_type_copy (type);
ad82864c
JB
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
99b1c762 2229 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
4a46959e
JB
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2239 else
14f9c5c9
AS
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2242 TYPE_LENGTH (new_type) =
4c4b4cd2 2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2244 }
2245
876cecd0 2246 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2247 return new_type;
2248}
2249
ad82864c
JB
2250/* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2252
d2e4a39e 2253static struct type *
ad82864c 2254decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2255{
0d5cff50 2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2257 char *name;
0d5cff50 2258 const char *tail;
d2e4a39e 2259 struct type *shadow_type;
14f9c5c9 2260 long bits;
14f9c5c9 2261
727e3d2e
JB
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2270 type = desc_base_type (type);
2271
14f9c5c9
AS
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
b4ba55a1
JB
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
14f9c5c9 2278 {
323e0a4a 2279 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2280 return NULL;
2281 }
f168693b 2282 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
0963b4bd
MS
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
14f9c5c9
AS
2288 return NULL;
2289 }
d2e4a39e 2290
ad82864c
JB
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2293}
2294
ad82864c
JB
2295/* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
4c4b4cd2 2299 type length is set appropriately. */
14f9c5c9 2300
d2e4a39e 2301static struct value *
ad82864c 2302decode_constrained_packed_array (struct value *arr)
14f9c5c9 2303{
4c4b4cd2 2304 struct type *type;
14f9c5c9 2305
11aa919a
PMR
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
828292f2 2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2315 arr = value_ind (arr);
4c4b4cd2 2316
ad82864c 2317 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2318 if (type == NULL)
2319 {
323e0a4a 2320 error (_("can't unpack array"));
14f9c5c9
AS
2321 return NULL;
2322 }
61ee279c 2323
50810684 2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2325 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
df407dfe 2334 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
df407dfe 2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
4c4b4cd2 2349 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2350}
2351
2352
2353/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2354 given in IND. ARR must be a simple array. */
14f9c5c9 2355
d2e4a39e
AS
2356static struct value *
2357value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2358{
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
d2e4a39e
AS
2362 struct type *elt_type;
2363 struct value *v;
14f9c5c9
AS
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
df407dfe 2367 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2368 for (i = 0; i < arity; i += 1)
14f9c5c9 2369 {
d2e4a39e 2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
0963b4bd
MS
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
14f9c5c9 2375 else
4c4b4cd2
PH
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
323e0a4a 2383 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2384 lowerbound = upperbound = 0;
2385 }
2386
3cb382c9 2387 idx = pos_atr (ind[i]);
4c4b4cd2 2388 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
4c4b4cd2
PH
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2394 }
14f9c5c9
AS
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2400 bits, elt_type);
14f9c5c9
AS
2401 return v;
2402}
2403
4c4b4cd2 2404/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2405
2406static int
d2e4a39e 2407has_negatives (struct type *type)
14f9c5c9 2408{
d2e4a39e
AS
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
14f9c5c9 2418}
d2e4a39e 2419
f93fca70 2420/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2422 the unpacked buffer.
14f9c5c9 2423
5b639dea
JB
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
f93fca70
JB
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
14f9c5c9 2429
f93fca70 2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2431
f93fca70
JB
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434static void
2435ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439{
a1c95e6b
JB
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
a1c95e6b
JB
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
4c4b4cd2 2450 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2451 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2452 unsigned char sign;
a1c95e6b 2453
4c4b4cd2
PH
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
f93fca70 2456 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2457
5b639dea
JB
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
14f9c5c9 2464 srcBitsLeft = bit_size;
086ca51f 2465 src_bytes_left = src_len;
f93fca70 2466 unpacked_bytes_left = unpacked_len;
14f9c5c9 2467 sign = 0;
f93fca70
JB
2468
2469 if (is_big_endian)
14f9c5c9 2470 {
086ca51f 2471 src_idx = src_len - 1;
f93fca70
JB
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2474 sign = ~0;
d2e4a39e
AS
2475
2476 unusedLS =
4c4b4cd2
PH
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
14f9c5c9 2479
f93fca70
JB
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
4c4b4cd2
PH
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
086ca51f
JB
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2494 }
14f9c5c9 2495 }
d2e4a39e 2496 else
14f9c5c9
AS
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
086ca51f 2500 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
f93fca70 2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2505 sign = ~0;
14f9c5c9 2506 }
d2e4a39e 2507
14f9c5c9 2508 accum = 0;
086ca51f 2509 while (src_bytes_left > 0)
14f9c5c9
AS
2510 {
2511 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2512 part of the value. */
d2e4a39e 2513 unsigned int unusedMSMask =
4c4b4cd2
PH
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
14f9c5c9 2517 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2518
d2e4a39e 2519 accum |=
086ca51f 2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2521 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2522 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2523 {
db297a65 2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
4c4b4cd2 2529 }
14f9c5c9
AS
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
086ca51f
JB
2532 src_bytes_left -= 1;
2533 src_idx += delta;
14f9c5c9 2534 }
086ca51f 2535 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2536 {
2537 accum |= sign << accumSize;
db297a65 2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2539 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2540 if (accumSize < 0)
2541 accumSize = 0;
14f9c5c9 2542 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
14f9c5c9 2545 }
f93fca70
JB
2546}
2547
2548/* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557struct value *
2558ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561{
2562 struct value *v;
bfb1c796 2563 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2564 gdb_byte *unpacked;
220475ed 2565 const int is_scalar = is_scalar_type (type);
d0a9e810 2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2567 gdb::byte_vector staging;
f93fca70
JB
2568
2569 type = ada_check_typedef (type);
2570
d0a9e810 2571 if (obj == NULL)
bfb1c796 2572 src = valaddr + offset;
d0a9e810 2573 else
bfb1c796 2574 src = value_contents (obj) + offset;
d0a9e810
JB
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
d0a9e810
JB
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2589 staging.data (), staging.size (),
d0a9e810
JB
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
d5722aa2 2592 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
d0a9e810
JB
2604 }
2605
f93fca70
JB
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
bfb1c796 2609 src = valaddr + offset;
f93fca70
JB
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
0cafa88c 2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2614 gdb_byte *buf;
0cafa88c 2615
f93fca70 2616 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
f93fca70
JB
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
bfb1c796 2624 src = value_contents (obj) + offset;
f93fca70
JB
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
bfb1c796 2647 unpacked = value_contents_writeable (v);
f93fca70
JB
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
d5722aa2 2655 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2656 {
d0a9e810
JB
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
d5722aa2 2660 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2661 }
d0a9e810
JB
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2666
14f9c5c9
AS
2667 return v;
2668}
d2e4a39e 2669
14f9c5c9
AS
2670/* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2673 floating-point or non-scalar types. */
14f9c5c9 2674
d2e4a39e
AS
2675static struct value *
2676ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2677{
df407dfe
AC
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
14f9c5c9 2680
52ce6436
PH
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
88e3b34b 2689 if (!deprecated_value_modifiable (toval))
323e0a4a 2690 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2691
d2e4a39e 2692 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2693 && bits > 0
d2e4a39e 2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2696 {
df407dfe
AC
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2699 int from_size;
224c3ddb 2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2701 struct value *val;
42ae5230 2702 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2705 fromval = value_cast (type, fromval);
14f9c5c9 2706
52ce6436 2707 read_memory (to_addr, buffer, len);
aced2898
PH
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
a99bc3d2
JB
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2714 else
a99bc3d2
JB
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
972daa01 2717 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2718
14f9c5c9 2719 val = value_copy (toval);
0fd88904 2720 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2721 TYPE_LENGTH (type));
04624583 2722 deprecated_set_value_type (val, type);
d2e4a39e 2723
14f9c5c9
AS
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728}
2729
2730
7c512744
JB
2731/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
52ce6436
PH
2742static void
2743value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745{
2746 LONGEST offset_in_container =
42ae5230 2747 (LONGEST) (value_address (component) - value_address (container));
7c512744 2748 int bit_offset_in_container =
52ce6436
PH
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
7c512744 2751
52ce6436
PH
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
50810684 2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
a99bc3d2
JB
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2a62dfa9 2771 }
52ce6436 2772 else
a99bc3d2
JB
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
7c512744
JB
2776}
2777
736ade86
XR
2778/* Determine if TYPE is an access to an unconstrained array. */
2779
d91e9ea8 2780bool
736ade86
XR
2781ada_is_access_to_unconstrained_array (struct type *type)
2782{
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785}
2786
4c4b4cd2
PH
2787/* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2789 thereto. */
2790
d2e4a39e
AS
2791struct value *
2792ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2793{
2794 int k;
d2e4a39e
AS
2795 struct value *elt;
2796 struct type *elt_type;
14f9c5c9
AS
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
df407dfe 2800 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
b9c50e9a
XR
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
14f9c5c9 2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2810 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2811
2497b498 2812 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2833 }
b9c50e9a 2834
14f9c5c9
AS
2835 return elt;
2836}
2837
deede10c
JB
2838/* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
14f9c5c9 2849
2c0b251b 2850static struct value *
deede10c 2851ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2852{
2853 int k;
919e6dbe 2854 struct value *array_ind = ada_value_ind (arr);
deede10c 2855 struct type *type
919e6dbe
PMR
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
aa715135 2865 struct value *lwb_value;
14f9c5c9
AS
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2868 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2870 value_copy (arr));
14f9c5c9 2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878}
2879
0b5d8877 2880/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
0b5d8877 2884static struct value *
f5938064
JG
2885ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
0b5d8877 2887{
b0dd7688 2888 struct type *type0 = ada_check_typedef (type);
aa715135 2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2890 struct type *index_type
aa715135 2891 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
5b4ee69b 2907
aa715135
JG
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2911 return value_at_lazy (slice_type, base);
0b5d8877
PH
2912}
2913
2914
2915static struct value *
2916ada_value_slice (struct value *array, int low, int high)
2917{
b0dd7688 2918 struct type *type = ada_check_typedef (value_type (array));
aa715135 2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2926 LONGEST low_pos, high_pos;
5b4ee69b 2927
aa715135
JG
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2938}
2939
14f9c5c9
AS
2940/* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2943 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2944
2945int
d2e4a39e 2946ada_array_arity (struct type *type)
14f9c5c9
AS
2947{
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
d2e4a39e 2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2957 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2960 {
4c4b4cd2 2961 arity += 1;
61ee279c 2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2963 }
d2e4a39e 2964
14f9c5c9
AS
2965 return arity;
2966}
2967
2968/* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2971 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2972
d2e4a39e
AS
2973struct type *
2974ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2975{
2976 type = desc_base_type (type);
2977
d2e4a39e 2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2979 {
2980 int k;
d2e4a39e 2981 struct type *p_array_type;
14f9c5c9 2982
556bdfd4 2983 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
4c4b4cd2 2987 return NULL;
d2e4a39e 2988
4c4b4cd2 2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2990 if (nindices >= 0 && k > nindices)
4c4b4cd2 2991 k = nindices;
d2e4a39e 2992 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2993 {
61ee279c 2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2995 k -= 1;
2996 }
14f9c5c9
AS
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
14f9c5c9
AS
3006 return type;
3007 }
3008
3009 return NULL;
3010}
3011
4c4b4cd2 3012/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
14f9c5c9 3017
1eea4ebd
UW
3018static struct type *
3019ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3020{
4c4b4cd2
PH
3021 struct type *result_type;
3022
14f9c5c9
AS
3023 type = desc_base_type (type);
3024
1eea4ebd
UW
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3027
4c4b4cd2 3028 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
4c4b4cd2 3033 type = TYPE_TARGET_TYPE (type);
262452ec 3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3037 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
14f9c5c9 3040 }
d2e4a39e 3041 else
1eea4ebd
UW
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
14f9c5c9
AS
3049}
3050
3051/* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
14f9c5c9 3056
abb68b3e 3057static LONGEST
fb5e3d5c 3058ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3059{
8a48ac95 3060 struct type *type, *index_type_desc, *index_type;
1ce677a4 3061 int i;
262452ec
JK
3062
3063 gdb_assert (which == 0 || which == 1);
14f9c5c9 3064
ad82864c
JB
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3067
4c4b4cd2 3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3069 return (LONGEST) - which;
14f9c5c9
AS
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
bafffb51
JB
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
262452ec 3089 if (index_type_desc != NULL)
28c85d6c
JB
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
262452ec 3092 else
8a48ac95
JB
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
262452ec 3101
43bbcdc2
PH
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3106}
3107
3108/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3111 supplied by run-time quantities other than discriminants. */
14f9c5c9 3112
1eea4ebd 3113static LONGEST
4dc81987 3114ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3115{
eb479039
JB
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
14f9c5c9 3121
ad82864c
JB
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3124 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3125 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3126 else
1eea4ebd 3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3128}
3129
3130/* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
14f9c5c9 3135
1eea4ebd 3136static LONGEST
d2e4a39e 3137ada_array_length (struct value *arr, int n)
14f9c5c9 3138{
aa715135
JG
3139 struct type *arr_type, *index_type;
3140 int low, high;
eb479039
JB
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
14f9c5c9 3145
ad82864c
JB
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3148
4c4b4cd2 3149 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
14f9c5c9 3154 else
aa715135
JG
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
f168693b 3160 arr_type = check_typedef (arr_type);
7150d33c 3161 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
4c4b4cd2
PH
3174}
3175
bff8c71f
TT
3176/* An array whose type is that of ARR_TYPE (an array type), with
3177 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3178 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3179
3180static struct value *
bff8c71f 3181empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3182{
b0dd7688 3183 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3184 struct type *index_type
3185 = create_static_range_type
bff8c71f
TT
3186 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3187 high < low ? low - 1 : high);
b0dd7688 3188 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3189
0b5d8877 3190 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3191}
14f9c5c9 3192\f
d2e4a39e 3193
4c4b4cd2 3194 /* Name resolution */
14f9c5c9 3195
4c4b4cd2
PH
3196/* The "decoded" name for the user-definable Ada operator corresponding
3197 to OP. */
14f9c5c9 3198
d2e4a39e 3199static const char *
4c4b4cd2 3200ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3201{
3202 int i;
3203
4c4b4cd2 3204 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3205 {
3206 if (ada_opname_table[i].op == op)
4c4b4cd2 3207 return ada_opname_table[i].decoded;
14f9c5c9 3208 }
323e0a4a 3209 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3210}
3211
3212
4c4b4cd2
PH
3213/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3214 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3215 undefined namespace) and converts operators that are
3216 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3217 non-null, it provides a preferred result type [at the moment, only
3218 type void has any effect---causing procedures to be preferred over
3219 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3220 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3221
4c4b4cd2 3222static void
e9d9f57e 3223resolve (expression_up *expp, int void_context_p)
14f9c5c9 3224{
30b15541
UW
3225 struct type *context_type = NULL;
3226 int pc = 0;
3227
3228 if (void_context_p)
3229 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3230
3231 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3232}
3233
4c4b4cd2
PH
3234/* Resolve the operator of the subexpression beginning at
3235 position *POS of *EXPP. "Resolving" consists of replacing
3236 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3237 with their resolutions, replacing built-in operators with
3238 function calls to user-defined operators, where appropriate, and,
3239 when DEPROCEDURE_P is non-zero, converting function-valued variables
3240 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3241 are as in ada_resolve, above. */
14f9c5c9 3242
d2e4a39e 3243static struct value *
e9d9f57e 3244resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3245 struct type *context_type)
14f9c5c9
AS
3246{
3247 int pc = *pos;
3248 int i;
4c4b4cd2 3249 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3250 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3251 struct value **argvec; /* Vector of operand types (alloca'ed). */
3252 int nargs; /* Number of operands. */
52ce6436 3253 int oplen;
14f9c5c9
AS
3254
3255 argvec = NULL;
3256 nargs = 0;
e9d9f57e 3257 exp = expp->get ();
14f9c5c9 3258
52ce6436
PH
3259 /* Pass one: resolve operands, saving their types and updating *pos,
3260 if needed. */
14f9c5c9
AS
3261 switch (op)
3262 {
4c4b4cd2
PH
3263 case OP_FUNCALL:
3264 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3265 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3266 *pos += 7;
4c4b4cd2
PH
3267 else
3268 {
3269 *pos += 3;
3270 resolve_subexp (expp, pos, 0, NULL);
3271 }
3272 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3273 break;
3274
14f9c5c9 3275 case UNOP_ADDR:
4c4b4cd2
PH
3276 *pos += 1;
3277 resolve_subexp (expp, pos, 0, NULL);
3278 break;
3279
52ce6436
PH
3280 case UNOP_QUAL:
3281 *pos += 3;
17466c1a 3282 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3283 break;
3284
52ce6436 3285 case OP_ATR_MODULUS:
4c4b4cd2
PH
3286 case OP_ATR_SIZE:
3287 case OP_ATR_TAG:
4c4b4cd2
PH
3288 case OP_ATR_FIRST:
3289 case OP_ATR_LAST:
3290 case OP_ATR_LENGTH:
3291 case OP_ATR_POS:
3292 case OP_ATR_VAL:
4c4b4cd2
PH
3293 case OP_ATR_MIN:
3294 case OP_ATR_MAX:
52ce6436
PH
3295 case TERNOP_IN_RANGE:
3296 case BINOP_IN_BOUNDS:
3297 case UNOP_IN_RANGE:
3298 case OP_AGGREGATE:
3299 case OP_OTHERS:
3300 case OP_CHOICES:
3301 case OP_POSITIONAL:
3302 case OP_DISCRETE_RANGE:
3303 case OP_NAME:
3304 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3305 *pos += oplen;
14f9c5c9
AS
3306 break;
3307
3308 case BINOP_ASSIGN:
3309 {
4c4b4cd2
PH
3310 struct value *arg1;
3311
3312 *pos += 1;
3313 arg1 = resolve_subexp (expp, pos, 0, NULL);
3314 if (arg1 == NULL)
3315 resolve_subexp (expp, pos, 1, NULL);
3316 else
df407dfe 3317 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3318 break;
14f9c5c9
AS
3319 }
3320
4c4b4cd2 3321 case UNOP_CAST:
4c4b4cd2
PH
3322 *pos += 3;
3323 nargs = 1;
3324 break;
14f9c5c9 3325
4c4b4cd2
PH
3326 case BINOP_ADD:
3327 case BINOP_SUB:
3328 case BINOP_MUL:
3329 case BINOP_DIV:
3330 case BINOP_REM:
3331 case BINOP_MOD:
3332 case BINOP_EXP:
3333 case BINOP_CONCAT:
3334 case BINOP_LOGICAL_AND:
3335 case BINOP_LOGICAL_OR:
3336 case BINOP_BITWISE_AND:
3337 case BINOP_BITWISE_IOR:
3338 case BINOP_BITWISE_XOR:
14f9c5c9 3339
4c4b4cd2
PH
3340 case BINOP_EQUAL:
3341 case BINOP_NOTEQUAL:
3342 case BINOP_LESS:
3343 case BINOP_GTR:
3344 case BINOP_LEQ:
3345 case BINOP_GEQ:
14f9c5c9 3346
4c4b4cd2
PH
3347 case BINOP_REPEAT:
3348 case BINOP_SUBSCRIPT:
3349 case BINOP_COMMA:
40c8aaa9
JB
3350 *pos += 1;
3351 nargs = 2;
3352 break;
14f9c5c9 3353
4c4b4cd2
PH
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 case UNOP_IND:
3359 *pos += 1;
3360 nargs = 1;
3361 break;
14f9c5c9 3362
4c4b4cd2 3363 case OP_LONG:
edd079d9 3364 case OP_FLOAT:
4c4b4cd2 3365 case OP_VAR_VALUE:
74ea4be4 3366 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3367 *pos += 4;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case OP_TYPE:
3371 case OP_BOOL:
3372 case OP_LAST:
4c4b4cd2
PH
3373 case OP_INTERNALVAR:
3374 *pos += 3;
3375 break;
14f9c5c9 3376
4c4b4cd2
PH
3377 case UNOP_MEMVAL:
3378 *pos += 3;
3379 nargs = 1;
3380 break;
3381
67f3407f
DJ
3382 case OP_REGISTER:
3383 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3384 break;
3385
4c4b4cd2
PH
3386 case STRUCTOP_STRUCT:
3387 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3388 nargs = 1;
3389 break;
3390
4c4b4cd2 3391 case TERNOP_SLICE:
4c4b4cd2
PH
3392 *pos += 1;
3393 nargs = 3;
3394 break;
3395
52ce6436 3396 case OP_STRING:
14f9c5c9 3397 break;
4c4b4cd2
PH
3398
3399 default:
323e0a4a 3400 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3401 }
3402
8d749320 3403 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3404 for (i = 0; i < nargs; i += 1)
3405 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3406 argvec[i] = NULL;
e9d9f57e 3407 exp = expp->get ();
4c4b4cd2
PH
3408
3409 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3410 switch (op)
3411 {
3412 default:
3413 break;
3414
14f9c5c9 3415 case OP_VAR_VALUE:
4c4b4cd2 3416 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3417 {
54d343a2 3418 std::vector<struct block_symbol> candidates;
76a01679
JB
3419 int n_candidates;
3420
3421 n_candidates =
3422 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3423 (exp->elts[pc + 2].symbol),
3424 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3425 &candidates);
76a01679
JB
3426
3427 if (n_candidates > 1)
3428 {
3429 /* Types tend to get re-introduced locally, so if there
3430 are any local symbols that are not types, first filter
3431 out all types. */
3432 int j;
3433 for (j = 0; j < n_candidates; j += 1)
d12307c1 3434 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3435 {
3436 case LOC_REGISTER:
3437 case LOC_ARG:
3438 case LOC_REF_ARG:
76a01679
JB
3439 case LOC_REGPARM_ADDR:
3440 case LOC_LOCAL:
76a01679 3441 case LOC_COMPUTED:
76a01679
JB
3442 goto FoundNonType;
3443 default:
3444 break;
3445 }
3446 FoundNonType:
3447 if (j < n_candidates)
3448 {
3449 j = 0;
3450 while (j < n_candidates)
3451 {
d12307c1 3452 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3453 {
3454 candidates[j] = candidates[n_candidates - 1];
3455 n_candidates -= 1;
3456 }
3457 else
3458 j += 1;
3459 }
3460 }
3461 }
3462
3463 if (n_candidates == 0)
323e0a4a 3464 error (_("No definition found for %s"),
76a01679
JB
3465 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3466 else if (n_candidates == 1)
3467 i = 0;
3468 else if (deprocedure_p
54d343a2 3469 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3470 {
06d5cf63 3471 i = ada_resolve_function
54d343a2 3472 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3473 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3474 context_type);
76a01679 3475 if (i < 0)
323e0a4a 3476 error (_("Could not find a match for %s"),
76a01679
JB
3477 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3478 }
3479 else
3480 {
323e0a4a 3481 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3483 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3484 i = 0;
3485 }
3486
3487 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3488 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3489 innermost_block.update (candidates[i]);
76a01679
JB
3490 }
3491
3492 if (deprocedure_p
3493 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3494 == TYPE_CODE_FUNC))
3495 {
424da6cf 3496 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3497 exp->elts[pc + 2].symbol,
3498 exp->elts[pc + 1].block);
e9d9f57e 3499 exp = expp->get ();
76a01679 3500 }
14f9c5c9
AS
3501 break;
3502
3503 case OP_FUNCALL:
3504 {
4c4b4cd2 3505 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3506 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3507 {
54d343a2 3508 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3509 int n_candidates;
3510
3511 n_candidates =
76a01679
JB
3512 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3513 (exp->elts[pc + 5].symbol),
3514 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3515 &candidates);
ec6a20c2 3516
4c4b4cd2
PH
3517 if (n_candidates == 1)
3518 i = 0;
3519 else
3520 {
06d5cf63 3521 i = ada_resolve_function
54d343a2 3522 (candidates.data (), n_candidates,
06d5cf63
JB
3523 argvec, nargs,
3524 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3525 context_type);
4c4b4cd2 3526 if (i < 0)
323e0a4a 3527 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3528 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3529 }
3530
3531 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3532 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3533 innermost_block.update (candidates[i]);
4c4b4cd2 3534 }
14f9c5c9
AS
3535 }
3536 break;
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
3541 case BINOP_REM:
3542 case BINOP_MOD:
3543 case BINOP_CONCAT:
3544 case BINOP_BITWISE_AND:
3545 case BINOP_BITWISE_IOR:
3546 case BINOP_BITWISE_XOR:
3547 case BINOP_EQUAL:
3548 case BINOP_NOTEQUAL:
3549 case BINOP_LESS:
3550 case BINOP_GTR:
3551 case BINOP_LEQ:
3552 case BINOP_GEQ:
3553 case BINOP_EXP:
3554 case UNOP_NEG:
3555 case UNOP_PLUS:
3556 case UNOP_LOGICAL_NOT:
3557 case UNOP_ABS:
3558 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3559 {
54d343a2 3560 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3561 int n_candidates;
3562
3563 n_candidates =
b5ec771e 3564 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3565 NULL, VAR_DOMAIN,
4eeaa230 3566 &candidates);
ec6a20c2 3567
54d343a2
TT
3568 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3569 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3570 if (i < 0)
3571 break;
3572
d12307c1
PMR
3573 replace_operator_with_call (expp, pc, nargs, 1,
3574 candidates[i].symbol,
3575 candidates[i].block);
e9d9f57e 3576 exp = expp->get ();
4c4b4cd2 3577 }
14f9c5c9 3578 break;
4c4b4cd2
PH
3579
3580 case OP_TYPE:
b3dbf008 3581 case OP_REGISTER:
4c4b4cd2 3582 return NULL;
14f9c5c9
AS
3583 }
3584
3585 *pos = pc;
ced9779b
JB
3586 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3587 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3588 exp->elts[pc + 1].objfile,
3589 exp->elts[pc + 2].msymbol);
3590 else
3591 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3592}
3593
3594/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3595 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3596 a non-pointer. */
14f9c5c9 3597/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3598 liberal. */
14f9c5c9
AS
3599
3600static int
4dc81987 3601ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3602{
61ee279c
PH
3603 ftype = ada_check_typedef (ftype);
3604 atype = ada_check_typedef (atype);
14f9c5c9
AS
3605
3606 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3607 ftype = TYPE_TARGET_TYPE (ftype);
3608 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3609 atype = TYPE_TARGET_TYPE (atype);
3610
d2e4a39e 3611 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3612 {
3613 default:
5b3d5b7d 3614 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3615 case TYPE_CODE_PTR:
3616 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3617 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3618 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3619 else
1265e4aa
JB
3620 return (may_deref
3621 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3622 case TYPE_CODE_INT:
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_ENUM:
3629 case TYPE_CODE_RANGE:
3630 return 1;
3631 default:
3632 return 0;
3633 }
14f9c5c9
AS
3634
3635 case TYPE_CODE_ARRAY:
d2e4a39e 3636 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3637 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3638
3639 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3640 if (ada_is_array_descriptor_type (ftype))
3641 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3642 || ada_is_array_descriptor_type (atype));
14f9c5c9 3643 else
4c4b4cd2
PH
3644 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3645 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3646
3647 case TYPE_CODE_UNION:
3648 case TYPE_CODE_FLT:
3649 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3650 }
3651}
3652
3653/* Return non-zero if the formals of FUNC "sufficiently match" the
3654 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3655 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3656 argument function. */
14f9c5c9
AS
3657
3658static int
d2e4a39e 3659ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3660{
3661 int i;
d2e4a39e 3662 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3663
1265e4aa
JB
3664 if (SYMBOL_CLASS (func) == LOC_CONST
3665 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3666 return (n_actuals == 0);
3667 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3668 return 0;
3669
3670 if (TYPE_NFIELDS (func_type) != n_actuals)
3671 return 0;
3672
3673 for (i = 0; i < n_actuals; i += 1)
3674 {
4c4b4cd2 3675 if (actuals[i] == NULL)
76a01679
JB
3676 return 0;
3677 else
3678 {
5b4ee69b
MS
3679 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3680 i));
df407dfe 3681 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3682
76a01679
JB
3683 if (!ada_type_match (ftype, atype, 1))
3684 return 0;
3685 }
14f9c5c9
AS
3686 }
3687 return 1;
3688}
3689
3690/* False iff function type FUNC_TYPE definitely does not produce a value
3691 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3692 FUNC_TYPE is not a valid function type with a non-null return type
3693 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3694
3695static int
d2e4a39e 3696return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3697{
d2e4a39e 3698 struct type *return_type;
14f9c5c9
AS
3699
3700 if (func_type == NULL)
3701 return 1;
3702
4c4b4cd2 3703 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3704 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3705 else
18af8284 3706 return_type = get_base_type (func_type);
14f9c5c9
AS
3707 if (return_type == NULL)
3708 return 1;
3709
18af8284 3710 context_type = get_base_type (context_type);
14f9c5c9
AS
3711
3712 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3713 return context_type == NULL || return_type == context_type;
3714 else if (context_type == NULL)
3715 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3716 else
3717 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3718}
3719
3720
4c4b4cd2 3721/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3722 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3723 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3724 that returns that type, then eliminate matches that don't. If
3725 CONTEXT_TYPE is void and there is at least one match that does not
3726 return void, eliminate all matches that do.
3727
14f9c5c9
AS
3728 Asks the user if there is more than one match remaining. Returns -1
3729 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3730 solely for messages. May re-arrange and modify SYMS in
3731 the process; the index returned is for the modified vector. */
14f9c5c9 3732
4c4b4cd2 3733static int
d12307c1 3734ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3735 int nsyms, struct value **args, int nargs,
3736 const char *name, struct type *context_type)
14f9c5c9 3737{
30b15541 3738 int fallback;
14f9c5c9 3739 int k;
4c4b4cd2 3740 int m; /* Number of hits */
14f9c5c9 3741
d2e4a39e 3742 m = 0;
30b15541
UW
3743 /* In the first pass of the loop, we only accept functions matching
3744 context_type. If none are found, we add a second pass of the loop
3745 where every function is accepted. */
3746 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3747 {
3748 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3749 {
d12307c1 3750 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3751
d12307c1 3752 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3753 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3754 {
3755 syms[m] = syms[k];
3756 m += 1;
3757 }
3758 }
14f9c5c9
AS
3759 }
3760
dc5c8746
PMR
3761 /* If we got multiple matches, ask the user which one to use. Don't do this
3762 interactive thing during completion, though, as the purpose of the
3763 completion is providing a list of all possible matches. Prompting the
3764 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3765 if (m == 0)
3766 return -1;
dc5c8746 3767 else if (m > 1 && !parse_completion)
14f9c5c9 3768 {
323e0a4a 3769 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3770 user_select_syms (syms, m, 1);
14f9c5c9
AS
3771 return 0;
3772 }
3773 return 0;
3774}
3775
4c4b4cd2
PH
3776/* Returns true (non-zero) iff decoded name N0 should appear before N1
3777 in a listing of choices during disambiguation (see sort_choices, below).
3778 The idea is that overloadings of a subprogram name from the
3779 same package should sort in their source order. We settle for ordering
3780 such symbols by their trailing number (__N or $N). */
3781
14f9c5c9 3782static int
0d5cff50 3783encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3784{
3785 if (N1 == NULL)
3786 return 0;
3787 else if (N0 == NULL)
3788 return 1;
3789 else
3790 {
3791 int k0, k1;
5b4ee69b 3792
d2e4a39e 3793 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3794 ;
d2e4a39e 3795 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3796 ;
d2e4a39e 3797 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3798 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3799 {
3800 int n0, n1;
5b4ee69b 3801
4c4b4cd2
PH
3802 n0 = k0;
3803 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3804 n0 -= 1;
3805 n1 = k1;
3806 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3807 n1 -= 1;
3808 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3809 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3810 }
14f9c5c9
AS
3811 return (strcmp (N0, N1) < 0);
3812 }
3813}
d2e4a39e 3814
4c4b4cd2
PH
3815/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3816 encoded names. */
3817
d2e4a39e 3818static void
d12307c1 3819sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3820{
4c4b4cd2 3821 int i;
5b4ee69b 3822
d2e4a39e 3823 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3824 {
d12307c1 3825 struct block_symbol sym = syms[i];
14f9c5c9
AS
3826 int j;
3827
d2e4a39e 3828 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3829 {
d12307c1
PMR
3830 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3831 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3832 break;
3833 syms[j + 1] = syms[j];
3834 }
d2e4a39e 3835 syms[j + 1] = sym;
14f9c5c9
AS
3836 }
3837}
3838
d72413e6
PMR
3839/* Whether GDB should display formals and return types for functions in the
3840 overloads selection menu. */
3841static int print_signatures = 1;
3842
3843/* Print the signature for SYM on STREAM according to the FLAGS options. For
3844 all but functions, the signature is just the name of the symbol. For
3845 functions, this is the name of the function, the list of types for formals
3846 and the return type (if any). */
3847
3848static void
3849ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3850 const struct type_print_options *flags)
3851{
3852 struct type *type = SYMBOL_TYPE (sym);
3853
3854 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3855 if (!print_signatures
3856 || type == NULL
3857 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3858 return;
3859
3860 if (TYPE_NFIELDS (type) > 0)
3861 {
3862 int i;
3863
3864 fprintf_filtered (stream, " (");
3865 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3866 {
3867 if (i > 0)
3868 fprintf_filtered (stream, "; ");
3869 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3870 flags);
3871 }
3872 fprintf_filtered (stream, ")");
3873 }
3874 if (TYPE_TARGET_TYPE (type) != NULL
3875 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3876 {
3877 fprintf_filtered (stream, " return ");
3878 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3879 }
3880}
3881
4c4b4cd2
PH
3882/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3883 by asking the user (if necessary), returning the number selected,
3884 and setting the first elements of SYMS items. Error if no symbols
3885 selected. */
14f9c5c9
AS
3886
3887/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3888 to be re-integrated one of these days. */
14f9c5c9
AS
3889
3890int
d12307c1 3891user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3892{
3893 int i;
8d749320 3894 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3895 int n_chosen;
3896 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3897 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3898
3899 if (max_results < 1)
323e0a4a 3900 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3901 if (nsyms <= 1)
3902 return nsyms;
3903
717d2f5a
JB
3904 if (select_mode == multiple_symbols_cancel)
3905 error (_("\
3906canceled because the command is ambiguous\n\
3907See set/show multiple-symbol."));
a0087920 3908
717d2f5a
JB
3909 /* If select_mode is "all", then return all possible symbols.
3910 Only do that if more than one symbol can be selected, of course.
3911 Otherwise, display the menu as usual. */
3912 if (select_mode == multiple_symbols_all && max_results > 1)
3913 return nsyms;
3914
a0087920 3915 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3916 if (max_results > 1)
a0087920 3917 printf_filtered (_("[1] all\n"));
14f9c5c9 3918
4c4b4cd2 3919 sort_choices (syms, nsyms);
14f9c5c9
AS
3920
3921 for (i = 0; i < nsyms; i += 1)
3922 {
d12307c1 3923 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3924 continue;
3925
d12307c1 3926 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3927 {
76a01679 3928 struct symtab_and_line sal =
d12307c1 3929 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3930
a0087920 3931 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
323e0a4a 3934 if (sal.symtab == NULL)
a0087920
TT
3935 printf_filtered (_(" at <no source file available>:%d\n"),
3936 sal.line);
323e0a4a 3937 else
a0087920
TT
3938 printf_filtered (_(" at %s:%d\n"),
3939 symtab_to_filename_for_display (sal.symtab),
3940 sal.line);
4c4b4cd2
PH
3941 continue;
3942 }
d2e4a39e 3943 else
4c4b4cd2
PH
3944 {
3945 int is_enumeral =
d12307c1
PMR
3946 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3947 && SYMBOL_TYPE (syms[i].symbol) != NULL
3948 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3949 struct symtab *symtab = NULL;
3950
d12307c1
PMR
3951 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3952 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3953
d12307c1 3954 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3955 {
a0087920 3956 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
a0087920
TT
3959 printf_filtered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (symtab),
3961 SYMBOL_LINE (syms[i].symbol));
d72413e6 3962 }
76a01679 3963 else if (is_enumeral
d12307c1 3964 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3965 {
a0087920 3966 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3967 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3968 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3969 printf_filtered (_("'(%s) (enumeral)\n"),
3970 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3971 }
d72413e6
PMR
3972 else
3973 {
a0087920 3974 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3975 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3976 &type_print_raw_options);
3977
3978 if (symtab != NULL)
a0087920
TT
3979 printf_filtered (is_enumeral
3980 ? _(" in %s (enumeral)\n")
3981 : _(" at %s:?\n"),
3982 symtab_to_filename_for_display (symtab));
d72413e6 3983 else
a0087920
TT
3984 printf_filtered (is_enumeral
3985 ? _(" (enumeral)\n")
3986 : _(" at ?\n"));
d72413e6 3987 }
4c4b4cd2 3988 }
14f9c5c9 3989 }
d2e4a39e 3990
14f9c5c9 3991 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3992 "overload-choice");
14f9c5c9
AS
3993
3994 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3995 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3996
3997 return n_chosen;
3998}
3999
4000/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4001 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4002 order in CHOICES[0 .. N-1], and return N.
4003
4004 The user types choices as a sequence of numbers on one line
4005 separated by blanks, encoding them as follows:
4006
4c4b4cd2 4007 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4008 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4009 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4010
4c4b4cd2 4011 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4012
4013 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4014 prompts (for use with the -f switch). */
14f9c5c9
AS
4015
4016int
d2e4a39e 4017get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4018 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4019{
d2e4a39e 4020 char *args;
a121b7c1 4021 const char *prompt;
14f9c5c9
AS
4022 int n_chosen;
4023 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4024
14f9c5c9
AS
4025 prompt = getenv ("PS2");
4026 if (prompt == NULL)
0bcd0149 4027 prompt = "> ";
14f9c5c9 4028
89fbedf3 4029 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4030
14f9c5c9 4031 if (args == NULL)
323e0a4a 4032 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4033
4034 n_chosen = 0;
76a01679 4035
4c4b4cd2
PH
4036 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4037 order, as given in args. Choices are validated. */
14f9c5c9
AS
4038 while (1)
4039 {
d2e4a39e 4040 char *args2;
14f9c5c9
AS
4041 int choice, j;
4042
0fcd72ba 4043 args = skip_spaces (args);
14f9c5c9 4044 if (*args == '\0' && n_chosen == 0)
323e0a4a 4045 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4046 else if (*args == '\0')
4c4b4cd2 4047 break;
14f9c5c9
AS
4048
4049 choice = strtol (args, &args2, 10);
d2e4a39e 4050 if (args == args2 || choice < 0
4c4b4cd2 4051 || choice > n_choices + first_choice - 1)
323e0a4a 4052 error (_("Argument must be choice number"));
14f9c5c9
AS
4053 args = args2;
4054
d2e4a39e 4055 if (choice == 0)
323e0a4a 4056 error (_("cancelled"));
14f9c5c9
AS
4057
4058 if (choice < first_choice)
4c4b4cd2
PH
4059 {
4060 n_chosen = n_choices;
4061 for (j = 0; j < n_choices; j += 1)
4062 choices[j] = j;
4063 break;
4064 }
14f9c5c9
AS
4065 choice -= first_choice;
4066
d2e4a39e 4067 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4068 {
4069 }
14f9c5c9
AS
4070
4071 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4072 {
4073 int k;
5b4ee69b 4074
4c4b4cd2
PH
4075 for (k = n_chosen - 1; k > j; k -= 1)
4076 choices[k + 1] = choices[k];
4077 choices[j + 1] = choice;
4078 n_chosen += 1;
4079 }
14f9c5c9
AS
4080 }
4081
4082 if (n_chosen > max_results)
323e0a4a 4083 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4084
14f9c5c9
AS
4085 return n_chosen;
4086}
4087
4c4b4cd2
PH
4088/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4089 on the function identified by SYM and BLOCK, and taking NARGS
4090 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4091
4092static void
e9d9f57e 4093replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4094 int oplen, struct symbol *sym,
270140bd 4095 const struct block *block)
14f9c5c9
AS
4096{
4097 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4098 symbol, -oplen for operator being replaced). */
d2e4a39e 4099 struct expression *newexp = (struct expression *)
8c1a34e7 4100 xzalloc (sizeof (struct expression)
4c4b4cd2 4101 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4102 struct expression *exp = expp->get ();
14f9c5c9
AS
4103
4104 newexp->nelts = exp->nelts + 7 - oplen;
4105 newexp->language_defn = exp->language_defn;
3489610d 4106 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4107 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4108 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4109 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4110
4111 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4112 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4113
4114 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4115 newexp->elts[pc + 4].block = block;
4116 newexp->elts[pc + 5].symbol = sym;
4117
e9d9f57e 4118 expp->reset (newexp);
d2e4a39e 4119}
14f9c5c9
AS
4120
4121/* Type-class predicates */
4122
4c4b4cd2
PH
4123/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4124 or FLOAT). */
14f9c5c9
AS
4125
4126static int
d2e4a39e 4127numeric_type_p (struct type *type)
14f9c5c9
AS
4128{
4129 if (type == NULL)
4130 return 0;
d2e4a39e
AS
4131 else
4132 {
4133 switch (TYPE_CODE (type))
4c4b4cd2
PH
4134 {
4135 case TYPE_CODE_INT:
4136 case TYPE_CODE_FLT:
4137 return 1;
4138 case TYPE_CODE_RANGE:
4139 return (type == TYPE_TARGET_TYPE (type)
4140 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4141 default:
4142 return 0;
4143 }
d2e4a39e 4144 }
14f9c5c9
AS
4145}
4146
4c4b4cd2 4147/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4148
4149static int
d2e4a39e 4150integer_type_p (struct type *type)
14f9c5c9
AS
4151{
4152 if (type == NULL)
4153 return 0;
d2e4a39e
AS
4154 else
4155 {
4156 switch (TYPE_CODE (type))
4c4b4cd2
PH
4157 {
4158 case TYPE_CODE_INT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || integer_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
d2e4a39e 4166 }
14f9c5c9
AS
4167}
4168
4c4b4cd2 4169/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4170
4171static int
d2e4a39e 4172scalar_type_p (struct type *type)
14f9c5c9
AS
4173{
4174 if (type == NULL)
4175 return 0;
d2e4a39e
AS
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4c4b4cd2
PH
4179 {
4180 case TYPE_CODE_INT:
4181 case TYPE_CODE_RANGE:
4182 case TYPE_CODE_ENUM:
4183 case TYPE_CODE_FLT:
4184 return 1;
4185 default:
4186 return 0;
4187 }
d2e4a39e 4188 }
14f9c5c9
AS
4189}
4190
4c4b4cd2 4191/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4192
4193static int
d2e4a39e 4194discrete_type_p (struct type *type)
14f9c5c9
AS
4195{
4196 if (type == NULL)
4197 return 0;
d2e4a39e
AS
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4c4b4cd2
PH
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
872f0337 4205 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4206 return 1;
4207 default:
4208 return 0;
4209 }
d2e4a39e 4210 }
14f9c5c9
AS
4211}
4212
4c4b4cd2
PH
4213/* Returns non-zero if OP with operands in the vector ARGS could be
4214 a user-defined function. Errs on the side of pre-defined operators
4215 (i.e., result 0). */
14f9c5c9
AS
4216
4217static int
d2e4a39e 4218possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4219{
76a01679 4220 struct type *type0 =
df407dfe 4221 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4222 struct type *type1 =
df407dfe 4223 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4224
4c4b4cd2
PH
4225 if (type0 == NULL)
4226 return 0;
4227
14f9c5c9
AS
4228 switch (op)
4229 {
4230 default:
4231 return 0;
4232
4233 case BINOP_ADD:
4234 case BINOP_SUB:
4235 case BINOP_MUL:
4236 case BINOP_DIV:
d2e4a39e 4237 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4238
4239 case BINOP_REM:
4240 case BINOP_MOD:
4241 case BINOP_BITWISE_AND:
4242 case BINOP_BITWISE_IOR:
4243 case BINOP_BITWISE_XOR:
d2e4a39e 4244 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4245
4246 case BINOP_EQUAL:
4247 case BINOP_NOTEQUAL:
4248 case BINOP_LESS:
4249 case BINOP_GTR:
4250 case BINOP_LEQ:
4251 case BINOP_GEQ:
d2e4a39e 4252 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4253
4254 case BINOP_CONCAT:
ee90b9ab 4255 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4256
4257 case BINOP_EXP:
d2e4a39e 4258 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4259
4260 case UNOP_NEG:
4261 case UNOP_PLUS:
4262 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4263 case UNOP_ABS:
4264 return (!numeric_type_p (type0));
14f9c5c9
AS
4265
4266 }
4267}
4268\f
4c4b4cd2 4269 /* Renaming */
14f9c5c9 4270
aeb5907d
JB
4271/* NOTES:
4272
4273 1. In the following, we assume that a renaming type's name may
4274 have an ___XD suffix. It would be nice if this went away at some
4275 point.
4276 2. We handle both the (old) purely type-based representation of
4277 renamings and the (new) variable-based encoding. At some point,
4278 it is devoutly to be hoped that the former goes away
4279 (FIXME: hilfinger-2007-07-09).
4280 3. Subprogram renamings are not implemented, although the XRS
4281 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4282
4283/* If SYM encodes a renaming,
4284
4285 <renaming> renames <renamed entity>,
4286
4287 sets *LEN to the length of the renamed entity's name,
4288 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4289 the string describing the subcomponent selected from the renamed
0963b4bd 4290 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4291 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4292 are undefined). Otherwise, returns a value indicating the category
4293 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4294 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4295 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4296 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4297 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4298 may be NULL, in which case they are not assigned.
4299
4300 [Currently, however, GCC does not generate subprogram renamings.] */
4301
4302enum ada_renaming_category
4303ada_parse_renaming (struct symbol *sym,
4304 const char **renamed_entity, int *len,
4305 const char **renaming_expr)
4306{
4307 enum ada_renaming_category kind;
4308 const char *info;
4309 const char *suffix;
4310
4311 if (sym == NULL)
4312 return ADA_NOT_RENAMING;
4313 switch (SYMBOL_CLASS (sym))
14f9c5c9 4314 {
aeb5907d
JB
4315 default:
4316 return ADA_NOT_RENAMING;
4317 case LOC_TYPEDEF:
4318 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4319 renamed_entity, len, renaming_expr);
4320 case LOC_LOCAL:
4321 case LOC_STATIC:
4322 case LOC_COMPUTED:
4323 case LOC_OPTIMIZED_OUT:
4324 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4325 if (info == NULL)
4326 return ADA_NOT_RENAMING;
4327 switch (info[5])
4328 {
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 info += 6;
4332 break;
4333 case 'E':
4334 kind = ADA_EXCEPTION_RENAMING;
4335 info += 7;
4336 break;
4337 case 'P':
4338 kind = ADA_PACKAGE_RENAMING;
4339 info += 7;
4340 break;
4341 case 'S':
4342 kind = ADA_SUBPROGRAM_RENAMING;
4343 info += 7;
4344 break;
4345 default:
4346 return ADA_NOT_RENAMING;
4347 }
14f9c5c9 4348 }
4c4b4cd2 4349
aeb5907d
JB
4350 if (renamed_entity != NULL)
4351 *renamed_entity = info;
4352 suffix = strstr (info, "___XE");
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = strlen (info) - strlen (suffix);
4357 suffix += 5;
4358 if (renaming_expr != NULL)
4359 *renaming_expr = suffix;
4360 return kind;
4361}
4362
4363/* Assuming TYPE encodes a renaming according to the old encoding in
4364 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4365 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4366 ADA_NOT_RENAMING otherwise. */
4367static enum ada_renaming_category
4368parse_old_style_renaming (struct type *type,
4369 const char **renamed_entity, int *len,
4370 const char **renaming_expr)
4371{
4372 enum ada_renaming_category kind;
4373 const char *name;
4374 const char *info;
4375 const char *suffix;
14f9c5c9 4376
aeb5907d
JB
4377 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4378 || TYPE_NFIELDS (type) != 1)
4379 return ADA_NOT_RENAMING;
14f9c5c9 4380
a737d952 4381 name = TYPE_NAME (type);
aeb5907d
JB
4382 if (name == NULL)
4383 return ADA_NOT_RENAMING;
4384
4385 name = strstr (name, "___XR");
4386 if (name == NULL)
4387 return ADA_NOT_RENAMING;
4388 switch (name[5])
4389 {
4390 case '\0':
4391 case '_':
4392 kind = ADA_OBJECT_RENAMING;
4393 break;
4394 case 'E':
4395 kind = ADA_EXCEPTION_RENAMING;
4396 break;
4397 case 'P':
4398 kind = ADA_PACKAGE_RENAMING;
4399 break;
4400 case 'S':
4401 kind = ADA_SUBPROGRAM_RENAMING;
4402 break;
4403 default:
4404 return ADA_NOT_RENAMING;
4405 }
14f9c5c9 4406
aeb5907d
JB
4407 info = TYPE_FIELD_NAME (type, 0);
4408 if (info == NULL)
4409 return ADA_NOT_RENAMING;
4410 if (renamed_entity != NULL)
4411 *renamed_entity = info;
4412 suffix = strstr (info, "___XE");
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix + 5;
4415 if (suffix == NULL || suffix == info)
4416 return ADA_NOT_RENAMING;
4417 if (len != NULL)
4418 *len = suffix - info;
4419 return kind;
a5ee536b
JB
4420}
4421
4422/* Compute the value of the given RENAMING_SYM, which is expected to
4423 be a symbol encoding a renaming expression. BLOCK is the block
4424 used to evaluate the renaming. */
52ce6436 4425
a5ee536b
JB
4426static struct value *
4427ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4428 const struct block *block)
a5ee536b 4429{
bbc13ae3 4430 const char *sym_name;
a5ee536b 4431
bbc13ae3 4432 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4433 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4434 return evaluate_expression (expr.get ());
a5ee536b 4435}
14f9c5c9 4436\f
d2e4a39e 4437
4c4b4cd2 4438 /* Evaluation: Function Calls */
14f9c5c9 4439
4c4b4cd2 4440/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4441 lvalues, and otherwise has the side-effect of allocating memory
4442 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4443
d2e4a39e 4444static struct value *
40bc484c 4445ensure_lval (struct value *val)
14f9c5c9 4446{
40bc484c
JB
4447 if (VALUE_LVAL (val) == not_lval
4448 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4449 {
df407dfe 4450 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4451 const CORE_ADDR addr =
4452 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4453
a84a8a0d 4454 VALUE_LVAL (val) = lval_memory;
1a088441 4455 set_value_address (val, addr);
40bc484c 4456 write_memory (addr, value_contents (val), len);
c3e5cd34 4457 }
14f9c5c9
AS
4458
4459 return val;
4460}
4461
4462/* Return the value ACTUAL, converted to be an appropriate value for a
4463 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4464 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4465 values not residing in memory, updating it as needed. */
14f9c5c9 4466
a93c0eb6 4467struct value *
40bc484c 4468ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4469{
df407dfe 4470 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4471 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4472 struct type *formal_target =
4473 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4474 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4475 struct type *actual_target =
4476 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4477 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4478
4c4b4cd2 4479 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4480 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4481 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4482 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4483 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4484 {
a84a8a0d 4485 struct value *result;
5b4ee69b 4486
14f9c5c9 4487 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4488 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4489 result = desc_data (actual);
cb923fcc 4490 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4491 {
4492 if (VALUE_LVAL (actual) != lval_memory)
4493 {
4494 struct value *val;
5b4ee69b 4495
df407dfe 4496 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4497 val = allocate_value (actual_type);
990a07ab 4498 memcpy ((char *) value_contents_raw (val),
0fd88904 4499 (char *) value_contents (actual),
4c4b4cd2 4500 TYPE_LENGTH (actual_type));
40bc484c 4501 actual = ensure_lval (val);
4c4b4cd2 4502 }
a84a8a0d 4503 result = value_addr (actual);
4c4b4cd2 4504 }
a84a8a0d
JB
4505 else
4506 return actual;
b1af9e97 4507 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4508 }
4509 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4510 return ada_value_ind (actual);
8344af1e
JB
4511 else if (ada_is_aligner_type (formal_type))
4512 {
4513 /* We need to turn this parameter into an aligner type
4514 as well. */
4515 struct value *aligner = allocate_value (formal_type);
4516 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4517
4518 value_assign_to_component (aligner, component, actual);
4519 return aligner;
4520 }
14f9c5c9
AS
4521
4522 return actual;
4523}
4524
438c98a1
JB
4525/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4526 type TYPE. This is usually an inefficient no-op except on some targets
4527 (such as AVR) where the representation of a pointer and an address
4528 differs. */
4529
4530static CORE_ADDR
4531value_pointer (struct value *value, struct type *type)
4532{
4533 struct gdbarch *gdbarch = get_type_arch (type);
4534 unsigned len = TYPE_LENGTH (type);
224c3ddb 4535 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4536 CORE_ADDR addr;
4537
4538 addr = value_address (value);
4539 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4540 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4541 return addr;
4542}
4543
14f9c5c9 4544
4c4b4cd2
PH
4545/* Push a descriptor of type TYPE for array value ARR on the stack at
4546 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4547 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4548 to-descriptor type rather than a descriptor type), a struct value *
4549 representing a pointer to this descriptor. */
14f9c5c9 4550
d2e4a39e 4551static struct value *
40bc484c 4552make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4553{
d2e4a39e
AS
4554 struct type *bounds_type = desc_bounds_type (type);
4555 struct type *desc_type = desc_base_type (type);
4556 struct value *descriptor = allocate_value (desc_type);
4557 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4558 int i;
d2e4a39e 4559
0963b4bd
MS
4560 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4561 i > 0; i -= 1)
14f9c5c9 4562 {
19f220c3
JK
4563 modify_field (value_type (bounds), value_contents_writeable (bounds),
4564 ada_array_bound (arr, i, 0),
4565 desc_bound_bitpos (bounds_type, i, 0),
4566 desc_bound_bitsize (bounds_type, i, 0));
4567 modify_field (value_type (bounds), value_contents_writeable (bounds),
4568 ada_array_bound (arr, i, 1),
4569 desc_bound_bitpos (bounds_type, i, 1),
4570 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4571 }
d2e4a39e 4572
40bc484c 4573 bounds = ensure_lval (bounds);
d2e4a39e 4574
19f220c3
JK
4575 modify_field (value_type (descriptor),
4576 value_contents_writeable (descriptor),
4577 value_pointer (ensure_lval (arr),
4578 TYPE_FIELD_TYPE (desc_type, 0)),
4579 fat_pntr_data_bitpos (desc_type),
4580 fat_pntr_data_bitsize (desc_type));
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (bounds,
4585 TYPE_FIELD_TYPE (desc_type, 1)),
4586 fat_pntr_bounds_bitpos (desc_type),
4587 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4588
40bc484c 4589 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4590
4591 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4592 return value_addr (descriptor);
4593 else
4594 return descriptor;
4595}
14f9c5c9 4596\f
3d9434b5
JB
4597 /* Symbol Cache Module */
4598
3d9434b5 4599/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4600 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4601 on the type of entity being printed, the cache can make it as much
4602 as an order of magnitude faster than without it.
4603
4604 The descriptive type DWARF extension has significantly reduced
4605 the need for this cache, at least when DWARF is being used. However,
4606 even in this case, some expensive name-based symbol searches are still
4607 sometimes necessary - to find an XVZ variable, mostly. */
4608
ee01b665 4609/* Initialize the contents of SYM_CACHE. */
3d9434b5 4610
ee01b665
JB
4611static void
4612ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4613{
4614 obstack_init (&sym_cache->cache_space);
4615 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4616}
3d9434b5 4617
ee01b665
JB
4618/* Free the memory used by SYM_CACHE. */
4619
4620static void
4621ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4622{
ee01b665
JB
4623 obstack_free (&sym_cache->cache_space, NULL);
4624 xfree (sym_cache);
4625}
3d9434b5 4626
ee01b665
JB
4627/* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4629
ee01b665
JB
4630static struct ada_symbol_cache *
4631ada_get_symbol_cache (struct program_space *pspace)
4632{
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4634
66c168ae 4635 if (pspace_data->sym_cache == NULL)
ee01b665 4636 {
66c168ae
JB
4637 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4638 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4639 }
4640
66c168ae 4641 return pspace_data->sym_cache;
ee01b665 4642}
3d9434b5
JB
4643
4644/* Clear all entries from the symbol cache. */
4645
4646static void
4647ada_clear_symbol_cache (void)
4648{
ee01b665
JB
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4654}
4655
fe978cb0 4656/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4657 Return it if found, or NULL otherwise. */
4658
4659static struct cache_entry **
fe978cb0 4660find_entry (const char *name, domain_enum domain)
3d9434b5 4661{
ee01b665
JB
4662 struct ada_symbol_cache *sym_cache
4663 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4664 int h = msymbol_hash (name) % HASH_SIZE;
4665 struct cache_entry **e;
4666
ee01b665 4667 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4668 {
fe978cb0 4669 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4670 return e;
4671 }
4672 return NULL;
4673}
4674
fe978cb0 4675/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4676 Return 1 if found, 0 otherwise.
4677
4678 If an entry was found and SYM is not NULL, set *SYM to the entry's
4679 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4680
96d887e8 4681static int
fe978cb0 4682lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4683 struct symbol **sym, const struct block **block)
96d887e8 4684{
fe978cb0 4685 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4686
4687 if (e == NULL)
4688 return 0;
4689 if (sym != NULL)
4690 *sym = (*e)->sym;
4691 if (block != NULL)
4692 *block = (*e)->block;
4693 return 1;
96d887e8
PH
4694}
4695
3d9434b5 4696/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4697 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4698
96d887e8 4699static void
fe978cb0 4700cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4701 const struct block *block)
96d887e8 4702{
ee01b665
JB
4703 struct ada_symbol_cache *sym_cache
4704 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4705 int h;
4706 char *copy;
4707 struct cache_entry *e;
4708
1994afbf
DE
4709 /* Symbols for builtin types don't have a block.
4710 For now don't cache such symbols. */
4711 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4712 return;
4713
3d9434b5
JB
4714 /* If the symbol is a local symbol, then do not cache it, as a search
4715 for that symbol depends on the context. To determine whether
4716 the symbol is local or not, we check the block where we found it
4717 against the global and static blocks of its associated symtab. */
4718 if (sym
08be3fe3 4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4720 GLOBAL_BLOCK) != block
08be3fe3 4721 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4722 STATIC_BLOCK) != block)
3d9434b5
JB
4723 return;
4724
4725 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4726 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4727 e->next = sym_cache->root[h];
4728 sym_cache->root[h] = e;
224c3ddb
SM
4729 e->name = copy
4730 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4731 strcpy (copy, name);
4732 e->sym = sym;
fe978cb0 4733 e->domain = domain;
3d9434b5 4734 e->block = block;
96d887e8 4735}
4c4b4cd2
PH
4736\f
4737 /* Symbol Lookup */
4738
b5ec771e
PA
4739/* Return the symbol name match type that should be used used when
4740 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4741
4742 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4743 for Ada lookups. */
c0431670 4744
b5ec771e
PA
4745static symbol_name_match_type
4746name_match_type_from_name (const char *lookup_name)
c0431670 4747{
b5ec771e
PA
4748 return (strstr (lookup_name, "__") == NULL
4749 ? symbol_name_match_type::WILD
4750 : symbol_name_match_type::FULL);
c0431670
JB
4751}
4752
4c4b4cd2
PH
4753/* Return the result of a standard (literal, C-like) lookup of NAME in
4754 given DOMAIN, visible from lexical block BLOCK. */
4755
4756static struct symbol *
4757standard_lookup (const char *name, const struct block *block,
4758 domain_enum domain)
4759{
acbd605d 4760 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4761 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4762
d12307c1
PMR
4763 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4764 return sym.symbol;
a2cd4f14 4765 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4766 cache_symbol (name, domain, sym.symbol, sym.block);
4767 return sym.symbol;
4c4b4cd2
PH
4768}
4769
4770
4771/* Non-zero iff there is at least one non-function/non-enumeral symbol
4772 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4773 since they contend in overloading in the same way. */
4774static int
d12307c1 4775is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4776{
4777 int i;
4778
4779 for (i = 0; i < n; i += 1)
d12307c1
PMR
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4781 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4782 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4783 return 1;
4784
4785 return 0;
4786}
4787
4788/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4789 struct types. Otherwise, they may not. */
14f9c5c9
AS
4790
4791static int
d2e4a39e 4792equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4793{
d2e4a39e 4794 if (type0 == type1)
14f9c5c9 4795 return 1;
d2e4a39e 4796 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4797 || TYPE_CODE (type0) != TYPE_CODE (type1))
4798 return 0;
d2e4a39e 4799 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4800 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4801 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4802 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4803 return 1;
d2e4a39e 4804
14f9c5c9
AS
4805 return 0;
4806}
4807
4808/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4809 no more defined than that of SYM1. */
14f9c5c9
AS
4810
4811static int
d2e4a39e 4812lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4813{
4814 if (sym0 == sym1)
4815 return 1;
176620f1 4816 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4817 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4818 return 0;
4819
d2e4a39e 4820 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4821 {
4822 case LOC_UNDEF:
4823 return 1;
4824 case LOC_TYPEDEF:
4825 {
4c4b4cd2
PH
4826 struct type *type0 = SYMBOL_TYPE (sym0);
4827 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4828 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4829 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4830 int len0 = strlen (name0);
5b4ee69b 4831
4c4b4cd2
PH
4832 return
4833 TYPE_CODE (type0) == TYPE_CODE (type1)
4834 && (equiv_types (type0, type1)
4835 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4836 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4837 }
4838 case LOC_CONST:
4839 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4840 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4841 default:
4842 return 0;
14f9c5c9
AS
4843 }
4844}
4845
d12307c1 4846/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4847 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4848
4849static void
76a01679
JB
4850add_defn_to_vec (struct obstack *obstackp,
4851 struct symbol *sym,
f0c5f9b2 4852 const struct block *block)
14f9c5c9
AS
4853{
4854 int i;
d12307c1 4855 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4856
529cad9c
PH
4857 /* Do not try to complete stub types, as the debugger is probably
4858 already scanning all symbols matching a certain name at the
4859 time when this function is called. Trying to replace the stub
4860 type by its associated full type will cause us to restart a scan
4861 which may lead to an infinite recursion. Instead, the client
4862 collecting the matching symbols will end up collecting several
4863 matches, with at least one of them complete. It can then filter
4864 out the stub ones if needed. */
4865
4c4b4cd2
PH
4866 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4867 {
d12307c1 4868 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4869 return;
d12307c1 4870 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4871 {
d12307c1 4872 prevDefns[i].symbol = sym;
4c4b4cd2 4873 prevDefns[i].block = block;
4c4b4cd2 4874 return;
76a01679 4875 }
4c4b4cd2
PH
4876 }
4877
4878 {
d12307c1 4879 struct block_symbol info;
4c4b4cd2 4880
d12307c1 4881 info.symbol = sym;
4c4b4cd2 4882 info.block = block;
d12307c1 4883 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4884 }
4885}
4886
d12307c1
PMR
4887/* Number of block_symbol structures currently collected in current vector in
4888 OBSTACKP. */
4c4b4cd2 4889
76a01679
JB
4890static int
4891num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4892{
d12307c1 4893 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4894}
4895
d12307c1
PMR
4896/* Vector of block_symbol structures currently collected in current vector in
4897 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4898
d12307c1 4899static struct block_symbol *
4c4b4cd2
PH
4900defns_collected (struct obstack *obstackp, int finish)
4901{
4902 if (finish)
224c3ddb 4903 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4904 else
d12307c1 4905 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4906}
4907
7c7b6655
TT
4908/* Return a bound minimal symbol matching NAME according to Ada
4909 decoding rules. Returns an invalid symbol if there is no such
4910 minimal symbol. Names prefixed with "standard__" are handled
4911 specially: "standard__" is first stripped off, and only static and
4912 global symbols are searched. */
4c4b4cd2 4913
7c7b6655 4914struct bound_minimal_symbol
96d887e8 4915ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4916{
7c7b6655 4917 struct bound_minimal_symbol result;
4c4b4cd2 4918
7c7b6655
TT
4919 memset (&result, 0, sizeof (result));
4920
b5ec771e
PA
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4926
2030c079 4927 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4928 {
7932255d 4929 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4930 {
4931 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4932 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4933 {
4934 result.minsym = msymbol;
4935 result.objfile = objfile;
4936 break;
4937 }
4938 }
4939 }
4c4b4cd2 4940
7c7b6655 4941 return result;
96d887e8 4942}
4c4b4cd2 4943
96d887e8
PH
4944/* For all subprograms that statically enclose the subprogram of the
4945 selected frame, add symbols matching identifier NAME in DOMAIN
4946 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4947 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4948 with a wildcard prefix. */
4c4b4cd2 4949
96d887e8
PH
4950static void
4951add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4952 const lookup_name_info &lookup_name,
4953 domain_enum domain)
96d887e8 4954{
96d887e8 4955}
14f9c5c9 4956
96d887e8
PH
4957/* True if TYPE is definitely an artificial type supplied to a symbol
4958 for which no debugging information was given in the symbol file. */
14f9c5c9 4959
96d887e8
PH
4960static int
4961is_nondebugging_type (struct type *type)
4962{
0d5cff50 4963 const char *name = ada_type_name (type);
5b4ee69b 4964
96d887e8
PH
4965 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4966}
4c4b4cd2 4967
8f17729f
JB
4968/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4969 that are deemed "identical" for practical purposes.
4970
4971 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4972 types and that their number of enumerals is identical (in other
4973 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4974
4975static int
4976ada_identical_enum_types_p (struct type *type1, struct type *type2)
4977{
4978 int i;
4979
4980 /* The heuristic we use here is fairly conservative. We consider
4981 that 2 enumerate types are identical if they have the same
4982 number of enumerals and that all enumerals have the same
4983 underlying value and name. */
4984
4985 /* All enums in the type should have an identical underlying value. */
4986 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4987 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4988 return 0;
4989
4990 /* All enumerals should also have the same name (modulo any numerical
4991 suffix). */
4992 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4993 {
0d5cff50
DE
4994 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4995 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4996 int len_1 = strlen (name_1);
4997 int len_2 = strlen (name_2);
4998
4999 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5001 if (len_1 != len_2
5002 || strncmp (TYPE_FIELD_NAME (type1, i),
5003 TYPE_FIELD_NAME (type2, i),
5004 len_1) != 0)
5005 return 0;
5006 }
5007
5008 return 1;
5009}
5010
5011/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5012 that are deemed "identical" for practical purposes. Sometimes,
5013 enumerals are not strictly identical, but their types are so similar
5014 that they can be considered identical.
5015
5016 For instance, consider the following code:
5017
5018 type Color is (Black, Red, Green, Blue, White);
5019 type RGB_Color is new Color range Red .. Blue;
5020
5021 Type RGB_Color is a subrange of an implicit type which is a copy
5022 of type Color. If we call that implicit type RGB_ColorB ("B" is
5023 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5024 As a result, when an expression references any of the enumeral
5025 by name (Eg. "print green"), the expression is technically
5026 ambiguous and the user should be asked to disambiguate. But
5027 doing so would only hinder the user, since it wouldn't matter
5028 what choice he makes, the outcome would always be the same.
5029 So, for practical purposes, we consider them as the same. */
5030
5031static int
54d343a2 5032symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5033{
5034 int i;
5035
5036 /* Before performing a thorough comparison check of each type,
5037 we perform a series of inexpensive checks. We expect that these
5038 checks will quickly fail in the vast majority of cases, and thus
5039 help prevent the unnecessary use of a more expensive comparison.
5040 Said comparison also expects us to make some of these checks
5041 (see ada_identical_enum_types_p). */
5042
5043 /* Quick check: All symbols should have an enum type. */
54d343a2 5044 for (i = 0; i < syms.size (); i++)
d12307c1 5045 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5046 return 0;
5047
5048 /* Quick check: They should all have the same value. */
54d343a2 5049 for (i = 1; i < syms.size (); i++)
d12307c1 5050 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5051 return 0;
5052
5053 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5054 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5055 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5056 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5057 return 0;
5058
5059 /* All the sanity checks passed, so we might have a set of
5060 identical enumeration types. Perform a more complete
5061 comparison of the type of each symbol. */
54d343a2 5062 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5063 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5064 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5065 return 0;
5066
5067 return 1;
5068}
5069
54d343a2 5070/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5071 duplicate other symbols in the list (The only case I know of where
5072 this happens is when object files containing stabs-in-ecoff are
5073 linked with files containing ordinary ecoff debugging symbols (or no
5074 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5075 Returns the number of items in the modified list. */
4c4b4cd2 5076
96d887e8 5077static int
54d343a2 5078remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5079{
5080 int i, j;
4c4b4cd2 5081
8f17729f
JB
5082 /* We should never be called with less than 2 symbols, as there
5083 cannot be any extra symbol in that case. But it's easy to
5084 handle, since we have nothing to do in that case. */
54d343a2
TT
5085 if (syms->size () < 2)
5086 return syms->size ();
8f17729f 5087
96d887e8 5088 i = 0;
54d343a2 5089 while (i < syms->size ())
96d887e8 5090 {
a35ddb44 5091 int remove_p = 0;
339c13b6
JB
5092
5093 /* If two symbols have the same name and one of them is a stub type,
5094 the get rid of the stub. */
5095
54d343a2
TT
5096 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5097 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5098 {
54d343a2 5099 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5100 {
5101 if (j != i
54d343a2
TT
5102 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5103 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5104 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5105 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5106 remove_p = 1;
339c13b6
JB
5107 }
5108 }
5109
5110 /* Two symbols with the same name, same class and same address
5111 should be identical. */
5112
54d343a2
TT
5113 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5114 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5115 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5116 {
54d343a2 5117 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5118 {
5119 if (i != j
54d343a2
TT
5120 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5121 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5122 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5123 && SYMBOL_CLASS ((*syms)[i].symbol)
5124 == SYMBOL_CLASS ((*syms)[j].symbol)
5125 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5126 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5127 remove_p = 1;
4c4b4cd2 5128 }
4c4b4cd2 5129 }
339c13b6 5130
a35ddb44 5131 if (remove_p)
54d343a2 5132 syms->erase (syms->begin () + i);
339c13b6 5133
96d887e8 5134 i += 1;
14f9c5c9 5135 }
8f17729f
JB
5136
5137 /* If all the remaining symbols are identical enumerals, then
5138 just keep the first one and discard the rest.
5139
5140 Unlike what we did previously, we do not discard any entry
5141 unless they are ALL identical. This is because the symbol
5142 comparison is not a strict comparison, but rather a practical
5143 comparison. If all symbols are considered identical, then
5144 we can just go ahead and use the first one and discard the rest.
5145 But if we cannot reduce the list to a single element, we have
5146 to ask the user to disambiguate anyways. And if we have to
5147 present a multiple-choice menu, it's less confusing if the list
5148 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5149 if (symbols_are_identical_enums (*syms))
5150 syms->resize (1);
8f17729f 5151
54d343a2 5152 return syms->size ();
14f9c5c9
AS
5153}
5154
96d887e8
PH
5155/* Given a type that corresponds to a renaming entity, use the type name
5156 to extract the scope (package name or function name, fully qualified,
5157 and following the GNAT encoding convention) where this renaming has been
49d83361 5158 defined. */
4c4b4cd2 5159
49d83361 5160static std::string
96d887e8 5161xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5162{
96d887e8 5163 /* The renaming types adhere to the following convention:
0963b4bd 5164 <scope>__<rename>___<XR extension>.
96d887e8
PH
5165 So, to extract the scope, we search for the "___XR" extension,
5166 and then backtrack until we find the first "__". */
76a01679 5167
a737d952 5168 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5169 const char *suffix = strstr (name, "___XR");
5170 const char *last;
14f9c5c9 5171
96d887e8
PH
5172 /* Now, backtrack a bit until we find the first "__". Start looking
5173 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5174
96d887e8
PH
5175 for (last = suffix - 3; last > name; last--)
5176 if (last[0] == '_' && last[1] == '_')
5177 break;
76a01679 5178
96d887e8 5179 /* Make a copy of scope and return it. */
49d83361 5180 return std::string (name, last);
4c4b4cd2
PH
5181}
5182
96d887e8 5183/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5184
96d887e8
PH
5185static int
5186is_package_name (const char *name)
4c4b4cd2 5187{
96d887e8
PH
5188 /* Here, We take advantage of the fact that no symbols are generated
5189 for packages, while symbols are generated for each function.
5190 So the condition for NAME represent a package becomes equivalent
5191 to NAME not existing in our list of symbols. There is only one
5192 small complication with library-level functions (see below). */
4c4b4cd2 5193
96d887e8
PH
5194 /* If it is a function that has not been defined at library level,
5195 then we should be able to look it up in the symbols. */
5196 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5197 return 0;
14f9c5c9 5198
96d887e8
PH
5199 /* Library-level function names start with "_ada_". See if function
5200 "_ada_" followed by NAME can be found. */
14f9c5c9 5201
96d887e8 5202 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5203 functions names cannot contain "__" in them. */
96d887e8
PH
5204 if (strstr (name, "__") != NULL)
5205 return 0;
4c4b4cd2 5206
528e1572 5207 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5208
528e1572 5209 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5210}
14f9c5c9 5211
96d887e8 5212/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5213 not visible from FUNCTION_NAME. */
14f9c5c9 5214
96d887e8 5215static int
0d5cff50 5216old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5217{
aeb5907d
JB
5218 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5219 return 0;
5220
49d83361 5221 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5222
96d887e8 5223 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5224 if (is_package_name (scope.c_str ()))
5225 return 0;
14f9c5c9 5226
96d887e8
PH
5227 /* Check that the rename is in the current function scope by checking
5228 that its name starts with SCOPE. */
76a01679 5229
96d887e8
PH
5230 /* If the function name starts with "_ada_", it means that it is
5231 a library-level function. Strip this prefix before doing the
5232 comparison, as the encoding for the renaming does not contain
5233 this prefix. */
61012eef 5234 if (startswith (function_name, "_ada_"))
96d887e8 5235 function_name += 5;
f26caa11 5236
49d83361 5237 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5238}
5239
aeb5907d
JB
5240/* Remove entries from SYMS that corresponds to a renaming entity that
5241 is not visible from the function associated with CURRENT_BLOCK or
5242 that is superfluous due to the presence of more specific renaming
5243 information. Places surviving symbols in the initial entries of
5244 SYMS and returns the number of surviving symbols.
96d887e8
PH
5245
5246 Rationale:
aeb5907d
JB
5247 First, in cases where an object renaming is implemented as a
5248 reference variable, GNAT may produce both the actual reference
5249 variable and the renaming encoding. In this case, we discard the
5250 latter.
5251
5252 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5253 entity. Unfortunately, STABS currently does not support the definition
5254 of types that are local to a given lexical block, so all renamings types
5255 are emitted at library level. As a consequence, if an application
5256 contains two renaming entities using the same name, and a user tries to
5257 print the value of one of these entities, the result of the ada symbol
5258 lookup will also contain the wrong renaming type.
f26caa11 5259
96d887e8
PH
5260 This function partially covers for this limitation by attempting to
5261 remove from the SYMS list renaming symbols that should be visible
5262 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5263 method with the current information available. The implementation
5264 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5265
5266 - When the user tries to print a rename in a function while there
5267 is another rename entity defined in a package: Normally, the
5268 rename in the function has precedence over the rename in the
5269 package, so the latter should be removed from the list. This is
5270 currently not the case.
5271
5272 - This function will incorrectly remove valid renames if
5273 the CURRENT_BLOCK corresponds to a function which symbol name
5274 has been changed by an "Export" pragma. As a consequence,
5275 the user will be unable to print such rename entities. */
4c4b4cd2 5276
14f9c5c9 5277static int
54d343a2
TT
5278remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5279 const struct block *current_block)
4c4b4cd2
PH
5280{
5281 struct symbol *current_function;
0d5cff50 5282 const char *current_function_name;
4c4b4cd2 5283 int i;
aeb5907d
JB
5284 int is_new_style_renaming;
5285
5286 /* If there is both a renaming foo___XR... encoded as a variable and
5287 a simple variable foo in the same block, discard the latter.
0963b4bd 5288 First, zero out such symbols, then compress. */
aeb5907d 5289 is_new_style_renaming = 0;
54d343a2 5290 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5291 {
54d343a2
TT
5292 struct symbol *sym = (*syms)[i].symbol;
5293 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5294 const char *name;
5295 const char *suffix;
5296
5297 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5298 continue;
5299 name = SYMBOL_LINKAGE_NAME (sym);
5300 suffix = strstr (name, "___XR");
5301
5302 if (suffix != NULL)
5303 {
5304 int name_len = suffix - name;
5305 int j;
5b4ee69b 5306
aeb5907d 5307 is_new_style_renaming = 1;
54d343a2
TT
5308 for (j = 0; j < syms->size (); j += 1)
5309 if (i != j && (*syms)[j].symbol != NULL
5310 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5311 name_len) == 0
54d343a2
TT
5312 && block == (*syms)[j].block)
5313 (*syms)[j].symbol = NULL;
aeb5907d
JB
5314 }
5315 }
5316 if (is_new_style_renaming)
5317 {
5318 int j, k;
5319
54d343a2
TT
5320 for (j = k = 0; j < syms->size (); j += 1)
5321 if ((*syms)[j].symbol != NULL)
aeb5907d 5322 {
54d343a2 5323 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5324 k += 1;
5325 }
5326 return k;
5327 }
4c4b4cd2
PH
5328
5329 /* Extract the function name associated to CURRENT_BLOCK.
5330 Abort if unable to do so. */
76a01679 5331
4c4b4cd2 5332 if (current_block == NULL)
54d343a2 5333 return syms->size ();
76a01679 5334
7f0df278 5335 current_function = block_linkage_function (current_block);
4c4b4cd2 5336 if (current_function == NULL)
54d343a2 5337 return syms->size ();
4c4b4cd2
PH
5338
5339 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5340 if (current_function_name == NULL)
54d343a2 5341 return syms->size ();
4c4b4cd2
PH
5342
5343 /* Check each of the symbols, and remove it from the list if it is
5344 a type corresponding to a renaming that is out of the scope of
5345 the current block. */
5346
5347 i = 0;
54d343a2 5348 while (i < syms->size ())
4c4b4cd2 5349 {
54d343a2 5350 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5351 == ADA_OBJECT_RENAMING
54d343a2
TT
5352 && old_renaming_is_invisible ((*syms)[i].symbol,
5353 current_function_name))
5354 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5355 else
5356 i += 1;
5357 }
5358
54d343a2 5359 return syms->size ();
4c4b4cd2
PH
5360}
5361
339c13b6
JB
5362/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5363 whose name and domain match NAME and DOMAIN respectively.
5364 If no match was found, then extend the search to "enclosing"
5365 routines (in other words, if we're inside a nested function,
5366 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5367 If WILD_MATCH_P is nonzero, perform the naming matching in
5368 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5369
5370 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5371
5372static void
b5ec771e
PA
5373ada_add_local_symbols (struct obstack *obstackp,
5374 const lookup_name_info &lookup_name,
5375 const struct block *block, domain_enum domain)
339c13b6
JB
5376{
5377 int block_depth = 0;
5378
5379 while (block != NULL)
5380 {
5381 block_depth += 1;
b5ec771e 5382 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5383
5384 /* If we found a non-function match, assume that's the one. */
5385 if (is_nonfunction (defns_collected (obstackp, 0),
5386 num_defns_collected (obstackp)))
5387 return;
5388
5389 block = BLOCK_SUPERBLOCK (block);
5390 }
5391
5392 /* If no luck so far, try to find NAME as a local symbol in some lexically
5393 enclosing subprogram. */
5394 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5395 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5396}
5397
ccefe4c4 5398/* An object of this type is used as the user_data argument when
40658b94 5399 calling the map_matching_symbols method. */
ccefe4c4 5400
40658b94 5401struct match_data
ccefe4c4 5402{
40658b94 5403 struct objfile *objfile;
ccefe4c4 5404 struct obstack *obstackp;
40658b94
PH
5405 struct symbol *arg_sym;
5406 int found_sym;
ccefe4c4
TT
5407};
5408
22cee43f 5409/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5410 to a list of symbols. DATA0 is a pointer to a struct match_data *
5411 containing the obstack that collects the symbol list, the file that SYM
5412 must come from, a flag indicating whether a non-argument symbol has
5413 been found in the current block, and the last argument symbol
5414 passed in SYM within the current block (if any). When SYM is null,
5415 marking the end of a block, the argument symbol is added if no
5416 other has been found. */
ccefe4c4 5417
40658b94 5418static int
582942f4
TT
5419aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5420 void *data0)
ccefe4c4 5421{
40658b94
PH
5422 struct match_data *data = (struct match_data *) data0;
5423
5424 if (sym == NULL)
5425 {
5426 if (!data->found_sym && data->arg_sym != NULL)
5427 add_defn_to_vec (data->obstackp,
5428 fixup_symbol_section (data->arg_sym, data->objfile),
5429 block);
5430 data->found_sym = 0;
5431 data->arg_sym = NULL;
5432 }
5433 else
5434 {
5435 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5436 return 0;
5437 else if (SYMBOL_IS_ARGUMENT (sym))
5438 data->arg_sym = sym;
5439 else
5440 {
5441 data->found_sym = 1;
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (sym, data->objfile),
5444 block);
5445 }
5446 }
5447 return 0;
5448}
5449
b5ec771e
PA
5450/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5451 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5452 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5453
5454static int
5455ada_add_block_renamings (struct obstack *obstackp,
5456 const struct block *block,
b5ec771e
PA
5457 const lookup_name_info &lookup_name,
5458 domain_enum domain)
22cee43f
PMR
5459{
5460 struct using_direct *renaming;
5461 int defns_mark = num_defns_collected (obstackp);
5462
b5ec771e
PA
5463 symbol_name_matcher_ftype *name_match
5464 = ada_get_symbol_name_matcher (lookup_name);
5465
22cee43f
PMR
5466 for (renaming = block_using (block);
5467 renaming != NULL;
5468 renaming = renaming->next)
5469 {
5470 const char *r_name;
22cee43f
PMR
5471
5472 /* Avoid infinite recursions: skip this renaming if we are actually
5473 already traversing it.
5474
5475 Currently, symbol lookup in Ada don't use the namespace machinery from
5476 C++/Fortran support: skip namespace imports that use them. */
5477 if (renaming->searched
5478 || (renaming->import_src != NULL
5479 && renaming->import_src[0] != '\0')
5480 || (renaming->import_dest != NULL
5481 && renaming->import_dest[0] != '\0'))
5482 continue;
5483 renaming->searched = 1;
5484
5485 /* TODO: here, we perform another name-based symbol lookup, which can
5486 pull its own multiple overloads. In theory, we should be able to do
5487 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5488 not a simple name. But in order to do this, we would need to enhance
5489 the DWARF reader to associate a symbol to this renaming, instead of a
5490 name. So, for now, we do something simpler: re-use the C++/Fortran
5491 namespace machinery. */
5492 r_name = (renaming->alias != NULL
5493 ? renaming->alias
5494 : renaming->declaration);
b5ec771e
PA
5495 if (name_match (r_name, lookup_name, NULL))
5496 {
5497 lookup_name_info decl_lookup_name (renaming->declaration,
5498 lookup_name.match_type ());
5499 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5500 1, NULL);
5501 }
22cee43f
PMR
5502 renaming->searched = 0;
5503 }
5504 return num_defns_collected (obstackp) != defns_mark;
5505}
5506
db230ce3
JB
5507/* Implements compare_names, but only applying the comparision using
5508 the given CASING. */
5b4ee69b 5509
40658b94 5510static int
db230ce3
JB
5511compare_names_with_case (const char *string1, const char *string2,
5512 enum case_sensitivity casing)
40658b94
PH
5513{
5514 while (*string1 != '\0' && *string2 != '\0')
5515 {
db230ce3
JB
5516 char c1, c2;
5517
40658b94
PH
5518 if (isspace (*string1) || isspace (*string2))
5519 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5520
5521 if (casing == case_sensitive_off)
5522 {
5523 c1 = tolower (*string1);
5524 c2 = tolower (*string2);
5525 }
5526 else
5527 {
5528 c1 = *string1;
5529 c2 = *string2;
5530 }
5531 if (c1 != c2)
40658b94 5532 break;
db230ce3 5533
40658b94
PH
5534 string1 += 1;
5535 string2 += 1;
5536 }
db230ce3 5537
40658b94
PH
5538 switch (*string1)
5539 {
5540 case '(':
5541 return strcmp_iw_ordered (string1, string2);
5542 case '_':
5543 if (*string2 == '\0')
5544 {
052874e8 5545 if (is_name_suffix (string1))
40658b94
PH
5546 return 0;
5547 else
1a1d5513 5548 return 1;
40658b94 5549 }
dbb8534f 5550 /* FALLTHROUGH */
40658b94
PH
5551 default:
5552 if (*string2 == '(')
5553 return strcmp_iw_ordered (string1, string2);
5554 else
db230ce3
JB
5555 {
5556 if (casing == case_sensitive_off)
5557 return tolower (*string1) - tolower (*string2);
5558 else
5559 return *string1 - *string2;
5560 }
40658b94 5561 }
ccefe4c4
TT
5562}
5563
db230ce3
JB
5564/* Compare STRING1 to STRING2, with results as for strcmp.
5565 Compatible with strcmp_iw_ordered in that...
5566
5567 strcmp_iw_ordered (STRING1, STRING2) <= 0
5568
5569 ... implies...
5570
5571 compare_names (STRING1, STRING2) <= 0
5572
5573 (they may differ as to what symbols compare equal). */
5574
5575static int
5576compare_names (const char *string1, const char *string2)
5577{
5578 int result;
5579
5580 /* Similar to what strcmp_iw_ordered does, we need to perform
5581 a case-insensitive comparison first, and only resort to
5582 a second, case-sensitive, comparison if the first one was
5583 not sufficient to differentiate the two strings. */
5584
5585 result = compare_names_with_case (string1, string2, case_sensitive_off);
5586 if (result == 0)
5587 result = compare_names_with_case (string1, string2, case_sensitive_on);
5588
5589 return result;
5590}
5591
b5ec771e
PA
5592/* Convenience function to get at the Ada encoded lookup name for
5593 LOOKUP_NAME, as a C string. */
5594
5595static const char *
5596ada_lookup_name (const lookup_name_info &lookup_name)
5597{
5598 return lookup_name.ada ().lookup_name ().c_str ();
5599}
5600
339c13b6 5601/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5602 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5603 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5604 symbols otherwise. */
339c13b6
JB
5605
5606static void
b5ec771e
PA
5607add_nonlocal_symbols (struct obstack *obstackp,
5608 const lookup_name_info &lookup_name,
5609 domain_enum domain, int global)
339c13b6 5610{
40658b94 5611 struct match_data data;
339c13b6 5612
6475f2fe 5613 memset (&data, 0, sizeof data);
ccefe4c4 5614 data.obstackp = obstackp;
339c13b6 5615
b5ec771e
PA
5616 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5617
2030c079 5618 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5619 {
5620 data.objfile = objfile;
5621
5622 if (is_wild_match)
b5ec771e
PA
5623 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5624 domain, global,
4186eb54 5625 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5626 symbol_name_match_type::WILD,
5627 NULL);
40658b94 5628 else
b5ec771e
PA
5629 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5630 domain, global,
4186eb54 5631 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5632 symbol_name_match_type::FULL,
5633 compare_names);
22cee43f 5634
b669c953 5635 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5636 {
5637 const struct block *global_block
5638 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5639
b5ec771e
PA
5640 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5641 domain))
22cee43f
PMR
5642 data.found_sym = 1;
5643 }
40658b94
PH
5644 }
5645
5646 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5647 {
b5ec771e
PA
5648 const char *name = ada_lookup_name (lookup_name);
5649 std::string name1 = std::string ("<_ada_") + name + '>';
5650
2030c079 5651 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5652 {
40658b94 5653 data.objfile = objfile;
b5ec771e
PA
5654 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5655 domain, global,
0963b4bd
MS
5656 aux_add_nonlocal_symbols,
5657 &data,
b5ec771e
PA
5658 symbol_name_match_type::FULL,
5659 compare_names);
40658b94
PH
5660 }
5661 }
339c13b6
JB
5662}
5663
b5ec771e
PA
5664/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5665 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5666 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5667
22cee43f
PMR
5668 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5669 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5670 is the one match returned (no other matches in that or
d9680e73 5671 enclosing blocks is returned). If there are any matches in or
22cee43f 5672 surrounding BLOCK, then these alone are returned.
4eeaa230 5673
b5ec771e
PA
5674 Names prefixed with "standard__" are handled specially:
5675 "standard__" is first stripped off (by the lookup_name
5676 constructor), and only static and global symbols are searched.
14f9c5c9 5677
22cee43f
PMR
5678 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5679 to lookup global symbols. */
5680
5681static void
5682ada_add_all_symbols (struct obstack *obstackp,
5683 const struct block *block,
b5ec771e 5684 const lookup_name_info &lookup_name,
22cee43f
PMR
5685 domain_enum domain,
5686 int full_search,
5687 int *made_global_lookup_p)
14f9c5c9
AS
5688{
5689 struct symbol *sym;
14f9c5c9 5690
22cee43f
PMR
5691 if (made_global_lookup_p)
5692 *made_global_lookup_p = 0;
339c13b6
JB
5693
5694 /* Special case: If the user specifies a symbol name inside package
5695 Standard, do a non-wild matching of the symbol name without
5696 the "standard__" prefix. This was primarily introduced in order
5697 to allow the user to specifically access the standard exceptions
5698 using, for instance, Standard.Constraint_Error when Constraint_Error
5699 is ambiguous (due to the user defining its own Constraint_Error
5700 entity inside its program). */
b5ec771e
PA
5701 if (lookup_name.ada ().standard_p ())
5702 block = NULL;
4c4b4cd2 5703
339c13b6 5704 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5705
4eeaa230
DE
5706 if (block != NULL)
5707 {
5708 if (full_search)
b5ec771e 5709 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5710 else
5711 {
5712 /* In the !full_search case we're are being called by
5713 ada_iterate_over_symbols, and we don't want to search
5714 superblocks. */
b5ec771e 5715 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5716 }
22cee43f
PMR
5717 if (num_defns_collected (obstackp) > 0 || !full_search)
5718 return;
4eeaa230 5719 }
d2e4a39e 5720
339c13b6
JB
5721 /* No non-global symbols found. Check our cache to see if we have
5722 already performed this search before. If we have, then return
5723 the same result. */
5724
b5ec771e
PA
5725 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5726 domain, &sym, &block))
4c4b4cd2
PH
5727 {
5728 if (sym != NULL)
b5ec771e 5729 add_defn_to_vec (obstackp, sym, block);
22cee43f 5730 return;
4c4b4cd2 5731 }
14f9c5c9 5732
22cee43f
PMR
5733 if (made_global_lookup_p)
5734 *made_global_lookup_p = 1;
b1eedac9 5735
339c13b6
JB
5736 /* Search symbols from all global blocks. */
5737
b5ec771e 5738 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5739
4c4b4cd2 5740 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5741 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5742
22cee43f 5743 if (num_defns_collected (obstackp) == 0)
b5ec771e 5744 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5745}
5746
b5ec771e
PA
5747/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5748 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5749 matches.
54d343a2
TT
5750 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5751 found and the blocks and symbol tables (if any) in which they were
5752 found.
22cee43f
PMR
5753
5754 When full_search is non-zero, any non-function/non-enumeral
5755 symbol match within the nest of blocks whose innermost member is BLOCK,
5756 is the one match returned (no other matches in that or
5757 enclosing blocks is returned). If there are any matches in or
5758 surrounding BLOCK, then these alone are returned.
5759
5760 Names prefixed with "standard__" are handled specially: "standard__"
5761 is first stripped off, and only static and global symbols are searched. */
5762
5763static int
b5ec771e
PA
5764ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5765 const struct block *block,
22cee43f 5766 domain_enum domain,
54d343a2 5767 std::vector<struct block_symbol> *results,
22cee43f
PMR
5768 int full_search)
5769{
22cee43f
PMR
5770 int syms_from_global_search;
5771 int ndefns;
ec6a20c2 5772 auto_obstack obstack;
22cee43f 5773
ec6a20c2 5774 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5775 domain, full_search, &syms_from_global_search);
14f9c5c9 5776
ec6a20c2
JB
5777 ndefns = num_defns_collected (&obstack);
5778
54d343a2
TT
5779 struct block_symbol *base = defns_collected (&obstack, 1);
5780 for (int i = 0; i < ndefns; ++i)
5781 results->push_back (base[i]);
4c4b4cd2 5782
54d343a2 5783 ndefns = remove_extra_symbols (results);
4c4b4cd2 5784
b1eedac9 5785 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5786 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5787
b1eedac9 5788 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5789 cache_symbol (ada_lookup_name (lookup_name), domain,
5790 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5791
54d343a2 5792 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5793
14f9c5c9
AS
5794 return ndefns;
5795}
5796
b5ec771e 5797/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5798 in global scopes, returning the number of matches, and filling *RESULTS
5799 with (SYM,BLOCK) tuples.
ec6a20c2 5800
4eeaa230
DE
5801 See ada_lookup_symbol_list_worker for further details. */
5802
5803int
b5ec771e 5804ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5805 domain_enum domain,
5806 std::vector<struct block_symbol> *results)
4eeaa230 5807{
b5ec771e
PA
5808 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5809 lookup_name_info lookup_name (name, name_match_type);
5810
5811 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5812}
5813
5814/* Implementation of the la_iterate_over_symbols method. */
5815
5816static void
14bc53a8 5817ada_iterate_over_symbols
b5ec771e
PA
5818 (const struct block *block, const lookup_name_info &name,
5819 domain_enum domain,
14bc53a8 5820 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5821{
5822 int ndefs, i;
54d343a2 5823 std::vector<struct block_symbol> results;
4eeaa230
DE
5824
5825 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5826
4eeaa230
DE
5827 for (i = 0; i < ndefs; ++i)
5828 {
7e41c8db 5829 if (!callback (&results[i]))
4eeaa230
DE
5830 break;
5831 }
5832}
5833
4e5c77fe
JB
5834/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5835 to 1, but choosing the first symbol found if there are multiple
5836 choices.
5837
5e2336be
JB
5838 The result is stored in *INFO, which must be non-NULL.
5839 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5840
5841void
5842ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5843 domain_enum domain,
d12307c1 5844 struct block_symbol *info)
14f9c5c9 5845{
b5ec771e
PA
5846 /* Since we already have an encoded name, wrap it in '<>' to force a
5847 verbatim match. Otherwise, if the name happens to not look like
5848 an encoded name (because it doesn't include a "__"),
5849 ada_lookup_name_info would re-encode/fold it again, and that
5850 would e.g., incorrectly lowercase object renaming names like
5851 "R28b" -> "r28b". */
5852 std::string verbatim = std::string ("<") + name + '>';
5853
5e2336be 5854 gdb_assert (info != NULL);
f98fc17b 5855 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5856}
aeb5907d
JB
5857
5858/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5859 scope and in global scopes, or NULL if none. NAME is folded and
5860 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5861 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5862 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5863
d12307c1 5864struct block_symbol
aeb5907d 5865ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5866 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5867{
5868 if (is_a_field_of_this != NULL)
5869 *is_a_field_of_this = 0;
5870
54d343a2 5871 std::vector<struct block_symbol> candidates;
f98fc17b 5872 int n_candidates;
f98fc17b
PA
5873
5874 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5875
5876 if (n_candidates == 0)
54d343a2 5877 return {};
f98fc17b
PA
5878
5879 block_symbol info = candidates[0];
5880 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5881 return info;
4c4b4cd2 5882}
14f9c5c9 5883
d12307c1 5884static struct block_symbol
f606139a
DE
5885ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5886 const char *name,
76a01679 5887 const struct block *block,
21b556f4 5888 const domain_enum domain)
4c4b4cd2 5889{
d12307c1 5890 struct block_symbol sym;
04dccad0
JB
5891
5892 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5893 if (sym.symbol != NULL)
04dccad0
JB
5894 return sym;
5895
5896 /* If we haven't found a match at this point, try the primitive
5897 types. In other languages, this search is performed before
5898 searching for global symbols in order to short-circuit that
5899 global-symbol search if it happens that the name corresponds
5900 to a primitive type. But we cannot do the same in Ada, because
5901 it is perfectly legitimate for a program to declare a type which
5902 has the same name as a standard type. If looking up a type in
5903 that situation, we have traditionally ignored the primitive type
5904 in favor of user-defined types. This is why, unlike most other
5905 languages, we search the primitive types this late and only after
5906 having searched the global symbols without success. */
5907
5908 if (domain == VAR_DOMAIN)
5909 {
5910 struct gdbarch *gdbarch;
5911
5912 if (block == NULL)
5913 gdbarch = target_gdbarch ();
5914 else
5915 gdbarch = block_gdbarch (block);
d12307c1
PMR
5916 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5917 if (sym.symbol != NULL)
04dccad0
JB
5918 return sym;
5919 }
5920
d12307c1 5921 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5922}
5923
5924
4c4b4cd2
PH
5925/* True iff STR is a possible encoded suffix of a normal Ada name
5926 that is to be ignored for matching purposes. Suffixes of parallel
5927 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5928 are given by any of the regular expressions:
4c4b4cd2 5929
babe1480
JB
5930 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5931 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5932 TKB [subprogram suffix for task bodies]
babe1480 5933 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5934 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5935
5936 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5937 match is performed. This sequence is used to differentiate homonyms,
5938 is an optional part of a valid name suffix. */
4c4b4cd2 5939
14f9c5c9 5940static int
d2e4a39e 5941is_name_suffix (const char *str)
14f9c5c9
AS
5942{
5943 int k;
4c4b4cd2
PH
5944 const char *matching;
5945 const int len = strlen (str);
5946
babe1480
JB
5947 /* Skip optional leading __[0-9]+. */
5948
4c4b4cd2
PH
5949 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5950 {
babe1480
JB
5951 str += 3;
5952 while (isdigit (str[0]))
5953 str += 1;
4c4b4cd2 5954 }
babe1480
JB
5955
5956 /* [.$][0-9]+ */
4c4b4cd2 5957
babe1480 5958 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5959 {
babe1480 5960 matching = str + 1;
4c4b4cd2
PH
5961 while (isdigit (matching[0]))
5962 matching += 1;
5963 if (matching[0] == '\0')
5964 return 1;
5965 }
5966
5967 /* ___[0-9]+ */
babe1480 5968
4c4b4cd2
PH
5969 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5970 {
5971 matching = str + 3;
5972 while (isdigit (matching[0]))
5973 matching += 1;
5974 if (matching[0] == '\0')
5975 return 1;
5976 }
5977
9ac7f98e
JB
5978 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5979
5980 if (strcmp (str, "TKB") == 0)
5981 return 1;
5982
529cad9c
PH
5983#if 0
5984 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5985 with a N at the end. Unfortunately, the compiler uses the same
5986 convention for other internal types it creates. So treating
529cad9c 5987 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5988 some regressions. For instance, consider the case of an enumerated
5989 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5990 name ends with N.
5991 Having a single character like this as a suffix carrying some
0963b4bd 5992 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5993 to be something like "_N" instead. In the meantime, do not do
5994 the following check. */
5995 /* Protected Object Subprograms */
5996 if (len == 1 && str [0] == 'N')
5997 return 1;
5998#endif
5999
6000 /* _E[0-9]+[bs]$ */
6001 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6002 {
6003 matching = str + 3;
6004 while (isdigit (matching[0]))
6005 matching += 1;
6006 if ((matching[0] == 'b' || matching[0] == 's')
6007 && matching [1] == '\0')
6008 return 1;
6009 }
6010
4c4b4cd2
PH
6011 /* ??? We should not modify STR directly, as we are doing below. This
6012 is fine in this case, but may become problematic later if we find
6013 that this alternative did not work, and want to try matching
6014 another one from the begining of STR. Since we modified it, we
6015 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6016 if (str[0] == 'X')
6017 {
6018 str += 1;
d2e4a39e 6019 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6020 {
6021 if (str[0] != 'n' && str[0] != 'b')
6022 return 0;
6023 str += 1;
6024 }
14f9c5c9 6025 }
babe1480 6026
14f9c5c9
AS
6027 if (str[0] == '\000')
6028 return 1;
babe1480 6029
d2e4a39e 6030 if (str[0] == '_')
14f9c5c9
AS
6031 {
6032 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6033 return 0;
d2e4a39e 6034 if (str[2] == '_')
4c4b4cd2 6035 {
61ee279c
PH
6036 if (strcmp (str + 3, "JM") == 0)
6037 return 1;
6038 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6039 the LJM suffix in favor of the JM one. But we will
6040 still accept LJM as a valid suffix for a reasonable
6041 amount of time, just to allow ourselves to debug programs
6042 compiled using an older version of GNAT. */
4c4b4cd2
PH
6043 if (strcmp (str + 3, "LJM") == 0)
6044 return 1;
6045 if (str[3] != 'X')
6046 return 0;
1265e4aa
JB
6047 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6048 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6049 return 1;
6050 if (str[4] == 'R' && str[5] != 'T')
6051 return 1;
6052 return 0;
6053 }
6054 if (!isdigit (str[2]))
6055 return 0;
6056 for (k = 3; str[k] != '\0'; k += 1)
6057 if (!isdigit (str[k]) && str[k] != '_')
6058 return 0;
14f9c5c9
AS
6059 return 1;
6060 }
4c4b4cd2 6061 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6062 {
4c4b4cd2
PH
6063 for (k = 2; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6065 return 0;
14f9c5c9
AS
6066 return 1;
6067 }
6068 return 0;
6069}
d2e4a39e 6070
aeb5907d
JB
6071/* Return non-zero if the string starting at NAME and ending before
6072 NAME_END contains no capital letters. */
529cad9c
PH
6073
6074static int
6075is_valid_name_for_wild_match (const char *name0)
6076{
6077 const char *decoded_name = ada_decode (name0);
6078 int i;
6079
5823c3ef
JB
6080 /* If the decoded name starts with an angle bracket, it means that
6081 NAME0 does not follow the GNAT encoding format. It should then
6082 not be allowed as a possible wild match. */
6083 if (decoded_name[0] == '<')
6084 return 0;
6085
529cad9c
PH
6086 for (i=0; decoded_name[i] != '\0'; i++)
6087 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6088 return 0;
6089
6090 return 1;
6091}
6092
73589123
PH
6093/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6094 that could start a simple name. Assumes that *NAMEP points into
6095 the string beginning at NAME0. */
4c4b4cd2 6096
14f9c5c9 6097static int
73589123 6098advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6099{
73589123 6100 const char *name = *namep;
5b4ee69b 6101
5823c3ef 6102 while (1)
14f9c5c9 6103 {
aa27d0b3 6104 int t0, t1;
73589123
PH
6105
6106 t0 = *name;
6107 if (t0 == '_')
6108 {
6109 t1 = name[1];
6110 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6111 {
6112 name += 1;
61012eef 6113 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6114 break;
6115 else
6116 name += 1;
6117 }
aa27d0b3
JB
6118 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6119 || name[2] == target0))
73589123
PH
6120 {
6121 name += 2;
6122 break;
6123 }
6124 else
6125 return 0;
6126 }
6127 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6128 name += 1;
6129 else
5823c3ef 6130 return 0;
73589123
PH
6131 }
6132
6133 *namep = name;
6134 return 1;
6135}
6136
b5ec771e
PA
6137/* Return true iff NAME encodes a name of the form prefix.PATN.
6138 Ignores any informational suffixes of NAME (i.e., for which
6139 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6140 simple name. */
73589123 6141
b5ec771e 6142static bool
73589123
PH
6143wild_match (const char *name, const char *patn)
6144{
22e048c9 6145 const char *p;
73589123
PH
6146 const char *name0 = name;
6147
6148 while (1)
6149 {
6150 const char *match = name;
6151
6152 if (*name == *patn)
6153 {
6154 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6155 if (*p != *name)
6156 break;
6157 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6158 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6159
6160 if (name[-1] == '_')
6161 name -= 1;
6162 }
6163 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6164 return false;
96d887e8 6165 }
96d887e8
PH
6166}
6167
b5ec771e
PA
6168/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6169 any trailing suffixes that encode debugging information or leading
6170 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6171 information that is ignored). */
40658b94 6172
b5ec771e 6173static bool
c4d840bd
PH
6174full_match (const char *sym_name, const char *search_name)
6175{
b5ec771e
PA
6176 size_t search_name_len = strlen (search_name);
6177
6178 if (strncmp (sym_name, search_name, search_name_len) == 0
6179 && is_name_suffix (sym_name + search_name_len))
6180 return true;
6181
6182 if (startswith (sym_name, "_ada_")
6183 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6184 && is_name_suffix (sym_name + search_name_len + 5))
6185 return true;
c4d840bd 6186
b5ec771e
PA
6187 return false;
6188}
c4d840bd 6189
b5ec771e
PA
6190/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6191 *defn_symbols, updating the list of symbols in OBSTACKP (if
6192 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6193
6194static void
6195ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6196 const struct block *block,
6197 const lookup_name_info &lookup_name,
6198 domain_enum domain, struct objfile *objfile)
96d887e8 6199{
8157b174 6200 struct block_iterator iter;
96d887e8
PH
6201 /* A matching argument symbol, if any. */
6202 struct symbol *arg_sym;
6203 /* Set true when we find a matching non-argument symbol. */
6204 int found_sym;
6205 struct symbol *sym;
6206
6207 arg_sym = NULL;
6208 found_sym = 0;
b5ec771e
PA
6209 for (sym = block_iter_match_first (block, lookup_name, &iter);
6210 sym != NULL;
6211 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6212 {
b5ec771e
PA
6213 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6214 SYMBOL_DOMAIN (sym), domain))
6215 {
6216 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6217 {
6218 if (SYMBOL_IS_ARGUMENT (sym))
6219 arg_sym = sym;
6220 else
6221 {
6222 found_sym = 1;
6223 add_defn_to_vec (obstackp,
6224 fixup_symbol_section (sym, objfile),
6225 block);
6226 }
6227 }
6228 }
96d887e8
PH
6229 }
6230
22cee43f
PMR
6231 /* Handle renamings. */
6232
b5ec771e 6233 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6234 found_sym = 1;
6235
96d887e8
PH
6236 if (!found_sym && arg_sym != NULL)
6237 {
76a01679
JB
6238 add_defn_to_vec (obstackp,
6239 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6240 block);
96d887e8
PH
6241 }
6242
b5ec771e 6243 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6244 {
6245 arg_sym = NULL;
6246 found_sym = 0;
b5ec771e
PA
6247 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6248 const char *name = ada_lookup_name.c_str ();
6249 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6250
6251 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6252 {
4186eb54
KS
6253 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6254 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6255 {
6256 int cmp;
6257
6258 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6259 if (cmp == 0)
6260 {
61012eef 6261 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6262 if (cmp == 0)
6263 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6264 name_len);
6265 }
6266
6267 if (cmp == 0
6268 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6269 {
2a2d4dc3
AS
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
76a01679
JB
6282 }
6283 }
76a01679 6284 }
96d887e8
PH
6285
6286 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6287 They aren't parameters, right? */
6288 if (!found_sym && arg_sym != NULL)
6289 {
6290 add_defn_to_vec (obstackp,
76a01679 6291 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6292 block);
96d887e8
PH
6293 }
6294 }
6295}
6296\f
41d27058
JB
6297
6298 /* Symbol Completion */
6299
b5ec771e 6300/* See symtab.h. */
41d27058 6301
b5ec771e
PA
6302bool
6303ada_lookup_name_info::matches
6304 (const char *sym_name,
6305 symbol_name_match_type match_type,
a207cff2 6306 completion_match_result *comp_match_res) const
41d27058 6307{
b5ec771e
PA
6308 bool match = false;
6309 const char *text = m_encoded_name.c_str ();
6310 size_t text_len = m_encoded_name.size ();
41d27058
JB
6311
6312 /* First, test against the fully qualified name of the symbol. */
6313
6314 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6315 match = true;
41d27058 6316
b5ec771e 6317 if (match && !m_encoded_p)
41d27058
JB
6318 {
6319 /* One needed check before declaring a positive match is to verify
6320 that iff we are doing a verbatim match, the decoded version
6321 of the symbol name starts with '<'. Otherwise, this symbol name
6322 is not a suitable completion. */
6323 const char *sym_name_copy = sym_name;
b5ec771e 6324 bool has_angle_bracket;
41d27058
JB
6325
6326 sym_name = ada_decode (sym_name);
6327 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6328 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6329 sym_name = sym_name_copy;
6330 }
6331
b5ec771e 6332 if (match && !m_verbatim_p)
41d27058
JB
6333 {
6334 /* When doing non-verbatim match, another check that needs to
6335 be done is to verify that the potentially matching symbol name
6336 does not include capital letters, because the ada-mode would
6337 not be able to understand these symbol names without the
6338 angle bracket notation. */
6339 const char *tmp;
6340
6341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6342 if (*tmp != '\0')
b5ec771e 6343 match = false;
41d27058
JB
6344 }
6345
6346 /* Second: Try wild matching... */
6347
b5ec771e 6348 if (!match && m_wild_match_p)
41d27058
JB
6349 {
6350 /* Since we are doing wild matching, this means that TEXT
6351 may represent an unqualified symbol name. We therefore must
6352 also compare TEXT against the unqualified name of the symbol. */
6353 sym_name = ada_unqualified_name (ada_decode (sym_name));
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6356 match = true;
41d27058
JB
6357 }
6358
b5ec771e 6359 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6360
6361 if (!match)
b5ec771e 6362 return false;
41d27058 6363
a207cff2 6364 if (comp_match_res != NULL)
b5ec771e 6365 {
a207cff2 6366 std::string &match_str = comp_match_res->match.storage ();
41d27058 6367
b5ec771e 6368 if (!m_encoded_p)
a207cff2 6369 match_str = ada_decode (sym_name);
b5ec771e
PA
6370 else
6371 {
6372 if (m_verbatim_p)
6373 match_str = add_angle_brackets (sym_name);
6374 else
6375 match_str = sym_name;
41d27058 6376
b5ec771e 6377 }
a207cff2
PA
6378
6379 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6380 }
6381
b5ec771e 6382 return true;
41d27058
JB
6383}
6384
b5ec771e 6385/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6386 WORD is the entire command on which completion is made. */
41d27058 6387
eb3ff9a5
PA
6388static void
6389ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6390 complete_symbol_mode mode,
b5ec771e
PA
6391 symbol_name_match_type name_match_type,
6392 const char *text, const char *word,
eb3ff9a5 6393 enum type_code code)
41d27058 6394{
41d27058 6395 struct symbol *sym;
3977b71f 6396 const struct block *b, *surrounding_static_block = 0;
8157b174 6397 struct block_iterator iter;
41d27058 6398
2f68a895
TT
6399 gdb_assert (code == TYPE_CODE_UNDEF);
6400
1b026119 6401 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6402
6403 /* First, look at the partial symtab symbols. */
14bc53a8 6404 expand_symtabs_matching (NULL,
b5ec771e
PA
6405 lookup_name,
6406 NULL,
14bc53a8
PA
6407 NULL,
6408 ALL_DOMAIN);
41d27058
JB
6409
6410 /* At this point scan through the misc symbol vectors and add each
6411 symbol you find to the list. Eventually we want to ignore
6412 anything that isn't a text symbol (everything else will be
6413 handled by the psymtab code above). */
6414
2030c079 6415 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6416 {
7932255d 6417 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6418 {
6419 QUIT;
6420
6421 if (completion_skip_symbol (mode, msymbol))
6422 continue;
6423
6424 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6425
6426 /* Ada minimal symbols won't have their language set to Ada. If
6427 we let completion_list_add_name compare using the
6428 default/C-like matcher, then when completing e.g., symbols in a
6429 package named "pck", we'd match internal Ada symbols like
6430 "pckS", which are invalid in an Ada expression, unless you wrap
6431 them in '<' '>' to request a verbatim match.
6432
6433 Unfortunately, some Ada encoded names successfully demangle as
6434 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6435 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6436 with the wrong language set. Paper over that issue here. */
6437 if (symbol_language == language_auto
6438 || symbol_language == language_cplus)
6439 symbol_language = language_ada;
6440
6441 completion_list_add_name (tracker,
6442 symbol_language,
6443 MSYMBOL_LINKAGE_NAME (msymbol),
6444 lookup_name, text, word);
6445 }
6446 }
41d27058
JB
6447
6448 /* Search upwards from currently selected frame (so that we can
6449 complete on local vars. */
6450
6451 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6452 {
6453 if (!BLOCK_SUPERBLOCK (b))
6454 surrounding_static_block = b; /* For elmin of dups */
6455
6456 ALL_BLOCK_SYMBOLS (b, iter, sym)
6457 {
f9d67a22
PA
6458 if (completion_skip_symbol (mode, sym))
6459 continue;
6460
b5ec771e
PA
6461 completion_list_add_name (tracker,
6462 SYMBOL_LANGUAGE (sym),
6463 SYMBOL_LINKAGE_NAME (sym),
1b026119 6464 lookup_name, text, word);
41d27058
JB
6465 }
6466 }
6467
6468 /* Go through the symtabs and check the externs and statics for
43f3e411 6469 symbols which match. */
41d27058 6470
2030c079 6471 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6472 {
b669c953 6473 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6474 {
6475 QUIT;
6476 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6477 ALL_BLOCK_SYMBOLS (b, iter, sym)
6478 {
6479 if (completion_skip_symbol (mode, sym))
6480 continue;
f9d67a22 6481
d8aeb77f
TT
6482 completion_list_add_name (tracker,
6483 SYMBOL_LANGUAGE (sym),
6484 SYMBOL_LINKAGE_NAME (sym),
6485 lookup_name, text, word);
6486 }
6487 }
41d27058 6488 }
41d27058 6489
2030c079 6490 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6491 {
b669c953 6492 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6493 {
6494 QUIT;
6495 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6496 /* Don't do this block twice. */
6497 if (b == surrounding_static_block)
6498 continue;
6499 ALL_BLOCK_SYMBOLS (b, iter, sym)
6500 {
6501 if (completion_skip_symbol (mode, sym))
6502 continue;
f9d67a22 6503
d8aeb77f
TT
6504 completion_list_add_name (tracker,
6505 SYMBOL_LANGUAGE (sym),
6506 SYMBOL_LINKAGE_NAME (sym),
6507 lookup_name, text, word);
6508 }
6509 }
41d27058 6510 }
41d27058
JB
6511}
6512
963a6417 6513 /* Field Access */
96d887e8 6514
73fb9985
JB
6515/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6516 for tagged types. */
6517
6518static int
6519ada_is_dispatch_table_ptr_type (struct type *type)
6520{
0d5cff50 6521 const char *name;
73fb9985
JB
6522
6523 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6524 return 0;
6525
6526 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6527 if (name == NULL)
6528 return 0;
6529
6530 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6531}
6532
ac4a2da4
JG
6533/* Return non-zero if TYPE is an interface tag. */
6534
6535static int
6536ada_is_interface_tag (struct type *type)
6537{
6538 const char *name = TYPE_NAME (type);
6539
6540 if (name == NULL)
6541 return 0;
6542
6543 return (strcmp (name, "ada__tags__interface_tag") == 0);
6544}
6545
963a6417
PH
6546/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6547 to be invisible to users. */
96d887e8 6548
963a6417
PH
6549int
6550ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6551{
963a6417
PH
6552 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6553 return 1;
ffde82bf 6554
73fb9985
JB
6555 /* Check the name of that field. */
6556 {
6557 const char *name = TYPE_FIELD_NAME (type, field_num);
6558
6559 /* Anonymous field names should not be printed.
6560 brobecker/2007-02-20: I don't think this can actually happen
6561 but we don't want to print the value of annonymous fields anyway. */
6562 if (name == NULL)
6563 return 1;
6564
ffde82bf
JB
6565 /* Normally, fields whose name start with an underscore ("_")
6566 are fields that have been internally generated by the compiler,
6567 and thus should not be printed. The "_parent" field is special,
6568 however: This is a field internally generated by the compiler
6569 for tagged types, and it contains the components inherited from
6570 the parent type. This field should not be printed as is, but
6571 should not be ignored either. */
61012eef 6572 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6573 return 1;
6574 }
6575
ac4a2da4
JG
6576 /* If this is the dispatch table of a tagged type or an interface tag,
6577 then ignore. */
73fb9985 6578 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6579 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6580 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6581 return 1;
6582
6583 /* Not a special field, so it should not be ignored. */
6584 return 0;
963a6417 6585}
96d887e8 6586
963a6417 6587/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6588 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6589
963a6417
PH
6590int
6591ada_is_tagged_type (struct type *type, int refok)
6592{
988f6b3d 6593 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6594}
96d887e8 6595
963a6417 6596/* True iff TYPE represents the type of X'Tag */
96d887e8 6597
963a6417
PH
6598int
6599ada_is_tag_type (struct type *type)
6600{
460efde1
JB
6601 type = ada_check_typedef (type);
6602
963a6417
PH
6603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6604 return 0;
6605 else
96d887e8 6606 {
963a6417 6607 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6608
963a6417
PH
6609 return (name != NULL
6610 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6611 }
96d887e8
PH
6612}
6613
963a6417 6614/* The type of the tag on VAL. */
76a01679 6615
963a6417
PH
6616struct type *
6617ada_tag_type (struct value *val)
96d887e8 6618{
988f6b3d 6619 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6620}
96d887e8 6621
b50d69b5
JG
6622/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6623 retired at Ada 05). */
6624
6625static int
6626is_ada95_tag (struct value *tag)
6627{
6628 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6629}
6630
963a6417 6631/* The value of the tag on VAL. */
96d887e8 6632
963a6417
PH
6633struct value *
6634ada_value_tag (struct value *val)
6635{
03ee6b2e 6636 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6637}
6638
963a6417
PH
6639/* The value of the tag on the object of type TYPE whose contents are
6640 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6641 ADDRESS. */
96d887e8 6642
963a6417 6643static struct value *
10a2c479 6644value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6645 const gdb_byte *valaddr,
963a6417 6646 CORE_ADDR address)
96d887e8 6647{
b5385fc0 6648 int tag_byte_offset;
963a6417 6649 struct type *tag_type;
5b4ee69b 6650
963a6417 6651 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6652 NULL, NULL, NULL))
96d887e8 6653 {
fc1a4b47 6654 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6655 ? NULL
6656 : valaddr + tag_byte_offset);
963a6417 6657 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6658
963a6417 6659 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6660 }
963a6417
PH
6661 return NULL;
6662}
96d887e8 6663
963a6417
PH
6664static struct type *
6665type_from_tag (struct value *tag)
6666{
6667 const char *type_name = ada_tag_name (tag);
5b4ee69b 6668
963a6417
PH
6669 if (type_name != NULL)
6670 return ada_find_any_type (ada_encode (type_name));
6671 return NULL;
6672}
96d887e8 6673
b50d69b5
JG
6674/* Given a value OBJ of a tagged type, return a value of this
6675 type at the base address of the object. The base address, as
6676 defined in Ada.Tags, it is the address of the primary tag of
6677 the object, and therefore where the field values of its full
6678 view can be fetched. */
6679
6680struct value *
6681ada_tag_value_at_base_address (struct value *obj)
6682{
b50d69b5
JG
6683 struct value *val;
6684 LONGEST offset_to_top = 0;
6685 struct type *ptr_type, *obj_type;
6686 struct value *tag;
6687 CORE_ADDR base_address;
6688
6689 obj_type = value_type (obj);
6690
6691 /* It is the responsability of the caller to deref pointers. */
6692
6693 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6694 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6695 return obj;
6696
6697 tag = ada_value_tag (obj);
6698 if (!tag)
6699 return obj;
6700
6701 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6702
6703 if (is_ada95_tag (tag))
6704 return obj;
6705
08f49010
XR
6706 ptr_type = language_lookup_primitive_type
6707 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6708 ptr_type = lookup_pointer_type (ptr_type);
6709 val = value_cast (ptr_type, tag);
6710 if (!val)
6711 return obj;
6712
6713 /* It is perfectly possible that an exception be raised while
6714 trying to determine the base address, just like for the tag;
6715 see ada_tag_name for more details. We do not print the error
6716 message for the same reason. */
6717
492d29ea 6718 TRY
b50d69b5
JG
6719 {
6720 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6721 }
6722
492d29ea
PA
6723 CATCH (e, RETURN_MASK_ERROR)
6724 {
6725 return obj;
6726 }
6727 END_CATCH
b50d69b5
JG
6728
6729 /* If offset is null, nothing to do. */
6730
6731 if (offset_to_top == 0)
6732 return obj;
6733
6734 /* -1 is a special case in Ada.Tags; however, what should be done
6735 is not quite clear from the documentation. So do nothing for
6736 now. */
6737
6738 if (offset_to_top == -1)
6739 return obj;
6740
08f49010
XR
6741 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6742 from the base address. This was however incompatible with
6743 C++ dispatch table: C++ uses a *negative* value to *add*
6744 to the base address. Ada's convention has therefore been
6745 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6746 use the same convention. Here, we support both cases by
6747 checking the sign of OFFSET_TO_TOP. */
6748
6749 if (offset_to_top > 0)
6750 offset_to_top = -offset_to_top;
6751
6752 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6753 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6754
6755 /* Make sure that we have a proper tag at the new address.
6756 Otherwise, offset_to_top is bogus (which can happen when
6757 the object is not initialized yet). */
6758
6759 if (!tag)
6760 return obj;
6761
6762 obj_type = type_from_tag (tag);
6763
6764 if (!obj_type)
6765 return obj;
6766
6767 return value_from_contents_and_address (obj_type, NULL, base_address);
6768}
6769
1b611343
JB
6770/* Return the "ada__tags__type_specific_data" type. */
6771
6772static struct type *
6773ada_get_tsd_type (struct inferior *inf)
963a6417 6774{
1b611343 6775 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6776
1b611343
JB
6777 if (data->tsd_type == 0)
6778 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6779 return data->tsd_type;
6780}
529cad9c 6781
1b611343
JB
6782/* Return the TSD (type-specific data) associated to the given TAG.
6783 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6784
1b611343 6785 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6786
1b611343
JB
6787static struct value *
6788ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6789{
4c4b4cd2 6790 struct value *val;
1b611343 6791 struct type *type;
5b4ee69b 6792
1b611343
JB
6793 /* First option: The TSD is simply stored as a field of our TAG.
6794 Only older versions of GNAT would use this format, but we have
6795 to test it first, because there are no visible markers for
6796 the current approach except the absence of that field. */
529cad9c 6797
1b611343
JB
6798 val = ada_value_struct_elt (tag, "tsd", 1);
6799 if (val)
6800 return val;
e802dbe0 6801
1b611343
JB
6802 /* Try the second representation for the dispatch table (in which
6803 there is no explicit 'tsd' field in the referent of the tag pointer,
6804 and instead the tsd pointer is stored just before the dispatch
6805 table. */
e802dbe0 6806
1b611343
JB
6807 type = ada_get_tsd_type (current_inferior());
6808 if (type == NULL)
6809 return NULL;
6810 type = lookup_pointer_type (lookup_pointer_type (type));
6811 val = value_cast (type, tag);
6812 if (val == NULL)
6813 return NULL;
6814 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6815}
6816
1b611343
JB
6817/* Given the TSD of a tag (type-specific data), return a string
6818 containing the name of the associated type.
6819
6820 The returned value is good until the next call. May return NULL
6821 if we are unable to determine the tag name. */
6822
6823static char *
6824ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6825{
529cad9c
PH
6826 static char name[1024];
6827 char *p;
1b611343 6828 struct value *val;
529cad9c 6829
1b611343 6830 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6831 if (val == NULL)
1b611343 6832 return NULL;
4c4b4cd2
PH
6833 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6834 for (p = name; *p != '\0'; p += 1)
6835 if (isalpha (*p))
6836 *p = tolower (*p);
1b611343 6837 return name;
4c4b4cd2
PH
6838}
6839
6840/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6841 a C string.
6842
6843 Return NULL if the TAG is not an Ada tag, or if we were unable to
6844 determine the name of that tag. The result is good until the next
6845 call. */
4c4b4cd2
PH
6846
6847const char *
6848ada_tag_name (struct value *tag)
6849{
1b611343 6850 char *name = NULL;
5b4ee69b 6851
df407dfe 6852 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6853 return NULL;
1b611343
JB
6854
6855 /* It is perfectly possible that an exception be raised while trying
6856 to determine the TAG's name, even under normal circumstances:
6857 The associated variable may be uninitialized or corrupted, for
6858 instance. We do not let any exception propagate past this point.
6859 instead we return NULL.
6860
6861 We also do not print the error message either (which often is very
6862 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6863 the caller print a more meaningful message if necessary. */
492d29ea 6864 TRY
1b611343
JB
6865 {
6866 struct value *tsd = ada_get_tsd_from_tag (tag);
6867
6868 if (tsd != NULL)
6869 name = ada_tag_name_from_tsd (tsd);
6870 }
492d29ea
PA
6871 CATCH (e, RETURN_MASK_ERROR)
6872 {
6873 }
6874 END_CATCH
1b611343
JB
6875
6876 return name;
4c4b4cd2
PH
6877}
6878
6879/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6880
d2e4a39e 6881struct type *
ebf56fd3 6882ada_parent_type (struct type *type)
14f9c5c9
AS
6883{
6884 int i;
6885
61ee279c 6886 type = ada_check_typedef (type);
14f9c5c9
AS
6887
6888 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6889 return NULL;
6890
6891 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6892 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6893 {
6894 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6895
6896 /* If the _parent field is a pointer, then dereference it. */
6897 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6898 parent_type = TYPE_TARGET_TYPE (parent_type);
6899 /* If there is a parallel XVS type, get the actual base type. */
6900 parent_type = ada_get_base_type (parent_type);
6901
6902 return ada_check_typedef (parent_type);
6903 }
14f9c5c9
AS
6904
6905 return NULL;
6906}
6907
4c4b4cd2
PH
6908/* True iff field number FIELD_NUM of structure type TYPE contains the
6909 parent-type (inherited) fields of a derived type. Assumes TYPE is
6910 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6911
6912int
ebf56fd3 6913ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6914{
61ee279c 6915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6916
4c4b4cd2 6917 return (name != NULL
61012eef
GB
6918 && (startswith (name, "PARENT")
6919 || startswith (name, "_parent")));
14f9c5c9
AS
6920}
6921
4c4b4cd2 6922/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6923 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6924 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6925 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6926 structures. */
14f9c5c9
AS
6927
6928int
ebf56fd3 6929ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6930{
d2e4a39e 6931 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6932
dddc0e16
JB
6933 if (name != NULL && strcmp (name, "RETVAL") == 0)
6934 {
6935 /* This happens in functions with "out" or "in out" parameters
6936 which are passed by copy. For such functions, GNAT describes
6937 the function's return type as being a struct where the return
6938 value is in a field called RETVAL, and where the other "out"
6939 or "in out" parameters are fields of that struct. This is not
6940 a wrapper. */
6941 return 0;
6942 }
6943
d2e4a39e 6944 return (name != NULL
61012eef 6945 && (startswith (name, "PARENT")
4c4b4cd2 6946 || strcmp (name, "REP") == 0
61012eef 6947 || startswith (name, "_parent")
4c4b4cd2 6948 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6949}
6950
4c4b4cd2
PH
6951/* True iff field number FIELD_NUM of structure or union type TYPE
6952 is a variant wrapper. Assumes TYPE is a structure type with at least
6953 FIELD_NUM+1 fields. */
14f9c5c9
AS
6954
6955int
ebf56fd3 6956ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6957{
d2e4a39e 6958 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6959
14f9c5c9 6960 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6961 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6962 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6963 == TYPE_CODE_UNION)));
14f9c5c9
AS
6964}
6965
6966/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6967 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6968 returns the type of the controlling discriminant for the variant.
6969 May return NULL if the type could not be found. */
14f9c5c9 6970
d2e4a39e 6971struct type *
ebf56fd3 6972ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6973{
a121b7c1 6974 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6975
988f6b3d 6976 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6977}
6978
4c4b4cd2 6979/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6980 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6981 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6982
6983int
ebf56fd3 6984ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6985{
d2e4a39e 6986 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6987
14f9c5c9
AS
6988 return (name != NULL && name[0] == 'O');
6989}
6990
6991/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6992 returns the name of the discriminant controlling the variant.
6993 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6994
a121b7c1 6995const char *
ebf56fd3 6996ada_variant_discrim_name (struct type *type0)
14f9c5c9 6997{
d2e4a39e 6998 static char *result = NULL;
14f9c5c9 6999 static size_t result_len = 0;
d2e4a39e
AS
7000 struct type *type;
7001 const char *name;
7002 const char *discrim_end;
7003 const char *discrim_start;
14f9c5c9
AS
7004
7005 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7006 type = TYPE_TARGET_TYPE (type0);
7007 else
7008 type = type0;
7009
7010 name = ada_type_name (type);
7011
7012 if (name == NULL || name[0] == '\000')
7013 return "";
7014
7015 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7016 discrim_end -= 1)
7017 {
61012eef 7018 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7019 break;
14f9c5c9
AS
7020 }
7021 if (discrim_end == name)
7022 return "";
7023
d2e4a39e 7024 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7025 discrim_start -= 1)
7026 {
d2e4a39e 7027 if (discrim_start == name + 1)
4c4b4cd2 7028 return "";
76a01679 7029 if ((discrim_start > name + 3
61012eef 7030 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7031 || discrim_start[-1] == '.')
7032 break;
14f9c5c9
AS
7033 }
7034
7035 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7036 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7037 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7038 return result;
7039}
7040
4c4b4cd2
PH
7041/* Scan STR for a subtype-encoded number, beginning at position K.
7042 Put the position of the character just past the number scanned in
7043 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7044 Return 1 if there was a valid number at the given position, and 0
7045 otherwise. A "subtype-encoded" number consists of the absolute value
7046 in decimal, followed by the letter 'm' to indicate a negative number.
7047 Assumes 0m does not occur. */
14f9c5c9
AS
7048
7049int
d2e4a39e 7050ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7051{
7052 ULONGEST RU;
7053
d2e4a39e 7054 if (!isdigit (str[k]))
14f9c5c9
AS
7055 return 0;
7056
4c4b4cd2 7057 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7058 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7059 LONGEST. */
14f9c5c9
AS
7060 RU = 0;
7061 while (isdigit (str[k]))
7062 {
d2e4a39e 7063 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7064 k += 1;
7065 }
7066
d2e4a39e 7067 if (str[k] == 'm')
14f9c5c9
AS
7068 {
7069 if (R != NULL)
4c4b4cd2 7070 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7071 k += 1;
7072 }
7073 else if (R != NULL)
7074 *R = (LONGEST) RU;
7075
4c4b4cd2 7076 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7077 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7078 number representable as a LONGEST (although either would probably work
7079 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7080 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7081
7082 if (new_k != NULL)
7083 *new_k = k;
7084 return 1;
7085}
7086
4c4b4cd2
PH
7087/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7088 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7089 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7090
d2e4a39e 7091int
ebf56fd3 7092ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7093{
d2e4a39e 7094 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7095 int p;
7096
7097 p = 0;
7098 while (1)
7099 {
d2e4a39e 7100 switch (name[p])
4c4b4cd2
PH
7101 {
7102 case '\0':
7103 return 0;
7104 case 'S':
7105 {
7106 LONGEST W;
5b4ee69b 7107
4c4b4cd2
PH
7108 if (!ada_scan_number (name, p + 1, &W, &p))
7109 return 0;
7110 if (val == W)
7111 return 1;
7112 break;
7113 }
7114 case 'R':
7115 {
7116 LONGEST L, U;
5b4ee69b 7117
4c4b4cd2
PH
7118 if (!ada_scan_number (name, p + 1, &L, &p)
7119 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7120 return 0;
7121 if (val >= L && val <= U)
7122 return 1;
7123 break;
7124 }
7125 case 'O':
7126 return 1;
7127 default:
7128 return 0;
7129 }
7130 }
7131}
7132
0963b4bd 7133/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7134
7135/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7136 ARG_TYPE, extract and return the value of one of its (non-static)
7137 fields. FIELDNO says which field. Differs from value_primitive_field
7138 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7139
4c4b4cd2 7140static struct value *
d2e4a39e 7141ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7142 struct type *arg_type)
14f9c5c9 7143{
14f9c5c9
AS
7144 struct type *type;
7145
61ee279c 7146 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7147 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7148
4c4b4cd2 7149 /* Handle packed fields. */
14f9c5c9
AS
7150
7151 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7152 {
7153 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7154 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7155
0fd88904 7156 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7157 offset + bit_pos / 8,
7158 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7159 }
7160 else
7161 return value_primitive_field (arg1, offset, fieldno, arg_type);
7162}
7163
52ce6436
PH
7164/* Find field with name NAME in object of type TYPE. If found,
7165 set the following for each argument that is non-null:
7166 - *FIELD_TYPE_P to the field's type;
7167 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7168 an object of that type;
7169 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7170 - *BIT_SIZE_P to its size in bits if the field is packed, and
7171 0 otherwise;
7172 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7173 fields up to but not including the desired field, or by the total
7174 number of fields if not found. A NULL value of NAME never
7175 matches; the function just counts visible fields in this case.
7176
828d5846
XR
7177 Notice that we need to handle when a tagged record hierarchy
7178 has some components with the same name, like in this scenario:
7179
7180 type Top_T is tagged record
7181 N : Integer := 1;
7182 U : Integer := 974;
7183 A : Integer := 48;
7184 end record;
7185
7186 type Middle_T is new Top.Top_T with record
7187 N : Character := 'a';
7188 C : Integer := 3;
7189 end record;
7190
7191 type Bottom_T is new Middle.Middle_T with record
7192 N : Float := 4.0;
7193 C : Character := '5';
7194 X : Integer := 6;
7195 A : Character := 'J';
7196 end record;
7197
7198 Let's say we now have a variable declared and initialized as follow:
7199
7200 TC : Top_A := new Bottom_T;
7201
7202 And then we use this variable to call this function
7203
7204 procedure Assign (Obj: in out Top_T; TV : Integer);
7205
7206 as follow:
7207
7208 Assign (Top_T (B), 12);
7209
7210 Now, we're in the debugger, and we're inside that procedure
7211 then and we want to print the value of obj.c:
7212
7213 Usually, the tagged record or one of the parent type owns the
7214 component to print and there's no issue but in this particular
7215 case, what does it mean to ask for Obj.C? Since the actual
7216 type for object is type Bottom_T, it could mean two things: type
7217 component C from the Middle_T view, but also component C from
7218 Bottom_T. So in that "undefined" case, when the component is
7219 not found in the non-resolved type (which includes all the
7220 components of the parent type), then resolve it and see if we
7221 get better luck once expanded.
7222
7223 In the case of homonyms in the derived tagged type, we don't
7224 guaranty anything, and pick the one that's easiest for us
7225 to program.
7226
0963b4bd 7227 Returns 1 if found, 0 otherwise. */
52ce6436 7228
4c4b4cd2 7229static int
0d5cff50 7230find_struct_field (const char *name, struct type *type, int offset,
76a01679 7231 struct type **field_type_p,
52ce6436
PH
7232 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7233 int *index_p)
4c4b4cd2
PH
7234{
7235 int i;
828d5846 7236 int parent_offset = -1;
4c4b4cd2 7237
61ee279c 7238 type = ada_check_typedef (type);
76a01679 7239
52ce6436
PH
7240 if (field_type_p != NULL)
7241 *field_type_p = NULL;
7242 if (byte_offset_p != NULL)
d5d6fca5 7243 *byte_offset_p = 0;
52ce6436
PH
7244 if (bit_offset_p != NULL)
7245 *bit_offset_p = 0;
7246 if (bit_size_p != NULL)
7247 *bit_size_p = 0;
7248
7249 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7250 {
7251 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7252 int fld_offset = offset + bit_pos / 8;
0d5cff50 7253 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7254
4c4b4cd2
PH
7255 if (t_field_name == NULL)
7256 continue;
7257
828d5846
XR
7258 else if (ada_is_parent_field (type, i))
7259 {
7260 /* This is a field pointing us to the parent type of a tagged
7261 type. As hinted in this function's documentation, we give
7262 preference to fields in the current record first, so what
7263 we do here is just record the index of this field before
7264 we skip it. If it turns out we couldn't find our field
7265 in the current record, then we'll get back to it and search
7266 inside it whether the field might exist in the parent. */
7267
7268 parent_offset = i;
7269 continue;
7270 }
7271
52ce6436 7272 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7273 {
7274 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7275
52ce6436
PH
7276 if (field_type_p != NULL)
7277 *field_type_p = TYPE_FIELD_TYPE (type, i);
7278 if (byte_offset_p != NULL)
7279 *byte_offset_p = fld_offset;
7280 if (bit_offset_p != NULL)
7281 *bit_offset_p = bit_pos % 8;
7282 if (bit_size_p != NULL)
7283 *bit_size_p = bit_size;
76a01679
JB
7284 return 1;
7285 }
4c4b4cd2
PH
7286 else if (ada_is_wrapper_field (type, i))
7287 {
52ce6436
PH
7288 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7289 field_type_p, byte_offset_p, bit_offset_p,
7290 bit_size_p, index_p))
76a01679
JB
7291 return 1;
7292 }
4c4b4cd2
PH
7293 else if (ada_is_variant_part (type, i))
7294 {
52ce6436
PH
7295 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7296 fixed type?? */
4c4b4cd2 7297 int j;
52ce6436
PH
7298 struct type *field_type
7299 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7300
52ce6436 7301 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7302 {
76a01679
JB
7303 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7304 fld_offset
7305 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7306 field_type_p, byte_offset_p,
52ce6436 7307 bit_offset_p, bit_size_p, index_p))
76a01679 7308 return 1;
4c4b4cd2
PH
7309 }
7310 }
52ce6436
PH
7311 else if (index_p != NULL)
7312 *index_p += 1;
4c4b4cd2 7313 }
828d5846
XR
7314
7315 /* Field not found so far. If this is a tagged type which
7316 has a parent, try finding that field in the parent now. */
7317
7318 if (parent_offset != -1)
7319 {
7320 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7321 int fld_offset = offset + bit_pos / 8;
7322
7323 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7324 fld_offset, field_type_p, byte_offset_p,
7325 bit_offset_p, bit_size_p, index_p))
7326 return 1;
7327 }
7328
4c4b4cd2
PH
7329 return 0;
7330}
7331
0963b4bd 7332/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7333
52ce6436
PH
7334static int
7335num_visible_fields (struct type *type)
7336{
7337 int n;
5b4ee69b 7338
52ce6436
PH
7339 n = 0;
7340 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7341 return n;
7342}
14f9c5c9 7343
4c4b4cd2 7344/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7345 and search in it assuming it has (class) type TYPE.
7346 If found, return value, else return NULL.
7347
828d5846
XR
7348 Searches recursively through wrapper fields (e.g., '_parent').
7349
7350 In the case of homonyms in the tagged types, please refer to the
7351 long explanation in find_struct_field's function documentation. */
14f9c5c9 7352
4c4b4cd2 7353static struct value *
108d56a4 7354ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7355 struct type *type)
14f9c5c9
AS
7356{
7357 int i;
828d5846 7358 int parent_offset = -1;
14f9c5c9 7359
5b4ee69b 7360 type = ada_check_typedef (type);
52ce6436 7361 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7362 {
0d5cff50 7363 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7364
7365 if (t_field_name == NULL)
4c4b4cd2 7366 continue;
14f9c5c9 7367
828d5846
XR
7368 else if (ada_is_parent_field (type, i))
7369 {
7370 /* This is a field pointing us to the parent type of a tagged
7371 type. As hinted in this function's documentation, we give
7372 preference to fields in the current record first, so what
7373 we do here is just record the index of this field before
7374 we skip it. If it turns out we couldn't find our field
7375 in the current record, then we'll get back to it and search
7376 inside it whether the field might exist in the parent. */
7377
7378 parent_offset = i;
7379 continue;
7380 }
7381
14f9c5c9 7382 else if (field_name_match (t_field_name, name))
4c4b4cd2 7383 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7384
7385 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7386 {
0963b4bd 7387 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7388 ada_search_struct_field (name, arg,
7389 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7390 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7391
4c4b4cd2
PH
7392 if (v != NULL)
7393 return v;
7394 }
14f9c5c9
AS
7395
7396 else if (ada_is_variant_part (type, i))
4c4b4cd2 7397 {
0963b4bd 7398 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7399 int j;
5b4ee69b
MS
7400 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7401 i));
4c4b4cd2
PH
7402 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7403
52ce6436 7404 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7405 {
0963b4bd
MS
7406 struct value *v = ada_search_struct_field /* Force line
7407 break. */
06d5cf63
JB
7408 (name, arg,
7409 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7410 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7411
4c4b4cd2
PH
7412 if (v != NULL)
7413 return v;
7414 }
7415 }
14f9c5c9 7416 }
828d5846
XR
7417
7418 /* Field not found so far. If this is a tagged type which
7419 has a parent, try finding that field in the parent now. */
7420
7421 if (parent_offset != -1)
7422 {
7423 struct value *v = ada_search_struct_field (
7424 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7425 TYPE_FIELD_TYPE (type, parent_offset));
7426
7427 if (v != NULL)
7428 return v;
7429 }
7430
14f9c5c9
AS
7431 return NULL;
7432}
d2e4a39e 7433
52ce6436
PH
7434static struct value *ada_index_struct_field_1 (int *, struct value *,
7435 int, struct type *);
7436
7437
7438/* Return field #INDEX in ARG, where the index is that returned by
7439 * find_struct_field through its INDEX_P argument. Adjust the address
7440 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7441 * If found, return value, else return NULL. */
52ce6436
PH
7442
7443static struct value *
7444ada_index_struct_field (int index, struct value *arg, int offset,
7445 struct type *type)
7446{
7447 return ada_index_struct_field_1 (&index, arg, offset, type);
7448}
7449
7450
7451/* Auxiliary function for ada_index_struct_field. Like
7452 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7453 * *INDEX_P. */
52ce6436
PH
7454
7455static struct value *
7456ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7457 struct type *type)
7458{
7459 int i;
7460 type = ada_check_typedef (type);
7461
7462 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7463 {
7464 if (TYPE_FIELD_NAME (type, i) == NULL)
7465 continue;
7466 else if (ada_is_wrapper_field (type, i))
7467 {
0963b4bd 7468 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7469 ada_index_struct_field_1 (index_p, arg,
7470 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7471 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7472
52ce6436
PH
7473 if (v != NULL)
7474 return v;
7475 }
7476
7477 else if (ada_is_variant_part (type, i))
7478 {
7479 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7480 find_struct_field. */
52ce6436
PH
7481 error (_("Cannot assign this kind of variant record"));
7482 }
7483 else if (*index_p == 0)
7484 return ada_value_primitive_field (arg, offset, i, type);
7485 else
7486 *index_p -= 1;
7487 }
7488 return NULL;
7489}
7490
4c4b4cd2
PH
7491/* Given ARG, a value of type (pointer or reference to a)*
7492 structure/union, extract the component named NAME from the ultimate
7493 target structure/union and return it as a value with its
f5938064 7494 appropriate type.
14f9c5c9 7495
4c4b4cd2
PH
7496 The routine searches for NAME among all members of the structure itself
7497 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7498 (e.g., '_parent').
7499
03ee6b2e
PH
7500 If NO_ERR, then simply return NULL in case of error, rather than
7501 calling error. */
14f9c5c9 7502
d2e4a39e 7503struct value *
a121b7c1 7504ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7505{
4c4b4cd2 7506 struct type *t, *t1;
d2e4a39e 7507 struct value *v;
1f5d1570 7508 int check_tag;
14f9c5c9 7509
4c4b4cd2 7510 v = NULL;
df407dfe 7511 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7512 if (TYPE_CODE (t) == TYPE_CODE_REF)
7513 {
7514 t1 = TYPE_TARGET_TYPE (t);
7515 if (t1 == NULL)
03ee6b2e 7516 goto BadValue;
61ee279c 7517 t1 = ada_check_typedef (t1);
4c4b4cd2 7518 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7519 {
994b9211 7520 arg = coerce_ref (arg);
76a01679
JB
7521 t = t1;
7522 }
4c4b4cd2 7523 }
14f9c5c9 7524
4c4b4cd2
PH
7525 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7526 {
7527 t1 = TYPE_TARGET_TYPE (t);
7528 if (t1 == NULL)
03ee6b2e 7529 goto BadValue;
61ee279c 7530 t1 = ada_check_typedef (t1);
4c4b4cd2 7531 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7532 {
7533 arg = value_ind (arg);
7534 t = t1;
7535 }
4c4b4cd2 7536 else
76a01679 7537 break;
4c4b4cd2 7538 }
14f9c5c9 7539
4c4b4cd2 7540 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7541 goto BadValue;
14f9c5c9 7542
4c4b4cd2
PH
7543 if (t1 == t)
7544 v = ada_search_struct_field (name, arg, 0, t);
7545 else
7546 {
7547 int bit_offset, bit_size, byte_offset;
7548 struct type *field_type;
7549 CORE_ADDR address;
7550
76a01679 7551 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7552 address = value_address (ada_value_ind (arg));
4c4b4cd2 7553 else
b50d69b5 7554 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7555
828d5846
XR
7556 /* Check to see if this is a tagged type. We also need to handle
7557 the case where the type is a reference to a tagged type, but
7558 we have to be careful to exclude pointers to tagged types.
7559 The latter should be shown as usual (as a pointer), whereas
7560 a reference should mostly be transparent to the user. */
7561
7562 if (ada_is_tagged_type (t1, 0)
7563 || (TYPE_CODE (t1) == TYPE_CODE_REF
7564 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7565 {
7566 /* We first try to find the searched field in the current type.
7567 If not found then let's look in the fixed type. */
7568
7569 if (!find_struct_field (name, t1, 0,
7570 &field_type, &byte_offset, &bit_offset,
7571 &bit_size, NULL))
1f5d1570
JG
7572 check_tag = 1;
7573 else
7574 check_tag = 0;
828d5846
XR
7575 }
7576 else
1f5d1570
JG
7577 check_tag = 0;
7578
7579 /* Convert to fixed type in all cases, so that we have proper
7580 offsets to each field in unconstrained record types. */
7581 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7582 address, NULL, check_tag);
828d5846 7583
76a01679
JB
7584 if (find_struct_field (name, t1, 0,
7585 &field_type, &byte_offset, &bit_offset,
52ce6436 7586 &bit_size, NULL))
76a01679
JB
7587 {
7588 if (bit_size != 0)
7589 {
714e53ab
PH
7590 if (TYPE_CODE (t) == TYPE_CODE_REF)
7591 arg = ada_coerce_ref (arg);
7592 else
7593 arg = ada_value_ind (arg);
76a01679
JB
7594 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7595 bit_offset, bit_size,
7596 field_type);
7597 }
7598 else
f5938064 7599 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7600 }
7601 }
7602
03ee6b2e
PH
7603 if (v != NULL || no_err)
7604 return v;
7605 else
323e0a4a 7606 error (_("There is no member named %s."), name);
14f9c5c9 7607
03ee6b2e
PH
7608 BadValue:
7609 if (no_err)
7610 return NULL;
7611 else
0963b4bd
MS
7612 error (_("Attempt to extract a component of "
7613 "a value that is not a record."));
14f9c5c9
AS
7614}
7615
3b4de39c 7616/* Return a string representation of type TYPE. */
99bbb428 7617
3b4de39c 7618static std::string
99bbb428
PA
7619type_as_string (struct type *type)
7620{
d7e74731 7621 string_file tmp_stream;
99bbb428 7622
d7e74731 7623 type_print (type, "", &tmp_stream, -1);
99bbb428 7624
d7e74731 7625 return std::move (tmp_stream.string ());
99bbb428
PA
7626}
7627
14f9c5c9 7628/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7629 If DISPP is non-null, add its byte displacement from the beginning of a
7630 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7631 work for packed fields).
7632
7633 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7634 followed by "___".
14f9c5c9 7635
0963b4bd 7636 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7637 be a (pointer or reference)+ to a struct or union, and the
7638 ultimate target type will be searched.
14f9c5c9
AS
7639
7640 Looks recursively into variant clauses and parent types.
7641
828d5846
XR
7642 In the case of homonyms in the tagged types, please refer to the
7643 long explanation in find_struct_field's function documentation.
7644
4c4b4cd2
PH
7645 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7646 TYPE is not a type of the right kind. */
14f9c5c9 7647
4c4b4cd2 7648static struct type *
a121b7c1 7649ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7650 int noerr)
14f9c5c9
AS
7651{
7652 int i;
828d5846 7653 int parent_offset = -1;
14f9c5c9
AS
7654
7655 if (name == NULL)
7656 goto BadName;
7657
76a01679 7658 if (refok && type != NULL)
4c4b4cd2
PH
7659 while (1)
7660 {
61ee279c 7661 type = ada_check_typedef (type);
76a01679
JB
7662 if (TYPE_CODE (type) != TYPE_CODE_PTR
7663 && TYPE_CODE (type) != TYPE_CODE_REF)
7664 break;
7665 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7666 }
14f9c5c9 7667
76a01679 7668 if (type == NULL
1265e4aa
JB
7669 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7670 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7671 {
4c4b4cd2 7672 if (noerr)
76a01679 7673 return NULL;
99bbb428 7674
3b4de39c
PA
7675 error (_("Type %s is not a structure or union type"),
7676 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7677 }
7678
7679 type = to_static_fixed_type (type);
7680
7681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7682 {
0d5cff50 7683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7684 struct type *t;
d2e4a39e 7685
14f9c5c9 7686 if (t_field_name == NULL)
4c4b4cd2 7687 continue;
14f9c5c9 7688
828d5846
XR
7689 else if (ada_is_parent_field (type, i))
7690 {
7691 /* This is a field pointing us to the parent type of a tagged
7692 type. As hinted in this function's documentation, we give
7693 preference to fields in the current record first, so what
7694 we do here is just record the index of this field before
7695 we skip it. If it turns out we couldn't find our field
7696 in the current record, then we'll get back to it and search
7697 inside it whether the field might exist in the parent. */
7698
7699 parent_offset = i;
7700 continue;
7701 }
7702
14f9c5c9 7703 else if (field_name_match (t_field_name, name))
988f6b3d 7704 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7705
7706 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7707 {
4c4b4cd2 7708 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7709 0, 1);
4c4b4cd2 7710 if (t != NULL)
988f6b3d 7711 return t;
4c4b4cd2 7712 }
14f9c5c9
AS
7713
7714 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7715 {
7716 int j;
5b4ee69b
MS
7717 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7718 i));
4c4b4cd2
PH
7719
7720 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7721 {
b1f33ddd
JB
7722 /* FIXME pnh 2008/01/26: We check for a field that is
7723 NOT wrapped in a struct, since the compiler sometimes
7724 generates these for unchecked variant types. Revisit
0963b4bd 7725 if the compiler changes this practice. */
0d5cff50 7726 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7727
b1f33ddd
JB
7728 if (v_field_name != NULL
7729 && field_name_match (v_field_name, name))
460efde1 7730 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7731 else
0963b4bd
MS
7732 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7733 j),
988f6b3d 7734 name, 0, 1);
b1f33ddd 7735
4c4b4cd2 7736 if (t != NULL)
988f6b3d 7737 return t;
4c4b4cd2
PH
7738 }
7739 }
14f9c5c9
AS
7740
7741 }
7742
828d5846
XR
7743 /* Field not found so far. If this is a tagged type which
7744 has a parent, try finding that field in the parent now. */
7745
7746 if (parent_offset != -1)
7747 {
7748 struct type *t;
7749
7750 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7751 name, 0, 1);
7752 if (t != NULL)
7753 return t;
7754 }
7755
14f9c5c9 7756BadName:
d2e4a39e 7757 if (!noerr)
14f9c5c9 7758 {
2b2798cc 7759 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7760
7761 error (_("Type %s has no component named %s"),
3b4de39c 7762 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7763 }
7764
7765 return NULL;
7766}
7767
b1f33ddd
JB
7768/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7769 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7770 represents an unchecked union (that is, the variant part of a
0963b4bd 7771 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7772
7773static int
7774is_unchecked_variant (struct type *var_type, struct type *outer_type)
7775{
a121b7c1 7776 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7777
988f6b3d 7778 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7779}
7780
7781
14f9c5c9
AS
7782/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7783 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7784 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7785 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7786
d2e4a39e 7787int
ebf56fd3 7788ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7789 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7790{
7791 int others_clause;
7792 int i;
a121b7c1 7793 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7794 struct value *outer;
7795 struct value *discrim;
14f9c5c9
AS
7796 LONGEST discrim_val;
7797
012370f6
TT
7798 /* Using plain value_from_contents_and_address here causes problems
7799 because we will end up trying to resolve a type that is currently
7800 being constructed. */
7801 outer = value_from_contents_and_address_unresolved (outer_type,
7802 outer_valaddr, 0);
0c281816
JB
7803 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7804 if (discrim == NULL)
14f9c5c9 7805 return -1;
0c281816 7806 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7807
7808 others_clause = -1;
7809 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7810 {
7811 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7812 others_clause = i;
14f9c5c9 7813 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7814 return i;
14f9c5c9
AS
7815 }
7816
7817 return others_clause;
7818}
d2e4a39e 7819\f
14f9c5c9
AS
7820
7821
4c4b4cd2 7822 /* Dynamic-Sized Records */
14f9c5c9
AS
7823
7824/* Strategy: The type ostensibly attached to a value with dynamic size
7825 (i.e., a size that is not statically recorded in the debugging
7826 data) does not accurately reflect the size or layout of the value.
7827 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7828 conventional types that are constructed on the fly. */
14f9c5c9
AS
7829
7830/* There is a subtle and tricky problem here. In general, we cannot
7831 determine the size of dynamic records without its data. However,
7832 the 'struct value' data structure, which GDB uses to represent
7833 quantities in the inferior process (the target), requires the size
7834 of the type at the time of its allocation in order to reserve space
7835 for GDB's internal copy of the data. That's why the
7836 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7837 rather than struct value*s.
14f9c5c9
AS
7838
7839 However, GDB's internal history variables ($1, $2, etc.) are
7840 struct value*s containing internal copies of the data that are not, in
7841 general, the same as the data at their corresponding addresses in
7842 the target. Fortunately, the types we give to these values are all
7843 conventional, fixed-size types (as per the strategy described
7844 above), so that we don't usually have to perform the
7845 'to_fixed_xxx_type' conversions to look at their values.
7846 Unfortunately, there is one exception: if one of the internal
7847 history variables is an array whose elements are unconstrained
7848 records, then we will need to create distinct fixed types for each
7849 element selected. */
7850
7851/* The upshot of all of this is that many routines take a (type, host
7852 address, target address) triple as arguments to represent a value.
7853 The host address, if non-null, is supposed to contain an internal
7854 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7855 target at the target address. */
14f9c5c9
AS
7856
7857/* Assuming that VAL0 represents a pointer value, the result of
7858 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7859 dynamic-sized types. */
14f9c5c9 7860
d2e4a39e
AS
7861struct value *
7862ada_value_ind (struct value *val0)
14f9c5c9 7863{
c48db5ca 7864 struct value *val = value_ind (val0);
5b4ee69b 7865
b50d69b5
JG
7866 if (ada_is_tagged_type (value_type (val), 0))
7867 val = ada_tag_value_at_base_address (val);
7868
4c4b4cd2 7869 return ada_to_fixed_value (val);
14f9c5c9
AS
7870}
7871
7872/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7873 qualifiers on VAL0. */
7874
d2e4a39e
AS
7875static struct value *
7876ada_coerce_ref (struct value *val0)
7877{
df407dfe 7878 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7879 {
7880 struct value *val = val0;
5b4ee69b 7881
994b9211 7882 val = coerce_ref (val);
b50d69b5
JG
7883
7884 if (ada_is_tagged_type (value_type (val), 0))
7885 val = ada_tag_value_at_base_address (val);
7886
4c4b4cd2 7887 return ada_to_fixed_value (val);
d2e4a39e
AS
7888 }
7889 else
14f9c5c9
AS
7890 return val0;
7891}
7892
7893/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7894 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7895
7896static unsigned int
ebf56fd3 7897align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7898{
7899 return (off + alignment - 1) & ~(alignment - 1);
7900}
7901
4c4b4cd2 7902/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7903
7904static unsigned int
ebf56fd3 7905field_alignment (struct type *type, int f)
14f9c5c9 7906{
d2e4a39e 7907 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7908 int len;
14f9c5c9
AS
7909 int align_offset;
7910
64a1bf19
JB
7911 /* The field name should never be null, unless the debugging information
7912 is somehow malformed. In this case, we assume the field does not
7913 require any alignment. */
7914 if (name == NULL)
7915 return 1;
7916
7917 len = strlen (name);
7918
4c4b4cd2
PH
7919 if (!isdigit (name[len - 1]))
7920 return 1;
14f9c5c9 7921
d2e4a39e 7922 if (isdigit (name[len - 2]))
14f9c5c9
AS
7923 align_offset = len - 2;
7924 else
7925 align_offset = len - 1;
7926
61012eef 7927 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7928 return TARGET_CHAR_BIT;
7929
4c4b4cd2
PH
7930 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7931}
7932
852dff6c 7933/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7934
852dff6c
JB
7935static struct symbol *
7936ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7937{
7938 struct symbol *sym;
7939
7940 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7941 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7942 return sym;
7943
4186eb54
KS
7944 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7945 return sym;
14f9c5c9
AS
7946}
7947
dddfab26
UW
7948/* Find a type named NAME. Ignores ambiguity. This routine will look
7949 solely for types defined by debug info, it will not search the GDB
7950 primitive types. */
4c4b4cd2 7951
852dff6c 7952static struct type *
ebf56fd3 7953ada_find_any_type (const char *name)
14f9c5c9 7954{
852dff6c 7955 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7956
14f9c5c9 7957 if (sym != NULL)
dddfab26 7958 return SYMBOL_TYPE (sym);
14f9c5c9 7959
dddfab26 7960 return NULL;
14f9c5c9
AS
7961}
7962
739593e0
JB
7963/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7964 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7965 symbol, in which case it is returned. Otherwise, this looks for
7966 symbols whose name is that of NAME_SYM suffixed with "___XR".
7967 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7968
7969struct symbol *
270140bd 7970ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7971{
739593e0 7972 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7973 struct symbol *sym;
7974
739593e0
JB
7975 if (strstr (name, "___XR") != NULL)
7976 return name_sym;
7977
aeb5907d
JB
7978 sym = find_old_style_renaming_symbol (name, block);
7979
7980 if (sym != NULL)
7981 return sym;
7982
0963b4bd 7983 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7984 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7985 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7986 return sym;
7987 else
7988 return NULL;
7989}
7990
7991static struct symbol *
270140bd 7992find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7993{
7f0df278 7994 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7995 char *rename;
7996
7997 if (function_sym != NULL)
7998 {
7999 /* If the symbol is defined inside a function, NAME is not fully
8000 qualified. This means we need to prepend the function name
8001 as well as adding the ``___XR'' suffix to build the name of
8002 the associated renaming symbol. */
0d5cff50 8003 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8004 /* Function names sometimes contain suffixes used
8005 for instance to qualify nested subprograms. When building
8006 the XR type name, we need to make sure that this suffix is
8007 not included. So do not include any suffix in the function
8008 name length below. */
69fadcdf 8009 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8010 const int rename_len = function_name_len + 2 /* "__" */
8011 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8012
529cad9c 8013 /* Strip the suffix if necessary. */
69fadcdf
JB
8014 ada_remove_trailing_digits (function_name, &function_name_len);
8015 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8016 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8017
4c4b4cd2
PH
8018 /* Library-level functions are a special case, as GNAT adds
8019 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8020 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8021 have this prefix, so we need to skip this prefix if present. */
8022 if (function_name_len > 5 /* "_ada_" */
8023 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8024 {
8025 function_name += 5;
8026 function_name_len -= 5;
8027 }
4c4b4cd2
PH
8028
8029 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8030 strncpy (rename, function_name, function_name_len);
8031 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8032 "__%s___XR", name);
4c4b4cd2
PH
8033 }
8034 else
8035 {
8036 const int rename_len = strlen (name) + 6;
5b4ee69b 8037
4c4b4cd2 8038 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8039 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8040 }
8041
852dff6c 8042 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8043}
8044
14f9c5c9 8045/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8046 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8047 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8048 otherwise return 0. */
8049
14f9c5c9 8050int
d2e4a39e 8051ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8052{
8053 if (type1 == NULL)
8054 return 1;
8055 else if (type0 == NULL)
8056 return 0;
8057 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8058 return 1;
8059 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8060 return 0;
4c4b4cd2
PH
8061 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8062 return 1;
ad82864c 8063 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8064 return 1;
4c4b4cd2
PH
8065 else if (ada_is_array_descriptor_type (type0)
8066 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8067 return 1;
aeb5907d
JB
8068 else
8069 {
a737d952
TT
8070 const char *type0_name = TYPE_NAME (type0);
8071 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8072
8073 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8074 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8075 return 1;
8076 }
14f9c5c9
AS
8077 return 0;
8078}
8079
e86ca25f
TT
8080/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8081 null. */
4c4b4cd2 8082
0d5cff50 8083const char *
d2e4a39e 8084ada_type_name (struct type *type)
14f9c5c9 8085{
d2e4a39e 8086 if (type == NULL)
14f9c5c9 8087 return NULL;
e86ca25f 8088 return TYPE_NAME (type);
14f9c5c9
AS
8089}
8090
b4ba55a1
JB
8091/* Search the list of "descriptive" types associated to TYPE for a type
8092 whose name is NAME. */
8093
8094static struct type *
8095find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8096{
931e5bc3 8097 struct type *result, *tmp;
b4ba55a1 8098
c6044dd1
JB
8099 if (ada_ignore_descriptive_types_p)
8100 return NULL;
8101
b4ba55a1
JB
8102 /* If there no descriptive-type info, then there is no parallel type
8103 to be found. */
8104 if (!HAVE_GNAT_AUX_INFO (type))
8105 return NULL;
8106
8107 result = TYPE_DESCRIPTIVE_TYPE (type);
8108 while (result != NULL)
8109 {
0d5cff50 8110 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8111
8112 if (result_name == NULL)
8113 {
8114 warning (_("unexpected null name on descriptive type"));
8115 return NULL;
8116 }
8117
8118 /* If the names match, stop. */
8119 if (strcmp (result_name, name) == 0)
8120 break;
8121
8122 /* Otherwise, look at the next item on the list, if any. */
8123 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8124 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8125 else
8126 tmp = NULL;
8127
8128 /* If not found either, try after having resolved the typedef. */
8129 if (tmp != NULL)
8130 result = tmp;
b4ba55a1 8131 else
931e5bc3 8132 {
f168693b 8133 result = check_typedef (result);
931e5bc3
JG
8134 if (HAVE_GNAT_AUX_INFO (result))
8135 result = TYPE_DESCRIPTIVE_TYPE (result);
8136 else
8137 result = NULL;
8138 }
b4ba55a1
JB
8139 }
8140
8141 /* If we didn't find a match, see whether this is a packed array. With
8142 older compilers, the descriptive type information is either absent or
8143 irrelevant when it comes to packed arrays so the above lookup fails.
8144 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8145 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8146 return ada_find_any_type (name);
8147
8148 return result;
8149}
8150
8151/* Find a parallel type to TYPE with the specified NAME, using the
8152 descriptive type taken from the debugging information, if available,
8153 and otherwise using the (slower) name-based method. */
8154
8155static struct type *
8156ada_find_parallel_type_with_name (struct type *type, const char *name)
8157{
8158 struct type *result = NULL;
8159
8160 if (HAVE_GNAT_AUX_INFO (type))
8161 result = find_parallel_type_by_descriptive_type (type, name);
8162 else
8163 result = ada_find_any_type (name);
8164
8165 return result;
8166}
8167
8168/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8169 SUFFIX to the name of TYPE. */
14f9c5c9 8170
d2e4a39e 8171struct type *
ebf56fd3 8172ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8173{
0d5cff50 8174 char *name;
fe978cb0 8175 const char *type_name = ada_type_name (type);
14f9c5c9 8176 int len;
d2e4a39e 8177
fe978cb0 8178 if (type_name == NULL)
14f9c5c9
AS
8179 return NULL;
8180
fe978cb0 8181 len = strlen (type_name);
14f9c5c9 8182
b4ba55a1 8183 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8184
fe978cb0 8185 strcpy (name, type_name);
14f9c5c9
AS
8186 strcpy (name + len, suffix);
8187
b4ba55a1 8188 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8189}
8190
14f9c5c9 8191/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8192 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8193
d2e4a39e
AS
8194static struct type *
8195dynamic_template_type (struct type *type)
14f9c5c9 8196{
61ee279c 8197 type = ada_check_typedef (type);
14f9c5c9
AS
8198
8199 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8200 || ada_type_name (type) == NULL)
14f9c5c9 8201 return NULL;
d2e4a39e 8202 else
14f9c5c9
AS
8203 {
8204 int len = strlen (ada_type_name (type));
5b4ee69b 8205
4c4b4cd2
PH
8206 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8207 return type;
14f9c5c9 8208 else
4c4b4cd2 8209 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8210 }
8211}
8212
8213/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8214 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8215
d2e4a39e
AS
8216static int
8217is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8218{
8219 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8220
d2e4a39e 8221 return name != NULL
14f9c5c9
AS
8222 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8223 && strstr (name, "___XVL") != NULL;
8224}
8225
4c4b4cd2
PH
8226/* The index of the variant field of TYPE, or -1 if TYPE does not
8227 represent a variant record type. */
14f9c5c9 8228
d2e4a39e 8229static int
4c4b4cd2 8230variant_field_index (struct type *type)
14f9c5c9
AS
8231{
8232 int f;
8233
4c4b4cd2
PH
8234 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8235 return -1;
8236
8237 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8238 {
8239 if (ada_is_variant_part (type, f))
8240 return f;
8241 }
8242 return -1;
14f9c5c9
AS
8243}
8244
4c4b4cd2
PH
8245/* A record type with no fields. */
8246
d2e4a39e 8247static struct type *
fe978cb0 8248empty_record (struct type *templ)
14f9c5c9 8249{
fe978cb0 8250 struct type *type = alloc_type_copy (templ);
5b4ee69b 8251
14f9c5c9
AS
8252 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8253 TYPE_NFIELDS (type) = 0;
8254 TYPE_FIELDS (type) = NULL;
b1f33ddd 8255 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8256 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8257 TYPE_LENGTH (type) = 0;
8258 return type;
8259}
8260
8261/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8262 the value of type TYPE at VALADDR or ADDRESS (see comments at
8263 the beginning of this section) VAL according to GNAT conventions.
8264 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8265 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8266 an outer-level type (i.e., as opposed to a branch of a variant.) A
8267 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8268 of the variant.
14f9c5c9 8269
4c4b4cd2
PH
8270 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8271 length are not statically known are discarded. As a consequence,
8272 VALADDR, ADDRESS and DVAL0 are ignored.
8273
8274 NOTE: Limitations: For now, we assume that dynamic fields and
8275 variants occupy whole numbers of bytes. However, they need not be
8276 byte-aligned. */
8277
8278struct type *
10a2c479 8279ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8280 const gdb_byte *valaddr,
4c4b4cd2
PH
8281 CORE_ADDR address, struct value *dval0,
8282 int keep_dynamic_fields)
14f9c5c9 8283{
d2e4a39e
AS
8284 struct value *mark = value_mark ();
8285 struct value *dval;
8286 struct type *rtype;
14f9c5c9 8287 int nfields, bit_len;
4c4b4cd2 8288 int variant_field;
14f9c5c9 8289 long off;
d94e4f4f 8290 int fld_bit_len;
14f9c5c9
AS
8291 int f;
8292
4c4b4cd2
PH
8293 /* Compute the number of fields in this record type that are going
8294 to be processed: unless keep_dynamic_fields, this includes only
8295 fields whose position and length are static will be processed. */
8296 if (keep_dynamic_fields)
8297 nfields = TYPE_NFIELDS (type);
8298 else
8299 {
8300 nfields = 0;
76a01679 8301 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8302 && !ada_is_variant_part (type, nfields)
8303 && !is_dynamic_field (type, nfields))
8304 nfields++;
8305 }
8306
e9bb382b 8307 rtype = alloc_type_copy (type);
14f9c5c9
AS
8308 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8309 INIT_CPLUS_SPECIFIC (rtype);
8310 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8311 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8312 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8313 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8314 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8315 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8316
d2e4a39e
AS
8317 off = 0;
8318 bit_len = 0;
4c4b4cd2
PH
8319 variant_field = -1;
8320
14f9c5c9
AS
8321 for (f = 0; f < nfields; f += 1)
8322 {
6c038f32
PH
8323 off = align_value (off, field_alignment (type, f))
8324 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8325 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8326 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8327
d2e4a39e 8328 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8329 {
8330 variant_field = f;
d94e4f4f 8331 fld_bit_len = 0;
4c4b4cd2 8332 }
14f9c5c9 8333 else if (is_dynamic_field (type, f))
4c4b4cd2 8334 {
284614f0
JB
8335 const gdb_byte *field_valaddr = valaddr;
8336 CORE_ADDR field_address = address;
8337 struct type *field_type =
8338 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8339
4c4b4cd2 8340 if (dval0 == NULL)
b5304971
JG
8341 {
8342 /* rtype's length is computed based on the run-time
8343 value of discriminants. If the discriminants are not
8344 initialized, the type size may be completely bogus and
0963b4bd 8345 GDB may fail to allocate a value for it. So check the
b5304971 8346 size first before creating the value. */
c1b5a1a6 8347 ada_ensure_varsize_limit (rtype);
012370f6
TT
8348 /* Using plain value_from_contents_and_address here
8349 causes problems because we will end up trying to
8350 resolve a type that is currently being
8351 constructed. */
8352 dval = value_from_contents_and_address_unresolved (rtype,
8353 valaddr,
8354 address);
9f1f738a 8355 rtype = value_type (dval);
b5304971 8356 }
4c4b4cd2
PH
8357 else
8358 dval = dval0;
8359
284614f0
JB
8360 /* If the type referenced by this field is an aligner type, we need
8361 to unwrap that aligner type, because its size might not be set.
8362 Keeping the aligner type would cause us to compute the wrong
8363 size for this field, impacting the offset of the all the fields
8364 that follow this one. */
8365 if (ada_is_aligner_type (field_type))
8366 {
8367 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8368
8369 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8370 field_address = cond_offset_target (field_address, field_offset);
8371 field_type = ada_aligned_type (field_type);
8372 }
8373
8374 field_valaddr = cond_offset_host (field_valaddr,
8375 off / TARGET_CHAR_BIT);
8376 field_address = cond_offset_target (field_address,
8377 off / TARGET_CHAR_BIT);
8378
8379 /* Get the fixed type of the field. Note that, in this case,
8380 we do not want to get the real type out of the tag: if
8381 the current field is the parent part of a tagged record,
8382 we will get the tag of the object. Clearly wrong: the real
8383 type of the parent is not the real type of the child. We
8384 would end up in an infinite loop. */
8385 field_type = ada_get_base_type (field_type);
8386 field_type = ada_to_fixed_type (field_type, field_valaddr,
8387 field_address, dval, 0);
27f2a97b
JB
8388 /* If the field size is already larger than the maximum
8389 object size, then the record itself will necessarily
8390 be larger than the maximum object size. We need to make
8391 this check now, because the size might be so ridiculously
8392 large (due to an uninitialized variable in the inferior)
8393 that it would cause an overflow when adding it to the
8394 record size. */
c1b5a1a6 8395 ada_ensure_varsize_limit (field_type);
284614f0
JB
8396
8397 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8398 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8399 /* The multiplication can potentially overflow. But because
8400 the field length has been size-checked just above, and
8401 assuming that the maximum size is a reasonable value,
8402 an overflow should not happen in practice. So rather than
8403 adding overflow recovery code to this already complex code,
8404 we just assume that it's not going to happen. */
d94e4f4f 8405 fld_bit_len =
4c4b4cd2
PH
8406 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8407 }
14f9c5c9 8408 else
4c4b4cd2 8409 {
5ded5331
JB
8410 /* Note: If this field's type is a typedef, it is important
8411 to preserve the typedef layer.
8412
8413 Otherwise, we might be transforming a typedef to a fat
8414 pointer (encoding a pointer to an unconstrained array),
8415 into a basic fat pointer (encoding an unconstrained
8416 array). As both types are implemented using the same
8417 structure, the typedef is the only clue which allows us
8418 to distinguish between the two options. Stripping it
8419 would prevent us from printing this field appropriately. */
8420 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8421 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8422 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8423 fld_bit_len =
4c4b4cd2
PH
8424 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8425 else
5ded5331
JB
8426 {
8427 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8428
8429 /* We need to be careful of typedefs when computing
8430 the length of our field. If this is a typedef,
8431 get the length of the target type, not the length
8432 of the typedef. */
8433 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8434 field_type = ada_typedef_target_type (field_type);
8435
8436 fld_bit_len =
8437 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8438 }
4c4b4cd2 8439 }
14f9c5c9 8440 if (off + fld_bit_len > bit_len)
4c4b4cd2 8441 bit_len = off + fld_bit_len;
d94e4f4f 8442 off += fld_bit_len;
4c4b4cd2
PH
8443 TYPE_LENGTH (rtype) =
8444 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8445 }
4c4b4cd2
PH
8446
8447 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8448 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8449 the record. This can happen in the presence of representation
8450 clauses. */
8451 if (variant_field >= 0)
8452 {
8453 struct type *branch_type;
8454
8455 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8456
8457 if (dval0 == NULL)
9f1f738a 8458 {
012370f6
TT
8459 /* Using plain value_from_contents_and_address here causes
8460 problems because we will end up trying to resolve a type
8461 that is currently being constructed. */
8462 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8463 address);
9f1f738a
SA
8464 rtype = value_type (dval);
8465 }
4c4b4cd2
PH
8466 else
8467 dval = dval0;
8468
8469 branch_type =
8470 to_fixed_variant_branch_type
8471 (TYPE_FIELD_TYPE (type, variant_field),
8472 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8473 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8474 if (branch_type == NULL)
8475 {
8476 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8477 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8478 TYPE_NFIELDS (rtype) -= 1;
8479 }
8480 else
8481 {
8482 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8483 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8484 fld_bit_len =
8485 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8486 TARGET_CHAR_BIT;
8487 if (off + fld_bit_len > bit_len)
8488 bit_len = off + fld_bit_len;
8489 TYPE_LENGTH (rtype) =
8490 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8491 }
8492 }
8493
714e53ab
PH
8494 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8495 should contain the alignment of that record, which should be a strictly
8496 positive value. If null or negative, then something is wrong, most
8497 probably in the debug info. In that case, we don't round up the size
0963b4bd 8498 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8499 the current RTYPE length might be good enough for our purposes. */
8500 if (TYPE_LENGTH (type) <= 0)
8501 {
323e0a4a
AC
8502 if (TYPE_NAME (rtype))
8503 warning (_("Invalid type size for `%s' detected: %d."),
8504 TYPE_NAME (rtype), TYPE_LENGTH (type));
8505 else
8506 warning (_("Invalid type size for <unnamed> detected: %d."),
8507 TYPE_LENGTH (type));
714e53ab
PH
8508 }
8509 else
8510 {
8511 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8512 TYPE_LENGTH (type));
8513 }
14f9c5c9
AS
8514
8515 value_free_to_mark (mark);
d2e4a39e 8516 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8517 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8518 return rtype;
8519}
8520
4c4b4cd2
PH
8521/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8522 of 1. */
14f9c5c9 8523
d2e4a39e 8524static struct type *
fc1a4b47 8525template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8526 CORE_ADDR address, struct value *dval0)
8527{
8528 return ada_template_to_fixed_record_type_1 (type, valaddr,
8529 address, dval0, 1);
8530}
8531
8532/* An ordinary record type in which ___XVL-convention fields and
8533 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8534 static approximations, containing all possible fields. Uses
8535 no runtime values. Useless for use in values, but that's OK,
8536 since the results are used only for type determinations. Works on both
8537 structs and unions. Representation note: to save space, we memorize
8538 the result of this function in the TYPE_TARGET_TYPE of the
8539 template type. */
8540
8541static struct type *
8542template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8543{
8544 struct type *type;
8545 int nfields;
8546 int f;
8547
9e195661
PMR
8548 /* No need no do anything if the input type is already fixed. */
8549 if (TYPE_FIXED_INSTANCE (type0))
8550 return type0;
8551
8552 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8553 if (TYPE_TARGET_TYPE (type0) != NULL)
8554 return TYPE_TARGET_TYPE (type0);
8555
9e195661 8556 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8557 type = type0;
9e195661
PMR
8558 nfields = TYPE_NFIELDS (type0);
8559
8560 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8561 recompute all over next time. */
8562 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8563
8564 for (f = 0; f < nfields; f += 1)
8565 {
460efde1 8566 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8567 struct type *new_type;
14f9c5c9 8568
4c4b4cd2 8569 if (is_dynamic_field (type0, f))
460efde1
JB
8570 {
8571 field_type = ada_check_typedef (field_type);
8572 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8573 }
14f9c5c9 8574 else
f192137b 8575 new_type = static_unwrap_type (field_type);
9e195661
PMR
8576
8577 if (new_type != field_type)
8578 {
8579 /* Clone TYPE0 only the first time we get a new field type. */
8580 if (type == type0)
8581 {
8582 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8583 TYPE_CODE (type) = TYPE_CODE (type0);
8584 INIT_CPLUS_SPECIFIC (type);
8585 TYPE_NFIELDS (type) = nfields;
8586 TYPE_FIELDS (type) = (struct field *)
8587 TYPE_ALLOC (type, nfields * sizeof (struct field));
8588 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8589 sizeof (struct field) * nfields);
8590 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8591 TYPE_FIXED_INSTANCE (type) = 1;
8592 TYPE_LENGTH (type) = 0;
8593 }
8594 TYPE_FIELD_TYPE (type, f) = new_type;
8595 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8596 }
14f9c5c9 8597 }
9e195661 8598
14f9c5c9
AS
8599 return type;
8600}
8601
4c4b4cd2 8602/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8603 whose address in memory is ADDRESS, returns a revision of TYPE,
8604 which should be a non-dynamic-sized record, in which the variant
8605 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8606 for discriminant values in DVAL0, which can be NULL if the record
8607 contains the necessary discriminant values. */
8608
d2e4a39e 8609static struct type *
fc1a4b47 8610to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8611 CORE_ADDR address, struct value *dval0)
14f9c5c9 8612{
d2e4a39e 8613 struct value *mark = value_mark ();
4c4b4cd2 8614 struct value *dval;
d2e4a39e 8615 struct type *rtype;
14f9c5c9
AS
8616 struct type *branch_type;
8617 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8618 int variant_field = variant_field_index (type);
14f9c5c9 8619
4c4b4cd2 8620 if (variant_field == -1)
14f9c5c9
AS
8621 return type;
8622
4c4b4cd2 8623 if (dval0 == NULL)
9f1f738a
SA
8624 {
8625 dval = value_from_contents_and_address (type, valaddr, address);
8626 type = value_type (dval);
8627 }
4c4b4cd2
PH
8628 else
8629 dval = dval0;
8630
e9bb382b 8631 rtype = alloc_type_copy (type);
14f9c5c9 8632 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8633 INIT_CPLUS_SPECIFIC (rtype);
8634 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8635 TYPE_FIELDS (rtype) =
8636 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8637 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8638 sizeof (struct field) * nfields);
14f9c5c9 8639 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8640 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8641 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8642
4c4b4cd2
PH
8643 branch_type = to_fixed_variant_branch_type
8644 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8645 cond_offset_host (valaddr,
4c4b4cd2
PH
8646 TYPE_FIELD_BITPOS (type, variant_field)
8647 / TARGET_CHAR_BIT),
d2e4a39e 8648 cond_offset_target (address,
4c4b4cd2
PH
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT), dval);
d2e4a39e 8651 if (branch_type == NULL)
14f9c5c9 8652 {
4c4b4cd2 8653 int f;
5b4ee69b 8654
4c4b4cd2
PH
8655 for (f = variant_field + 1; f < nfields; f += 1)
8656 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8657 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8658 }
8659 else
8660 {
4c4b4cd2
PH
8661 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8662 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8663 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8664 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8665 }
4c4b4cd2 8666 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8667
4c4b4cd2 8668 value_free_to_mark (mark);
14f9c5c9
AS
8669 return rtype;
8670}
8671
8672/* An ordinary record type (with fixed-length fields) that describes
8673 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8674 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8675 should be in DVAL, a record value; it may be NULL if the object
8676 at ADDR itself contains any necessary discriminant values.
8677 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8678 values from the record are needed. Except in the case that DVAL,
8679 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8680 unchecked) is replaced by a particular branch of the variant.
8681
8682 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8683 is questionable and may be removed. It can arise during the
8684 processing of an unconstrained-array-of-record type where all the
8685 variant branches have exactly the same size. This is because in
8686 such cases, the compiler does not bother to use the XVS convention
8687 when encoding the record. I am currently dubious of this
8688 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8689
d2e4a39e 8690static struct type *
fc1a4b47 8691to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8692 CORE_ADDR address, struct value *dval)
14f9c5c9 8693{
d2e4a39e 8694 struct type *templ_type;
14f9c5c9 8695
876cecd0 8696 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8697 return type0;
8698
d2e4a39e 8699 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8700
8701 if (templ_type != NULL)
8702 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8703 else if (variant_field_index (type0) >= 0)
8704 {
8705 if (dval == NULL && valaddr == NULL && address == 0)
8706 return type0;
8707 return to_record_with_fixed_variant_part (type0, valaddr, address,
8708 dval);
8709 }
14f9c5c9
AS
8710 else
8711 {
876cecd0 8712 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8713 return type0;
8714 }
8715
8716}
8717
8718/* An ordinary record type (with fixed-length fields) that describes
8719 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8720 union type. Any necessary discriminants' values should be in DVAL,
8721 a record value. That is, this routine selects the appropriate
8722 branch of the union at ADDR according to the discriminant value
b1f33ddd 8723 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8724 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8725
d2e4a39e 8726static struct type *
fc1a4b47 8727to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8728 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8729{
8730 int which;
d2e4a39e
AS
8731 struct type *templ_type;
8732 struct type *var_type;
14f9c5c9
AS
8733
8734 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8735 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8736 else
14f9c5c9
AS
8737 var_type = var_type0;
8738
8739 templ_type = ada_find_parallel_type (var_type, "___XVU");
8740
8741 if (templ_type != NULL)
8742 var_type = templ_type;
8743
b1f33ddd
JB
8744 if (is_unchecked_variant (var_type, value_type (dval)))
8745 return var_type0;
d2e4a39e
AS
8746 which =
8747 ada_which_variant_applies (var_type,
0fd88904 8748 value_type (dval), value_contents (dval));
14f9c5c9
AS
8749
8750 if (which < 0)
e9bb382b 8751 return empty_record (var_type);
14f9c5c9 8752 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8753 return to_fixed_record_type
d2e4a39e
AS
8754 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8755 valaddr, address, dval);
4c4b4cd2 8756 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8757 return
8758 to_fixed_record_type
8759 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8760 else
8761 return TYPE_FIELD_TYPE (var_type, which);
8762}
8763
8908fca5
JB
8764/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8765 ENCODING_TYPE, a type following the GNAT conventions for discrete
8766 type encodings, only carries redundant information. */
8767
8768static int
8769ada_is_redundant_range_encoding (struct type *range_type,
8770 struct type *encoding_type)
8771{
108d56a4 8772 const char *bounds_str;
8908fca5
JB
8773 int n;
8774 LONGEST lo, hi;
8775
8776 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8777
005e2509
JB
8778 if (TYPE_CODE (get_base_type (range_type))
8779 != TYPE_CODE (get_base_type (encoding_type)))
8780 {
8781 /* The compiler probably used a simple base type to describe
8782 the range type instead of the range's actual base type,
8783 expecting us to get the real base type from the encoding
8784 anyway. In this situation, the encoding cannot be ignored
8785 as redundant. */
8786 return 0;
8787 }
8788
8908fca5
JB
8789 if (is_dynamic_type (range_type))
8790 return 0;
8791
8792 if (TYPE_NAME (encoding_type) == NULL)
8793 return 0;
8794
8795 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8796 if (bounds_str == NULL)
8797 return 0;
8798
8799 n = 8; /* Skip "___XDLU_". */
8800 if (!ada_scan_number (bounds_str, n, &lo, &n))
8801 return 0;
8802 if (TYPE_LOW_BOUND (range_type) != lo)
8803 return 0;
8804
8805 n += 2; /* Skip the "__" separator between the two bounds. */
8806 if (!ada_scan_number (bounds_str, n, &hi, &n))
8807 return 0;
8808 if (TYPE_HIGH_BOUND (range_type) != hi)
8809 return 0;
8810
8811 return 1;
8812}
8813
8814/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8815 a type following the GNAT encoding for describing array type
8816 indices, only carries redundant information. */
8817
8818static int
8819ada_is_redundant_index_type_desc (struct type *array_type,
8820 struct type *desc_type)
8821{
8822 struct type *this_layer = check_typedef (array_type);
8823 int i;
8824
8825 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8826 {
8827 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8828 TYPE_FIELD_TYPE (desc_type, i)))
8829 return 0;
8830 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8831 }
8832
8833 return 1;
8834}
8835
14f9c5c9
AS
8836/* Assuming that TYPE0 is an array type describing the type of a value
8837 at ADDR, and that DVAL describes a record containing any
8838 discriminants used in TYPE0, returns a type for the value that
8839 contains no dynamic components (that is, no components whose sizes
8840 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8841 true, gives an error message if the resulting type's size is over
4c4b4cd2 8842 varsize_limit. */
14f9c5c9 8843
d2e4a39e
AS
8844static struct type *
8845to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8846 int ignore_too_big)
14f9c5c9 8847{
d2e4a39e
AS
8848 struct type *index_type_desc;
8849 struct type *result;
ad82864c 8850 int constrained_packed_array_p;
931e5bc3 8851 static const char *xa_suffix = "___XA";
14f9c5c9 8852
b0dd7688 8853 type0 = ada_check_typedef (type0);
284614f0 8854 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8855 return type0;
14f9c5c9 8856
ad82864c
JB
8857 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8858 if (constrained_packed_array_p)
8859 type0 = decode_constrained_packed_array_type (type0);
284614f0 8860
931e5bc3
JG
8861 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8862
8863 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8864 encoding suffixed with 'P' may still be generated. If so,
8865 it should be used to find the XA type. */
8866
8867 if (index_type_desc == NULL)
8868 {
1da0522e 8869 const char *type_name = ada_type_name (type0);
931e5bc3 8870
1da0522e 8871 if (type_name != NULL)
931e5bc3 8872 {
1da0522e 8873 const int len = strlen (type_name);
931e5bc3
JG
8874 char *name = (char *) alloca (len + strlen (xa_suffix));
8875
1da0522e 8876 if (type_name[len - 1] == 'P')
931e5bc3 8877 {
1da0522e 8878 strcpy (name, type_name);
931e5bc3
JG
8879 strcpy (name + len - 1, xa_suffix);
8880 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8881 }
8882 }
8883 }
8884
28c85d6c 8885 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8886 if (index_type_desc != NULL
8887 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8888 {
8889 /* Ignore this ___XA parallel type, as it does not bring any
8890 useful information. This allows us to avoid creating fixed
8891 versions of the array's index types, which would be identical
8892 to the original ones. This, in turn, can also help avoid
8893 the creation of fixed versions of the array itself. */
8894 index_type_desc = NULL;
8895 }
8896
14f9c5c9
AS
8897 if (index_type_desc == NULL)
8898 {
61ee279c 8899 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8900
14f9c5c9 8901 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8902 depend on the contents of the array in properly constructed
8903 debugging data. */
529cad9c
PH
8904 /* Create a fixed version of the array element type.
8905 We're not providing the address of an element here,
e1d5a0d2 8906 and thus the actual object value cannot be inspected to do
529cad9c
PH
8907 the conversion. This should not be a problem, since arrays of
8908 unconstrained objects are not allowed. In particular, all
8909 the elements of an array of a tagged type should all be of
8910 the same type specified in the debugging info. No need to
8911 consult the object tag. */
1ed6ede0 8912 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8913
284614f0
JB
8914 /* Make sure we always create a new array type when dealing with
8915 packed array types, since we're going to fix-up the array
8916 type length and element bitsize a little further down. */
ad82864c 8917 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8918 result = type0;
14f9c5c9 8919 else
e9bb382b 8920 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8921 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8922 }
8923 else
8924 {
8925 int i;
8926 struct type *elt_type0;
8927
8928 elt_type0 = type0;
8929 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8930 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8931
8932 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8933 depend on the contents of the array in properly constructed
8934 debugging data. */
529cad9c
PH
8935 /* Create a fixed version of the array element type.
8936 We're not providing the address of an element here,
e1d5a0d2 8937 and thus the actual object value cannot be inspected to do
529cad9c
PH
8938 the conversion. This should not be a problem, since arrays of
8939 unconstrained objects are not allowed. In particular, all
8940 the elements of an array of a tagged type should all be of
8941 the same type specified in the debugging info. No need to
8942 consult the object tag. */
1ed6ede0
JB
8943 result =
8944 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8945
8946 elt_type0 = type0;
14f9c5c9 8947 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8948 {
8949 struct type *range_type =
28c85d6c 8950 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8951
e9bb382b 8952 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8953 result, range_type);
1ce677a4 8954 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8955 }
d2e4a39e 8956 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8957 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8958 }
8959
2e6fda7d
JB
8960 /* We want to preserve the type name. This can be useful when
8961 trying to get the type name of a value that has already been
8962 printed (for instance, if the user did "print VAR; whatis $". */
8963 TYPE_NAME (result) = TYPE_NAME (type0);
8964
ad82864c 8965 if (constrained_packed_array_p)
284614f0
JB
8966 {
8967 /* So far, the resulting type has been created as if the original
8968 type was a regular (non-packed) array type. As a result, the
8969 bitsize of the array elements needs to be set again, and the array
8970 length needs to be recomputed based on that bitsize. */
8971 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8972 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8973
8974 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8975 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8976 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8977 TYPE_LENGTH (result)++;
8978 }
8979
876cecd0 8980 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8981 return result;
d2e4a39e 8982}
14f9c5c9
AS
8983
8984
8985/* A standard type (containing no dynamically sized components)
8986 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8987 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8988 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8989 ADDRESS or in VALADDR contains these discriminants.
8990
1ed6ede0
JB
8991 If CHECK_TAG is not null, in the case of tagged types, this function
8992 attempts to locate the object's tag and use it to compute the actual
8993 type. However, when ADDRESS is null, we cannot use it to determine the
8994 location of the tag, and therefore compute the tagged type's actual type.
8995 So we return the tagged type without consulting the tag. */
529cad9c 8996
f192137b
JB
8997static struct type *
8998ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8999 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9000{
61ee279c 9001 type = ada_check_typedef (type);
d2e4a39e
AS
9002 switch (TYPE_CODE (type))
9003 {
9004 default:
14f9c5c9 9005 return type;
d2e4a39e 9006 case TYPE_CODE_STRUCT:
4c4b4cd2 9007 {
76a01679 9008 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9009 struct type *fixed_record_type =
9010 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9011
529cad9c
PH
9012 /* If STATIC_TYPE is a tagged type and we know the object's address,
9013 then we can determine its tag, and compute the object's actual
0963b4bd 9014 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9015 type (the parent part of the record may have dynamic fields
9016 and the way the location of _tag is expressed may depend on
9017 them). */
529cad9c 9018
1ed6ede0 9019 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9020 {
b50d69b5
JG
9021 struct value *tag =
9022 value_tag_from_contents_and_address
9023 (fixed_record_type,
9024 valaddr,
9025 address);
9026 struct type *real_type = type_from_tag (tag);
9027 struct value *obj =
9028 value_from_contents_and_address (fixed_record_type,
9029 valaddr,
9030 address);
9f1f738a 9031 fixed_record_type = value_type (obj);
76a01679 9032 if (real_type != NULL)
b50d69b5
JG
9033 return to_fixed_record_type
9034 (real_type, NULL,
9035 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9036 }
4af88198
JB
9037
9038 /* Check to see if there is a parallel ___XVZ variable.
9039 If there is, then it provides the actual size of our type. */
9040 else if (ada_type_name (fixed_record_type) != NULL)
9041 {
0d5cff50 9042 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9043 char *xvz_name
9044 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9045 bool xvz_found = false;
4af88198
JB
9046 LONGEST size;
9047
88c15c34 9048 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9049 TRY
9050 {
9051 xvz_found = get_int_var_value (xvz_name, size);
9052 }
9053 CATCH (except, RETURN_MASK_ERROR)
9054 {
9055 /* We found the variable, but somehow failed to read
9056 its value. Rethrow the same error, but with a little
9057 bit more information, to help the user understand
9058 what went wrong (Eg: the variable might have been
9059 optimized out). */
9060 throw_error (except.error,
9061 _("unable to read value of %s (%s)"),
9062 xvz_name, except.message);
9063 }
9064 END_CATCH
9065
9066 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9067 {
9068 fixed_record_type = copy_type (fixed_record_type);
9069 TYPE_LENGTH (fixed_record_type) = size;
9070
9071 /* The FIXED_RECORD_TYPE may have be a stub. We have
9072 observed this when the debugging info is STABS, and
9073 apparently it is something that is hard to fix.
9074
9075 In practice, we don't need the actual type definition
9076 at all, because the presence of the XVZ variable allows us
9077 to assume that there must be a XVS type as well, which we
9078 should be able to use later, when we need the actual type
9079 definition.
9080
9081 In the meantime, pretend that the "fixed" type we are
9082 returning is NOT a stub, because this can cause trouble
9083 when using this type to create new types targeting it.
9084 Indeed, the associated creation routines often check
9085 whether the target type is a stub and will try to replace
0963b4bd 9086 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9087 might cause the new type to have the wrong size too.
9088 Consider the case of an array, for instance, where the size
9089 of the array is computed from the number of elements in
9090 our array multiplied by the size of its element. */
9091 TYPE_STUB (fixed_record_type) = 0;
9092 }
9093 }
1ed6ede0 9094 return fixed_record_type;
4c4b4cd2 9095 }
d2e4a39e 9096 case TYPE_CODE_ARRAY:
4c4b4cd2 9097 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9098 case TYPE_CODE_UNION:
9099 if (dval == NULL)
4c4b4cd2 9100 return type;
d2e4a39e 9101 else
4c4b4cd2 9102 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9103 }
14f9c5c9
AS
9104}
9105
f192137b
JB
9106/* The same as ada_to_fixed_type_1, except that it preserves the type
9107 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9108
9109 The typedef layer needs be preserved in order to differentiate between
9110 arrays and array pointers when both types are implemented using the same
9111 fat pointer. In the array pointer case, the pointer is encoded as
9112 a typedef of the pointer type. For instance, considering:
9113
9114 type String_Access is access String;
9115 S1 : String_Access := null;
9116
9117 To the debugger, S1 is defined as a typedef of type String. But
9118 to the user, it is a pointer. So if the user tries to print S1,
9119 we should not dereference the array, but print the array address
9120 instead.
9121
9122 If we didn't preserve the typedef layer, we would lose the fact that
9123 the type is to be presented as a pointer (needs de-reference before
9124 being printed). And we would also use the source-level type name. */
f192137b
JB
9125
9126struct type *
9127ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9128 CORE_ADDR address, struct value *dval, int check_tag)
9129
9130{
9131 struct type *fixed_type =
9132 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9133
96dbd2c1
JB
9134 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9135 then preserve the typedef layer.
9136
9137 Implementation note: We can only check the main-type portion of
9138 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9139 from TYPE now returns a type that has the same instance flags
9140 as TYPE. For instance, if TYPE is a "typedef const", and its
9141 target type is a "struct", then the typedef elimination will return
9142 a "const" version of the target type. See check_typedef for more
9143 details about how the typedef layer elimination is done.
9144
9145 brobecker/2010-11-19: It seems to me that the only case where it is
9146 useful to preserve the typedef layer is when dealing with fat pointers.
9147 Perhaps, we could add a check for that and preserve the typedef layer
9148 only in that situation. But this seems unecessary so far, probably
9149 because we call check_typedef/ada_check_typedef pretty much everywhere.
9150 */
f192137b 9151 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9152 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9153 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9154 return type;
9155
9156 return fixed_type;
9157}
9158
14f9c5c9 9159/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9160 TYPE0, but based on no runtime data. */
14f9c5c9 9161
d2e4a39e
AS
9162static struct type *
9163to_static_fixed_type (struct type *type0)
14f9c5c9 9164{
d2e4a39e 9165 struct type *type;
14f9c5c9
AS
9166
9167 if (type0 == NULL)
9168 return NULL;
9169
876cecd0 9170 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9171 return type0;
9172
61ee279c 9173 type0 = ada_check_typedef (type0);
d2e4a39e 9174
14f9c5c9
AS
9175 switch (TYPE_CODE (type0))
9176 {
9177 default:
9178 return type0;
9179 case TYPE_CODE_STRUCT:
9180 type = dynamic_template_type (type0);
d2e4a39e 9181 if (type != NULL)
4c4b4cd2
PH
9182 return template_to_static_fixed_type (type);
9183 else
9184 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9185 case TYPE_CODE_UNION:
9186 type = ada_find_parallel_type (type0, "___XVU");
9187 if (type != NULL)
4c4b4cd2
PH
9188 return template_to_static_fixed_type (type);
9189 else
9190 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9191 }
9192}
9193
4c4b4cd2
PH
9194/* A static approximation of TYPE with all type wrappers removed. */
9195
d2e4a39e
AS
9196static struct type *
9197static_unwrap_type (struct type *type)
14f9c5c9
AS
9198{
9199 if (ada_is_aligner_type (type))
9200 {
61ee279c 9201 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9202 if (ada_type_name (type1) == NULL)
4c4b4cd2 9203 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9204
9205 return static_unwrap_type (type1);
9206 }
d2e4a39e 9207 else
14f9c5c9 9208 {
d2e4a39e 9209 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9210
d2e4a39e 9211 if (raw_real_type == type)
4c4b4cd2 9212 return type;
14f9c5c9 9213 else
4c4b4cd2 9214 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9215 }
9216}
9217
9218/* In some cases, incomplete and private types require
4c4b4cd2 9219 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9220 type Foo;
9221 type FooP is access Foo;
9222 V: FooP;
9223 type Foo is array ...;
4c4b4cd2 9224 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9225 cross-references to such types, we instead substitute for FooP a
9226 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9227 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9228
9229/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9230 exists, otherwise TYPE. */
9231
d2e4a39e 9232struct type *
61ee279c 9233ada_check_typedef (struct type *type)
14f9c5c9 9234{
727e3d2e
JB
9235 if (type == NULL)
9236 return NULL;
9237
736ade86
XR
9238 /* If our type is an access to an unconstrained array, which is encoded
9239 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9240 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9241 what allows us to distinguish between fat pointers that represent
9242 array types, and fat pointers that represent array access types
9243 (in both cases, the compiler implements them as fat pointers). */
736ade86 9244 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9245 return type;
9246
f168693b 9247 type = check_typedef (type);
14f9c5c9 9248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9249 || !TYPE_STUB (type)
e86ca25f 9250 || TYPE_NAME (type) == NULL)
14f9c5c9 9251 return type;
d2e4a39e 9252 else
14f9c5c9 9253 {
e86ca25f 9254 const char *name = TYPE_NAME (type);
d2e4a39e 9255 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9256
05e522ef
JB
9257 if (type1 == NULL)
9258 return type;
9259
9260 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9261 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9262 types, only for the typedef-to-array types). If that's the case,
9263 strip the typedef layer. */
9264 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9265 type1 = ada_check_typedef (type1);
9266
9267 return type1;
14f9c5c9
AS
9268 }
9269}
9270
9271/* A value representing the data at VALADDR/ADDRESS as described by
9272 type TYPE0, but with a standard (static-sized) type that correctly
9273 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9274 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9275 creation of struct values]. */
14f9c5c9 9276
4c4b4cd2
PH
9277static struct value *
9278ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9279 struct value *val0)
14f9c5c9 9280{
1ed6ede0 9281 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9282
14f9c5c9
AS
9283 if (type == type0 && val0 != NULL)
9284 return val0;
cc0e770c
JB
9285
9286 if (VALUE_LVAL (val0) != lval_memory)
9287 {
9288 /* Our value does not live in memory; it could be a convenience
9289 variable, for instance. Create a not_lval value using val0's
9290 contents. */
9291 return value_from_contents (type, value_contents (val0));
9292 }
9293
9294 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9295}
9296
9297/* A value representing VAL, but with a standard (static-sized) type
9298 that correctly describes it. Does not necessarily create a new
9299 value. */
9300
0c3acc09 9301struct value *
4c4b4cd2
PH
9302ada_to_fixed_value (struct value *val)
9303{
c48db5ca 9304 val = unwrap_value (val);
d8ce9127 9305 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9306 return val;
14f9c5c9 9307}
d2e4a39e 9308\f
14f9c5c9 9309
14f9c5c9
AS
9310/* Attributes */
9311
4c4b4cd2
PH
9312/* Table mapping attribute numbers to names.
9313 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9314
d2e4a39e 9315static const char *attribute_names[] = {
14f9c5c9
AS
9316 "<?>",
9317
d2e4a39e 9318 "first",
14f9c5c9
AS
9319 "last",
9320 "length",
9321 "image",
14f9c5c9
AS
9322 "max",
9323 "min",
4c4b4cd2
PH
9324 "modulus",
9325 "pos",
9326 "size",
9327 "tag",
14f9c5c9 9328 "val",
14f9c5c9
AS
9329 0
9330};
9331
d2e4a39e 9332const char *
4c4b4cd2 9333ada_attribute_name (enum exp_opcode n)
14f9c5c9 9334{
4c4b4cd2
PH
9335 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9336 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9337 else
9338 return attribute_names[0];
9339}
9340
4c4b4cd2 9341/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9342
4c4b4cd2
PH
9343static LONGEST
9344pos_atr (struct value *arg)
14f9c5c9 9345{
24209737
PH
9346 struct value *val = coerce_ref (arg);
9347 struct type *type = value_type (val);
aa715135 9348 LONGEST result;
14f9c5c9 9349
d2e4a39e 9350 if (!discrete_type_p (type))
323e0a4a 9351 error (_("'POS only defined on discrete types"));
14f9c5c9 9352
aa715135
JG
9353 if (!discrete_position (type, value_as_long (val), &result))
9354 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9355
aa715135 9356 return result;
4c4b4cd2
PH
9357}
9358
9359static struct value *
3cb382c9 9360value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9361{
3cb382c9 9362 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9363}
9364
4c4b4cd2 9365/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9366
d2e4a39e
AS
9367static struct value *
9368value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9369{
d2e4a39e 9370 if (!discrete_type_p (type))
323e0a4a 9371 error (_("'VAL only defined on discrete types"));
df407dfe 9372 if (!integer_type_p (value_type (arg)))
323e0a4a 9373 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9374
9375 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9376 {
9377 long pos = value_as_long (arg);
5b4ee69b 9378
14f9c5c9 9379 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9380 error (_("argument to 'VAL out of range"));
14e75d8e 9381 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9382 }
9383 else
9384 return value_from_longest (type, value_as_long (arg));
9385}
14f9c5c9 9386\f
d2e4a39e 9387
4c4b4cd2 9388 /* Evaluation */
14f9c5c9 9389
4c4b4cd2
PH
9390/* True if TYPE appears to be an Ada character type.
9391 [At the moment, this is true only for Character and Wide_Character;
9392 It is a heuristic test that could stand improvement]. */
14f9c5c9 9393
d2e4a39e
AS
9394int
9395ada_is_character_type (struct type *type)
14f9c5c9 9396{
7b9f71f2
JB
9397 const char *name;
9398
9399 /* If the type code says it's a character, then assume it really is,
9400 and don't check any further. */
9401 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9402 return 1;
9403
9404 /* Otherwise, assume it's a character type iff it is a discrete type
9405 with a known character type name. */
9406 name = ada_type_name (type);
9407 return (name != NULL
9408 && (TYPE_CODE (type) == TYPE_CODE_INT
9409 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9410 && (strcmp (name, "character") == 0
9411 || strcmp (name, "wide_character") == 0
5a517ebd 9412 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9413 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9414}
9415
4c4b4cd2 9416/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9417
9418int
ebf56fd3 9419ada_is_string_type (struct type *type)
14f9c5c9 9420{
61ee279c 9421 type = ada_check_typedef (type);
d2e4a39e 9422 if (type != NULL
14f9c5c9 9423 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9424 && (ada_is_simple_array_type (type)
9425 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9426 && ada_array_arity (type) == 1)
9427 {
9428 struct type *elttype = ada_array_element_type (type, 1);
9429
9430 return ada_is_character_type (elttype);
9431 }
d2e4a39e 9432 else
14f9c5c9
AS
9433 return 0;
9434}
9435
5bf03f13
JB
9436/* The compiler sometimes provides a parallel XVS type for a given
9437 PAD type. Normally, it is safe to follow the PAD type directly,
9438 but older versions of the compiler have a bug that causes the offset
9439 of its "F" field to be wrong. Following that field in that case
9440 would lead to incorrect results, but this can be worked around
9441 by ignoring the PAD type and using the associated XVS type instead.
9442
9443 Set to True if the debugger should trust the contents of PAD types.
9444 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9445static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9446
9447/* True if TYPE is a struct type introduced by the compiler to force the
9448 alignment of a value. Such types have a single field with a
4c4b4cd2 9449 distinctive name. */
14f9c5c9
AS
9450
9451int
ebf56fd3 9452ada_is_aligner_type (struct type *type)
14f9c5c9 9453{
61ee279c 9454 type = ada_check_typedef (type);
714e53ab 9455
5bf03f13 9456 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9457 return 0;
9458
14f9c5c9 9459 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9460 && TYPE_NFIELDS (type) == 1
9461 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9462}
9463
9464/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9465 the parallel type. */
14f9c5c9 9466
d2e4a39e
AS
9467struct type *
9468ada_get_base_type (struct type *raw_type)
14f9c5c9 9469{
d2e4a39e
AS
9470 struct type *real_type_namer;
9471 struct type *raw_real_type;
14f9c5c9
AS
9472
9473 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9474 return raw_type;
9475
284614f0
JB
9476 if (ada_is_aligner_type (raw_type))
9477 /* The encoding specifies that we should always use the aligner type.
9478 So, even if this aligner type has an associated XVS type, we should
9479 simply ignore it.
9480
9481 According to the compiler gurus, an XVS type parallel to an aligner
9482 type may exist because of a stabs limitation. In stabs, aligner
9483 types are empty because the field has a variable-sized type, and
9484 thus cannot actually be used as an aligner type. As a result,
9485 we need the associated parallel XVS type to decode the type.
9486 Since the policy in the compiler is to not change the internal
9487 representation based on the debugging info format, we sometimes
9488 end up having a redundant XVS type parallel to the aligner type. */
9489 return raw_type;
9490
14f9c5c9 9491 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9492 if (real_type_namer == NULL
14f9c5c9
AS
9493 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9494 || TYPE_NFIELDS (real_type_namer) != 1)
9495 return raw_type;
9496
f80d3ff2
JB
9497 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9498 {
9499 /* This is an older encoding form where the base type needs to be
9500 looked up by name. We prefer the newer enconding because it is
9501 more efficient. */
9502 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9503 if (raw_real_type == NULL)
9504 return raw_type;
9505 else
9506 return raw_real_type;
9507 }
9508
9509 /* The field in our XVS type is a reference to the base type. */
9510 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9511}
14f9c5c9 9512
4c4b4cd2 9513/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9514
d2e4a39e
AS
9515struct type *
9516ada_aligned_type (struct type *type)
14f9c5c9
AS
9517{
9518 if (ada_is_aligner_type (type))
9519 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9520 else
9521 return ada_get_base_type (type);
9522}
9523
9524
9525/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9526 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9527
fc1a4b47
AC
9528const gdb_byte *
9529ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9530{
d2e4a39e 9531 if (ada_is_aligner_type (type))
14f9c5c9 9532 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9533 valaddr +
9534 TYPE_FIELD_BITPOS (type,
9535 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9536 else
9537 return valaddr;
9538}
9539
4c4b4cd2
PH
9540
9541
14f9c5c9 9542/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9543 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9544const char *
9545ada_enum_name (const char *name)
14f9c5c9 9546{
4c4b4cd2
PH
9547 static char *result;
9548 static size_t result_len = 0;
e6a959d6 9549 const char *tmp;
14f9c5c9 9550
4c4b4cd2
PH
9551 /* First, unqualify the enumeration name:
9552 1. Search for the last '.' character. If we find one, then skip
177b42fe 9553 all the preceding characters, the unqualified name starts
76a01679 9554 right after that dot.
4c4b4cd2 9555 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9556 translates dots into "__". Search forward for double underscores,
9557 but stop searching when we hit an overloading suffix, which is
9558 of the form "__" followed by digits. */
4c4b4cd2 9559
c3e5cd34
PH
9560 tmp = strrchr (name, '.');
9561 if (tmp != NULL)
4c4b4cd2
PH
9562 name = tmp + 1;
9563 else
14f9c5c9 9564 {
4c4b4cd2
PH
9565 while ((tmp = strstr (name, "__")) != NULL)
9566 {
9567 if (isdigit (tmp[2]))
9568 break;
9569 else
9570 name = tmp + 2;
9571 }
14f9c5c9
AS
9572 }
9573
9574 if (name[0] == 'Q')
9575 {
14f9c5c9 9576 int v;
5b4ee69b 9577
14f9c5c9 9578 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9579 {
9580 if (sscanf (name + 2, "%x", &v) != 1)
9581 return name;
9582 }
14f9c5c9 9583 else
4c4b4cd2 9584 return name;
14f9c5c9 9585
4c4b4cd2 9586 GROW_VECT (result, result_len, 16);
14f9c5c9 9587 if (isascii (v) && isprint (v))
88c15c34 9588 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9589 else if (name[1] == 'U')
88c15c34 9590 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9591 else
88c15c34 9592 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9593
9594 return result;
9595 }
d2e4a39e 9596 else
4c4b4cd2 9597 {
c3e5cd34
PH
9598 tmp = strstr (name, "__");
9599 if (tmp == NULL)
9600 tmp = strstr (name, "$");
9601 if (tmp != NULL)
4c4b4cd2
PH
9602 {
9603 GROW_VECT (result, result_len, tmp - name + 1);
9604 strncpy (result, name, tmp - name);
9605 result[tmp - name] = '\0';
9606 return result;
9607 }
9608
9609 return name;
9610 }
14f9c5c9
AS
9611}
9612
14f9c5c9
AS
9613/* Evaluate the subexpression of EXP starting at *POS as for
9614 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9615 expression. */
14f9c5c9 9616
d2e4a39e
AS
9617static struct value *
9618evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9619{
4b27a620 9620 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9621}
9622
9623/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9624 value it wraps. */
14f9c5c9 9625
d2e4a39e
AS
9626static struct value *
9627unwrap_value (struct value *val)
14f9c5c9 9628{
df407dfe 9629 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9630
14f9c5c9
AS
9631 if (ada_is_aligner_type (type))
9632 {
de4d072f 9633 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9634 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9635
14f9c5c9 9636 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9637 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9638
9639 return unwrap_value (v);
9640 }
d2e4a39e 9641 else
14f9c5c9 9642 {
d2e4a39e 9643 struct type *raw_real_type =
61ee279c 9644 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9645
5bf03f13
JB
9646 /* If there is no parallel XVS or XVE type, then the value is
9647 already unwrapped. Return it without further modification. */
9648 if ((type == raw_real_type)
9649 && ada_find_parallel_type (type, "___XVE") == NULL)
9650 return val;
14f9c5c9 9651
d2e4a39e 9652 return
4c4b4cd2
PH
9653 coerce_unspec_val_to_type
9654 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9655 value_address (val),
1ed6ede0 9656 NULL, 1));
14f9c5c9
AS
9657 }
9658}
d2e4a39e
AS
9659
9660static struct value *
50eff16b 9661cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9662{
50eff16b
UW
9663 struct value *scale = ada_scaling_factor (value_type (arg));
9664 arg = value_cast (value_type (scale), arg);
14f9c5c9 9665
50eff16b
UW
9666 arg = value_binop (arg, scale, BINOP_MUL);
9667 return value_cast (type, arg);
14f9c5c9
AS
9668}
9669
d2e4a39e 9670static struct value *
50eff16b 9671cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9672{
50eff16b
UW
9673 if (type == value_type (arg))
9674 return arg;
5b4ee69b 9675
50eff16b
UW
9676 struct value *scale = ada_scaling_factor (type);
9677 if (ada_is_fixed_point_type (value_type (arg)))
9678 arg = cast_from_fixed (value_type (scale), arg);
9679 else
9680 arg = value_cast (value_type (scale), arg);
9681
9682 arg = value_binop (arg, scale, BINOP_DIV);
9683 return value_cast (type, arg);
14f9c5c9
AS
9684}
9685
d99dcf51
JB
9686/* Given two array types T1 and T2, return nonzero iff both arrays
9687 contain the same number of elements. */
9688
9689static int
9690ada_same_array_size_p (struct type *t1, struct type *t2)
9691{
9692 LONGEST lo1, hi1, lo2, hi2;
9693
9694 /* Get the array bounds in order to verify that the size of
9695 the two arrays match. */
9696 if (!get_array_bounds (t1, &lo1, &hi1)
9697 || !get_array_bounds (t2, &lo2, &hi2))
9698 error (_("unable to determine array bounds"));
9699
9700 /* To make things easier for size comparison, normalize a bit
9701 the case of empty arrays by making sure that the difference
9702 between upper bound and lower bound is always -1. */
9703 if (lo1 > hi1)
9704 hi1 = lo1 - 1;
9705 if (lo2 > hi2)
9706 hi2 = lo2 - 1;
9707
9708 return (hi1 - lo1 == hi2 - lo2);
9709}
9710
9711/* Assuming that VAL is an array of integrals, and TYPE represents
9712 an array with the same number of elements, but with wider integral
9713 elements, return an array "casted" to TYPE. In practice, this
9714 means that the returned array is built by casting each element
9715 of the original array into TYPE's (wider) element type. */
9716
9717static struct value *
9718ada_promote_array_of_integrals (struct type *type, struct value *val)
9719{
9720 struct type *elt_type = TYPE_TARGET_TYPE (type);
9721 LONGEST lo, hi;
9722 struct value *res;
9723 LONGEST i;
9724
9725 /* Verify that both val and type are arrays of scalars, and
9726 that the size of val's elements is smaller than the size
9727 of type's element. */
9728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9729 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9730 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9731 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9732 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9733 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9734
9735 if (!get_array_bounds (type, &lo, &hi))
9736 error (_("unable to determine array bounds"));
9737
9738 res = allocate_value (type);
9739
9740 /* Promote each array element. */
9741 for (i = 0; i < hi - lo + 1; i++)
9742 {
9743 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9744
9745 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9746 value_contents_all (elt), TYPE_LENGTH (elt_type));
9747 }
9748
9749 return res;
9750}
9751
4c4b4cd2
PH
9752/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9753 return the converted value. */
9754
d2e4a39e
AS
9755static struct value *
9756coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9757{
df407dfe 9758 struct type *type2 = value_type (val);
5b4ee69b 9759
14f9c5c9
AS
9760 if (type == type2)
9761 return val;
9762
61ee279c
PH
9763 type2 = ada_check_typedef (type2);
9764 type = ada_check_typedef (type);
14f9c5c9 9765
d2e4a39e
AS
9766 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9767 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9768 {
9769 val = ada_value_ind (val);
df407dfe 9770 type2 = value_type (val);
14f9c5c9
AS
9771 }
9772
d2e4a39e 9773 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9774 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9775 {
d99dcf51
JB
9776 if (!ada_same_array_size_p (type, type2))
9777 error (_("cannot assign arrays of different length"));
9778
9779 if (is_integral_type (TYPE_TARGET_TYPE (type))
9780 && is_integral_type (TYPE_TARGET_TYPE (type2))
9781 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9783 {
9784 /* Allow implicit promotion of the array elements to
9785 a wider type. */
9786 return ada_promote_array_of_integrals (type, val);
9787 }
9788
9789 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9791 error (_("Incompatible types in assignment"));
04624583 9792 deprecated_set_value_type (val, type);
14f9c5c9 9793 }
d2e4a39e 9794 return val;
14f9c5c9
AS
9795}
9796
4c4b4cd2
PH
9797static struct value *
9798ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9799{
9800 struct value *val;
9801 struct type *type1, *type2;
9802 LONGEST v, v1, v2;
9803
994b9211
AC
9804 arg1 = coerce_ref (arg1);
9805 arg2 = coerce_ref (arg2);
18af8284
JB
9806 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9807 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9808
76a01679
JB
9809 if (TYPE_CODE (type1) != TYPE_CODE_INT
9810 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9811 return value_binop (arg1, arg2, op);
9812
76a01679 9813 switch (op)
4c4b4cd2
PH
9814 {
9815 case BINOP_MOD:
9816 case BINOP_DIV:
9817 case BINOP_REM:
9818 break;
9819 default:
9820 return value_binop (arg1, arg2, op);
9821 }
9822
9823 v2 = value_as_long (arg2);
9824 if (v2 == 0)
323e0a4a 9825 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9826
9827 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9828 return value_binop (arg1, arg2, op);
9829
9830 v1 = value_as_long (arg1);
9831 switch (op)
9832 {
9833 case BINOP_DIV:
9834 v = v1 / v2;
76a01679
JB
9835 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9836 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9837 break;
9838 case BINOP_REM:
9839 v = v1 % v2;
76a01679
JB
9840 if (v * v1 < 0)
9841 v -= v2;
4c4b4cd2
PH
9842 break;
9843 default:
9844 /* Should not reach this point. */
9845 v = 0;
9846 }
9847
9848 val = allocate_value (type1);
990a07ab 9849 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9850 TYPE_LENGTH (value_type (val)),
9851 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9852 return val;
9853}
9854
9855static int
9856ada_value_equal (struct value *arg1, struct value *arg2)
9857{
df407dfe
AC
9858 if (ada_is_direct_array_type (value_type (arg1))
9859 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9860 {
79e8fcaa
JB
9861 struct type *arg1_type, *arg2_type;
9862
f58b38bf
JB
9863 /* Automatically dereference any array reference before
9864 we attempt to perform the comparison. */
9865 arg1 = ada_coerce_ref (arg1);
9866 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9867
4c4b4cd2
PH
9868 arg1 = ada_coerce_to_simple_array (arg1);
9869 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9870
9871 arg1_type = ada_check_typedef (value_type (arg1));
9872 arg2_type = ada_check_typedef (value_type (arg2));
9873
9874 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9875 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9876 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9877 /* FIXME: The following works only for types whose
76a01679
JB
9878 representations use all bits (no padding or undefined bits)
9879 and do not have user-defined equality. */
79e8fcaa
JB
9880 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9881 && memcmp (value_contents (arg1), value_contents (arg2),
9882 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9883 }
9884 return value_equal (arg1, arg2);
9885}
9886
52ce6436
PH
9887/* Total number of component associations in the aggregate starting at
9888 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9889 OP_AGGREGATE. */
52ce6436
PH
9890
9891static int
9892num_component_specs (struct expression *exp, int pc)
9893{
9894 int n, m, i;
5b4ee69b 9895
52ce6436
PH
9896 m = exp->elts[pc + 1].longconst;
9897 pc += 3;
9898 n = 0;
9899 for (i = 0; i < m; i += 1)
9900 {
9901 switch (exp->elts[pc].opcode)
9902 {
9903 default:
9904 n += 1;
9905 break;
9906 case OP_CHOICES:
9907 n += exp->elts[pc + 1].longconst;
9908 break;
9909 }
9910 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9911 }
9912 return n;
9913}
9914
9915/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9916 component of LHS (a simple array or a record), updating *POS past
9917 the expression, assuming that LHS is contained in CONTAINER. Does
9918 not modify the inferior's memory, nor does it modify LHS (unless
9919 LHS == CONTAINER). */
9920
9921static void
9922assign_component (struct value *container, struct value *lhs, LONGEST index,
9923 struct expression *exp, int *pos)
9924{
9925 struct value *mark = value_mark ();
9926 struct value *elt;
0e2da9f0 9927 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9928
0e2da9f0 9929 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9930 {
22601c15
UW
9931 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9932 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9933
52ce6436
PH
9934 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9935 }
9936 else
9937 {
9938 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9939 elt = ada_to_fixed_value (elt);
52ce6436
PH
9940 }
9941
9942 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9943 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9944 else
9945 value_assign_to_component (container, elt,
9946 ada_evaluate_subexp (NULL, exp, pos,
9947 EVAL_NORMAL));
9948
9949 value_free_to_mark (mark);
9950}
9951
9952/* Assuming that LHS represents an lvalue having a record or array
9953 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9954 of that aggregate's value to LHS, advancing *POS past the
9955 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9956 lvalue containing LHS (possibly LHS itself). Does not modify
9957 the inferior's memory, nor does it modify the contents of
0963b4bd 9958 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9959
9960static struct value *
9961assign_aggregate (struct value *container,
9962 struct value *lhs, struct expression *exp,
9963 int *pos, enum noside noside)
9964{
9965 struct type *lhs_type;
9966 int n = exp->elts[*pos+1].longconst;
9967 LONGEST low_index, high_index;
9968 int num_specs;
9969 LONGEST *indices;
9970 int max_indices, num_indices;
52ce6436 9971 int i;
52ce6436
PH
9972
9973 *pos += 3;
9974 if (noside != EVAL_NORMAL)
9975 {
52ce6436
PH
9976 for (i = 0; i < n; i += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, noside);
9978 return container;
9979 }
9980
9981 container = ada_coerce_ref (container);
9982 if (ada_is_direct_array_type (value_type (container)))
9983 container = ada_coerce_to_simple_array (container);
9984 lhs = ada_coerce_ref (lhs);
9985 if (!deprecated_value_modifiable (lhs))
9986 error (_("Left operand of assignment is not a modifiable lvalue."));
9987
0e2da9f0 9988 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9989 if (ada_is_direct_array_type (lhs_type))
9990 {
9991 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9992 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9993 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9994 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9995 }
9996 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9997 {
9998 low_index = 0;
9999 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10000 }
10001 else
10002 error (_("Left-hand side must be array or record."));
10003
10004 num_specs = num_component_specs (exp, *pos - 3);
10005 max_indices = 4 * num_specs + 4;
8d749320 10006 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10007 indices[0] = indices[1] = low_index - 1;
10008 indices[2] = indices[3] = high_index + 1;
10009 num_indices = 4;
10010
10011 for (i = 0; i < n; i += 1)
10012 {
10013 switch (exp->elts[*pos].opcode)
10014 {
1fbf5ada
JB
10015 case OP_CHOICES:
10016 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10017 &num_indices, max_indices,
10018 low_index, high_index);
10019 break;
10020 case OP_POSITIONAL:
10021 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10022 &num_indices, max_indices,
10023 low_index, high_index);
1fbf5ada
JB
10024 break;
10025 case OP_OTHERS:
10026 if (i != n-1)
10027 error (_("Misplaced 'others' clause"));
10028 aggregate_assign_others (container, lhs, exp, pos, indices,
10029 num_indices, low_index, high_index);
10030 break;
10031 default:
10032 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10033 }
10034 }
10035
10036 return container;
10037}
10038
10039/* Assign into the component of LHS indexed by the OP_POSITIONAL
10040 construct at *POS, updating *POS past the construct, given that
10041 the positions are relative to lower bound LOW, where HIGH is the
10042 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10043 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10044 assign_aggregate. */
52ce6436
PH
10045static void
10046aggregate_assign_positional (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int *num_indices,
10049 int max_indices, LONGEST low, LONGEST high)
10050{
10051 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10052
10053 if (ind - 1 == high)
e1d5a0d2 10054 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10055 if (ind <= high)
10056 {
10057 add_component_interval (ind, ind, indices, num_indices, max_indices);
10058 *pos += 3;
10059 assign_component (container, lhs, ind, exp, pos);
10060 }
10061 else
10062 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10063}
10064
10065/* Assign into the components of LHS indexed by the OP_CHOICES
10066 construct at *POS, updating *POS past the construct, given that
10067 the allowable indices are LOW..HIGH. Record the indices assigned
10068 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10069 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10070static void
10071aggregate_assign_from_choices (struct value *container,
10072 struct value *lhs, struct expression *exp,
10073 int *pos, LONGEST *indices, int *num_indices,
10074 int max_indices, LONGEST low, LONGEST high)
10075{
10076 int j;
10077 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10078 int choice_pos, expr_pc;
10079 int is_array = ada_is_direct_array_type (value_type (lhs));
10080
10081 choice_pos = *pos += 3;
10082
10083 for (j = 0; j < n_choices; j += 1)
10084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10085 expr_pc = *pos;
10086 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 {
10090 LONGEST lower, upper;
10091 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10092
52ce6436
PH
10093 if (op == OP_DISCRETE_RANGE)
10094 {
10095 choice_pos += 1;
10096 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10097 EVAL_NORMAL));
10098 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10099 EVAL_NORMAL));
10100 }
10101 else if (is_array)
10102 {
10103 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10104 EVAL_NORMAL));
10105 upper = lower;
10106 }
10107 else
10108 {
10109 int ind;
0d5cff50 10110 const char *name;
5b4ee69b 10111
52ce6436
PH
10112 switch (op)
10113 {
10114 case OP_NAME:
10115 name = &exp->elts[choice_pos + 2].string;
10116 break;
10117 case OP_VAR_VALUE:
10118 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10119 break;
10120 default:
10121 error (_("Invalid record component association."));
10122 }
10123 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10124 ind = 0;
10125 if (! find_struct_field (name, value_type (lhs), 0,
10126 NULL, NULL, NULL, NULL, &ind))
10127 error (_("Unknown component name: %s."), name);
10128 lower = upper = ind;
10129 }
10130
10131 if (lower <= upper && (lower < low || upper > high))
10132 error (_("Index in component association out of bounds."));
10133
10134 add_component_interval (lower, upper, indices, num_indices,
10135 max_indices);
10136 while (lower <= upper)
10137 {
10138 int pos1;
5b4ee69b 10139
52ce6436
PH
10140 pos1 = expr_pc;
10141 assign_component (container, lhs, lower, exp, &pos1);
10142 lower += 1;
10143 }
10144 }
10145}
10146
10147/* Assign the value of the expression in the OP_OTHERS construct in
10148 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10149 have not been previously assigned. The index intervals already assigned
10150 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10151 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10152static void
10153aggregate_assign_others (struct value *container,
10154 struct value *lhs, struct expression *exp,
10155 int *pos, LONGEST *indices, int num_indices,
10156 LONGEST low, LONGEST high)
10157{
10158 int i;
5ce64950 10159 int expr_pc = *pos + 1;
52ce6436
PH
10160
10161 for (i = 0; i < num_indices - 2; i += 2)
10162 {
10163 LONGEST ind;
5b4ee69b 10164
52ce6436
PH
10165 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10166 {
5ce64950 10167 int localpos;
5b4ee69b 10168
5ce64950
MS
10169 localpos = expr_pc;
10170 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10171 }
10172 }
10173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10174}
10175
10176/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10177 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10178 modifying *SIZE as needed. It is an error if *SIZE exceeds
10179 MAX_SIZE. The resulting intervals do not overlap. */
10180static void
10181add_component_interval (LONGEST low, LONGEST high,
10182 LONGEST* indices, int *size, int max_size)
10183{
10184 int i, j;
5b4ee69b 10185
52ce6436
PH
10186 for (i = 0; i < *size; i += 2) {
10187 if (high >= indices[i] && low <= indices[i + 1])
10188 {
10189 int kh;
5b4ee69b 10190
52ce6436
PH
10191 for (kh = i + 2; kh < *size; kh += 2)
10192 if (high < indices[kh])
10193 break;
10194 if (low < indices[i])
10195 indices[i] = low;
10196 indices[i + 1] = indices[kh - 1];
10197 if (high > indices[i + 1])
10198 indices[i + 1] = high;
10199 memcpy (indices + i + 2, indices + kh, *size - kh);
10200 *size -= kh - i - 2;
10201 return;
10202 }
10203 else if (high < indices[i])
10204 break;
10205 }
10206
10207 if (*size == max_size)
10208 error (_("Internal error: miscounted aggregate components."));
10209 *size += 2;
10210 for (j = *size-1; j >= i+2; j -= 1)
10211 indices[j] = indices[j - 2];
10212 indices[i] = low;
10213 indices[i + 1] = high;
10214}
10215
6e48bd2c
JB
10216/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10217 is different. */
10218
10219static struct value *
b7e22850 10220ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10221{
10222 if (type == ada_check_typedef (value_type (arg2)))
10223 return arg2;
10224
10225 if (ada_is_fixed_point_type (type))
95f39a5b 10226 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10227
10228 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10229 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10230
10231 return value_cast (type, arg2);
10232}
10233
284614f0
JB
10234/* Evaluating Ada expressions, and printing their result.
10235 ------------------------------------------------------
10236
21649b50
JB
10237 1. Introduction:
10238 ----------------
10239
284614f0
JB
10240 We usually evaluate an Ada expression in order to print its value.
10241 We also evaluate an expression in order to print its type, which
10242 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10243 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10244 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10245 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10246 similar.
10247
10248 Evaluating expressions is a little more complicated for Ada entities
10249 than it is for entities in languages such as C. The main reason for
10250 this is that Ada provides types whose definition might be dynamic.
10251 One example of such types is variant records. Or another example
10252 would be an array whose bounds can only be known at run time.
10253
10254 The following description is a general guide as to what should be
10255 done (and what should NOT be done) in order to evaluate an expression
10256 involving such types, and when. This does not cover how the semantic
10257 information is encoded by GNAT as this is covered separatly. For the
10258 document used as the reference for the GNAT encoding, see exp_dbug.ads
10259 in the GNAT sources.
10260
10261 Ideally, we should embed each part of this description next to its
10262 associated code. Unfortunately, the amount of code is so vast right
10263 now that it's hard to see whether the code handling a particular
10264 situation might be duplicated or not. One day, when the code is
10265 cleaned up, this guide might become redundant with the comments
10266 inserted in the code, and we might want to remove it.
10267
21649b50
JB
10268 2. ``Fixing'' an Entity, the Simple Case:
10269 -----------------------------------------
10270
284614f0
JB
10271 When evaluating Ada expressions, the tricky issue is that they may
10272 reference entities whose type contents and size are not statically
10273 known. Consider for instance a variant record:
10274
10275 type Rec (Empty : Boolean := True) is record
10276 case Empty is
10277 when True => null;
10278 when False => Value : Integer;
10279 end case;
10280 end record;
10281 Yes : Rec := (Empty => False, Value => 1);
10282 No : Rec := (empty => True);
10283
10284 The size and contents of that record depends on the value of the
10285 descriminant (Rec.Empty). At this point, neither the debugging
10286 information nor the associated type structure in GDB are able to
10287 express such dynamic types. So what the debugger does is to create
10288 "fixed" versions of the type that applies to the specific object.
10289 We also informally refer to this opperation as "fixing" an object,
10290 which means creating its associated fixed type.
10291
10292 Example: when printing the value of variable "Yes" above, its fixed
10293 type would look like this:
10294
10295 type Rec is record
10296 Empty : Boolean;
10297 Value : Integer;
10298 end record;
10299
10300 On the other hand, if we printed the value of "No", its fixed type
10301 would become:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 end record;
10306
10307 Things become a little more complicated when trying to fix an entity
10308 with a dynamic type that directly contains another dynamic type,
10309 such as an array of variant records, for instance. There are
10310 two possible cases: Arrays, and records.
10311
21649b50
JB
10312 3. ``Fixing'' Arrays:
10313 ---------------------
10314
10315 The type structure in GDB describes an array in terms of its bounds,
10316 and the type of its elements. By design, all elements in the array
10317 have the same type and we cannot represent an array of variant elements
10318 using the current type structure in GDB. When fixing an array,
10319 we cannot fix the array element, as we would potentially need one
10320 fixed type per element of the array. As a result, the best we can do
10321 when fixing an array is to produce an array whose bounds and size
10322 are correct (allowing us to read it from memory), but without having
10323 touched its element type. Fixing each element will be done later,
10324 when (if) necessary.
10325
10326 Arrays are a little simpler to handle than records, because the same
10327 amount of memory is allocated for each element of the array, even if
1b536f04 10328 the amount of space actually used by each element differs from element
21649b50 10329 to element. Consider for instance the following array of type Rec:
284614f0
JB
10330
10331 type Rec_Array is array (1 .. 2) of Rec;
10332
1b536f04
JB
10333 The actual amount of memory occupied by each element might be different
10334 from element to element, depending on the value of their discriminant.
21649b50 10335 But the amount of space reserved for each element in the array remains
1b536f04 10336 fixed regardless. So we simply need to compute that size using
21649b50
JB
10337 the debugging information available, from which we can then determine
10338 the array size (we multiply the number of elements of the array by
10339 the size of each element).
10340
10341 The simplest case is when we have an array of a constrained element
10342 type. For instance, consider the following type declarations:
10343
10344 type Bounded_String (Max_Size : Integer) is
10345 Length : Integer;
10346 Buffer : String (1 .. Max_Size);
10347 end record;
10348 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10349
10350 In this case, the compiler describes the array as an array of
10351 variable-size elements (identified by its XVS suffix) for which
10352 the size can be read in the parallel XVZ variable.
10353
10354 In the case of an array of an unconstrained element type, the compiler
10355 wraps the array element inside a private PAD type. This type should not
10356 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10357 that we also use the adjective "aligner" in our code to designate
10358 these wrapper types.
10359
1b536f04 10360 In some cases, the size allocated for each element is statically
21649b50
JB
10361 known. In that case, the PAD type already has the correct size,
10362 and the array element should remain unfixed.
10363
10364 But there are cases when this size is not statically known.
10365 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10366
10367 type Dynamic is array (1 .. Five) of Integer;
10368 type Wrapper (Has_Length : Boolean := False) is record
10369 Data : Dynamic;
10370 case Has_Length is
10371 when True => Length : Integer;
10372 when False => null;
10373 end case;
10374 end record;
10375 type Wrapper_Array is array (1 .. 2) of Wrapper;
10376
10377 Hello : Wrapper_Array := (others => (Has_Length => True,
10378 Data => (others => 17),
10379 Length => 1));
10380
10381
10382 The debugging info would describe variable Hello as being an
10383 array of a PAD type. The size of that PAD type is not statically
10384 known, but can be determined using a parallel XVZ variable.
10385 In that case, a copy of the PAD type with the correct size should
10386 be used for the fixed array.
10387
21649b50
JB
10388 3. ``Fixing'' record type objects:
10389 ----------------------------------
10390
10391 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10392 record types. In this case, in order to compute the associated
10393 fixed type, we need to determine the size and offset of each of
10394 its components. This, in turn, requires us to compute the fixed
10395 type of each of these components.
10396
10397 Consider for instance the example:
10398
10399 type Bounded_String (Max_Size : Natural) is record
10400 Str : String (1 .. Max_Size);
10401 Length : Natural;
10402 end record;
10403 My_String : Bounded_String (Max_Size => 10);
10404
10405 In that case, the position of field "Length" depends on the size
10406 of field Str, which itself depends on the value of the Max_Size
21649b50 10407 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10408 we need to fix the type of field Str. Therefore, fixing a variant
10409 record requires us to fix each of its components.
10410
10411 However, if a component does not have a dynamic size, the component
10412 should not be fixed. In particular, fields that use a PAD type
10413 should not fixed. Here is an example where this might happen
10414 (assuming type Rec above):
10415
10416 type Container (Big : Boolean) is record
10417 First : Rec;
10418 After : Integer;
10419 case Big is
10420 when True => Another : Integer;
10421 when False => null;
10422 end case;
10423 end record;
10424 My_Container : Container := (Big => False,
10425 First => (Empty => True),
10426 After => 42);
10427
10428 In that example, the compiler creates a PAD type for component First,
10429 whose size is constant, and then positions the component After just
10430 right after it. The offset of component After is therefore constant
10431 in this case.
10432
10433 The debugger computes the position of each field based on an algorithm
10434 that uses, among other things, the actual position and size of the field
21649b50
JB
10435 preceding it. Let's now imagine that the user is trying to print
10436 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10437 end up computing the offset of field After based on the size of the
10438 fixed version of field First. And since in our example First has
10439 only one actual field, the size of the fixed type is actually smaller
10440 than the amount of space allocated to that field, and thus we would
10441 compute the wrong offset of field After.
10442
21649b50
JB
10443 To make things more complicated, we need to watch out for dynamic
10444 components of variant records (identified by the ___XVL suffix in
10445 the component name). Even if the target type is a PAD type, the size
10446 of that type might not be statically known. So the PAD type needs
10447 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10448 we might end up with the wrong size for our component. This can be
10449 observed with the following type declarations:
284614f0
JB
10450
10451 type Octal is new Integer range 0 .. 7;
10452 type Octal_Array is array (Positive range <>) of Octal;
10453 pragma Pack (Octal_Array);
10454
10455 type Octal_Buffer (Size : Positive) is record
10456 Buffer : Octal_Array (1 .. Size);
10457 Length : Integer;
10458 end record;
10459
10460 In that case, Buffer is a PAD type whose size is unset and needs
10461 to be computed by fixing the unwrapped type.
10462
21649b50
JB
10463 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10464 ----------------------------------------------------------
10465
10466 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10467 thus far, be actually fixed?
10468
10469 The answer is: Only when referencing that element. For instance
10470 when selecting one component of a record, this specific component
10471 should be fixed at that point in time. Or when printing the value
10472 of a record, each component should be fixed before its value gets
10473 printed. Similarly for arrays, the element of the array should be
10474 fixed when printing each element of the array, or when extracting
10475 one element out of that array. On the other hand, fixing should
10476 not be performed on the elements when taking a slice of an array!
10477
31432a67 10478 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10479 size of each field is that we end up also miscomputing the size
10480 of the containing type. This can have adverse results when computing
10481 the value of an entity. GDB fetches the value of an entity based
10482 on the size of its type, and thus a wrong size causes GDB to fetch
10483 the wrong amount of memory. In the case where the computed size is
10484 too small, GDB fetches too little data to print the value of our
31432a67 10485 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10486 past the buffer containing the data =:-o. */
10487
ced9779b
JB
10488/* Evaluate a subexpression of EXP, at index *POS, and return a value
10489 for that subexpression cast to TO_TYPE. Advance *POS over the
10490 subexpression. */
10491
10492static value *
10493ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10494 enum noside noside, struct type *to_type)
10495{
10496 int pc = *pos;
10497
10498 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10499 || exp->elts[pc].opcode == OP_VAR_VALUE)
10500 {
10501 (*pos) += 4;
10502
10503 value *val;
10504 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10505 {
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (to_type, not_lval);
10508
10509 val = evaluate_var_msym_value (noside,
10510 exp->elts[pc + 1].objfile,
10511 exp->elts[pc + 2].msymbol);
10512 }
10513 else
10514 val = evaluate_var_value (noside,
10515 exp->elts[pc + 1].block,
10516 exp->elts[pc + 2].symbol);
10517
10518 if (noside == EVAL_SKIP)
10519 return eval_skip_value (exp);
10520
10521 val = ada_value_cast (to_type, val);
10522
10523 /* Follow the Ada language semantics that do not allow taking
10524 an address of the result of a cast (view conversion in Ada). */
10525 if (VALUE_LVAL (val) == lval_memory)
10526 {
10527 if (value_lazy (val))
10528 value_fetch_lazy (val);
10529 VALUE_LVAL (val) = not_lval;
10530 }
10531 return val;
10532 }
10533
10534 value *val = evaluate_subexp (to_type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 return eval_skip_value (exp);
10537 return ada_value_cast (to_type, val);
10538}
10539
284614f0
JB
10540/* Implement the evaluate_exp routine in the exp_descriptor structure
10541 for the Ada language. */
10542
52ce6436 10543static struct value *
ebf56fd3 10544ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10545 int *pos, enum noside noside)
14f9c5c9
AS
10546{
10547 enum exp_opcode op;
b5385fc0 10548 int tem;
14f9c5c9 10549 int pc;
5ec18f2b 10550 int preeval_pos;
14f9c5c9
AS
10551 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10552 struct type *type;
52ce6436 10553 int nargs, oplen;
d2e4a39e 10554 struct value **argvec;
14f9c5c9 10555
d2e4a39e
AS
10556 pc = *pos;
10557 *pos += 1;
14f9c5c9
AS
10558 op = exp->elts[pc].opcode;
10559
d2e4a39e 10560 switch (op)
14f9c5c9
AS
10561 {
10562 default:
10563 *pos -= 1;
6e48bd2c 10564 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10565
10566 if (noside == EVAL_NORMAL)
10567 arg1 = unwrap_value (arg1);
6e48bd2c 10568
edd079d9 10569 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10570 then we need to perform the conversion manually, because
10571 evaluate_subexp_standard doesn't do it. This conversion is
10572 necessary in Ada because the different kinds of float/fixed
10573 types in Ada have different representations.
10574
10575 Similarly, we need to perform the conversion from OP_LONG
10576 ourselves. */
edd079d9 10577 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10578 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10579
10580 return arg1;
4c4b4cd2
PH
10581
10582 case OP_STRING:
10583 {
76a01679 10584 struct value *result;
5b4ee69b 10585
76a01679
JB
10586 *pos -= 1;
10587 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10588 /* The result type will have code OP_STRING, bashed there from
10589 OP_ARRAY. Bash it back. */
df407dfe
AC
10590 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10591 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10592 return result;
4c4b4cd2 10593 }
14f9c5c9
AS
10594
10595 case UNOP_CAST:
10596 (*pos) += 2;
10597 type = exp->elts[pc + 1].type;
ced9779b 10598 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10599
4c4b4cd2
PH
10600 case UNOP_QUAL:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp (type, exp, pos, noside);
10604
14f9c5c9
AS
10605 case BINOP_ASSIGN:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10607 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10608 {
10609 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10610 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10611 return arg1;
10612 return ada_value_assign (arg1, arg1);
10613 }
003f3813
JB
10614 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10615 except if the lhs of our assignment is a convenience variable.
10616 In the case of assigning to a convenience variable, the lhs
10617 should be exactly the result of the evaluation of the rhs. */
10618 type = value_type (arg1);
10619 if (VALUE_LVAL (arg1) == lval_internalvar)
10620 type = NULL;
10621 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10623 return arg1;
df407dfe
AC
10624 if (ada_is_fixed_point_type (value_type (arg1)))
10625 arg2 = cast_to_fixed (value_type (arg1), arg2);
10626 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10627 error
323e0a4a 10628 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10629 else
df407dfe 10630 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10631 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10632
10633 case BINOP_ADD:
10634 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10635 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10636 if (noside == EVAL_SKIP)
4c4b4cd2 10637 goto nosideret;
2ac8a782
JB
10638 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10639 return (value_from_longest
10640 (value_type (arg1),
10641 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10642 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10643 return (value_from_longest
10644 (value_type (arg2),
10645 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10646 if ((ada_is_fixed_point_type (value_type (arg1))
10647 || ada_is_fixed_point_type (value_type (arg2)))
10648 && value_type (arg1) != value_type (arg2))
323e0a4a 10649 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10650 /* Do the addition, and cast the result to the type of the first
10651 argument. We cannot cast the result to a reference type, so if
10652 ARG1 is a reference type, find its underlying type. */
10653 type = value_type (arg1);
10654 while (TYPE_CODE (type) == TYPE_CODE_REF)
10655 type = TYPE_TARGET_TYPE (type);
f44316fa 10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10657 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10658
10659 case BINOP_SUB:
10660 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10661 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10662 if (noside == EVAL_SKIP)
4c4b4cd2 10663 goto nosideret;
2ac8a782
JB
10664 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10665 return (value_from_longest
10666 (value_type (arg1),
10667 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10668 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10669 return (value_from_longest
10670 (value_type (arg2),
10671 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10672 if ((ada_is_fixed_point_type (value_type (arg1))
10673 || ada_is_fixed_point_type (value_type (arg2)))
10674 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10675 error (_("Operands of fixed-point subtraction "
10676 "must have the same type"));
b7789565
JB
10677 /* Do the substraction, and cast the result to the type of the first
10678 argument. We cannot cast the result to a reference type, so if
10679 ARG1 is a reference type, find its underlying type. */
10680 type = value_type (arg1);
10681 while (TYPE_CODE (type) == TYPE_CODE_REF)
10682 type = TYPE_TARGET_TYPE (type);
f44316fa 10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10684 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10685
10686 case BINOP_MUL:
10687 case BINOP_DIV:
e1578042
JB
10688 case BINOP_REM:
10689 case BINOP_MOD:
14f9c5c9
AS
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 if (noside == EVAL_SKIP)
4c4b4cd2 10693 goto nosideret;
e1578042 10694 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10695 {
10696 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10697 return value_zero (value_type (arg1), not_lval);
10698 }
14f9c5c9 10699 else
4c4b4cd2 10700 {
a53b7a21 10701 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10702 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10703 arg1 = cast_from_fixed (type, arg1);
df407dfe 10704 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10705 arg2 = cast_from_fixed (type, arg2);
f44316fa 10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10707 return ada_value_binop (arg1, arg2, op);
10708 }
10709
4c4b4cd2
PH
10710 case BINOP_EQUAL:
10711 case BINOP_NOTEQUAL:
14f9c5c9 10712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10713 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10714 if (noside == EVAL_SKIP)
76a01679 10715 goto nosideret;
4c4b4cd2 10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10717 tem = 0;
4c4b4cd2 10718 else
f44316fa
UW
10719 {
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 tem = ada_value_equal (arg1, arg2);
10722 }
4c4b4cd2 10723 if (op == BINOP_NOTEQUAL)
76a01679 10724 tem = !tem;
fbb06eb1
UW
10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
10726 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10727
10728 case UNOP_NEG:
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
df407dfe
AC
10732 else if (ada_is_fixed_point_type (value_type (arg1)))
10733 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10734 else
f44316fa
UW
10735 {
10736 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10737 return value_neg (arg1);
10738 }
4c4b4cd2 10739
2330c6c6
JB
10740 case BINOP_LOGICAL_AND:
10741 case BINOP_LOGICAL_OR:
10742 case UNOP_LOGICAL_NOT:
000d5124
JB
10743 {
10744 struct value *val;
10745
10746 *pos -= 1;
10747 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10748 type = language_bool_type (exp->language_defn, exp->gdbarch);
10749 return value_cast (type, val);
000d5124 10750 }
2330c6c6
JB
10751
10752 case BINOP_BITWISE_AND:
10753 case BINOP_BITWISE_IOR:
10754 case BINOP_BITWISE_XOR:
000d5124
JB
10755 {
10756 struct value *val;
10757
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10759 *pos = pc;
10760 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10761
10762 return value_cast (value_type (arg1), val);
10763 }
2330c6c6 10764
14f9c5c9
AS
10765 case OP_VAR_VALUE:
10766 *pos -= 1;
6799def4 10767
14f9c5c9 10768 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10769 {
10770 *pos += 4;
10771 goto nosideret;
10772 }
da5c522f
JB
10773
10774 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10775 /* Only encountered when an unresolved symbol occurs in a
10776 context other than a function call, in which case, it is
52ce6436 10777 invalid. */
323e0a4a 10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10779 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10780
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10782 {
0c1f74cf 10783 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10784 /* Check to see if this is a tagged type. We also need to handle
10785 the case where the type is a reference to a tagged type, but
10786 we have to be careful to exclude pointers to tagged types.
10787 The latter should be shown as usual (as a pointer), whereas
10788 a reference should mostly be transparent to the user. */
10789 if (ada_is_tagged_type (type, 0)
023db19c 10790 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10791 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10792 {
10793 /* Tagged types are a little special in the fact that the real
10794 type is dynamic and can only be determined by inspecting the
10795 object's tag. This means that we need to get the object's
10796 value first (EVAL_NORMAL) and then extract the actual object
10797 type from its tag.
10798
10799 Note that we cannot skip the final step where we extract
10800 the object type from its tag, because the EVAL_NORMAL phase
10801 results in dynamic components being resolved into fixed ones.
10802 This can cause problems when trying to print the type
10803 description of tagged types whose parent has a dynamic size:
10804 We use the type name of the "_parent" component in order
10805 to print the name of the ancestor type in the type description.
10806 If that component had a dynamic size, the resolution into
10807 a fixed type would result in the loss of that type name,
10808 thus preventing us from printing the name of the ancestor
10809 type in the type description. */
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10811
10812 if (TYPE_CODE (type) != TYPE_CODE_REF)
10813 {
10814 struct type *actual_type;
10815
10816 actual_type = type_from_tag (ada_value_tag (arg1));
10817 if (actual_type == NULL)
10818 /* If, for some reason, we were unable to determine
10819 the actual type from the tag, then use the static
10820 approximation that we just computed as a fallback.
10821 This can happen if the debugging information is
10822 incomplete, for instance. */
10823 actual_type = type;
10824 return value_zero (actual_type, not_lval);
10825 }
10826 else
10827 {
10828 /* In the case of a ref, ada_coerce_ref takes care
10829 of determining the actual type. But the evaluation
10830 should return a ref as it should be valid to ask
10831 for its address; so rebuild a ref after coerce. */
10832 arg1 = ada_coerce_ref (arg1);
a65cfae5 10833 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10834 }
10835 }
0c1f74cf 10836
84754697
JB
10837 /* Records and unions for which GNAT encodings have been
10838 generated need to be statically fixed as well.
10839 Otherwise, non-static fixing produces a type where
10840 all dynamic properties are removed, which prevents "ptype"
10841 from being able to completely describe the type.
10842 For instance, a case statement in a variant record would be
10843 replaced by the relevant components based on the actual
10844 value of the discriminants. */
10845 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10846 && dynamic_template_type (type) != NULL)
10847 || (TYPE_CODE (type) == TYPE_CODE_UNION
10848 && ada_find_parallel_type (type, "___XVU") != NULL))
10849 {
10850 *pos += 4;
10851 return value_zero (to_static_fixed_type (type), not_lval);
10852 }
4c4b4cd2 10853 }
da5c522f
JB
10854
10855 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10856 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10857
10858 case OP_FUNCALL:
10859 (*pos) += 2;
10860
10861 /* Allocate arg vector, including space for the function to be
10862 called in argvec[0] and a terminating NULL. */
10863 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10864 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10865
10866 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10868 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10869 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10870 else
10871 {
10872 for (tem = 0; tem <= nargs; tem += 1)
10873 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 argvec[tem] = 0;
10875
10876 if (noside == EVAL_SKIP)
10877 goto nosideret;
10878 }
10879
ad82864c
JB
10880 if (ada_is_constrained_packed_array_type
10881 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10882 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10884 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10885 /* This is a packed array that has already been fixed, and
10886 therefore already coerced to a simple array. Nothing further
10887 to do. */
10888 ;
e6c2c623
PMR
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10890 {
10891 /* Make sure we dereference references so that all the code below
10892 feels like it's really handling the referenced value. Wrapping
10893 types (for alignment) may be there, so make sure we strip them as
10894 well. */
10895 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10896 }
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && VALUE_LVAL (argvec[0]) == lval_memory)
10899 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10900
df407dfe 10901 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10902
10903 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10904 them. So, if this is an array typedef (encoding use for array
10905 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10906 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10907 type = ada_typedef_target_type (type);
10908
4c4b4cd2
PH
10909 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10910 {
61ee279c 10911 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10912 {
10913 case TYPE_CODE_FUNC:
61ee279c 10914 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10915 break;
10916 case TYPE_CODE_ARRAY:
10917 break;
10918 case TYPE_CODE_STRUCT:
10919 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10920 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10921 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10922 break;
10923 default:
323e0a4a 10924 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10925 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10926 break;
10927 }
10928 }
10929
10930 switch (TYPE_CODE (type))
10931 {
10932 case TYPE_CODE_FUNC:
10933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10934 {
7022349d
PA
10935 if (TYPE_TARGET_TYPE (type) == NULL)
10936 error_call_unknown_return_type (NULL);
10937 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10938 }
e71585ff
PA
10939 return call_function_by_hand (argvec[0], NULL,
10940 gdb::make_array_view (argvec + 1,
10941 nargs));
c8ea1972
PH
10942 case TYPE_CODE_INTERNAL_FUNCTION:
10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 /* We don't know anything about what the internal
10945 function might return, but we have to return
10946 something. */
10947 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10948 not_lval);
10949 else
10950 return call_internal_function (exp->gdbarch, exp->language_defn,
10951 argvec[0], nargs, argvec + 1);
10952
4c4b4cd2
PH
10953 case TYPE_CODE_STRUCT:
10954 {
10955 int arity;
10956
4c4b4cd2
PH
10957 arity = ada_array_arity (type);
10958 type = ada_array_element_type (type, nargs);
10959 if (type == NULL)
323e0a4a 10960 error (_("cannot subscript or call a record"));
4c4b4cd2 10961 if (arity != nargs)
323e0a4a 10962 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10964 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10965 return
10966 unwrap_value (ada_value_subscript
10967 (argvec[0], nargs, argvec + 1));
10968 }
10969 case TYPE_CODE_ARRAY:
10970 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10971 {
10972 type = ada_array_element_type (type, nargs);
10973 if (type == NULL)
323e0a4a 10974 error (_("element type of array unknown"));
4c4b4cd2 10975 else
0a07e705 10976 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10977 }
10978 return
10979 unwrap_value (ada_value_subscript
10980 (ada_coerce_to_simple_array (argvec[0]),
10981 nargs, argvec + 1));
10982 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10984 {
deede10c 10985 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10986 type = ada_array_element_type (type, nargs);
10987 if (type == NULL)
323e0a4a 10988 error (_("element type of array unknown"));
4c4b4cd2 10989 else
0a07e705 10990 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10991 }
10992 return
deede10c
JB
10993 unwrap_value (ada_value_ptr_subscript (argvec[0],
10994 nargs, argvec + 1));
4c4b4cd2
PH
10995
10996 default:
e1d5a0d2
PH
10997 error (_("Attempt to index or call something other than an "
10998 "array or function"));
4c4b4cd2
PH
10999 }
11000
11001 case TERNOP_SLICE:
11002 {
11003 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 struct value *low_bound_val =
11005 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11006 struct value *high_bound_val =
11007 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 LONGEST low_bound;
11009 LONGEST high_bound;
5b4ee69b 11010
994b9211
AC
11011 low_bound_val = coerce_ref (low_bound_val);
11012 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11013 low_bound = value_as_long (low_bound_val);
11014 high_bound = value_as_long (high_bound_val);
963a6417 11015
4c4b4cd2
PH
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018
4c4b4cd2
PH
11019 /* If this is a reference to an aligner type, then remove all
11020 the aligners. */
df407dfe
AC
11021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11022 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11023 TYPE_TARGET_TYPE (value_type (array)) =
11024 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11025
ad82864c 11026 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11027 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11028
11029 /* If this is a reference to an array or an array lvalue,
11030 convert to a pointer. */
df407dfe
AC
11031 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11032 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11033 && VALUE_LVAL (array) == lval_memory))
11034 array = value_addr (array);
11035
1265e4aa 11036 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11037 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11038 (value_type (array))))
bff8c71f
TT
11039 return empty_array (ada_type_of_array (array, 0), low_bound,
11040 high_bound);
4c4b4cd2
PH
11041
11042 array = ada_coerce_to_simple_array_ptr (array);
11043
714e53ab
PH
11044 /* If we have more than one level of pointer indirection,
11045 dereference the value until we get only one level. */
df407dfe
AC
11046 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11047 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11048 == TYPE_CODE_PTR))
11049 array = value_ind (array);
11050
11051 /* Make sure we really do have an array type before going further,
11052 to avoid a SEGV when trying to get the index type or the target
11053 type later down the road if the debug info generated by
11054 the compiler is incorrect or incomplete. */
df407dfe 11055 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11056 error (_("cannot take slice of non-array"));
714e53ab 11057
828292f2
JB
11058 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11059 == TYPE_CODE_PTR)
4c4b4cd2 11060 {
828292f2
JB
11061 struct type *type0 = ada_check_typedef (value_type (array));
11062
0b5d8877 11063 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11064 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11065 else
11066 {
11067 struct type *arr_type0 =
828292f2 11068 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11069
f5938064
JG
11070 return ada_value_slice_from_ptr (array, arr_type0,
11071 longest_to_int (low_bound),
11072 longest_to_int (high_bound));
4c4b4cd2
PH
11073 }
11074 }
11075 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11076 return array;
11077 else if (high_bound < low_bound)
bff8c71f 11078 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11079 else
529cad9c
PH
11080 return ada_value_slice (array, longest_to_int (low_bound),
11081 longest_to_int (high_bound));
4c4b4cd2 11082 }
14f9c5c9 11083
4c4b4cd2
PH
11084 case UNOP_IN_RANGE:
11085 (*pos) += 2;
11086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11087 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11088
14f9c5c9 11089 if (noside == EVAL_SKIP)
4c4b4cd2 11090 goto nosideret;
14f9c5c9 11091
4c4b4cd2
PH
11092 switch (TYPE_CODE (type))
11093 {
11094 default:
e1d5a0d2
PH
11095 lim_warning (_("Membership test incompletely implemented; "
11096 "always returns true"));
fbb06eb1
UW
11097 type = language_bool_type (exp->language_defn, exp->gdbarch);
11098 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11099
11100 case TYPE_CODE_RANGE:
030b4912
UW
11101 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11102 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11103 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11105 type = language_bool_type (exp->language_defn, exp->gdbarch);
11106 return
11107 value_from_longest (type,
4c4b4cd2
PH
11108 (value_less (arg1, arg3)
11109 || value_equal (arg1, arg3))
11110 && (value_less (arg2, arg1)
11111 || value_equal (arg2, arg1)));
11112 }
11113
11114 case BINOP_IN_BOUNDS:
14f9c5c9 11115 (*pos) += 2;
4c4b4cd2
PH
11116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11117 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11118
4c4b4cd2
PH
11119 if (noside == EVAL_SKIP)
11120 goto nosideret;
14f9c5c9 11121
4c4b4cd2 11122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11123 {
11124 type = language_bool_type (exp->language_defn, exp->gdbarch);
11125 return value_zero (type, not_lval);
11126 }
14f9c5c9 11127
4c4b4cd2 11128 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11129
1eea4ebd
UW
11130 type = ada_index_type (value_type (arg2), tem, "range");
11131 if (!type)
11132 type = value_type (arg1);
14f9c5c9 11133
1eea4ebd
UW
11134 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11135 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11136
f44316fa
UW
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11139 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11140 return
fbb06eb1 11141 value_from_longest (type,
4c4b4cd2
PH
11142 (value_less (arg1, arg3)
11143 || value_equal (arg1, arg3))
11144 && (value_less (arg2, arg1)
11145 || value_equal (arg2, arg1)));
11146
11147 case TERNOP_IN_RANGE:
11148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11149 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154
f44316fa
UW
11155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11158 return
fbb06eb1 11159 value_from_longest (type,
4c4b4cd2
PH
11160 (value_less (arg1, arg3)
11161 || value_equal (arg1, arg3))
11162 && (value_less (arg2, arg1)
11163 || value_equal (arg2, arg1)));
11164
11165 case OP_ATR_FIRST:
11166 case OP_ATR_LAST:
11167 case OP_ATR_LENGTH:
11168 {
76a01679 11169 struct type *type_arg;
5b4ee69b 11170
76a01679
JB
11171 if (exp->elts[*pos].opcode == OP_TYPE)
11172 {
11173 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11174 arg1 = NULL;
5bc23cb3 11175 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11176 }
11177 else
11178 {
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 type_arg = NULL;
11181 }
11182
11183 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11184 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11185 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11186 *pos += 4;
11187
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
11190
11191 if (type_arg == NULL)
11192 {
11193 arg1 = ada_coerce_ref (arg1);
11194
ad82864c 11195 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11196 arg1 = ada_coerce_to_simple_array (arg1);
11197
aa4fb036 11198 if (op == OP_ATR_LENGTH)
1eea4ebd 11199 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11200 else
11201 {
11202 type = ada_index_type (value_type (arg1), tem,
11203 ada_attribute_name (op));
11204 if (type == NULL)
11205 type = builtin_type (exp->gdbarch)->builtin_int;
11206 }
76a01679
JB
11207
11208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11209 return allocate_value (type);
76a01679
JB
11210
11211 switch (op)
11212 {
11213 default: /* Should never happen. */
323e0a4a 11214 error (_("unexpected attribute encountered"));
76a01679 11215 case OP_ATR_FIRST:
1eea4ebd
UW
11216 return value_from_longest
11217 (type, ada_array_bound (arg1, tem, 0));
76a01679 11218 case OP_ATR_LAST:
1eea4ebd
UW
11219 return value_from_longest
11220 (type, ada_array_bound (arg1, tem, 1));
76a01679 11221 case OP_ATR_LENGTH:
1eea4ebd
UW
11222 return value_from_longest
11223 (type, ada_array_length (arg1, tem));
76a01679
JB
11224 }
11225 }
11226 else if (discrete_type_p (type_arg))
11227 {
11228 struct type *range_type;
0d5cff50 11229 const char *name = ada_type_name (type_arg);
5b4ee69b 11230
76a01679
JB
11231 range_type = NULL;
11232 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11233 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11234 if (range_type == NULL)
11235 range_type = type_arg;
11236 switch (op)
11237 {
11238 default:
323e0a4a 11239 error (_("unexpected attribute encountered"));
76a01679 11240 case OP_ATR_FIRST:
690cc4eb 11241 return value_from_longest
43bbcdc2 11242 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11243 case OP_ATR_LAST:
690cc4eb 11244 return value_from_longest
43bbcdc2 11245 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11246 case OP_ATR_LENGTH:
323e0a4a 11247 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11248 }
11249 }
11250 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11251 error (_("unimplemented type attribute"));
76a01679
JB
11252 else
11253 {
11254 LONGEST low, high;
11255
ad82864c
JB
11256 if (ada_is_constrained_packed_array_type (type_arg))
11257 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11258
aa4fb036 11259 if (op == OP_ATR_LENGTH)
1eea4ebd 11260 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11261 else
11262 {
11263 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11264 if (type == NULL)
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11266 }
1eea4ebd 11267
76a01679
JB
11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11269 return allocate_value (type);
11270
11271 switch (op)
11272 {
11273 default:
323e0a4a 11274 error (_("unexpected attribute encountered"));
76a01679 11275 case OP_ATR_FIRST:
1eea4ebd 11276 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11277 return value_from_longest (type, low);
11278 case OP_ATR_LAST:
1eea4ebd 11279 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11280 return value_from_longest (type, high);
11281 case OP_ATR_LENGTH:
1eea4ebd
UW
11282 low = ada_array_bound_from_type (type_arg, tem, 0);
11283 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11284 return value_from_longest (type, high - low + 1);
11285 }
11286 }
14f9c5c9
AS
11287 }
11288
4c4b4cd2
PH
11289 case OP_ATR_TAG:
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11291 if (noside == EVAL_SKIP)
76a01679 11292 goto nosideret;
4c4b4cd2
PH
11293
11294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11295 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11296
11297 return ada_value_tag (arg1);
11298
11299 case OP_ATR_MIN:
11300 case OP_ATR_MAX:
11301 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11303 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11304 if (noside == EVAL_SKIP)
76a01679 11305 goto nosideret;
d2e4a39e 11306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11307 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11308 else
f44316fa
UW
11309 {
11310 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11311 return value_binop (arg1, arg2,
11312 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11313 }
14f9c5c9 11314
4c4b4cd2
PH
11315 case OP_ATR_MODULUS:
11316 {
31dedfee 11317 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11318
5b4ee69b 11319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11320 if (noside == EVAL_SKIP)
11321 goto nosideret;
4c4b4cd2 11322
76a01679 11323 if (!ada_is_modular_type (type_arg))
323e0a4a 11324 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11325
76a01679
JB
11326 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11327 ada_modulus (type_arg));
4c4b4cd2
PH
11328 }
11329
11330
11331 case OP_ATR_POS:
11332 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 if (noside == EVAL_SKIP)
76a01679 11335 goto nosideret;
3cb382c9
UW
11336 type = builtin_type (exp->gdbarch)->builtin_int;
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return value_zero (type, not_lval);
14f9c5c9 11339 else
3cb382c9 11340 return value_pos_atr (type, arg1);
14f9c5c9 11341
4c4b4cd2
PH
11342 case OP_ATR_SIZE:
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11344 type = value_type (arg1);
11345
11346 /* If the argument is a reference, then dereference its type, since
11347 the user is really asking for the size of the actual object,
11348 not the size of the pointer. */
11349 if (TYPE_CODE (type) == TYPE_CODE_REF)
11350 type = TYPE_TARGET_TYPE (type);
11351
4c4b4cd2 11352 if (noside == EVAL_SKIP)
76a01679 11353 goto nosideret;
4c4b4cd2 11354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11355 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11356 else
22601c15 11357 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11358 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11359
11360 case OP_ATR_VAL:
11361 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11363 type = exp->elts[pc + 2].type;
14f9c5c9 11364 if (noside == EVAL_SKIP)
76a01679 11365 goto nosideret;
4c4b4cd2 11366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11367 return value_zero (type, not_lval);
4c4b4cd2 11368 else
76a01679 11369 return value_val_atr (type, arg1);
4c4b4cd2
PH
11370
11371 case BINOP_EXP:
11372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
11375 goto nosideret;
11376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11377 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11378 else
f44316fa
UW
11379 {
11380 /* For integer exponentiation operations,
11381 only promote the first argument. */
11382 if (is_integral_type (value_type (arg2)))
11383 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11384 else
11385 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11386
11387 return value_binop (arg1, arg2, op);
11388 }
4c4b4cd2
PH
11389
11390 case UNOP_PLUS:
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11392 if (noside == EVAL_SKIP)
11393 goto nosideret;
11394 else
11395 return arg1;
11396
11397 case UNOP_ABS:
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11399 if (noside == EVAL_SKIP)
11400 goto nosideret;
f44316fa 11401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11402 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11403 return value_neg (arg1);
14f9c5c9 11404 else
4c4b4cd2 11405 return arg1;
14f9c5c9
AS
11406
11407 case UNOP_IND:
5ec18f2b 11408 preeval_pos = *pos;
6b0d7253 11409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11410 if (noside == EVAL_SKIP)
4c4b4cd2 11411 goto nosideret;
df407dfe 11412 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11414 {
11415 if (ada_is_array_descriptor_type (type))
11416 /* GDB allows dereferencing GNAT array descriptors. */
11417 {
11418 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11419
4c4b4cd2 11420 if (arrType == NULL)
323e0a4a 11421 error (_("Attempt to dereference null array pointer."));
00a4c844 11422 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11423 }
11424 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11425 || TYPE_CODE (type) == TYPE_CODE_REF
11426 /* In C you can dereference an array to get the 1st elt. */
11427 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11428 {
5ec18f2b
JG
11429 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11430 only be determined by inspecting the object's tag.
11431 This means that we need to evaluate completely the
11432 expression in order to get its type. */
11433
023db19c
JB
11434 if ((TYPE_CODE (type) == TYPE_CODE_REF
11435 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11436 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11437 {
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11439 EVAL_NORMAL);
11440 type = value_type (ada_value_ind (arg1));
11441 }
11442 else
11443 {
11444 type = to_static_fixed_type
11445 (ada_aligned_type
11446 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11447 }
c1b5a1a6 11448 ada_ensure_varsize_limit (type);
714e53ab
PH
11449 return value_zero (type, lval_memory);
11450 }
4c4b4cd2 11451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11452 {
11453 /* GDB allows dereferencing an int. */
11454 if (expect_type == NULL)
11455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11456 lval_memory);
11457 else
11458 {
11459 expect_type =
11460 to_static_fixed_type (ada_aligned_type (expect_type));
11461 return value_zero (expect_type, lval_memory);
11462 }
11463 }
4c4b4cd2 11464 else
323e0a4a 11465 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11466 }
0963b4bd 11467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11468 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11469
96967637
JB
11470 if (TYPE_CODE (type) == TYPE_CODE_INT)
11471 /* GDB allows dereferencing an int. If we were given
11472 the expect_type, then use that as the target type.
11473 Otherwise, assume that the target type is an int. */
11474 {
11475 if (expect_type != NULL)
11476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11477 arg1));
11478 else
11479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11480 (CORE_ADDR) value_as_address (arg1));
11481 }
6b0d7253 11482
4c4b4cd2
PH
11483 if (ada_is_array_descriptor_type (type))
11484 /* GDB allows dereferencing GNAT array descriptors. */
11485 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11486 else
4c4b4cd2 11487 return ada_value_ind (arg1);
14f9c5c9
AS
11488
11489 case STRUCTOP_STRUCT:
11490 tem = longest_to_int (exp->elts[pc + 1].longconst);
11491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11492 preeval_pos = *pos;
14f9c5c9
AS
11493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11494 if (noside == EVAL_SKIP)
4c4b4cd2 11495 goto nosideret;
14f9c5c9 11496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11497 {
df407dfe 11498 struct type *type1 = value_type (arg1);
5b4ee69b 11499
76a01679
JB
11500 if (ada_is_tagged_type (type1, 1))
11501 {
11502 type = ada_lookup_struct_elt_type (type1,
11503 &exp->elts[pc + 2].string,
988f6b3d 11504 1, 1);
5ec18f2b
JG
11505
11506 /* If the field is not found, check if it exists in the
11507 extension of this object's type. This means that we
11508 need to evaluate completely the expression. */
11509
76a01679 11510 if (type == NULL)
5ec18f2b
JG
11511 {
11512 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11513 EVAL_NORMAL);
11514 arg1 = ada_value_struct_elt (arg1,
11515 &exp->elts[pc + 2].string,
11516 0);
11517 arg1 = unwrap_value (arg1);
11518 type = value_type (ada_to_fixed_value (arg1));
11519 }
76a01679
JB
11520 }
11521 else
11522 type =
11523 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11524 0);
76a01679
JB
11525
11526 return value_zero (ada_aligned_type (type), lval_memory);
11527 }
14f9c5c9 11528 else
a579cd9a
MW
11529 {
11530 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11531 arg1 = unwrap_value (arg1);
11532 return ada_to_fixed_value (arg1);
11533 }
284614f0 11534
14f9c5c9 11535 case OP_TYPE:
4c4b4cd2
PH
11536 /* The value is not supposed to be used. This is here to make it
11537 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11538 (*pos) += 2;
11539 if (noside == EVAL_SKIP)
4c4b4cd2 11540 goto nosideret;
14f9c5c9 11541 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11542 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11543 else
323e0a4a 11544 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11545
11546 case OP_AGGREGATE:
11547 case OP_CHOICES:
11548 case OP_OTHERS:
11549 case OP_DISCRETE_RANGE:
11550 case OP_POSITIONAL:
11551 case OP_NAME:
11552 if (noside == EVAL_NORMAL)
11553 switch (op)
11554 {
11555 case OP_NAME:
11556 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11557 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11558 case OP_AGGREGATE:
11559 error (_("Aggregates only allowed on the right of an assignment"));
11560 default:
0963b4bd
MS
11561 internal_error (__FILE__, __LINE__,
11562 _("aggregate apparently mangled"));
52ce6436
PH
11563 }
11564
11565 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11566 *pos += oplen - 1;
11567 for (tem = 0; tem < nargs; tem += 1)
11568 ada_evaluate_subexp (NULL, exp, pos, noside);
11569 goto nosideret;
14f9c5c9
AS
11570 }
11571
11572nosideret:
ced9779b 11573 return eval_skip_value (exp);
14f9c5c9 11574}
14f9c5c9 11575\f
d2e4a39e 11576
4c4b4cd2 11577 /* Fixed point */
14f9c5c9
AS
11578
11579/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11580 type name that encodes the 'small and 'delta information.
4c4b4cd2 11581 Otherwise, return NULL. */
14f9c5c9 11582
d2e4a39e 11583static const char *
ebf56fd3 11584fixed_type_info (struct type *type)
14f9c5c9 11585{
d2e4a39e 11586 const char *name = ada_type_name (type);
14f9c5c9
AS
11587 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11588
d2e4a39e
AS
11589 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11590 {
14f9c5c9 11591 const char *tail = strstr (name, "___XF_");
5b4ee69b 11592
14f9c5c9 11593 if (tail == NULL)
4c4b4cd2 11594 return NULL;
d2e4a39e 11595 else
4c4b4cd2 11596 return tail + 5;
14f9c5c9
AS
11597 }
11598 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11599 return fixed_type_info (TYPE_TARGET_TYPE (type));
11600 else
11601 return NULL;
11602}
11603
4c4b4cd2 11604/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11605
11606int
ebf56fd3 11607ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11608{
11609 return fixed_type_info (type) != NULL;
11610}
11611
4c4b4cd2
PH
11612/* Return non-zero iff TYPE represents a System.Address type. */
11613
11614int
11615ada_is_system_address_type (struct type *type)
11616{
11617 return (TYPE_NAME (type)
11618 && strcmp (TYPE_NAME (type), "system__address") == 0);
11619}
11620
14f9c5c9 11621/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11622 type, return the target floating-point type to be used to represent
11623 of this type during internal computation. */
11624
11625static struct type *
11626ada_scaling_type (struct type *type)
11627{
11628 return builtin_type (get_type_arch (type))->builtin_long_double;
11629}
11630
11631/* Assuming that TYPE is the representation of an Ada fixed-point
11632 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11633 delta cannot be determined. */
14f9c5c9 11634
50eff16b 11635struct value *
ebf56fd3 11636ada_delta (struct type *type)
14f9c5c9
AS
11637{
11638 const char *encoding = fixed_type_info (type);
50eff16b
UW
11639 struct type *scale_type = ada_scaling_type (type);
11640
11641 long long num, den;
11642
11643 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11644 return nullptr;
d2e4a39e 11645 else
50eff16b
UW
11646 return value_binop (value_from_longest (scale_type, num),
11647 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11648}
11649
11650/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11651 factor ('SMALL value) associated with the type. */
14f9c5c9 11652
50eff16b
UW
11653struct value *
11654ada_scaling_factor (struct type *type)
14f9c5c9
AS
11655{
11656 const char *encoding = fixed_type_info (type);
50eff16b
UW
11657 struct type *scale_type = ada_scaling_type (type);
11658
11659 long long num0, den0, num1, den1;
14f9c5c9 11660 int n;
d2e4a39e 11661
50eff16b 11662 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11663 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11664
11665 if (n < 2)
50eff16b 11666 return value_from_longest (scale_type, 1);
14f9c5c9 11667 else if (n == 4)
50eff16b
UW
11668 return value_binop (value_from_longest (scale_type, num1),
11669 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11670 else
50eff16b
UW
11671 return value_binop (value_from_longest (scale_type, num0),
11672 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11673}
11674
14f9c5c9 11675\f
d2e4a39e 11676
4c4b4cd2 11677 /* Range types */
14f9c5c9
AS
11678
11679/* Scan STR beginning at position K for a discriminant name, and
11680 return the value of that discriminant field of DVAL in *PX. If
11681 PNEW_K is not null, put the position of the character beyond the
11682 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11683 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11684
11685static int
108d56a4 11686scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11687 int *pnew_k)
14f9c5c9
AS
11688{
11689 static char *bound_buffer = NULL;
11690 static size_t bound_buffer_len = 0;
5da1a4d3 11691 const char *pstart, *pend, *bound;
d2e4a39e 11692 struct value *bound_val;
14f9c5c9
AS
11693
11694 if (dval == NULL || str == NULL || str[k] == '\0')
11695 return 0;
11696
5da1a4d3
SM
11697 pstart = str + k;
11698 pend = strstr (pstart, "__");
14f9c5c9
AS
11699 if (pend == NULL)
11700 {
5da1a4d3 11701 bound = pstart;
14f9c5c9
AS
11702 k += strlen (bound);
11703 }
d2e4a39e 11704 else
14f9c5c9 11705 {
5da1a4d3
SM
11706 int len = pend - pstart;
11707
11708 /* Strip __ and beyond. */
11709 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11710 strncpy (bound_buffer, pstart, len);
11711 bound_buffer[len] = '\0';
11712
14f9c5c9 11713 bound = bound_buffer;
d2e4a39e 11714 k = pend - str;
14f9c5c9 11715 }
d2e4a39e 11716
df407dfe 11717 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11718 if (bound_val == NULL)
11719 return 0;
11720
11721 *px = value_as_long (bound_val);
11722 if (pnew_k != NULL)
11723 *pnew_k = k;
11724 return 1;
11725}
11726
11727/* Value of variable named NAME in the current environment. If
11728 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11729 otherwise causes an error with message ERR_MSG. */
11730
d2e4a39e 11731static struct value *
edb0c9cb 11732get_var_value (const char *name, const char *err_msg)
14f9c5c9 11733{
b5ec771e 11734 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11735
54d343a2 11736 std::vector<struct block_symbol> syms;
b5ec771e
PA
11737 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11738 get_selected_block (0),
11739 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11740
11741 if (nsyms != 1)
11742 {
11743 if (err_msg == NULL)
4c4b4cd2 11744 return 0;
14f9c5c9 11745 else
8a3fe4f8 11746 error (("%s"), err_msg);
14f9c5c9
AS
11747 }
11748
54d343a2 11749 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11750}
d2e4a39e 11751
edb0c9cb
PA
11752/* Value of integer variable named NAME in the current environment.
11753 If no such variable is found, returns false. Otherwise, sets VALUE
11754 to the variable's value and returns true. */
4c4b4cd2 11755
edb0c9cb
PA
11756bool
11757get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11758{
4c4b4cd2 11759 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11760
14f9c5c9 11761 if (var_val == 0)
edb0c9cb
PA
11762 return false;
11763
11764 value = value_as_long (var_val);
11765 return true;
14f9c5c9 11766}
d2e4a39e 11767
14f9c5c9
AS
11768
11769/* Return a range type whose base type is that of the range type named
11770 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11771 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11772 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11773 corresponding range type from debug information; fall back to using it
11774 if symbol lookup fails. If a new type must be created, allocate it
11775 like ORIG_TYPE was. The bounds information, in general, is encoded
11776 in NAME, the base type given in the named range type. */
14f9c5c9 11777
d2e4a39e 11778static struct type *
28c85d6c 11779to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11780{
0d5cff50 11781 const char *name;
14f9c5c9 11782 struct type *base_type;
108d56a4 11783 const char *subtype_info;
14f9c5c9 11784
28c85d6c
JB
11785 gdb_assert (raw_type != NULL);
11786 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11787
1ce677a4 11788 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11789 base_type = TYPE_TARGET_TYPE (raw_type);
11790 else
11791 base_type = raw_type;
11792
28c85d6c 11793 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11794 subtype_info = strstr (name, "___XD");
11795 if (subtype_info == NULL)
690cc4eb 11796 {
43bbcdc2
PH
11797 LONGEST L = ada_discrete_type_low_bound (raw_type);
11798 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11799
690cc4eb
PH
11800 if (L < INT_MIN || U > INT_MAX)
11801 return raw_type;
11802 else
0c9c3474
SA
11803 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11804 L, U);
690cc4eb 11805 }
14f9c5c9
AS
11806 else
11807 {
11808 static char *name_buf = NULL;
11809 static size_t name_len = 0;
11810 int prefix_len = subtype_info - name;
11811 LONGEST L, U;
11812 struct type *type;
108d56a4 11813 const char *bounds_str;
14f9c5c9
AS
11814 int n;
11815
11816 GROW_VECT (name_buf, name_len, prefix_len + 5);
11817 strncpy (name_buf, name, prefix_len);
11818 name_buf[prefix_len] = '\0';
11819
11820 subtype_info += 5;
11821 bounds_str = strchr (subtype_info, '_');
11822 n = 1;
11823
d2e4a39e 11824 if (*subtype_info == 'L')
4c4b4cd2
PH
11825 {
11826 if (!ada_scan_number (bounds_str, n, &L, &n)
11827 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11828 return raw_type;
11829 if (bounds_str[n] == '_')
11830 n += 2;
0963b4bd 11831 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11832 n += 1;
11833 subtype_info += 1;
11834 }
d2e4a39e 11835 else
4c4b4cd2 11836 {
4c4b4cd2 11837 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11838 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11839 {
323e0a4a 11840 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11841 L = 1;
11842 }
11843 }
14f9c5c9 11844
d2e4a39e 11845 if (*subtype_info == 'U')
4c4b4cd2
PH
11846 {
11847 if (!ada_scan_number (bounds_str, n, &U, &n)
11848 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11849 return raw_type;
11850 }
d2e4a39e 11851 else
4c4b4cd2 11852 {
4c4b4cd2 11853 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11854 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11855 {
323e0a4a 11856 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11857 U = L;
11858 }
11859 }
14f9c5c9 11860
0c9c3474
SA
11861 type = create_static_range_type (alloc_type_copy (raw_type),
11862 base_type, L, U);
f5a91472
JB
11863 /* create_static_range_type alters the resulting type's length
11864 to match the size of the base_type, which is not what we want.
11865 Set it back to the original range type's length. */
11866 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11867 TYPE_NAME (type) = name;
14f9c5c9
AS
11868 return type;
11869 }
11870}
11871
4c4b4cd2
PH
11872/* True iff NAME is the name of a range type. */
11873
14f9c5c9 11874int
d2e4a39e 11875ada_is_range_type_name (const char *name)
14f9c5c9
AS
11876{
11877 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11878}
14f9c5c9 11879\f
d2e4a39e 11880
4c4b4cd2
PH
11881 /* Modular types */
11882
11883/* True iff TYPE is an Ada modular type. */
14f9c5c9 11884
14f9c5c9 11885int
d2e4a39e 11886ada_is_modular_type (struct type *type)
14f9c5c9 11887{
18af8284 11888 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11889
11890 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11891 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11892 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11893}
11894
4c4b4cd2
PH
11895/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11896
61ee279c 11897ULONGEST
0056e4d5 11898ada_modulus (struct type *type)
14f9c5c9 11899{
43bbcdc2 11900 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11901}
d2e4a39e 11902\f
f7f9143b
JB
11903
11904/* Ada exception catchpoint support:
11905 ---------------------------------
11906
11907 We support 3 kinds of exception catchpoints:
11908 . catchpoints on Ada exceptions
11909 . catchpoints on unhandled Ada exceptions
11910 . catchpoints on failed assertions
11911
11912 Exceptions raised during failed assertions, or unhandled exceptions
11913 could perfectly be caught with the general catchpoint on Ada exceptions.
11914 However, we can easily differentiate these two special cases, and having
11915 the option to distinguish these two cases from the rest can be useful
11916 to zero-in on certain situations.
11917
11918 Exception catchpoints are a specialized form of breakpoint,
11919 since they rely on inserting breakpoints inside known routines
11920 of the GNAT runtime. The implementation therefore uses a standard
11921 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11922 of breakpoint_ops.
11923
0259addd
JB
11924 Support in the runtime for exception catchpoints have been changed
11925 a few times already, and these changes affect the implementation
11926 of these catchpoints. In order to be able to support several
11927 variants of the runtime, we use a sniffer that will determine
28010a5d 11928 the runtime variant used by the program being debugged. */
f7f9143b 11929
82eacd52
JB
11930/* Ada's standard exceptions.
11931
11932 The Ada 83 standard also defined Numeric_Error. But there so many
11933 situations where it was unclear from the Ada 83 Reference Manual
11934 (RM) whether Constraint_Error or Numeric_Error should be raised,
11935 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11936 Interpretation saying that anytime the RM says that Numeric_Error
11937 should be raised, the implementation may raise Constraint_Error.
11938 Ada 95 went one step further and pretty much removed Numeric_Error
11939 from the list of standard exceptions (it made it a renaming of
11940 Constraint_Error, to help preserve compatibility when compiling
11941 an Ada83 compiler). As such, we do not include Numeric_Error from
11942 this list of standard exceptions. */
3d0b0fa3 11943
a121b7c1 11944static const char *standard_exc[] = {
3d0b0fa3
JB
11945 "constraint_error",
11946 "program_error",
11947 "storage_error",
11948 "tasking_error"
11949};
11950
0259addd
JB
11951typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11952
11953/* A structure that describes how to support exception catchpoints
11954 for a given executable. */
11955
11956struct exception_support_info
11957{
11958 /* The name of the symbol to break on in order to insert
11959 a catchpoint on exceptions. */
11960 const char *catch_exception_sym;
11961
11962 /* The name of the symbol to break on in order to insert
11963 a catchpoint on unhandled exceptions. */
11964 const char *catch_exception_unhandled_sym;
11965
11966 /* The name of the symbol to break on in order to insert
11967 a catchpoint on failed assertions. */
11968 const char *catch_assert_sym;
11969
9f757bf7
XR
11970 /* The name of the symbol to break on in order to insert
11971 a catchpoint on exception handling. */
11972 const char *catch_handlers_sym;
11973
0259addd
JB
11974 /* Assuming that the inferior just triggered an unhandled exception
11975 catchpoint, this function is responsible for returning the address
11976 in inferior memory where the name of that exception is stored.
11977 Return zero if the address could not be computed. */
11978 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11979};
11980
11981static CORE_ADDR ada_unhandled_exception_name_addr (void);
11982static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11983
11984/* The following exception support info structure describes how to
11985 implement exception catchpoints with the latest version of the
11986 Ada runtime (as of 2007-03-06). */
11987
11988static const struct exception_support_info default_exception_support_info =
11989{
11990 "__gnat_debug_raise_exception", /* catch_exception_sym */
11991 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11992 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11993 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11994 ada_unhandled_exception_name_addr
11995};
11996
11997/* The following exception support info structure describes how to
11998 implement exception catchpoints with a slightly older version
11999 of the Ada runtime. */
12000
12001static const struct exception_support_info exception_support_info_fallback =
12002{
12003 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12004 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12005 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12006 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12007 ada_unhandled_exception_name_addr_from_raise
12008};
12009
f17011e0
JB
12010/* Return nonzero if we can detect the exception support routines
12011 described in EINFO.
12012
12013 This function errors out if an abnormal situation is detected
12014 (for instance, if we find the exception support routines, but
12015 that support is found to be incomplete). */
12016
12017static int
12018ada_has_this_exception_support (const struct exception_support_info *einfo)
12019{
12020 struct symbol *sym;
12021
12022 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12023 that should be compiled with debugging information. As a result, we
12024 expect to find that symbol in the symtabs. */
12025
12026 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12027 if (sym == NULL)
a6af7abe
JB
12028 {
12029 /* Perhaps we did not find our symbol because the Ada runtime was
12030 compiled without debugging info, or simply stripped of it.
12031 It happens on some GNU/Linux distributions for instance, where
12032 users have to install a separate debug package in order to get
12033 the runtime's debugging info. In that situation, let the user
12034 know why we cannot insert an Ada exception catchpoint.
12035
12036 Note: Just for the purpose of inserting our Ada exception
12037 catchpoint, we could rely purely on the associated minimal symbol.
12038 But we would be operating in degraded mode anyway, since we are
12039 still lacking the debugging info needed later on to extract
12040 the name of the exception being raised (this name is printed in
12041 the catchpoint message, and is also used when trying to catch
12042 a specific exception). We do not handle this case for now. */
3b7344d5 12043 struct bound_minimal_symbol msym
1c8e84b0
JB
12044 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12045
3b7344d5 12046 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12047 error (_("Your Ada runtime appears to be missing some debugging "
12048 "information.\nCannot insert Ada exception catchpoint "
12049 "in this configuration."));
12050
12051 return 0;
12052 }
f17011e0
JB
12053
12054 /* Make sure that the symbol we found corresponds to a function. */
12055
12056 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12057 error (_("Symbol \"%s\" is not a function (class = %d)"),
12058 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12059
12060 return 1;
12061}
12062
0259addd
JB
12063/* Inspect the Ada runtime and determine which exception info structure
12064 should be used to provide support for exception catchpoints.
12065
3eecfa55
JB
12066 This function will always set the per-inferior exception_info,
12067 or raise an error. */
0259addd
JB
12068
12069static void
12070ada_exception_support_info_sniffer (void)
12071{
3eecfa55 12072 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12073
12074 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12075 if (data->exception_info != NULL)
0259addd
JB
12076 return;
12077
12078 /* Check the latest (default) exception support info. */
f17011e0 12079 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12080 {
3eecfa55 12081 data->exception_info = &default_exception_support_info;
0259addd
JB
12082 return;
12083 }
12084
12085 /* Try our fallback exception suport info. */
f17011e0 12086 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12087 {
3eecfa55 12088 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12089 return;
12090 }
12091
12092 /* Sometimes, it is normal for us to not be able to find the routine
12093 we are looking for. This happens when the program is linked with
12094 the shared version of the GNAT runtime, and the program has not been
12095 started yet. Inform the user of these two possible causes if
12096 applicable. */
12097
ccefe4c4 12098 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12099 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12100
12101 /* If the symbol does not exist, then check that the program is
12102 already started, to make sure that shared libraries have been
12103 loaded. If it is not started, this may mean that the symbol is
12104 in a shared library. */
12105
e99b03dc 12106 if (inferior_ptid.pid () == 0)
0259addd
JB
12107 error (_("Unable to insert catchpoint. Try to start the program first."));
12108
12109 /* At this point, we know that we are debugging an Ada program and
12110 that the inferior has been started, but we still are not able to
0963b4bd 12111 find the run-time symbols. That can mean that we are in
0259addd
JB
12112 configurable run time mode, or that a-except as been optimized
12113 out by the linker... In any case, at this point it is not worth
12114 supporting this feature. */
12115
7dda8cff 12116 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12117}
12118
f7f9143b
JB
12119/* True iff FRAME is very likely to be that of a function that is
12120 part of the runtime system. This is all very heuristic, but is
12121 intended to be used as advice as to what frames are uninteresting
12122 to most users. */
12123
12124static int
12125is_known_support_routine (struct frame_info *frame)
12126{
692465f1 12127 enum language func_lang;
f7f9143b 12128 int i;
f35a17b5 12129 const char *fullname;
f7f9143b 12130
4ed6b5be
JB
12131 /* If this code does not have any debugging information (no symtab),
12132 This cannot be any user code. */
f7f9143b 12133
51abb421 12134 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12135 if (sal.symtab == NULL)
12136 return 1;
12137
4ed6b5be
JB
12138 /* If there is a symtab, but the associated source file cannot be
12139 located, then assume this is not user code: Selecting a frame
12140 for which we cannot display the code would not be very helpful
12141 for the user. This should also take care of case such as VxWorks
12142 where the kernel has some debugging info provided for a few units. */
f7f9143b 12143
f35a17b5
JK
12144 fullname = symtab_to_fullname (sal.symtab);
12145 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12146 return 1;
12147
4ed6b5be
JB
12148 /* Check the unit filename againt the Ada runtime file naming.
12149 We also check the name of the objfile against the name of some
12150 known system libraries that sometimes come with debugging info
12151 too. */
12152
f7f9143b
JB
12153 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12154 {
12155 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12156 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12157 return 1;
eb822aa6
DE
12158 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12159 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12160 return 1;
f7f9143b
JB
12161 }
12162
4ed6b5be 12163 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12164
c6dc63a1
TT
12165 gdb::unique_xmalloc_ptr<char> func_name
12166 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12167 if (func_name == NULL)
12168 return 1;
12169
12170 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12171 {
12172 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12173 if (re_exec (func_name.get ()))
12174 return 1;
f7f9143b
JB
12175 }
12176
12177 return 0;
12178}
12179
12180/* Find the first frame that contains debugging information and that is not
12181 part of the Ada run-time, starting from FI and moving upward. */
12182
0ef643c8 12183void
f7f9143b
JB
12184ada_find_printable_frame (struct frame_info *fi)
12185{
12186 for (; fi != NULL; fi = get_prev_frame (fi))
12187 {
12188 if (!is_known_support_routine (fi))
12189 {
12190 select_frame (fi);
12191 break;
12192 }
12193 }
12194
12195}
12196
12197/* Assuming that the inferior just triggered an unhandled exception
12198 catchpoint, return the address in inferior memory where the name
12199 of the exception is stored.
12200
12201 Return zero if the address could not be computed. */
12202
12203static CORE_ADDR
12204ada_unhandled_exception_name_addr (void)
0259addd
JB
12205{
12206 return parse_and_eval_address ("e.full_name");
12207}
12208
12209/* Same as ada_unhandled_exception_name_addr, except that this function
12210 should be used when the inferior uses an older version of the runtime,
12211 where the exception name needs to be extracted from a specific frame
12212 several frames up in the callstack. */
12213
12214static CORE_ADDR
12215ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12216{
12217 int frame_level;
12218 struct frame_info *fi;
3eecfa55 12219 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12220
12221 /* To determine the name of this exception, we need to select
12222 the frame corresponding to RAISE_SYM_NAME. This frame is
12223 at least 3 levels up, so we simply skip the first 3 frames
12224 without checking the name of their associated function. */
12225 fi = get_current_frame ();
12226 for (frame_level = 0; frame_level < 3; frame_level += 1)
12227 if (fi != NULL)
12228 fi = get_prev_frame (fi);
12229
12230 while (fi != NULL)
12231 {
692465f1
JB
12232 enum language func_lang;
12233
c6dc63a1
TT
12234 gdb::unique_xmalloc_ptr<char> func_name
12235 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12236 if (func_name != NULL)
12237 {
c6dc63a1 12238 if (strcmp (func_name.get (),
55b87a52
KS
12239 data->exception_info->catch_exception_sym) == 0)
12240 break; /* We found the frame we were looking for... */
55b87a52 12241 }
fb44b1a7 12242 fi = get_prev_frame (fi);
f7f9143b
JB
12243 }
12244
12245 if (fi == NULL)
12246 return 0;
12247
12248 select_frame (fi);
12249 return parse_and_eval_address ("id.full_name");
12250}
12251
12252/* Assuming the inferior just triggered an Ada exception catchpoint
12253 (of any type), return the address in inferior memory where the name
12254 of the exception is stored, if applicable.
12255
45db7c09
PA
12256 Assumes the selected frame is the current frame.
12257
f7f9143b
JB
12258 Return zero if the address could not be computed, or if not relevant. */
12259
12260static CORE_ADDR
761269c8 12261ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12262 struct breakpoint *b)
12263{
3eecfa55
JB
12264 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12265
f7f9143b
JB
12266 switch (ex)
12267 {
761269c8 12268 case ada_catch_exception:
f7f9143b
JB
12269 return (parse_and_eval_address ("e.full_name"));
12270 break;
12271
761269c8 12272 case ada_catch_exception_unhandled:
3eecfa55 12273 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12274 break;
9f757bf7
XR
12275
12276 case ada_catch_handlers:
12277 return 0; /* The runtimes does not provide access to the exception
12278 name. */
12279 break;
12280
761269c8 12281 case ada_catch_assert:
f7f9143b
JB
12282 return 0; /* Exception name is not relevant in this case. */
12283 break;
12284
12285 default:
12286 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12287 break;
12288 }
12289
12290 return 0; /* Should never be reached. */
12291}
12292
e547c119
JB
12293/* Assuming the inferior is stopped at an exception catchpoint,
12294 return the message which was associated to the exception, if
12295 available. Return NULL if the message could not be retrieved.
12296
e547c119
JB
12297 Note: The exception message can be associated to an exception
12298 either through the use of the Raise_Exception function, or
12299 more simply (Ada 2005 and later), via:
12300
12301 raise Exception_Name with "exception message";
12302
12303 */
12304
6f46ac85 12305static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12306ada_exception_message_1 (void)
12307{
12308 struct value *e_msg_val;
e547c119 12309 int e_msg_len;
e547c119
JB
12310
12311 /* For runtimes that support this feature, the exception message
12312 is passed as an unbounded string argument called "message". */
12313 e_msg_val = parse_and_eval ("message");
12314 if (e_msg_val == NULL)
12315 return NULL; /* Exception message not supported. */
12316
12317 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12318 gdb_assert (e_msg_val != NULL);
12319 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12320
12321 /* If the message string is empty, then treat it as if there was
12322 no exception message. */
12323 if (e_msg_len <= 0)
12324 return NULL;
12325
6f46ac85
TT
12326 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12327 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12328 e_msg.get ()[e_msg_len] = '\0';
e547c119 12329
e547c119
JB
12330 return e_msg;
12331}
12332
12333/* Same as ada_exception_message_1, except that all exceptions are
12334 contained here (returning NULL instead). */
12335
6f46ac85 12336static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12337ada_exception_message (void)
12338{
6f46ac85 12339 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12340
12341 TRY
12342 {
12343 e_msg = ada_exception_message_1 ();
12344 }
12345 CATCH (e, RETURN_MASK_ERROR)
12346 {
6f46ac85 12347 e_msg.reset (nullptr);
e547c119
JB
12348 }
12349 END_CATCH
12350
12351 return e_msg;
12352}
12353
f7f9143b
JB
12354/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12355 any error that ada_exception_name_addr_1 might cause to be thrown.
12356 When an error is intercepted, a warning with the error message is printed,
12357 and zero is returned. */
12358
12359static CORE_ADDR
761269c8 12360ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12361 struct breakpoint *b)
12362{
f7f9143b
JB
12363 CORE_ADDR result = 0;
12364
492d29ea 12365 TRY
f7f9143b
JB
12366 {
12367 result = ada_exception_name_addr_1 (ex, b);
12368 }
12369
492d29ea 12370 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12371 {
12372 warning (_("failed to get exception name: %s"), e.message);
12373 return 0;
12374 }
492d29ea 12375 END_CATCH
f7f9143b
JB
12376
12377 return result;
12378}
12379
cb7de75e 12380static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12381 (const char *excep_string,
12382 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12383
12384/* Ada catchpoints.
12385
12386 In the case of catchpoints on Ada exceptions, the catchpoint will
12387 stop the target on every exception the program throws. When a user
12388 specifies the name of a specific exception, we translate this
12389 request into a condition expression (in text form), and then parse
12390 it into an expression stored in each of the catchpoint's locations.
12391 We then use this condition to check whether the exception that was
12392 raised is the one the user is interested in. If not, then the
12393 target is resumed again. We store the name of the requested
12394 exception, in order to be able to re-set the condition expression
12395 when symbols change. */
12396
12397/* An instance of this type is used to represent an Ada catchpoint
5625a286 12398 breakpoint location. */
28010a5d 12399
5625a286 12400class ada_catchpoint_location : public bp_location
28010a5d 12401{
5625a286 12402public:
5f486660
TT
12403 ada_catchpoint_location (breakpoint *owner)
12404 : bp_location (owner)
5625a286 12405 {}
28010a5d
PA
12406
12407 /* The condition that checks whether the exception that was raised
12408 is the specific exception the user specified on catchpoint
12409 creation. */
4d01a485 12410 expression_up excep_cond_expr;
28010a5d
PA
12411};
12412
c1fc2657 12413/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12414
c1fc2657 12415struct ada_catchpoint : public breakpoint
28010a5d 12416{
28010a5d 12417 /* The name of the specific exception the user specified. */
bc18fbb5 12418 std::string excep_string;
28010a5d
PA
12419};
12420
12421/* Parse the exception condition string in the context of each of the
12422 catchpoint's locations, and store them for later evaluation. */
12423
12424static void
9f757bf7
XR
12425create_excep_cond_exprs (struct ada_catchpoint *c,
12426 enum ada_exception_catchpoint_kind ex)
28010a5d 12427{
28010a5d 12428 struct bp_location *bl;
28010a5d
PA
12429
12430 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12431 if (c->excep_string.empty ())
28010a5d
PA
12432 return;
12433
12434 /* Same if there are no locations... */
c1fc2657 12435 if (c->loc == NULL)
28010a5d
PA
12436 return;
12437
12438 /* Compute the condition expression in text form, from the specific
12439 expection we want to catch. */
cb7de75e 12440 std::string cond_string
bc18fbb5 12441 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12442
12443 /* Iterate over all the catchpoint's locations, and parse an
12444 expression for each. */
c1fc2657 12445 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12446 {
12447 struct ada_catchpoint_location *ada_loc
12448 = (struct ada_catchpoint_location *) bl;
4d01a485 12449 expression_up exp;
28010a5d
PA
12450
12451 if (!bl->shlib_disabled)
12452 {
bbc13ae3 12453 const char *s;
28010a5d 12454
cb7de75e 12455 s = cond_string.c_str ();
492d29ea 12456 TRY
28010a5d 12457 {
036e657b
JB
12458 exp = parse_exp_1 (&s, bl->address,
12459 block_for_pc (bl->address),
12460 0);
28010a5d 12461 }
492d29ea 12462 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12463 {
12464 warning (_("failed to reevaluate internal exception condition "
12465 "for catchpoint %d: %s"),
c1fc2657 12466 c->number, e.message);
849f2b52 12467 }
492d29ea 12468 END_CATCH
28010a5d
PA
12469 }
12470
b22e99fd 12471 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12472 }
28010a5d
PA
12473}
12474
28010a5d
PA
12475/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12476 structure for all exception catchpoint kinds. */
12477
12478static struct bp_location *
761269c8 12479allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12480 struct breakpoint *self)
12481{
5f486660 12482 return new ada_catchpoint_location (self);
28010a5d
PA
12483}
12484
12485/* Implement the RE_SET method in the breakpoint_ops structure for all
12486 exception catchpoint kinds. */
12487
12488static void
761269c8 12489re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12490{
12491 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12492
12493 /* Call the base class's method. This updates the catchpoint's
12494 locations. */
2060206e 12495 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12496
12497 /* Reparse the exception conditional expressions. One for each
12498 location. */
9f757bf7 12499 create_excep_cond_exprs (c, ex);
28010a5d
PA
12500}
12501
12502/* Returns true if we should stop for this breakpoint hit. If the
12503 user specified a specific exception, we only want to cause a stop
12504 if the program thrown that exception. */
12505
12506static int
12507should_stop_exception (const struct bp_location *bl)
12508{
12509 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12510 const struct ada_catchpoint_location *ada_loc
12511 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12512 int stop;
12513
12514 /* With no specific exception, should always stop. */
bc18fbb5 12515 if (c->excep_string.empty ())
28010a5d
PA
12516 return 1;
12517
12518 if (ada_loc->excep_cond_expr == NULL)
12519 {
12520 /* We will have a NULL expression if back when we were creating
12521 the expressions, this location's had failed to parse. */
12522 return 1;
12523 }
12524
12525 stop = 1;
492d29ea 12526 TRY
28010a5d
PA
12527 {
12528 struct value *mark;
12529
12530 mark = value_mark ();
4d01a485 12531 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12532 value_free_to_mark (mark);
12533 }
492d29ea
PA
12534 CATCH (ex, RETURN_MASK_ALL)
12535 {
12536 exception_fprintf (gdb_stderr, ex,
12537 _("Error in testing exception condition:\n"));
12538 }
12539 END_CATCH
12540
28010a5d
PA
12541 return stop;
12542}
12543
12544/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12545 for all exception catchpoint kinds. */
12546
12547static void
761269c8 12548check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12549{
12550 bs->stop = should_stop_exception (bs->bp_location_at);
12551}
12552
f7f9143b
JB
12553/* Implement the PRINT_IT method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12555
12556static enum print_stop_action
761269c8 12557print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12558{
79a45e25 12559 struct ui_out *uiout = current_uiout;
348d480f
PA
12560 struct breakpoint *b = bs->breakpoint_at;
12561
956a9fb9 12562 annotate_catchpoint (b->number);
f7f9143b 12563
112e8700 12564 if (uiout->is_mi_like_p ())
f7f9143b 12565 {
112e8700 12566 uiout->field_string ("reason",
956a9fb9 12567 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12568 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12569 }
12570
112e8700
SM
12571 uiout->text (b->disposition == disp_del
12572 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12573 uiout->field_int ("bkptno", b->number);
12574 uiout->text (", ");
f7f9143b 12575
45db7c09
PA
12576 /* ada_exception_name_addr relies on the selected frame being the
12577 current frame. Need to do this here because this function may be
12578 called more than once when printing a stop, and below, we'll
12579 select the first frame past the Ada run-time (see
12580 ada_find_printable_frame). */
12581 select_frame (get_current_frame ());
12582
f7f9143b
JB
12583 switch (ex)
12584 {
761269c8
JB
12585 case ada_catch_exception:
12586 case ada_catch_exception_unhandled:
9f757bf7 12587 case ada_catch_handlers:
956a9fb9
JB
12588 {
12589 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12590 char exception_name[256];
12591
12592 if (addr != 0)
12593 {
c714b426
PA
12594 read_memory (addr, (gdb_byte *) exception_name,
12595 sizeof (exception_name) - 1);
956a9fb9
JB
12596 exception_name [sizeof (exception_name) - 1] = '\0';
12597 }
12598 else
12599 {
12600 /* For some reason, we were unable to read the exception
12601 name. This could happen if the Runtime was compiled
12602 without debugging info, for instance. In that case,
12603 just replace the exception name by the generic string
12604 "exception" - it will read as "an exception" in the
12605 notification we are about to print. */
967cff16 12606 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12607 }
12608 /* In the case of unhandled exception breakpoints, we print
12609 the exception name as "unhandled EXCEPTION_NAME", to make
12610 it clearer to the user which kind of catchpoint just got
12611 hit. We used ui_out_text to make sure that this extra
12612 info does not pollute the exception name in the MI case. */
761269c8 12613 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12614 uiout->text ("unhandled ");
12615 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12616 }
12617 break;
761269c8 12618 case ada_catch_assert:
956a9fb9
JB
12619 /* In this case, the name of the exception is not really
12620 important. Just print "failed assertion" to make it clearer
12621 that his program just hit an assertion-failure catchpoint.
12622 We used ui_out_text because this info does not belong in
12623 the MI output. */
112e8700 12624 uiout->text ("failed assertion");
956a9fb9 12625 break;
f7f9143b 12626 }
e547c119 12627
6f46ac85 12628 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12629 if (exception_message != NULL)
12630 {
e547c119 12631 uiout->text (" (");
6f46ac85 12632 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12633 uiout->text (")");
e547c119
JB
12634 }
12635
112e8700 12636 uiout->text (" at ");
956a9fb9 12637 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12638
12639 return PRINT_SRC_AND_LOC;
12640}
12641
12642/* Implement the PRINT_ONE method in the breakpoint_ops structure
12643 for all exception catchpoint kinds. */
12644
12645static void
761269c8 12646print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12647 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12648{
79a45e25 12649 struct ui_out *uiout = current_uiout;
28010a5d 12650 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12651 struct value_print_options opts;
12652
12653 get_user_print_options (&opts);
12654 if (opts.addressprint)
f7f9143b
JB
12655 {
12656 annotate_field (4);
112e8700 12657 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12658 }
12659
12660 annotate_field (5);
a6d9a66e 12661 *last_loc = b->loc;
f7f9143b
JB
12662 switch (ex)
12663 {
761269c8 12664 case ada_catch_exception:
bc18fbb5 12665 if (!c->excep_string.empty ())
f7f9143b 12666 {
bc18fbb5
TT
12667 std::string msg = string_printf (_("`%s' Ada exception"),
12668 c->excep_string.c_str ());
28010a5d 12669
112e8700 12670 uiout->field_string ("what", msg);
f7f9143b
JB
12671 }
12672 else
112e8700 12673 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12674
12675 break;
12676
761269c8 12677 case ada_catch_exception_unhandled:
112e8700 12678 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12679 break;
12680
9f757bf7 12681 case ada_catch_handlers:
bc18fbb5 12682 if (!c->excep_string.empty ())
9f757bf7
XR
12683 {
12684 uiout->field_fmt ("what",
12685 _("`%s' Ada exception handlers"),
bc18fbb5 12686 c->excep_string.c_str ());
9f757bf7
XR
12687 }
12688 else
12689 uiout->field_string ("what", "all Ada exceptions handlers");
12690 break;
12691
761269c8 12692 case ada_catch_assert:
112e8700 12693 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12694 break;
12695
12696 default:
12697 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12698 break;
12699 }
12700}
12701
12702/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12703 for all exception catchpoint kinds. */
12704
12705static void
761269c8 12706print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12707 struct breakpoint *b)
12708{
28010a5d 12709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12710 struct ui_out *uiout = current_uiout;
28010a5d 12711
112e8700 12712 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12713 : _("Catchpoint "));
112e8700
SM
12714 uiout->field_int ("bkptno", b->number);
12715 uiout->text (": ");
00eb2c4a 12716
f7f9143b
JB
12717 switch (ex)
12718 {
761269c8 12719 case ada_catch_exception:
bc18fbb5 12720 if (!c->excep_string.empty ())
00eb2c4a 12721 {
862d101a 12722 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12723 c->excep_string.c_str ());
862d101a 12724 uiout->text (info.c_str ());
00eb2c4a 12725 }
f7f9143b 12726 else
112e8700 12727 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12728 break;
12729
761269c8 12730 case ada_catch_exception_unhandled:
112e8700 12731 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12732 break;
9f757bf7
XR
12733
12734 case ada_catch_handlers:
bc18fbb5 12735 if (!c->excep_string.empty ())
9f757bf7
XR
12736 {
12737 std::string info
12738 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12739 c->excep_string.c_str ());
9f757bf7
XR
12740 uiout->text (info.c_str ());
12741 }
12742 else
12743 uiout->text (_("all Ada exceptions handlers"));
12744 break;
12745
761269c8 12746 case ada_catch_assert:
112e8700 12747 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12748 break;
12749
12750 default:
12751 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12752 break;
12753 }
12754}
12755
6149aea9
PA
12756/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12757 for all exception catchpoint kinds. */
12758
12759static void
761269c8 12760print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12761 struct breakpoint *b, struct ui_file *fp)
12762{
28010a5d
PA
12763 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12764
6149aea9
PA
12765 switch (ex)
12766 {
761269c8 12767 case ada_catch_exception:
6149aea9 12768 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12769 if (!c->excep_string.empty ())
12770 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12771 break;
12772
761269c8 12773 case ada_catch_exception_unhandled:
78076abc 12774 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12775 break;
12776
9f757bf7
XR
12777 case ada_catch_handlers:
12778 fprintf_filtered (fp, "catch handlers");
12779 break;
12780
761269c8 12781 case ada_catch_assert:
6149aea9
PA
12782 fprintf_filtered (fp, "catch assert");
12783 break;
12784
12785 default:
12786 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12787 }
d9b3f62e 12788 print_recreate_thread (b, fp);
6149aea9
PA
12789}
12790
f7f9143b
JB
12791/* Virtual table for "catch exception" breakpoints. */
12792
28010a5d
PA
12793static struct bp_location *
12794allocate_location_catch_exception (struct breakpoint *self)
12795{
761269c8 12796 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12797}
12798
12799static void
12800re_set_catch_exception (struct breakpoint *b)
12801{
761269c8 12802 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12803}
12804
12805static void
12806check_status_catch_exception (bpstat bs)
12807{
761269c8 12808 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12809}
12810
f7f9143b 12811static enum print_stop_action
348d480f 12812print_it_catch_exception (bpstat bs)
f7f9143b 12813{
761269c8 12814 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12815}
12816
12817static void
a6d9a66e 12818print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12819{
761269c8 12820 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12821}
12822
12823static void
12824print_mention_catch_exception (struct breakpoint *b)
12825{
761269c8 12826 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12827}
12828
6149aea9
PA
12829static void
12830print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12831{
761269c8 12832 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12833}
12834
2060206e 12835static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12836
12837/* Virtual table for "catch exception unhandled" breakpoints. */
12838
28010a5d
PA
12839static struct bp_location *
12840allocate_location_catch_exception_unhandled (struct breakpoint *self)
12841{
761269c8 12842 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12843}
12844
12845static void
12846re_set_catch_exception_unhandled (struct breakpoint *b)
12847{
761269c8 12848 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12849}
12850
12851static void
12852check_status_catch_exception_unhandled (bpstat bs)
12853{
761269c8 12854 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12855}
12856
f7f9143b 12857static enum print_stop_action
348d480f 12858print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12859{
761269c8 12860 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12861}
12862
12863static void
a6d9a66e
UW
12864print_one_catch_exception_unhandled (struct breakpoint *b,
12865 struct bp_location **last_loc)
f7f9143b 12866{
761269c8 12867 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12868}
12869
12870static void
12871print_mention_catch_exception_unhandled (struct breakpoint *b)
12872{
761269c8 12873 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12874}
12875
6149aea9
PA
12876static void
12877print_recreate_catch_exception_unhandled (struct breakpoint *b,
12878 struct ui_file *fp)
12879{
761269c8 12880 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12881}
12882
2060206e 12883static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12884
12885/* Virtual table for "catch assert" breakpoints. */
12886
28010a5d
PA
12887static struct bp_location *
12888allocate_location_catch_assert (struct breakpoint *self)
12889{
761269c8 12890 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12891}
12892
12893static void
12894re_set_catch_assert (struct breakpoint *b)
12895{
761269c8 12896 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12897}
12898
12899static void
12900check_status_catch_assert (bpstat bs)
12901{
761269c8 12902 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12903}
12904
f7f9143b 12905static enum print_stop_action
348d480f 12906print_it_catch_assert (bpstat bs)
f7f9143b 12907{
761269c8 12908 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12909}
12910
12911static void
a6d9a66e 12912print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12913{
761269c8 12914 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12915}
12916
12917static void
12918print_mention_catch_assert (struct breakpoint *b)
12919{
761269c8 12920 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12921}
12922
6149aea9
PA
12923static void
12924print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12925{
761269c8 12926 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12927}
12928
2060206e 12929static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12930
9f757bf7
XR
12931/* Virtual table for "catch handlers" breakpoints. */
12932
12933static struct bp_location *
12934allocate_location_catch_handlers (struct breakpoint *self)
12935{
12936 return allocate_location_exception (ada_catch_handlers, self);
12937}
12938
12939static void
12940re_set_catch_handlers (struct breakpoint *b)
12941{
12942 re_set_exception (ada_catch_handlers, b);
12943}
12944
12945static void
12946check_status_catch_handlers (bpstat bs)
12947{
12948 check_status_exception (ada_catch_handlers, bs);
12949}
12950
12951static enum print_stop_action
12952print_it_catch_handlers (bpstat bs)
12953{
12954 return print_it_exception (ada_catch_handlers, bs);
12955}
12956
12957static void
12958print_one_catch_handlers (struct breakpoint *b,
12959 struct bp_location **last_loc)
12960{
12961 print_one_exception (ada_catch_handlers, b, last_loc);
12962}
12963
12964static void
12965print_mention_catch_handlers (struct breakpoint *b)
12966{
12967 print_mention_exception (ada_catch_handlers, b);
12968}
12969
12970static void
12971print_recreate_catch_handlers (struct breakpoint *b,
12972 struct ui_file *fp)
12973{
12974 print_recreate_exception (ada_catch_handlers, b, fp);
12975}
12976
12977static struct breakpoint_ops catch_handlers_breakpoint_ops;
12978
f7f9143b
JB
12979/* Split the arguments specified in a "catch exception" command.
12980 Set EX to the appropriate catchpoint type.
28010a5d 12981 Set EXCEP_STRING to the name of the specific exception if
5845583d 12982 specified by the user.
9f757bf7
XR
12983 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12984 "catch handlers" command. False otherwise.
5845583d
JB
12985 If a condition is found at the end of the arguments, the condition
12986 expression is stored in COND_STRING (memory must be deallocated
12987 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12988
12989static void
a121b7c1 12990catch_ada_exception_command_split (const char *args,
9f757bf7 12991 bool is_catch_handlers_cmd,
761269c8 12992 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12993 std::string *excep_string,
12994 std::string *cond_string)
f7f9143b 12995{
bc18fbb5 12996 std::string exception_name;
f7f9143b 12997
bc18fbb5
TT
12998 exception_name = extract_arg (&args);
12999 if (exception_name == "if")
5845583d
JB
13000 {
13001 /* This is not an exception name; this is the start of a condition
13002 expression for a catchpoint on all exceptions. So, "un-get"
13003 this token, and set exception_name to NULL. */
bc18fbb5 13004 exception_name.clear ();
5845583d
JB
13005 args -= 2;
13006 }
f7f9143b 13007
5845583d 13008 /* Check to see if we have a condition. */
f7f9143b 13009
f1735a53 13010 args = skip_spaces (args);
61012eef 13011 if (startswith (args, "if")
5845583d
JB
13012 && (isspace (args[2]) || args[2] == '\0'))
13013 {
13014 args += 2;
f1735a53 13015 args = skip_spaces (args);
5845583d
JB
13016
13017 if (args[0] == '\0')
13018 error (_("Condition missing after `if' keyword"));
bc18fbb5 13019 *cond_string = args;
5845583d
JB
13020
13021 args += strlen (args);
13022 }
13023
13024 /* Check that we do not have any more arguments. Anything else
13025 is unexpected. */
f7f9143b
JB
13026
13027 if (args[0] != '\0')
13028 error (_("Junk at end of expression"));
13029
9f757bf7
XR
13030 if (is_catch_handlers_cmd)
13031 {
13032 /* Catch handling of exceptions. */
13033 *ex = ada_catch_handlers;
13034 *excep_string = exception_name;
13035 }
bc18fbb5 13036 else if (exception_name.empty ())
f7f9143b
JB
13037 {
13038 /* Catch all exceptions. */
761269c8 13039 *ex = ada_catch_exception;
bc18fbb5 13040 excep_string->clear ();
f7f9143b 13041 }
bc18fbb5 13042 else if (exception_name == "unhandled")
f7f9143b
JB
13043 {
13044 /* Catch unhandled exceptions. */
761269c8 13045 *ex = ada_catch_exception_unhandled;
bc18fbb5 13046 excep_string->clear ();
f7f9143b
JB
13047 }
13048 else
13049 {
13050 /* Catch a specific exception. */
761269c8 13051 *ex = ada_catch_exception;
28010a5d 13052 *excep_string = exception_name;
f7f9143b
JB
13053 }
13054}
13055
13056/* Return the name of the symbol on which we should break in order to
13057 implement a catchpoint of the EX kind. */
13058
13059static const char *
761269c8 13060ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13061{
3eecfa55
JB
13062 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13063
13064 gdb_assert (data->exception_info != NULL);
0259addd 13065
f7f9143b
JB
13066 switch (ex)
13067 {
761269c8 13068 case ada_catch_exception:
3eecfa55 13069 return (data->exception_info->catch_exception_sym);
f7f9143b 13070 break;
761269c8 13071 case ada_catch_exception_unhandled:
3eecfa55 13072 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13073 break;
761269c8 13074 case ada_catch_assert:
3eecfa55 13075 return (data->exception_info->catch_assert_sym);
f7f9143b 13076 break;
9f757bf7
XR
13077 case ada_catch_handlers:
13078 return (data->exception_info->catch_handlers_sym);
13079 break;
f7f9143b
JB
13080 default:
13081 internal_error (__FILE__, __LINE__,
13082 _("unexpected catchpoint kind (%d)"), ex);
13083 }
13084}
13085
13086/* Return the breakpoint ops "virtual table" used for catchpoints
13087 of the EX kind. */
13088
c0a91b2b 13089static const struct breakpoint_ops *
761269c8 13090ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13091{
13092 switch (ex)
13093 {
761269c8 13094 case ada_catch_exception:
f7f9143b
JB
13095 return (&catch_exception_breakpoint_ops);
13096 break;
761269c8 13097 case ada_catch_exception_unhandled:
f7f9143b
JB
13098 return (&catch_exception_unhandled_breakpoint_ops);
13099 break;
761269c8 13100 case ada_catch_assert:
f7f9143b
JB
13101 return (&catch_assert_breakpoint_ops);
13102 break;
9f757bf7
XR
13103 case ada_catch_handlers:
13104 return (&catch_handlers_breakpoint_ops);
13105 break;
f7f9143b
JB
13106 default:
13107 internal_error (__FILE__, __LINE__,
13108 _("unexpected catchpoint kind (%d)"), ex);
13109 }
13110}
13111
13112/* Return the condition that will be used to match the current exception
13113 being raised with the exception that the user wants to catch. This
13114 assumes that this condition is used when the inferior just triggered
13115 an exception catchpoint.
cb7de75e 13116 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13117
cb7de75e 13118static std::string
9f757bf7
XR
13119ada_exception_catchpoint_cond_string (const char *excep_string,
13120 enum ada_exception_catchpoint_kind ex)
f7f9143b 13121{
3d0b0fa3 13122 int i;
9f757bf7 13123 bool is_standard_exc = false;
cb7de75e 13124 std::string result;
9f757bf7
XR
13125
13126 if (ex == ada_catch_handlers)
13127 {
13128 /* For exception handlers catchpoints, the condition string does
13129 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13130 result = ("long_integer (GNAT_GCC_exception_Access"
13131 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13132 }
13133 else
cb7de75e 13134 result = "long_integer (e)";
3d0b0fa3 13135
0963b4bd 13136 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13137 runtime units that have been compiled without debugging info; if
28010a5d 13138 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13139 exception (e.g. "constraint_error") then, during the evaluation
13140 of the condition expression, the symbol lookup on this name would
0963b4bd 13141 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13142 may then be set only on user-defined exceptions which have the
13143 same not-fully-qualified name (e.g. my_package.constraint_error).
13144
13145 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13146 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13147 exception constraint_error" is rewritten into "catch exception
13148 standard.constraint_error".
13149
13150 If an exception named contraint_error is defined in another package of
13151 the inferior program, then the only way to specify this exception as a
13152 breakpoint condition is to use its fully-qualified named:
13153 e.g. my_package.constraint_error. */
13154
13155 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13156 {
28010a5d 13157 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13158 {
9f757bf7
XR
13159 is_standard_exc = true;
13160 break;
3d0b0fa3
JB
13161 }
13162 }
9f757bf7 13163
cb7de75e
TT
13164 result += " = ";
13165
9f757bf7 13166 if (is_standard_exc)
cb7de75e 13167 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13168 else
cb7de75e 13169 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13170
9f757bf7 13171 return result;
f7f9143b
JB
13172}
13173
13174/* Return the symtab_and_line that should be used to insert an exception
13175 catchpoint of the TYPE kind.
13176
28010a5d
PA
13177 ADDR_STRING returns the name of the function where the real
13178 breakpoint that implements the catchpoints is set, depending on the
13179 type of catchpoint we need to create. */
f7f9143b
JB
13180
13181static struct symtab_and_line
bc18fbb5 13182ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13183 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13184{
13185 const char *sym_name;
13186 struct symbol *sym;
f7f9143b 13187
0259addd
JB
13188 /* First, find out which exception support info to use. */
13189 ada_exception_support_info_sniffer ();
13190
13191 /* Then lookup the function on which we will break in order to catch
f7f9143b 13192 the Ada exceptions requested by the user. */
f7f9143b
JB
13193 sym_name = ada_exception_sym_name (ex);
13194 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13195
57aff202
JB
13196 if (sym == NULL)
13197 error (_("Catchpoint symbol not found: %s"), sym_name);
13198
13199 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13200 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13201
13202 /* Set ADDR_STRING. */
cc12f4a8 13203 *addr_string = sym_name;
f7f9143b 13204
f7f9143b 13205 /* Set OPS. */
4b9eee8c 13206 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13207
f17011e0 13208 return find_function_start_sal (sym, 1);
f7f9143b
JB
13209}
13210
b4a5b78b 13211/* Create an Ada exception catchpoint.
f7f9143b 13212
b4a5b78b 13213 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13214
bc18fbb5 13215 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13216 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13217 of the exception to which this catchpoint applies.
2df4d1d5 13218
bc18fbb5 13219 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13220
b4a5b78b
JB
13221 TEMPFLAG, if nonzero, means that the underlying breakpoint
13222 should be temporary.
28010a5d 13223
b4a5b78b 13224 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13225
349774ef 13226void
28010a5d 13227create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13228 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13229 const std::string &excep_string,
56ecd069 13230 const std::string &cond_string,
28010a5d 13231 int tempflag,
349774ef 13232 int disabled,
28010a5d
PA
13233 int from_tty)
13234{
cc12f4a8 13235 std::string addr_string;
b4a5b78b 13236 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13237 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13238
b270e6f9 13239 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13240 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13241 ops, tempflag, disabled, from_tty);
28010a5d 13242 c->excep_string = excep_string;
9f757bf7 13243 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13244 if (!cond_string.empty ())
13245 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13246 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13247}
13248
9ac4176b
PA
13249/* Implement the "catch exception" command. */
13250
13251static void
eb4c3f4a 13252catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13253 struct cmd_list_element *command)
13254{
a121b7c1 13255 const char *arg = arg_entry;
9ac4176b
PA
13256 struct gdbarch *gdbarch = get_current_arch ();
13257 int tempflag;
761269c8 13258 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13259 std::string excep_string;
56ecd069 13260 std::string cond_string;
9ac4176b
PA
13261
13262 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13263
13264 if (!arg)
13265 arg = "";
9f757bf7 13266 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13267 &cond_string);
9f757bf7
XR
13268 create_ada_exception_catchpoint (gdbarch, ex_kind,
13269 excep_string, cond_string,
13270 tempflag, 1 /* enabled */,
13271 from_tty);
13272}
13273
13274/* Implement the "catch handlers" command. */
13275
13276static void
13277catch_ada_handlers_command (const char *arg_entry, int from_tty,
13278 struct cmd_list_element *command)
13279{
13280 const char *arg = arg_entry;
13281 struct gdbarch *gdbarch = get_current_arch ();
13282 int tempflag;
13283 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13284 std::string excep_string;
56ecd069 13285 std::string cond_string;
9f757bf7
XR
13286
13287 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13288
13289 if (!arg)
13290 arg = "";
13291 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13292 &cond_string);
b4a5b78b
JB
13293 create_ada_exception_catchpoint (gdbarch, ex_kind,
13294 excep_string, cond_string,
349774ef
JB
13295 tempflag, 1 /* enabled */,
13296 from_tty);
9ac4176b
PA
13297}
13298
b4a5b78b 13299/* Split the arguments specified in a "catch assert" command.
5845583d 13300
b4a5b78b
JB
13301 ARGS contains the command's arguments (or the empty string if
13302 no arguments were passed).
5845583d
JB
13303
13304 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13305 (the memory needs to be deallocated after use). */
5845583d 13306
b4a5b78b 13307static void
56ecd069 13308catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13309{
f1735a53 13310 args = skip_spaces (args);
f7f9143b 13311
5845583d 13312 /* Check whether a condition was provided. */
61012eef 13313 if (startswith (args, "if")
5845583d 13314 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13315 {
5845583d 13316 args += 2;
f1735a53 13317 args = skip_spaces (args);
5845583d
JB
13318 if (args[0] == '\0')
13319 error (_("condition missing after `if' keyword"));
56ecd069 13320 cond_string.assign (args);
f7f9143b
JB
13321 }
13322
5845583d
JB
13323 /* Otherwise, there should be no other argument at the end of
13324 the command. */
13325 else if (args[0] != '\0')
13326 error (_("Junk at end of arguments."));
f7f9143b
JB
13327}
13328
9ac4176b
PA
13329/* Implement the "catch assert" command. */
13330
13331static void
eb4c3f4a 13332catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13333 struct cmd_list_element *command)
13334{
a121b7c1 13335 const char *arg = arg_entry;
9ac4176b
PA
13336 struct gdbarch *gdbarch = get_current_arch ();
13337 int tempflag;
56ecd069 13338 std::string cond_string;
9ac4176b
PA
13339
13340 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13341
13342 if (!arg)
13343 arg = "";
56ecd069 13344 catch_ada_assert_command_split (arg, cond_string);
761269c8 13345 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13346 "", cond_string,
349774ef
JB
13347 tempflag, 1 /* enabled */,
13348 from_tty);
9ac4176b 13349}
778865d3
JB
13350
13351/* Return non-zero if the symbol SYM is an Ada exception object. */
13352
13353static int
13354ada_is_exception_sym (struct symbol *sym)
13355{
a737d952 13356 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13357
13358 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13359 && SYMBOL_CLASS (sym) != LOC_BLOCK
13360 && SYMBOL_CLASS (sym) != LOC_CONST
13361 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13362 && type_name != NULL && strcmp (type_name, "exception") == 0);
13363}
13364
13365/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13366 Ada exception object. This matches all exceptions except the ones
13367 defined by the Ada language. */
13368
13369static int
13370ada_is_non_standard_exception_sym (struct symbol *sym)
13371{
13372 int i;
13373
13374 if (!ada_is_exception_sym (sym))
13375 return 0;
13376
13377 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13378 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13379 return 0; /* A standard exception. */
13380
13381 /* Numeric_Error is also a standard exception, so exclude it.
13382 See the STANDARD_EXC description for more details as to why
13383 this exception is not listed in that array. */
13384 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13385 return 0;
13386
13387 return 1;
13388}
13389
ab816a27 13390/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13391 objects.
13392
13393 The comparison is determined first by exception name, and then
13394 by exception address. */
13395
ab816a27 13396bool
cc536b21 13397ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13398{
778865d3
JB
13399 int result;
13400
ab816a27
TT
13401 result = strcmp (name, other.name);
13402 if (result < 0)
13403 return true;
13404 if (result == 0 && addr < other.addr)
13405 return true;
13406 return false;
13407}
778865d3 13408
ab816a27 13409bool
cc536b21 13410ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13411{
13412 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13413}
13414
13415/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13416 routine, but keeping the first SKIP elements untouched.
13417
13418 All duplicates are also removed. */
13419
13420static void
ab816a27 13421sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13422 int skip)
13423{
ab816a27
TT
13424 std::sort (exceptions->begin () + skip, exceptions->end ());
13425 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13426 exceptions->end ());
778865d3
JB
13427}
13428
778865d3
JB
13429/* Add all exceptions defined by the Ada standard whose name match
13430 a regular expression.
13431
13432 If PREG is not NULL, then this regexp_t object is used to
13433 perform the symbol name matching. Otherwise, no name-based
13434 filtering is performed.
13435
13436 EXCEPTIONS is a vector of exceptions to which matching exceptions
13437 gets pushed. */
13438
13439static void
2d7cc5c7 13440ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13441 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13442{
13443 int i;
13444
13445 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13446 {
13447 if (preg == NULL
2d7cc5c7 13448 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13449 {
13450 struct bound_minimal_symbol msymbol
13451 = ada_lookup_simple_minsym (standard_exc[i]);
13452
13453 if (msymbol.minsym != NULL)
13454 {
13455 struct ada_exc_info info
77e371c0 13456 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13457
ab816a27 13458 exceptions->push_back (info);
778865d3
JB
13459 }
13460 }
13461 }
13462}
13463
13464/* Add all Ada exceptions defined locally and accessible from the given
13465 FRAME.
13466
13467 If PREG is not NULL, then this regexp_t object is used to
13468 perform the symbol name matching. Otherwise, no name-based
13469 filtering is performed.
13470
13471 EXCEPTIONS is a vector of exceptions to which matching exceptions
13472 gets pushed. */
13473
13474static void
2d7cc5c7
PA
13475ada_add_exceptions_from_frame (compiled_regex *preg,
13476 struct frame_info *frame,
ab816a27 13477 std::vector<ada_exc_info> *exceptions)
778865d3 13478{
3977b71f 13479 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13480
13481 while (block != 0)
13482 {
13483 struct block_iterator iter;
13484 struct symbol *sym;
13485
13486 ALL_BLOCK_SYMBOLS (block, iter, sym)
13487 {
13488 switch (SYMBOL_CLASS (sym))
13489 {
13490 case LOC_TYPEDEF:
13491 case LOC_BLOCK:
13492 case LOC_CONST:
13493 break;
13494 default:
13495 if (ada_is_exception_sym (sym))
13496 {
13497 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13498 SYMBOL_VALUE_ADDRESS (sym)};
13499
ab816a27 13500 exceptions->push_back (info);
778865d3
JB
13501 }
13502 }
13503 }
13504 if (BLOCK_FUNCTION (block) != NULL)
13505 break;
13506 block = BLOCK_SUPERBLOCK (block);
13507 }
13508}
13509
14bc53a8
PA
13510/* Return true if NAME matches PREG or if PREG is NULL. */
13511
13512static bool
2d7cc5c7 13513name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13514{
13515 return (preg == NULL
2d7cc5c7 13516 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13517}
13518
778865d3
JB
13519/* Add all exceptions defined globally whose name name match
13520 a regular expression, excluding standard exceptions.
13521
13522 The reason we exclude standard exceptions is that they need
13523 to be handled separately: Standard exceptions are defined inside
13524 a runtime unit which is normally not compiled with debugging info,
13525 and thus usually do not show up in our symbol search. However,
13526 if the unit was in fact built with debugging info, we need to
13527 exclude them because they would duplicate the entry we found
13528 during the special loop that specifically searches for those
13529 standard exceptions.
13530
13531 If PREG is not NULL, then this regexp_t object is used to
13532 perform the symbol name matching. Otherwise, no name-based
13533 filtering is performed.
13534
13535 EXCEPTIONS is a vector of exceptions to which matching exceptions
13536 gets pushed. */
13537
13538static void
2d7cc5c7 13539ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13540 std::vector<ada_exc_info> *exceptions)
778865d3 13541{
14bc53a8
PA
13542 /* In Ada, the symbol "search name" is a linkage name, whereas the
13543 regular expression used to do the matching refers to the natural
13544 name. So match against the decoded name. */
13545 expand_symtabs_matching (NULL,
b5ec771e 13546 lookup_name_info::match_any (),
14bc53a8
PA
13547 [&] (const char *search_name)
13548 {
13549 const char *decoded = ada_decode (search_name);
13550 return name_matches_regex (decoded, preg);
13551 },
13552 NULL,
13553 VARIABLES_DOMAIN);
778865d3 13554
2030c079 13555 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13556 {
b669c953 13557 for (compunit_symtab *s : objfile->compunits ())
778865d3 13558 {
d8aeb77f
TT
13559 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13560 int i;
778865d3 13561
d8aeb77f
TT
13562 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13563 {
582942f4 13564 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13565 struct block_iterator iter;
13566 struct symbol *sym;
778865d3 13567
d8aeb77f
TT
13568 ALL_BLOCK_SYMBOLS (b, iter, sym)
13569 if (ada_is_non_standard_exception_sym (sym)
13570 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13571 {
13572 struct ada_exc_info info
13573 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13574
13575 exceptions->push_back (info);
13576 }
13577 }
778865d3
JB
13578 }
13579 }
13580}
13581
13582/* Implements ada_exceptions_list with the regular expression passed
13583 as a regex_t, rather than a string.
13584
13585 If not NULL, PREG is used to filter out exceptions whose names
13586 do not match. Otherwise, all exceptions are listed. */
13587
ab816a27 13588static std::vector<ada_exc_info>
2d7cc5c7 13589ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13590{
ab816a27 13591 std::vector<ada_exc_info> result;
778865d3
JB
13592 int prev_len;
13593
13594 /* First, list the known standard exceptions. These exceptions
13595 need to be handled separately, as they are usually defined in
13596 runtime units that have been compiled without debugging info. */
13597
13598 ada_add_standard_exceptions (preg, &result);
13599
13600 /* Next, find all exceptions whose scope is local and accessible
13601 from the currently selected frame. */
13602
13603 if (has_stack_frames ())
13604 {
ab816a27 13605 prev_len = result.size ();
778865d3
JB
13606 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13607 &result);
ab816a27 13608 if (result.size () > prev_len)
778865d3
JB
13609 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13610 }
13611
13612 /* Add all exceptions whose scope is global. */
13613
ab816a27 13614 prev_len = result.size ();
778865d3 13615 ada_add_global_exceptions (preg, &result);
ab816a27 13616 if (result.size () > prev_len)
778865d3
JB
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13618
778865d3
JB
13619 return result;
13620}
13621
13622/* Return a vector of ada_exc_info.
13623
13624 If REGEXP is NULL, all exceptions are included in the result.
13625 Otherwise, it should contain a valid regular expression,
13626 and only the exceptions whose names match that regular expression
13627 are included in the result.
13628
13629 The exceptions are sorted in the following order:
13630 - Standard exceptions (defined by the Ada language), in
13631 alphabetical order;
13632 - Exceptions only visible from the current frame, in
13633 alphabetical order;
13634 - Exceptions whose scope is global, in alphabetical order. */
13635
ab816a27 13636std::vector<ada_exc_info>
778865d3
JB
13637ada_exceptions_list (const char *regexp)
13638{
2d7cc5c7
PA
13639 if (regexp == NULL)
13640 return ada_exceptions_list_1 (NULL);
778865d3 13641
2d7cc5c7
PA
13642 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13643 return ada_exceptions_list_1 (&reg);
778865d3
JB
13644}
13645
13646/* Implement the "info exceptions" command. */
13647
13648static void
1d12d88f 13649info_exceptions_command (const char *regexp, int from_tty)
778865d3 13650{
778865d3 13651 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13652
ab816a27 13653 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13654
13655 if (regexp != NULL)
13656 printf_filtered
13657 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13658 else
13659 printf_filtered (_("All defined Ada exceptions:\n"));
13660
ab816a27
TT
13661 for (const ada_exc_info &info : exceptions)
13662 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13663}
13664
4c4b4cd2
PH
13665 /* Operators */
13666/* Information about operators given special treatment in functions
13667 below. */
13668/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13669
13670#define ADA_OPERATORS \
13671 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13672 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13673 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13674 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13675 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13679 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13681 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13682 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13683 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13685 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13686 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13687 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13688 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13689 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13690
13691static void
554794dc
SDJ
13692ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13693 int *argsp)
4c4b4cd2
PH
13694{
13695 switch (exp->elts[pc - 1].opcode)
13696 {
76a01679 13697 default:
4c4b4cd2
PH
13698 operator_length_standard (exp, pc, oplenp, argsp);
13699 break;
13700
13701#define OP_DEFN(op, len, args, binop) \
13702 case op: *oplenp = len; *argsp = args; break;
13703 ADA_OPERATORS;
13704#undef OP_DEFN
52ce6436
PH
13705
13706 case OP_AGGREGATE:
13707 *oplenp = 3;
13708 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13709 break;
13710
13711 case OP_CHOICES:
13712 *oplenp = 3;
13713 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13714 break;
4c4b4cd2
PH
13715 }
13716}
13717
c0201579
JK
13718/* Implementation of the exp_descriptor method operator_check. */
13719
13720static int
13721ada_operator_check (struct expression *exp, int pos,
13722 int (*objfile_func) (struct objfile *objfile, void *data),
13723 void *data)
13724{
13725 const union exp_element *const elts = exp->elts;
13726 struct type *type = NULL;
13727
13728 switch (elts[pos].opcode)
13729 {
13730 case UNOP_IN_RANGE:
13731 case UNOP_QUAL:
13732 type = elts[pos + 1].type;
13733 break;
13734
13735 default:
13736 return operator_check_standard (exp, pos, objfile_func, data);
13737 }
13738
13739 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13740
13741 if (type && TYPE_OBJFILE (type)
13742 && (*objfile_func) (TYPE_OBJFILE (type), data))
13743 return 1;
13744
13745 return 0;
13746}
13747
a121b7c1 13748static const char *
4c4b4cd2
PH
13749ada_op_name (enum exp_opcode opcode)
13750{
13751 switch (opcode)
13752 {
76a01679 13753 default:
4c4b4cd2 13754 return op_name_standard (opcode);
52ce6436 13755
4c4b4cd2
PH
13756#define OP_DEFN(op, len, args, binop) case op: return #op;
13757 ADA_OPERATORS;
13758#undef OP_DEFN
52ce6436
PH
13759
13760 case OP_AGGREGATE:
13761 return "OP_AGGREGATE";
13762 case OP_CHOICES:
13763 return "OP_CHOICES";
13764 case OP_NAME:
13765 return "OP_NAME";
4c4b4cd2
PH
13766 }
13767}
13768
13769/* As for operator_length, but assumes PC is pointing at the first
13770 element of the operator, and gives meaningful results only for the
52ce6436 13771 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13772
13773static void
76a01679
JB
13774ada_forward_operator_length (struct expression *exp, int pc,
13775 int *oplenp, int *argsp)
4c4b4cd2 13776{
76a01679 13777 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13778 {
13779 default:
13780 *oplenp = *argsp = 0;
13781 break;
52ce6436 13782
4c4b4cd2
PH
13783#define OP_DEFN(op, len, args, binop) \
13784 case op: *oplenp = len; *argsp = args; break;
13785 ADA_OPERATORS;
13786#undef OP_DEFN
52ce6436
PH
13787
13788 case OP_AGGREGATE:
13789 *oplenp = 3;
13790 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13791 break;
13792
13793 case OP_CHOICES:
13794 *oplenp = 3;
13795 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13796 break;
13797
13798 case OP_STRING:
13799 case OP_NAME:
13800 {
13801 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13802
52ce6436
PH
13803 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13804 *argsp = 0;
13805 break;
13806 }
4c4b4cd2
PH
13807 }
13808}
13809
13810static int
13811ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13812{
13813 enum exp_opcode op = exp->elts[elt].opcode;
13814 int oplen, nargs;
13815 int pc = elt;
13816 int i;
76a01679 13817
4c4b4cd2
PH
13818 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13819
76a01679 13820 switch (op)
4c4b4cd2 13821 {
76a01679 13822 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13823 case OP_ATR_FIRST:
13824 case OP_ATR_LAST:
13825 case OP_ATR_LENGTH:
13826 case OP_ATR_IMAGE:
13827 case OP_ATR_MAX:
13828 case OP_ATR_MIN:
13829 case OP_ATR_MODULUS:
13830 case OP_ATR_POS:
13831 case OP_ATR_SIZE:
13832 case OP_ATR_TAG:
13833 case OP_ATR_VAL:
13834 break;
13835
13836 case UNOP_IN_RANGE:
13837 case UNOP_QUAL:
323e0a4a
AC
13838 /* XXX: gdb_sprint_host_address, type_sprint */
13839 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13840 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13841 fprintf_filtered (stream, " (");
13842 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13843 fprintf_filtered (stream, ")");
13844 break;
13845 case BINOP_IN_BOUNDS:
52ce6436
PH
13846 fprintf_filtered (stream, " (%d)",
13847 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13848 break;
13849 case TERNOP_IN_RANGE:
13850 break;
13851
52ce6436
PH
13852 case OP_AGGREGATE:
13853 case OP_OTHERS:
13854 case OP_DISCRETE_RANGE:
13855 case OP_POSITIONAL:
13856 case OP_CHOICES:
13857 break;
13858
13859 case OP_NAME:
13860 case OP_STRING:
13861 {
13862 char *name = &exp->elts[elt + 2].string;
13863 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13864
52ce6436
PH
13865 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13866 break;
13867 }
13868
4c4b4cd2
PH
13869 default:
13870 return dump_subexp_body_standard (exp, stream, elt);
13871 }
13872
13873 elt += oplen;
13874 for (i = 0; i < nargs; i += 1)
13875 elt = dump_subexp (exp, stream, elt);
13876
13877 return elt;
13878}
13879
13880/* The Ada extension of print_subexp (q.v.). */
13881
76a01679
JB
13882static void
13883ada_print_subexp (struct expression *exp, int *pos,
13884 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13885{
52ce6436 13886 int oplen, nargs, i;
4c4b4cd2
PH
13887 int pc = *pos;
13888 enum exp_opcode op = exp->elts[pc].opcode;
13889
13890 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13891
52ce6436 13892 *pos += oplen;
4c4b4cd2
PH
13893 switch (op)
13894 {
13895 default:
52ce6436 13896 *pos -= oplen;
4c4b4cd2
PH
13897 print_subexp_standard (exp, pos, stream, prec);
13898 return;
13899
13900 case OP_VAR_VALUE:
4c4b4cd2
PH
13901 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13902 return;
13903
13904 case BINOP_IN_BOUNDS:
323e0a4a 13905 /* XXX: sprint_subexp */
4c4b4cd2 13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13907 fputs_filtered (" in ", stream);
4c4b4cd2 13908 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13909 fputs_filtered ("'range", stream);
4c4b4cd2 13910 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13911 fprintf_filtered (stream, "(%ld)",
13912 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13913 return;
13914
13915 case TERNOP_IN_RANGE:
4c4b4cd2 13916 if (prec >= PREC_EQUAL)
76a01679 13917 fputs_filtered ("(", stream);
323e0a4a 13918 /* XXX: sprint_subexp */
4c4b4cd2 13919 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13920 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13921 print_subexp (exp, pos, stream, PREC_EQUAL);
13922 fputs_filtered (" .. ", stream);
13923 print_subexp (exp, pos, stream, PREC_EQUAL);
13924 if (prec >= PREC_EQUAL)
76a01679
JB
13925 fputs_filtered (")", stream);
13926 return;
4c4b4cd2
PH
13927
13928 case OP_ATR_FIRST:
13929 case OP_ATR_LAST:
13930 case OP_ATR_LENGTH:
13931 case OP_ATR_IMAGE:
13932 case OP_ATR_MAX:
13933 case OP_ATR_MIN:
13934 case OP_ATR_MODULUS:
13935 case OP_ATR_POS:
13936 case OP_ATR_SIZE:
13937 case OP_ATR_TAG:
13938 case OP_ATR_VAL:
4c4b4cd2 13939 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13940 {
13941 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13942 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13943 &type_print_raw_options);
76a01679
JB
13944 *pos += 3;
13945 }
4c4b4cd2 13946 else
76a01679 13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13948 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13949 if (nargs > 1)
76a01679
JB
13950 {
13951 int tem;
5b4ee69b 13952
76a01679
JB
13953 for (tem = 1; tem < nargs; tem += 1)
13954 {
13955 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13956 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13957 }
13958 fputs_filtered (")", stream);
13959 }
4c4b4cd2 13960 return;
14f9c5c9 13961
4c4b4cd2 13962 case UNOP_QUAL:
4c4b4cd2
PH
13963 type_print (exp->elts[pc + 1].type, "", stream, 0);
13964 fputs_filtered ("'(", stream);
13965 print_subexp (exp, pos, stream, PREC_PREFIX);
13966 fputs_filtered (")", stream);
13967 return;
14f9c5c9 13968
4c4b4cd2 13969 case UNOP_IN_RANGE:
323e0a4a 13970 /* XXX: sprint_subexp */
4c4b4cd2 13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13972 fputs_filtered (" in ", stream);
79d43c61
TT
13973 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13974 &type_print_raw_options);
4c4b4cd2 13975 return;
52ce6436
PH
13976
13977 case OP_DISCRETE_RANGE:
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 fputs_filtered ("..", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 return;
13982
13983 case OP_OTHERS:
13984 fputs_filtered ("others => ", stream);
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13986 return;
13987
13988 case OP_CHOICES:
13989 for (i = 0; i < nargs-1; i += 1)
13990 {
13991 if (i > 0)
13992 fputs_filtered ("|", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 }
13995 fputs_filtered (" => ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 return;
13998
13999 case OP_POSITIONAL:
14000 print_subexp (exp, pos, stream, PREC_SUFFIX);
14001 return;
14002
14003 case OP_AGGREGATE:
14004 fputs_filtered ("(", stream);
14005 for (i = 0; i < nargs; i += 1)
14006 {
14007 if (i > 0)
14008 fputs_filtered (", ", stream);
14009 print_subexp (exp, pos, stream, PREC_SUFFIX);
14010 }
14011 fputs_filtered (")", stream);
14012 return;
4c4b4cd2
PH
14013 }
14014}
14f9c5c9
AS
14015
14016/* Table mapping opcodes into strings for printing operators
14017 and precedences of the operators. */
14018
d2e4a39e
AS
14019static const struct op_print ada_op_print_tab[] = {
14020 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14021 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14022 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14023 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14024 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14025 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14026 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14027 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14028 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14029 {">=", BINOP_GEQ, PREC_ORDER, 0},
14030 {">", BINOP_GTR, PREC_ORDER, 0},
14031 {"<", BINOP_LESS, PREC_ORDER, 0},
14032 {">>", BINOP_RSH, PREC_SHIFT, 0},
14033 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14034 {"+", BINOP_ADD, PREC_ADD, 0},
14035 {"-", BINOP_SUB, PREC_ADD, 0},
14036 {"&", BINOP_CONCAT, PREC_ADD, 0},
14037 {"*", BINOP_MUL, PREC_MUL, 0},
14038 {"/", BINOP_DIV, PREC_MUL, 0},
14039 {"rem", BINOP_REM, PREC_MUL, 0},
14040 {"mod", BINOP_MOD, PREC_MUL, 0},
14041 {"**", BINOP_EXP, PREC_REPEAT, 0},
14042 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14043 {"-", UNOP_NEG, PREC_PREFIX, 0},
14044 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14045 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14046 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14047 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14048 {".all", UNOP_IND, PREC_SUFFIX, 1},
14049 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14050 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14051 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14052};
14053\f
72d5681a
PH
14054enum ada_primitive_types {
14055 ada_primitive_type_int,
14056 ada_primitive_type_long,
14057 ada_primitive_type_short,
14058 ada_primitive_type_char,
14059 ada_primitive_type_float,
14060 ada_primitive_type_double,
14061 ada_primitive_type_void,
14062 ada_primitive_type_long_long,
14063 ada_primitive_type_long_double,
14064 ada_primitive_type_natural,
14065 ada_primitive_type_positive,
14066 ada_primitive_type_system_address,
08f49010 14067 ada_primitive_type_storage_offset,
72d5681a
PH
14068 nr_ada_primitive_types
14069};
6c038f32
PH
14070
14071static void
d4a9a881 14072ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14073 struct language_arch_info *lai)
14074{
d4a9a881 14075 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14076
72d5681a 14077 lai->primitive_type_vector
d4a9a881 14078 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14079 struct type *);
e9bb382b
UW
14080
14081 lai->primitive_type_vector [ada_primitive_type_int]
14082 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14083 0, "integer");
14084 lai->primitive_type_vector [ada_primitive_type_long]
14085 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14086 0, "long_integer");
14087 lai->primitive_type_vector [ada_primitive_type_short]
14088 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14089 0, "short_integer");
14090 lai->string_char_type
14091 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14092 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14093 lai->primitive_type_vector [ada_primitive_type_float]
14094 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14095 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14096 lai->primitive_type_vector [ada_primitive_type_double]
14097 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14098 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14099 lai->primitive_type_vector [ada_primitive_type_long_long]
14100 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14101 0, "long_long_integer");
14102 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14103 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14104 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14105 lai->primitive_type_vector [ada_primitive_type_natural]
14106 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14107 0, "natural");
14108 lai->primitive_type_vector [ada_primitive_type_positive]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 0, "positive");
14111 lai->primitive_type_vector [ada_primitive_type_void]
14112 = builtin->builtin_void;
14113
14114 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14115 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14116 "void"));
72d5681a
PH
14117 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14118 = "system__address";
fbb06eb1 14119
08f49010
XR
14120 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14121 type. This is a signed integral type whose size is the same as
14122 the size of addresses. */
14123 {
14124 unsigned int addr_length = TYPE_LENGTH
14125 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14126
14127 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14128 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14129 "storage_offset");
14130 }
14131
47e729a8 14132 lai->bool_type_symbol = NULL;
fbb06eb1 14133 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14134}
6c038f32
PH
14135\f
14136 /* Language vector */
14137
14138/* Not really used, but needed in the ada_language_defn. */
14139
14140static void
6c7a06a3 14141emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14142{
6c7a06a3 14143 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14144}
14145
14146static int
410a0ff2 14147parse (struct parser_state *ps)
6c038f32
PH
14148{
14149 warnings_issued = 0;
410a0ff2 14150 return ada_parse (ps);
6c038f32
PH
14151}
14152
14153static const struct exp_descriptor ada_exp_descriptor = {
14154 ada_print_subexp,
14155 ada_operator_length,
c0201579 14156 ada_operator_check,
6c038f32
PH
14157 ada_op_name,
14158 ada_dump_subexp_body,
14159 ada_evaluate_subexp
14160};
14161
b5ec771e
PA
14162/* symbol_name_matcher_ftype adapter for wild_match. */
14163
14164static bool
14165do_wild_match (const char *symbol_search_name,
14166 const lookup_name_info &lookup_name,
a207cff2 14167 completion_match_result *comp_match_res)
b5ec771e
PA
14168{
14169 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14170}
14171
14172/* symbol_name_matcher_ftype adapter for full_match. */
14173
14174static bool
14175do_full_match (const char *symbol_search_name,
14176 const lookup_name_info &lookup_name,
a207cff2 14177 completion_match_result *comp_match_res)
b5ec771e
PA
14178{
14179 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14180}
14181
a2cd4f14
JB
14182/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14183
14184static bool
14185do_exact_match (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
14187 completion_match_result *comp_match_res)
14188{
14189 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14190}
14191
b5ec771e
PA
14192/* Build the Ada lookup name for LOOKUP_NAME. */
14193
14194ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14195{
14196 const std::string &user_name = lookup_name.name ();
14197
14198 if (user_name[0] == '<')
14199 {
14200 if (user_name.back () == '>')
14201 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14202 else
14203 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14204 m_encoded_p = true;
14205 m_verbatim_p = true;
14206 m_wild_match_p = false;
14207 m_standard_p = false;
14208 }
14209 else
14210 {
14211 m_verbatim_p = false;
14212
14213 m_encoded_p = user_name.find ("__") != std::string::npos;
14214
14215 if (!m_encoded_p)
14216 {
14217 const char *folded = ada_fold_name (user_name.c_str ());
14218 const char *encoded = ada_encode_1 (folded, false);
14219 if (encoded != NULL)
14220 m_encoded_name = encoded;
14221 else
14222 m_encoded_name = user_name;
14223 }
14224 else
14225 m_encoded_name = user_name;
14226
14227 /* Handle the 'package Standard' special case. See description
14228 of m_standard_p. */
14229 if (startswith (m_encoded_name.c_str (), "standard__"))
14230 {
14231 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14232 m_standard_p = true;
14233 }
14234 else
14235 m_standard_p = false;
74ccd7f5 14236
b5ec771e
PA
14237 /* If the name contains a ".", then the user is entering a fully
14238 qualified entity name, and the match must not be done in wild
14239 mode. Similarly, if the user wants to complete what looks
14240 like an encoded name, the match must not be done in wild
14241 mode. Also, in the standard__ special case always do
14242 non-wild matching. */
14243 m_wild_match_p
14244 = (lookup_name.match_type () != symbol_name_match_type::FULL
14245 && !m_encoded_p
14246 && !m_standard_p
14247 && user_name.find ('.') == std::string::npos);
14248 }
14249}
14250
14251/* symbol_name_matcher_ftype method for Ada. This only handles
14252 completion mode. */
14253
14254static bool
14255ada_symbol_name_matches (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
a207cff2 14257 completion_match_result *comp_match_res)
74ccd7f5 14258{
b5ec771e
PA
14259 return lookup_name.ada ().matches (symbol_search_name,
14260 lookup_name.match_type (),
a207cff2 14261 comp_match_res);
b5ec771e
PA
14262}
14263
de63c46b
PA
14264/* A name matcher that matches the symbol name exactly, with
14265 strcmp. */
14266
14267static bool
14268literal_symbol_name_matcher (const char *symbol_search_name,
14269 const lookup_name_info &lookup_name,
14270 completion_match_result *comp_match_res)
14271{
14272 const std::string &name = lookup_name.name ();
14273
14274 int cmp = (lookup_name.completion_mode ()
14275 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14276 : strcmp (symbol_search_name, name.c_str ()));
14277 if (cmp == 0)
14278 {
14279 if (comp_match_res != NULL)
14280 comp_match_res->set_match (symbol_search_name);
14281 return true;
14282 }
14283 else
14284 return false;
14285}
14286
b5ec771e
PA
14287/* Implement the "la_get_symbol_name_matcher" language_defn method for
14288 Ada. */
14289
14290static symbol_name_matcher_ftype *
14291ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14292{
de63c46b
PA
14293 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14294 return literal_symbol_name_matcher;
14295
b5ec771e
PA
14296 if (lookup_name.completion_mode ())
14297 return ada_symbol_name_matches;
74ccd7f5 14298 else
b5ec771e
PA
14299 {
14300 if (lookup_name.ada ().wild_match_p ())
14301 return do_wild_match;
a2cd4f14
JB
14302 else if (lookup_name.ada ().verbatim_p ())
14303 return do_exact_match;
b5ec771e
PA
14304 else
14305 return do_full_match;
14306 }
74ccd7f5
JB
14307}
14308
a5ee536b
JB
14309/* Implement the "la_read_var_value" language_defn method for Ada. */
14310
14311static struct value *
63e43d3a
PMR
14312ada_read_var_value (struct symbol *var, const struct block *var_block,
14313 struct frame_info *frame)
a5ee536b 14314{
3977b71f 14315 const struct block *frame_block = NULL;
a5ee536b
JB
14316 struct symbol *renaming_sym = NULL;
14317
14318 /* The only case where default_read_var_value is not sufficient
14319 is when VAR is a renaming... */
14320 if (frame)
14321 frame_block = get_frame_block (frame, NULL);
14322 if (frame_block)
14323 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14324 if (renaming_sym != NULL)
14325 return ada_read_renaming_var_value (renaming_sym, frame_block);
14326
14327 /* This is a typical case where we expect the default_read_var_value
14328 function to work. */
63e43d3a 14329 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14330}
14331
56618e20
TT
14332static const char *ada_extensions[] =
14333{
14334 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14335};
14336
47e77640 14337extern const struct language_defn ada_language_defn = {
6c038f32 14338 "ada", /* Language name */
6abde28f 14339 "Ada",
6c038f32 14340 language_ada,
6c038f32 14341 range_check_off,
6c038f32
PH
14342 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14343 that's not quite what this means. */
6c038f32 14344 array_row_major,
9a044a89 14345 macro_expansion_no,
56618e20 14346 ada_extensions,
6c038f32
PH
14347 &ada_exp_descriptor,
14348 parse,
6c038f32
PH
14349 resolve,
14350 ada_printchar, /* Print a character constant */
14351 ada_printstr, /* Function to print string constant */
14352 emit_char, /* Function to print single char (not used) */
6c038f32 14353 ada_print_type, /* Print a type using appropriate syntax */
be942545 14354 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14355 ada_val_print, /* Print a value using appropriate syntax */
14356 ada_value_print, /* Print a top-level value */
a5ee536b 14357 ada_read_var_value, /* la_read_var_value */
6c038f32 14358 NULL, /* Language specific skip_trampoline */
2b2d9e11 14359 NULL, /* name_of_this */
59cc4834 14360 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14361 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14362 basic_lookup_transparent_type, /* lookup_transparent_type */
14363 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14364 ada_sniff_from_mangled_name,
0963b4bd
MS
14365 NULL, /* Language specific
14366 class_name_from_physname */
6c038f32
PH
14367 ada_op_print_tab, /* expression operators for printing */
14368 0, /* c-style arrays */
14369 1, /* String lower bound */
6c038f32 14370 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14371 ada_collect_symbol_completion_matches,
72d5681a 14372 ada_language_arch_info,
e79af960 14373 ada_print_array_index,
41f1b697 14374 default_pass_by_reference,
ae6a3a4c 14375 c_get_string,
e2b7af72 14376 ada_watch_location_expression,
b5ec771e 14377 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14378 ada_iterate_over_symbols,
5ffa0793 14379 default_search_name_hash,
a53b64ea 14380 &ada_varobj_ops,
bb2ec1b3
TT
14381 NULL,
14382 NULL,
6c038f32
PH
14383 LANG_MAGIC
14384};
14385
5bf03f13
JB
14386/* Command-list for the "set/show ada" prefix command. */
14387static struct cmd_list_element *set_ada_list;
14388static struct cmd_list_element *show_ada_list;
14389
14390/* Implement the "set ada" prefix command. */
14391
14392static void
981a3fb3 14393set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14394{
14395 printf_unfiltered (_(\
14396"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14397 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14398}
14399
14400/* Implement the "show ada" prefix command. */
14401
14402static void
981a3fb3 14403show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14404{
14405 cmd_show_list (show_ada_list, from_tty, "");
14406}
14407
2060206e
PA
14408static void
14409initialize_ada_catchpoint_ops (void)
14410{
14411 struct breakpoint_ops *ops;
14412
14413 initialize_breakpoint_ops ();
14414
14415 ops = &catch_exception_breakpoint_ops;
14416 *ops = bkpt_breakpoint_ops;
2060206e
PA
14417 ops->allocate_location = allocate_location_catch_exception;
14418 ops->re_set = re_set_catch_exception;
14419 ops->check_status = check_status_catch_exception;
14420 ops->print_it = print_it_catch_exception;
14421 ops->print_one = print_one_catch_exception;
14422 ops->print_mention = print_mention_catch_exception;
14423 ops->print_recreate = print_recreate_catch_exception;
14424
14425 ops = &catch_exception_unhandled_breakpoint_ops;
14426 *ops = bkpt_breakpoint_ops;
2060206e
PA
14427 ops->allocate_location = allocate_location_catch_exception_unhandled;
14428 ops->re_set = re_set_catch_exception_unhandled;
14429 ops->check_status = check_status_catch_exception_unhandled;
14430 ops->print_it = print_it_catch_exception_unhandled;
14431 ops->print_one = print_one_catch_exception_unhandled;
14432 ops->print_mention = print_mention_catch_exception_unhandled;
14433 ops->print_recreate = print_recreate_catch_exception_unhandled;
14434
14435 ops = &catch_assert_breakpoint_ops;
14436 *ops = bkpt_breakpoint_ops;
2060206e
PA
14437 ops->allocate_location = allocate_location_catch_assert;
14438 ops->re_set = re_set_catch_assert;
14439 ops->check_status = check_status_catch_assert;
14440 ops->print_it = print_it_catch_assert;
14441 ops->print_one = print_one_catch_assert;
14442 ops->print_mention = print_mention_catch_assert;
14443 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14444
14445 ops = &catch_handlers_breakpoint_ops;
14446 *ops = bkpt_breakpoint_ops;
14447 ops->allocate_location = allocate_location_catch_handlers;
14448 ops->re_set = re_set_catch_handlers;
14449 ops->check_status = check_status_catch_handlers;
14450 ops->print_it = print_it_catch_handlers;
14451 ops->print_one = print_one_catch_handlers;
14452 ops->print_mention = print_mention_catch_handlers;
14453 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14454}
14455
3d9434b5
JB
14456/* This module's 'new_objfile' observer. */
14457
14458static void
14459ada_new_objfile_observer (struct objfile *objfile)
14460{
14461 ada_clear_symbol_cache ();
14462}
14463
14464/* This module's 'free_objfile' observer. */
14465
14466static void
14467ada_free_objfile_observer (struct objfile *objfile)
14468{
14469 ada_clear_symbol_cache ();
14470}
14471
d2e4a39e 14472void
6c038f32 14473_initialize_ada_language (void)
14f9c5c9 14474{
2060206e
PA
14475 initialize_ada_catchpoint_ops ();
14476
5bf03f13 14477 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14478 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14479 &set_ada_list, "set ada ", 0, &setlist);
14480
14481 add_prefix_cmd ("ada", no_class, show_ada_command,
14482 _("Generic command for showing Ada-specific settings."),
14483 &show_ada_list, "show ada ", 0, &showlist);
14484
14485 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14486 &trust_pad_over_xvs, _("\
14487Enable or disable an optimization trusting PAD types over XVS types"), _("\
14488Show whether an optimization trusting PAD types over XVS types is activated"),
14489 _("\
14490This is related to the encoding used by the GNAT compiler. The debugger\n\
14491should normally trust the contents of PAD types, but certain older versions\n\
14492of GNAT have a bug that sometimes causes the information in the PAD type\n\
14493to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14494work around this bug. It is always safe to turn this option \"off\", but\n\
14495this incurs a slight performance penalty, so it is recommended to NOT change\n\
14496this option to \"off\" unless necessary."),
14497 NULL, NULL, &set_ada_list, &show_ada_list);
14498
d72413e6
PMR
14499 add_setshow_boolean_cmd ("print-signatures", class_vars,
14500 &print_signatures, _("\
14501Enable or disable the output of formal and return types for functions in the \
14502overloads selection menu"), _("\
14503Show whether the output of formal and return types for functions in the \
14504overloads selection menu is activated"),
14505 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14506
9ac4176b
PA
14507 add_catch_command ("exception", _("\
14508Catch Ada exceptions, when raised.\n\
60a90376
JB
14509Usage: catch exception [ ARG ]\n\
14510\n\
14511Without any argument, stop when any Ada exception is raised.\n\
14512If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14513being raised does not have a handler (and will therefore lead to the task's\n\
14514termination).\n\
14515Otherwise, the catchpoint only stops when the name of the exception being\n\
14516raised is the same as ARG."),
9ac4176b
PA
14517 catch_ada_exception_command,
14518 NULL,
14519 CATCH_PERMANENT,
14520 CATCH_TEMPORARY);
9f757bf7
XR
14521
14522 add_catch_command ("handlers", _("\
14523Catch Ada exceptions, when handled.\n\
14524With an argument, catch only exceptions with the given name."),
14525 catch_ada_handlers_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
9ac4176b
PA
14529 add_catch_command ("assert", _("\
14530Catch failed Ada assertions, when raised.\n\
14531With an argument, catch only exceptions with the given name."),
14532 catch_assert_command,
14533 NULL,
14534 CATCH_PERMANENT,
14535 CATCH_TEMPORARY);
14536
6c038f32 14537 varsize_limit = 65536;
3fcded8f
JB
14538 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14539 &varsize_limit, _("\
14540Set the maximum number of bytes allowed in a variable-size object."), _("\
14541Show the maximum number of bytes allowed in a variable-size object."), _("\
14542Attempts to access an object whose size is not a compile-time constant\n\
14543and exceeds this limit will cause an error."),
14544 NULL, NULL, &setlist, &showlist);
6c038f32 14545
778865d3
JB
14546 add_info ("exceptions", info_exceptions_command,
14547 _("\
14548List all Ada exception names.\n\
14549If a regular expression is passed as an argument, only those matching\n\
14550the regular expression are listed."));
14551
c6044dd1
JB
14552 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14553 _("Set Ada maintenance-related variables."),
14554 &maint_set_ada_cmdlist, "maintenance set ada ",
14555 0/*allow-unknown*/, &maintenance_set_cmdlist);
14556
14557 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14558 _("Show Ada maintenance-related variables"),
14559 &maint_show_ada_cmdlist, "maintenance show ada ",
14560 0/*allow-unknown*/, &maintenance_show_cmdlist);
14561
14562 add_setshow_boolean_cmd
14563 ("ignore-descriptive-types", class_maintenance,
14564 &ada_ignore_descriptive_types_p,
14565 _("Set whether descriptive types generated by GNAT should be ignored."),
14566 _("Show whether descriptive types generated by GNAT should be ignored."),
14567 _("\
14568When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14569DWARF attribute."),
14570 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14571
459a2e4c
TT
14572 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14573 NULL, xcalloc, xfree);
6b69afc4 14574
3d9434b5 14575 /* The ada-lang observers. */
76727919
TT
14576 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14577 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14578 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14579
14580 /* Setup various context-specific data. */
e802dbe0 14581 ada_inferior_data
8e260fc0 14582 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14583 ada_pspace_data_handle
14584 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14585}