]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Adapt gdb.ada/pkd_arr_elem.exp to accept reordered components
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2913 struct type *slice_type =
b0dd7688 2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
5b4ee69b 2926
aa715135
JG
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2930 return value_at_lazy (slice_type, base);
0b5d8877
PH
2931}
2932
2933
2934static struct value *
2935ada_value_slice (struct value *array, int low, int high)
2936{
b0dd7688 2937 struct type *type = ada_check_typedef (value_type (array));
aa715135 2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2941 struct type *slice_type =
0b5d8877 2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
aa715135
JG
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2
PH
3237static void
3238resolve (struct expression **expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
4c4b4cd2 3259resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
ec6a20c2 3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
52ce6436
PH
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
14f9c5c9
AS
3277 switch (op)
3278 {
4c4b4cd2
PH
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
4c4b4cd2
PH
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3289 break;
3290
14f9c5c9 3291 case UNOP_ADDR:
4c4b4cd2
PH
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
52ce6436
PH
3296 case UNOP_QUAL:
3297 *pos += 3;
17466c1a 3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3299 break;
3300
52ce6436 3301 case OP_ATR_MODULUS:
4c4b4cd2
PH
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
4c4b4cd2
PH
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
4c4b4cd2
PH
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
52ce6436
PH
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
14f9c5c9
AS
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
4c4b4cd2
PH
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
df407dfe 3333 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3334 break;
14f9c5c9
AS
3335 }
3336
4c4b4cd2 3337 case UNOP_CAST:
4c4b4cd2
PH
3338 *pos += 3;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
14f9c5c9 3355
4c4b4cd2
PH
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
40c8aaa9
JB
3366 *pos += 1;
3367 nargs = 2;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
14f9c5c9 3378
4c4b4cd2 3379 case OP_LONG:
edd079d9 3380 case OP_FLOAT:
4c4b4cd2 3381 case OP_VAR_VALUE:
74ea4be4 3382 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3383 *pos += 4;
3384 break;
14f9c5c9 3385
4c4b4cd2
PH
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
4c4b4cd2
PH
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
67f3407f
DJ
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
4c4b4cd2
PH
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
4c4b4cd2 3407 case TERNOP_SLICE:
4c4b4cd2
PH
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
52ce6436 3412 case OP_STRING:
14f9c5c9 3413 break;
4c4b4cd2
PH
3414
3415 default:
323e0a4a 3416 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3417 }
3418
8d749320 3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
14f9c5c9 3431 case OP_VAR_VALUE:
4c4b4cd2 3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3433 {
d12307c1 3434 struct block_symbol *candidates;
76a01679
JB
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3441 &candidates);
ec6a20c2 3442 make_cleanup (xfree, candidates);
76a01679
JB
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
d12307c1 3451 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
76a01679
JB
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
76a01679 3458 case LOC_COMPUTED:
76a01679
JB
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
d12307c1 3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
323e0a4a 3481 error (_("No definition found for %s"),
76a01679
JB
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
06d5cf63
JB
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
76a01679 3492 if (i < 0)
323e0a4a 3493 error (_("Could not find a match for %s"),
76a01679
JB
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
323e0a4a 3498 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
14f9c5c9
AS
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
4c4b4cd2 3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3526 {
d12307c1 3527 struct block_symbol *candidates;
4c4b4cd2
PH
3528 int n_candidates;
3529
3530 n_candidates =
76a01679
JB
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3534 &candidates);
ec6a20c2
JB
3535 make_cleanup (xfree, candidates);
3536
4c4b4cd2
PH
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
06d5cf63
JB
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
4c4b4cd2 3546 if (i < 0)
323e0a4a 3547 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3555 innermost_block = candidates[i].block;
3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
d12307c1 3582 struct block_symbol *candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2
JB
3589 make_cleanup (xfree, candidates);
3590
4c4b4cd2 3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3592 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3593 if (i < 0)
3594 break;
3595
d12307c1
PMR
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
4c4b4cd2
PH
3599 exp = *expp;
3600 }
14f9c5c9 3601 break;
4c4b4cd2
PH
3602
3603 case OP_TYPE:
b3dbf008 3604 case OP_REGISTER:
ec6a20c2 3605 do_cleanups (old_chain);
4c4b4cd2 3606 return NULL;
14f9c5c9
AS
3607 }
3608
3609 *pos = pc;
ec6a20c2 3610 do_cleanups (old_chain);
ced9779b
JB
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4043 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
a121b7c1 4046 const char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
d2e4a39e 4118replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4127 struct expression *exp = *expp;
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
aacb1f0a 4144 xfree (exp);
d2e4a39e 4145}
14f9c5c9
AS
4146
4147/* Type-class predicates */
4148
4c4b4cd2
PH
4149/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153numeric_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4c4b4cd2
PH
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
d2e4a39e 4170 }
14f9c5c9
AS
4171}
4172
4c4b4cd2 4173/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176integer_type_p (struct type *type)
14f9c5c9
AS
4177{
4178 if (type == NULL)
4179 return 0;
d2e4a39e
AS
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4c4b4cd2
PH
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
d2e4a39e 4192 }
14f9c5c9
AS
4193}
4194
4c4b4cd2 4195/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4196
4197static int
d2e4a39e 4198scalar_type_p (struct type *type)
14f9c5c9
AS
4199{
4200 if (type == NULL)
4201 return 0;
d2e4a39e
AS
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4c4b4cd2
PH
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
d2e4a39e 4214 }
14f9c5c9
AS
4215}
4216
4c4b4cd2 4217/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4218
4219static int
d2e4a39e 4220discrete_type_p (struct type *type)
14f9c5c9
AS
4221{
4222 if (type == NULL)
4223 return 0;
d2e4a39e
AS
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4c4b4cd2
PH
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
872f0337 4231 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4232 return 1;
4233 default:
4234 return 0;
4235 }
d2e4a39e 4236 }
14f9c5c9
AS
4237}
4238
4c4b4cd2
PH
4239/* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
14f9c5c9
AS
4242
4243static int
d2e4a39e 4244possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4245{
76a01679 4246 struct type *type0 =
df407dfe 4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4248 struct type *type1 =
df407dfe 4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4250
4c4b4cd2
PH
4251 if (type0 == NULL)
4252 return 0;
4253
14f9c5c9
AS
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
d2e4a39e 4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
d2e4a39e 4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
d2e4a39e 4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4279
4280 case BINOP_CONCAT:
ee90b9ab 4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4282
4283 case BINOP_EXP:
d2e4a39e 4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
14f9c5c9
AS
4291
4292 }
4293}
4294\f
4c4b4cd2 4295 /* Renaming */
14f9c5c9 4296
aeb5907d
JB
4297/* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309/* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
0963b4bd 4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328enum ada_renaming_category
4329ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332{
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
14f9c5c9 4340 {
aeb5907d
JB
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
14f9c5c9 4374 }
4c4b4cd2 4375
aeb5907d
JB
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387}
4388
4389/* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393static enum ada_renaming_category
4394parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397{
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
14f9c5c9 4402
aeb5907d
JB
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
14f9c5c9 4406
aeb5907d
JB
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
14f9c5c9 4432
aeb5907d
JB
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
a5ee536b
JB
4446}
4447
4448/* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
52ce6436 4451
a5ee536b
JB
4452static struct value *
4453ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4454 const struct block *block)
a5ee536b 4455{
bbc13ae3 4456 const char *sym_name;
a5ee536b 4457
bbc13ae3 4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
a5ee536b 4461}
14f9c5c9 4462\f
d2e4a39e 4463
4c4b4cd2 4464 /* Evaluation: Function Calls */
14f9c5c9 4465
4c4b4cd2 4466/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4469
d2e4a39e 4470static struct value *
40bc484c 4471ensure_lval (struct value *val)
14f9c5c9 4472{
40bc484c
JB
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4475 {
df407dfe 4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4479
a84a8a0d 4480 VALUE_LVAL (val) = lval_memory;
1a088441 4481 set_value_address (val, addr);
40bc484c 4482 write_memory (addr, value_contents (val), len);
c3e5cd34 4483 }
14f9c5c9
AS
4484
4485 return val;
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
14f9c5c9 4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
14f9c5c9 4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
5b4ee69b 4521
df407dfe 4522 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4523 val = allocate_value (actual_type);
990a07ab 4524 memcpy ((char *) value_contents_raw (val),
0fd88904 4525 (char *) value_contents (actual),
4c4b4cd2 4526 TYPE_LENGTH (actual_type));
40bc484c 4527 actual = ensure_lval (val);
4c4b4cd2 4528 }
a84a8a0d 4529 result = value_addr (actual);
4c4b4cd2 4530 }
a84a8a0d
JB
4531 else
4532 return actual;
b1af9e97 4533 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
8344af1e
JB
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
14f9c5c9
AS
4547
4548 return actual;
4549}
4550
438c98a1
JB
4551/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556static CORE_ADDR
4557value_pointer (struct value *value, struct type *type)
4558{
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
224c3ddb 4561 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568}
4569
14f9c5c9 4570
4c4b4cd2
PH
4571/* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
14f9c5c9 4576
d2e4a39e 4577static struct value *
40bc484c 4578make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4579{
d2e4a39e
AS
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4584 int i;
d2e4a39e 4585
0963b4bd
MS
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
14f9c5c9 4588 {
19f220c3
JK
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4597 }
d2e4a39e 4598
40bc484c 4599 bounds = ensure_lval (bounds);
d2e4a39e 4600
19f220c3
JK
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4614
40bc484c 4615 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621}
14f9c5c9 4622\f
3d9434b5
JB
4623 /* Symbol Cache Module */
4624
3d9434b5 4625/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4626 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
ee01b665 4635/* Initialize the contents of SYM_CACHE. */
3d9434b5 4636
ee01b665
JB
4637static void
4638ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639{
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642}
3d9434b5 4643
ee01b665
JB
4644/* Free the memory used by SYM_CACHE. */
4645
4646static void
4647ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4648{
ee01b665
JB
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651}
3d9434b5 4652
ee01b665
JB
4653/* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4655
ee01b665
JB
4656static struct ada_symbol_cache *
4657ada_get_symbol_cache (struct program_space *pspace)
4658{
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4660
66c168ae 4661 if (pspace_data->sym_cache == NULL)
ee01b665 4662 {
66c168ae
JB
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4665 }
4666
66c168ae 4667 return pspace_data->sym_cache;
ee01b665 4668}
3d9434b5
JB
4669
4670/* Clear all entries from the symbol cache. */
4671
4672static void
4673ada_clear_symbol_cache (void)
4674{
ee01b665
JB
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4680}
4681
fe978cb0 4682/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return it if found, or NULL otherwise. */
4684
4685static struct cache_entry **
fe978cb0 4686find_entry (const char *name, domain_enum domain)
3d9434b5 4687{
ee01b665
JB
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
ee01b665 4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4694 {
fe978cb0 4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4696 return e;
4697 }
4698 return NULL;
4699}
4700
fe978cb0 4701/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4706
96d887e8 4707static int
fe978cb0 4708lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4709 struct symbol **sym, const struct block **block)
96d887e8 4710{
fe978cb0 4711 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
96d887e8
PH
4720}
4721
3d9434b5 4722/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4723 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4724
96d887e8 4725static void
fe978cb0 4726cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4727 const struct block *block)
96d887e8 4728{
ee01b665
JB
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
1994afbf
DE
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
3d9434b5
JB
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
08be3fe3 4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4746 GLOBAL_BLOCK) != block
08be3fe3 4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4748 STATIC_BLOCK) != block)
3d9434b5
JB
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
224c3ddb
SM
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4758 strcpy (copy, name);
4759 e->sym = sym;
fe978cb0 4760 e->domain = domain;
3d9434b5 4761 e->block = block;
96d887e8 4762}
4c4b4cd2
PH
4763\f
4764 /* Symbol Lookup */
4765
b5ec771e
PA
4766/* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
b5ec771e
PA
4772static symbol_name_match_type
4773name_match_type_from_name (const char *lookup_name)
c0431670 4774{
b5ec771e
PA
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
c0431670
JB
4778}
4779
4c4b4cd2
PH
4780/* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783static struct symbol *
4784standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786{
acbd605d 4787 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4788 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4789
d12307c1
PMR
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
2570f2b7 4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4c4b4cd2
PH
4795}
4796
4797
4798/* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801static int
d12307c1 4802is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4803{
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
d12307c1
PMR
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4810 return 1;
4811
4812 return 0;
4813}
4814
4815/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4816 struct types. Otherwise, they may not. */
14f9c5c9
AS
4817
4818static int
d2e4a39e 4819equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4820{
d2e4a39e 4821 if (type0 == type1)
14f9c5c9 4822 return 1;
d2e4a39e 4823 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
d2e4a39e 4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4830 return 1;
d2e4a39e 4831
14f9c5c9
AS
4832 return 0;
4833}
4834
4835/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4836 no more defined than that of SYM1. */
14f9c5c9
AS
4837
4838static int
d2e4a39e 4839lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4840{
4841 if (sym0 == sym1)
4842 return 1;
176620f1 4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
d2e4a39e 4847 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4c4b4cd2
PH
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4857 int len0 = strlen (name0);
5b4ee69b 4858
4c4b4cd2
PH
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4863 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4868 default:
4869 return 0;
14f9c5c9
AS
4870 }
4871}
4872
d12307c1 4873/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4875
4876static void
76a01679
JB
4877add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
f0c5f9b2 4879 const struct block *block)
14f9c5c9
AS
4880{
4881 int i;
d12307c1 4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4883
529cad9c
PH
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4c4b4cd2
PH
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
d12307c1 4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4896 return;
d12307c1 4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4898 {
d12307c1 4899 prevDefns[i].symbol = sym;
4c4b4cd2 4900 prevDefns[i].block = block;
4c4b4cd2 4901 return;
76a01679 4902 }
4c4b4cd2
PH
4903 }
4904
4905 {
d12307c1 4906 struct block_symbol info;
4c4b4cd2 4907
d12307c1 4908 info.symbol = sym;
4c4b4cd2 4909 info.block = block;
d12307c1 4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4911 }
4912}
4913
d12307c1
PMR
4914/* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4c4b4cd2 4916
76a01679
JB
4917static int
4918num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4919{
d12307c1 4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4921}
4922
d12307c1
PMR
4923/* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4925
d12307c1 4926static struct block_symbol *
4c4b4cd2
PH
4927defns_collected (struct obstack *obstackp, int finish)
4928{
4929 if (finish)
224c3ddb 4930 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4931 else
d12307c1 4932 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4933}
4934
7c7b6655
TT
4935/* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4c4b4cd2 4940
7c7b6655 4941struct bound_minimal_symbol
96d887e8 4942ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4943{
7c7b6655 4944 struct bound_minimal_symbol result;
4c4b4cd2 4945 struct objfile *objfile;
96d887e8 4946 struct minimal_symbol *msymbol;
4c4b4cd2 4947
7c7b6655
TT
4948 memset (&result, 0, sizeof (result));
4949
b5ec771e
PA
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4955
96d887e8
PH
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
b5ec771e 4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
96d887e8 4965 }
4c4b4cd2 4966
7c7b6655 4967 return result;
96d887e8 4968}
4c4b4cd2 4969
96d887e8
PH
4970/* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4c4b4cd2 4975
96d887e8
PH
4976static void
4977add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
96d887e8 4980{
96d887e8 4981}
14f9c5c9 4982
96d887e8
PH
4983/* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
14f9c5c9 4985
96d887e8
PH
4986static int
4987is_nondebugging_type (struct type *type)
4988{
0d5cff50 4989 const char *name = ada_type_name (type);
5b4ee69b 4990
96d887e8
PH
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992}
4c4b4cd2 4993
8f17729f
JB
4994/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001static int
5002ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003{
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
0d5cff50
DE
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035}
5036
5037/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057static int
d12307c1 5058symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5059{
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
d12307c1 5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
d12307c1 5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5091 return 0;
5092
5093 return 1;
5094}
5095
96d887e8
PH
5096/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
4c4b4cd2 5102
96d887e8 5103static int
d12307c1 5104remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5105{
5106 int i, j;
4c4b4cd2 5107
8f17729f
JB
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
96d887e8
PH
5114 i = 0;
5115 while (i < nsyms)
5116 {
a35ddb44 5117 int remove_p = 0;
339c13b6
JB
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
d12307c1
PMR
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
d12307c1
PMR
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5132 remove_p = 1;
339c13b6
JB
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
d12307c1
PMR
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
d12307c1
PMR
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5153 remove_p = 1;
4c4b4cd2 5154 }
4c4b4cd2 5155 }
339c13b6 5156
a35ddb44 5157 if (remove_p)
339c13b6
JB
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
96d887e8 5164 i += 1;
14f9c5c9 5165 }
8f17729f
JB
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
96d887e8 5182 return nsyms;
14f9c5c9
AS
5183}
5184
96d887e8
PH
5185/* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5189
96d887e8
PH
5190static char *
5191xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5192{
96d887e8 5193 /* The renaming types adhere to the following convention:
0963b4bd 5194 <scope>__<rename>___<XR extension>.
96d887e8
PH
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
76a01679 5197
96d887e8 5198 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
96d887e8
PH
5201 int scope_len;
5202 char *scope;
14f9c5c9 5203
96d887e8
PH
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5206
96d887e8
PH
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
76a01679 5210
96d887e8 5211 /* Make a copy of scope and return it. */
14f9c5c9 5212
96d887e8
PH
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5215
96d887e8
PH
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
4c4b4cd2 5218
96d887e8 5219 return scope;
4c4b4cd2
PH
5220}
5221
96d887e8 5222/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5223
96d887e8
PH
5224static int
5225is_package_name (const char *name)
4c4b4cd2 5226{
96d887e8
PH
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
4c4b4cd2 5232
96d887e8 5233 char *fun_name;
76a01679 5234
96d887e8
PH
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
14f9c5c9 5242
96d887e8 5243 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5244 functions names cannot contain "__" in them. */
96d887e8
PH
5245 if (strstr (name, "__") != NULL)
5246 return 0;
4c4b4cd2 5247
b435e160 5248 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5249
96d887e8
PH
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251}
14f9c5c9 5252
96d887e8 5253/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5254 not visible from FUNCTION_NAME. */
14f9c5c9 5255
96d887e8 5256static int
0d5cff50 5257old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5258{
aeb5907d 5259 char *scope;
1509e573 5260 struct cleanup *old_chain;
aeb5907d
JB
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5266 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5267
96d887e8
PH
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
1509e573
JB
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
14f9c5c9 5274
96d887e8
PH
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
76a01679 5277
96d887e8
PH
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
61012eef 5282 if (startswith (function_name, "_ada_"))
96d887e8 5283 function_name += 5;
f26caa11 5284
1509e573 5285 {
61012eef 5286 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
f26caa11
PH
5291}
5292
aeb5907d
JB
5293/* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
96d887e8
PH
5298
5299 Rationale:
aeb5907d
JB
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
f26caa11 5312
96d887e8
PH
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
4c4b4cd2 5329
14f9c5c9 5330static int
d12307c1 5331remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5332 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5333{
5334 struct symbol *current_function;
0d5cff50 5335 const char *current_function_name;
4c4b4cd2 5336 int i;
aeb5907d
JB
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
0963b4bd 5341 First, zero out such symbols, then compress. */
aeb5907d
JB
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
d12307c1 5345 struct symbol *sym = syms[i].symbol;
270140bd 5346 const struct block *block = syms[i].block;
aeb5907d
JB
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5b4ee69b 5359
aeb5907d
JB
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5364 name_len) == 0
5365 && block == syms[j].block)
d12307c1 5366 syms[j].symbol = NULL;
aeb5907d
JB
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5374 if (syms[j].symbol != NULL)
aeb5907d
JB
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
4c4b4cd2
PH
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
76a01679 5384
4c4b4cd2
PH
5385 if (current_block == NULL)
5386 return nsyms;
76a01679 5387
7f0df278 5388 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
d12307c1 5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5404 == ADA_OBJECT_RENAMING
d12307c1 5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5406 {
5407 int j;
5b4ee69b 5408
aeb5907d 5409 for (j = i + 1; j < nsyms; j += 1)
76a01679 5410 syms[j - 1] = syms[j];
4c4b4cd2
PH
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418}
5419
339c13b6
JB
5420/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430static void
b5ec771e
PA
5431ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
339c13b6
JB
5434{
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
b5ec771e 5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5454}
5455
ccefe4c4 5456/* An object of this type is used as the user_data argument when
40658b94 5457 calling the map_matching_symbols method. */
ccefe4c4 5458
40658b94 5459struct match_data
ccefe4c4 5460{
40658b94 5461 struct objfile *objfile;
ccefe4c4 5462 struct obstack *obstackp;
40658b94
PH
5463 struct symbol *arg_sym;
5464 int found_sym;
ccefe4c4
TT
5465};
5466
22cee43f 5467/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
ccefe4c4 5475
40658b94
PH
5476static int
5477aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5478{
40658b94
PH
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505}
5506
b5ec771e
PA
5507/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5510
5511static int
5512ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
b5ec771e
PA
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
22cee43f
PMR
5516{
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
b5ec771e
PA
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
22cee43f
PMR
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
22cee43f
PMR
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
b5ec771e
PA
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
22cee43f
PMR
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562}
5563
db230ce3
JB
5564/* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5b4ee69b 5566
40658b94 5567static int
db230ce3
JB
5568compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
40658b94
PH
5570{
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
db230ce3
JB
5573 char c1, c2;
5574
40658b94
PH
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
40658b94 5589 break;
db230ce3 5590
40658b94
PH
5591 string1 += 1;
5592 string2 += 1;
5593 }
db230ce3 5594
40658b94
PH
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
052874e8 5602 if (is_name_suffix (string1))
40658b94
PH
5603 return 0;
5604 else
1a1d5513 5605 return 1;
40658b94 5606 }
dbb8534f 5607 /* FALLTHROUGH */
40658b94
PH
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
db230ce3
JB
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
40658b94 5618 }
ccefe4c4
TT
5619}
5620
db230ce3
JB
5621/* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632static int
5633compare_names (const char *string1, const char *string2)
5634{
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647}
5648
b5ec771e
PA
5649/* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652static const char *
5653ada_lookup_name (const lookup_name_info &lookup_name)
5654{
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656}
5657
339c13b6 5658/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
339c13b6
JB
5662
5663static void
b5ec771e
PA
5664add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
339c13b6
JB
5667{
5668 struct objfile *objfile;
22cee43f 5669 struct compunit_symtab *cu;
40658b94 5670 struct match_data data;
339c13b6 5671
6475f2fe 5672 memset (&data, 0, sizeof data);
ccefe4c4 5673 data.obstackp = obstackp;
339c13b6 5674
b5ec771e
PA
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
ccefe4c4 5677 ALL_OBJFILES (objfile)
40658b94
PH
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
b5ec771e
PA
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
4186eb54 5684 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5685 symbol_name_match_type::WILD,
5686 NULL);
40658b94 5687 else
b5ec771e
PA
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
4186eb54 5690 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5691 symbol_name_match_type::FULL,
5692 compare_names);
22cee43f
PMR
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
b5ec771e
PA
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
22cee43f
PMR
5701 data.found_sym = 1;
5702 }
40658b94
PH
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
b5ec771e
PA
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
40658b94
PH
5710 ALL_OBJFILES (objfile)
5711 {
40658b94 5712 data.objfile = objfile;
b5ec771e
PA
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
0963b4bd
MS
5715 aux_add_nonlocal_symbols,
5716 &data,
b5ec771e
PA
5717 symbol_name_match_type::FULL,
5718 compare_names);
40658b94
PH
5719 }
5720 }
339c13b6
JB
5721}
5722
b5ec771e
PA
5723/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5726
22cee43f
PMR
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5729 is the one match returned (no other matches in that or
d9680e73 5730 enclosing blocks is returned). If there are any matches in or
22cee43f 5731 surrounding BLOCK, then these alone are returned.
4eeaa230 5732
b5ec771e
PA
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
14f9c5c9 5736
22cee43f
PMR
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740static void
5741ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
b5ec771e 5743 const lookup_name_info &lookup_name,
22cee43f
PMR
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
14f9c5c9
AS
5747{
5748 struct symbol *sym;
14f9c5c9 5749
22cee43f
PMR
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
339c13b6
JB
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
b5ec771e
PA
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
4c4b4cd2 5762
339c13b6 5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5764
4eeaa230
DE
5765 if (block != NULL)
5766 {
5767 if (full_search)
b5ec771e 5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
b5ec771e 5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5775 }
22cee43f
PMR
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
4eeaa230 5778 }
d2e4a39e 5779
339c13b6
JB
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
b5ec771e
PA
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
4c4b4cd2
PH
5786 {
5787 if (sym != NULL)
b5ec771e 5788 add_defn_to_vec (obstackp, sym, block);
22cee43f 5789 return;
4c4b4cd2 5790 }
14f9c5c9 5791
22cee43f
PMR
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
b1eedac9 5794
339c13b6
JB
5795 /* Search symbols from all global blocks. */
5796
b5ec771e 5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5798
4c4b4cd2 5799 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5800 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5801
22cee43f 5802 if (num_defns_collected (obstackp) == 0)
b5ec771e 5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5804}
5805
b5ec771e
PA
5806/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5808 matches.
ec6a20c2 5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5810 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
22cee43f
PMR
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823static int
b5ec771e
PA
5824ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
22cee43f
PMR
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829{
22cee43f
PMR
5830 int syms_from_global_search;
5831 int ndefns;
ec6a20c2
JB
5832 int results_size;
5833 auto_obstack obstack;
22cee43f 5834
ec6a20c2 5835 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5836 domain, full_search, &syms_from_global_search);
14f9c5c9 5837
ec6a20c2
JB
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
b1eedac9 5846 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5848
b1eedac9 5849 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5852
22cee43f 5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5854
14f9c5c9
AS
5855 return ndefns;
5856}
5857
b5ec771e 5858/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5859 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
4eeaa230
DE
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865int
b5ec771e 5866ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5867 domain_enum domain, struct block_symbol **results)
4eeaa230 5868{
b5ec771e
PA
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5873}
5874
5875/* Implementation of the la_iterate_over_symbols method. */
5876
5877static void
14bc53a8 5878ada_iterate_over_symbols
b5ec771e
PA
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
14bc53a8 5881 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5882{
5883 int ndefs, i;
d12307c1 5884 struct block_symbol *results;
ec6a20c2 5885 struct cleanup *old_chain;
4eeaa230
DE
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5888 old_chain = make_cleanup (xfree, results);
5889
4eeaa230
DE
5890 for (i = 0; i < ndefs; ++i)
5891 {
14bc53a8 5892 if (!callback (results[i].symbol))
4eeaa230
DE
5893 break;
5894 }
ec6a20c2
JB
5895
5896 do_cleanups (old_chain);
4eeaa230
DE
5897}
5898
4e5c77fe
JB
5899/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5e2336be
JB
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5905
5906void
5907ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5908 domain_enum domain,
d12307c1 5909 struct block_symbol *info)
14f9c5c9 5910{
d12307c1 5911 struct block_symbol *candidates;
14f9c5c9 5912 int n_candidates;
ec6a20c2 5913 struct cleanup *old_chain;
14f9c5c9 5914
b5ec771e
PA
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5e2336be 5923 gdb_assert (info != NULL);
d12307c1 5924 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5925
b5ec771e
PA
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
ec6a20c2
JB
5928 old_chain = make_cleanup (xfree, candidates);
5929
14f9c5c9 5930 if (n_candidates == 0)
ec6a20c2
JB
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
4c4b4cd2 5935
5e2336be 5936 *info = candidates[0];
d12307c1 5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
ec6a20c2
JB
5938
5939 do_cleanups (old_chain);
4e5c77fe 5940}
aeb5907d
JB
5941
5942/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5945 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
d12307c1 5948struct block_symbol
aeb5907d 5949ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5950 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5951{
d12307c1 5952 struct block_symbol info;
4e5c77fe 5953
aeb5907d
JB
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
4e5c77fe 5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5958 block0, domain, &info);
d12307c1 5959 return info;
4c4b4cd2 5960}
14f9c5c9 5961
d12307c1 5962static struct block_symbol
f606139a
DE
5963ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
76a01679 5965 const struct block *block,
21b556f4 5966 const domain_enum domain)
4c4b4cd2 5967{
d12307c1 5968 struct block_symbol sym;
04dccad0
JB
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5971 if (sym.symbol != NULL)
04dccad0
JB
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
d12307c1
PMR
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
04dccad0
JB
5996 return sym;
5997 }
5998
d12307c1 5999 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
6000}
6001
6002
4c4b4cd2
PH
6003/* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6006 are given by any of the regular expressions:
4c4b4cd2 6007
babe1480
JB
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6010 TKB [subprogram suffix for task bodies]
babe1480 6011 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
4c4b4cd2 6017
14f9c5c9 6018static int
d2e4a39e 6019is_name_suffix (const char *str)
14f9c5c9
AS
6020{
6021 int k;
4c4b4cd2
PH
6022 const char *matching;
6023 const int len = strlen (str);
6024
babe1480
JB
6025 /* Skip optional leading __[0-9]+. */
6026
4c4b4cd2
PH
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
babe1480
JB
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
4c4b4cd2 6032 }
babe1480
JB
6033
6034 /* [.$][0-9]+ */
4c4b4cd2 6035
babe1480 6036 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6037 {
babe1480 6038 matching = str + 1;
4c4b4cd2
PH
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
babe1480 6046
4c4b4cd2
PH
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
9ac7f98e
JB
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
529cad9c
PH
6061#if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
529cad9c 6065 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
0963b4bd 6070 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076#endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
4c4b4cd2
PH
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
d2e4a39e 6097 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
14f9c5c9 6103 }
babe1480 6104
14f9c5c9
AS
6105 if (str[0] == '\000')
6106 return 1;
babe1480 6107
d2e4a39e 6108 if (str[0] == '_')
14f9c5c9
AS
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6111 return 0;
d2e4a39e 6112 if (str[2] == '_')
4c4b4cd2 6113 {
61ee279c
PH
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
4c4b4cd2
PH
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
1265e4aa
JB
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
14f9c5c9
AS
6137 return 1;
6138 }
4c4b4cd2 6139 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6140 {
4c4b4cd2
PH
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
14f9c5c9
AS
6144 return 1;
6145 }
6146 return 0;
6147}
d2e4a39e 6148
aeb5907d
JB
6149/* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
529cad9c
PH
6151
6152static int
6153is_valid_name_for_wild_match (const char *name0)
6154{
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
5823c3ef
JB
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
529cad9c
PH
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169}
6170
73589123
PH
6171/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
4c4b4cd2 6174
14f9c5c9 6175static int
73589123 6176advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6177{
73589123 6178 const char *name = *namep;
5b4ee69b 6179
5823c3ef 6180 while (1)
14f9c5c9 6181 {
aa27d0b3 6182 int t0, t1;
73589123
PH
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
61012eef 6191 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6192 break;
6193 else
6194 name += 1;
6195 }
aa27d0b3
JB
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
73589123
PH
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
5823c3ef 6208 return 0;
73589123
PH
6209 }
6210
6211 *namep = name;
6212 return 1;
6213}
6214
b5ec771e
PA
6215/* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
73589123 6219
b5ec771e 6220static bool
73589123
PH
6221wild_match (const char *name, const char *patn)
6222{
22e048c9 6223 const char *p;
73589123
PH
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6236 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6242 return false;
96d887e8 6243 }
96d887e8
PH
6244}
6245
b5ec771e
PA
6246/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
40658b94 6250
b5ec771e 6251static bool
c4d840bd
PH
6252full_match (const char *sym_name, const char *search_name)
6253{
b5ec771e
PA
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
c4d840bd 6264
b5ec771e
PA
6265 return false;
6266}
c4d840bd 6267
b5ec771e
PA
6268/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6271
6272static void
6273ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
96d887e8 6277{
8157b174 6278 struct block_iterator iter;
96d887e8
PH
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
b5ec771e
PA
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6290 {
b5ec771e
PA
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
96d887e8
PH
6307 }
6308
22cee43f
PMR
6309 /* Handle renamings. */
6310
b5ec771e 6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6312 found_sym = 1;
6313
96d887e8
PH
6314 if (!found_sym && arg_sym != NULL)
6315 {
76a01679
JB
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6318 block);
96d887e8
PH
6319 }
6320
b5ec771e 6321 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
b5ec771e
PA
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6330 {
4186eb54
KS
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
61012eef 6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
2a2d4dc3
AS
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
76a01679
JB
6360 }
6361 }
76a01679 6362 }
96d887e8
PH
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
76a01679 6369 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6370 block);
96d887e8
PH
6371 }
6372 }
6373}
6374\f
41d27058
JB
6375
6376 /* Symbol Completion */
6377
b5ec771e 6378/* See symtab.h. */
41d27058 6379
b5ec771e
PA
6380bool
6381ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
a207cff2 6384 completion_match_result *comp_match_res) const
41d27058 6385{
b5ec771e
PA
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
41d27058
JB
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6393 match = true;
41d27058 6394
b5ec771e 6395 if (match && !m_encoded_p)
41d27058
JB
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
b5ec771e 6402 bool has_angle_bracket;
41d27058
JB
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6406 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6407 sym_name = sym_name_copy;
6408 }
6409
b5ec771e 6410 if (match && !m_verbatim_p)
41d27058
JB
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
b5ec771e 6421 match = false;
41d27058
JB
6422 }
6423
6424 /* Second: Try wild matching... */
6425
b5ec771e 6426 if (!match && m_wild_match_p)
41d27058
JB
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6434 match = true;
41d27058
JB
6435 }
6436
b5ec771e 6437 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6438
6439 if (!match)
b5ec771e 6440 return false;
41d27058 6441
a207cff2 6442 if (comp_match_res != NULL)
b5ec771e 6443 {
a207cff2 6444 std::string &match_str = comp_match_res->match.storage ();
41d27058 6445
b5ec771e 6446 if (!m_encoded_p)
a207cff2 6447 match_str = ada_decode (sym_name);
b5ec771e
PA
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
41d27058 6454
b5ec771e 6455 }
a207cff2
PA
6456
6457 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6458 }
6459
b5ec771e 6460 return true;
41d27058
JB
6461}
6462
b5ec771e 6463/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6464 WORD is the entire command on which completion is made. */
41d27058 6465
eb3ff9a5
PA
6466static void
6467ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6468 complete_symbol_mode mode,
b5ec771e
PA
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
eb3ff9a5 6471 enum type_code code)
41d27058 6472{
41d27058 6473 struct symbol *sym;
43f3e411 6474 struct compunit_symtab *s;
41d27058
JB
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
3977b71f 6477 const struct block *b, *surrounding_static_block = 0;
8157b174 6478 struct block_iterator iter;
b8fea896 6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6480
2f68a895
TT
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
1b026119 6483 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6484
6485 /* First, look at the partial symtab symbols. */
14bc53a8 6486 expand_symtabs_matching (NULL,
b5ec771e
PA
6487 lookup_name,
6488 NULL,
14bc53a8
PA
6489 NULL,
6490 ALL_DOMAIN);
41d27058
JB
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
b5ec771e 6500
f9d67a22
PA
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
b5ec771e
PA
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6507 lookup_name, text, word);
41d27058
JB
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
f9d67a22
PA
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
b5ec771e
PA
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
1b026119 6526 lookup_name, text, word);
41d27058
JB
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
43f3e411 6531 symbols which match. */
41d27058 6532
43f3e411 6533 ALL_COMPUNITS (objfile, s)
41d27058
JB
6534 {
6535 QUIT;
43f3e411 6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
f9d67a22
PA
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
b5ec771e
PA
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
1b026119 6545 lookup_name, text, word);
41d27058
JB
6546 }
6547 }
6548
43f3e411 6549 ALL_COMPUNITS (objfile, s)
41d27058
JB
6550 {
6551 QUIT;
43f3e411 6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
f9d67a22
PA
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
b5ec771e
PA
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
1b026119 6564 lookup_name, text, word);
41d27058
JB
6565 }
6566 }
6567
b8fea896 6568 do_cleanups (old_chain);
41d27058
JB
6569}
6570
963a6417 6571 /* Field Access */
96d887e8 6572
73fb9985
JB
6573/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576static int
6577ada_is_dispatch_table_ptr_type (struct type *type)
6578{
0d5cff50 6579 const char *name;
73fb9985
JB
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589}
6590
ac4a2da4
JG
6591/* Return non-zero if TYPE is an interface tag. */
6592
6593static int
6594ada_is_interface_tag (struct type *type)
6595{
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602}
6603
963a6417
PH
6604/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
96d887e8 6606
963a6417
PH
6607int
6608ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6609{
963a6417
PH
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
ffde82bf 6612
73fb9985
JB
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
ffde82bf
JB
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
61012eef 6630 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6631 return 1;
6632 }
6633
ac4a2da4
JG
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
73fb9985 6636 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
963a6417 6643}
96d887e8 6644
963a6417 6645/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6646 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6647
963a6417
PH
6648int
6649ada_is_tagged_type (struct type *type, int refok)
6650{
988f6b3d 6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6652}
96d887e8 6653
963a6417 6654/* True iff TYPE represents the type of X'Tag */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_tag_type (struct type *type)
6658{
460efde1
JB
6659 type = ada_check_typedef (type);
6660
963a6417
PH
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
96d887e8 6664 {
963a6417 6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6666
963a6417
PH
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6669 }
96d887e8
PH
6670}
6671
963a6417 6672/* The type of the tag on VAL. */
76a01679 6673
963a6417
PH
6674struct type *
6675ada_tag_type (struct value *val)
96d887e8 6676{
988f6b3d 6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6678}
96d887e8 6679
b50d69b5
JG
6680/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683static int
6684is_ada95_tag (struct value *tag)
6685{
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687}
6688
963a6417 6689/* The value of the tag on VAL. */
96d887e8 6690
963a6417
PH
6691struct value *
6692ada_value_tag (struct value *val)
6693{
03ee6b2e 6694 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6695}
6696
963a6417
PH
6697/* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6699 ADDRESS. */
96d887e8 6700
963a6417 6701static struct value *
10a2c479 6702value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6703 const gdb_byte *valaddr,
963a6417 6704 CORE_ADDR address)
96d887e8 6705{
b5385fc0 6706 int tag_byte_offset;
963a6417 6707 struct type *tag_type;
5b4ee69b 6708
963a6417 6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6710 NULL, NULL, NULL))
96d887e8 6711 {
fc1a4b47 6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6713 ? NULL
6714 : valaddr + tag_byte_offset);
963a6417 6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6716
963a6417 6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6718 }
963a6417
PH
6719 return NULL;
6720}
96d887e8 6721
963a6417
PH
6722static struct type *
6723type_from_tag (struct value *tag)
6724{
6725 const char *type_name = ada_tag_name (tag);
5b4ee69b 6726
963a6417
PH
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730}
96d887e8 6731
b50d69b5
JG
6732/* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738struct value *
6739ada_tag_value_at_base_address (struct value *obj)
6740{
b50d69b5
JG
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
6764 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6765 ptr_type = lookup_pointer_type (ptr_type);
6766 val = value_cast (ptr_type, tag);
6767 if (!val)
6768 return obj;
6769
6770 /* It is perfectly possible that an exception be raised while
6771 trying to determine the base address, just like for the tag;
6772 see ada_tag_name for more details. We do not print the error
6773 message for the same reason. */
6774
492d29ea 6775 TRY
b50d69b5
JG
6776 {
6777 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6778 }
6779
492d29ea
PA
6780 CATCH (e, RETURN_MASK_ERROR)
6781 {
6782 return obj;
6783 }
6784 END_CATCH
b50d69b5
JG
6785
6786 /* If offset is null, nothing to do. */
6787
6788 if (offset_to_top == 0)
6789 return obj;
6790
6791 /* -1 is a special case in Ada.Tags; however, what should be done
6792 is not quite clear from the documentation. So do nothing for
6793 now. */
6794
6795 if (offset_to_top == -1)
6796 return obj;
6797
6798 base_address = value_address (obj) - offset_to_top;
6799 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6800
6801 /* Make sure that we have a proper tag at the new address.
6802 Otherwise, offset_to_top is bogus (which can happen when
6803 the object is not initialized yet). */
6804
6805 if (!tag)
6806 return obj;
6807
6808 obj_type = type_from_tag (tag);
6809
6810 if (!obj_type)
6811 return obj;
6812
6813 return value_from_contents_and_address (obj_type, NULL, base_address);
6814}
6815
1b611343
JB
6816/* Return the "ada__tags__type_specific_data" type. */
6817
6818static struct type *
6819ada_get_tsd_type (struct inferior *inf)
963a6417 6820{
1b611343 6821 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6822
1b611343
JB
6823 if (data->tsd_type == 0)
6824 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6825 return data->tsd_type;
6826}
529cad9c 6827
1b611343
JB
6828/* Return the TSD (type-specific data) associated to the given TAG.
6829 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6830
1b611343 6831 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6832
1b611343
JB
6833static struct value *
6834ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6835{
4c4b4cd2 6836 struct value *val;
1b611343 6837 struct type *type;
5b4ee69b 6838
1b611343
JB
6839 /* First option: The TSD is simply stored as a field of our TAG.
6840 Only older versions of GNAT would use this format, but we have
6841 to test it first, because there are no visible markers for
6842 the current approach except the absence of that field. */
529cad9c 6843
1b611343
JB
6844 val = ada_value_struct_elt (tag, "tsd", 1);
6845 if (val)
6846 return val;
e802dbe0 6847
1b611343
JB
6848 /* Try the second representation for the dispatch table (in which
6849 there is no explicit 'tsd' field in the referent of the tag pointer,
6850 and instead the tsd pointer is stored just before the dispatch
6851 table. */
e802dbe0 6852
1b611343
JB
6853 type = ada_get_tsd_type (current_inferior());
6854 if (type == NULL)
6855 return NULL;
6856 type = lookup_pointer_type (lookup_pointer_type (type));
6857 val = value_cast (type, tag);
6858 if (val == NULL)
6859 return NULL;
6860 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6861}
6862
1b611343
JB
6863/* Given the TSD of a tag (type-specific data), return a string
6864 containing the name of the associated type.
6865
6866 The returned value is good until the next call. May return NULL
6867 if we are unable to determine the tag name. */
6868
6869static char *
6870ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6871{
529cad9c
PH
6872 static char name[1024];
6873 char *p;
1b611343 6874 struct value *val;
529cad9c 6875
1b611343 6876 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6877 if (val == NULL)
1b611343 6878 return NULL;
4c4b4cd2
PH
6879 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6880 for (p = name; *p != '\0'; p += 1)
6881 if (isalpha (*p))
6882 *p = tolower (*p);
1b611343 6883 return name;
4c4b4cd2
PH
6884}
6885
6886/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6887 a C string.
6888
6889 Return NULL if the TAG is not an Ada tag, or if we were unable to
6890 determine the name of that tag. The result is good until the next
6891 call. */
4c4b4cd2
PH
6892
6893const char *
6894ada_tag_name (struct value *tag)
6895{
1b611343 6896 char *name = NULL;
5b4ee69b 6897
df407dfe 6898 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6899 return NULL;
1b611343
JB
6900
6901 /* It is perfectly possible that an exception be raised while trying
6902 to determine the TAG's name, even under normal circumstances:
6903 The associated variable may be uninitialized or corrupted, for
6904 instance. We do not let any exception propagate past this point.
6905 instead we return NULL.
6906
6907 We also do not print the error message either (which often is very
6908 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6909 the caller print a more meaningful message if necessary. */
492d29ea 6910 TRY
1b611343
JB
6911 {
6912 struct value *tsd = ada_get_tsd_from_tag (tag);
6913
6914 if (tsd != NULL)
6915 name = ada_tag_name_from_tsd (tsd);
6916 }
492d29ea
PA
6917 CATCH (e, RETURN_MASK_ERROR)
6918 {
6919 }
6920 END_CATCH
1b611343
JB
6921
6922 return name;
4c4b4cd2
PH
6923}
6924
6925/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6926
d2e4a39e 6927struct type *
ebf56fd3 6928ada_parent_type (struct type *type)
14f9c5c9
AS
6929{
6930 int i;
6931
61ee279c 6932 type = ada_check_typedef (type);
14f9c5c9
AS
6933
6934 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6935 return NULL;
6936
6937 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6938 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6939 {
6940 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6941
6942 /* If the _parent field is a pointer, then dereference it. */
6943 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6944 parent_type = TYPE_TARGET_TYPE (parent_type);
6945 /* If there is a parallel XVS type, get the actual base type. */
6946 parent_type = ada_get_base_type (parent_type);
6947
6948 return ada_check_typedef (parent_type);
6949 }
14f9c5c9
AS
6950
6951 return NULL;
6952}
6953
4c4b4cd2
PH
6954/* True iff field number FIELD_NUM of structure type TYPE contains the
6955 parent-type (inherited) fields of a derived type. Assumes TYPE is
6956 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6957
6958int
ebf56fd3 6959ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6960{
61ee279c 6961 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6962
4c4b4cd2 6963 return (name != NULL
61012eef
GB
6964 && (startswith (name, "PARENT")
6965 || startswith (name, "_parent")));
14f9c5c9
AS
6966}
6967
4c4b4cd2 6968/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6969 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6970 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6971 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6972 structures. */
14f9c5c9
AS
6973
6974int
ebf56fd3 6975ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6976{
d2e4a39e 6977 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6978
dddc0e16
JB
6979 if (name != NULL && strcmp (name, "RETVAL") == 0)
6980 {
6981 /* This happens in functions with "out" or "in out" parameters
6982 which are passed by copy. For such functions, GNAT describes
6983 the function's return type as being a struct where the return
6984 value is in a field called RETVAL, and where the other "out"
6985 or "in out" parameters are fields of that struct. This is not
6986 a wrapper. */
6987 return 0;
6988 }
6989
d2e4a39e 6990 return (name != NULL
61012eef 6991 && (startswith (name, "PARENT")
4c4b4cd2 6992 || strcmp (name, "REP") == 0
61012eef 6993 || startswith (name, "_parent")
4c4b4cd2 6994 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6995}
6996
4c4b4cd2
PH
6997/* True iff field number FIELD_NUM of structure or union type TYPE
6998 is a variant wrapper. Assumes TYPE is a structure type with at least
6999 FIELD_NUM+1 fields. */
14f9c5c9
AS
7000
7001int
ebf56fd3 7002ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7003{
d2e4a39e 7004 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7005
14f9c5c9 7006 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7007 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7008 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7009 == TYPE_CODE_UNION)));
14f9c5c9
AS
7010}
7011
7012/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7013 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7014 returns the type of the controlling discriminant for the variant.
7015 May return NULL if the type could not be found. */
14f9c5c9 7016
d2e4a39e 7017struct type *
ebf56fd3 7018ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7019{
a121b7c1 7020 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7021
988f6b3d 7022 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7023}
7024
4c4b4cd2 7025/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7026 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7027 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7028
7029int
ebf56fd3 7030ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7031{
d2e4a39e 7032 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7033
14f9c5c9
AS
7034 return (name != NULL && name[0] == 'O');
7035}
7036
7037/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7038 returns the name of the discriminant controlling the variant.
7039 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7040
a121b7c1 7041const char *
ebf56fd3 7042ada_variant_discrim_name (struct type *type0)
14f9c5c9 7043{
d2e4a39e 7044 static char *result = NULL;
14f9c5c9 7045 static size_t result_len = 0;
d2e4a39e
AS
7046 struct type *type;
7047 const char *name;
7048 const char *discrim_end;
7049 const char *discrim_start;
14f9c5c9
AS
7050
7051 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7052 type = TYPE_TARGET_TYPE (type0);
7053 else
7054 type = type0;
7055
7056 name = ada_type_name (type);
7057
7058 if (name == NULL || name[0] == '\000')
7059 return "";
7060
7061 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7062 discrim_end -= 1)
7063 {
61012eef 7064 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7065 break;
14f9c5c9
AS
7066 }
7067 if (discrim_end == name)
7068 return "";
7069
d2e4a39e 7070 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7071 discrim_start -= 1)
7072 {
d2e4a39e 7073 if (discrim_start == name + 1)
4c4b4cd2 7074 return "";
76a01679 7075 if ((discrim_start > name + 3
61012eef 7076 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7077 || discrim_start[-1] == '.')
7078 break;
14f9c5c9
AS
7079 }
7080
7081 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7082 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7083 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7084 return result;
7085}
7086
4c4b4cd2
PH
7087/* Scan STR for a subtype-encoded number, beginning at position K.
7088 Put the position of the character just past the number scanned in
7089 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7090 Return 1 if there was a valid number at the given position, and 0
7091 otherwise. A "subtype-encoded" number consists of the absolute value
7092 in decimal, followed by the letter 'm' to indicate a negative number.
7093 Assumes 0m does not occur. */
14f9c5c9
AS
7094
7095int
d2e4a39e 7096ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7097{
7098 ULONGEST RU;
7099
d2e4a39e 7100 if (!isdigit (str[k]))
14f9c5c9
AS
7101 return 0;
7102
4c4b4cd2 7103 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7104 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7105 LONGEST. */
14f9c5c9
AS
7106 RU = 0;
7107 while (isdigit (str[k]))
7108 {
d2e4a39e 7109 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7110 k += 1;
7111 }
7112
d2e4a39e 7113 if (str[k] == 'm')
14f9c5c9
AS
7114 {
7115 if (R != NULL)
4c4b4cd2 7116 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7117 k += 1;
7118 }
7119 else if (R != NULL)
7120 *R = (LONGEST) RU;
7121
4c4b4cd2 7122 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7123 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7124 number representable as a LONGEST (although either would probably work
7125 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7126 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7127
7128 if (new_k != NULL)
7129 *new_k = k;
7130 return 1;
7131}
7132
4c4b4cd2
PH
7133/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7134 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7135 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7136
d2e4a39e 7137int
ebf56fd3 7138ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7139{
d2e4a39e 7140 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7141 int p;
7142
7143 p = 0;
7144 while (1)
7145 {
d2e4a39e 7146 switch (name[p])
4c4b4cd2
PH
7147 {
7148 case '\0':
7149 return 0;
7150 case 'S':
7151 {
7152 LONGEST W;
5b4ee69b 7153
4c4b4cd2
PH
7154 if (!ada_scan_number (name, p + 1, &W, &p))
7155 return 0;
7156 if (val == W)
7157 return 1;
7158 break;
7159 }
7160 case 'R':
7161 {
7162 LONGEST L, U;
5b4ee69b 7163
4c4b4cd2
PH
7164 if (!ada_scan_number (name, p + 1, &L, &p)
7165 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7166 return 0;
7167 if (val >= L && val <= U)
7168 return 1;
7169 break;
7170 }
7171 case 'O':
7172 return 1;
7173 default:
7174 return 0;
7175 }
7176 }
7177}
7178
0963b4bd 7179/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7180
7181/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7182 ARG_TYPE, extract and return the value of one of its (non-static)
7183 fields. FIELDNO says which field. Differs from value_primitive_field
7184 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7185
4c4b4cd2 7186static struct value *
d2e4a39e 7187ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7188 struct type *arg_type)
14f9c5c9 7189{
14f9c5c9
AS
7190 struct type *type;
7191
61ee279c 7192 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7193 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7194
4c4b4cd2 7195 /* Handle packed fields. */
14f9c5c9
AS
7196
7197 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7198 {
7199 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7200 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7201
0fd88904 7202 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7203 offset + bit_pos / 8,
7204 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7205 }
7206 else
7207 return value_primitive_field (arg1, offset, fieldno, arg_type);
7208}
7209
52ce6436
PH
7210/* Find field with name NAME in object of type TYPE. If found,
7211 set the following for each argument that is non-null:
7212 - *FIELD_TYPE_P to the field's type;
7213 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7214 an object of that type;
7215 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7216 - *BIT_SIZE_P to its size in bits if the field is packed, and
7217 0 otherwise;
7218 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7219 fields up to but not including the desired field, or by the total
7220 number of fields if not found. A NULL value of NAME never
7221 matches; the function just counts visible fields in this case.
7222
0963b4bd 7223 Returns 1 if found, 0 otherwise. */
52ce6436 7224
4c4b4cd2 7225static int
0d5cff50 7226find_struct_field (const char *name, struct type *type, int offset,
76a01679 7227 struct type **field_type_p,
52ce6436
PH
7228 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7229 int *index_p)
4c4b4cd2
PH
7230{
7231 int i;
7232
61ee279c 7233 type = ada_check_typedef (type);
76a01679 7234
52ce6436
PH
7235 if (field_type_p != NULL)
7236 *field_type_p = NULL;
7237 if (byte_offset_p != NULL)
d5d6fca5 7238 *byte_offset_p = 0;
52ce6436
PH
7239 if (bit_offset_p != NULL)
7240 *bit_offset_p = 0;
7241 if (bit_size_p != NULL)
7242 *bit_size_p = 0;
7243
7244 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7245 {
7246 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7247 int fld_offset = offset + bit_pos / 8;
0d5cff50 7248 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7249
4c4b4cd2
PH
7250 if (t_field_name == NULL)
7251 continue;
7252
52ce6436 7253 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7254 {
7255 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7256
52ce6436
PH
7257 if (field_type_p != NULL)
7258 *field_type_p = TYPE_FIELD_TYPE (type, i);
7259 if (byte_offset_p != NULL)
7260 *byte_offset_p = fld_offset;
7261 if (bit_offset_p != NULL)
7262 *bit_offset_p = bit_pos % 8;
7263 if (bit_size_p != NULL)
7264 *bit_size_p = bit_size;
76a01679
JB
7265 return 1;
7266 }
4c4b4cd2
PH
7267 else if (ada_is_wrapper_field (type, i))
7268 {
52ce6436
PH
7269 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7270 field_type_p, byte_offset_p, bit_offset_p,
7271 bit_size_p, index_p))
76a01679
JB
7272 return 1;
7273 }
4c4b4cd2
PH
7274 else if (ada_is_variant_part (type, i))
7275 {
52ce6436
PH
7276 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7277 fixed type?? */
4c4b4cd2 7278 int j;
52ce6436
PH
7279 struct type *field_type
7280 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7281
52ce6436 7282 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7283 {
76a01679
JB
7284 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7285 fld_offset
7286 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7287 field_type_p, byte_offset_p,
52ce6436 7288 bit_offset_p, bit_size_p, index_p))
76a01679 7289 return 1;
4c4b4cd2
PH
7290 }
7291 }
52ce6436
PH
7292 else if (index_p != NULL)
7293 *index_p += 1;
4c4b4cd2
PH
7294 }
7295 return 0;
7296}
7297
0963b4bd 7298/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7299
52ce6436
PH
7300static int
7301num_visible_fields (struct type *type)
7302{
7303 int n;
5b4ee69b 7304
52ce6436
PH
7305 n = 0;
7306 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7307 return n;
7308}
14f9c5c9 7309
4c4b4cd2 7310/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7311 and search in it assuming it has (class) type TYPE.
7312 If found, return value, else return NULL.
7313
4c4b4cd2 7314 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7315
4c4b4cd2 7316static struct value *
108d56a4 7317ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7318 struct type *type)
14f9c5c9
AS
7319{
7320 int i;
14f9c5c9 7321
5b4ee69b 7322 type = ada_check_typedef (type);
52ce6436 7323 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7324 {
0d5cff50 7325 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7326
7327 if (t_field_name == NULL)
4c4b4cd2 7328 continue;
14f9c5c9
AS
7329
7330 else if (field_name_match (t_field_name, name))
4c4b4cd2 7331 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7332
7333 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7334 {
0963b4bd 7335 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7336 ada_search_struct_field (name, arg,
7337 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7338 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7339
4c4b4cd2
PH
7340 if (v != NULL)
7341 return v;
7342 }
14f9c5c9
AS
7343
7344 else if (ada_is_variant_part (type, i))
4c4b4cd2 7345 {
0963b4bd 7346 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7347 int j;
5b4ee69b
MS
7348 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7349 i));
4c4b4cd2
PH
7350 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7351
52ce6436 7352 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7353 {
0963b4bd
MS
7354 struct value *v = ada_search_struct_field /* Force line
7355 break. */
06d5cf63
JB
7356 (name, arg,
7357 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7358 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7359
4c4b4cd2
PH
7360 if (v != NULL)
7361 return v;
7362 }
7363 }
14f9c5c9
AS
7364 }
7365 return NULL;
7366}
d2e4a39e 7367
52ce6436
PH
7368static struct value *ada_index_struct_field_1 (int *, struct value *,
7369 int, struct type *);
7370
7371
7372/* Return field #INDEX in ARG, where the index is that returned by
7373 * find_struct_field through its INDEX_P argument. Adjust the address
7374 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7375 * If found, return value, else return NULL. */
52ce6436
PH
7376
7377static struct value *
7378ada_index_struct_field (int index, struct value *arg, int offset,
7379 struct type *type)
7380{
7381 return ada_index_struct_field_1 (&index, arg, offset, type);
7382}
7383
7384
7385/* Auxiliary function for ada_index_struct_field. Like
7386 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7387 * *INDEX_P. */
52ce6436
PH
7388
7389static struct value *
7390ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7391 struct type *type)
7392{
7393 int i;
7394 type = ada_check_typedef (type);
7395
7396 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7397 {
7398 if (TYPE_FIELD_NAME (type, i) == NULL)
7399 continue;
7400 else if (ada_is_wrapper_field (type, i))
7401 {
0963b4bd 7402 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7403 ada_index_struct_field_1 (index_p, arg,
7404 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7405 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7406
52ce6436
PH
7407 if (v != NULL)
7408 return v;
7409 }
7410
7411 else if (ada_is_variant_part (type, i))
7412 {
7413 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7414 find_struct_field. */
52ce6436
PH
7415 error (_("Cannot assign this kind of variant record"));
7416 }
7417 else if (*index_p == 0)
7418 return ada_value_primitive_field (arg, offset, i, type);
7419 else
7420 *index_p -= 1;
7421 }
7422 return NULL;
7423}
7424
4c4b4cd2
PH
7425/* Given ARG, a value of type (pointer or reference to a)*
7426 structure/union, extract the component named NAME from the ultimate
7427 target structure/union and return it as a value with its
f5938064 7428 appropriate type.
14f9c5c9 7429
4c4b4cd2
PH
7430 The routine searches for NAME among all members of the structure itself
7431 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7432 (e.g., '_parent').
7433
03ee6b2e
PH
7434 If NO_ERR, then simply return NULL in case of error, rather than
7435 calling error. */
14f9c5c9 7436
d2e4a39e 7437struct value *
a121b7c1 7438ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7439{
4c4b4cd2 7440 struct type *t, *t1;
d2e4a39e 7441 struct value *v;
14f9c5c9 7442
4c4b4cd2 7443 v = NULL;
df407dfe 7444 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7445 if (TYPE_CODE (t) == TYPE_CODE_REF)
7446 {
7447 t1 = TYPE_TARGET_TYPE (t);
7448 if (t1 == NULL)
03ee6b2e 7449 goto BadValue;
61ee279c 7450 t1 = ada_check_typedef (t1);
4c4b4cd2 7451 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7452 {
994b9211 7453 arg = coerce_ref (arg);
76a01679
JB
7454 t = t1;
7455 }
4c4b4cd2 7456 }
14f9c5c9 7457
4c4b4cd2
PH
7458 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7459 {
7460 t1 = TYPE_TARGET_TYPE (t);
7461 if (t1 == NULL)
03ee6b2e 7462 goto BadValue;
61ee279c 7463 t1 = ada_check_typedef (t1);
4c4b4cd2 7464 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7465 {
7466 arg = value_ind (arg);
7467 t = t1;
7468 }
4c4b4cd2 7469 else
76a01679 7470 break;
4c4b4cd2 7471 }
14f9c5c9 7472
4c4b4cd2 7473 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7474 goto BadValue;
14f9c5c9 7475
4c4b4cd2
PH
7476 if (t1 == t)
7477 v = ada_search_struct_field (name, arg, 0, t);
7478 else
7479 {
7480 int bit_offset, bit_size, byte_offset;
7481 struct type *field_type;
7482 CORE_ADDR address;
7483
76a01679 7484 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7485 address = value_address (ada_value_ind (arg));
4c4b4cd2 7486 else
b50d69b5 7487 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7488
1ed6ede0 7489 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7490 if (find_struct_field (name, t1, 0,
7491 &field_type, &byte_offset, &bit_offset,
52ce6436 7492 &bit_size, NULL))
76a01679
JB
7493 {
7494 if (bit_size != 0)
7495 {
714e53ab
PH
7496 if (TYPE_CODE (t) == TYPE_CODE_REF)
7497 arg = ada_coerce_ref (arg);
7498 else
7499 arg = ada_value_ind (arg);
76a01679
JB
7500 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7501 bit_offset, bit_size,
7502 field_type);
7503 }
7504 else
f5938064 7505 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7506 }
7507 }
7508
03ee6b2e
PH
7509 if (v != NULL || no_err)
7510 return v;
7511 else
323e0a4a 7512 error (_("There is no member named %s."), name);
14f9c5c9 7513
03ee6b2e
PH
7514 BadValue:
7515 if (no_err)
7516 return NULL;
7517 else
0963b4bd
MS
7518 error (_("Attempt to extract a component of "
7519 "a value that is not a record."));
14f9c5c9
AS
7520}
7521
3b4de39c 7522/* Return a string representation of type TYPE. */
99bbb428 7523
3b4de39c 7524static std::string
99bbb428
PA
7525type_as_string (struct type *type)
7526{
d7e74731 7527 string_file tmp_stream;
99bbb428 7528
d7e74731 7529 type_print (type, "", &tmp_stream, -1);
99bbb428 7530
d7e74731 7531 return std::move (tmp_stream.string ());
99bbb428
PA
7532}
7533
14f9c5c9 7534/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7535 If DISPP is non-null, add its byte displacement from the beginning of a
7536 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7537 work for packed fields).
7538
7539 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7540 followed by "___".
14f9c5c9 7541
0963b4bd 7542 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7543 be a (pointer or reference)+ to a struct or union, and the
7544 ultimate target type will be searched.
14f9c5c9
AS
7545
7546 Looks recursively into variant clauses and parent types.
7547
4c4b4cd2
PH
7548 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7549 TYPE is not a type of the right kind. */
14f9c5c9 7550
4c4b4cd2 7551static struct type *
a121b7c1 7552ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7553 int noerr)
14f9c5c9
AS
7554{
7555 int i;
7556
7557 if (name == NULL)
7558 goto BadName;
7559
76a01679 7560 if (refok && type != NULL)
4c4b4cd2
PH
7561 while (1)
7562 {
61ee279c 7563 type = ada_check_typedef (type);
76a01679
JB
7564 if (TYPE_CODE (type) != TYPE_CODE_PTR
7565 && TYPE_CODE (type) != TYPE_CODE_REF)
7566 break;
7567 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7568 }
14f9c5c9 7569
76a01679 7570 if (type == NULL
1265e4aa
JB
7571 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7572 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7573 {
4c4b4cd2 7574 if (noerr)
76a01679 7575 return NULL;
99bbb428 7576
3b4de39c
PA
7577 error (_("Type %s is not a structure or union type"),
7578 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7579 }
7580
7581 type = to_static_fixed_type (type);
7582
7583 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7584 {
0d5cff50 7585 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7586 struct type *t;
d2e4a39e 7587
14f9c5c9 7588 if (t_field_name == NULL)
4c4b4cd2 7589 continue;
14f9c5c9
AS
7590
7591 else if (field_name_match (t_field_name, name))
988f6b3d 7592 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7593
7594 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7595 {
4c4b4cd2 7596 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7597 0, 1);
4c4b4cd2 7598 if (t != NULL)
988f6b3d 7599 return t;
4c4b4cd2 7600 }
14f9c5c9
AS
7601
7602 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7603 {
7604 int j;
5b4ee69b
MS
7605 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7606 i));
4c4b4cd2
PH
7607
7608 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7609 {
b1f33ddd
JB
7610 /* FIXME pnh 2008/01/26: We check for a field that is
7611 NOT wrapped in a struct, since the compiler sometimes
7612 generates these for unchecked variant types. Revisit
0963b4bd 7613 if the compiler changes this practice. */
0d5cff50 7614 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7615
b1f33ddd
JB
7616 if (v_field_name != NULL
7617 && field_name_match (v_field_name, name))
460efde1 7618 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7619 else
0963b4bd
MS
7620 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7621 j),
988f6b3d 7622 name, 0, 1);
b1f33ddd 7623
4c4b4cd2 7624 if (t != NULL)
988f6b3d 7625 return t;
4c4b4cd2
PH
7626 }
7627 }
14f9c5c9
AS
7628
7629 }
7630
7631BadName:
d2e4a39e 7632 if (!noerr)
14f9c5c9 7633 {
2b2798cc 7634 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7635
7636 error (_("Type %s has no component named %s"),
3b4de39c 7637 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7638 }
7639
7640 return NULL;
7641}
7642
b1f33ddd
JB
7643/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7644 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7645 represents an unchecked union (that is, the variant part of a
0963b4bd 7646 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7647
7648static int
7649is_unchecked_variant (struct type *var_type, struct type *outer_type)
7650{
a121b7c1 7651 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7652
988f6b3d 7653 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7654}
7655
7656
14f9c5c9
AS
7657/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7658 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7659 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7660 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7661
d2e4a39e 7662int
ebf56fd3 7663ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7664 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7665{
7666 int others_clause;
7667 int i;
a121b7c1 7668 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7669 struct value *outer;
7670 struct value *discrim;
14f9c5c9
AS
7671 LONGEST discrim_val;
7672
012370f6
TT
7673 /* Using plain value_from_contents_and_address here causes problems
7674 because we will end up trying to resolve a type that is currently
7675 being constructed. */
7676 outer = value_from_contents_and_address_unresolved (outer_type,
7677 outer_valaddr, 0);
0c281816
JB
7678 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7679 if (discrim == NULL)
14f9c5c9 7680 return -1;
0c281816 7681 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7682
7683 others_clause = -1;
7684 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7685 {
7686 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7687 others_clause = i;
14f9c5c9 7688 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7689 return i;
14f9c5c9
AS
7690 }
7691
7692 return others_clause;
7693}
d2e4a39e 7694\f
14f9c5c9
AS
7695
7696
4c4b4cd2 7697 /* Dynamic-Sized Records */
14f9c5c9
AS
7698
7699/* Strategy: The type ostensibly attached to a value with dynamic size
7700 (i.e., a size that is not statically recorded in the debugging
7701 data) does not accurately reflect the size or layout of the value.
7702 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7703 conventional types that are constructed on the fly. */
14f9c5c9
AS
7704
7705/* There is a subtle and tricky problem here. In general, we cannot
7706 determine the size of dynamic records without its data. However,
7707 the 'struct value' data structure, which GDB uses to represent
7708 quantities in the inferior process (the target), requires the size
7709 of the type at the time of its allocation in order to reserve space
7710 for GDB's internal copy of the data. That's why the
7711 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7712 rather than struct value*s.
14f9c5c9
AS
7713
7714 However, GDB's internal history variables ($1, $2, etc.) are
7715 struct value*s containing internal copies of the data that are not, in
7716 general, the same as the data at their corresponding addresses in
7717 the target. Fortunately, the types we give to these values are all
7718 conventional, fixed-size types (as per the strategy described
7719 above), so that we don't usually have to perform the
7720 'to_fixed_xxx_type' conversions to look at their values.
7721 Unfortunately, there is one exception: if one of the internal
7722 history variables is an array whose elements are unconstrained
7723 records, then we will need to create distinct fixed types for each
7724 element selected. */
7725
7726/* The upshot of all of this is that many routines take a (type, host
7727 address, target address) triple as arguments to represent a value.
7728 The host address, if non-null, is supposed to contain an internal
7729 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7730 target at the target address. */
14f9c5c9
AS
7731
7732/* Assuming that VAL0 represents a pointer value, the result of
7733 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7734 dynamic-sized types. */
14f9c5c9 7735
d2e4a39e
AS
7736struct value *
7737ada_value_ind (struct value *val0)
14f9c5c9 7738{
c48db5ca 7739 struct value *val = value_ind (val0);
5b4ee69b 7740
b50d69b5
JG
7741 if (ada_is_tagged_type (value_type (val), 0))
7742 val = ada_tag_value_at_base_address (val);
7743
4c4b4cd2 7744 return ada_to_fixed_value (val);
14f9c5c9
AS
7745}
7746
7747/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7748 qualifiers on VAL0. */
7749
d2e4a39e
AS
7750static struct value *
7751ada_coerce_ref (struct value *val0)
7752{
df407dfe 7753 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7754 {
7755 struct value *val = val0;
5b4ee69b 7756
994b9211 7757 val = coerce_ref (val);
b50d69b5
JG
7758
7759 if (ada_is_tagged_type (value_type (val), 0))
7760 val = ada_tag_value_at_base_address (val);
7761
4c4b4cd2 7762 return ada_to_fixed_value (val);
d2e4a39e
AS
7763 }
7764 else
14f9c5c9
AS
7765 return val0;
7766}
7767
7768/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7769 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7770
7771static unsigned int
ebf56fd3 7772align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7773{
7774 return (off + alignment - 1) & ~(alignment - 1);
7775}
7776
4c4b4cd2 7777/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7778
7779static unsigned int
ebf56fd3 7780field_alignment (struct type *type, int f)
14f9c5c9 7781{
d2e4a39e 7782 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7783 int len;
14f9c5c9
AS
7784 int align_offset;
7785
64a1bf19
JB
7786 /* The field name should never be null, unless the debugging information
7787 is somehow malformed. In this case, we assume the field does not
7788 require any alignment. */
7789 if (name == NULL)
7790 return 1;
7791
7792 len = strlen (name);
7793
4c4b4cd2
PH
7794 if (!isdigit (name[len - 1]))
7795 return 1;
14f9c5c9 7796
d2e4a39e 7797 if (isdigit (name[len - 2]))
14f9c5c9
AS
7798 align_offset = len - 2;
7799 else
7800 align_offset = len - 1;
7801
61012eef 7802 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7803 return TARGET_CHAR_BIT;
7804
4c4b4cd2
PH
7805 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7806}
7807
852dff6c 7808/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7809
852dff6c
JB
7810static struct symbol *
7811ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7812{
7813 struct symbol *sym;
7814
7815 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7816 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7817 return sym;
7818
4186eb54
KS
7819 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7820 return sym;
14f9c5c9
AS
7821}
7822
dddfab26
UW
7823/* Find a type named NAME. Ignores ambiguity. This routine will look
7824 solely for types defined by debug info, it will not search the GDB
7825 primitive types. */
4c4b4cd2 7826
852dff6c 7827static struct type *
ebf56fd3 7828ada_find_any_type (const char *name)
14f9c5c9 7829{
852dff6c 7830 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7831
14f9c5c9 7832 if (sym != NULL)
dddfab26 7833 return SYMBOL_TYPE (sym);
14f9c5c9 7834
dddfab26 7835 return NULL;
14f9c5c9
AS
7836}
7837
739593e0
JB
7838/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7839 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7840 symbol, in which case it is returned. Otherwise, this looks for
7841 symbols whose name is that of NAME_SYM suffixed with "___XR".
7842 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7843
7844struct symbol *
270140bd 7845ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7846{
739593e0 7847 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7848 struct symbol *sym;
7849
739593e0
JB
7850 if (strstr (name, "___XR") != NULL)
7851 return name_sym;
7852
aeb5907d
JB
7853 sym = find_old_style_renaming_symbol (name, block);
7854
7855 if (sym != NULL)
7856 return sym;
7857
0963b4bd 7858 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7859 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7860 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7861 return sym;
7862 else
7863 return NULL;
7864}
7865
7866static struct symbol *
270140bd 7867find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7868{
7f0df278 7869 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7870 char *rename;
7871
7872 if (function_sym != NULL)
7873 {
7874 /* If the symbol is defined inside a function, NAME is not fully
7875 qualified. This means we need to prepend the function name
7876 as well as adding the ``___XR'' suffix to build the name of
7877 the associated renaming symbol. */
0d5cff50 7878 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7879 /* Function names sometimes contain suffixes used
7880 for instance to qualify nested subprograms. When building
7881 the XR type name, we need to make sure that this suffix is
7882 not included. So do not include any suffix in the function
7883 name length below. */
69fadcdf 7884 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7885 const int rename_len = function_name_len + 2 /* "__" */
7886 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7887
529cad9c 7888 /* Strip the suffix if necessary. */
69fadcdf
JB
7889 ada_remove_trailing_digits (function_name, &function_name_len);
7890 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7891 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7892
4c4b4cd2
PH
7893 /* Library-level functions are a special case, as GNAT adds
7894 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7895 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7896 have this prefix, so we need to skip this prefix if present. */
7897 if (function_name_len > 5 /* "_ada_" */
7898 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7899 {
7900 function_name += 5;
7901 function_name_len -= 5;
7902 }
4c4b4cd2
PH
7903
7904 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7905 strncpy (rename, function_name, function_name_len);
7906 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7907 "__%s___XR", name);
4c4b4cd2
PH
7908 }
7909 else
7910 {
7911 const int rename_len = strlen (name) + 6;
5b4ee69b 7912
4c4b4cd2 7913 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7914 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7915 }
7916
852dff6c 7917 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7918}
7919
14f9c5c9 7920/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7921 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7922 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7923 otherwise return 0. */
7924
14f9c5c9 7925int
d2e4a39e 7926ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7927{
7928 if (type1 == NULL)
7929 return 1;
7930 else if (type0 == NULL)
7931 return 0;
7932 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7933 return 1;
7934 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7935 return 0;
4c4b4cd2
PH
7936 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7937 return 1;
ad82864c 7938 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7939 return 1;
4c4b4cd2
PH
7940 else if (ada_is_array_descriptor_type (type0)
7941 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7942 return 1;
aeb5907d
JB
7943 else
7944 {
7945 const char *type0_name = type_name_no_tag (type0);
7946 const char *type1_name = type_name_no_tag (type1);
7947
7948 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7949 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7950 return 1;
7951 }
14f9c5c9
AS
7952 return 0;
7953}
7954
7955/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7956 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7957
0d5cff50 7958const char *
d2e4a39e 7959ada_type_name (struct type *type)
14f9c5c9 7960{
d2e4a39e 7961 if (type == NULL)
14f9c5c9
AS
7962 return NULL;
7963 else if (TYPE_NAME (type) != NULL)
7964 return TYPE_NAME (type);
7965 else
7966 return TYPE_TAG_NAME (type);
7967}
7968
b4ba55a1
JB
7969/* Search the list of "descriptive" types associated to TYPE for a type
7970 whose name is NAME. */
7971
7972static struct type *
7973find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7974{
931e5bc3 7975 struct type *result, *tmp;
b4ba55a1 7976
c6044dd1
JB
7977 if (ada_ignore_descriptive_types_p)
7978 return NULL;
7979
b4ba55a1
JB
7980 /* If there no descriptive-type info, then there is no parallel type
7981 to be found. */
7982 if (!HAVE_GNAT_AUX_INFO (type))
7983 return NULL;
7984
7985 result = TYPE_DESCRIPTIVE_TYPE (type);
7986 while (result != NULL)
7987 {
0d5cff50 7988 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7989
7990 if (result_name == NULL)
7991 {
7992 warning (_("unexpected null name on descriptive type"));
7993 return NULL;
7994 }
7995
7996 /* If the names match, stop. */
7997 if (strcmp (result_name, name) == 0)
7998 break;
7999
8000 /* Otherwise, look at the next item on the list, if any. */
8001 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8002 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8003 else
8004 tmp = NULL;
8005
8006 /* If not found either, try after having resolved the typedef. */
8007 if (tmp != NULL)
8008 result = tmp;
b4ba55a1 8009 else
931e5bc3 8010 {
f168693b 8011 result = check_typedef (result);
931e5bc3
JG
8012 if (HAVE_GNAT_AUX_INFO (result))
8013 result = TYPE_DESCRIPTIVE_TYPE (result);
8014 else
8015 result = NULL;
8016 }
b4ba55a1
JB
8017 }
8018
8019 /* If we didn't find a match, see whether this is a packed array. With
8020 older compilers, the descriptive type information is either absent or
8021 irrelevant when it comes to packed arrays so the above lookup fails.
8022 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8023 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8024 return ada_find_any_type (name);
8025
8026 return result;
8027}
8028
8029/* Find a parallel type to TYPE with the specified NAME, using the
8030 descriptive type taken from the debugging information, if available,
8031 and otherwise using the (slower) name-based method. */
8032
8033static struct type *
8034ada_find_parallel_type_with_name (struct type *type, const char *name)
8035{
8036 struct type *result = NULL;
8037
8038 if (HAVE_GNAT_AUX_INFO (type))
8039 result = find_parallel_type_by_descriptive_type (type, name);
8040 else
8041 result = ada_find_any_type (name);
8042
8043 return result;
8044}
8045
8046/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8047 SUFFIX to the name of TYPE. */
14f9c5c9 8048
d2e4a39e 8049struct type *
ebf56fd3 8050ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8051{
0d5cff50 8052 char *name;
fe978cb0 8053 const char *type_name = ada_type_name (type);
14f9c5c9 8054 int len;
d2e4a39e 8055
fe978cb0 8056 if (type_name == NULL)
14f9c5c9
AS
8057 return NULL;
8058
fe978cb0 8059 len = strlen (type_name);
14f9c5c9 8060
b4ba55a1 8061 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8062
fe978cb0 8063 strcpy (name, type_name);
14f9c5c9
AS
8064 strcpy (name + len, suffix);
8065
b4ba55a1 8066 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8067}
8068
14f9c5c9 8069/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8070 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8071
d2e4a39e
AS
8072static struct type *
8073dynamic_template_type (struct type *type)
14f9c5c9 8074{
61ee279c 8075 type = ada_check_typedef (type);
14f9c5c9
AS
8076
8077 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8078 || ada_type_name (type) == NULL)
14f9c5c9 8079 return NULL;
d2e4a39e 8080 else
14f9c5c9
AS
8081 {
8082 int len = strlen (ada_type_name (type));
5b4ee69b 8083
4c4b4cd2
PH
8084 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8085 return type;
14f9c5c9 8086 else
4c4b4cd2 8087 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8088 }
8089}
8090
8091/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8092 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8093
d2e4a39e
AS
8094static int
8095is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8096{
8097 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8098
d2e4a39e 8099 return name != NULL
14f9c5c9
AS
8100 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8101 && strstr (name, "___XVL") != NULL;
8102}
8103
4c4b4cd2
PH
8104/* The index of the variant field of TYPE, or -1 if TYPE does not
8105 represent a variant record type. */
14f9c5c9 8106
d2e4a39e 8107static int
4c4b4cd2 8108variant_field_index (struct type *type)
14f9c5c9
AS
8109{
8110 int f;
8111
4c4b4cd2
PH
8112 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8113 return -1;
8114
8115 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8116 {
8117 if (ada_is_variant_part (type, f))
8118 return f;
8119 }
8120 return -1;
14f9c5c9
AS
8121}
8122
4c4b4cd2
PH
8123/* A record type with no fields. */
8124
d2e4a39e 8125static struct type *
fe978cb0 8126empty_record (struct type *templ)
14f9c5c9 8127{
fe978cb0 8128 struct type *type = alloc_type_copy (templ);
5b4ee69b 8129
14f9c5c9
AS
8130 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8131 TYPE_NFIELDS (type) = 0;
8132 TYPE_FIELDS (type) = NULL;
b1f33ddd 8133 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8134 TYPE_NAME (type) = "<empty>";
8135 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8136 TYPE_LENGTH (type) = 0;
8137 return type;
8138}
8139
8140/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8141 the value of type TYPE at VALADDR or ADDRESS (see comments at
8142 the beginning of this section) VAL according to GNAT conventions.
8143 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8144 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8145 an outer-level type (i.e., as opposed to a branch of a variant.) A
8146 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8147 of the variant.
14f9c5c9 8148
4c4b4cd2
PH
8149 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8150 length are not statically known are discarded. As a consequence,
8151 VALADDR, ADDRESS and DVAL0 are ignored.
8152
8153 NOTE: Limitations: For now, we assume that dynamic fields and
8154 variants occupy whole numbers of bytes. However, they need not be
8155 byte-aligned. */
8156
8157struct type *
10a2c479 8158ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8159 const gdb_byte *valaddr,
4c4b4cd2
PH
8160 CORE_ADDR address, struct value *dval0,
8161 int keep_dynamic_fields)
14f9c5c9 8162{
d2e4a39e
AS
8163 struct value *mark = value_mark ();
8164 struct value *dval;
8165 struct type *rtype;
14f9c5c9 8166 int nfields, bit_len;
4c4b4cd2 8167 int variant_field;
14f9c5c9 8168 long off;
d94e4f4f 8169 int fld_bit_len;
14f9c5c9
AS
8170 int f;
8171
4c4b4cd2
PH
8172 /* Compute the number of fields in this record type that are going
8173 to be processed: unless keep_dynamic_fields, this includes only
8174 fields whose position and length are static will be processed. */
8175 if (keep_dynamic_fields)
8176 nfields = TYPE_NFIELDS (type);
8177 else
8178 {
8179 nfields = 0;
76a01679 8180 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8181 && !ada_is_variant_part (type, nfields)
8182 && !is_dynamic_field (type, nfields))
8183 nfields++;
8184 }
8185
e9bb382b 8186 rtype = alloc_type_copy (type);
14f9c5c9
AS
8187 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8188 INIT_CPLUS_SPECIFIC (rtype);
8189 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8190 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8191 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8192 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8193 TYPE_NAME (rtype) = ada_type_name (type);
8194 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8195 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8196
d2e4a39e
AS
8197 off = 0;
8198 bit_len = 0;
4c4b4cd2
PH
8199 variant_field = -1;
8200
14f9c5c9
AS
8201 for (f = 0; f < nfields; f += 1)
8202 {
6c038f32
PH
8203 off = align_value (off, field_alignment (type, f))
8204 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8205 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8206 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8207
d2e4a39e 8208 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8209 {
8210 variant_field = f;
d94e4f4f 8211 fld_bit_len = 0;
4c4b4cd2 8212 }
14f9c5c9 8213 else if (is_dynamic_field (type, f))
4c4b4cd2 8214 {
284614f0
JB
8215 const gdb_byte *field_valaddr = valaddr;
8216 CORE_ADDR field_address = address;
8217 struct type *field_type =
8218 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8219
4c4b4cd2 8220 if (dval0 == NULL)
b5304971
JG
8221 {
8222 /* rtype's length is computed based on the run-time
8223 value of discriminants. If the discriminants are not
8224 initialized, the type size may be completely bogus and
0963b4bd 8225 GDB may fail to allocate a value for it. So check the
b5304971 8226 size first before creating the value. */
c1b5a1a6 8227 ada_ensure_varsize_limit (rtype);
012370f6
TT
8228 /* Using plain value_from_contents_and_address here
8229 causes problems because we will end up trying to
8230 resolve a type that is currently being
8231 constructed. */
8232 dval = value_from_contents_and_address_unresolved (rtype,
8233 valaddr,
8234 address);
9f1f738a 8235 rtype = value_type (dval);
b5304971 8236 }
4c4b4cd2
PH
8237 else
8238 dval = dval0;
8239
284614f0
JB
8240 /* If the type referenced by this field is an aligner type, we need
8241 to unwrap that aligner type, because its size might not be set.
8242 Keeping the aligner type would cause us to compute the wrong
8243 size for this field, impacting the offset of the all the fields
8244 that follow this one. */
8245 if (ada_is_aligner_type (field_type))
8246 {
8247 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8248
8249 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8250 field_address = cond_offset_target (field_address, field_offset);
8251 field_type = ada_aligned_type (field_type);
8252 }
8253
8254 field_valaddr = cond_offset_host (field_valaddr,
8255 off / TARGET_CHAR_BIT);
8256 field_address = cond_offset_target (field_address,
8257 off / TARGET_CHAR_BIT);
8258
8259 /* Get the fixed type of the field. Note that, in this case,
8260 we do not want to get the real type out of the tag: if
8261 the current field is the parent part of a tagged record,
8262 we will get the tag of the object. Clearly wrong: the real
8263 type of the parent is not the real type of the child. We
8264 would end up in an infinite loop. */
8265 field_type = ada_get_base_type (field_type);
8266 field_type = ada_to_fixed_type (field_type, field_valaddr,
8267 field_address, dval, 0);
27f2a97b
JB
8268 /* If the field size is already larger than the maximum
8269 object size, then the record itself will necessarily
8270 be larger than the maximum object size. We need to make
8271 this check now, because the size might be so ridiculously
8272 large (due to an uninitialized variable in the inferior)
8273 that it would cause an overflow when adding it to the
8274 record size. */
c1b5a1a6 8275 ada_ensure_varsize_limit (field_type);
284614f0
JB
8276
8277 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8278 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8279 /* The multiplication can potentially overflow. But because
8280 the field length has been size-checked just above, and
8281 assuming that the maximum size is a reasonable value,
8282 an overflow should not happen in practice. So rather than
8283 adding overflow recovery code to this already complex code,
8284 we just assume that it's not going to happen. */
d94e4f4f 8285 fld_bit_len =
4c4b4cd2
PH
8286 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8287 }
14f9c5c9 8288 else
4c4b4cd2 8289 {
5ded5331
JB
8290 /* Note: If this field's type is a typedef, it is important
8291 to preserve the typedef layer.
8292
8293 Otherwise, we might be transforming a typedef to a fat
8294 pointer (encoding a pointer to an unconstrained array),
8295 into a basic fat pointer (encoding an unconstrained
8296 array). As both types are implemented using the same
8297 structure, the typedef is the only clue which allows us
8298 to distinguish between the two options. Stripping it
8299 would prevent us from printing this field appropriately. */
8300 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8301 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8302 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8303 fld_bit_len =
4c4b4cd2
PH
8304 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8305 else
5ded5331
JB
8306 {
8307 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8308
8309 /* We need to be careful of typedefs when computing
8310 the length of our field. If this is a typedef,
8311 get the length of the target type, not the length
8312 of the typedef. */
8313 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8314 field_type = ada_typedef_target_type (field_type);
8315
8316 fld_bit_len =
8317 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8318 }
4c4b4cd2 8319 }
14f9c5c9 8320 if (off + fld_bit_len > bit_len)
4c4b4cd2 8321 bit_len = off + fld_bit_len;
d94e4f4f 8322 off += fld_bit_len;
4c4b4cd2
PH
8323 TYPE_LENGTH (rtype) =
8324 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8325 }
4c4b4cd2
PH
8326
8327 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8328 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8329 the record. This can happen in the presence of representation
8330 clauses. */
8331 if (variant_field >= 0)
8332 {
8333 struct type *branch_type;
8334
8335 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8336
8337 if (dval0 == NULL)
9f1f738a 8338 {
012370f6
TT
8339 /* Using plain value_from_contents_and_address here causes
8340 problems because we will end up trying to resolve a type
8341 that is currently being constructed. */
8342 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8343 address);
9f1f738a
SA
8344 rtype = value_type (dval);
8345 }
4c4b4cd2
PH
8346 else
8347 dval = dval0;
8348
8349 branch_type =
8350 to_fixed_variant_branch_type
8351 (TYPE_FIELD_TYPE (type, variant_field),
8352 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8353 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8354 if (branch_type == NULL)
8355 {
8356 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8357 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8358 TYPE_NFIELDS (rtype) -= 1;
8359 }
8360 else
8361 {
8362 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8363 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8364 fld_bit_len =
8365 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8366 TARGET_CHAR_BIT;
8367 if (off + fld_bit_len > bit_len)
8368 bit_len = off + fld_bit_len;
8369 TYPE_LENGTH (rtype) =
8370 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8371 }
8372 }
8373
714e53ab
PH
8374 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8375 should contain the alignment of that record, which should be a strictly
8376 positive value. If null or negative, then something is wrong, most
8377 probably in the debug info. In that case, we don't round up the size
0963b4bd 8378 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8379 the current RTYPE length might be good enough for our purposes. */
8380 if (TYPE_LENGTH (type) <= 0)
8381 {
323e0a4a
AC
8382 if (TYPE_NAME (rtype))
8383 warning (_("Invalid type size for `%s' detected: %d."),
8384 TYPE_NAME (rtype), TYPE_LENGTH (type));
8385 else
8386 warning (_("Invalid type size for <unnamed> detected: %d."),
8387 TYPE_LENGTH (type));
714e53ab
PH
8388 }
8389 else
8390 {
8391 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8392 TYPE_LENGTH (type));
8393 }
14f9c5c9
AS
8394
8395 value_free_to_mark (mark);
d2e4a39e 8396 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8397 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8398 return rtype;
8399}
8400
4c4b4cd2
PH
8401/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8402 of 1. */
14f9c5c9 8403
d2e4a39e 8404static struct type *
fc1a4b47 8405template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8406 CORE_ADDR address, struct value *dval0)
8407{
8408 return ada_template_to_fixed_record_type_1 (type, valaddr,
8409 address, dval0, 1);
8410}
8411
8412/* An ordinary record type in which ___XVL-convention fields and
8413 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8414 static approximations, containing all possible fields. Uses
8415 no runtime values. Useless for use in values, but that's OK,
8416 since the results are used only for type determinations. Works on both
8417 structs and unions. Representation note: to save space, we memorize
8418 the result of this function in the TYPE_TARGET_TYPE of the
8419 template type. */
8420
8421static struct type *
8422template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8423{
8424 struct type *type;
8425 int nfields;
8426 int f;
8427
9e195661
PMR
8428 /* No need no do anything if the input type is already fixed. */
8429 if (TYPE_FIXED_INSTANCE (type0))
8430 return type0;
8431
8432 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8433 if (TYPE_TARGET_TYPE (type0) != NULL)
8434 return TYPE_TARGET_TYPE (type0);
8435
9e195661 8436 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8437 type = type0;
9e195661
PMR
8438 nfields = TYPE_NFIELDS (type0);
8439
8440 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8441 recompute all over next time. */
8442 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8443
8444 for (f = 0; f < nfields; f += 1)
8445 {
460efde1 8446 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8447 struct type *new_type;
14f9c5c9 8448
4c4b4cd2 8449 if (is_dynamic_field (type0, f))
460efde1
JB
8450 {
8451 field_type = ada_check_typedef (field_type);
8452 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8453 }
14f9c5c9 8454 else
f192137b 8455 new_type = static_unwrap_type (field_type);
9e195661
PMR
8456
8457 if (new_type != field_type)
8458 {
8459 /* Clone TYPE0 only the first time we get a new field type. */
8460 if (type == type0)
8461 {
8462 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8463 TYPE_CODE (type) = TYPE_CODE (type0);
8464 INIT_CPLUS_SPECIFIC (type);
8465 TYPE_NFIELDS (type) = nfields;
8466 TYPE_FIELDS (type) = (struct field *)
8467 TYPE_ALLOC (type, nfields * sizeof (struct field));
8468 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8469 sizeof (struct field) * nfields);
8470 TYPE_NAME (type) = ada_type_name (type0);
8471 TYPE_TAG_NAME (type) = NULL;
8472 TYPE_FIXED_INSTANCE (type) = 1;
8473 TYPE_LENGTH (type) = 0;
8474 }
8475 TYPE_FIELD_TYPE (type, f) = new_type;
8476 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8477 }
14f9c5c9 8478 }
9e195661 8479
14f9c5c9
AS
8480 return type;
8481}
8482
4c4b4cd2 8483/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8484 whose address in memory is ADDRESS, returns a revision of TYPE,
8485 which should be a non-dynamic-sized record, in which the variant
8486 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8487 for discriminant values in DVAL0, which can be NULL if the record
8488 contains the necessary discriminant values. */
8489
d2e4a39e 8490static struct type *
fc1a4b47 8491to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8492 CORE_ADDR address, struct value *dval0)
14f9c5c9 8493{
d2e4a39e 8494 struct value *mark = value_mark ();
4c4b4cd2 8495 struct value *dval;
d2e4a39e 8496 struct type *rtype;
14f9c5c9
AS
8497 struct type *branch_type;
8498 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8499 int variant_field = variant_field_index (type);
14f9c5c9 8500
4c4b4cd2 8501 if (variant_field == -1)
14f9c5c9
AS
8502 return type;
8503
4c4b4cd2 8504 if (dval0 == NULL)
9f1f738a
SA
8505 {
8506 dval = value_from_contents_and_address (type, valaddr, address);
8507 type = value_type (dval);
8508 }
4c4b4cd2
PH
8509 else
8510 dval = dval0;
8511
e9bb382b 8512 rtype = alloc_type_copy (type);
14f9c5c9 8513 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8514 INIT_CPLUS_SPECIFIC (rtype);
8515 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8516 TYPE_FIELDS (rtype) =
8517 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8518 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8519 sizeof (struct field) * nfields);
14f9c5c9
AS
8520 TYPE_NAME (rtype) = ada_type_name (type);
8521 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8522 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8523 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8524
4c4b4cd2
PH
8525 branch_type = to_fixed_variant_branch_type
8526 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8527 cond_offset_host (valaddr,
4c4b4cd2
PH
8528 TYPE_FIELD_BITPOS (type, variant_field)
8529 / TARGET_CHAR_BIT),
d2e4a39e 8530 cond_offset_target (address,
4c4b4cd2
PH
8531 TYPE_FIELD_BITPOS (type, variant_field)
8532 / TARGET_CHAR_BIT), dval);
d2e4a39e 8533 if (branch_type == NULL)
14f9c5c9 8534 {
4c4b4cd2 8535 int f;
5b4ee69b 8536
4c4b4cd2
PH
8537 for (f = variant_field + 1; f < nfields; f += 1)
8538 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8539 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8540 }
8541 else
8542 {
4c4b4cd2
PH
8543 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8544 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8545 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8546 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8547 }
4c4b4cd2 8548 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8549
4c4b4cd2 8550 value_free_to_mark (mark);
14f9c5c9
AS
8551 return rtype;
8552}
8553
8554/* An ordinary record type (with fixed-length fields) that describes
8555 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8556 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8557 should be in DVAL, a record value; it may be NULL if the object
8558 at ADDR itself contains any necessary discriminant values.
8559 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8560 values from the record are needed. Except in the case that DVAL,
8561 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8562 unchecked) is replaced by a particular branch of the variant.
8563
8564 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8565 is questionable and may be removed. It can arise during the
8566 processing of an unconstrained-array-of-record type where all the
8567 variant branches have exactly the same size. This is because in
8568 such cases, the compiler does not bother to use the XVS convention
8569 when encoding the record. I am currently dubious of this
8570 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8571
d2e4a39e 8572static struct type *
fc1a4b47 8573to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8574 CORE_ADDR address, struct value *dval)
14f9c5c9 8575{
d2e4a39e 8576 struct type *templ_type;
14f9c5c9 8577
876cecd0 8578 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8579 return type0;
8580
d2e4a39e 8581 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8582
8583 if (templ_type != NULL)
8584 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8585 else if (variant_field_index (type0) >= 0)
8586 {
8587 if (dval == NULL && valaddr == NULL && address == 0)
8588 return type0;
8589 return to_record_with_fixed_variant_part (type0, valaddr, address,
8590 dval);
8591 }
14f9c5c9
AS
8592 else
8593 {
876cecd0 8594 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8595 return type0;
8596 }
8597
8598}
8599
8600/* An ordinary record type (with fixed-length fields) that describes
8601 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8602 union type. Any necessary discriminants' values should be in DVAL,
8603 a record value. That is, this routine selects the appropriate
8604 branch of the union at ADDR according to the discriminant value
b1f33ddd 8605 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8606 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8607
d2e4a39e 8608static struct type *
fc1a4b47 8609to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8610 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8611{
8612 int which;
d2e4a39e
AS
8613 struct type *templ_type;
8614 struct type *var_type;
14f9c5c9
AS
8615
8616 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8617 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8618 else
14f9c5c9
AS
8619 var_type = var_type0;
8620
8621 templ_type = ada_find_parallel_type (var_type, "___XVU");
8622
8623 if (templ_type != NULL)
8624 var_type = templ_type;
8625
b1f33ddd
JB
8626 if (is_unchecked_variant (var_type, value_type (dval)))
8627 return var_type0;
d2e4a39e
AS
8628 which =
8629 ada_which_variant_applies (var_type,
0fd88904 8630 value_type (dval), value_contents (dval));
14f9c5c9
AS
8631
8632 if (which < 0)
e9bb382b 8633 return empty_record (var_type);
14f9c5c9 8634 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8635 return to_fixed_record_type
d2e4a39e
AS
8636 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8637 valaddr, address, dval);
4c4b4cd2 8638 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8639 return
8640 to_fixed_record_type
8641 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8642 else
8643 return TYPE_FIELD_TYPE (var_type, which);
8644}
8645
8908fca5
JB
8646/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8647 ENCODING_TYPE, a type following the GNAT conventions for discrete
8648 type encodings, only carries redundant information. */
8649
8650static int
8651ada_is_redundant_range_encoding (struct type *range_type,
8652 struct type *encoding_type)
8653{
108d56a4 8654 const char *bounds_str;
8908fca5
JB
8655 int n;
8656 LONGEST lo, hi;
8657
8658 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8659
005e2509
JB
8660 if (TYPE_CODE (get_base_type (range_type))
8661 != TYPE_CODE (get_base_type (encoding_type)))
8662 {
8663 /* The compiler probably used a simple base type to describe
8664 the range type instead of the range's actual base type,
8665 expecting us to get the real base type from the encoding
8666 anyway. In this situation, the encoding cannot be ignored
8667 as redundant. */
8668 return 0;
8669 }
8670
8908fca5
JB
8671 if (is_dynamic_type (range_type))
8672 return 0;
8673
8674 if (TYPE_NAME (encoding_type) == NULL)
8675 return 0;
8676
8677 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8678 if (bounds_str == NULL)
8679 return 0;
8680
8681 n = 8; /* Skip "___XDLU_". */
8682 if (!ada_scan_number (bounds_str, n, &lo, &n))
8683 return 0;
8684 if (TYPE_LOW_BOUND (range_type) != lo)
8685 return 0;
8686
8687 n += 2; /* Skip the "__" separator between the two bounds. */
8688 if (!ada_scan_number (bounds_str, n, &hi, &n))
8689 return 0;
8690 if (TYPE_HIGH_BOUND (range_type) != hi)
8691 return 0;
8692
8693 return 1;
8694}
8695
8696/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8697 a type following the GNAT encoding for describing array type
8698 indices, only carries redundant information. */
8699
8700static int
8701ada_is_redundant_index_type_desc (struct type *array_type,
8702 struct type *desc_type)
8703{
8704 struct type *this_layer = check_typedef (array_type);
8705 int i;
8706
8707 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8708 {
8709 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8710 TYPE_FIELD_TYPE (desc_type, i)))
8711 return 0;
8712 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8713 }
8714
8715 return 1;
8716}
8717
14f9c5c9
AS
8718/* Assuming that TYPE0 is an array type describing the type of a value
8719 at ADDR, and that DVAL describes a record containing any
8720 discriminants used in TYPE0, returns a type for the value that
8721 contains no dynamic components (that is, no components whose sizes
8722 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8723 true, gives an error message if the resulting type's size is over
4c4b4cd2 8724 varsize_limit. */
14f9c5c9 8725
d2e4a39e
AS
8726static struct type *
8727to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8728 int ignore_too_big)
14f9c5c9 8729{
d2e4a39e
AS
8730 struct type *index_type_desc;
8731 struct type *result;
ad82864c 8732 int constrained_packed_array_p;
931e5bc3 8733 static const char *xa_suffix = "___XA";
14f9c5c9 8734
b0dd7688 8735 type0 = ada_check_typedef (type0);
284614f0 8736 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8737 return type0;
14f9c5c9 8738
ad82864c
JB
8739 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8740 if (constrained_packed_array_p)
8741 type0 = decode_constrained_packed_array_type (type0);
284614f0 8742
931e5bc3
JG
8743 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8744
8745 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8746 encoding suffixed with 'P' may still be generated. If so,
8747 it should be used to find the XA type. */
8748
8749 if (index_type_desc == NULL)
8750 {
1da0522e 8751 const char *type_name = ada_type_name (type0);
931e5bc3 8752
1da0522e 8753 if (type_name != NULL)
931e5bc3 8754 {
1da0522e 8755 const int len = strlen (type_name);
931e5bc3
JG
8756 char *name = (char *) alloca (len + strlen (xa_suffix));
8757
1da0522e 8758 if (type_name[len - 1] == 'P')
931e5bc3 8759 {
1da0522e 8760 strcpy (name, type_name);
931e5bc3
JG
8761 strcpy (name + len - 1, xa_suffix);
8762 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8763 }
8764 }
8765 }
8766
28c85d6c 8767 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8768 if (index_type_desc != NULL
8769 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8770 {
8771 /* Ignore this ___XA parallel type, as it does not bring any
8772 useful information. This allows us to avoid creating fixed
8773 versions of the array's index types, which would be identical
8774 to the original ones. This, in turn, can also help avoid
8775 the creation of fixed versions of the array itself. */
8776 index_type_desc = NULL;
8777 }
8778
14f9c5c9
AS
8779 if (index_type_desc == NULL)
8780 {
61ee279c 8781 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8782
14f9c5c9 8783 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8784 depend on the contents of the array in properly constructed
8785 debugging data. */
529cad9c
PH
8786 /* Create a fixed version of the array element type.
8787 We're not providing the address of an element here,
e1d5a0d2 8788 and thus the actual object value cannot be inspected to do
529cad9c
PH
8789 the conversion. This should not be a problem, since arrays of
8790 unconstrained objects are not allowed. In particular, all
8791 the elements of an array of a tagged type should all be of
8792 the same type specified in the debugging info. No need to
8793 consult the object tag. */
1ed6ede0 8794 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8795
284614f0
JB
8796 /* Make sure we always create a new array type when dealing with
8797 packed array types, since we're going to fix-up the array
8798 type length and element bitsize a little further down. */
ad82864c 8799 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8800 result = type0;
14f9c5c9 8801 else
e9bb382b 8802 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8803 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8804 }
8805 else
8806 {
8807 int i;
8808 struct type *elt_type0;
8809
8810 elt_type0 = type0;
8811 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8812 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8813
8814 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8815 depend on the contents of the array in properly constructed
8816 debugging data. */
529cad9c
PH
8817 /* Create a fixed version of the array element type.
8818 We're not providing the address of an element here,
e1d5a0d2 8819 and thus the actual object value cannot be inspected to do
529cad9c
PH
8820 the conversion. This should not be a problem, since arrays of
8821 unconstrained objects are not allowed. In particular, all
8822 the elements of an array of a tagged type should all be of
8823 the same type specified in the debugging info. No need to
8824 consult the object tag. */
1ed6ede0
JB
8825 result =
8826 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8827
8828 elt_type0 = type0;
14f9c5c9 8829 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8830 {
8831 struct type *range_type =
28c85d6c 8832 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8833
e9bb382b 8834 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8835 result, range_type);
1ce677a4 8836 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8837 }
d2e4a39e 8838 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8839 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8840 }
8841
2e6fda7d
JB
8842 /* We want to preserve the type name. This can be useful when
8843 trying to get the type name of a value that has already been
8844 printed (for instance, if the user did "print VAR; whatis $". */
8845 TYPE_NAME (result) = TYPE_NAME (type0);
8846
ad82864c 8847 if (constrained_packed_array_p)
284614f0
JB
8848 {
8849 /* So far, the resulting type has been created as if the original
8850 type was a regular (non-packed) array type. As a result, the
8851 bitsize of the array elements needs to be set again, and the array
8852 length needs to be recomputed based on that bitsize. */
8853 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8854 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8855
8856 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8857 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8858 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8859 TYPE_LENGTH (result)++;
8860 }
8861
876cecd0 8862 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8863 return result;
d2e4a39e 8864}
14f9c5c9
AS
8865
8866
8867/* A standard type (containing no dynamically sized components)
8868 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8869 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8870 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8871 ADDRESS or in VALADDR contains these discriminants.
8872
1ed6ede0
JB
8873 If CHECK_TAG is not null, in the case of tagged types, this function
8874 attempts to locate the object's tag and use it to compute the actual
8875 type. However, when ADDRESS is null, we cannot use it to determine the
8876 location of the tag, and therefore compute the tagged type's actual type.
8877 So we return the tagged type without consulting the tag. */
529cad9c 8878
f192137b
JB
8879static struct type *
8880ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8881 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8882{
61ee279c 8883 type = ada_check_typedef (type);
d2e4a39e
AS
8884 switch (TYPE_CODE (type))
8885 {
8886 default:
14f9c5c9 8887 return type;
d2e4a39e 8888 case TYPE_CODE_STRUCT:
4c4b4cd2 8889 {
76a01679 8890 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8891 struct type *fixed_record_type =
8892 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8893
529cad9c
PH
8894 /* If STATIC_TYPE is a tagged type and we know the object's address,
8895 then we can determine its tag, and compute the object's actual
0963b4bd 8896 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8897 type (the parent part of the record may have dynamic fields
8898 and the way the location of _tag is expressed may depend on
8899 them). */
529cad9c 8900
1ed6ede0 8901 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8902 {
b50d69b5
JG
8903 struct value *tag =
8904 value_tag_from_contents_and_address
8905 (fixed_record_type,
8906 valaddr,
8907 address);
8908 struct type *real_type = type_from_tag (tag);
8909 struct value *obj =
8910 value_from_contents_and_address (fixed_record_type,
8911 valaddr,
8912 address);
9f1f738a 8913 fixed_record_type = value_type (obj);
76a01679 8914 if (real_type != NULL)
b50d69b5
JG
8915 return to_fixed_record_type
8916 (real_type, NULL,
8917 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8918 }
4af88198
JB
8919
8920 /* Check to see if there is a parallel ___XVZ variable.
8921 If there is, then it provides the actual size of our type. */
8922 else if (ada_type_name (fixed_record_type) != NULL)
8923 {
0d5cff50 8924 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8925 char *xvz_name
8926 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8927 LONGEST size;
8928
88c15c34 8929 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8930 if (get_int_var_value (xvz_name, size)
8931 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8932 {
8933 fixed_record_type = copy_type (fixed_record_type);
8934 TYPE_LENGTH (fixed_record_type) = size;
8935
8936 /* The FIXED_RECORD_TYPE may have be a stub. We have
8937 observed this when the debugging info is STABS, and
8938 apparently it is something that is hard to fix.
8939
8940 In practice, we don't need the actual type definition
8941 at all, because the presence of the XVZ variable allows us
8942 to assume that there must be a XVS type as well, which we
8943 should be able to use later, when we need the actual type
8944 definition.
8945
8946 In the meantime, pretend that the "fixed" type we are
8947 returning is NOT a stub, because this can cause trouble
8948 when using this type to create new types targeting it.
8949 Indeed, the associated creation routines often check
8950 whether the target type is a stub and will try to replace
0963b4bd 8951 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8952 might cause the new type to have the wrong size too.
8953 Consider the case of an array, for instance, where the size
8954 of the array is computed from the number of elements in
8955 our array multiplied by the size of its element. */
8956 TYPE_STUB (fixed_record_type) = 0;
8957 }
8958 }
1ed6ede0 8959 return fixed_record_type;
4c4b4cd2 8960 }
d2e4a39e 8961 case TYPE_CODE_ARRAY:
4c4b4cd2 8962 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8963 case TYPE_CODE_UNION:
8964 if (dval == NULL)
4c4b4cd2 8965 return type;
d2e4a39e 8966 else
4c4b4cd2 8967 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8968 }
14f9c5c9
AS
8969}
8970
f192137b
JB
8971/* The same as ada_to_fixed_type_1, except that it preserves the type
8972 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8973
8974 The typedef layer needs be preserved in order to differentiate between
8975 arrays and array pointers when both types are implemented using the same
8976 fat pointer. In the array pointer case, the pointer is encoded as
8977 a typedef of the pointer type. For instance, considering:
8978
8979 type String_Access is access String;
8980 S1 : String_Access := null;
8981
8982 To the debugger, S1 is defined as a typedef of type String. But
8983 to the user, it is a pointer. So if the user tries to print S1,
8984 we should not dereference the array, but print the array address
8985 instead.
8986
8987 If we didn't preserve the typedef layer, we would lose the fact that
8988 the type is to be presented as a pointer (needs de-reference before
8989 being printed). And we would also use the source-level type name. */
f192137b
JB
8990
8991struct type *
8992ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8993 CORE_ADDR address, struct value *dval, int check_tag)
8994
8995{
8996 struct type *fixed_type =
8997 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8998
96dbd2c1
JB
8999 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9000 then preserve the typedef layer.
9001
9002 Implementation note: We can only check the main-type portion of
9003 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9004 from TYPE now returns a type that has the same instance flags
9005 as TYPE. For instance, if TYPE is a "typedef const", and its
9006 target type is a "struct", then the typedef elimination will return
9007 a "const" version of the target type. See check_typedef for more
9008 details about how the typedef layer elimination is done.
9009
9010 brobecker/2010-11-19: It seems to me that the only case where it is
9011 useful to preserve the typedef layer is when dealing with fat pointers.
9012 Perhaps, we could add a check for that and preserve the typedef layer
9013 only in that situation. But this seems unecessary so far, probably
9014 because we call check_typedef/ada_check_typedef pretty much everywhere.
9015 */
f192137b 9016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9017 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9018 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9019 return type;
9020
9021 return fixed_type;
9022}
9023
14f9c5c9 9024/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9025 TYPE0, but based on no runtime data. */
14f9c5c9 9026
d2e4a39e
AS
9027static struct type *
9028to_static_fixed_type (struct type *type0)
14f9c5c9 9029{
d2e4a39e 9030 struct type *type;
14f9c5c9
AS
9031
9032 if (type0 == NULL)
9033 return NULL;
9034
876cecd0 9035 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9036 return type0;
9037
61ee279c 9038 type0 = ada_check_typedef (type0);
d2e4a39e 9039
14f9c5c9
AS
9040 switch (TYPE_CODE (type0))
9041 {
9042 default:
9043 return type0;
9044 case TYPE_CODE_STRUCT:
9045 type = dynamic_template_type (type0);
d2e4a39e 9046 if (type != NULL)
4c4b4cd2
PH
9047 return template_to_static_fixed_type (type);
9048 else
9049 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9050 case TYPE_CODE_UNION:
9051 type = ada_find_parallel_type (type0, "___XVU");
9052 if (type != NULL)
4c4b4cd2
PH
9053 return template_to_static_fixed_type (type);
9054 else
9055 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9056 }
9057}
9058
4c4b4cd2
PH
9059/* A static approximation of TYPE with all type wrappers removed. */
9060
d2e4a39e
AS
9061static struct type *
9062static_unwrap_type (struct type *type)
14f9c5c9
AS
9063{
9064 if (ada_is_aligner_type (type))
9065 {
61ee279c 9066 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9067 if (ada_type_name (type1) == NULL)
4c4b4cd2 9068 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9069
9070 return static_unwrap_type (type1);
9071 }
d2e4a39e 9072 else
14f9c5c9 9073 {
d2e4a39e 9074 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9075
d2e4a39e 9076 if (raw_real_type == type)
4c4b4cd2 9077 return type;
14f9c5c9 9078 else
4c4b4cd2 9079 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9080 }
9081}
9082
9083/* In some cases, incomplete and private types require
4c4b4cd2 9084 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9085 type Foo;
9086 type FooP is access Foo;
9087 V: FooP;
9088 type Foo is array ...;
4c4b4cd2 9089 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9090 cross-references to such types, we instead substitute for FooP a
9091 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9092 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9093
9094/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9095 exists, otherwise TYPE. */
9096
d2e4a39e 9097struct type *
61ee279c 9098ada_check_typedef (struct type *type)
14f9c5c9 9099{
727e3d2e
JB
9100 if (type == NULL)
9101 return NULL;
9102
720d1a40
JB
9103 /* If our type is a typedef type of a fat pointer, then we're done.
9104 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9105 what allows us to distinguish between fat pointers that represent
9106 array types, and fat pointers that represent array access types
9107 (in both cases, the compiler implements them as fat pointers). */
9108 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9109 && is_thick_pntr (ada_typedef_target_type (type)))
9110 return type;
9111
f168693b 9112 type = check_typedef (type);
14f9c5c9 9113 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9114 || !TYPE_STUB (type)
14f9c5c9
AS
9115 || TYPE_TAG_NAME (type) == NULL)
9116 return type;
d2e4a39e 9117 else
14f9c5c9 9118 {
0d5cff50 9119 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9120 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9121
05e522ef
JB
9122 if (type1 == NULL)
9123 return type;
9124
9125 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9126 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9127 types, only for the typedef-to-array types). If that's the case,
9128 strip the typedef layer. */
9129 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9130 type1 = ada_check_typedef (type1);
9131
9132 return type1;
14f9c5c9
AS
9133 }
9134}
9135
9136/* A value representing the data at VALADDR/ADDRESS as described by
9137 type TYPE0, but with a standard (static-sized) type that correctly
9138 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9139 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9140 creation of struct values]. */
14f9c5c9 9141
4c4b4cd2
PH
9142static struct value *
9143ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9144 struct value *val0)
14f9c5c9 9145{
1ed6ede0 9146 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9147
14f9c5c9
AS
9148 if (type == type0 && val0 != NULL)
9149 return val0;
d2e4a39e 9150 else
4c4b4cd2
PH
9151 return value_from_contents_and_address (type, 0, address);
9152}
9153
9154/* A value representing VAL, but with a standard (static-sized) type
9155 that correctly describes it. Does not necessarily create a new
9156 value. */
9157
0c3acc09 9158struct value *
4c4b4cd2
PH
9159ada_to_fixed_value (struct value *val)
9160{
c48db5ca
JB
9161 val = unwrap_value (val);
9162 val = ada_to_fixed_value_create (value_type (val),
9163 value_address (val),
9164 val);
9165 return val;
14f9c5c9 9166}
d2e4a39e 9167\f
14f9c5c9 9168
14f9c5c9
AS
9169/* Attributes */
9170
4c4b4cd2
PH
9171/* Table mapping attribute numbers to names.
9172 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9173
d2e4a39e 9174static const char *attribute_names[] = {
14f9c5c9
AS
9175 "<?>",
9176
d2e4a39e 9177 "first",
14f9c5c9
AS
9178 "last",
9179 "length",
9180 "image",
14f9c5c9
AS
9181 "max",
9182 "min",
4c4b4cd2
PH
9183 "modulus",
9184 "pos",
9185 "size",
9186 "tag",
14f9c5c9 9187 "val",
14f9c5c9
AS
9188 0
9189};
9190
d2e4a39e 9191const char *
4c4b4cd2 9192ada_attribute_name (enum exp_opcode n)
14f9c5c9 9193{
4c4b4cd2
PH
9194 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9195 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9196 else
9197 return attribute_names[0];
9198}
9199
4c4b4cd2 9200/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9201
4c4b4cd2
PH
9202static LONGEST
9203pos_atr (struct value *arg)
14f9c5c9 9204{
24209737
PH
9205 struct value *val = coerce_ref (arg);
9206 struct type *type = value_type (val);
aa715135 9207 LONGEST result;
14f9c5c9 9208
d2e4a39e 9209 if (!discrete_type_p (type))
323e0a4a 9210 error (_("'POS only defined on discrete types"));
14f9c5c9 9211
aa715135
JG
9212 if (!discrete_position (type, value_as_long (val), &result))
9213 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9214
aa715135 9215 return result;
4c4b4cd2
PH
9216}
9217
9218static struct value *
3cb382c9 9219value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9220{
3cb382c9 9221 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9222}
9223
4c4b4cd2 9224/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9225
d2e4a39e
AS
9226static struct value *
9227value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9228{
d2e4a39e 9229 if (!discrete_type_p (type))
323e0a4a 9230 error (_("'VAL only defined on discrete types"));
df407dfe 9231 if (!integer_type_p (value_type (arg)))
323e0a4a 9232 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9233
9234 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9235 {
9236 long pos = value_as_long (arg);
5b4ee69b 9237
14f9c5c9 9238 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9239 error (_("argument to 'VAL out of range"));
14e75d8e 9240 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9241 }
9242 else
9243 return value_from_longest (type, value_as_long (arg));
9244}
14f9c5c9 9245\f
d2e4a39e 9246
4c4b4cd2 9247 /* Evaluation */
14f9c5c9 9248
4c4b4cd2
PH
9249/* True if TYPE appears to be an Ada character type.
9250 [At the moment, this is true only for Character and Wide_Character;
9251 It is a heuristic test that could stand improvement]. */
14f9c5c9 9252
d2e4a39e
AS
9253int
9254ada_is_character_type (struct type *type)
14f9c5c9 9255{
7b9f71f2
JB
9256 const char *name;
9257
9258 /* If the type code says it's a character, then assume it really is,
9259 and don't check any further. */
9260 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9261 return 1;
9262
9263 /* Otherwise, assume it's a character type iff it is a discrete type
9264 with a known character type name. */
9265 name = ada_type_name (type);
9266 return (name != NULL
9267 && (TYPE_CODE (type) == TYPE_CODE_INT
9268 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9269 && (strcmp (name, "character") == 0
9270 || strcmp (name, "wide_character") == 0
5a517ebd 9271 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9272 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9273}
9274
4c4b4cd2 9275/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9276
9277int
ebf56fd3 9278ada_is_string_type (struct type *type)
14f9c5c9 9279{
61ee279c 9280 type = ada_check_typedef (type);
d2e4a39e 9281 if (type != NULL
14f9c5c9 9282 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9283 && (ada_is_simple_array_type (type)
9284 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9285 && ada_array_arity (type) == 1)
9286 {
9287 struct type *elttype = ada_array_element_type (type, 1);
9288
9289 return ada_is_character_type (elttype);
9290 }
d2e4a39e 9291 else
14f9c5c9
AS
9292 return 0;
9293}
9294
5bf03f13
JB
9295/* The compiler sometimes provides a parallel XVS type for a given
9296 PAD type. Normally, it is safe to follow the PAD type directly,
9297 but older versions of the compiler have a bug that causes the offset
9298 of its "F" field to be wrong. Following that field in that case
9299 would lead to incorrect results, but this can be worked around
9300 by ignoring the PAD type and using the associated XVS type instead.
9301
9302 Set to True if the debugger should trust the contents of PAD types.
9303 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9304static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9305
9306/* True if TYPE is a struct type introduced by the compiler to force the
9307 alignment of a value. Such types have a single field with a
4c4b4cd2 9308 distinctive name. */
14f9c5c9
AS
9309
9310int
ebf56fd3 9311ada_is_aligner_type (struct type *type)
14f9c5c9 9312{
61ee279c 9313 type = ada_check_typedef (type);
714e53ab 9314
5bf03f13 9315 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9316 return 0;
9317
14f9c5c9 9318 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9319 && TYPE_NFIELDS (type) == 1
9320 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9321}
9322
9323/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9324 the parallel type. */
14f9c5c9 9325
d2e4a39e
AS
9326struct type *
9327ada_get_base_type (struct type *raw_type)
14f9c5c9 9328{
d2e4a39e
AS
9329 struct type *real_type_namer;
9330 struct type *raw_real_type;
14f9c5c9
AS
9331
9332 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9333 return raw_type;
9334
284614f0
JB
9335 if (ada_is_aligner_type (raw_type))
9336 /* The encoding specifies that we should always use the aligner type.
9337 So, even if this aligner type has an associated XVS type, we should
9338 simply ignore it.
9339
9340 According to the compiler gurus, an XVS type parallel to an aligner
9341 type may exist because of a stabs limitation. In stabs, aligner
9342 types are empty because the field has a variable-sized type, and
9343 thus cannot actually be used as an aligner type. As a result,
9344 we need the associated parallel XVS type to decode the type.
9345 Since the policy in the compiler is to not change the internal
9346 representation based on the debugging info format, we sometimes
9347 end up having a redundant XVS type parallel to the aligner type. */
9348 return raw_type;
9349
14f9c5c9 9350 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9351 if (real_type_namer == NULL
14f9c5c9
AS
9352 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9353 || TYPE_NFIELDS (real_type_namer) != 1)
9354 return raw_type;
9355
f80d3ff2
JB
9356 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9357 {
9358 /* This is an older encoding form where the base type needs to be
9359 looked up by name. We prefer the newer enconding because it is
9360 more efficient. */
9361 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9362 if (raw_real_type == NULL)
9363 return raw_type;
9364 else
9365 return raw_real_type;
9366 }
9367
9368 /* The field in our XVS type is a reference to the base type. */
9369 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9370}
14f9c5c9 9371
4c4b4cd2 9372/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9373
d2e4a39e
AS
9374struct type *
9375ada_aligned_type (struct type *type)
14f9c5c9
AS
9376{
9377 if (ada_is_aligner_type (type))
9378 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9379 else
9380 return ada_get_base_type (type);
9381}
9382
9383
9384/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9385 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9386
fc1a4b47
AC
9387const gdb_byte *
9388ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9389{
d2e4a39e 9390 if (ada_is_aligner_type (type))
14f9c5c9 9391 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9392 valaddr +
9393 TYPE_FIELD_BITPOS (type,
9394 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9395 else
9396 return valaddr;
9397}
9398
4c4b4cd2
PH
9399
9400
14f9c5c9 9401/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9402 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9403const char *
9404ada_enum_name (const char *name)
14f9c5c9 9405{
4c4b4cd2
PH
9406 static char *result;
9407 static size_t result_len = 0;
e6a959d6 9408 const char *tmp;
14f9c5c9 9409
4c4b4cd2
PH
9410 /* First, unqualify the enumeration name:
9411 1. Search for the last '.' character. If we find one, then skip
177b42fe 9412 all the preceding characters, the unqualified name starts
76a01679 9413 right after that dot.
4c4b4cd2 9414 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9415 translates dots into "__". Search forward for double underscores,
9416 but stop searching when we hit an overloading suffix, which is
9417 of the form "__" followed by digits. */
4c4b4cd2 9418
c3e5cd34
PH
9419 tmp = strrchr (name, '.');
9420 if (tmp != NULL)
4c4b4cd2
PH
9421 name = tmp + 1;
9422 else
14f9c5c9 9423 {
4c4b4cd2
PH
9424 while ((tmp = strstr (name, "__")) != NULL)
9425 {
9426 if (isdigit (tmp[2]))
9427 break;
9428 else
9429 name = tmp + 2;
9430 }
14f9c5c9
AS
9431 }
9432
9433 if (name[0] == 'Q')
9434 {
14f9c5c9 9435 int v;
5b4ee69b 9436
14f9c5c9 9437 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9438 {
9439 if (sscanf (name + 2, "%x", &v) != 1)
9440 return name;
9441 }
14f9c5c9 9442 else
4c4b4cd2 9443 return name;
14f9c5c9 9444
4c4b4cd2 9445 GROW_VECT (result, result_len, 16);
14f9c5c9 9446 if (isascii (v) && isprint (v))
88c15c34 9447 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9448 else if (name[1] == 'U')
88c15c34 9449 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9450 else
88c15c34 9451 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9452
9453 return result;
9454 }
d2e4a39e 9455 else
4c4b4cd2 9456 {
c3e5cd34
PH
9457 tmp = strstr (name, "__");
9458 if (tmp == NULL)
9459 tmp = strstr (name, "$");
9460 if (tmp != NULL)
4c4b4cd2
PH
9461 {
9462 GROW_VECT (result, result_len, tmp - name + 1);
9463 strncpy (result, name, tmp - name);
9464 result[tmp - name] = '\0';
9465 return result;
9466 }
9467
9468 return name;
9469 }
14f9c5c9
AS
9470}
9471
14f9c5c9
AS
9472/* Evaluate the subexpression of EXP starting at *POS as for
9473 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9474 expression. */
14f9c5c9 9475
d2e4a39e
AS
9476static struct value *
9477evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9478{
4b27a620 9479 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9480}
9481
9482/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9483 value it wraps. */
14f9c5c9 9484
d2e4a39e
AS
9485static struct value *
9486unwrap_value (struct value *val)
14f9c5c9 9487{
df407dfe 9488 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9489
14f9c5c9
AS
9490 if (ada_is_aligner_type (type))
9491 {
de4d072f 9492 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9493 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9494
14f9c5c9 9495 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9496 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9497
9498 return unwrap_value (v);
9499 }
d2e4a39e 9500 else
14f9c5c9 9501 {
d2e4a39e 9502 struct type *raw_real_type =
61ee279c 9503 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9504
5bf03f13
JB
9505 /* If there is no parallel XVS or XVE type, then the value is
9506 already unwrapped. Return it without further modification. */
9507 if ((type == raw_real_type)
9508 && ada_find_parallel_type (type, "___XVE") == NULL)
9509 return val;
14f9c5c9 9510
d2e4a39e 9511 return
4c4b4cd2
PH
9512 coerce_unspec_val_to_type
9513 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9514 value_address (val),
1ed6ede0 9515 NULL, 1));
14f9c5c9
AS
9516 }
9517}
d2e4a39e
AS
9518
9519static struct value *
50eff16b 9520cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9521{
50eff16b
UW
9522 struct value *scale = ada_scaling_factor (value_type (arg));
9523 arg = value_cast (value_type (scale), arg);
14f9c5c9 9524
50eff16b
UW
9525 arg = value_binop (arg, scale, BINOP_MUL);
9526 return value_cast (type, arg);
14f9c5c9
AS
9527}
9528
d2e4a39e 9529static struct value *
50eff16b 9530cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9531{
50eff16b
UW
9532 if (type == value_type (arg))
9533 return arg;
5b4ee69b 9534
50eff16b
UW
9535 struct value *scale = ada_scaling_factor (type);
9536 if (ada_is_fixed_point_type (value_type (arg)))
9537 arg = cast_from_fixed (value_type (scale), arg);
9538 else
9539 arg = value_cast (value_type (scale), arg);
9540
9541 arg = value_binop (arg, scale, BINOP_DIV);
9542 return value_cast (type, arg);
14f9c5c9
AS
9543}
9544
d99dcf51
JB
9545/* Given two array types T1 and T2, return nonzero iff both arrays
9546 contain the same number of elements. */
9547
9548static int
9549ada_same_array_size_p (struct type *t1, struct type *t2)
9550{
9551 LONGEST lo1, hi1, lo2, hi2;
9552
9553 /* Get the array bounds in order to verify that the size of
9554 the two arrays match. */
9555 if (!get_array_bounds (t1, &lo1, &hi1)
9556 || !get_array_bounds (t2, &lo2, &hi2))
9557 error (_("unable to determine array bounds"));
9558
9559 /* To make things easier for size comparison, normalize a bit
9560 the case of empty arrays by making sure that the difference
9561 between upper bound and lower bound is always -1. */
9562 if (lo1 > hi1)
9563 hi1 = lo1 - 1;
9564 if (lo2 > hi2)
9565 hi2 = lo2 - 1;
9566
9567 return (hi1 - lo1 == hi2 - lo2);
9568}
9569
9570/* Assuming that VAL is an array of integrals, and TYPE represents
9571 an array with the same number of elements, but with wider integral
9572 elements, return an array "casted" to TYPE. In practice, this
9573 means that the returned array is built by casting each element
9574 of the original array into TYPE's (wider) element type. */
9575
9576static struct value *
9577ada_promote_array_of_integrals (struct type *type, struct value *val)
9578{
9579 struct type *elt_type = TYPE_TARGET_TYPE (type);
9580 LONGEST lo, hi;
9581 struct value *res;
9582 LONGEST i;
9583
9584 /* Verify that both val and type are arrays of scalars, and
9585 that the size of val's elements is smaller than the size
9586 of type's element. */
9587 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9588 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9589 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9590 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9591 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9592 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9593
9594 if (!get_array_bounds (type, &lo, &hi))
9595 error (_("unable to determine array bounds"));
9596
9597 res = allocate_value (type);
9598
9599 /* Promote each array element. */
9600 for (i = 0; i < hi - lo + 1; i++)
9601 {
9602 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9603
9604 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9605 value_contents_all (elt), TYPE_LENGTH (elt_type));
9606 }
9607
9608 return res;
9609}
9610
4c4b4cd2
PH
9611/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9612 return the converted value. */
9613
d2e4a39e
AS
9614static struct value *
9615coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9616{
df407dfe 9617 struct type *type2 = value_type (val);
5b4ee69b 9618
14f9c5c9
AS
9619 if (type == type2)
9620 return val;
9621
61ee279c
PH
9622 type2 = ada_check_typedef (type2);
9623 type = ada_check_typedef (type);
14f9c5c9 9624
d2e4a39e
AS
9625 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9626 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9627 {
9628 val = ada_value_ind (val);
df407dfe 9629 type2 = value_type (val);
14f9c5c9
AS
9630 }
9631
d2e4a39e 9632 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9633 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9634 {
d99dcf51
JB
9635 if (!ada_same_array_size_p (type, type2))
9636 error (_("cannot assign arrays of different length"));
9637
9638 if (is_integral_type (TYPE_TARGET_TYPE (type))
9639 && is_integral_type (TYPE_TARGET_TYPE (type2))
9640 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9641 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9642 {
9643 /* Allow implicit promotion of the array elements to
9644 a wider type. */
9645 return ada_promote_array_of_integrals (type, val);
9646 }
9647
9648 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9649 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9650 error (_("Incompatible types in assignment"));
04624583 9651 deprecated_set_value_type (val, type);
14f9c5c9 9652 }
d2e4a39e 9653 return val;
14f9c5c9
AS
9654}
9655
4c4b4cd2
PH
9656static struct value *
9657ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9658{
9659 struct value *val;
9660 struct type *type1, *type2;
9661 LONGEST v, v1, v2;
9662
994b9211
AC
9663 arg1 = coerce_ref (arg1);
9664 arg2 = coerce_ref (arg2);
18af8284
JB
9665 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9666 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9667
76a01679
JB
9668 if (TYPE_CODE (type1) != TYPE_CODE_INT
9669 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9670 return value_binop (arg1, arg2, op);
9671
76a01679 9672 switch (op)
4c4b4cd2
PH
9673 {
9674 case BINOP_MOD:
9675 case BINOP_DIV:
9676 case BINOP_REM:
9677 break;
9678 default:
9679 return value_binop (arg1, arg2, op);
9680 }
9681
9682 v2 = value_as_long (arg2);
9683 if (v2 == 0)
323e0a4a 9684 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9685
9686 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9687 return value_binop (arg1, arg2, op);
9688
9689 v1 = value_as_long (arg1);
9690 switch (op)
9691 {
9692 case BINOP_DIV:
9693 v = v1 / v2;
76a01679
JB
9694 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9695 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9696 break;
9697 case BINOP_REM:
9698 v = v1 % v2;
76a01679
JB
9699 if (v * v1 < 0)
9700 v -= v2;
4c4b4cd2
PH
9701 break;
9702 default:
9703 /* Should not reach this point. */
9704 v = 0;
9705 }
9706
9707 val = allocate_value (type1);
990a07ab 9708 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9709 TYPE_LENGTH (value_type (val)),
9710 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9711 return val;
9712}
9713
9714static int
9715ada_value_equal (struct value *arg1, struct value *arg2)
9716{
df407dfe
AC
9717 if (ada_is_direct_array_type (value_type (arg1))
9718 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9719 {
f58b38bf
JB
9720 /* Automatically dereference any array reference before
9721 we attempt to perform the comparison. */
9722 arg1 = ada_coerce_ref (arg1);
9723 arg2 = ada_coerce_ref (arg2);
9724
4c4b4cd2
PH
9725 arg1 = ada_coerce_to_simple_array (arg1);
9726 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9727 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9728 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9729 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9730 /* FIXME: The following works only for types whose
76a01679
JB
9731 representations use all bits (no padding or undefined bits)
9732 and do not have user-defined equality. */
9733 return
df407dfe 9734 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9735 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9736 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9737 }
9738 return value_equal (arg1, arg2);
9739}
9740
52ce6436
PH
9741/* Total number of component associations in the aggregate starting at
9742 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9743 OP_AGGREGATE. */
52ce6436
PH
9744
9745static int
9746num_component_specs (struct expression *exp, int pc)
9747{
9748 int n, m, i;
5b4ee69b 9749
52ce6436
PH
9750 m = exp->elts[pc + 1].longconst;
9751 pc += 3;
9752 n = 0;
9753 for (i = 0; i < m; i += 1)
9754 {
9755 switch (exp->elts[pc].opcode)
9756 {
9757 default:
9758 n += 1;
9759 break;
9760 case OP_CHOICES:
9761 n += exp->elts[pc + 1].longconst;
9762 break;
9763 }
9764 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9765 }
9766 return n;
9767}
9768
9769/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9770 component of LHS (a simple array or a record), updating *POS past
9771 the expression, assuming that LHS is contained in CONTAINER. Does
9772 not modify the inferior's memory, nor does it modify LHS (unless
9773 LHS == CONTAINER). */
9774
9775static void
9776assign_component (struct value *container, struct value *lhs, LONGEST index,
9777 struct expression *exp, int *pos)
9778{
9779 struct value *mark = value_mark ();
9780 struct value *elt;
5b4ee69b 9781
52ce6436
PH
9782 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9783 {
22601c15
UW
9784 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9785 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9786
52ce6436
PH
9787 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9788 }
9789 else
9790 {
9791 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9792 elt = ada_to_fixed_value (elt);
52ce6436
PH
9793 }
9794
9795 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9796 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9797 else
9798 value_assign_to_component (container, elt,
9799 ada_evaluate_subexp (NULL, exp, pos,
9800 EVAL_NORMAL));
9801
9802 value_free_to_mark (mark);
9803}
9804
9805/* Assuming that LHS represents an lvalue having a record or array
9806 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9807 of that aggregate's value to LHS, advancing *POS past the
9808 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9809 lvalue containing LHS (possibly LHS itself). Does not modify
9810 the inferior's memory, nor does it modify the contents of
0963b4bd 9811 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9812
9813static struct value *
9814assign_aggregate (struct value *container,
9815 struct value *lhs, struct expression *exp,
9816 int *pos, enum noside noside)
9817{
9818 struct type *lhs_type;
9819 int n = exp->elts[*pos+1].longconst;
9820 LONGEST low_index, high_index;
9821 int num_specs;
9822 LONGEST *indices;
9823 int max_indices, num_indices;
52ce6436 9824 int i;
52ce6436
PH
9825
9826 *pos += 3;
9827 if (noside != EVAL_NORMAL)
9828 {
52ce6436
PH
9829 for (i = 0; i < n; i += 1)
9830 ada_evaluate_subexp (NULL, exp, pos, noside);
9831 return container;
9832 }
9833
9834 container = ada_coerce_ref (container);
9835 if (ada_is_direct_array_type (value_type (container)))
9836 container = ada_coerce_to_simple_array (container);
9837 lhs = ada_coerce_ref (lhs);
9838 if (!deprecated_value_modifiable (lhs))
9839 error (_("Left operand of assignment is not a modifiable lvalue."));
9840
9841 lhs_type = value_type (lhs);
9842 if (ada_is_direct_array_type (lhs_type))
9843 {
9844 lhs = ada_coerce_to_simple_array (lhs);
9845 lhs_type = value_type (lhs);
9846 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9847 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9848 }
9849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9850 {
9851 low_index = 0;
9852 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9853 }
9854 else
9855 error (_("Left-hand side must be array or record."));
9856
9857 num_specs = num_component_specs (exp, *pos - 3);
9858 max_indices = 4 * num_specs + 4;
8d749320 9859 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9860 indices[0] = indices[1] = low_index - 1;
9861 indices[2] = indices[3] = high_index + 1;
9862 num_indices = 4;
9863
9864 for (i = 0; i < n; i += 1)
9865 {
9866 switch (exp->elts[*pos].opcode)
9867 {
1fbf5ada
JB
9868 case OP_CHOICES:
9869 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9870 &num_indices, max_indices,
9871 low_index, high_index);
9872 break;
9873 case OP_POSITIONAL:
9874 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9875 &num_indices, max_indices,
9876 low_index, high_index);
1fbf5ada
JB
9877 break;
9878 case OP_OTHERS:
9879 if (i != n-1)
9880 error (_("Misplaced 'others' clause"));
9881 aggregate_assign_others (container, lhs, exp, pos, indices,
9882 num_indices, low_index, high_index);
9883 break;
9884 default:
9885 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9886 }
9887 }
9888
9889 return container;
9890}
9891
9892/* Assign into the component of LHS indexed by the OP_POSITIONAL
9893 construct at *POS, updating *POS past the construct, given that
9894 the positions are relative to lower bound LOW, where HIGH is the
9895 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9896 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9897 assign_aggregate. */
52ce6436
PH
9898static void
9899aggregate_assign_positional (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903{
9904 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9905
9906 if (ind - 1 == high)
e1d5a0d2 9907 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9908 if (ind <= high)
9909 {
9910 add_component_interval (ind, ind, indices, num_indices, max_indices);
9911 *pos += 3;
9912 assign_component (container, lhs, ind, exp, pos);
9913 }
9914 else
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916}
9917
9918/* Assign into the components of LHS indexed by the OP_CHOICES
9919 construct at *POS, updating *POS past the construct, given that
9920 the allowable indices are LOW..HIGH. Record the indices assigned
9921 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9922 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9923static void
9924aggregate_assign_from_choices (struct value *container,
9925 struct value *lhs, struct expression *exp,
9926 int *pos, LONGEST *indices, int *num_indices,
9927 int max_indices, LONGEST low, LONGEST high)
9928{
9929 int j;
9930 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9931 int choice_pos, expr_pc;
9932 int is_array = ada_is_direct_array_type (value_type (lhs));
9933
9934 choice_pos = *pos += 3;
9935
9936 for (j = 0; j < n_choices; j += 1)
9937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9938 expr_pc = *pos;
9939 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9940
9941 for (j = 0; j < n_choices; j += 1)
9942 {
9943 LONGEST lower, upper;
9944 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9945
52ce6436
PH
9946 if (op == OP_DISCRETE_RANGE)
9947 {
9948 choice_pos += 1;
9949 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953 }
9954 else if (is_array)
9955 {
9956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9957 EVAL_NORMAL));
9958 upper = lower;
9959 }
9960 else
9961 {
9962 int ind;
0d5cff50 9963 const char *name;
5b4ee69b 9964
52ce6436
PH
9965 switch (op)
9966 {
9967 case OP_NAME:
9968 name = &exp->elts[choice_pos + 2].string;
9969 break;
9970 case OP_VAR_VALUE:
9971 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9972 break;
9973 default:
9974 error (_("Invalid record component association."));
9975 }
9976 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9977 ind = 0;
9978 if (! find_struct_field (name, value_type (lhs), 0,
9979 NULL, NULL, NULL, NULL, &ind))
9980 error (_("Unknown component name: %s."), name);
9981 lower = upper = ind;
9982 }
9983
9984 if (lower <= upper && (lower < low || upper > high))
9985 error (_("Index in component association out of bounds."));
9986
9987 add_component_interval (lower, upper, indices, num_indices,
9988 max_indices);
9989 while (lower <= upper)
9990 {
9991 int pos1;
5b4ee69b 9992
52ce6436
PH
9993 pos1 = expr_pc;
9994 assign_component (container, lhs, lower, exp, &pos1);
9995 lower += 1;
9996 }
9997 }
9998}
9999
10000/* Assign the value of the expression in the OP_OTHERS construct in
10001 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10002 have not been previously assigned. The index intervals already assigned
10003 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10004 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10005static void
10006aggregate_assign_others (struct value *container,
10007 struct value *lhs, struct expression *exp,
10008 int *pos, LONGEST *indices, int num_indices,
10009 LONGEST low, LONGEST high)
10010{
10011 int i;
5ce64950 10012 int expr_pc = *pos + 1;
52ce6436
PH
10013
10014 for (i = 0; i < num_indices - 2; i += 2)
10015 {
10016 LONGEST ind;
5b4ee69b 10017
52ce6436
PH
10018 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10019 {
5ce64950 10020 int localpos;
5b4ee69b 10021
5ce64950
MS
10022 localpos = expr_pc;
10023 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10024 }
10025 }
10026 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10027}
10028
10029/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10030 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10031 modifying *SIZE as needed. It is an error if *SIZE exceeds
10032 MAX_SIZE. The resulting intervals do not overlap. */
10033static void
10034add_component_interval (LONGEST low, LONGEST high,
10035 LONGEST* indices, int *size, int max_size)
10036{
10037 int i, j;
5b4ee69b 10038
52ce6436
PH
10039 for (i = 0; i < *size; i += 2) {
10040 if (high >= indices[i] && low <= indices[i + 1])
10041 {
10042 int kh;
5b4ee69b 10043
52ce6436
PH
10044 for (kh = i + 2; kh < *size; kh += 2)
10045 if (high < indices[kh])
10046 break;
10047 if (low < indices[i])
10048 indices[i] = low;
10049 indices[i + 1] = indices[kh - 1];
10050 if (high > indices[i + 1])
10051 indices[i + 1] = high;
10052 memcpy (indices + i + 2, indices + kh, *size - kh);
10053 *size -= kh - i - 2;
10054 return;
10055 }
10056 else if (high < indices[i])
10057 break;
10058 }
10059
10060 if (*size == max_size)
10061 error (_("Internal error: miscounted aggregate components."));
10062 *size += 2;
10063 for (j = *size-1; j >= i+2; j -= 1)
10064 indices[j] = indices[j - 2];
10065 indices[i] = low;
10066 indices[i + 1] = high;
10067}
10068
6e48bd2c
JB
10069/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10070 is different. */
10071
10072static struct value *
b7e22850 10073ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10074{
10075 if (type == ada_check_typedef (value_type (arg2)))
10076 return arg2;
10077
10078 if (ada_is_fixed_point_type (type))
10079 return (cast_to_fixed (type, arg2));
10080
10081 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10082 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10083
10084 return value_cast (type, arg2);
10085}
10086
284614f0
JB
10087/* Evaluating Ada expressions, and printing their result.
10088 ------------------------------------------------------
10089
21649b50
JB
10090 1. Introduction:
10091 ----------------
10092
284614f0
JB
10093 We usually evaluate an Ada expression in order to print its value.
10094 We also evaluate an expression in order to print its type, which
10095 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10096 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10097 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10098 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10099 similar.
10100
10101 Evaluating expressions is a little more complicated for Ada entities
10102 than it is for entities in languages such as C. The main reason for
10103 this is that Ada provides types whose definition might be dynamic.
10104 One example of such types is variant records. Or another example
10105 would be an array whose bounds can only be known at run time.
10106
10107 The following description is a general guide as to what should be
10108 done (and what should NOT be done) in order to evaluate an expression
10109 involving such types, and when. This does not cover how the semantic
10110 information is encoded by GNAT as this is covered separatly. For the
10111 document used as the reference for the GNAT encoding, see exp_dbug.ads
10112 in the GNAT sources.
10113
10114 Ideally, we should embed each part of this description next to its
10115 associated code. Unfortunately, the amount of code is so vast right
10116 now that it's hard to see whether the code handling a particular
10117 situation might be duplicated or not. One day, when the code is
10118 cleaned up, this guide might become redundant with the comments
10119 inserted in the code, and we might want to remove it.
10120
21649b50
JB
10121 2. ``Fixing'' an Entity, the Simple Case:
10122 -----------------------------------------
10123
284614f0
JB
10124 When evaluating Ada expressions, the tricky issue is that they may
10125 reference entities whose type contents and size are not statically
10126 known. Consider for instance a variant record:
10127
10128 type Rec (Empty : Boolean := True) is record
10129 case Empty is
10130 when True => null;
10131 when False => Value : Integer;
10132 end case;
10133 end record;
10134 Yes : Rec := (Empty => False, Value => 1);
10135 No : Rec := (empty => True);
10136
10137 The size and contents of that record depends on the value of the
10138 descriminant (Rec.Empty). At this point, neither the debugging
10139 information nor the associated type structure in GDB are able to
10140 express such dynamic types. So what the debugger does is to create
10141 "fixed" versions of the type that applies to the specific object.
10142 We also informally refer to this opperation as "fixing" an object,
10143 which means creating its associated fixed type.
10144
10145 Example: when printing the value of variable "Yes" above, its fixed
10146 type would look like this:
10147
10148 type Rec is record
10149 Empty : Boolean;
10150 Value : Integer;
10151 end record;
10152
10153 On the other hand, if we printed the value of "No", its fixed type
10154 would become:
10155
10156 type Rec is record
10157 Empty : Boolean;
10158 end record;
10159
10160 Things become a little more complicated when trying to fix an entity
10161 with a dynamic type that directly contains another dynamic type,
10162 such as an array of variant records, for instance. There are
10163 two possible cases: Arrays, and records.
10164
21649b50
JB
10165 3. ``Fixing'' Arrays:
10166 ---------------------
10167
10168 The type structure in GDB describes an array in terms of its bounds,
10169 and the type of its elements. By design, all elements in the array
10170 have the same type and we cannot represent an array of variant elements
10171 using the current type structure in GDB. When fixing an array,
10172 we cannot fix the array element, as we would potentially need one
10173 fixed type per element of the array. As a result, the best we can do
10174 when fixing an array is to produce an array whose bounds and size
10175 are correct (allowing us to read it from memory), but without having
10176 touched its element type. Fixing each element will be done later,
10177 when (if) necessary.
10178
10179 Arrays are a little simpler to handle than records, because the same
10180 amount of memory is allocated for each element of the array, even if
1b536f04 10181 the amount of space actually used by each element differs from element
21649b50 10182 to element. Consider for instance the following array of type Rec:
284614f0
JB
10183
10184 type Rec_Array is array (1 .. 2) of Rec;
10185
1b536f04
JB
10186 The actual amount of memory occupied by each element might be different
10187 from element to element, depending on the value of their discriminant.
21649b50 10188 But the amount of space reserved for each element in the array remains
1b536f04 10189 fixed regardless. So we simply need to compute that size using
21649b50
JB
10190 the debugging information available, from which we can then determine
10191 the array size (we multiply the number of elements of the array by
10192 the size of each element).
10193
10194 The simplest case is when we have an array of a constrained element
10195 type. For instance, consider the following type declarations:
10196
10197 type Bounded_String (Max_Size : Integer) is
10198 Length : Integer;
10199 Buffer : String (1 .. Max_Size);
10200 end record;
10201 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10202
10203 In this case, the compiler describes the array as an array of
10204 variable-size elements (identified by its XVS suffix) for which
10205 the size can be read in the parallel XVZ variable.
10206
10207 In the case of an array of an unconstrained element type, the compiler
10208 wraps the array element inside a private PAD type. This type should not
10209 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10210 that we also use the adjective "aligner" in our code to designate
10211 these wrapper types.
10212
1b536f04 10213 In some cases, the size allocated for each element is statically
21649b50
JB
10214 known. In that case, the PAD type already has the correct size,
10215 and the array element should remain unfixed.
10216
10217 But there are cases when this size is not statically known.
10218 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10219
10220 type Dynamic is array (1 .. Five) of Integer;
10221 type Wrapper (Has_Length : Boolean := False) is record
10222 Data : Dynamic;
10223 case Has_Length is
10224 when True => Length : Integer;
10225 when False => null;
10226 end case;
10227 end record;
10228 type Wrapper_Array is array (1 .. 2) of Wrapper;
10229
10230 Hello : Wrapper_Array := (others => (Has_Length => True,
10231 Data => (others => 17),
10232 Length => 1));
10233
10234
10235 The debugging info would describe variable Hello as being an
10236 array of a PAD type. The size of that PAD type is not statically
10237 known, but can be determined using a parallel XVZ variable.
10238 In that case, a copy of the PAD type with the correct size should
10239 be used for the fixed array.
10240
21649b50
JB
10241 3. ``Fixing'' record type objects:
10242 ----------------------------------
10243
10244 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10245 record types. In this case, in order to compute the associated
10246 fixed type, we need to determine the size and offset of each of
10247 its components. This, in turn, requires us to compute the fixed
10248 type of each of these components.
10249
10250 Consider for instance the example:
10251
10252 type Bounded_String (Max_Size : Natural) is record
10253 Str : String (1 .. Max_Size);
10254 Length : Natural;
10255 end record;
10256 My_String : Bounded_String (Max_Size => 10);
10257
10258 In that case, the position of field "Length" depends on the size
10259 of field Str, which itself depends on the value of the Max_Size
21649b50 10260 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10261 we need to fix the type of field Str. Therefore, fixing a variant
10262 record requires us to fix each of its components.
10263
10264 However, if a component does not have a dynamic size, the component
10265 should not be fixed. In particular, fields that use a PAD type
10266 should not fixed. Here is an example where this might happen
10267 (assuming type Rec above):
10268
10269 type Container (Big : Boolean) is record
10270 First : Rec;
10271 After : Integer;
10272 case Big is
10273 when True => Another : Integer;
10274 when False => null;
10275 end case;
10276 end record;
10277 My_Container : Container := (Big => False,
10278 First => (Empty => True),
10279 After => 42);
10280
10281 In that example, the compiler creates a PAD type for component First,
10282 whose size is constant, and then positions the component After just
10283 right after it. The offset of component After is therefore constant
10284 in this case.
10285
10286 The debugger computes the position of each field based on an algorithm
10287 that uses, among other things, the actual position and size of the field
21649b50
JB
10288 preceding it. Let's now imagine that the user is trying to print
10289 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10290 end up computing the offset of field After based on the size of the
10291 fixed version of field First. And since in our example First has
10292 only one actual field, the size of the fixed type is actually smaller
10293 than the amount of space allocated to that field, and thus we would
10294 compute the wrong offset of field After.
10295
21649b50
JB
10296 To make things more complicated, we need to watch out for dynamic
10297 components of variant records (identified by the ___XVL suffix in
10298 the component name). Even if the target type is a PAD type, the size
10299 of that type might not be statically known. So the PAD type needs
10300 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10301 we might end up with the wrong size for our component. This can be
10302 observed with the following type declarations:
284614f0
JB
10303
10304 type Octal is new Integer range 0 .. 7;
10305 type Octal_Array is array (Positive range <>) of Octal;
10306 pragma Pack (Octal_Array);
10307
10308 type Octal_Buffer (Size : Positive) is record
10309 Buffer : Octal_Array (1 .. Size);
10310 Length : Integer;
10311 end record;
10312
10313 In that case, Buffer is a PAD type whose size is unset and needs
10314 to be computed by fixing the unwrapped type.
10315
21649b50
JB
10316 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10317 ----------------------------------------------------------
10318
10319 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10320 thus far, be actually fixed?
10321
10322 The answer is: Only when referencing that element. For instance
10323 when selecting one component of a record, this specific component
10324 should be fixed at that point in time. Or when printing the value
10325 of a record, each component should be fixed before its value gets
10326 printed. Similarly for arrays, the element of the array should be
10327 fixed when printing each element of the array, or when extracting
10328 one element out of that array. On the other hand, fixing should
10329 not be performed on the elements when taking a slice of an array!
10330
31432a67 10331 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10332 size of each field is that we end up also miscomputing the size
10333 of the containing type. This can have adverse results when computing
10334 the value of an entity. GDB fetches the value of an entity based
10335 on the size of its type, and thus a wrong size causes GDB to fetch
10336 the wrong amount of memory. In the case where the computed size is
10337 too small, GDB fetches too little data to print the value of our
31432a67 10338 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10339 past the buffer containing the data =:-o. */
10340
ced9779b
JB
10341/* Evaluate a subexpression of EXP, at index *POS, and return a value
10342 for that subexpression cast to TO_TYPE. Advance *POS over the
10343 subexpression. */
10344
10345static value *
10346ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10347 enum noside noside, struct type *to_type)
10348{
10349 int pc = *pos;
10350
10351 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10352 || exp->elts[pc].opcode == OP_VAR_VALUE)
10353 {
10354 (*pos) += 4;
10355
10356 value *val;
10357 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10358 {
10359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10360 return value_zero (to_type, not_lval);
10361
10362 val = evaluate_var_msym_value (noside,
10363 exp->elts[pc + 1].objfile,
10364 exp->elts[pc + 2].msymbol);
10365 }
10366 else
10367 val = evaluate_var_value (noside,
10368 exp->elts[pc + 1].block,
10369 exp->elts[pc + 2].symbol);
10370
10371 if (noside == EVAL_SKIP)
10372 return eval_skip_value (exp);
10373
10374 val = ada_value_cast (to_type, val);
10375
10376 /* Follow the Ada language semantics that do not allow taking
10377 an address of the result of a cast (view conversion in Ada). */
10378 if (VALUE_LVAL (val) == lval_memory)
10379 {
10380 if (value_lazy (val))
10381 value_fetch_lazy (val);
10382 VALUE_LVAL (val) = not_lval;
10383 }
10384 return val;
10385 }
10386
10387 value *val = evaluate_subexp (to_type, exp, pos, noside);
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10390 return ada_value_cast (to_type, val);
10391}
10392
284614f0
JB
10393/* Implement the evaluate_exp routine in the exp_descriptor structure
10394 for the Ada language. */
10395
52ce6436 10396static struct value *
ebf56fd3 10397ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10398 int *pos, enum noside noside)
14f9c5c9
AS
10399{
10400 enum exp_opcode op;
b5385fc0 10401 int tem;
14f9c5c9 10402 int pc;
5ec18f2b 10403 int preeval_pos;
14f9c5c9
AS
10404 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10405 struct type *type;
52ce6436 10406 int nargs, oplen;
d2e4a39e 10407 struct value **argvec;
14f9c5c9 10408
d2e4a39e
AS
10409 pc = *pos;
10410 *pos += 1;
14f9c5c9
AS
10411 op = exp->elts[pc].opcode;
10412
d2e4a39e 10413 switch (op)
14f9c5c9
AS
10414 {
10415 default:
10416 *pos -= 1;
6e48bd2c 10417 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10418
10419 if (noside == EVAL_NORMAL)
10420 arg1 = unwrap_value (arg1);
6e48bd2c 10421
edd079d9 10422 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10423 then we need to perform the conversion manually, because
10424 evaluate_subexp_standard doesn't do it. This conversion is
10425 necessary in Ada because the different kinds of float/fixed
10426 types in Ada have different representations.
10427
10428 Similarly, we need to perform the conversion from OP_LONG
10429 ourselves. */
edd079d9 10430 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10431 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10432
10433 return arg1;
4c4b4cd2
PH
10434
10435 case OP_STRING:
10436 {
76a01679 10437 struct value *result;
5b4ee69b 10438
76a01679
JB
10439 *pos -= 1;
10440 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10441 /* The result type will have code OP_STRING, bashed there from
10442 OP_ARRAY. Bash it back. */
df407dfe
AC
10443 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10444 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10445 return result;
4c4b4cd2 10446 }
14f9c5c9
AS
10447
10448 case UNOP_CAST:
10449 (*pos) += 2;
10450 type = exp->elts[pc + 1].type;
ced9779b 10451 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10452
4c4b4cd2
PH
10453 case UNOP_QUAL:
10454 (*pos) += 2;
10455 type = exp->elts[pc + 1].type;
10456 return ada_evaluate_subexp (type, exp, pos, noside);
10457
14f9c5c9
AS
10458 case BINOP_ASSIGN:
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10460 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10461 {
10462 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10463 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10464 return arg1;
10465 return ada_value_assign (arg1, arg1);
10466 }
003f3813
JB
10467 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10468 except if the lhs of our assignment is a convenience variable.
10469 In the case of assigning to a convenience variable, the lhs
10470 should be exactly the result of the evaluation of the rhs. */
10471 type = value_type (arg1);
10472 if (VALUE_LVAL (arg1) == lval_internalvar)
10473 type = NULL;
10474 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10476 return arg1;
df407dfe
AC
10477 if (ada_is_fixed_point_type (value_type (arg1)))
10478 arg2 = cast_to_fixed (value_type (arg1), arg2);
10479 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10480 error
323e0a4a 10481 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10482 else
df407dfe 10483 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10484 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10485
10486 case BINOP_ADD:
10487 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10488 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 if (noside == EVAL_SKIP)
4c4b4cd2 10490 goto nosideret;
2ac8a782
JB
10491 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10492 return (value_from_longest
10493 (value_type (arg1),
10494 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10495 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg2),
10498 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10499 if ((ada_is_fixed_point_type (value_type (arg1))
10500 || ada_is_fixed_point_type (value_type (arg2)))
10501 && value_type (arg1) != value_type (arg2))
323e0a4a 10502 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10503 /* Do the addition, and cast the result to the type of the first
10504 argument. We cannot cast the result to a reference type, so if
10505 ARG1 is a reference type, find its underlying type. */
10506 type = value_type (arg1);
10507 while (TYPE_CODE (type) == TYPE_CODE_REF)
10508 type = TYPE_TARGET_TYPE (type);
f44316fa 10509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10510 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10511
10512 case BINOP_SUB:
10513 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10514 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10515 if (noside == EVAL_SKIP)
4c4b4cd2 10516 goto nosideret;
2ac8a782
JB
10517 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg1),
10520 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10521 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10522 return (value_from_longest
10523 (value_type (arg2),
10524 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10525 if ((ada_is_fixed_point_type (value_type (arg1))
10526 || ada_is_fixed_point_type (value_type (arg2)))
10527 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10528 error (_("Operands of fixed-point subtraction "
10529 "must have the same type"));
b7789565
JB
10530 /* Do the substraction, and cast the result to the type of the first
10531 argument. We cannot cast the result to a reference type, so if
10532 ARG1 is a reference type, find its underlying type. */
10533 type = value_type (arg1);
10534 while (TYPE_CODE (type) == TYPE_CODE_REF)
10535 type = TYPE_TARGET_TYPE (type);
f44316fa 10536 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10537 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10538
10539 case BINOP_MUL:
10540 case BINOP_DIV:
e1578042
JB
10541 case BINOP_REM:
10542 case BINOP_MOD:
14f9c5c9
AS
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10545 if (noside == EVAL_SKIP)
4c4b4cd2 10546 goto nosideret;
e1578042 10547 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10548 {
10549 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10550 return value_zero (value_type (arg1), not_lval);
10551 }
14f9c5c9 10552 else
4c4b4cd2 10553 {
a53b7a21 10554 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10555 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10556 arg1 = cast_from_fixed (type, arg1);
df407dfe 10557 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10558 arg2 = cast_from_fixed (type, arg2);
f44316fa 10559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10560 return ada_value_binop (arg1, arg2, op);
10561 }
10562
4c4b4cd2
PH
10563 case BINOP_EQUAL:
10564 case BINOP_NOTEQUAL:
14f9c5c9 10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10566 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10567 if (noside == EVAL_SKIP)
76a01679 10568 goto nosideret;
4c4b4cd2 10569 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10570 tem = 0;
4c4b4cd2 10571 else
f44316fa
UW
10572 {
10573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10574 tem = ada_value_equal (arg1, arg2);
10575 }
4c4b4cd2 10576 if (op == BINOP_NOTEQUAL)
76a01679 10577 tem = !tem;
fbb06eb1
UW
10578 type = language_bool_type (exp->language_defn, exp->gdbarch);
10579 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10580
10581 case UNOP_NEG:
10582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
df407dfe
AC
10585 else if (ada_is_fixed_point_type (value_type (arg1)))
10586 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10587 else
f44316fa
UW
10588 {
10589 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10590 return value_neg (arg1);
10591 }
4c4b4cd2 10592
2330c6c6
JB
10593 case BINOP_LOGICAL_AND:
10594 case BINOP_LOGICAL_OR:
10595 case UNOP_LOGICAL_NOT:
000d5124
JB
10596 {
10597 struct value *val;
10598
10599 *pos -= 1;
10600 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10601 type = language_bool_type (exp->language_defn, exp->gdbarch);
10602 return value_cast (type, val);
000d5124 10603 }
2330c6c6
JB
10604
10605 case BINOP_BITWISE_AND:
10606 case BINOP_BITWISE_IOR:
10607 case BINOP_BITWISE_XOR:
000d5124
JB
10608 {
10609 struct value *val;
10610
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10612 *pos = pc;
10613 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10614
10615 return value_cast (value_type (arg1), val);
10616 }
2330c6c6 10617
14f9c5c9
AS
10618 case OP_VAR_VALUE:
10619 *pos -= 1;
6799def4 10620
14f9c5c9 10621 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10622 {
10623 *pos += 4;
10624 goto nosideret;
10625 }
da5c522f
JB
10626
10627 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10628 /* Only encountered when an unresolved symbol occurs in a
10629 context other than a function call, in which case, it is
52ce6436 10630 invalid. */
323e0a4a 10631 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10632 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10633
10634 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10635 {
0c1f74cf 10636 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10637 /* Check to see if this is a tagged type. We also need to handle
10638 the case where the type is a reference to a tagged type, but
10639 we have to be careful to exclude pointers to tagged types.
10640 The latter should be shown as usual (as a pointer), whereas
10641 a reference should mostly be transparent to the user. */
10642 if (ada_is_tagged_type (type, 0)
023db19c 10643 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10644 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10645 {
10646 /* Tagged types are a little special in the fact that the real
10647 type is dynamic and can only be determined by inspecting the
10648 object's tag. This means that we need to get the object's
10649 value first (EVAL_NORMAL) and then extract the actual object
10650 type from its tag.
10651
10652 Note that we cannot skip the final step where we extract
10653 the object type from its tag, because the EVAL_NORMAL phase
10654 results in dynamic components being resolved into fixed ones.
10655 This can cause problems when trying to print the type
10656 description of tagged types whose parent has a dynamic size:
10657 We use the type name of the "_parent" component in order
10658 to print the name of the ancestor type in the type description.
10659 If that component had a dynamic size, the resolution into
10660 a fixed type would result in the loss of that type name,
10661 thus preventing us from printing the name of the ancestor
10662 type in the type description. */
10663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10664
10665 if (TYPE_CODE (type) != TYPE_CODE_REF)
10666 {
10667 struct type *actual_type;
10668
10669 actual_type = type_from_tag (ada_value_tag (arg1));
10670 if (actual_type == NULL)
10671 /* If, for some reason, we were unable to determine
10672 the actual type from the tag, then use the static
10673 approximation that we just computed as a fallback.
10674 This can happen if the debugging information is
10675 incomplete, for instance. */
10676 actual_type = type;
10677 return value_zero (actual_type, not_lval);
10678 }
10679 else
10680 {
10681 /* In the case of a ref, ada_coerce_ref takes care
10682 of determining the actual type. But the evaluation
10683 should return a ref as it should be valid to ask
10684 for its address; so rebuild a ref after coerce. */
10685 arg1 = ada_coerce_ref (arg1);
a65cfae5 10686 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10687 }
10688 }
0c1f74cf 10689
84754697
JB
10690 /* Records and unions for which GNAT encodings have been
10691 generated need to be statically fixed as well.
10692 Otherwise, non-static fixing produces a type where
10693 all dynamic properties are removed, which prevents "ptype"
10694 from being able to completely describe the type.
10695 For instance, a case statement in a variant record would be
10696 replaced by the relevant components based on the actual
10697 value of the discriminants. */
10698 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10699 && dynamic_template_type (type) != NULL)
10700 || (TYPE_CODE (type) == TYPE_CODE_UNION
10701 && ada_find_parallel_type (type, "___XVU") != NULL))
10702 {
10703 *pos += 4;
10704 return value_zero (to_static_fixed_type (type), not_lval);
10705 }
4c4b4cd2 10706 }
da5c522f
JB
10707
10708 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10709 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10710
10711 case OP_FUNCALL:
10712 (*pos) += 2;
10713
10714 /* Allocate arg vector, including space for the function to be
10715 called in argvec[0] and a terminating NULL. */
10716 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10717 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10718
10719 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10720 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10721 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10722 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10723 else
10724 {
10725 for (tem = 0; tem <= nargs; tem += 1)
10726 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 argvec[tem] = 0;
10728
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
10731 }
10732
ad82864c
JB
10733 if (ada_is_constrained_packed_array_type
10734 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10735 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10736 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10737 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10738 /* This is a packed array that has already been fixed, and
10739 therefore already coerced to a simple array. Nothing further
10740 to do. */
10741 ;
e6c2c623
PMR
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10743 {
10744 /* Make sure we dereference references so that all the code below
10745 feels like it's really handling the referenced value. Wrapping
10746 types (for alignment) may be there, so make sure we strip them as
10747 well. */
10748 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10749 }
10750 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10751 && VALUE_LVAL (argvec[0]) == lval_memory)
10752 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10753
df407dfe 10754 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10755
10756 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10757 them. So, if this is an array typedef (encoding use for array
10758 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10759 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10760 type = ada_typedef_target_type (type);
10761
4c4b4cd2
PH
10762 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10763 {
61ee279c 10764 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10765 {
10766 case TYPE_CODE_FUNC:
61ee279c 10767 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10768 break;
10769 case TYPE_CODE_ARRAY:
10770 break;
10771 case TYPE_CODE_STRUCT:
10772 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10773 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10774 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10775 break;
10776 default:
323e0a4a 10777 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10778 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10779 break;
10780 }
10781 }
10782
10783 switch (TYPE_CODE (type))
10784 {
10785 case TYPE_CODE_FUNC:
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10787 {
7022349d
PA
10788 if (TYPE_TARGET_TYPE (type) == NULL)
10789 error_call_unknown_return_type (NULL);
10790 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10791 }
7022349d 10792 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10793 case TYPE_CODE_INTERNAL_FUNCTION:
10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10795 /* We don't know anything about what the internal
10796 function might return, but we have to return
10797 something. */
10798 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10799 not_lval);
10800 else
10801 return call_internal_function (exp->gdbarch, exp->language_defn,
10802 argvec[0], nargs, argvec + 1);
10803
4c4b4cd2
PH
10804 case TYPE_CODE_STRUCT:
10805 {
10806 int arity;
10807
4c4b4cd2
PH
10808 arity = ada_array_arity (type);
10809 type = ada_array_element_type (type, nargs);
10810 if (type == NULL)
323e0a4a 10811 error (_("cannot subscript or call a record"));
4c4b4cd2 10812 if (arity != nargs)
323e0a4a 10813 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10815 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10816 return
10817 unwrap_value (ada_value_subscript
10818 (argvec[0], nargs, argvec + 1));
10819 }
10820 case TYPE_CODE_ARRAY:
10821 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10822 {
10823 type = ada_array_element_type (type, nargs);
10824 if (type == NULL)
323e0a4a 10825 error (_("element type of array unknown"));
4c4b4cd2 10826 else
0a07e705 10827 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10828 }
10829 return
10830 unwrap_value (ada_value_subscript
10831 (ada_coerce_to_simple_array (argvec[0]),
10832 nargs, argvec + 1));
10833 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 {
deede10c 10836 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10837 type = ada_array_element_type (type, nargs);
10838 if (type == NULL)
323e0a4a 10839 error (_("element type of array unknown"));
4c4b4cd2 10840 else
0a07e705 10841 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10842 }
10843 return
deede10c
JB
10844 unwrap_value (ada_value_ptr_subscript (argvec[0],
10845 nargs, argvec + 1));
4c4b4cd2
PH
10846
10847 default:
e1d5a0d2
PH
10848 error (_("Attempt to index or call something other than an "
10849 "array or function"));
4c4b4cd2
PH
10850 }
10851
10852 case TERNOP_SLICE:
10853 {
10854 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10855 struct value *low_bound_val =
10856 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10857 struct value *high_bound_val =
10858 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10859 LONGEST low_bound;
10860 LONGEST high_bound;
5b4ee69b 10861
994b9211
AC
10862 low_bound_val = coerce_ref (low_bound_val);
10863 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10864 low_bound = value_as_long (low_bound_val);
10865 high_bound = value_as_long (high_bound_val);
963a6417 10866
4c4b4cd2
PH
10867 if (noside == EVAL_SKIP)
10868 goto nosideret;
10869
4c4b4cd2
PH
10870 /* If this is a reference to an aligner type, then remove all
10871 the aligners. */
df407dfe
AC
10872 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10873 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10874 TYPE_TARGET_TYPE (value_type (array)) =
10875 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10876
ad82864c 10877 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10878 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10879
10880 /* If this is a reference to an array or an array lvalue,
10881 convert to a pointer. */
df407dfe
AC
10882 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10883 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10884 && VALUE_LVAL (array) == lval_memory))
10885 array = value_addr (array);
10886
1265e4aa 10887 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10888 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10889 (value_type (array))))
0b5d8877 10890 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10891
10892 array = ada_coerce_to_simple_array_ptr (array);
10893
714e53ab
PH
10894 /* If we have more than one level of pointer indirection,
10895 dereference the value until we get only one level. */
df407dfe
AC
10896 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10897 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10898 == TYPE_CODE_PTR))
10899 array = value_ind (array);
10900
10901 /* Make sure we really do have an array type before going further,
10902 to avoid a SEGV when trying to get the index type or the target
10903 type later down the road if the debug info generated by
10904 the compiler is incorrect or incomplete. */
df407dfe 10905 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10906 error (_("cannot take slice of non-array"));
714e53ab 10907
828292f2
JB
10908 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10909 == TYPE_CODE_PTR)
4c4b4cd2 10910 {
828292f2
JB
10911 struct type *type0 = ada_check_typedef (value_type (array));
10912
0b5d8877 10913 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10914 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10915 else
10916 {
10917 struct type *arr_type0 =
828292f2 10918 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10919
f5938064
JG
10920 return ada_value_slice_from_ptr (array, arr_type0,
10921 longest_to_int (low_bound),
10922 longest_to_int (high_bound));
4c4b4cd2
PH
10923 }
10924 }
10925 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 return array;
10927 else if (high_bound < low_bound)
df407dfe 10928 return empty_array (value_type (array), low_bound);
4c4b4cd2 10929 else
529cad9c
PH
10930 return ada_value_slice (array, longest_to_int (low_bound),
10931 longest_to_int (high_bound));
4c4b4cd2 10932 }
14f9c5c9 10933
4c4b4cd2
PH
10934 case UNOP_IN_RANGE:
10935 (*pos) += 2;
10936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10937 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10938
14f9c5c9 10939 if (noside == EVAL_SKIP)
4c4b4cd2 10940 goto nosideret;
14f9c5c9 10941
4c4b4cd2
PH
10942 switch (TYPE_CODE (type))
10943 {
10944 default:
e1d5a0d2
PH
10945 lim_warning (_("Membership test incompletely implemented; "
10946 "always returns true"));
fbb06eb1
UW
10947 type = language_bool_type (exp->language_defn, exp->gdbarch);
10948 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10949
10950 case TYPE_CODE_RANGE:
030b4912
UW
10951 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10952 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10953 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10954 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10955 type = language_bool_type (exp->language_defn, exp->gdbarch);
10956 return
10957 value_from_longest (type,
4c4b4cd2
PH
10958 (value_less (arg1, arg3)
10959 || value_equal (arg1, arg3))
10960 && (value_less (arg2, arg1)
10961 || value_equal (arg2, arg1)));
10962 }
10963
10964 case BINOP_IN_BOUNDS:
14f9c5c9 10965 (*pos) += 2;
4c4b4cd2
PH
10966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10967 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10968
4c4b4cd2
PH
10969 if (noside == EVAL_SKIP)
10970 goto nosideret;
14f9c5c9 10971
4c4b4cd2 10972 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10973 {
10974 type = language_bool_type (exp->language_defn, exp->gdbarch);
10975 return value_zero (type, not_lval);
10976 }
14f9c5c9 10977
4c4b4cd2 10978 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10979
1eea4ebd
UW
10980 type = ada_index_type (value_type (arg2), tem, "range");
10981 if (!type)
10982 type = value_type (arg1);
14f9c5c9 10983
1eea4ebd
UW
10984 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10985 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10986
f44316fa
UW
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10989 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10990 return
fbb06eb1 10991 value_from_longest (type,
4c4b4cd2
PH
10992 (value_less (arg1, arg3)
10993 || value_equal (arg1, arg3))
10994 && (value_less (arg2, arg1)
10995 || value_equal (arg2, arg1)));
10996
10997 case TERNOP_IN_RANGE:
10998 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10999 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11000 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001
11002 if (noside == EVAL_SKIP)
11003 goto nosideret;
11004
f44316fa
UW
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11007 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11008 return
fbb06eb1 11009 value_from_longest (type,
4c4b4cd2
PH
11010 (value_less (arg1, arg3)
11011 || value_equal (arg1, arg3))
11012 && (value_less (arg2, arg1)
11013 || value_equal (arg2, arg1)));
11014
11015 case OP_ATR_FIRST:
11016 case OP_ATR_LAST:
11017 case OP_ATR_LENGTH:
11018 {
76a01679 11019 struct type *type_arg;
5b4ee69b 11020
76a01679
JB
11021 if (exp->elts[*pos].opcode == OP_TYPE)
11022 {
11023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11024 arg1 = NULL;
5bc23cb3 11025 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11026 }
11027 else
11028 {
11029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 type_arg = NULL;
11031 }
11032
11033 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11034 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11035 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11036 *pos += 4;
11037
11038 if (noside == EVAL_SKIP)
11039 goto nosideret;
11040
11041 if (type_arg == NULL)
11042 {
11043 arg1 = ada_coerce_ref (arg1);
11044
ad82864c 11045 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11046 arg1 = ada_coerce_to_simple_array (arg1);
11047
aa4fb036 11048 if (op == OP_ATR_LENGTH)
1eea4ebd 11049 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11050 else
11051 {
11052 type = ada_index_type (value_type (arg1), tem,
11053 ada_attribute_name (op));
11054 if (type == NULL)
11055 type = builtin_type (exp->gdbarch)->builtin_int;
11056 }
76a01679
JB
11057
11058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11059 return allocate_value (type);
76a01679
JB
11060
11061 switch (op)
11062 {
11063 default: /* Should never happen. */
323e0a4a 11064 error (_("unexpected attribute encountered"));
76a01679 11065 case OP_ATR_FIRST:
1eea4ebd
UW
11066 return value_from_longest
11067 (type, ada_array_bound (arg1, tem, 0));
76a01679 11068 case OP_ATR_LAST:
1eea4ebd
UW
11069 return value_from_longest
11070 (type, ada_array_bound (arg1, tem, 1));
76a01679 11071 case OP_ATR_LENGTH:
1eea4ebd
UW
11072 return value_from_longest
11073 (type, ada_array_length (arg1, tem));
76a01679
JB
11074 }
11075 }
11076 else if (discrete_type_p (type_arg))
11077 {
11078 struct type *range_type;
0d5cff50 11079 const char *name = ada_type_name (type_arg);
5b4ee69b 11080
76a01679
JB
11081 range_type = NULL;
11082 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11083 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11084 if (range_type == NULL)
11085 range_type = type_arg;
11086 switch (op)
11087 {
11088 default:
323e0a4a 11089 error (_("unexpected attribute encountered"));
76a01679 11090 case OP_ATR_FIRST:
690cc4eb 11091 return value_from_longest
43bbcdc2 11092 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11093 case OP_ATR_LAST:
690cc4eb 11094 return value_from_longest
43bbcdc2 11095 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11096 case OP_ATR_LENGTH:
323e0a4a 11097 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11098 }
11099 }
11100 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11101 error (_("unimplemented type attribute"));
76a01679
JB
11102 else
11103 {
11104 LONGEST low, high;
11105
ad82864c
JB
11106 if (ada_is_constrained_packed_array_type (type_arg))
11107 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11108
aa4fb036 11109 if (op == OP_ATR_LENGTH)
1eea4ebd 11110 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11111 else
11112 {
11113 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11114 if (type == NULL)
11115 type = builtin_type (exp->gdbarch)->builtin_int;
11116 }
1eea4ebd 11117
76a01679
JB
11118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11119 return allocate_value (type);
11120
11121 switch (op)
11122 {
11123 default:
323e0a4a 11124 error (_("unexpected attribute encountered"));
76a01679 11125 case OP_ATR_FIRST:
1eea4ebd 11126 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11127 return value_from_longest (type, low);
11128 case OP_ATR_LAST:
1eea4ebd 11129 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11130 return value_from_longest (type, high);
11131 case OP_ATR_LENGTH:
1eea4ebd
UW
11132 low = ada_array_bound_from_type (type_arg, tem, 0);
11133 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11134 return value_from_longest (type, high - low + 1);
11135 }
11136 }
14f9c5c9
AS
11137 }
11138
4c4b4cd2
PH
11139 case OP_ATR_TAG:
11140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141 if (noside == EVAL_SKIP)
76a01679 11142 goto nosideret;
4c4b4cd2
PH
11143
11144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11145 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11146
11147 return ada_value_tag (arg1);
11148
11149 case OP_ATR_MIN:
11150 case OP_ATR_MAX:
11151 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 if (noside == EVAL_SKIP)
76a01679 11155 goto nosideret;
d2e4a39e 11156 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11157 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11158 else
f44316fa
UW
11159 {
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 return value_binop (arg1, arg2,
11162 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11163 }
14f9c5c9 11164
4c4b4cd2
PH
11165 case OP_ATR_MODULUS:
11166 {
31dedfee 11167 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11168
5b4ee69b 11169 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11170 if (noside == EVAL_SKIP)
11171 goto nosideret;
4c4b4cd2 11172
76a01679 11173 if (!ada_is_modular_type (type_arg))
323e0a4a 11174 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11175
76a01679
JB
11176 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11177 ada_modulus (type_arg));
4c4b4cd2
PH
11178 }
11179
11180
11181 case OP_ATR_POS:
11182 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
76a01679 11185 goto nosideret;
3cb382c9
UW
11186 type = builtin_type (exp->gdbarch)->builtin_int;
11187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (type, not_lval);
14f9c5c9 11189 else
3cb382c9 11190 return value_pos_atr (type, arg1);
14f9c5c9 11191
4c4b4cd2
PH
11192 case OP_ATR_SIZE:
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11194 type = value_type (arg1);
11195
11196 /* If the argument is a reference, then dereference its type, since
11197 the user is really asking for the size of the actual object,
11198 not the size of the pointer. */
11199 if (TYPE_CODE (type) == TYPE_CODE_REF)
11200 type = TYPE_TARGET_TYPE (type);
11201
4c4b4cd2 11202 if (noside == EVAL_SKIP)
76a01679 11203 goto nosideret;
4c4b4cd2 11204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11205 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11206 else
22601c15 11207 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11208 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11209
11210 case OP_ATR_VAL:
11211 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11213 type = exp->elts[pc + 2].type;
14f9c5c9 11214 if (noside == EVAL_SKIP)
76a01679 11215 goto nosideret;
4c4b4cd2 11216 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11217 return value_zero (type, not_lval);
4c4b4cd2 11218 else
76a01679 11219 return value_val_atr (type, arg1);
4c4b4cd2
PH
11220
11221 case BINOP_EXP:
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11224 if (noside == EVAL_SKIP)
11225 goto nosideret;
11226 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11227 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11228 else
f44316fa
UW
11229 {
11230 /* For integer exponentiation operations,
11231 only promote the first argument. */
11232 if (is_integral_type (value_type (arg2)))
11233 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11234 else
11235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11236
11237 return value_binop (arg1, arg2, op);
11238 }
4c4b4cd2
PH
11239
11240 case UNOP_PLUS:
11241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11242 if (noside == EVAL_SKIP)
11243 goto nosideret;
11244 else
11245 return arg1;
11246
11247 case UNOP_ABS:
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 if (noside == EVAL_SKIP)
11250 goto nosideret;
f44316fa 11251 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11252 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11253 return value_neg (arg1);
14f9c5c9 11254 else
4c4b4cd2 11255 return arg1;
14f9c5c9
AS
11256
11257 case UNOP_IND:
5ec18f2b 11258 preeval_pos = *pos;
6b0d7253 11259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11260 if (noside == EVAL_SKIP)
4c4b4cd2 11261 goto nosideret;
df407dfe 11262 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11264 {
11265 if (ada_is_array_descriptor_type (type))
11266 /* GDB allows dereferencing GNAT array descriptors. */
11267 {
11268 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11269
4c4b4cd2 11270 if (arrType == NULL)
323e0a4a 11271 error (_("Attempt to dereference null array pointer."));
00a4c844 11272 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11273 }
11274 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11275 || TYPE_CODE (type) == TYPE_CODE_REF
11276 /* In C you can dereference an array to get the 1st elt. */
11277 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11278 {
5ec18f2b
JG
11279 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11280 only be determined by inspecting the object's tag.
11281 This means that we need to evaluate completely the
11282 expression in order to get its type. */
11283
023db19c
JB
11284 if ((TYPE_CODE (type) == TYPE_CODE_REF
11285 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11286 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11287 {
11288 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11289 EVAL_NORMAL);
11290 type = value_type (ada_value_ind (arg1));
11291 }
11292 else
11293 {
11294 type = to_static_fixed_type
11295 (ada_aligned_type
11296 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11297 }
c1b5a1a6 11298 ada_ensure_varsize_limit (type);
714e53ab
PH
11299 return value_zero (type, lval_memory);
11300 }
4c4b4cd2 11301 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11302 {
11303 /* GDB allows dereferencing an int. */
11304 if (expect_type == NULL)
11305 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11306 lval_memory);
11307 else
11308 {
11309 expect_type =
11310 to_static_fixed_type (ada_aligned_type (expect_type));
11311 return value_zero (expect_type, lval_memory);
11312 }
11313 }
4c4b4cd2 11314 else
323e0a4a 11315 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11316 }
0963b4bd 11317 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11318 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11319
96967637
JB
11320 if (TYPE_CODE (type) == TYPE_CODE_INT)
11321 /* GDB allows dereferencing an int. If we were given
11322 the expect_type, then use that as the target type.
11323 Otherwise, assume that the target type is an int. */
11324 {
11325 if (expect_type != NULL)
11326 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11327 arg1));
11328 else
11329 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11330 (CORE_ADDR) value_as_address (arg1));
11331 }
6b0d7253 11332
4c4b4cd2
PH
11333 if (ada_is_array_descriptor_type (type))
11334 /* GDB allows dereferencing GNAT array descriptors. */
11335 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11336 else
4c4b4cd2 11337 return ada_value_ind (arg1);
14f9c5c9
AS
11338
11339 case STRUCTOP_STRUCT:
11340 tem = longest_to_int (exp->elts[pc + 1].longconst);
11341 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11342 preeval_pos = *pos;
14f9c5c9
AS
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 if (noside == EVAL_SKIP)
4c4b4cd2 11345 goto nosideret;
14f9c5c9 11346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11347 {
df407dfe 11348 struct type *type1 = value_type (arg1);
5b4ee69b 11349
76a01679
JB
11350 if (ada_is_tagged_type (type1, 1))
11351 {
11352 type = ada_lookup_struct_elt_type (type1,
11353 &exp->elts[pc + 2].string,
988f6b3d 11354 1, 1);
5ec18f2b
JG
11355
11356 /* If the field is not found, check if it exists in the
11357 extension of this object's type. This means that we
11358 need to evaluate completely the expression. */
11359
76a01679 11360 if (type == NULL)
5ec18f2b
JG
11361 {
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11363 EVAL_NORMAL);
11364 arg1 = ada_value_struct_elt (arg1,
11365 &exp->elts[pc + 2].string,
11366 0);
11367 arg1 = unwrap_value (arg1);
11368 type = value_type (ada_to_fixed_value (arg1));
11369 }
76a01679
JB
11370 }
11371 else
11372 type =
11373 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11374 0);
76a01679
JB
11375
11376 return value_zero (ada_aligned_type (type), lval_memory);
11377 }
14f9c5c9 11378 else
a579cd9a
MW
11379 {
11380 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11381 arg1 = unwrap_value (arg1);
11382 return ada_to_fixed_value (arg1);
11383 }
284614f0 11384
14f9c5c9 11385 case OP_TYPE:
4c4b4cd2
PH
11386 /* The value is not supposed to be used. This is here to make it
11387 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11388 (*pos) += 2;
11389 if (noside == EVAL_SKIP)
4c4b4cd2 11390 goto nosideret;
14f9c5c9 11391 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11392 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11393 else
323e0a4a 11394 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11395
11396 case OP_AGGREGATE:
11397 case OP_CHOICES:
11398 case OP_OTHERS:
11399 case OP_DISCRETE_RANGE:
11400 case OP_POSITIONAL:
11401 case OP_NAME:
11402 if (noside == EVAL_NORMAL)
11403 switch (op)
11404 {
11405 case OP_NAME:
11406 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11407 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11408 case OP_AGGREGATE:
11409 error (_("Aggregates only allowed on the right of an assignment"));
11410 default:
0963b4bd
MS
11411 internal_error (__FILE__, __LINE__,
11412 _("aggregate apparently mangled"));
52ce6436
PH
11413 }
11414
11415 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11416 *pos += oplen - 1;
11417 for (tem = 0; tem < nargs; tem += 1)
11418 ada_evaluate_subexp (NULL, exp, pos, noside);
11419 goto nosideret;
14f9c5c9
AS
11420 }
11421
11422nosideret:
ced9779b 11423 return eval_skip_value (exp);
14f9c5c9 11424}
14f9c5c9 11425\f
d2e4a39e 11426
4c4b4cd2 11427 /* Fixed point */
14f9c5c9
AS
11428
11429/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11430 type name that encodes the 'small and 'delta information.
4c4b4cd2 11431 Otherwise, return NULL. */
14f9c5c9 11432
d2e4a39e 11433static const char *
ebf56fd3 11434fixed_type_info (struct type *type)
14f9c5c9 11435{
d2e4a39e 11436 const char *name = ada_type_name (type);
14f9c5c9
AS
11437 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11438
d2e4a39e
AS
11439 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11440 {
14f9c5c9 11441 const char *tail = strstr (name, "___XF_");
5b4ee69b 11442
14f9c5c9 11443 if (tail == NULL)
4c4b4cd2 11444 return NULL;
d2e4a39e 11445 else
4c4b4cd2 11446 return tail + 5;
14f9c5c9
AS
11447 }
11448 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11449 return fixed_type_info (TYPE_TARGET_TYPE (type));
11450 else
11451 return NULL;
11452}
11453
4c4b4cd2 11454/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11455
11456int
ebf56fd3 11457ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11458{
11459 return fixed_type_info (type) != NULL;
11460}
11461
4c4b4cd2
PH
11462/* Return non-zero iff TYPE represents a System.Address type. */
11463
11464int
11465ada_is_system_address_type (struct type *type)
11466{
11467 return (TYPE_NAME (type)
11468 && strcmp (TYPE_NAME (type), "system__address") == 0);
11469}
11470
14f9c5c9 11471/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11472 type, return the target floating-point type to be used to represent
11473 of this type during internal computation. */
11474
11475static struct type *
11476ada_scaling_type (struct type *type)
11477{
11478 return builtin_type (get_type_arch (type))->builtin_long_double;
11479}
11480
11481/* Assuming that TYPE is the representation of an Ada fixed-point
11482 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11483 delta cannot be determined. */
14f9c5c9 11484
50eff16b 11485struct value *
ebf56fd3 11486ada_delta (struct type *type)
14f9c5c9
AS
11487{
11488 const char *encoding = fixed_type_info (type);
50eff16b
UW
11489 struct type *scale_type = ada_scaling_type (type);
11490
11491 long long num, den;
11492
11493 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11494 return nullptr;
d2e4a39e 11495 else
50eff16b
UW
11496 return value_binop (value_from_longest (scale_type, num),
11497 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11498}
11499
11500/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11501 factor ('SMALL value) associated with the type. */
14f9c5c9 11502
50eff16b
UW
11503struct value *
11504ada_scaling_factor (struct type *type)
14f9c5c9
AS
11505{
11506 const char *encoding = fixed_type_info (type);
50eff16b
UW
11507 struct type *scale_type = ada_scaling_type (type);
11508
11509 long long num0, den0, num1, den1;
14f9c5c9 11510 int n;
d2e4a39e 11511
50eff16b 11512 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11513 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11514
11515 if (n < 2)
50eff16b 11516 return value_from_longest (scale_type, 1);
14f9c5c9 11517 else if (n == 4)
50eff16b
UW
11518 return value_binop (value_from_longest (scale_type, num1),
11519 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11520 else
50eff16b
UW
11521 return value_binop (value_from_longest (scale_type, num0),
11522 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11523}
11524
14f9c5c9 11525\f
d2e4a39e 11526
4c4b4cd2 11527 /* Range types */
14f9c5c9
AS
11528
11529/* Scan STR beginning at position K for a discriminant name, and
11530 return the value of that discriminant field of DVAL in *PX. If
11531 PNEW_K is not null, put the position of the character beyond the
11532 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11533 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11534
11535static int
108d56a4 11536scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11537 int *pnew_k)
14f9c5c9
AS
11538{
11539 static char *bound_buffer = NULL;
11540 static size_t bound_buffer_len = 0;
5da1a4d3 11541 const char *pstart, *pend, *bound;
d2e4a39e 11542 struct value *bound_val;
14f9c5c9
AS
11543
11544 if (dval == NULL || str == NULL || str[k] == '\0')
11545 return 0;
11546
5da1a4d3
SM
11547 pstart = str + k;
11548 pend = strstr (pstart, "__");
14f9c5c9
AS
11549 if (pend == NULL)
11550 {
5da1a4d3 11551 bound = pstart;
14f9c5c9
AS
11552 k += strlen (bound);
11553 }
d2e4a39e 11554 else
14f9c5c9 11555 {
5da1a4d3
SM
11556 int len = pend - pstart;
11557
11558 /* Strip __ and beyond. */
11559 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11560 strncpy (bound_buffer, pstart, len);
11561 bound_buffer[len] = '\0';
11562
14f9c5c9 11563 bound = bound_buffer;
d2e4a39e 11564 k = pend - str;
14f9c5c9 11565 }
d2e4a39e 11566
df407dfe 11567 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11568 if (bound_val == NULL)
11569 return 0;
11570
11571 *px = value_as_long (bound_val);
11572 if (pnew_k != NULL)
11573 *pnew_k = k;
11574 return 1;
11575}
11576
11577/* Value of variable named NAME in the current environment. If
11578 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11579 otherwise causes an error with message ERR_MSG. */
11580
d2e4a39e 11581static struct value *
edb0c9cb 11582get_var_value (const char *name, const char *err_msg)
14f9c5c9 11583{
b5ec771e 11584 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11585
b5ec771e
PA
11586 struct block_symbol *syms;
11587 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11588 get_selected_block (0),
11589 VAR_DOMAIN, &syms, 1);
ec6a20c2 11590 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11591
11592 if (nsyms != 1)
11593 {
ec6a20c2 11594 do_cleanups (old_chain);
14f9c5c9 11595 if (err_msg == NULL)
4c4b4cd2 11596 return 0;
14f9c5c9 11597 else
8a3fe4f8 11598 error (("%s"), err_msg);
14f9c5c9
AS
11599 }
11600
ec6a20c2
JB
11601 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11602 do_cleanups (old_chain);
11603 return result;
14f9c5c9 11604}
d2e4a39e 11605
edb0c9cb
PA
11606/* Value of integer variable named NAME in the current environment.
11607 If no such variable is found, returns false. Otherwise, sets VALUE
11608 to the variable's value and returns true. */
4c4b4cd2 11609
edb0c9cb
PA
11610bool
11611get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11612{
4c4b4cd2 11613 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11614
14f9c5c9 11615 if (var_val == 0)
edb0c9cb
PA
11616 return false;
11617
11618 value = value_as_long (var_val);
11619 return true;
14f9c5c9 11620}
d2e4a39e 11621
14f9c5c9
AS
11622
11623/* Return a range type whose base type is that of the range type named
11624 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11625 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11626 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11627 corresponding range type from debug information; fall back to using it
11628 if symbol lookup fails. If a new type must be created, allocate it
11629 like ORIG_TYPE was. The bounds information, in general, is encoded
11630 in NAME, the base type given in the named range type. */
14f9c5c9 11631
d2e4a39e 11632static struct type *
28c85d6c 11633to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11634{
0d5cff50 11635 const char *name;
14f9c5c9 11636 struct type *base_type;
108d56a4 11637 const char *subtype_info;
14f9c5c9 11638
28c85d6c
JB
11639 gdb_assert (raw_type != NULL);
11640 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11641
1ce677a4 11642 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11643 base_type = TYPE_TARGET_TYPE (raw_type);
11644 else
11645 base_type = raw_type;
11646
28c85d6c 11647 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11648 subtype_info = strstr (name, "___XD");
11649 if (subtype_info == NULL)
690cc4eb 11650 {
43bbcdc2
PH
11651 LONGEST L = ada_discrete_type_low_bound (raw_type);
11652 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11653
690cc4eb
PH
11654 if (L < INT_MIN || U > INT_MAX)
11655 return raw_type;
11656 else
0c9c3474
SA
11657 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11658 L, U);
690cc4eb 11659 }
14f9c5c9
AS
11660 else
11661 {
11662 static char *name_buf = NULL;
11663 static size_t name_len = 0;
11664 int prefix_len = subtype_info - name;
11665 LONGEST L, U;
11666 struct type *type;
108d56a4 11667 const char *bounds_str;
14f9c5c9
AS
11668 int n;
11669
11670 GROW_VECT (name_buf, name_len, prefix_len + 5);
11671 strncpy (name_buf, name, prefix_len);
11672 name_buf[prefix_len] = '\0';
11673
11674 subtype_info += 5;
11675 bounds_str = strchr (subtype_info, '_');
11676 n = 1;
11677
d2e4a39e 11678 if (*subtype_info == 'L')
4c4b4cd2
PH
11679 {
11680 if (!ada_scan_number (bounds_str, n, &L, &n)
11681 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11682 return raw_type;
11683 if (bounds_str[n] == '_')
11684 n += 2;
0963b4bd 11685 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11686 n += 1;
11687 subtype_info += 1;
11688 }
d2e4a39e 11689 else
4c4b4cd2 11690 {
4c4b4cd2 11691 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11692 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11693 {
323e0a4a 11694 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11695 L = 1;
11696 }
11697 }
14f9c5c9 11698
d2e4a39e 11699 if (*subtype_info == 'U')
4c4b4cd2
PH
11700 {
11701 if (!ada_scan_number (bounds_str, n, &U, &n)
11702 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11703 return raw_type;
11704 }
d2e4a39e 11705 else
4c4b4cd2 11706 {
4c4b4cd2 11707 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11708 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11709 {
323e0a4a 11710 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11711 U = L;
11712 }
11713 }
14f9c5c9 11714
0c9c3474
SA
11715 type = create_static_range_type (alloc_type_copy (raw_type),
11716 base_type, L, U);
f5a91472
JB
11717 /* create_static_range_type alters the resulting type's length
11718 to match the size of the base_type, which is not what we want.
11719 Set it back to the original range type's length. */
11720 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11721 TYPE_NAME (type) = name;
14f9c5c9
AS
11722 return type;
11723 }
11724}
11725
4c4b4cd2
PH
11726/* True iff NAME is the name of a range type. */
11727
14f9c5c9 11728int
d2e4a39e 11729ada_is_range_type_name (const char *name)
14f9c5c9
AS
11730{
11731 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11732}
14f9c5c9 11733\f
d2e4a39e 11734
4c4b4cd2
PH
11735 /* Modular types */
11736
11737/* True iff TYPE is an Ada modular type. */
14f9c5c9 11738
14f9c5c9 11739int
d2e4a39e 11740ada_is_modular_type (struct type *type)
14f9c5c9 11741{
18af8284 11742 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11743
11744 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11745 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11746 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11747}
11748
4c4b4cd2
PH
11749/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11750
61ee279c 11751ULONGEST
0056e4d5 11752ada_modulus (struct type *type)
14f9c5c9 11753{
43bbcdc2 11754 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11755}
d2e4a39e 11756\f
f7f9143b
JB
11757
11758/* Ada exception catchpoint support:
11759 ---------------------------------
11760
11761 We support 3 kinds of exception catchpoints:
11762 . catchpoints on Ada exceptions
11763 . catchpoints on unhandled Ada exceptions
11764 . catchpoints on failed assertions
11765
11766 Exceptions raised during failed assertions, or unhandled exceptions
11767 could perfectly be caught with the general catchpoint on Ada exceptions.
11768 However, we can easily differentiate these two special cases, and having
11769 the option to distinguish these two cases from the rest can be useful
11770 to zero-in on certain situations.
11771
11772 Exception catchpoints are a specialized form of breakpoint,
11773 since they rely on inserting breakpoints inside known routines
11774 of the GNAT runtime. The implementation therefore uses a standard
11775 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11776 of breakpoint_ops.
11777
0259addd
JB
11778 Support in the runtime for exception catchpoints have been changed
11779 a few times already, and these changes affect the implementation
11780 of these catchpoints. In order to be able to support several
11781 variants of the runtime, we use a sniffer that will determine
28010a5d 11782 the runtime variant used by the program being debugged. */
f7f9143b 11783
82eacd52
JB
11784/* Ada's standard exceptions.
11785
11786 The Ada 83 standard also defined Numeric_Error. But there so many
11787 situations where it was unclear from the Ada 83 Reference Manual
11788 (RM) whether Constraint_Error or Numeric_Error should be raised,
11789 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11790 Interpretation saying that anytime the RM says that Numeric_Error
11791 should be raised, the implementation may raise Constraint_Error.
11792 Ada 95 went one step further and pretty much removed Numeric_Error
11793 from the list of standard exceptions (it made it a renaming of
11794 Constraint_Error, to help preserve compatibility when compiling
11795 an Ada83 compiler). As such, we do not include Numeric_Error from
11796 this list of standard exceptions. */
3d0b0fa3 11797
a121b7c1 11798static const char *standard_exc[] = {
3d0b0fa3
JB
11799 "constraint_error",
11800 "program_error",
11801 "storage_error",
11802 "tasking_error"
11803};
11804
0259addd
JB
11805typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11806
11807/* A structure that describes how to support exception catchpoints
11808 for a given executable. */
11809
11810struct exception_support_info
11811{
11812 /* The name of the symbol to break on in order to insert
11813 a catchpoint on exceptions. */
11814 const char *catch_exception_sym;
11815
11816 /* The name of the symbol to break on in order to insert
11817 a catchpoint on unhandled exceptions. */
11818 const char *catch_exception_unhandled_sym;
11819
11820 /* The name of the symbol to break on in order to insert
11821 a catchpoint on failed assertions. */
11822 const char *catch_assert_sym;
11823
11824 /* Assuming that the inferior just triggered an unhandled exception
11825 catchpoint, this function is responsible for returning the address
11826 in inferior memory where the name of that exception is stored.
11827 Return zero if the address could not be computed. */
11828 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11829};
11830
11831static CORE_ADDR ada_unhandled_exception_name_addr (void);
11832static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11833
11834/* The following exception support info structure describes how to
11835 implement exception catchpoints with the latest version of the
11836 Ada runtime (as of 2007-03-06). */
11837
11838static const struct exception_support_info default_exception_support_info =
11839{
11840 "__gnat_debug_raise_exception", /* catch_exception_sym */
11841 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11842 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11843 ada_unhandled_exception_name_addr
11844};
11845
11846/* The following exception support info structure describes how to
11847 implement exception catchpoints with a slightly older version
11848 of the Ada runtime. */
11849
11850static const struct exception_support_info exception_support_info_fallback =
11851{
11852 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11853 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11854 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11855 ada_unhandled_exception_name_addr_from_raise
11856};
11857
f17011e0
JB
11858/* Return nonzero if we can detect the exception support routines
11859 described in EINFO.
11860
11861 This function errors out if an abnormal situation is detected
11862 (for instance, if we find the exception support routines, but
11863 that support is found to be incomplete). */
11864
11865static int
11866ada_has_this_exception_support (const struct exception_support_info *einfo)
11867{
11868 struct symbol *sym;
11869
11870 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11871 that should be compiled with debugging information. As a result, we
11872 expect to find that symbol in the symtabs. */
11873
11874 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11875 if (sym == NULL)
a6af7abe
JB
11876 {
11877 /* Perhaps we did not find our symbol because the Ada runtime was
11878 compiled without debugging info, or simply stripped of it.
11879 It happens on some GNU/Linux distributions for instance, where
11880 users have to install a separate debug package in order to get
11881 the runtime's debugging info. In that situation, let the user
11882 know why we cannot insert an Ada exception catchpoint.
11883
11884 Note: Just for the purpose of inserting our Ada exception
11885 catchpoint, we could rely purely on the associated minimal symbol.
11886 But we would be operating in degraded mode anyway, since we are
11887 still lacking the debugging info needed later on to extract
11888 the name of the exception being raised (this name is printed in
11889 the catchpoint message, and is also used when trying to catch
11890 a specific exception). We do not handle this case for now. */
3b7344d5 11891 struct bound_minimal_symbol msym
1c8e84b0
JB
11892 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11893
3b7344d5 11894 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11895 error (_("Your Ada runtime appears to be missing some debugging "
11896 "information.\nCannot insert Ada exception catchpoint "
11897 "in this configuration."));
11898
11899 return 0;
11900 }
f17011e0
JB
11901
11902 /* Make sure that the symbol we found corresponds to a function. */
11903
11904 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11905 error (_("Symbol \"%s\" is not a function (class = %d)"),
11906 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11907
11908 return 1;
11909}
11910
0259addd
JB
11911/* Inspect the Ada runtime and determine which exception info structure
11912 should be used to provide support for exception catchpoints.
11913
3eecfa55
JB
11914 This function will always set the per-inferior exception_info,
11915 or raise an error. */
0259addd
JB
11916
11917static void
11918ada_exception_support_info_sniffer (void)
11919{
3eecfa55 11920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11921
11922 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11923 if (data->exception_info != NULL)
0259addd
JB
11924 return;
11925
11926 /* Check the latest (default) exception support info. */
f17011e0 11927 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11928 {
3eecfa55 11929 data->exception_info = &default_exception_support_info;
0259addd
JB
11930 return;
11931 }
11932
11933 /* Try our fallback exception suport info. */
f17011e0 11934 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11935 {
3eecfa55 11936 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11937 return;
11938 }
11939
11940 /* Sometimes, it is normal for us to not be able to find the routine
11941 we are looking for. This happens when the program is linked with
11942 the shared version of the GNAT runtime, and the program has not been
11943 started yet. Inform the user of these two possible causes if
11944 applicable. */
11945
ccefe4c4 11946 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11947 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11948
11949 /* If the symbol does not exist, then check that the program is
11950 already started, to make sure that shared libraries have been
11951 loaded. If it is not started, this may mean that the symbol is
11952 in a shared library. */
11953
11954 if (ptid_get_pid (inferior_ptid) == 0)
11955 error (_("Unable to insert catchpoint. Try to start the program first."));
11956
11957 /* At this point, we know that we are debugging an Ada program and
11958 that the inferior has been started, but we still are not able to
0963b4bd 11959 find the run-time symbols. That can mean that we are in
0259addd
JB
11960 configurable run time mode, or that a-except as been optimized
11961 out by the linker... In any case, at this point it is not worth
11962 supporting this feature. */
11963
7dda8cff 11964 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11965}
11966
f7f9143b
JB
11967/* True iff FRAME is very likely to be that of a function that is
11968 part of the runtime system. This is all very heuristic, but is
11969 intended to be used as advice as to what frames are uninteresting
11970 to most users. */
11971
11972static int
11973is_known_support_routine (struct frame_info *frame)
11974{
692465f1 11975 enum language func_lang;
f7f9143b 11976 int i;
f35a17b5 11977 const char *fullname;
f7f9143b 11978
4ed6b5be
JB
11979 /* If this code does not have any debugging information (no symtab),
11980 This cannot be any user code. */
f7f9143b 11981
51abb421 11982 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11983 if (sal.symtab == NULL)
11984 return 1;
11985
4ed6b5be
JB
11986 /* If there is a symtab, but the associated source file cannot be
11987 located, then assume this is not user code: Selecting a frame
11988 for which we cannot display the code would not be very helpful
11989 for the user. This should also take care of case such as VxWorks
11990 where the kernel has some debugging info provided for a few units. */
f7f9143b 11991
f35a17b5
JK
11992 fullname = symtab_to_fullname (sal.symtab);
11993 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11994 return 1;
11995
4ed6b5be
JB
11996 /* Check the unit filename againt the Ada runtime file naming.
11997 We also check the name of the objfile against the name of some
11998 known system libraries that sometimes come with debugging info
11999 too. */
12000
f7f9143b
JB
12001 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12002 {
12003 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12004 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12005 return 1;
eb822aa6
DE
12006 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12007 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12008 return 1;
f7f9143b
JB
12009 }
12010
4ed6b5be 12011 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12012
c6dc63a1
TT
12013 gdb::unique_xmalloc_ptr<char> func_name
12014 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12015 if (func_name == NULL)
12016 return 1;
12017
12018 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12019 {
12020 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12021 if (re_exec (func_name.get ()))
12022 return 1;
f7f9143b
JB
12023 }
12024
12025 return 0;
12026}
12027
12028/* Find the first frame that contains debugging information and that is not
12029 part of the Ada run-time, starting from FI and moving upward. */
12030
0ef643c8 12031void
f7f9143b
JB
12032ada_find_printable_frame (struct frame_info *fi)
12033{
12034 for (; fi != NULL; fi = get_prev_frame (fi))
12035 {
12036 if (!is_known_support_routine (fi))
12037 {
12038 select_frame (fi);
12039 break;
12040 }
12041 }
12042
12043}
12044
12045/* Assuming that the inferior just triggered an unhandled exception
12046 catchpoint, return the address in inferior memory where the name
12047 of the exception is stored.
12048
12049 Return zero if the address could not be computed. */
12050
12051static CORE_ADDR
12052ada_unhandled_exception_name_addr (void)
0259addd
JB
12053{
12054 return parse_and_eval_address ("e.full_name");
12055}
12056
12057/* Same as ada_unhandled_exception_name_addr, except that this function
12058 should be used when the inferior uses an older version of the runtime,
12059 where the exception name needs to be extracted from a specific frame
12060 several frames up in the callstack. */
12061
12062static CORE_ADDR
12063ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12064{
12065 int frame_level;
12066 struct frame_info *fi;
3eecfa55 12067 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12068
12069 /* To determine the name of this exception, we need to select
12070 the frame corresponding to RAISE_SYM_NAME. This frame is
12071 at least 3 levels up, so we simply skip the first 3 frames
12072 without checking the name of their associated function. */
12073 fi = get_current_frame ();
12074 for (frame_level = 0; frame_level < 3; frame_level += 1)
12075 if (fi != NULL)
12076 fi = get_prev_frame (fi);
12077
12078 while (fi != NULL)
12079 {
692465f1
JB
12080 enum language func_lang;
12081
c6dc63a1
TT
12082 gdb::unique_xmalloc_ptr<char> func_name
12083 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12084 if (func_name != NULL)
12085 {
c6dc63a1 12086 if (strcmp (func_name.get (),
55b87a52
KS
12087 data->exception_info->catch_exception_sym) == 0)
12088 break; /* We found the frame we were looking for... */
12089 fi = get_prev_frame (fi);
12090 }
f7f9143b
JB
12091 }
12092
12093 if (fi == NULL)
12094 return 0;
12095
12096 select_frame (fi);
12097 return parse_and_eval_address ("id.full_name");
12098}
12099
12100/* Assuming the inferior just triggered an Ada exception catchpoint
12101 (of any type), return the address in inferior memory where the name
12102 of the exception is stored, if applicable.
12103
45db7c09
PA
12104 Assumes the selected frame is the current frame.
12105
f7f9143b
JB
12106 Return zero if the address could not be computed, or if not relevant. */
12107
12108static CORE_ADDR
761269c8 12109ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12110 struct breakpoint *b)
12111{
3eecfa55
JB
12112 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12113
f7f9143b
JB
12114 switch (ex)
12115 {
761269c8 12116 case ada_catch_exception:
f7f9143b
JB
12117 return (parse_and_eval_address ("e.full_name"));
12118 break;
12119
761269c8 12120 case ada_catch_exception_unhandled:
3eecfa55 12121 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12122 break;
12123
761269c8 12124 case ada_catch_assert:
f7f9143b
JB
12125 return 0; /* Exception name is not relevant in this case. */
12126 break;
12127
12128 default:
12129 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12130 break;
12131 }
12132
12133 return 0; /* Should never be reached. */
12134}
12135
e547c119
JB
12136/* Assuming the inferior is stopped at an exception catchpoint,
12137 return the message which was associated to the exception, if
12138 available. Return NULL if the message could not be retrieved.
12139
12140 The caller must xfree the string after use.
12141
12142 Note: The exception message can be associated to an exception
12143 either through the use of the Raise_Exception function, or
12144 more simply (Ada 2005 and later), via:
12145
12146 raise Exception_Name with "exception message";
12147
12148 */
12149
12150static char *
12151ada_exception_message_1 (void)
12152{
12153 struct value *e_msg_val;
12154 char *e_msg = NULL;
12155 int e_msg_len;
12156 struct cleanup *cleanups;
12157
12158 /* For runtimes that support this feature, the exception message
12159 is passed as an unbounded string argument called "message". */
12160 e_msg_val = parse_and_eval ("message");
12161 if (e_msg_val == NULL)
12162 return NULL; /* Exception message not supported. */
12163
12164 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12165 gdb_assert (e_msg_val != NULL);
12166 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12167
12168 /* If the message string is empty, then treat it as if there was
12169 no exception message. */
12170 if (e_msg_len <= 0)
12171 return NULL;
12172
12173 e_msg = (char *) xmalloc (e_msg_len + 1);
12174 cleanups = make_cleanup (xfree, e_msg);
12175 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12176 e_msg[e_msg_len] = '\0';
12177
12178 discard_cleanups (cleanups);
12179 return e_msg;
12180}
12181
12182/* Same as ada_exception_message_1, except that all exceptions are
12183 contained here (returning NULL instead). */
12184
12185static char *
12186ada_exception_message (void)
12187{
12188 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12189
12190 TRY
12191 {
12192 e_msg = ada_exception_message_1 ();
12193 }
12194 CATCH (e, RETURN_MASK_ERROR)
12195 {
12196 e_msg = NULL;
12197 }
12198 END_CATCH
12199
12200 return e_msg;
12201}
12202
f7f9143b
JB
12203/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12204 any error that ada_exception_name_addr_1 might cause to be thrown.
12205 When an error is intercepted, a warning with the error message is printed,
12206 and zero is returned. */
12207
12208static CORE_ADDR
761269c8 12209ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12210 struct breakpoint *b)
12211{
f7f9143b
JB
12212 CORE_ADDR result = 0;
12213
492d29ea 12214 TRY
f7f9143b
JB
12215 {
12216 result = ada_exception_name_addr_1 (ex, b);
12217 }
12218
492d29ea 12219 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12220 {
12221 warning (_("failed to get exception name: %s"), e.message);
12222 return 0;
12223 }
492d29ea 12224 END_CATCH
f7f9143b
JB
12225
12226 return result;
12227}
12228
28010a5d
PA
12229static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12230
12231/* Ada catchpoints.
12232
12233 In the case of catchpoints on Ada exceptions, the catchpoint will
12234 stop the target on every exception the program throws. When a user
12235 specifies the name of a specific exception, we translate this
12236 request into a condition expression (in text form), and then parse
12237 it into an expression stored in each of the catchpoint's locations.
12238 We then use this condition to check whether the exception that was
12239 raised is the one the user is interested in. If not, then the
12240 target is resumed again. We store the name of the requested
12241 exception, in order to be able to re-set the condition expression
12242 when symbols change. */
12243
12244/* An instance of this type is used to represent an Ada catchpoint
5625a286 12245 breakpoint location. */
28010a5d 12246
5625a286 12247class ada_catchpoint_location : public bp_location
28010a5d 12248{
5625a286
PA
12249public:
12250 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12251 : bp_location (ops, owner)
12252 {}
28010a5d
PA
12253
12254 /* The condition that checks whether the exception that was raised
12255 is the specific exception the user specified on catchpoint
12256 creation. */
4d01a485 12257 expression_up excep_cond_expr;
28010a5d
PA
12258};
12259
12260/* Implement the DTOR method in the bp_location_ops structure for all
12261 Ada exception catchpoint kinds. */
12262
12263static void
12264ada_catchpoint_location_dtor (struct bp_location *bl)
12265{
12266 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12267
4d01a485 12268 al->excep_cond_expr.reset ();
28010a5d
PA
12269}
12270
12271/* The vtable to be used in Ada catchpoint locations. */
12272
12273static const struct bp_location_ops ada_catchpoint_location_ops =
12274{
12275 ada_catchpoint_location_dtor
12276};
12277
c1fc2657 12278/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12279
c1fc2657 12280struct ada_catchpoint : public breakpoint
28010a5d 12281{
c1fc2657 12282 ~ada_catchpoint () override;
28010a5d
PA
12283
12284 /* The name of the specific exception the user specified. */
12285 char *excep_string;
12286};
12287
12288/* Parse the exception condition string in the context of each of the
12289 catchpoint's locations, and store them for later evaluation. */
12290
12291static void
12292create_excep_cond_exprs (struct ada_catchpoint *c)
12293{
12294 struct cleanup *old_chain;
12295 struct bp_location *bl;
12296 char *cond_string;
12297
12298 /* Nothing to do if there's no specific exception to catch. */
12299 if (c->excep_string == NULL)
12300 return;
12301
12302 /* Same if there are no locations... */
c1fc2657 12303 if (c->loc == NULL)
28010a5d
PA
12304 return;
12305
12306 /* Compute the condition expression in text form, from the specific
12307 expection we want to catch. */
12308 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12309 old_chain = make_cleanup (xfree, cond_string);
12310
12311 /* Iterate over all the catchpoint's locations, and parse an
12312 expression for each. */
c1fc2657 12313 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12314 {
12315 struct ada_catchpoint_location *ada_loc
12316 = (struct ada_catchpoint_location *) bl;
4d01a485 12317 expression_up exp;
28010a5d
PA
12318
12319 if (!bl->shlib_disabled)
12320 {
bbc13ae3 12321 const char *s;
28010a5d
PA
12322
12323 s = cond_string;
492d29ea 12324 TRY
28010a5d 12325 {
036e657b
JB
12326 exp = parse_exp_1 (&s, bl->address,
12327 block_for_pc (bl->address),
12328 0);
28010a5d 12329 }
492d29ea 12330 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12331 {
12332 warning (_("failed to reevaluate internal exception condition "
12333 "for catchpoint %d: %s"),
c1fc2657 12334 c->number, e.message);
849f2b52 12335 }
492d29ea 12336 END_CATCH
28010a5d
PA
12337 }
12338
b22e99fd 12339 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12340 }
12341
12342 do_cleanups (old_chain);
12343}
12344
c1fc2657 12345/* ada_catchpoint destructor. */
28010a5d 12346
c1fc2657 12347ada_catchpoint::~ada_catchpoint ()
28010a5d 12348{
c1fc2657 12349 xfree (this->excep_string);
28010a5d
PA
12350}
12351
12352/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12353 structure for all exception catchpoint kinds. */
12354
12355static struct bp_location *
761269c8 12356allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12357 struct breakpoint *self)
12358{
5625a286 12359 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12360}
12361
12362/* Implement the RE_SET method in the breakpoint_ops structure for all
12363 exception catchpoint kinds. */
12364
12365static void
761269c8 12366re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12367{
12368 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12369
12370 /* Call the base class's method. This updates the catchpoint's
12371 locations. */
2060206e 12372 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12373
12374 /* Reparse the exception conditional expressions. One for each
12375 location. */
12376 create_excep_cond_exprs (c);
12377}
12378
12379/* Returns true if we should stop for this breakpoint hit. If the
12380 user specified a specific exception, we only want to cause a stop
12381 if the program thrown that exception. */
12382
12383static int
12384should_stop_exception (const struct bp_location *bl)
12385{
12386 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12387 const struct ada_catchpoint_location *ada_loc
12388 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12389 int stop;
12390
12391 /* With no specific exception, should always stop. */
12392 if (c->excep_string == NULL)
12393 return 1;
12394
12395 if (ada_loc->excep_cond_expr == NULL)
12396 {
12397 /* We will have a NULL expression if back when we were creating
12398 the expressions, this location's had failed to parse. */
12399 return 1;
12400 }
12401
12402 stop = 1;
492d29ea 12403 TRY
28010a5d
PA
12404 {
12405 struct value *mark;
12406
12407 mark = value_mark ();
4d01a485 12408 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12409 value_free_to_mark (mark);
12410 }
492d29ea
PA
12411 CATCH (ex, RETURN_MASK_ALL)
12412 {
12413 exception_fprintf (gdb_stderr, ex,
12414 _("Error in testing exception condition:\n"));
12415 }
12416 END_CATCH
12417
28010a5d
PA
12418 return stop;
12419}
12420
12421/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12422 for all exception catchpoint kinds. */
12423
12424static void
761269c8 12425check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12426{
12427 bs->stop = should_stop_exception (bs->bp_location_at);
12428}
12429
f7f9143b
JB
12430/* Implement the PRINT_IT method in the breakpoint_ops structure
12431 for all exception catchpoint kinds. */
12432
12433static enum print_stop_action
761269c8 12434print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12435{
79a45e25 12436 struct ui_out *uiout = current_uiout;
348d480f 12437 struct breakpoint *b = bs->breakpoint_at;
e547c119 12438 char *exception_message;
348d480f 12439
956a9fb9 12440 annotate_catchpoint (b->number);
f7f9143b 12441
112e8700 12442 if (uiout->is_mi_like_p ())
f7f9143b 12443 {
112e8700 12444 uiout->field_string ("reason",
956a9fb9 12445 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12446 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12447 }
12448
112e8700
SM
12449 uiout->text (b->disposition == disp_del
12450 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12451 uiout->field_int ("bkptno", b->number);
12452 uiout->text (", ");
f7f9143b 12453
45db7c09
PA
12454 /* ada_exception_name_addr relies on the selected frame being the
12455 current frame. Need to do this here because this function may be
12456 called more than once when printing a stop, and below, we'll
12457 select the first frame past the Ada run-time (see
12458 ada_find_printable_frame). */
12459 select_frame (get_current_frame ());
12460
f7f9143b
JB
12461 switch (ex)
12462 {
761269c8
JB
12463 case ada_catch_exception:
12464 case ada_catch_exception_unhandled:
956a9fb9
JB
12465 {
12466 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12467 char exception_name[256];
12468
12469 if (addr != 0)
12470 {
c714b426
PA
12471 read_memory (addr, (gdb_byte *) exception_name,
12472 sizeof (exception_name) - 1);
956a9fb9
JB
12473 exception_name [sizeof (exception_name) - 1] = '\0';
12474 }
12475 else
12476 {
12477 /* For some reason, we were unable to read the exception
12478 name. This could happen if the Runtime was compiled
12479 without debugging info, for instance. In that case,
12480 just replace the exception name by the generic string
12481 "exception" - it will read as "an exception" in the
12482 notification we are about to print. */
967cff16 12483 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12484 }
12485 /* In the case of unhandled exception breakpoints, we print
12486 the exception name as "unhandled EXCEPTION_NAME", to make
12487 it clearer to the user which kind of catchpoint just got
12488 hit. We used ui_out_text to make sure that this extra
12489 info does not pollute the exception name in the MI case. */
761269c8 12490 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12491 uiout->text ("unhandled ");
12492 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12493 }
12494 break;
761269c8 12495 case ada_catch_assert:
956a9fb9
JB
12496 /* In this case, the name of the exception is not really
12497 important. Just print "failed assertion" to make it clearer
12498 that his program just hit an assertion-failure catchpoint.
12499 We used ui_out_text because this info does not belong in
12500 the MI output. */
112e8700 12501 uiout->text ("failed assertion");
956a9fb9 12502 break;
f7f9143b 12503 }
e547c119
JB
12504
12505 exception_message = ada_exception_message ();
12506 if (exception_message != NULL)
12507 {
12508 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12509
12510 uiout->text (" (");
12511 uiout->field_string ("exception-message", exception_message);
12512 uiout->text (")");
12513
12514 do_cleanups (cleanups);
12515 }
12516
112e8700 12517 uiout->text (" at ");
956a9fb9 12518 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12519
12520 return PRINT_SRC_AND_LOC;
12521}
12522
12523/* Implement the PRINT_ONE method in the breakpoint_ops structure
12524 for all exception catchpoint kinds. */
12525
12526static void
761269c8 12527print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12528 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12529{
79a45e25 12530 struct ui_out *uiout = current_uiout;
28010a5d 12531 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12532 struct value_print_options opts;
12533
12534 get_user_print_options (&opts);
12535 if (opts.addressprint)
f7f9143b
JB
12536 {
12537 annotate_field (4);
112e8700 12538 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12539 }
12540
12541 annotate_field (5);
a6d9a66e 12542 *last_loc = b->loc;
f7f9143b
JB
12543 switch (ex)
12544 {
761269c8 12545 case ada_catch_exception:
28010a5d 12546 if (c->excep_string != NULL)
f7f9143b 12547 {
28010a5d
PA
12548 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12549
112e8700 12550 uiout->field_string ("what", msg);
f7f9143b
JB
12551 xfree (msg);
12552 }
12553 else
112e8700 12554 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12555
12556 break;
12557
761269c8 12558 case ada_catch_exception_unhandled:
112e8700 12559 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12560 break;
12561
761269c8 12562 case ada_catch_assert:
112e8700 12563 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12564 break;
12565
12566 default:
12567 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12568 break;
12569 }
12570}
12571
12572/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575static void
761269c8 12576print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12577 struct breakpoint *b)
12578{
28010a5d 12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12580 struct ui_out *uiout = current_uiout;
28010a5d 12581
112e8700 12582 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12583 : _("Catchpoint "));
112e8700
SM
12584 uiout->field_int ("bkptno", b->number);
12585 uiout->text (": ");
00eb2c4a 12586
f7f9143b
JB
12587 switch (ex)
12588 {
761269c8 12589 case ada_catch_exception:
28010a5d 12590 if (c->excep_string != NULL)
00eb2c4a
JB
12591 {
12592 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12593 struct cleanup *old_chain = make_cleanup (xfree, info);
12594
112e8700 12595 uiout->text (info);
00eb2c4a
JB
12596 do_cleanups (old_chain);
12597 }
f7f9143b 12598 else
112e8700 12599 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12600 break;
12601
761269c8 12602 case ada_catch_exception_unhandled:
112e8700 12603 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12604 break;
12605
761269c8 12606 case ada_catch_assert:
112e8700 12607 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12608 break;
12609
12610 default:
12611 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12612 break;
12613 }
12614}
12615
6149aea9
PA
12616/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12617 for all exception catchpoint kinds. */
12618
12619static void
761269c8 12620print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12621 struct breakpoint *b, struct ui_file *fp)
12622{
28010a5d
PA
12623 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12624
6149aea9
PA
12625 switch (ex)
12626 {
761269c8 12627 case ada_catch_exception:
6149aea9 12628 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12629 if (c->excep_string != NULL)
12630 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12631 break;
12632
761269c8 12633 case ada_catch_exception_unhandled:
78076abc 12634 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12635 break;
12636
761269c8 12637 case ada_catch_assert:
6149aea9
PA
12638 fprintf_filtered (fp, "catch assert");
12639 break;
12640
12641 default:
12642 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12643 }
d9b3f62e 12644 print_recreate_thread (b, fp);
6149aea9
PA
12645}
12646
f7f9143b
JB
12647/* Virtual table for "catch exception" breakpoints. */
12648
28010a5d
PA
12649static struct bp_location *
12650allocate_location_catch_exception (struct breakpoint *self)
12651{
761269c8 12652 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12653}
12654
12655static void
12656re_set_catch_exception (struct breakpoint *b)
12657{
761269c8 12658 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12659}
12660
12661static void
12662check_status_catch_exception (bpstat bs)
12663{
761269c8 12664 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12665}
12666
f7f9143b 12667static enum print_stop_action
348d480f 12668print_it_catch_exception (bpstat bs)
f7f9143b 12669{
761269c8 12670 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12671}
12672
12673static void
a6d9a66e 12674print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12675{
761269c8 12676 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12677}
12678
12679static void
12680print_mention_catch_exception (struct breakpoint *b)
12681{
761269c8 12682 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12683}
12684
6149aea9
PA
12685static void
12686print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12687{
761269c8 12688 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12689}
12690
2060206e 12691static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12692
12693/* Virtual table for "catch exception unhandled" breakpoints. */
12694
28010a5d
PA
12695static struct bp_location *
12696allocate_location_catch_exception_unhandled (struct breakpoint *self)
12697{
761269c8 12698 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12699}
12700
12701static void
12702re_set_catch_exception_unhandled (struct breakpoint *b)
12703{
761269c8 12704 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12705}
12706
12707static void
12708check_status_catch_exception_unhandled (bpstat bs)
12709{
761269c8 12710 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12711}
12712
f7f9143b 12713static enum print_stop_action
348d480f 12714print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12715{
761269c8 12716 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12717}
12718
12719static void
a6d9a66e
UW
12720print_one_catch_exception_unhandled (struct breakpoint *b,
12721 struct bp_location **last_loc)
f7f9143b 12722{
761269c8 12723 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12724}
12725
12726static void
12727print_mention_catch_exception_unhandled (struct breakpoint *b)
12728{
761269c8 12729 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12730}
12731
6149aea9
PA
12732static void
12733print_recreate_catch_exception_unhandled (struct breakpoint *b,
12734 struct ui_file *fp)
12735{
761269c8 12736 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12737}
12738
2060206e 12739static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12740
12741/* Virtual table for "catch assert" breakpoints. */
12742
28010a5d
PA
12743static struct bp_location *
12744allocate_location_catch_assert (struct breakpoint *self)
12745{
761269c8 12746 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12747}
12748
12749static void
12750re_set_catch_assert (struct breakpoint *b)
12751{
761269c8 12752 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12753}
12754
12755static void
12756check_status_catch_assert (bpstat bs)
12757{
761269c8 12758 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12759}
12760
f7f9143b 12761static enum print_stop_action
348d480f 12762print_it_catch_assert (bpstat bs)
f7f9143b 12763{
761269c8 12764 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12765}
12766
12767static void
a6d9a66e 12768print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12769{
761269c8 12770 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12771}
12772
12773static void
12774print_mention_catch_assert (struct breakpoint *b)
12775{
761269c8 12776 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12777}
12778
6149aea9
PA
12779static void
12780print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12781{
761269c8 12782 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12783}
12784
2060206e 12785static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12786
f7f9143b
JB
12787/* Return a newly allocated copy of the first space-separated token
12788 in ARGSP, and then adjust ARGSP to point immediately after that
12789 token.
12790
12791 Return NULL if ARGPS does not contain any more tokens. */
12792
12793static char *
a121b7c1 12794ada_get_next_arg (const char **argsp)
f7f9143b 12795{
a121b7c1
PA
12796 const char *args = *argsp;
12797 const char *end;
f7f9143b
JB
12798 char *result;
12799
f1735a53 12800 args = skip_spaces (args);
f7f9143b
JB
12801 if (args[0] == '\0')
12802 return NULL; /* No more arguments. */
12803
12804 /* Find the end of the current argument. */
12805
f1735a53 12806 end = skip_to_space (args);
f7f9143b
JB
12807
12808 /* Adjust ARGSP to point to the start of the next argument. */
12809
12810 *argsp = end;
12811
12812 /* Make a copy of the current argument and return it. */
12813
224c3ddb 12814 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12815 strncpy (result, args, end - args);
12816 result[end - args] = '\0';
12817
12818 return result;
12819}
12820
12821/* Split the arguments specified in a "catch exception" command.
12822 Set EX to the appropriate catchpoint type.
28010a5d 12823 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12824 specified by the user.
12825 If a condition is found at the end of the arguments, the condition
12826 expression is stored in COND_STRING (memory must be deallocated
12827 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12828
12829static void
a121b7c1 12830catch_ada_exception_command_split (const char *args,
761269c8 12831 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12832 char **excep_string,
12833 char **cond_string)
f7f9143b
JB
12834{
12835 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12836 char *exception_name;
5845583d 12837 char *cond = NULL;
f7f9143b
JB
12838
12839 exception_name = ada_get_next_arg (&args);
5845583d
JB
12840 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12841 {
12842 /* This is not an exception name; this is the start of a condition
12843 expression for a catchpoint on all exceptions. So, "un-get"
12844 this token, and set exception_name to NULL. */
12845 xfree (exception_name);
12846 exception_name = NULL;
12847 args -= 2;
12848 }
f7f9143b
JB
12849 make_cleanup (xfree, exception_name);
12850
5845583d 12851 /* Check to see if we have a condition. */
f7f9143b 12852
f1735a53 12853 args = skip_spaces (args);
61012eef 12854 if (startswith (args, "if")
5845583d
JB
12855 && (isspace (args[2]) || args[2] == '\0'))
12856 {
12857 args += 2;
f1735a53 12858 args = skip_spaces (args);
5845583d
JB
12859
12860 if (args[0] == '\0')
12861 error (_("Condition missing after `if' keyword"));
12862 cond = xstrdup (args);
12863 make_cleanup (xfree, cond);
12864
12865 args += strlen (args);
12866 }
12867
12868 /* Check that we do not have any more arguments. Anything else
12869 is unexpected. */
f7f9143b
JB
12870
12871 if (args[0] != '\0')
12872 error (_("Junk at end of expression"));
12873
12874 discard_cleanups (old_chain);
12875
12876 if (exception_name == NULL)
12877 {
12878 /* Catch all exceptions. */
761269c8 12879 *ex = ada_catch_exception;
28010a5d 12880 *excep_string = NULL;
f7f9143b
JB
12881 }
12882 else if (strcmp (exception_name, "unhandled") == 0)
12883 {
12884 /* Catch unhandled exceptions. */
761269c8 12885 *ex = ada_catch_exception_unhandled;
28010a5d 12886 *excep_string = NULL;
f7f9143b
JB
12887 }
12888 else
12889 {
12890 /* Catch a specific exception. */
761269c8 12891 *ex = ada_catch_exception;
28010a5d 12892 *excep_string = exception_name;
f7f9143b 12893 }
5845583d 12894 *cond_string = cond;
f7f9143b
JB
12895}
12896
12897/* Return the name of the symbol on which we should break in order to
12898 implement a catchpoint of the EX kind. */
12899
12900static const char *
761269c8 12901ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12902{
3eecfa55
JB
12903 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12904
12905 gdb_assert (data->exception_info != NULL);
0259addd 12906
f7f9143b
JB
12907 switch (ex)
12908 {
761269c8 12909 case ada_catch_exception:
3eecfa55 12910 return (data->exception_info->catch_exception_sym);
f7f9143b 12911 break;
761269c8 12912 case ada_catch_exception_unhandled:
3eecfa55 12913 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12914 break;
761269c8 12915 case ada_catch_assert:
3eecfa55 12916 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12917 break;
12918 default:
12919 internal_error (__FILE__, __LINE__,
12920 _("unexpected catchpoint kind (%d)"), ex);
12921 }
12922}
12923
12924/* Return the breakpoint ops "virtual table" used for catchpoints
12925 of the EX kind. */
12926
c0a91b2b 12927static const struct breakpoint_ops *
761269c8 12928ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12929{
12930 switch (ex)
12931 {
761269c8 12932 case ada_catch_exception:
f7f9143b
JB
12933 return (&catch_exception_breakpoint_ops);
12934 break;
761269c8 12935 case ada_catch_exception_unhandled:
f7f9143b
JB
12936 return (&catch_exception_unhandled_breakpoint_ops);
12937 break;
761269c8 12938 case ada_catch_assert:
f7f9143b
JB
12939 return (&catch_assert_breakpoint_ops);
12940 break;
12941 default:
12942 internal_error (__FILE__, __LINE__,
12943 _("unexpected catchpoint kind (%d)"), ex);
12944 }
12945}
12946
12947/* Return the condition that will be used to match the current exception
12948 being raised with the exception that the user wants to catch. This
12949 assumes that this condition is used when the inferior just triggered
12950 an exception catchpoint.
12951
12952 The string returned is a newly allocated string that needs to be
12953 deallocated later. */
12954
12955static char *
28010a5d 12956ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12957{
3d0b0fa3
JB
12958 int i;
12959
0963b4bd 12960 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12961 runtime units that have been compiled without debugging info; if
28010a5d 12962 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12963 exception (e.g. "constraint_error") then, during the evaluation
12964 of the condition expression, the symbol lookup on this name would
0963b4bd 12965 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12966 may then be set only on user-defined exceptions which have the
12967 same not-fully-qualified name (e.g. my_package.constraint_error).
12968
12969 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12970 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12971 exception constraint_error" is rewritten into "catch exception
12972 standard.constraint_error".
12973
12974 If an exception named contraint_error is defined in another package of
12975 the inferior program, then the only way to specify this exception as a
12976 breakpoint condition is to use its fully-qualified named:
12977 e.g. my_package.constraint_error. */
12978
12979 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12980 {
28010a5d 12981 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12982 {
12983 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12984 excep_string);
3d0b0fa3
JB
12985 }
12986 }
28010a5d 12987 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12988}
12989
12990/* Return the symtab_and_line that should be used to insert an exception
12991 catchpoint of the TYPE kind.
12992
28010a5d
PA
12993 EXCEP_STRING should contain the name of a specific exception that
12994 the catchpoint should catch, or NULL otherwise.
f7f9143b 12995
28010a5d
PA
12996 ADDR_STRING returns the name of the function where the real
12997 breakpoint that implements the catchpoints is set, depending on the
12998 type of catchpoint we need to create. */
f7f9143b
JB
12999
13000static struct symtab_and_line
761269c8 13001ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13002 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13003{
13004 const char *sym_name;
13005 struct symbol *sym;
f7f9143b 13006
0259addd
JB
13007 /* First, find out which exception support info to use. */
13008 ada_exception_support_info_sniffer ();
13009
13010 /* Then lookup the function on which we will break in order to catch
f7f9143b 13011 the Ada exceptions requested by the user. */
f7f9143b
JB
13012 sym_name = ada_exception_sym_name (ex);
13013 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13014
f17011e0
JB
13015 /* We can assume that SYM is not NULL at this stage. If the symbol
13016 did not exist, ada_exception_support_info_sniffer would have
13017 raised an exception.
f7f9143b 13018
f17011e0
JB
13019 Also, ada_exception_support_info_sniffer should have already
13020 verified that SYM is a function symbol. */
13021 gdb_assert (sym != NULL);
13022 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13023
13024 /* Set ADDR_STRING. */
f7f9143b
JB
13025 *addr_string = xstrdup (sym_name);
13026
f7f9143b 13027 /* Set OPS. */
4b9eee8c 13028 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13029
f17011e0 13030 return find_function_start_sal (sym, 1);
f7f9143b
JB
13031}
13032
b4a5b78b 13033/* Create an Ada exception catchpoint.
f7f9143b 13034
b4a5b78b 13035 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13036
2df4d1d5
JB
13037 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13038 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13039 of the exception to which this catchpoint applies. When not NULL,
13040 the string must be allocated on the heap, and its deallocation
13041 is no longer the responsibility of the caller.
13042
13043 COND_STRING, if not NULL, is the catchpoint condition. This string
13044 must be allocated on the heap, and its deallocation is no longer
13045 the responsibility of the caller.
f7f9143b 13046
b4a5b78b
JB
13047 TEMPFLAG, if nonzero, means that the underlying breakpoint
13048 should be temporary.
28010a5d 13049
b4a5b78b 13050 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13051
349774ef 13052void
28010a5d 13053create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13054 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13055 char *excep_string,
5845583d 13056 char *cond_string,
28010a5d 13057 int tempflag,
349774ef 13058 int disabled,
28010a5d
PA
13059 int from_tty)
13060{
f2fc3015 13061 const char *addr_string = NULL;
b4a5b78b
JB
13062 const struct breakpoint_ops *ops = NULL;
13063 struct symtab_and_line sal
13064 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13065
b270e6f9
TT
13066 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13067 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13068 ops, tempflag, disabled, from_tty);
28010a5d 13069 c->excep_string = excep_string;
b270e6f9 13070 create_excep_cond_exprs (c.get ());
5845583d 13071 if (cond_string != NULL)
b270e6f9
TT
13072 set_breakpoint_condition (c.get (), cond_string, from_tty);
13073 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13074}
13075
9ac4176b
PA
13076/* Implement the "catch exception" command. */
13077
13078static void
eb4c3f4a 13079catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13080 struct cmd_list_element *command)
13081{
a121b7c1 13082 const char *arg = arg_entry;
9ac4176b
PA
13083 struct gdbarch *gdbarch = get_current_arch ();
13084 int tempflag;
761269c8 13085 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13086 char *excep_string = NULL;
5845583d 13087 char *cond_string = NULL;
9ac4176b
PA
13088
13089 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13090
13091 if (!arg)
13092 arg = "";
b4a5b78b
JB
13093 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13094 &cond_string);
13095 create_ada_exception_catchpoint (gdbarch, ex_kind,
13096 excep_string, cond_string,
349774ef
JB
13097 tempflag, 1 /* enabled */,
13098 from_tty);
9ac4176b
PA
13099}
13100
b4a5b78b 13101/* Split the arguments specified in a "catch assert" command.
5845583d 13102
b4a5b78b
JB
13103 ARGS contains the command's arguments (or the empty string if
13104 no arguments were passed).
5845583d
JB
13105
13106 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13107 (the memory needs to be deallocated after use). */
5845583d 13108
b4a5b78b 13109static void
a121b7c1 13110catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13111{
f1735a53 13112 args = skip_spaces (args);
f7f9143b 13113
5845583d 13114 /* Check whether a condition was provided. */
61012eef 13115 if (startswith (args, "if")
5845583d 13116 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13117 {
5845583d 13118 args += 2;
f1735a53 13119 args = skip_spaces (args);
5845583d
JB
13120 if (args[0] == '\0')
13121 error (_("condition missing after `if' keyword"));
13122 *cond_string = xstrdup (args);
f7f9143b
JB
13123 }
13124
5845583d
JB
13125 /* Otherwise, there should be no other argument at the end of
13126 the command. */
13127 else if (args[0] != '\0')
13128 error (_("Junk at end of arguments."));
f7f9143b
JB
13129}
13130
9ac4176b
PA
13131/* Implement the "catch assert" command. */
13132
13133static void
eb4c3f4a 13134catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13135 struct cmd_list_element *command)
13136{
a121b7c1 13137 const char *arg = arg_entry;
9ac4176b
PA
13138 struct gdbarch *gdbarch = get_current_arch ();
13139 int tempflag;
5845583d 13140 char *cond_string = NULL;
9ac4176b
PA
13141
13142 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13143
13144 if (!arg)
13145 arg = "";
b4a5b78b 13146 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13147 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13148 NULL, cond_string,
349774ef
JB
13149 tempflag, 1 /* enabled */,
13150 from_tty);
9ac4176b 13151}
778865d3
JB
13152
13153/* Return non-zero if the symbol SYM is an Ada exception object. */
13154
13155static int
13156ada_is_exception_sym (struct symbol *sym)
13157{
13158 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13159
13160 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13161 && SYMBOL_CLASS (sym) != LOC_BLOCK
13162 && SYMBOL_CLASS (sym) != LOC_CONST
13163 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13164 && type_name != NULL && strcmp (type_name, "exception") == 0);
13165}
13166
13167/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13168 Ada exception object. This matches all exceptions except the ones
13169 defined by the Ada language. */
13170
13171static int
13172ada_is_non_standard_exception_sym (struct symbol *sym)
13173{
13174 int i;
13175
13176 if (!ada_is_exception_sym (sym))
13177 return 0;
13178
13179 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13180 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13181 return 0; /* A standard exception. */
13182
13183 /* Numeric_Error is also a standard exception, so exclude it.
13184 See the STANDARD_EXC description for more details as to why
13185 this exception is not listed in that array. */
13186 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13187 return 0;
13188
13189 return 1;
13190}
13191
ab816a27 13192/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13193 objects.
13194
13195 The comparison is determined first by exception name, and then
13196 by exception address. */
13197
ab816a27 13198bool
cc536b21 13199ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13200{
778865d3
JB
13201 int result;
13202
ab816a27
TT
13203 result = strcmp (name, other.name);
13204 if (result < 0)
13205 return true;
13206 if (result == 0 && addr < other.addr)
13207 return true;
13208 return false;
13209}
778865d3 13210
ab816a27 13211bool
cc536b21 13212ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13213{
13214 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13215}
13216
13217/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13218 routine, but keeping the first SKIP elements untouched.
13219
13220 All duplicates are also removed. */
13221
13222static void
ab816a27 13223sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13224 int skip)
13225{
ab816a27
TT
13226 std::sort (exceptions->begin () + skip, exceptions->end ());
13227 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13228 exceptions->end ());
778865d3
JB
13229}
13230
778865d3
JB
13231/* Add all exceptions defined by the Ada standard whose name match
13232 a regular expression.
13233
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13237
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13239 gets pushed. */
13240
13241static void
2d7cc5c7 13242ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13243 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13244{
13245 int i;
13246
13247 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13248 {
13249 if (preg == NULL
2d7cc5c7 13250 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13251 {
13252 struct bound_minimal_symbol msymbol
13253 = ada_lookup_simple_minsym (standard_exc[i]);
13254
13255 if (msymbol.minsym != NULL)
13256 {
13257 struct ada_exc_info info
77e371c0 13258 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13259
ab816a27 13260 exceptions->push_back (info);
778865d3
JB
13261 }
13262 }
13263 }
13264}
13265
13266/* Add all Ada exceptions defined locally and accessible from the given
13267 FRAME.
13268
13269 If PREG is not NULL, then this regexp_t object is used to
13270 perform the symbol name matching. Otherwise, no name-based
13271 filtering is performed.
13272
13273 EXCEPTIONS is a vector of exceptions to which matching exceptions
13274 gets pushed. */
13275
13276static void
2d7cc5c7
PA
13277ada_add_exceptions_from_frame (compiled_regex *preg,
13278 struct frame_info *frame,
ab816a27 13279 std::vector<ada_exc_info> *exceptions)
778865d3 13280{
3977b71f 13281 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13282
13283 while (block != 0)
13284 {
13285 struct block_iterator iter;
13286 struct symbol *sym;
13287
13288 ALL_BLOCK_SYMBOLS (block, iter, sym)
13289 {
13290 switch (SYMBOL_CLASS (sym))
13291 {
13292 case LOC_TYPEDEF:
13293 case LOC_BLOCK:
13294 case LOC_CONST:
13295 break;
13296 default:
13297 if (ada_is_exception_sym (sym))
13298 {
13299 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13300 SYMBOL_VALUE_ADDRESS (sym)};
13301
ab816a27 13302 exceptions->push_back (info);
778865d3
JB
13303 }
13304 }
13305 }
13306 if (BLOCK_FUNCTION (block) != NULL)
13307 break;
13308 block = BLOCK_SUPERBLOCK (block);
13309 }
13310}
13311
14bc53a8
PA
13312/* Return true if NAME matches PREG or if PREG is NULL. */
13313
13314static bool
2d7cc5c7 13315name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13316{
13317 return (preg == NULL
2d7cc5c7 13318 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13319}
13320
778865d3
JB
13321/* Add all exceptions defined globally whose name name match
13322 a regular expression, excluding standard exceptions.
13323
13324 The reason we exclude standard exceptions is that they need
13325 to be handled separately: Standard exceptions are defined inside
13326 a runtime unit which is normally not compiled with debugging info,
13327 and thus usually do not show up in our symbol search. However,
13328 if the unit was in fact built with debugging info, we need to
13329 exclude them because they would duplicate the entry we found
13330 during the special loop that specifically searches for those
13331 standard exceptions.
13332
13333 If PREG is not NULL, then this regexp_t object is used to
13334 perform the symbol name matching. Otherwise, no name-based
13335 filtering is performed.
13336
13337 EXCEPTIONS is a vector of exceptions to which matching exceptions
13338 gets pushed. */
13339
13340static void
2d7cc5c7 13341ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13342 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13343{
13344 struct objfile *objfile;
43f3e411 13345 struct compunit_symtab *s;
778865d3 13346
14bc53a8
PA
13347 /* In Ada, the symbol "search name" is a linkage name, whereas the
13348 regular expression used to do the matching refers to the natural
13349 name. So match against the decoded name. */
13350 expand_symtabs_matching (NULL,
b5ec771e 13351 lookup_name_info::match_any (),
14bc53a8
PA
13352 [&] (const char *search_name)
13353 {
13354 const char *decoded = ada_decode (search_name);
13355 return name_matches_regex (decoded, preg);
13356 },
13357 NULL,
13358 VARIABLES_DOMAIN);
778865d3 13359
43f3e411 13360 ALL_COMPUNITS (objfile, s)
778865d3 13361 {
43f3e411 13362 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13363 int i;
13364
13365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13366 {
13367 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13368 struct block_iterator iter;
13369 struct symbol *sym;
13370
13371 ALL_BLOCK_SYMBOLS (b, iter, sym)
13372 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13373 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13374 {
13375 struct ada_exc_info info
13376 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13377
ab816a27 13378 exceptions->push_back (info);
778865d3
JB
13379 }
13380 }
13381 }
13382}
13383
13384/* Implements ada_exceptions_list with the regular expression passed
13385 as a regex_t, rather than a string.
13386
13387 If not NULL, PREG is used to filter out exceptions whose names
13388 do not match. Otherwise, all exceptions are listed. */
13389
ab816a27 13390static std::vector<ada_exc_info>
2d7cc5c7 13391ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13392{
ab816a27 13393 std::vector<ada_exc_info> result;
778865d3
JB
13394 int prev_len;
13395
13396 /* First, list the known standard exceptions. These exceptions
13397 need to be handled separately, as they are usually defined in
13398 runtime units that have been compiled without debugging info. */
13399
13400 ada_add_standard_exceptions (preg, &result);
13401
13402 /* Next, find all exceptions whose scope is local and accessible
13403 from the currently selected frame. */
13404
13405 if (has_stack_frames ())
13406 {
ab816a27 13407 prev_len = result.size ();
778865d3
JB
13408 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13409 &result);
ab816a27 13410 if (result.size () > prev_len)
778865d3
JB
13411 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13412 }
13413
13414 /* Add all exceptions whose scope is global. */
13415
ab816a27 13416 prev_len = result.size ();
778865d3 13417 ada_add_global_exceptions (preg, &result);
ab816a27 13418 if (result.size () > prev_len)
778865d3
JB
13419 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13420
778865d3
JB
13421 return result;
13422}
13423
13424/* Return a vector of ada_exc_info.
13425
13426 If REGEXP is NULL, all exceptions are included in the result.
13427 Otherwise, it should contain a valid regular expression,
13428 and only the exceptions whose names match that regular expression
13429 are included in the result.
13430
13431 The exceptions are sorted in the following order:
13432 - Standard exceptions (defined by the Ada language), in
13433 alphabetical order;
13434 - Exceptions only visible from the current frame, in
13435 alphabetical order;
13436 - Exceptions whose scope is global, in alphabetical order. */
13437
ab816a27 13438std::vector<ada_exc_info>
778865d3
JB
13439ada_exceptions_list (const char *regexp)
13440{
2d7cc5c7
PA
13441 if (regexp == NULL)
13442 return ada_exceptions_list_1 (NULL);
778865d3 13443
2d7cc5c7
PA
13444 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13445 return ada_exceptions_list_1 (&reg);
778865d3
JB
13446}
13447
13448/* Implement the "info exceptions" command. */
13449
13450static void
1d12d88f 13451info_exceptions_command (const char *regexp, int from_tty)
778865d3 13452{
778865d3 13453 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13454
ab816a27 13455 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13456
13457 if (regexp != NULL)
13458 printf_filtered
13459 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13460 else
13461 printf_filtered (_("All defined Ada exceptions:\n"));
13462
ab816a27
TT
13463 for (const ada_exc_info &info : exceptions)
13464 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13465}
13466
4c4b4cd2
PH
13467 /* Operators */
13468/* Information about operators given special treatment in functions
13469 below. */
13470/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13471
13472#define ADA_OPERATORS \
13473 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13474 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13475 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13476 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13477 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13478 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13479 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13480 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13481 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13482 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13483 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13484 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13485 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13486 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13487 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13488 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13489 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13490 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13491 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13492
13493static void
554794dc
SDJ
13494ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13495 int *argsp)
4c4b4cd2
PH
13496{
13497 switch (exp->elts[pc - 1].opcode)
13498 {
76a01679 13499 default:
4c4b4cd2
PH
13500 operator_length_standard (exp, pc, oplenp, argsp);
13501 break;
13502
13503#define OP_DEFN(op, len, args, binop) \
13504 case op: *oplenp = len; *argsp = args; break;
13505 ADA_OPERATORS;
13506#undef OP_DEFN
52ce6436
PH
13507
13508 case OP_AGGREGATE:
13509 *oplenp = 3;
13510 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13511 break;
13512
13513 case OP_CHOICES:
13514 *oplenp = 3;
13515 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13516 break;
4c4b4cd2
PH
13517 }
13518}
13519
c0201579
JK
13520/* Implementation of the exp_descriptor method operator_check. */
13521
13522static int
13523ada_operator_check (struct expression *exp, int pos,
13524 int (*objfile_func) (struct objfile *objfile, void *data),
13525 void *data)
13526{
13527 const union exp_element *const elts = exp->elts;
13528 struct type *type = NULL;
13529
13530 switch (elts[pos].opcode)
13531 {
13532 case UNOP_IN_RANGE:
13533 case UNOP_QUAL:
13534 type = elts[pos + 1].type;
13535 break;
13536
13537 default:
13538 return operator_check_standard (exp, pos, objfile_func, data);
13539 }
13540
13541 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13542
13543 if (type && TYPE_OBJFILE (type)
13544 && (*objfile_func) (TYPE_OBJFILE (type), data))
13545 return 1;
13546
13547 return 0;
13548}
13549
a121b7c1 13550static const char *
4c4b4cd2
PH
13551ada_op_name (enum exp_opcode opcode)
13552{
13553 switch (opcode)
13554 {
76a01679 13555 default:
4c4b4cd2 13556 return op_name_standard (opcode);
52ce6436 13557
4c4b4cd2
PH
13558#define OP_DEFN(op, len, args, binop) case op: return #op;
13559 ADA_OPERATORS;
13560#undef OP_DEFN
52ce6436
PH
13561
13562 case OP_AGGREGATE:
13563 return "OP_AGGREGATE";
13564 case OP_CHOICES:
13565 return "OP_CHOICES";
13566 case OP_NAME:
13567 return "OP_NAME";
4c4b4cd2
PH
13568 }
13569}
13570
13571/* As for operator_length, but assumes PC is pointing at the first
13572 element of the operator, and gives meaningful results only for the
52ce6436 13573 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13574
13575static void
76a01679
JB
13576ada_forward_operator_length (struct expression *exp, int pc,
13577 int *oplenp, int *argsp)
4c4b4cd2 13578{
76a01679 13579 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13580 {
13581 default:
13582 *oplenp = *argsp = 0;
13583 break;
52ce6436 13584
4c4b4cd2
PH
13585#define OP_DEFN(op, len, args, binop) \
13586 case op: *oplenp = len; *argsp = args; break;
13587 ADA_OPERATORS;
13588#undef OP_DEFN
52ce6436
PH
13589
13590 case OP_AGGREGATE:
13591 *oplenp = 3;
13592 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13593 break;
13594
13595 case OP_CHOICES:
13596 *oplenp = 3;
13597 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13598 break;
13599
13600 case OP_STRING:
13601 case OP_NAME:
13602 {
13603 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13604
52ce6436
PH
13605 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13606 *argsp = 0;
13607 break;
13608 }
4c4b4cd2
PH
13609 }
13610}
13611
13612static int
13613ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13614{
13615 enum exp_opcode op = exp->elts[elt].opcode;
13616 int oplen, nargs;
13617 int pc = elt;
13618 int i;
76a01679 13619
4c4b4cd2
PH
13620 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13621
76a01679 13622 switch (op)
4c4b4cd2 13623 {
76a01679 13624 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13625 case OP_ATR_FIRST:
13626 case OP_ATR_LAST:
13627 case OP_ATR_LENGTH:
13628 case OP_ATR_IMAGE:
13629 case OP_ATR_MAX:
13630 case OP_ATR_MIN:
13631 case OP_ATR_MODULUS:
13632 case OP_ATR_POS:
13633 case OP_ATR_SIZE:
13634 case OP_ATR_TAG:
13635 case OP_ATR_VAL:
13636 break;
13637
13638 case UNOP_IN_RANGE:
13639 case UNOP_QUAL:
323e0a4a
AC
13640 /* XXX: gdb_sprint_host_address, type_sprint */
13641 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13642 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13643 fprintf_filtered (stream, " (");
13644 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13645 fprintf_filtered (stream, ")");
13646 break;
13647 case BINOP_IN_BOUNDS:
52ce6436
PH
13648 fprintf_filtered (stream, " (%d)",
13649 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13650 break;
13651 case TERNOP_IN_RANGE:
13652 break;
13653
52ce6436
PH
13654 case OP_AGGREGATE:
13655 case OP_OTHERS:
13656 case OP_DISCRETE_RANGE:
13657 case OP_POSITIONAL:
13658 case OP_CHOICES:
13659 break;
13660
13661 case OP_NAME:
13662 case OP_STRING:
13663 {
13664 char *name = &exp->elts[elt + 2].string;
13665 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13666
52ce6436
PH
13667 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13668 break;
13669 }
13670
4c4b4cd2
PH
13671 default:
13672 return dump_subexp_body_standard (exp, stream, elt);
13673 }
13674
13675 elt += oplen;
13676 for (i = 0; i < nargs; i += 1)
13677 elt = dump_subexp (exp, stream, elt);
13678
13679 return elt;
13680}
13681
13682/* The Ada extension of print_subexp (q.v.). */
13683
76a01679
JB
13684static void
13685ada_print_subexp (struct expression *exp, int *pos,
13686 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13687{
52ce6436 13688 int oplen, nargs, i;
4c4b4cd2
PH
13689 int pc = *pos;
13690 enum exp_opcode op = exp->elts[pc].opcode;
13691
13692 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13693
52ce6436 13694 *pos += oplen;
4c4b4cd2
PH
13695 switch (op)
13696 {
13697 default:
52ce6436 13698 *pos -= oplen;
4c4b4cd2
PH
13699 print_subexp_standard (exp, pos, stream, prec);
13700 return;
13701
13702 case OP_VAR_VALUE:
4c4b4cd2
PH
13703 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13704 return;
13705
13706 case BINOP_IN_BOUNDS:
323e0a4a 13707 /* XXX: sprint_subexp */
4c4b4cd2 13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13709 fputs_filtered (" in ", stream);
4c4b4cd2 13710 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13711 fputs_filtered ("'range", stream);
4c4b4cd2 13712 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13713 fprintf_filtered (stream, "(%ld)",
13714 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13715 return;
13716
13717 case TERNOP_IN_RANGE:
4c4b4cd2 13718 if (prec >= PREC_EQUAL)
76a01679 13719 fputs_filtered ("(", stream);
323e0a4a 13720 /* XXX: sprint_subexp */
4c4b4cd2 13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13722 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13723 print_subexp (exp, pos, stream, PREC_EQUAL);
13724 fputs_filtered (" .. ", stream);
13725 print_subexp (exp, pos, stream, PREC_EQUAL);
13726 if (prec >= PREC_EQUAL)
76a01679
JB
13727 fputs_filtered (")", stream);
13728 return;
4c4b4cd2
PH
13729
13730 case OP_ATR_FIRST:
13731 case OP_ATR_LAST:
13732 case OP_ATR_LENGTH:
13733 case OP_ATR_IMAGE:
13734 case OP_ATR_MAX:
13735 case OP_ATR_MIN:
13736 case OP_ATR_MODULUS:
13737 case OP_ATR_POS:
13738 case OP_ATR_SIZE:
13739 case OP_ATR_TAG:
13740 case OP_ATR_VAL:
4c4b4cd2 13741 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13742 {
13743 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13744 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13745 &type_print_raw_options);
76a01679
JB
13746 *pos += 3;
13747 }
4c4b4cd2 13748 else
76a01679 13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13750 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13751 if (nargs > 1)
76a01679
JB
13752 {
13753 int tem;
5b4ee69b 13754
76a01679
JB
13755 for (tem = 1; tem < nargs; tem += 1)
13756 {
13757 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13758 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13759 }
13760 fputs_filtered (")", stream);
13761 }
4c4b4cd2 13762 return;
14f9c5c9 13763
4c4b4cd2 13764 case UNOP_QUAL:
4c4b4cd2
PH
13765 type_print (exp->elts[pc + 1].type, "", stream, 0);
13766 fputs_filtered ("'(", stream);
13767 print_subexp (exp, pos, stream, PREC_PREFIX);
13768 fputs_filtered (")", stream);
13769 return;
14f9c5c9 13770
4c4b4cd2 13771 case UNOP_IN_RANGE:
323e0a4a 13772 /* XXX: sprint_subexp */
4c4b4cd2 13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13774 fputs_filtered (" in ", stream);
79d43c61
TT
13775 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13776 &type_print_raw_options);
4c4b4cd2 13777 return;
52ce6436
PH
13778
13779 case OP_DISCRETE_RANGE:
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 fputs_filtered ("..", stream);
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 return;
13784
13785 case OP_OTHERS:
13786 fputs_filtered ("others => ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 return;
13789
13790 case OP_CHOICES:
13791 for (i = 0; i < nargs-1; i += 1)
13792 {
13793 if (i > 0)
13794 fputs_filtered ("|", stream);
13795 print_subexp (exp, pos, stream, PREC_SUFFIX);
13796 }
13797 fputs_filtered (" => ", stream);
13798 print_subexp (exp, pos, stream, PREC_SUFFIX);
13799 return;
13800
13801 case OP_POSITIONAL:
13802 print_subexp (exp, pos, stream, PREC_SUFFIX);
13803 return;
13804
13805 case OP_AGGREGATE:
13806 fputs_filtered ("(", stream);
13807 for (i = 0; i < nargs; i += 1)
13808 {
13809 if (i > 0)
13810 fputs_filtered (", ", stream);
13811 print_subexp (exp, pos, stream, PREC_SUFFIX);
13812 }
13813 fputs_filtered (")", stream);
13814 return;
4c4b4cd2
PH
13815 }
13816}
14f9c5c9
AS
13817
13818/* Table mapping opcodes into strings for printing operators
13819 and precedences of the operators. */
13820
d2e4a39e
AS
13821static const struct op_print ada_op_print_tab[] = {
13822 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13823 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13824 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13825 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13826 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13827 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13828 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13829 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13830 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13831 {">=", BINOP_GEQ, PREC_ORDER, 0},
13832 {">", BINOP_GTR, PREC_ORDER, 0},
13833 {"<", BINOP_LESS, PREC_ORDER, 0},
13834 {">>", BINOP_RSH, PREC_SHIFT, 0},
13835 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13836 {"+", BINOP_ADD, PREC_ADD, 0},
13837 {"-", BINOP_SUB, PREC_ADD, 0},
13838 {"&", BINOP_CONCAT, PREC_ADD, 0},
13839 {"*", BINOP_MUL, PREC_MUL, 0},
13840 {"/", BINOP_DIV, PREC_MUL, 0},
13841 {"rem", BINOP_REM, PREC_MUL, 0},
13842 {"mod", BINOP_MOD, PREC_MUL, 0},
13843 {"**", BINOP_EXP, PREC_REPEAT, 0},
13844 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13845 {"-", UNOP_NEG, PREC_PREFIX, 0},
13846 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13847 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13848 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13849 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13850 {".all", UNOP_IND, PREC_SUFFIX, 1},
13851 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13852 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13853 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13854};
13855\f
72d5681a
PH
13856enum ada_primitive_types {
13857 ada_primitive_type_int,
13858 ada_primitive_type_long,
13859 ada_primitive_type_short,
13860 ada_primitive_type_char,
13861 ada_primitive_type_float,
13862 ada_primitive_type_double,
13863 ada_primitive_type_void,
13864 ada_primitive_type_long_long,
13865 ada_primitive_type_long_double,
13866 ada_primitive_type_natural,
13867 ada_primitive_type_positive,
13868 ada_primitive_type_system_address,
13869 nr_ada_primitive_types
13870};
6c038f32
PH
13871
13872static void
d4a9a881 13873ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13874 struct language_arch_info *lai)
13875{
d4a9a881 13876 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13877
72d5681a 13878 lai->primitive_type_vector
d4a9a881 13879 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13880 struct type *);
e9bb382b
UW
13881
13882 lai->primitive_type_vector [ada_primitive_type_int]
13883 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13884 0, "integer");
13885 lai->primitive_type_vector [ada_primitive_type_long]
13886 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13887 0, "long_integer");
13888 lai->primitive_type_vector [ada_primitive_type_short]
13889 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13890 0, "short_integer");
13891 lai->string_char_type
13892 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13893 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13894 lai->primitive_type_vector [ada_primitive_type_float]
13895 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13896 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13897 lai->primitive_type_vector [ada_primitive_type_double]
13898 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13899 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13900 lai->primitive_type_vector [ada_primitive_type_long_long]
13901 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13902 0, "long_long_integer");
13903 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13904 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13905 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13906 lai->primitive_type_vector [ada_primitive_type_natural]
13907 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13908 0, "natural");
13909 lai->primitive_type_vector [ada_primitive_type_positive]
13910 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13911 0, "positive");
13912 lai->primitive_type_vector [ada_primitive_type_void]
13913 = builtin->builtin_void;
13914
13915 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13916 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13917 "void"));
72d5681a
PH
13918 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13919 = "system__address";
fbb06eb1 13920
47e729a8 13921 lai->bool_type_symbol = NULL;
fbb06eb1 13922 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13923}
6c038f32
PH
13924\f
13925 /* Language vector */
13926
13927/* Not really used, but needed in the ada_language_defn. */
13928
13929static void
6c7a06a3 13930emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13931{
6c7a06a3 13932 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13933}
13934
13935static int
410a0ff2 13936parse (struct parser_state *ps)
6c038f32
PH
13937{
13938 warnings_issued = 0;
410a0ff2 13939 return ada_parse (ps);
6c038f32
PH
13940}
13941
13942static const struct exp_descriptor ada_exp_descriptor = {
13943 ada_print_subexp,
13944 ada_operator_length,
c0201579 13945 ada_operator_check,
6c038f32
PH
13946 ada_op_name,
13947 ada_dump_subexp_body,
13948 ada_evaluate_subexp
13949};
13950
b5ec771e
PA
13951/* symbol_name_matcher_ftype adapter for wild_match. */
13952
13953static bool
13954do_wild_match (const char *symbol_search_name,
13955 const lookup_name_info &lookup_name,
a207cff2 13956 completion_match_result *comp_match_res)
b5ec771e
PA
13957{
13958 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13959}
13960
13961/* symbol_name_matcher_ftype adapter for full_match. */
13962
13963static bool
13964do_full_match (const char *symbol_search_name,
13965 const lookup_name_info &lookup_name,
a207cff2 13966 completion_match_result *comp_match_res)
b5ec771e
PA
13967{
13968 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13969}
13970
13971/* Build the Ada lookup name for LOOKUP_NAME. */
13972
13973ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13974{
13975 const std::string &user_name = lookup_name.name ();
13976
13977 if (user_name[0] == '<')
13978 {
13979 if (user_name.back () == '>')
13980 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13981 else
13982 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13983 m_encoded_p = true;
13984 m_verbatim_p = true;
13985 m_wild_match_p = false;
13986 m_standard_p = false;
13987 }
13988 else
13989 {
13990 m_verbatim_p = false;
13991
13992 m_encoded_p = user_name.find ("__") != std::string::npos;
13993
13994 if (!m_encoded_p)
13995 {
13996 const char *folded = ada_fold_name (user_name.c_str ());
13997 const char *encoded = ada_encode_1 (folded, false);
13998 if (encoded != NULL)
13999 m_encoded_name = encoded;
14000 else
14001 m_encoded_name = user_name;
14002 }
14003 else
14004 m_encoded_name = user_name;
14005
14006 /* Handle the 'package Standard' special case. See description
14007 of m_standard_p. */
14008 if (startswith (m_encoded_name.c_str (), "standard__"))
14009 {
14010 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14011 m_standard_p = true;
14012 }
14013 else
14014 m_standard_p = false;
74ccd7f5 14015
b5ec771e
PA
14016 /* If the name contains a ".", then the user is entering a fully
14017 qualified entity name, and the match must not be done in wild
14018 mode. Similarly, if the user wants to complete what looks
14019 like an encoded name, the match must not be done in wild
14020 mode. Also, in the standard__ special case always do
14021 non-wild matching. */
14022 m_wild_match_p
14023 = (lookup_name.match_type () != symbol_name_match_type::FULL
14024 && !m_encoded_p
14025 && !m_standard_p
14026 && user_name.find ('.') == std::string::npos);
14027 }
14028}
14029
14030/* symbol_name_matcher_ftype method for Ada. This only handles
14031 completion mode. */
14032
14033static bool
14034ada_symbol_name_matches (const char *symbol_search_name,
14035 const lookup_name_info &lookup_name,
a207cff2 14036 completion_match_result *comp_match_res)
74ccd7f5 14037{
b5ec771e
PA
14038 return lookup_name.ada ().matches (symbol_search_name,
14039 lookup_name.match_type (),
a207cff2 14040 comp_match_res);
b5ec771e
PA
14041}
14042
14043/* Implement the "la_get_symbol_name_matcher" language_defn method for
14044 Ada. */
14045
14046static symbol_name_matcher_ftype *
14047ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14048{
14049 if (lookup_name.completion_mode ())
14050 return ada_symbol_name_matches;
74ccd7f5 14051 else
b5ec771e
PA
14052 {
14053 if (lookup_name.ada ().wild_match_p ())
14054 return do_wild_match;
14055 else
14056 return do_full_match;
14057 }
74ccd7f5
JB
14058}
14059
a5ee536b
JB
14060/* Implement the "la_read_var_value" language_defn method for Ada. */
14061
14062static struct value *
63e43d3a
PMR
14063ada_read_var_value (struct symbol *var, const struct block *var_block,
14064 struct frame_info *frame)
a5ee536b 14065{
3977b71f 14066 const struct block *frame_block = NULL;
a5ee536b
JB
14067 struct symbol *renaming_sym = NULL;
14068
14069 /* The only case where default_read_var_value is not sufficient
14070 is when VAR is a renaming... */
14071 if (frame)
14072 frame_block = get_frame_block (frame, NULL);
14073 if (frame_block)
14074 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14075 if (renaming_sym != NULL)
14076 return ada_read_renaming_var_value (renaming_sym, frame_block);
14077
14078 /* This is a typical case where we expect the default_read_var_value
14079 function to work. */
63e43d3a 14080 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14081}
14082
56618e20
TT
14083static const char *ada_extensions[] =
14084{
14085 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14086};
14087
47e77640 14088extern const struct language_defn ada_language_defn = {
6c038f32 14089 "ada", /* Language name */
6abde28f 14090 "Ada",
6c038f32 14091 language_ada,
6c038f32 14092 range_check_off,
6c038f32
PH
14093 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14094 that's not quite what this means. */
6c038f32 14095 array_row_major,
9a044a89 14096 macro_expansion_no,
56618e20 14097 ada_extensions,
6c038f32
PH
14098 &ada_exp_descriptor,
14099 parse,
b3f11165 14100 ada_yyerror,
6c038f32
PH
14101 resolve,
14102 ada_printchar, /* Print a character constant */
14103 ada_printstr, /* Function to print string constant */
14104 emit_char, /* Function to print single char (not used) */
6c038f32 14105 ada_print_type, /* Print a type using appropriate syntax */
be942545 14106 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14107 ada_val_print, /* Print a value using appropriate syntax */
14108 ada_value_print, /* Print a top-level value */
a5ee536b 14109 ada_read_var_value, /* la_read_var_value */
6c038f32 14110 NULL, /* Language specific skip_trampoline */
2b2d9e11 14111 NULL, /* name_of_this */
6c038f32
PH
14112 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14113 basic_lookup_transparent_type, /* lookup_transparent_type */
14114 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14115 ada_sniff_from_mangled_name,
0963b4bd
MS
14116 NULL, /* Language specific
14117 class_name_from_physname */
6c038f32
PH
14118 ada_op_print_tab, /* expression operators for printing */
14119 0, /* c-style arrays */
14120 1, /* String lower bound */
6c038f32 14121 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14122 ada_collect_symbol_completion_matches,
72d5681a 14123 ada_language_arch_info,
e79af960 14124 ada_print_array_index,
41f1b697 14125 default_pass_by_reference,
ae6a3a4c 14126 c_get_string,
43cc5389 14127 c_watch_location_expression,
b5ec771e 14128 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14129 ada_iterate_over_symbols,
5ffa0793 14130 default_search_name_hash,
a53b64ea 14131 &ada_varobj_ops,
bb2ec1b3
TT
14132 NULL,
14133 NULL,
6c038f32
PH
14134 LANG_MAGIC
14135};
14136
5bf03f13
JB
14137/* Command-list for the "set/show ada" prefix command. */
14138static struct cmd_list_element *set_ada_list;
14139static struct cmd_list_element *show_ada_list;
14140
14141/* Implement the "set ada" prefix command. */
14142
14143static void
981a3fb3 14144set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14145{
14146 printf_unfiltered (_(\
14147"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14148 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14149}
14150
14151/* Implement the "show ada" prefix command. */
14152
14153static void
981a3fb3 14154show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14155{
14156 cmd_show_list (show_ada_list, from_tty, "");
14157}
14158
2060206e
PA
14159static void
14160initialize_ada_catchpoint_ops (void)
14161{
14162 struct breakpoint_ops *ops;
14163
14164 initialize_breakpoint_ops ();
14165
14166 ops = &catch_exception_breakpoint_ops;
14167 *ops = bkpt_breakpoint_ops;
2060206e
PA
14168 ops->allocate_location = allocate_location_catch_exception;
14169 ops->re_set = re_set_catch_exception;
14170 ops->check_status = check_status_catch_exception;
14171 ops->print_it = print_it_catch_exception;
14172 ops->print_one = print_one_catch_exception;
14173 ops->print_mention = print_mention_catch_exception;
14174 ops->print_recreate = print_recreate_catch_exception;
14175
14176 ops = &catch_exception_unhandled_breakpoint_ops;
14177 *ops = bkpt_breakpoint_ops;
2060206e
PA
14178 ops->allocate_location = allocate_location_catch_exception_unhandled;
14179 ops->re_set = re_set_catch_exception_unhandled;
14180 ops->check_status = check_status_catch_exception_unhandled;
14181 ops->print_it = print_it_catch_exception_unhandled;
14182 ops->print_one = print_one_catch_exception_unhandled;
14183 ops->print_mention = print_mention_catch_exception_unhandled;
14184 ops->print_recreate = print_recreate_catch_exception_unhandled;
14185
14186 ops = &catch_assert_breakpoint_ops;
14187 *ops = bkpt_breakpoint_ops;
2060206e
PA
14188 ops->allocate_location = allocate_location_catch_assert;
14189 ops->re_set = re_set_catch_assert;
14190 ops->check_status = check_status_catch_assert;
14191 ops->print_it = print_it_catch_assert;
14192 ops->print_one = print_one_catch_assert;
14193 ops->print_mention = print_mention_catch_assert;
14194 ops->print_recreate = print_recreate_catch_assert;
14195}
14196
3d9434b5
JB
14197/* This module's 'new_objfile' observer. */
14198
14199static void
14200ada_new_objfile_observer (struct objfile *objfile)
14201{
14202 ada_clear_symbol_cache ();
14203}
14204
14205/* This module's 'free_objfile' observer. */
14206
14207static void
14208ada_free_objfile_observer (struct objfile *objfile)
14209{
14210 ada_clear_symbol_cache ();
14211}
14212
d2e4a39e 14213void
6c038f32 14214_initialize_ada_language (void)
14f9c5c9 14215{
2060206e
PA
14216 initialize_ada_catchpoint_ops ();
14217
5bf03f13
JB
14218 add_prefix_cmd ("ada", no_class, set_ada_command,
14219 _("Prefix command for changing Ada-specfic settings"),
14220 &set_ada_list, "set ada ", 0, &setlist);
14221
14222 add_prefix_cmd ("ada", no_class, show_ada_command,
14223 _("Generic command for showing Ada-specific settings."),
14224 &show_ada_list, "show ada ", 0, &showlist);
14225
14226 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14227 &trust_pad_over_xvs, _("\
14228Enable or disable an optimization trusting PAD types over XVS types"), _("\
14229Show whether an optimization trusting PAD types over XVS types is activated"),
14230 _("\
14231This is related to the encoding used by the GNAT compiler. The debugger\n\
14232should normally trust the contents of PAD types, but certain older versions\n\
14233of GNAT have a bug that sometimes causes the information in the PAD type\n\
14234to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14235work around this bug. It is always safe to turn this option \"off\", but\n\
14236this incurs a slight performance penalty, so it is recommended to NOT change\n\
14237this option to \"off\" unless necessary."),
14238 NULL, NULL, &set_ada_list, &show_ada_list);
14239
d72413e6
PMR
14240 add_setshow_boolean_cmd ("print-signatures", class_vars,
14241 &print_signatures, _("\
14242Enable or disable the output of formal and return types for functions in the \
14243overloads selection menu"), _("\
14244Show whether the output of formal and return types for functions in the \
14245overloads selection menu is activated"),
14246 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14247
9ac4176b
PA
14248 add_catch_command ("exception", _("\
14249Catch Ada exceptions, when raised.\n\
14250With an argument, catch only exceptions with the given name."),
14251 catch_ada_exception_command,
14252 NULL,
14253 CATCH_PERMANENT,
14254 CATCH_TEMPORARY);
14255 add_catch_command ("assert", _("\
14256Catch failed Ada assertions, when raised.\n\
14257With an argument, catch only exceptions with the given name."),
14258 catch_assert_command,
14259 NULL,
14260 CATCH_PERMANENT,
14261 CATCH_TEMPORARY);
14262
6c038f32 14263 varsize_limit = 65536;
6c038f32 14264
778865d3
JB
14265 add_info ("exceptions", info_exceptions_command,
14266 _("\
14267List all Ada exception names.\n\
14268If a regular expression is passed as an argument, only those matching\n\
14269the regular expression are listed."));
14270
c6044dd1
JB
14271 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14272 _("Set Ada maintenance-related variables."),
14273 &maint_set_ada_cmdlist, "maintenance set ada ",
14274 0/*allow-unknown*/, &maintenance_set_cmdlist);
14275
14276 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14277 _("Show Ada maintenance-related variables"),
14278 &maint_show_ada_cmdlist, "maintenance show ada ",
14279 0/*allow-unknown*/, &maintenance_show_cmdlist);
14280
14281 add_setshow_boolean_cmd
14282 ("ignore-descriptive-types", class_maintenance,
14283 &ada_ignore_descriptive_types_p,
14284 _("Set whether descriptive types generated by GNAT should be ignored."),
14285 _("Show whether descriptive types generated by GNAT should be ignored."),
14286 _("\
14287When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14288DWARF attribute."),
14289 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14290
6c038f32
PH
14291 decoded_names_store = htab_create_alloc
14292 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14293 NULL, xcalloc, xfree);
6b69afc4 14294
3d9434b5
JB
14295 /* The ada-lang observers. */
14296 observer_attach_new_objfile (ada_new_objfile_observer);
14297 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14298 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14299
14300 /* Setup various context-specific data. */
e802dbe0 14301 ada_inferior_data
8e260fc0 14302 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14303 ada_pspace_data_handle
14304 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14305}