]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
ada-lang.c: malloc/alloca casts for C++
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
14f9c5c9 1461
2c0b251b 1462static int
40658b94 1463match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
73589123 1468 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1469 else
1470 {
1471 int len_name = strlen (name);
5b4ee69b 1472
4c4b4cd2
PH
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
61012eef 1475 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1478 }
14f9c5c9 1479}
14f9c5c9 1480\f
d2e4a39e 1481
4c4b4cd2 1482 /* Arrays */
14f9c5c9 1483
28c85d6c
JB
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
0d5cff50 1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
4c4b4cd2 1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1540
d2e4a39e
AS
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
4c4b4cd2 1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1549
14f9c5c9 1550
4c4b4cd2
PH
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
14f9c5c9
AS
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1555 level of indirection, if needed. */
1556
d2e4a39e
AS
1557static struct type *
1558desc_base_type (struct type *type)
14f9c5c9
AS
1559{
1560 if (type == NULL)
1561 return NULL;
61ee279c 1562 type = ada_check_typedef (type);
720d1a40
JB
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1265e4aa
JB
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1570 else
1571 return type;
1572}
1573
4c4b4cd2
PH
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
14f9c5c9 1576static int
d2e4a39e 1577is_thin_pntr (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
4c4b4cd2
PH
1584/* The descriptor type for thin pointer type TYPE. */
1585
d2e4a39e
AS
1586static struct type *
1587thin_descriptor_type (struct type *type)
14f9c5c9 1588{
d2e4a39e 1589 struct type *base_type = desc_base_type (type);
5b4ee69b 1590
14f9c5c9
AS
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
d2e4a39e 1595 else
14f9c5c9 1596 {
d2e4a39e 1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1598
14f9c5c9 1599 if (alt_type == NULL)
4c4b4cd2 1600 return base_type;
14f9c5c9 1601 else
4c4b4cd2 1602 return alt_type;
14f9c5c9
AS
1603 }
1604}
1605
4c4b4cd2
PH
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
d2e4a39e
AS
1608static struct value *
1609thin_data_pntr (struct value *val)
14f9c5c9 1610{
828292f2 1611 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1613
556bdfd4
UW
1614 data_type = lookup_pointer_type (data_type);
1615
14f9c5c9 1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1617 return value_cast (data_type, value_copy (val));
d2e4a39e 1618 else
42ae5230 1619 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
14f9c5c9 1624static int
d2e4a39e 1625is_thick_pntr (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1634
d2e4a39e
AS
1635static struct type *
1636desc_bounds_type (struct type *type)
14f9c5c9 1637{
d2e4a39e 1638 struct type *r;
14f9c5c9
AS
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
4c4b4cd2 1648 return NULL;
14f9c5c9
AS
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (r);
14f9c5c9
AS
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
61ee279c 1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
d2e4a39e
AS
1665static struct value *
1666desc_bounds (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1669
d2e4a39e 1670 if (is_thin_pntr (type))
14f9c5c9 1671 {
d2e4a39e 1672 struct type *bounds_type =
4c4b4cd2 1673 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1674 LONGEST addr;
1675
4cdfadb1 1676 if (bounds_type == NULL)
323e0a4a 1677 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1678
1679 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1680 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1681 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1683 addr = value_as_long (arr);
d2e4a39e 1684 else
42ae5230 1685 addr = value_address (arr);
14f9c5c9 1686
d2e4a39e 1687 return
4c4b4cd2
PH
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1690 }
1691
1692 else if (is_thick_pntr (type))
05e522ef
JB
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
14f9c5c9
AS
1713 else
1714 return NULL;
1715}
1716
4c4b4cd2
PH
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
14f9c5c9 1720static int
d2e4a39e 1721fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1727 size of the field containing the address of the bounds data. */
1728
14f9c5c9 1729static int
d2e4a39e 1730fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
d2e4a39e 1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
61ee279c 1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1738}
1739
4c4b4cd2 1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
4c4b4cd2 1744
d2e4a39e 1745static struct type *
556bdfd4 1746desc_data_target_type (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
4c4b4cd2 1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1751 if (is_thin_pntr (type))
556bdfd4 1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1753 else if (is_thick_pntr (type))
556bdfd4
UW
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1760 }
1761
1762 return NULL;
14f9c5c9
AS
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
4c4b4cd2 1767
d2e4a39e
AS
1768static struct value *
1769desc_data (struct value *arr)
14f9c5c9 1770{
df407dfe 1771 struct type *type = value_type (arr);
5b4ee69b 1772
14f9c5c9
AS
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
d2e4a39e 1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1777 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1784 position of the field containing the address of the data. */
1785
14f9c5c9 1786static int
d2e4a39e 1787fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1793 size of the field containing the address of the data. */
1794
14f9c5c9 1795static int
d2e4a39e 1796fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1802 else
14f9c5c9
AS
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
4c4b4cd2 1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
d2e4a39e
AS
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1814 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
14f9c5c9 1821static int
d2e4a39e 1822desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1823{
d2e4a39e 1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
76a01679 1831static int
d2e4a39e 1832desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
d2e4a39e
AS
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
d2e4a39e
AS
1845static struct type *
1846desc_index_type (struct type *type, int i)
14f9c5c9
AS
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
14f9c5c9
AS
1853 return NULL;
1854}
1855
4c4b4cd2
PH
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_arity (struct type *type)
14f9c5c9
AS
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
4c4b4cd2
PH
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
76a01679
JB
1873static int
1874ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1875{
1876 if (type == NULL)
1877 return 0;
61ee279c 1878 type = ada_check_typedef (type);
4c4b4cd2 1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1880 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1881}
1882
52ce6436 1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1884 * to one. */
52ce6436 1885
2c0b251b 1886static int
52ce6436
PH
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
4c4b4cd2 1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1897
14f9c5c9 1898int
4c4b4cd2 1899ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1900{
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
14f9c5c9 1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1908}
1909
4c4b4cd2
PH
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
14f9c5c9 1912int
4c4b4cd2 1913ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1914{
556bdfd4 1915 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1916
1917 if (type == NULL)
1918 return 0;
61ee279c 1919 type = ada_check_typedef (type);
556bdfd4
UW
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1926 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1927 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1928 is still needed. */
1929
14f9c5c9 1930int
ebf56fd3 1931ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1932{
d2e4a39e 1933 return
14f9c5c9
AS
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1939}
1940
1941
4c4b4cd2 1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1943 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1945 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1948 a descriptor. */
d2e4a39e
AS
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1954
df407dfe
AC
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
d2e4a39e
AS
1957
1958 if (!bounds)
ad82864c
JB
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
14f9c5c9
AS
1969 else
1970 {
d2e4a39e 1971 struct type *elt_type;
14f9c5c9 1972 int arity;
d2e4a39e 1973 struct value *descriptor;
14f9c5c9 1974
df407dfe
AC
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
14f9c5c9 1977
d2e4a39e 1978 if (elt_type == NULL || arity == 0)
df407dfe 1979 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1980
1981 descriptor = desc_bounds (arr);
d2e4a39e 1982 if (value_as_long (descriptor) == 0)
4c4b4cd2 1983 return NULL;
d2e4a39e 1984 while (arity > 0)
4c4b4cd2 1985 {
e9bb382b
UW
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1990
5b4ee69b 1991 arity -= 1;
0c9c3474
SA
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
4c4b4cd2 1995 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
4c4b4cd2 2017 }
14f9c5c9
AS
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
d2e4a39e
AS
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2030{
df407dfe 2031 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2032 {
d2e4a39e 2033 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2034
14f9c5c9 2035 if (arrType == NULL)
4c4b4cd2 2036 return NULL;
14f9c5c9
AS
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
ad82864c
JB
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2047 be ARR itself if it already is in the proper form). */
2048
720d1a40 2049struct value *
d2e4a39e 2050ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2051{
df407dfe 2052 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2053 {
d2e4a39e 2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2055
14f9c5c9 2056 if (arrVal == NULL)
323e0a4a 2057 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2059 return value_ind (arrVal);
2060 }
ad82864c
JB
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
d2e4a39e 2063 else
14f9c5c9
AS
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2069 packing). For other types, is the identity. */
2070
d2e4a39e
AS
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2073{
ad82864c
JB
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
17280b9f
UW
2076
2077 if (ada_is_array_descriptor_type (type))
556bdfd4 2078 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2079
2080 return type;
14f9c5c9
AS
2081}
2082
4c4b4cd2
PH
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
ad82864c
JB
2085static int
2086ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2087{
2088 if (type == NULL)
2089 return 0;
4c4b4cd2 2090 type = desc_base_type (type);
61ee279c 2091 type = ada_check_typedef (type);
d2e4a39e 2092 return
14f9c5c9
AS
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
ad82864c
JB
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
0d5cff50
DE
2123 const char *raw_name;
2124 const char *tail;
ad82864c
JB
2125 long bits;
2126
720d1a40
JB
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
720d1a40 2141 gdb_assert (tail != NULL);
ad82864c
JB
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
14f9c5c9
AS
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
4c4b4cd2 2169
d2e4a39e 2170static struct type *
ad82864c 2171constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2172{
d2e4a39e
AS
2173 struct type *new_elt_type;
2174 struct type *new_type;
99b1c762
JB
2175 struct type *index_type_desc;
2176 struct type *index_type;
14f9c5c9
AS
2177 LONGEST low_bound, high_bound;
2178
61ee279c 2179 type = ada_check_typedef (type);
14f9c5c9
AS
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
99b1c762
JB
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
e9bb382b 2190 new_type = alloc_type_copy (type);
ad82864c
JB
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
99b1c762 2194 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
4a46959e
JB
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2204 else
14f9c5c9
AS
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2207 TYPE_LENGTH (new_type) =
4c4b4cd2 2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2209 }
2210
876cecd0 2211 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2212 return new_type;
2213}
2214
ad82864c
JB
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2217
d2e4a39e 2218static struct type *
ad82864c 2219decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2220{
0d5cff50 2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2222 char *name;
0d5cff50 2223 const char *tail;
d2e4a39e 2224 struct type *shadow_type;
14f9c5c9 2225 long bits;
14f9c5c9 2226
727e3d2e
JB
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2235 type = desc_base_type (type);
2236
14f9c5c9
AS
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
b4ba55a1
JB
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
14f9c5c9 2243 {
323e0a4a 2244 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2245 return NULL;
2246 }
f168693b 2247 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
0963b4bd
MS
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
14f9c5c9
AS
2253 return NULL;
2254 }
d2e4a39e 2255
ad82864c
JB
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2258}
2259
ad82864c
JB
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
4c4b4cd2 2264 type length is set appropriately. */
14f9c5c9 2265
d2e4a39e 2266static struct value *
ad82864c 2267decode_constrained_packed_array (struct value *arr)
14f9c5c9 2268{
4c4b4cd2 2269 struct type *type;
14f9c5c9 2270
11aa919a
PMR
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
828292f2 2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2280 arr = value_ind (arr);
4c4b4cd2 2281
ad82864c 2282 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2283 if (type == NULL)
2284 {
323e0a4a 2285 error (_("can't unpack array"));
14f9c5c9
AS
2286 return NULL;
2287 }
61ee279c 2288
50810684 2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2290 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
df407dfe 2299 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
df407dfe 2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
4c4b4cd2 2314 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2319 given in IND. ARR must be a simple array. */
14f9c5c9 2320
d2e4a39e
AS
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
d2e4a39e
AS
2327 struct type *elt_type;
2328 struct value *v;
14f9c5c9
AS
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
df407dfe 2332 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2333 for (i = 0; i < arity; i += 1)
14f9c5c9 2334 {
d2e4a39e 2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
0963b4bd
MS
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
14f9c5c9 2340 else
4c4b4cd2
PH
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
323e0a4a 2348 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2349 lowerbound = upperbound = 0;
2350 }
2351
3cb382c9 2352 idx = pos_atr (ind[i]);
4c4b4cd2 2353 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
4c4b4cd2
PH
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2359 }
14f9c5c9
AS
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2365 bits, elt_type);
14f9c5c9
AS
2366 return v;
2367}
2368
4c4b4cd2 2369/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2370
2371static int
d2e4a39e 2372has_negatives (struct type *type)
14f9c5c9 2373{
d2e4a39e
AS
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
14f9c5c9 2383}
d2e4a39e 2384
f93fca70 2385/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2387 the unpacked buffer.
14f9c5c9 2388
5b639dea
JB
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
f93fca70
JB
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
14f9c5c9 2394
f93fca70 2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2396
f93fca70
JB
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399static void
2400ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404{
a1c95e6b
JB
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
a1c95e6b
JB
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
4c4b4cd2 2415 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2416 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2417 unsigned char sign;
a1c95e6b 2418
4c4b4cd2
PH
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
f93fca70 2421 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2422
5b639dea
JB
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
14f9c5c9 2429 srcBitsLeft = bit_size;
086ca51f 2430 src_bytes_left = src_len;
f93fca70 2431 unpacked_bytes_left = unpacked_len;
14f9c5c9 2432 sign = 0;
f93fca70
JB
2433
2434 if (is_big_endian)
14f9c5c9 2435 {
086ca51f 2436 src_idx = src_len - 1;
f93fca70
JB
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2439 sign = ~0;
d2e4a39e
AS
2440
2441 unusedLS =
4c4b4cd2
PH
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
14f9c5c9 2444
f93fca70
JB
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
4c4b4cd2
PH
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
086ca51f
JB
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2459 }
14f9c5c9 2460 }
d2e4a39e 2461 else
14f9c5c9
AS
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
086ca51f 2465 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
f93fca70 2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2470 sign = ~0;
14f9c5c9 2471 }
d2e4a39e 2472
14f9c5c9 2473 accum = 0;
086ca51f 2474 while (src_bytes_left > 0)
14f9c5c9
AS
2475 {
2476 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2477 part of the value. */
d2e4a39e 2478 unsigned int unusedMSMask =
4c4b4cd2
PH
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
14f9c5c9 2482 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2483
d2e4a39e 2484 accum |=
086ca51f 2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2486 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2487 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2488 {
086ca51f 2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
4c4b4cd2
PH
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
4c4b4cd2 2494 }
14f9c5c9
AS
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
086ca51f
JB
2497 src_bytes_left -= 1;
2498 src_idx += delta;
14f9c5c9 2499 }
086ca51f 2500 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 accum |= sign << accumSize;
086ca51f 2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
14f9c5c9 2504 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2505 if (accumSize < 0)
2506 accumSize = 0;
14f9c5c9 2507 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
14f9c5c9 2510 }
f93fca70
JB
2511}
2512
2513/* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522struct value *
2523ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526{
2527 struct value *v;
2528 gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2529 gdb_byte *unpacked;
220475ed 2530 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2535
2536 type = ada_check_typedef (type);
2537
d0a9e810
JB
2538 if (obj == NULL)
2539 src = (gdb_byte *) valaddr + offset;
2540 else
2541 src = (gdb_byte *) value_contents (obj) + offset;
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2553 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
d0a9e810
JB
2572 }
2573
f93fca70
JB
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
2577 src = (gdb_byte *) valaddr + offset;
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
0cafa88c
JB
2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2582
f93fca70 2583 v = value_at (type, value_address (obj) + offset);
aa5c10ce 2584 src = (gdb_byte *) alloca (src_len);
f93fca70
JB
2585 read_memory (value_address (v), src, src_len);
2586 }
2587 else
2588 {
2589 v = allocate_value (type);
2590 src = (gdb_byte *) value_contents (obj) + offset;
2591 }
2592
2593 if (obj != NULL)
2594 {
2595 long new_offset = offset;
2596
2597 set_value_component_location (v, obj);
2598 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2599 set_value_bitsize (v, bit_size);
2600 if (value_bitpos (v) >= HOST_CHAR_BIT)
2601 {
2602 ++new_offset;
2603 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2604 }
2605 set_value_offset (v, new_offset);
2606
2607 /* Also set the parent value. This is needed when trying to
2608 assign a new value (in inferior memory). */
2609 set_value_parent (v, obj);
2610 }
2611 else
2612 set_value_bitsize (v, bit_size);
2613 unpacked = (gdb_byte *) value_contents (v);
2614
2615 if (bit_size == 0)
2616 {
2617 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2618 do_cleanups (old_chain);
f93fca70
JB
2619 return v;
2620 }
2621
d0a9e810 2622 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2623 {
d0a9e810
JB
2624 /* Small short-cut: If we've unpacked the data into a buffer
2625 of the same size as TYPE's length, then we can reuse that,
2626 instead of doing the unpacking again. */
2627 memcpy (unpacked, staging, staging_len);
f93fca70 2628 }
d0a9e810
JB
2629 else
2630 ada_unpack_from_contents (src, bit_offset, bit_size,
2631 unpacked, TYPE_LENGTH (type),
2632 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2633
d0a9e810 2634 do_cleanups (old_chain);
14f9c5c9
AS
2635 return v;
2636}
d2e4a39e 2637
14f9c5c9
AS
2638/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2639 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2640 not overlap. */
14f9c5c9 2641static void
fc1a4b47 2642move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2643 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2644{
2645 unsigned int accum, mask;
2646 int accum_bits, chunk_size;
2647
2648 target += targ_offset / HOST_CHAR_BIT;
2649 targ_offset %= HOST_CHAR_BIT;
2650 source += src_offset / HOST_CHAR_BIT;
2651 src_offset %= HOST_CHAR_BIT;
50810684 2652 if (bits_big_endian_p)
14f9c5c9
AS
2653 {
2654 accum = (unsigned char) *source;
2655 source += 1;
2656 accum_bits = HOST_CHAR_BIT - src_offset;
2657
d2e4a39e 2658 while (n > 0)
4c4b4cd2
PH
2659 {
2660 int unused_right;
5b4ee69b 2661
4c4b4cd2
PH
2662 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2663 accum_bits += HOST_CHAR_BIT;
2664 source += 1;
2665 chunk_size = HOST_CHAR_BIT - targ_offset;
2666 if (chunk_size > n)
2667 chunk_size = n;
2668 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2669 mask = ((1 << chunk_size) - 1) << unused_right;
2670 *target =
2671 (*target & ~mask)
2672 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2673 n -= chunk_size;
2674 accum_bits -= chunk_size;
2675 target += 1;
2676 targ_offset = 0;
2677 }
14f9c5c9
AS
2678 }
2679 else
2680 {
2681 accum = (unsigned char) *source >> src_offset;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 accum = accum + ((unsigned char) *source << accum_bits);
2688 accum_bits += HOST_CHAR_BIT;
2689 source += 1;
2690 chunk_size = HOST_CHAR_BIT - targ_offset;
2691 if (chunk_size > n)
2692 chunk_size = n;
2693 mask = ((1 << chunk_size) - 1) << targ_offset;
2694 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2695 n -= chunk_size;
2696 accum_bits -= chunk_size;
2697 accum >>= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702}
2703
14f9c5c9
AS
2704/* Store the contents of FROMVAL into the location of TOVAL.
2705 Return a new value with the location of TOVAL and contents of
2706 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2707 floating-point or non-scalar types. */
14f9c5c9 2708
d2e4a39e
AS
2709static struct value *
2710ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2711{
df407dfe
AC
2712 struct type *type = value_type (toval);
2713 int bits = value_bitsize (toval);
14f9c5c9 2714
52ce6436
PH
2715 toval = ada_coerce_ref (toval);
2716 fromval = ada_coerce_ref (fromval);
2717
2718 if (ada_is_direct_array_type (value_type (toval)))
2719 toval = ada_coerce_to_simple_array (toval);
2720 if (ada_is_direct_array_type (value_type (fromval)))
2721 fromval = ada_coerce_to_simple_array (fromval);
2722
88e3b34b 2723 if (!deprecated_value_modifiable (toval))
323e0a4a 2724 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2725
d2e4a39e 2726 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2727 && bits > 0
d2e4a39e 2728 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2729 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2730 {
df407dfe
AC
2731 int len = (value_bitpos (toval)
2732 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2733 int from_size;
224c3ddb 2734 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2735 struct value *val;
42ae5230 2736 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2737
2738 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2739 fromval = value_cast (type, fromval);
14f9c5c9 2740
52ce6436 2741 read_memory (to_addr, buffer, len);
aced2898
PH
2742 from_size = value_bitsize (fromval);
2743 if (from_size == 0)
2744 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2745 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2746 move_bits (buffer, value_bitpos (toval),
50810684 2747 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2748 else
50810684
UW
2749 move_bits (buffer, value_bitpos (toval),
2750 value_contents (fromval), 0, bits, 0);
972daa01 2751 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2752
14f9c5c9 2753 val = value_copy (toval);
0fd88904 2754 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2755 TYPE_LENGTH (type));
04624583 2756 deprecated_set_value_type (val, type);
d2e4a39e 2757
14f9c5c9
AS
2758 return val;
2759 }
2760
2761 return value_assign (toval, fromval);
2762}
2763
2764
7c512744
JB
2765/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2766 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2767 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2768 COMPONENT, and not the inferior's memory. The current contents
2769 of COMPONENT are ignored.
2770
2771 Although not part of the initial design, this function also works
2772 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2773 had a null address, and COMPONENT had an address which is equal to
2774 its offset inside CONTAINER. */
2775
52ce6436
PH
2776static void
2777value_assign_to_component (struct value *container, struct value *component,
2778 struct value *val)
2779{
2780 LONGEST offset_in_container =
42ae5230 2781 (LONGEST) (value_address (component) - value_address (container));
7c512744 2782 int bit_offset_in_container =
52ce6436
PH
2783 value_bitpos (component) - value_bitpos (container);
2784 int bits;
7c512744 2785
52ce6436
PH
2786 val = value_cast (value_type (component), val);
2787
2788 if (value_bitsize (component) == 0)
2789 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2790 else
2791 bits = value_bitsize (component);
2792
50810684 2793 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2794 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2795 value_bitpos (container) + bit_offset_in_container,
2796 value_contents (val),
2797 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2798 bits, 1);
52ce6436 2799 else
7c512744 2800 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2801 value_bitpos (container) + bit_offset_in_container,
50810684 2802 value_contents (val), 0, bits, 0);
7c512744
JB
2803}
2804
4c4b4cd2
PH
2805/* The value of the element of array ARR at the ARITY indices given in IND.
2806 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2807 thereto. */
2808
d2e4a39e
AS
2809struct value *
2810ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2811{
2812 int k;
d2e4a39e
AS
2813 struct value *elt;
2814 struct type *elt_type;
14f9c5c9
AS
2815
2816 elt = ada_coerce_to_simple_array (arr);
2817
df407dfe 2818 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2819 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2820 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2821 return value_subscript_packed (elt, arity, ind);
2822
2823 for (k = 0; k < arity; k += 1)
2824 {
2825 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2826 error (_("too many subscripts (%d expected)"), k);
2497b498 2827 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2828 }
2829 return elt;
2830}
2831
deede10c
JB
2832/* Assuming ARR is a pointer to a GDB array, the value of the element
2833 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2834 Does not read the entire array into memory.
2835
2836 Note: Unlike what one would expect, this function is used instead of
2837 ada_value_subscript for basically all non-packed array types. The reason
2838 for this is that a side effect of doing our own pointer arithmetics instead
2839 of relying on value_subscript is that there is no implicit typedef peeling.
2840 This is important for arrays of array accesses, where it allows us to
2841 preserve the fact that the array's element is an array access, where the
2842 access part os encoded in a typedef layer. */
14f9c5c9 2843
2c0b251b 2844static struct value *
deede10c 2845ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2846{
2847 int k;
919e6dbe 2848 struct value *array_ind = ada_value_ind (arr);
deede10c 2849 struct type *type
919e6dbe
PMR
2850 = check_typedef (value_enclosing_type (array_ind));
2851
2852 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2853 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2854 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2855
2856 for (k = 0; k < arity; k += 1)
2857 {
2858 LONGEST lwb, upb;
aa715135 2859 struct value *lwb_value;
14f9c5c9
AS
2860
2861 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2862 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2863 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2864 value_copy (arr));
14f9c5c9 2865 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2866 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2867 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2868 type = TYPE_TARGET_TYPE (type);
2869 }
2870
2871 return value_ind (arr);
2872}
2873
0b5d8877 2874/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2875 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2876 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2877 this array is LOW, as per Ada rules. */
0b5d8877 2878static struct value *
f5938064
JG
2879ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2880 int low, int high)
0b5d8877 2881{
b0dd7688 2882 struct type *type0 = ada_check_typedef (type);
aa715135 2883 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2884 struct type *index_type
aa715135 2885 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2886 struct type *slice_type =
b0dd7688 2887 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2888 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2889 LONGEST base_low_pos, low_pos;
2890 CORE_ADDR base;
2891
2892 if (!discrete_position (base_index_type, low, &low_pos)
2893 || !discrete_position (base_index_type, base_low, &base_low_pos))
2894 {
2895 warning (_("unable to get positions in slice, use bounds instead"));
2896 low_pos = low;
2897 base_low_pos = base_low;
2898 }
5b4ee69b 2899
aa715135
JG
2900 base = value_as_address (array_ptr)
2901 + ((low_pos - base_low_pos)
2902 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2903 return value_at_lazy (slice_type, base);
0b5d8877
PH
2904}
2905
2906
2907static struct value *
2908ada_value_slice (struct value *array, int low, int high)
2909{
b0dd7688 2910 struct type *type = ada_check_typedef (value_type (array));
aa715135 2911 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2912 struct type *index_type
2913 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2914 struct type *slice_type =
0b5d8877 2915 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2916 LONGEST low_pos, high_pos;
5b4ee69b 2917
aa715135
JG
2918 if (!discrete_position (base_index_type, low, &low_pos)
2919 || !discrete_position (base_index_type, high, &high_pos))
2920 {
2921 warning (_("unable to get positions in slice, use bounds instead"));
2922 low_pos = low;
2923 high_pos = high;
2924 }
2925
2926 return value_cast (slice_type,
2927 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2928}
2929
14f9c5c9
AS
2930/* If type is a record type in the form of a standard GNAT array
2931 descriptor, returns the number of dimensions for type. If arr is a
2932 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2933 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2934
2935int
d2e4a39e 2936ada_array_arity (struct type *type)
14f9c5c9
AS
2937{
2938 int arity;
2939
2940 if (type == NULL)
2941 return 0;
2942
2943 type = desc_base_type (type);
2944
2945 arity = 0;
d2e4a39e 2946 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2947 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2948 else
2949 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2950 {
4c4b4cd2 2951 arity += 1;
61ee279c 2952 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2953 }
d2e4a39e 2954
14f9c5c9
AS
2955 return arity;
2956}
2957
2958/* If TYPE is a record type in the form of a standard GNAT array
2959 descriptor or a simple array type, returns the element type for
2960 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2961 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2962
d2e4a39e
AS
2963struct type *
2964ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2965{
2966 type = desc_base_type (type);
2967
d2e4a39e 2968 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2969 {
2970 int k;
d2e4a39e 2971 struct type *p_array_type;
14f9c5c9 2972
556bdfd4 2973 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2974
2975 k = ada_array_arity (type);
2976 if (k == 0)
4c4b4cd2 2977 return NULL;
d2e4a39e 2978
4c4b4cd2 2979 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2980 if (nindices >= 0 && k > nindices)
4c4b4cd2 2981 k = nindices;
d2e4a39e 2982 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2983 {
61ee279c 2984 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2985 k -= 1;
2986 }
14f9c5c9
AS
2987 return p_array_type;
2988 }
2989 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2990 {
2991 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2992 {
2993 type = TYPE_TARGET_TYPE (type);
2994 nindices -= 1;
2995 }
14f9c5c9
AS
2996 return type;
2997 }
2998
2999 return NULL;
3000}
3001
4c4b4cd2 3002/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3003 Does not examine memory. Throws an error if N is invalid or TYPE
3004 is not an array type. NAME is the name of the Ada attribute being
3005 evaluated ('range, 'first, 'last, or 'length); it is used in building
3006 the error message. */
14f9c5c9 3007
1eea4ebd
UW
3008static struct type *
3009ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3010{
4c4b4cd2
PH
3011 struct type *result_type;
3012
14f9c5c9
AS
3013 type = desc_base_type (type);
3014
1eea4ebd
UW
3015 if (n < 0 || n > ada_array_arity (type))
3016 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3017
4c4b4cd2 3018 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3019 {
3020 int i;
3021
3022 for (i = 1; i < n; i += 1)
4c4b4cd2 3023 type = TYPE_TARGET_TYPE (type);
262452ec 3024 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3025 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3026 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3027 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3028 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3029 result_type = NULL;
14f9c5c9 3030 }
d2e4a39e 3031 else
1eea4ebd
UW
3032 {
3033 result_type = desc_index_type (desc_bounds_type (type), n);
3034 if (result_type == NULL)
3035 error (_("attempt to take bound of something that is not an array"));
3036 }
3037
3038 return result_type;
14f9c5c9
AS
3039}
3040
3041/* Given that arr is an array type, returns the lower bound of the
3042 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3043 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3044 array-descriptor type. It works for other arrays with bounds supplied
3045 by run-time quantities other than discriminants. */
14f9c5c9 3046
abb68b3e 3047static LONGEST
fb5e3d5c 3048ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3049{
8a48ac95 3050 struct type *type, *index_type_desc, *index_type;
1ce677a4 3051 int i;
262452ec
JK
3052
3053 gdb_assert (which == 0 || which == 1);
14f9c5c9 3054
ad82864c
JB
3055 if (ada_is_constrained_packed_array_type (arr_type))
3056 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3057
4c4b4cd2 3058 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3059 return (LONGEST) - which;
14f9c5c9
AS
3060
3061 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3062 type = TYPE_TARGET_TYPE (arr_type);
3063 else
3064 type = arr_type;
3065
bafffb51
JB
3066 if (TYPE_FIXED_INSTANCE (type))
3067 {
3068 /* The array has already been fixed, so we do not need to
3069 check the parallel ___XA type again. That encoding has
3070 already been applied, so ignore it now. */
3071 index_type_desc = NULL;
3072 }
3073 else
3074 {
3075 index_type_desc = ada_find_parallel_type (type, "___XA");
3076 ada_fixup_array_indexes_type (index_type_desc);
3077 }
3078
262452ec 3079 if (index_type_desc != NULL)
28c85d6c
JB
3080 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3081 NULL);
262452ec 3082 else
8a48ac95
JB
3083 {
3084 struct type *elt_type = check_typedef (type);
3085
3086 for (i = 1; i < n; i++)
3087 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3088
3089 index_type = TYPE_INDEX_TYPE (elt_type);
3090 }
262452ec 3091
43bbcdc2
PH
3092 return
3093 (LONGEST) (which == 0
3094 ? ada_discrete_type_low_bound (index_type)
3095 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3096}
3097
3098/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3099 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3100 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3101 supplied by run-time quantities other than discriminants. */
14f9c5c9 3102
1eea4ebd 3103static LONGEST
4dc81987 3104ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3105{
eb479039
JB
3106 struct type *arr_type;
3107
3108 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3109 arr = value_ind (arr);
3110 arr_type = value_enclosing_type (arr);
14f9c5c9 3111
ad82864c
JB
3112 if (ada_is_constrained_packed_array_type (arr_type))
3113 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3114 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3115 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3116 else
1eea4ebd 3117 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3118}
3119
3120/* Given that arr is an array value, returns the length of the
3121 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3122 supplied by run-time quantities other than discriminants.
3123 Does not work for arrays indexed by enumeration types with representation
3124 clauses at the moment. */
14f9c5c9 3125
1eea4ebd 3126static LONGEST
d2e4a39e 3127ada_array_length (struct value *arr, int n)
14f9c5c9 3128{
aa715135
JG
3129 struct type *arr_type, *index_type;
3130 int low, high;
eb479039
JB
3131
3132 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3133 arr = value_ind (arr);
3134 arr_type = value_enclosing_type (arr);
14f9c5c9 3135
ad82864c
JB
3136 if (ada_is_constrained_packed_array_type (arr_type))
3137 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3138
4c4b4cd2 3139 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3140 {
3141 low = ada_array_bound_from_type (arr_type, n, 0);
3142 high = ada_array_bound_from_type (arr_type, n, 1);
3143 }
14f9c5c9 3144 else
aa715135
JG
3145 {
3146 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3147 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3148 }
3149
f168693b 3150 arr_type = check_typedef (arr_type);
aa715135
JG
3151 index_type = TYPE_INDEX_TYPE (arr_type);
3152 if (index_type != NULL)
3153 {
3154 struct type *base_type;
3155 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3156 base_type = TYPE_TARGET_TYPE (index_type);
3157 else
3158 base_type = index_type;
3159
3160 low = pos_atr (value_from_longest (base_type, low));
3161 high = pos_atr (value_from_longest (base_type, high));
3162 }
3163 return high - low + 1;
4c4b4cd2
PH
3164}
3165
3166/* An empty array whose type is that of ARR_TYPE (an array type),
3167 with bounds LOW to LOW-1. */
3168
3169static struct value *
3170empty_array (struct type *arr_type, int low)
3171{
b0dd7688 3172 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3173 struct type *index_type
3174 = create_static_range_type
3175 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3176 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3177
0b5d8877 3178 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3179}
14f9c5c9 3180\f
d2e4a39e 3181
4c4b4cd2 3182 /* Name resolution */
14f9c5c9 3183
4c4b4cd2
PH
3184/* The "decoded" name for the user-definable Ada operator corresponding
3185 to OP. */
14f9c5c9 3186
d2e4a39e 3187static const char *
4c4b4cd2 3188ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3189{
3190 int i;
3191
4c4b4cd2 3192 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3193 {
3194 if (ada_opname_table[i].op == op)
4c4b4cd2 3195 return ada_opname_table[i].decoded;
14f9c5c9 3196 }
323e0a4a 3197 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3198}
3199
3200
4c4b4cd2
PH
3201/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3202 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3203 undefined namespace) and converts operators that are
3204 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3205 non-null, it provides a preferred result type [at the moment, only
3206 type void has any effect---causing procedures to be preferred over
3207 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3208 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3209
4c4b4cd2
PH
3210static void
3211resolve (struct expression **expp, int void_context_p)
14f9c5c9 3212{
30b15541
UW
3213 struct type *context_type = NULL;
3214 int pc = 0;
3215
3216 if (void_context_p)
3217 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3218
3219 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3220}
3221
4c4b4cd2
PH
3222/* Resolve the operator of the subexpression beginning at
3223 position *POS of *EXPP. "Resolving" consists of replacing
3224 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3225 with their resolutions, replacing built-in operators with
3226 function calls to user-defined operators, where appropriate, and,
3227 when DEPROCEDURE_P is non-zero, converting function-valued variables
3228 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3229 are as in ada_resolve, above. */
14f9c5c9 3230
d2e4a39e 3231static struct value *
4c4b4cd2 3232resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3233 struct type *context_type)
14f9c5c9
AS
3234{
3235 int pc = *pos;
3236 int i;
4c4b4cd2 3237 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3238 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3239 struct value **argvec; /* Vector of operand types (alloca'ed). */
3240 int nargs; /* Number of operands. */
52ce6436 3241 int oplen;
14f9c5c9
AS
3242
3243 argvec = NULL;
3244 nargs = 0;
3245 exp = *expp;
3246
52ce6436
PH
3247 /* Pass one: resolve operands, saving their types and updating *pos,
3248 if needed. */
14f9c5c9
AS
3249 switch (op)
3250 {
4c4b4cd2
PH
3251 case OP_FUNCALL:
3252 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3253 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3254 *pos += 7;
4c4b4cd2
PH
3255 else
3256 {
3257 *pos += 3;
3258 resolve_subexp (expp, pos, 0, NULL);
3259 }
3260 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3261 break;
3262
14f9c5c9 3263 case UNOP_ADDR:
4c4b4cd2
PH
3264 *pos += 1;
3265 resolve_subexp (expp, pos, 0, NULL);
3266 break;
3267
52ce6436
PH
3268 case UNOP_QUAL:
3269 *pos += 3;
17466c1a 3270 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3271 break;
3272
52ce6436 3273 case OP_ATR_MODULUS:
4c4b4cd2
PH
3274 case OP_ATR_SIZE:
3275 case OP_ATR_TAG:
4c4b4cd2
PH
3276 case OP_ATR_FIRST:
3277 case OP_ATR_LAST:
3278 case OP_ATR_LENGTH:
3279 case OP_ATR_POS:
3280 case OP_ATR_VAL:
4c4b4cd2
PH
3281 case OP_ATR_MIN:
3282 case OP_ATR_MAX:
52ce6436
PH
3283 case TERNOP_IN_RANGE:
3284 case BINOP_IN_BOUNDS:
3285 case UNOP_IN_RANGE:
3286 case OP_AGGREGATE:
3287 case OP_OTHERS:
3288 case OP_CHOICES:
3289 case OP_POSITIONAL:
3290 case OP_DISCRETE_RANGE:
3291 case OP_NAME:
3292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3293 *pos += oplen;
14f9c5c9
AS
3294 break;
3295
3296 case BINOP_ASSIGN:
3297 {
4c4b4cd2
PH
3298 struct value *arg1;
3299
3300 *pos += 1;
3301 arg1 = resolve_subexp (expp, pos, 0, NULL);
3302 if (arg1 == NULL)
3303 resolve_subexp (expp, pos, 1, NULL);
3304 else
df407dfe 3305 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3306 break;
14f9c5c9
AS
3307 }
3308
4c4b4cd2 3309 case UNOP_CAST:
4c4b4cd2
PH
3310 *pos += 3;
3311 nargs = 1;
3312 break;
14f9c5c9 3313
4c4b4cd2
PH
3314 case BINOP_ADD:
3315 case BINOP_SUB:
3316 case BINOP_MUL:
3317 case BINOP_DIV:
3318 case BINOP_REM:
3319 case BINOP_MOD:
3320 case BINOP_EXP:
3321 case BINOP_CONCAT:
3322 case BINOP_LOGICAL_AND:
3323 case BINOP_LOGICAL_OR:
3324 case BINOP_BITWISE_AND:
3325 case BINOP_BITWISE_IOR:
3326 case BINOP_BITWISE_XOR:
14f9c5c9 3327
4c4b4cd2
PH
3328 case BINOP_EQUAL:
3329 case BINOP_NOTEQUAL:
3330 case BINOP_LESS:
3331 case BINOP_GTR:
3332 case BINOP_LEQ:
3333 case BINOP_GEQ:
14f9c5c9 3334
4c4b4cd2
PH
3335 case BINOP_REPEAT:
3336 case BINOP_SUBSCRIPT:
3337 case BINOP_COMMA:
40c8aaa9
JB
3338 *pos += 1;
3339 nargs = 2;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case UNOP_NEG:
3343 case UNOP_PLUS:
3344 case UNOP_LOGICAL_NOT:
3345 case UNOP_ABS:
3346 case UNOP_IND:
3347 *pos += 1;
3348 nargs = 1;
3349 break;
14f9c5c9 3350
4c4b4cd2
PH
3351 case OP_LONG:
3352 case OP_DOUBLE:
3353 case OP_VAR_VALUE:
3354 *pos += 4;
3355 break;
14f9c5c9 3356
4c4b4cd2
PH
3357 case OP_TYPE:
3358 case OP_BOOL:
3359 case OP_LAST:
4c4b4cd2
PH
3360 case OP_INTERNALVAR:
3361 *pos += 3;
3362 break;
14f9c5c9 3363
4c4b4cd2
PH
3364 case UNOP_MEMVAL:
3365 *pos += 3;
3366 nargs = 1;
3367 break;
3368
67f3407f
DJ
3369 case OP_REGISTER:
3370 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3371 break;
3372
4c4b4cd2
PH
3373 case STRUCTOP_STRUCT:
3374 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3375 nargs = 1;
3376 break;
3377
4c4b4cd2 3378 case TERNOP_SLICE:
4c4b4cd2
PH
3379 *pos += 1;
3380 nargs = 3;
3381 break;
3382
52ce6436 3383 case OP_STRING:
14f9c5c9 3384 break;
4c4b4cd2
PH
3385
3386 default:
323e0a4a 3387 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3388 }
3389
8d749320 3390 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3391 for (i = 0; i < nargs; i += 1)
3392 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3393 argvec[i] = NULL;
3394 exp = *expp;
3395
3396 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3397 switch (op)
3398 {
3399 default:
3400 break;
3401
14f9c5c9 3402 case OP_VAR_VALUE:
4c4b4cd2 3403 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3404 {
d12307c1 3405 struct block_symbol *candidates;
76a01679
JB
3406 int n_candidates;
3407
3408 n_candidates =
3409 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3410 (exp->elts[pc + 2].symbol),
3411 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3412 &candidates);
76a01679
JB
3413
3414 if (n_candidates > 1)
3415 {
3416 /* Types tend to get re-introduced locally, so if there
3417 are any local symbols that are not types, first filter
3418 out all types. */
3419 int j;
3420 for (j = 0; j < n_candidates; j += 1)
d12307c1 3421 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3422 {
3423 case LOC_REGISTER:
3424 case LOC_ARG:
3425 case LOC_REF_ARG:
76a01679
JB
3426 case LOC_REGPARM_ADDR:
3427 case LOC_LOCAL:
76a01679 3428 case LOC_COMPUTED:
76a01679
JB
3429 goto FoundNonType;
3430 default:
3431 break;
3432 }
3433 FoundNonType:
3434 if (j < n_candidates)
3435 {
3436 j = 0;
3437 while (j < n_candidates)
3438 {
d12307c1 3439 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3440 {
3441 candidates[j] = candidates[n_candidates - 1];
3442 n_candidates -= 1;
3443 }
3444 else
3445 j += 1;
3446 }
3447 }
3448 }
3449
3450 if (n_candidates == 0)
323e0a4a 3451 error (_("No definition found for %s"),
76a01679
JB
3452 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3453 else if (n_candidates == 1)
3454 i = 0;
3455 else if (deprocedure_p
3456 && !is_nonfunction (candidates, n_candidates))
3457 {
06d5cf63
JB
3458 i = ada_resolve_function
3459 (candidates, n_candidates, NULL, 0,
3460 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3461 context_type);
76a01679 3462 if (i < 0)
323e0a4a 3463 error (_("Could not find a match for %s"),
76a01679
JB
3464 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3465 }
3466 else
3467 {
323e0a4a 3468 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3469 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3470 user_select_syms (candidates, n_candidates, 1);
3471 i = 0;
3472 }
3473
3474 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3475 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3476 if (innermost_block == NULL
3477 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3478 innermost_block = candidates[i].block;
3479 }
3480
3481 if (deprocedure_p
3482 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3483 == TYPE_CODE_FUNC))
3484 {
3485 replace_operator_with_call (expp, pc, 0, 0,
3486 exp->elts[pc + 2].symbol,
3487 exp->elts[pc + 1].block);
3488 exp = *expp;
3489 }
14f9c5c9
AS
3490 break;
3491
3492 case OP_FUNCALL:
3493 {
4c4b4cd2 3494 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3495 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3496 {
d12307c1 3497 struct block_symbol *candidates;
4c4b4cd2
PH
3498 int n_candidates;
3499
3500 n_candidates =
76a01679
JB
3501 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3502 (exp->elts[pc + 5].symbol),
3503 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3504 &candidates);
4c4b4cd2
PH
3505 if (n_candidates == 1)
3506 i = 0;
3507 else
3508 {
06d5cf63
JB
3509 i = ada_resolve_function
3510 (candidates, n_candidates,
3511 argvec, nargs,
3512 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3513 context_type);
4c4b4cd2 3514 if (i < 0)
323e0a4a 3515 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3516 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3517 }
3518
3519 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3520 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3521 if (innermost_block == NULL
3522 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3523 innermost_block = candidates[i].block;
3524 }
14f9c5c9
AS
3525 }
3526 break;
3527 case BINOP_ADD:
3528 case BINOP_SUB:
3529 case BINOP_MUL:
3530 case BINOP_DIV:
3531 case BINOP_REM:
3532 case BINOP_MOD:
3533 case BINOP_CONCAT:
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 case BINOP_EQUAL:
3538 case BINOP_NOTEQUAL:
3539 case BINOP_LESS:
3540 case BINOP_GTR:
3541 case BINOP_LEQ:
3542 case BINOP_GEQ:
3543 case BINOP_EXP:
3544 case UNOP_NEG:
3545 case UNOP_PLUS:
3546 case UNOP_LOGICAL_NOT:
3547 case UNOP_ABS:
3548 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3549 {
d12307c1 3550 struct block_symbol *candidates;
4c4b4cd2
PH
3551 int n_candidates;
3552
3553 n_candidates =
3554 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3555 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3556 &candidates);
4c4b4cd2 3557 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3558 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3559 if (i < 0)
3560 break;
3561
d12307c1
PMR
3562 replace_operator_with_call (expp, pc, nargs, 1,
3563 candidates[i].symbol,
3564 candidates[i].block);
4c4b4cd2
PH
3565 exp = *expp;
3566 }
14f9c5c9 3567 break;
4c4b4cd2
PH
3568
3569 case OP_TYPE:
b3dbf008 3570 case OP_REGISTER:
4c4b4cd2 3571 return NULL;
14f9c5c9
AS
3572 }
3573
3574 *pos = pc;
3575 return evaluate_subexp_type (exp, pos);
3576}
3577
3578/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3579 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3580 a non-pointer. */
14f9c5c9 3581/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3582 liberal. */
14f9c5c9
AS
3583
3584static int
4dc81987 3585ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3586{
61ee279c
PH
3587 ftype = ada_check_typedef (ftype);
3588 atype = ada_check_typedef (atype);
14f9c5c9
AS
3589
3590 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3591 ftype = TYPE_TARGET_TYPE (ftype);
3592 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3593 atype = TYPE_TARGET_TYPE (atype);
3594
d2e4a39e 3595 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3596 {
3597 default:
5b3d5b7d 3598 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3599 case TYPE_CODE_PTR:
3600 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3601 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3602 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3603 else
1265e4aa
JB
3604 return (may_deref
3605 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3606 case TYPE_CODE_INT:
3607 case TYPE_CODE_ENUM:
3608 case TYPE_CODE_RANGE:
3609 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3610 {
3611 case TYPE_CODE_INT:
3612 case TYPE_CODE_ENUM:
3613 case TYPE_CODE_RANGE:
3614 return 1;
3615 default:
3616 return 0;
3617 }
14f9c5c9
AS
3618
3619 case TYPE_CODE_ARRAY:
d2e4a39e 3620 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3621 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3622
3623 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3624 if (ada_is_array_descriptor_type (ftype))
3625 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3626 || ada_is_array_descriptor_type (atype));
14f9c5c9 3627 else
4c4b4cd2
PH
3628 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3629 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3630
3631 case TYPE_CODE_UNION:
3632 case TYPE_CODE_FLT:
3633 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3634 }
3635}
3636
3637/* Return non-zero if the formals of FUNC "sufficiently match" the
3638 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3639 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3640 argument function. */
14f9c5c9
AS
3641
3642static int
d2e4a39e 3643ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3644{
3645 int i;
d2e4a39e 3646 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3647
1265e4aa
JB
3648 if (SYMBOL_CLASS (func) == LOC_CONST
3649 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3650 return (n_actuals == 0);
3651 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3652 return 0;
3653
3654 if (TYPE_NFIELDS (func_type) != n_actuals)
3655 return 0;
3656
3657 for (i = 0; i < n_actuals; i += 1)
3658 {
4c4b4cd2 3659 if (actuals[i] == NULL)
76a01679
JB
3660 return 0;
3661 else
3662 {
5b4ee69b
MS
3663 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3664 i));
df407dfe 3665 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3666
76a01679
JB
3667 if (!ada_type_match (ftype, atype, 1))
3668 return 0;
3669 }
14f9c5c9
AS
3670 }
3671 return 1;
3672}
3673
3674/* False iff function type FUNC_TYPE definitely does not produce a value
3675 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3676 FUNC_TYPE is not a valid function type with a non-null return type
3677 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3678
3679static int
d2e4a39e 3680return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3681{
d2e4a39e 3682 struct type *return_type;
14f9c5c9
AS
3683
3684 if (func_type == NULL)
3685 return 1;
3686
4c4b4cd2 3687 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3688 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3689 else
18af8284 3690 return_type = get_base_type (func_type);
14f9c5c9
AS
3691 if (return_type == NULL)
3692 return 1;
3693
18af8284 3694 context_type = get_base_type (context_type);
14f9c5c9
AS
3695
3696 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3697 return context_type == NULL || return_type == context_type;
3698 else if (context_type == NULL)
3699 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3700 else
3701 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3702}
3703
3704
4c4b4cd2 3705/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3706 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3707 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3708 that returns that type, then eliminate matches that don't. If
3709 CONTEXT_TYPE is void and there is at least one match that does not
3710 return void, eliminate all matches that do.
3711
14f9c5c9
AS
3712 Asks the user if there is more than one match remaining. Returns -1
3713 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3714 solely for messages. May re-arrange and modify SYMS in
3715 the process; the index returned is for the modified vector. */
14f9c5c9 3716
4c4b4cd2 3717static int
d12307c1 3718ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3719 int nsyms, struct value **args, int nargs,
3720 const char *name, struct type *context_type)
14f9c5c9 3721{
30b15541 3722 int fallback;
14f9c5c9 3723 int k;
4c4b4cd2 3724 int m; /* Number of hits */
14f9c5c9 3725
d2e4a39e 3726 m = 0;
30b15541
UW
3727 /* In the first pass of the loop, we only accept functions matching
3728 context_type. If none are found, we add a second pass of the loop
3729 where every function is accepted. */
3730 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3731 {
3732 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3733 {
d12307c1 3734 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3735
d12307c1 3736 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3737 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3738 {
3739 syms[m] = syms[k];
3740 m += 1;
3741 }
3742 }
14f9c5c9
AS
3743 }
3744
dc5c8746
PMR
3745 /* If we got multiple matches, ask the user which one to use. Don't do this
3746 interactive thing during completion, though, as the purpose of the
3747 completion is providing a list of all possible matches. Prompting the
3748 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3749 if (m == 0)
3750 return -1;
dc5c8746 3751 else if (m > 1 && !parse_completion)
14f9c5c9 3752 {
323e0a4a 3753 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3754 user_select_syms (syms, m, 1);
14f9c5c9
AS
3755 return 0;
3756 }
3757 return 0;
3758}
3759
4c4b4cd2
PH
3760/* Returns true (non-zero) iff decoded name N0 should appear before N1
3761 in a listing of choices during disambiguation (see sort_choices, below).
3762 The idea is that overloadings of a subprogram name from the
3763 same package should sort in their source order. We settle for ordering
3764 such symbols by their trailing number (__N or $N). */
3765
14f9c5c9 3766static int
0d5cff50 3767encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3768{
3769 if (N1 == NULL)
3770 return 0;
3771 else if (N0 == NULL)
3772 return 1;
3773 else
3774 {
3775 int k0, k1;
5b4ee69b 3776
d2e4a39e 3777 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3778 ;
d2e4a39e 3779 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3780 ;
d2e4a39e 3781 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3782 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3783 {
3784 int n0, n1;
5b4ee69b 3785
4c4b4cd2
PH
3786 n0 = k0;
3787 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3788 n0 -= 1;
3789 n1 = k1;
3790 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3791 n1 -= 1;
3792 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3793 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3794 }
14f9c5c9
AS
3795 return (strcmp (N0, N1) < 0);
3796 }
3797}
d2e4a39e 3798
4c4b4cd2
PH
3799/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3800 encoded names. */
3801
d2e4a39e 3802static void
d12307c1 3803sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3804{
4c4b4cd2 3805 int i;
5b4ee69b 3806
d2e4a39e 3807 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3808 {
d12307c1 3809 struct block_symbol sym = syms[i];
14f9c5c9
AS
3810 int j;
3811
d2e4a39e 3812 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3813 {
d12307c1
PMR
3814 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3815 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3816 break;
3817 syms[j + 1] = syms[j];
3818 }
d2e4a39e 3819 syms[j + 1] = sym;
14f9c5c9
AS
3820 }
3821}
3822
4c4b4cd2
PH
3823/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3824 by asking the user (if necessary), returning the number selected,
3825 and setting the first elements of SYMS items. Error if no symbols
3826 selected. */
14f9c5c9
AS
3827
3828/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3829 to be re-integrated one of these days. */
14f9c5c9
AS
3830
3831int
d12307c1 3832user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3833{
3834 int i;
8d749320 3835 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3836 int n_chosen;
3837 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3838 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3839
3840 if (max_results < 1)
323e0a4a 3841 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3842 if (nsyms <= 1)
3843 return nsyms;
3844
717d2f5a
JB
3845 if (select_mode == multiple_symbols_cancel)
3846 error (_("\
3847canceled because the command is ambiguous\n\
3848See set/show multiple-symbol."));
3849
3850 /* If select_mode is "all", then return all possible symbols.
3851 Only do that if more than one symbol can be selected, of course.
3852 Otherwise, display the menu as usual. */
3853 if (select_mode == multiple_symbols_all && max_results > 1)
3854 return nsyms;
3855
323e0a4a 3856 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3857 if (max_results > 1)
323e0a4a 3858 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3859
4c4b4cd2 3860 sort_choices (syms, nsyms);
14f9c5c9
AS
3861
3862 for (i = 0; i < nsyms; i += 1)
3863 {
d12307c1 3864 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3865 continue;
3866
d12307c1 3867 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3868 {
76a01679 3869 struct symtab_and_line sal =
d12307c1 3870 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3871
323e0a4a
AC
3872 if (sal.symtab == NULL)
3873 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3874 i + first_choice,
d12307c1 3875 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3876 sal.line);
3877 else
3878 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3879 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3880 symtab_to_filename_for_display (sal.symtab),
3881 sal.line);
4c4b4cd2
PH
3882 continue;
3883 }
d2e4a39e 3884 else
4c4b4cd2
PH
3885 {
3886 int is_enumeral =
d12307c1
PMR
3887 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3888 && SYMBOL_TYPE (syms[i].symbol) != NULL
3889 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3890 struct symtab *symtab = NULL;
3891
d12307c1
PMR
3892 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3893 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3894
d12307c1 3895 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3896 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3897 i + first_choice,
d12307c1 3898 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3899 symtab_to_filename_for_display (symtab),
d12307c1 3900 SYMBOL_LINE (syms[i].symbol));
76a01679 3901 else if (is_enumeral
d12307c1 3902 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3903 {
a3f17187 3904 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3905 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3906 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3907 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3908 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3909 }
3910 else if (symtab != NULL)
3911 printf_unfiltered (is_enumeral
323e0a4a
AC
3912 ? _("[%d] %s in %s (enumeral)\n")
3913 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3914 i + first_choice,
d12307c1 3915 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3916 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3917 else
3918 printf_unfiltered (is_enumeral
323e0a4a
AC
3919 ? _("[%d] %s (enumeral)\n")
3920 : _("[%d] %s at ?\n"),
4c4b4cd2 3921 i + first_choice,
d12307c1 3922 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3923 }
14f9c5c9 3924 }
d2e4a39e 3925
14f9c5c9 3926 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3927 "overload-choice");
14f9c5c9
AS
3928
3929 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3930 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3931
3932 return n_chosen;
3933}
3934
3935/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3936 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3937 order in CHOICES[0 .. N-1], and return N.
3938
3939 The user types choices as a sequence of numbers on one line
3940 separated by blanks, encoding them as follows:
3941
4c4b4cd2 3942 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3943 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3944 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3945
4c4b4cd2 3946 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3947
3948 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3949 prompts (for use with the -f switch). */
14f9c5c9
AS
3950
3951int
d2e4a39e 3952get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3953 int is_all_choice, char *annotation_suffix)
14f9c5c9 3954{
d2e4a39e 3955 char *args;
0bcd0149 3956 char *prompt;
14f9c5c9
AS
3957 int n_chosen;
3958 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3959
14f9c5c9
AS
3960 prompt = getenv ("PS2");
3961 if (prompt == NULL)
0bcd0149 3962 prompt = "> ";
14f9c5c9 3963
0bcd0149 3964 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3965
14f9c5c9 3966 if (args == NULL)
323e0a4a 3967 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3968
3969 n_chosen = 0;
76a01679 3970
4c4b4cd2
PH
3971 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3972 order, as given in args. Choices are validated. */
14f9c5c9
AS
3973 while (1)
3974 {
d2e4a39e 3975 char *args2;
14f9c5c9
AS
3976 int choice, j;
3977
0fcd72ba 3978 args = skip_spaces (args);
14f9c5c9 3979 if (*args == '\0' && n_chosen == 0)
323e0a4a 3980 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3981 else if (*args == '\0')
4c4b4cd2 3982 break;
14f9c5c9
AS
3983
3984 choice = strtol (args, &args2, 10);
d2e4a39e 3985 if (args == args2 || choice < 0
4c4b4cd2 3986 || choice > n_choices + first_choice - 1)
323e0a4a 3987 error (_("Argument must be choice number"));
14f9c5c9
AS
3988 args = args2;
3989
d2e4a39e 3990 if (choice == 0)
323e0a4a 3991 error (_("cancelled"));
14f9c5c9
AS
3992
3993 if (choice < first_choice)
4c4b4cd2
PH
3994 {
3995 n_chosen = n_choices;
3996 for (j = 0; j < n_choices; j += 1)
3997 choices[j] = j;
3998 break;
3999 }
14f9c5c9
AS
4000 choice -= first_choice;
4001
d2e4a39e 4002 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4003 {
4004 }
14f9c5c9
AS
4005
4006 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4007 {
4008 int k;
5b4ee69b 4009
4c4b4cd2
PH
4010 for (k = n_chosen - 1; k > j; k -= 1)
4011 choices[k + 1] = choices[k];
4012 choices[j + 1] = choice;
4013 n_chosen += 1;
4014 }
14f9c5c9
AS
4015 }
4016
4017 if (n_chosen > max_results)
323e0a4a 4018 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4019
14f9c5c9
AS
4020 return n_chosen;
4021}
4022
4c4b4cd2
PH
4023/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4024 on the function identified by SYM and BLOCK, and taking NARGS
4025 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4026
4027static void
d2e4a39e 4028replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4029 int oplen, struct symbol *sym,
270140bd 4030 const struct block *block)
14f9c5c9
AS
4031{
4032 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4033 symbol, -oplen for operator being replaced). */
d2e4a39e 4034 struct expression *newexp = (struct expression *)
8c1a34e7 4035 xzalloc (sizeof (struct expression)
4c4b4cd2 4036 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4037 struct expression *exp = *expp;
14f9c5c9
AS
4038
4039 newexp->nelts = exp->nelts + 7 - oplen;
4040 newexp->language_defn = exp->language_defn;
3489610d 4041 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4042 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4043 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4044 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4045
4046 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4047 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4048
4049 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4050 newexp->elts[pc + 4].block = block;
4051 newexp->elts[pc + 5].symbol = sym;
4052
4053 *expp = newexp;
aacb1f0a 4054 xfree (exp);
d2e4a39e 4055}
14f9c5c9
AS
4056
4057/* Type-class predicates */
4058
4c4b4cd2
PH
4059/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4060 or FLOAT). */
14f9c5c9
AS
4061
4062static int
d2e4a39e 4063numeric_type_p (struct type *type)
14f9c5c9
AS
4064{
4065 if (type == NULL)
4066 return 0;
d2e4a39e
AS
4067 else
4068 {
4069 switch (TYPE_CODE (type))
4c4b4cd2
PH
4070 {
4071 case TYPE_CODE_INT:
4072 case TYPE_CODE_FLT:
4073 return 1;
4074 case TYPE_CODE_RANGE:
4075 return (type == TYPE_TARGET_TYPE (type)
4076 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4077 default:
4078 return 0;
4079 }
d2e4a39e 4080 }
14f9c5c9
AS
4081}
4082
4c4b4cd2 4083/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4084
4085static int
d2e4a39e 4086integer_type_p (struct type *type)
14f9c5c9
AS
4087{
4088 if (type == NULL)
4089 return 0;
d2e4a39e
AS
4090 else
4091 {
4092 switch (TYPE_CODE (type))
4c4b4cd2
PH
4093 {
4094 case TYPE_CODE_INT:
4095 return 1;
4096 case TYPE_CODE_RANGE:
4097 return (type == TYPE_TARGET_TYPE (type)
4098 || integer_type_p (TYPE_TARGET_TYPE (type)));
4099 default:
4100 return 0;
4101 }
d2e4a39e 4102 }
14f9c5c9
AS
4103}
4104
4c4b4cd2 4105/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4106
4107static int
d2e4a39e 4108scalar_type_p (struct type *type)
14f9c5c9
AS
4109{
4110 if (type == NULL)
4111 return 0;
d2e4a39e
AS
4112 else
4113 {
4114 switch (TYPE_CODE (type))
4c4b4cd2
PH
4115 {
4116 case TYPE_CODE_INT:
4117 case TYPE_CODE_RANGE:
4118 case TYPE_CODE_ENUM:
4119 case TYPE_CODE_FLT:
4120 return 1;
4121 default:
4122 return 0;
4123 }
d2e4a39e 4124 }
14f9c5c9
AS
4125}
4126
4c4b4cd2 4127/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4128
4129static int
d2e4a39e 4130discrete_type_p (struct type *type)
14f9c5c9
AS
4131{
4132 if (type == NULL)
4133 return 0;
d2e4a39e
AS
4134 else
4135 {
4136 switch (TYPE_CODE (type))
4c4b4cd2
PH
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_RANGE:
4140 case TYPE_CODE_ENUM:
872f0337 4141 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4142 return 1;
4143 default:
4144 return 0;
4145 }
d2e4a39e 4146 }
14f9c5c9
AS
4147}
4148
4c4b4cd2
PH
4149/* Returns non-zero if OP with operands in the vector ARGS could be
4150 a user-defined function. Errs on the side of pre-defined operators
4151 (i.e., result 0). */
14f9c5c9
AS
4152
4153static int
d2e4a39e 4154possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4155{
76a01679 4156 struct type *type0 =
df407dfe 4157 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4158 struct type *type1 =
df407dfe 4159 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4160
4c4b4cd2
PH
4161 if (type0 == NULL)
4162 return 0;
4163
14f9c5c9
AS
4164 switch (op)
4165 {
4166 default:
4167 return 0;
4168
4169 case BINOP_ADD:
4170 case BINOP_SUB:
4171 case BINOP_MUL:
4172 case BINOP_DIV:
d2e4a39e 4173 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4174
4175 case BINOP_REM:
4176 case BINOP_MOD:
4177 case BINOP_BITWISE_AND:
4178 case BINOP_BITWISE_IOR:
4179 case BINOP_BITWISE_XOR:
d2e4a39e 4180 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4181
4182 case BINOP_EQUAL:
4183 case BINOP_NOTEQUAL:
4184 case BINOP_LESS:
4185 case BINOP_GTR:
4186 case BINOP_LEQ:
4187 case BINOP_GEQ:
d2e4a39e 4188 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4189
4190 case BINOP_CONCAT:
ee90b9ab 4191 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4192
4193 case BINOP_EXP:
d2e4a39e 4194 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4195
4196 case UNOP_NEG:
4197 case UNOP_PLUS:
4198 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4199 case UNOP_ABS:
4200 return (!numeric_type_p (type0));
14f9c5c9
AS
4201
4202 }
4203}
4204\f
4c4b4cd2 4205 /* Renaming */
14f9c5c9 4206
aeb5907d
JB
4207/* NOTES:
4208
4209 1. In the following, we assume that a renaming type's name may
4210 have an ___XD suffix. It would be nice if this went away at some
4211 point.
4212 2. We handle both the (old) purely type-based representation of
4213 renamings and the (new) variable-based encoding. At some point,
4214 it is devoutly to be hoped that the former goes away
4215 (FIXME: hilfinger-2007-07-09).
4216 3. Subprogram renamings are not implemented, although the XRS
4217 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4218
4219/* If SYM encodes a renaming,
4220
4221 <renaming> renames <renamed entity>,
4222
4223 sets *LEN to the length of the renamed entity's name,
4224 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4225 the string describing the subcomponent selected from the renamed
0963b4bd 4226 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4227 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4228 are undefined). Otherwise, returns a value indicating the category
4229 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4230 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4231 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4232 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4233 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4234 may be NULL, in which case they are not assigned.
4235
4236 [Currently, however, GCC does not generate subprogram renamings.] */
4237
4238enum ada_renaming_category
4239ada_parse_renaming (struct symbol *sym,
4240 const char **renamed_entity, int *len,
4241 const char **renaming_expr)
4242{
4243 enum ada_renaming_category kind;
4244 const char *info;
4245 const char *suffix;
4246
4247 if (sym == NULL)
4248 return ADA_NOT_RENAMING;
4249 switch (SYMBOL_CLASS (sym))
14f9c5c9 4250 {
aeb5907d
JB
4251 default:
4252 return ADA_NOT_RENAMING;
4253 case LOC_TYPEDEF:
4254 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4255 renamed_entity, len, renaming_expr);
4256 case LOC_LOCAL:
4257 case LOC_STATIC:
4258 case LOC_COMPUTED:
4259 case LOC_OPTIMIZED_OUT:
4260 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4261 if (info == NULL)
4262 return ADA_NOT_RENAMING;
4263 switch (info[5])
4264 {
4265 case '_':
4266 kind = ADA_OBJECT_RENAMING;
4267 info += 6;
4268 break;
4269 case 'E':
4270 kind = ADA_EXCEPTION_RENAMING;
4271 info += 7;
4272 break;
4273 case 'P':
4274 kind = ADA_PACKAGE_RENAMING;
4275 info += 7;
4276 break;
4277 case 'S':
4278 kind = ADA_SUBPROGRAM_RENAMING;
4279 info += 7;
4280 break;
4281 default:
4282 return ADA_NOT_RENAMING;
4283 }
14f9c5c9 4284 }
4c4b4cd2 4285
aeb5907d
JB
4286 if (renamed_entity != NULL)
4287 *renamed_entity = info;
4288 suffix = strstr (info, "___XE");
4289 if (suffix == NULL || suffix == info)
4290 return ADA_NOT_RENAMING;
4291 if (len != NULL)
4292 *len = strlen (info) - strlen (suffix);
4293 suffix += 5;
4294 if (renaming_expr != NULL)
4295 *renaming_expr = suffix;
4296 return kind;
4297}
4298
4299/* Assuming TYPE encodes a renaming according to the old encoding in
4300 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4301 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4302 ADA_NOT_RENAMING otherwise. */
4303static enum ada_renaming_category
4304parse_old_style_renaming (struct type *type,
4305 const char **renamed_entity, int *len,
4306 const char **renaming_expr)
4307{
4308 enum ada_renaming_category kind;
4309 const char *name;
4310 const char *info;
4311 const char *suffix;
14f9c5c9 4312
aeb5907d
JB
4313 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4314 || TYPE_NFIELDS (type) != 1)
4315 return ADA_NOT_RENAMING;
14f9c5c9 4316
aeb5907d
JB
4317 name = type_name_no_tag (type);
4318 if (name == NULL)
4319 return ADA_NOT_RENAMING;
4320
4321 name = strstr (name, "___XR");
4322 if (name == NULL)
4323 return ADA_NOT_RENAMING;
4324 switch (name[5])
4325 {
4326 case '\0':
4327 case '_':
4328 kind = ADA_OBJECT_RENAMING;
4329 break;
4330 case 'E':
4331 kind = ADA_EXCEPTION_RENAMING;
4332 break;
4333 case 'P':
4334 kind = ADA_PACKAGE_RENAMING;
4335 break;
4336 case 'S':
4337 kind = ADA_SUBPROGRAM_RENAMING;
4338 break;
4339 default:
4340 return ADA_NOT_RENAMING;
4341 }
14f9c5c9 4342
aeb5907d
JB
4343 info = TYPE_FIELD_NAME (type, 0);
4344 if (info == NULL)
4345 return ADA_NOT_RENAMING;
4346 if (renamed_entity != NULL)
4347 *renamed_entity = info;
4348 suffix = strstr (info, "___XE");
4349 if (renaming_expr != NULL)
4350 *renaming_expr = suffix + 5;
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4353 if (len != NULL)
4354 *len = suffix - info;
4355 return kind;
a5ee536b
JB
4356}
4357
4358/* Compute the value of the given RENAMING_SYM, which is expected to
4359 be a symbol encoding a renaming expression. BLOCK is the block
4360 used to evaluate the renaming. */
52ce6436 4361
a5ee536b
JB
4362static struct value *
4363ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4364 const struct block *block)
a5ee536b 4365{
bbc13ae3 4366 const char *sym_name;
a5ee536b
JB
4367 struct expression *expr;
4368 struct value *value;
4369 struct cleanup *old_chain = NULL;
4370
bbc13ae3 4371 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4372 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4373 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4374 value = evaluate_expression (expr);
4375
4376 do_cleanups (old_chain);
4377 return value;
4378}
14f9c5c9 4379\f
d2e4a39e 4380
4c4b4cd2 4381 /* Evaluation: Function Calls */
14f9c5c9 4382
4c4b4cd2 4383/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4384 lvalues, and otherwise has the side-effect of allocating memory
4385 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4386
d2e4a39e 4387static struct value *
40bc484c 4388ensure_lval (struct value *val)
14f9c5c9 4389{
40bc484c
JB
4390 if (VALUE_LVAL (val) == not_lval
4391 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4392 {
df407dfe 4393 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4394 const CORE_ADDR addr =
4395 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4396
40bc484c 4397 set_value_address (val, addr);
a84a8a0d 4398 VALUE_LVAL (val) = lval_memory;
40bc484c 4399 write_memory (addr, value_contents (val), len);
c3e5cd34 4400 }
14f9c5c9
AS
4401
4402 return val;
4403}
4404
4405/* Return the value ACTUAL, converted to be an appropriate value for a
4406 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4407 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4408 values not residing in memory, updating it as needed. */
14f9c5c9 4409
a93c0eb6 4410struct value *
40bc484c 4411ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4412{
df407dfe 4413 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4414 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4415 struct type *formal_target =
4416 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4417 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4418 struct type *actual_target =
4419 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4420 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4421
4c4b4cd2 4422 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4423 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4424 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4425 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4426 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4427 {
a84a8a0d 4428 struct value *result;
5b4ee69b 4429
14f9c5c9 4430 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4431 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4432 result = desc_data (actual);
14f9c5c9 4433 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4434 {
4435 if (VALUE_LVAL (actual) != lval_memory)
4436 {
4437 struct value *val;
5b4ee69b 4438
df407dfe 4439 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4440 val = allocate_value (actual_type);
990a07ab 4441 memcpy ((char *) value_contents_raw (val),
0fd88904 4442 (char *) value_contents (actual),
4c4b4cd2 4443 TYPE_LENGTH (actual_type));
40bc484c 4444 actual = ensure_lval (val);
4c4b4cd2 4445 }
a84a8a0d 4446 result = value_addr (actual);
4c4b4cd2 4447 }
a84a8a0d
JB
4448 else
4449 return actual;
b1af9e97 4450 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4451 }
4452 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4453 return ada_value_ind (actual);
8344af1e
JB
4454 else if (ada_is_aligner_type (formal_type))
4455 {
4456 /* We need to turn this parameter into an aligner type
4457 as well. */
4458 struct value *aligner = allocate_value (formal_type);
4459 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4460
4461 value_assign_to_component (aligner, component, actual);
4462 return aligner;
4463 }
14f9c5c9
AS
4464
4465 return actual;
4466}
4467
438c98a1
JB
4468/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4469 type TYPE. This is usually an inefficient no-op except on some targets
4470 (such as AVR) where the representation of a pointer and an address
4471 differs. */
4472
4473static CORE_ADDR
4474value_pointer (struct value *value, struct type *type)
4475{
4476 struct gdbarch *gdbarch = get_type_arch (type);
4477 unsigned len = TYPE_LENGTH (type);
224c3ddb 4478 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4479 CORE_ADDR addr;
4480
4481 addr = value_address (value);
4482 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4483 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4484 return addr;
4485}
4486
14f9c5c9 4487
4c4b4cd2
PH
4488/* Push a descriptor of type TYPE for array value ARR on the stack at
4489 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4490 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4491 to-descriptor type rather than a descriptor type), a struct value *
4492 representing a pointer to this descriptor. */
14f9c5c9 4493
d2e4a39e 4494static struct value *
40bc484c 4495make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4496{
d2e4a39e
AS
4497 struct type *bounds_type = desc_bounds_type (type);
4498 struct type *desc_type = desc_base_type (type);
4499 struct value *descriptor = allocate_value (desc_type);
4500 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4501 int i;
d2e4a39e 4502
0963b4bd
MS
4503 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4504 i > 0; i -= 1)
14f9c5c9 4505 {
19f220c3
JK
4506 modify_field (value_type (bounds), value_contents_writeable (bounds),
4507 ada_array_bound (arr, i, 0),
4508 desc_bound_bitpos (bounds_type, i, 0),
4509 desc_bound_bitsize (bounds_type, i, 0));
4510 modify_field (value_type (bounds), value_contents_writeable (bounds),
4511 ada_array_bound (arr, i, 1),
4512 desc_bound_bitpos (bounds_type, i, 1),
4513 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4514 }
d2e4a39e 4515
40bc484c 4516 bounds = ensure_lval (bounds);
d2e4a39e 4517
19f220c3
JK
4518 modify_field (value_type (descriptor),
4519 value_contents_writeable (descriptor),
4520 value_pointer (ensure_lval (arr),
4521 TYPE_FIELD_TYPE (desc_type, 0)),
4522 fat_pntr_data_bitpos (desc_type),
4523 fat_pntr_data_bitsize (desc_type));
4524
4525 modify_field (value_type (descriptor),
4526 value_contents_writeable (descriptor),
4527 value_pointer (bounds,
4528 TYPE_FIELD_TYPE (desc_type, 1)),
4529 fat_pntr_bounds_bitpos (desc_type),
4530 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4531
40bc484c 4532 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4533
4534 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4535 return value_addr (descriptor);
4536 else
4537 return descriptor;
4538}
14f9c5c9 4539\f
3d9434b5
JB
4540 /* Symbol Cache Module */
4541
3d9434b5 4542/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4543 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4544 on the type of entity being printed, the cache can make it as much
4545 as an order of magnitude faster than without it.
4546
4547 The descriptive type DWARF extension has significantly reduced
4548 the need for this cache, at least when DWARF is being used. However,
4549 even in this case, some expensive name-based symbol searches are still
4550 sometimes necessary - to find an XVZ variable, mostly. */
4551
ee01b665 4552/* Initialize the contents of SYM_CACHE. */
3d9434b5 4553
ee01b665
JB
4554static void
4555ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4556{
4557 obstack_init (&sym_cache->cache_space);
4558 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4559}
3d9434b5 4560
ee01b665
JB
4561/* Free the memory used by SYM_CACHE. */
4562
4563static void
4564ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4565{
ee01b665
JB
4566 obstack_free (&sym_cache->cache_space, NULL);
4567 xfree (sym_cache);
4568}
3d9434b5 4569
ee01b665
JB
4570/* Return the symbol cache associated to the given program space PSPACE.
4571 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4572
ee01b665
JB
4573static struct ada_symbol_cache *
4574ada_get_symbol_cache (struct program_space *pspace)
4575{
4576 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4577
66c168ae 4578 if (pspace_data->sym_cache == NULL)
ee01b665 4579 {
66c168ae
JB
4580 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4581 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4582 }
4583
66c168ae 4584 return pspace_data->sym_cache;
ee01b665 4585}
3d9434b5
JB
4586
4587/* Clear all entries from the symbol cache. */
4588
4589static void
4590ada_clear_symbol_cache (void)
4591{
ee01b665
JB
4592 struct ada_symbol_cache *sym_cache
4593 = ada_get_symbol_cache (current_program_space);
4594
4595 obstack_free (&sym_cache->cache_space, NULL);
4596 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4597}
4598
fe978cb0 4599/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4600 Return it if found, or NULL otherwise. */
4601
4602static struct cache_entry **
fe978cb0 4603find_entry (const char *name, domain_enum domain)
3d9434b5 4604{
ee01b665
JB
4605 struct ada_symbol_cache *sym_cache
4606 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4607 int h = msymbol_hash (name) % HASH_SIZE;
4608 struct cache_entry **e;
4609
ee01b665 4610 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4611 {
fe978cb0 4612 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4613 return e;
4614 }
4615 return NULL;
4616}
4617
fe978cb0 4618/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4619 Return 1 if found, 0 otherwise.
4620
4621 If an entry was found and SYM is not NULL, set *SYM to the entry's
4622 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4623
96d887e8 4624static int
fe978cb0 4625lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4626 struct symbol **sym, const struct block **block)
96d887e8 4627{
fe978cb0 4628 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4629
4630 if (e == NULL)
4631 return 0;
4632 if (sym != NULL)
4633 *sym = (*e)->sym;
4634 if (block != NULL)
4635 *block = (*e)->block;
4636 return 1;
96d887e8
PH
4637}
4638
3d9434b5 4639/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4640 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4641
96d887e8 4642static void
fe978cb0 4643cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4644 const struct block *block)
96d887e8 4645{
ee01b665
JB
4646 struct ada_symbol_cache *sym_cache
4647 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4648 int h;
4649 char *copy;
4650 struct cache_entry *e;
4651
1994afbf
DE
4652 /* Symbols for builtin types don't have a block.
4653 For now don't cache such symbols. */
4654 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4655 return;
4656
3d9434b5
JB
4657 /* If the symbol is a local symbol, then do not cache it, as a search
4658 for that symbol depends on the context. To determine whether
4659 the symbol is local or not, we check the block where we found it
4660 against the global and static blocks of its associated symtab. */
4661 if (sym
08be3fe3 4662 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4663 GLOBAL_BLOCK) != block
08be3fe3 4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4665 STATIC_BLOCK) != block)
3d9434b5
JB
4666 return;
4667
4668 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4669 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4670 sizeof (*e));
4671 e->next = sym_cache->root[h];
4672 sym_cache->root[h] = e;
224c3ddb
SM
4673 e->name = copy
4674 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4675 strcpy (copy, name);
4676 e->sym = sym;
fe978cb0 4677 e->domain = domain;
3d9434b5 4678 e->block = block;
96d887e8 4679}
4c4b4cd2
PH
4680\f
4681 /* Symbol Lookup */
4682
c0431670
JB
4683/* Return nonzero if wild matching should be used when searching for
4684 all symbols matching LOOKUP_NAME.
4685
4686 LOOKUP_NAME is expected to be a symbol name after transformation
4687 for Ada lookups (see ada_name_for_lookup). */
4688
4689static int
4690should_use_wild_match (const char *lookup_name)
4691{
4692 return (strstr (lookup_name, "__") == NULL);
4693}
4694
4c4b4cd2
PH
4695/* Return the result of a standard (literal, C-like) lookup of NAME in
4696 given DOMAIN, visible from lexical block BLOCK. */
4697
4698static struct symbol *
4699standard_lookup (const char *name, const struct block *block,
4700 domain_enum domain)
4701{
acbd605d 4702 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4703 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4704
d12307c1
PMR
4705 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4706 return sym.symbol;
2570f2b7 4707 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4708 cache_symbol (name, domain, sym.symbol, sym.block);
4709 return sym.symbol;
4c4b4cd2
PH
4710}
4711
4712
4713/* Non-zero iff there is at least one non-function/non-enumeral symbol
4714 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4715 since they contend in overloading in the same way. */
4716static int
d12307c1 4717is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4718{
4719 int i;
4720
4721 for (i = 0; i < n; i += 1)
d12307c1
PMR
4722 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4723 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4724 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4725 return 1;
4726
4727 return 0;
4728}
4729
4730/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4731 struct types. Otherwise, they may not. */
14f9c5c9
AS
4732
4733static int
d2e4a39e 4734equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4735{
d2e4a39e 4736 if (type0 == type1)
14f9c5c9 4737 return 1;
d2e4a39e 4738 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4739 || TYPE_CODE (type0) != TYPE_CODE (type1))
4740 return 0;
d2e4a39e 4741 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4742 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4743 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4744 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4745 return 1;
d2e4a39e 4746
14f9c5c9
AS
4747 return 0;
4748}
4749
4750/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4751 no more defined than that of SYM1. */
14f9c5c9
AS
4752
4753static int
d2e4a39e 4754lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4755{
4756 if (sym0 == sym1)
4757 return 1;
176620f1 4758 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4759 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4760 return 0;
4761
d2e4a39e 4762 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4763 {
4764 case LOC_UNDEF:
4765 return 1;
4766 case LOC_TYPEDEF:
4767 {
4c4b4cd2
PH
4768 struct type *type0 = SYMBOL_TYPE (sym0);
4769 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4770 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4771 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4772 int len0 = strlen (name0);
5b4ee69b 4773
4c4b4cd2
PH
4774 return
4775 TYPE_CODE (type0) == TYPE_CODE (type1)
4776 && (equiv_types (type0, type1)
4777 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4778 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4779 }
4780 case LOC_CONST:
4781 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4782 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4783 default:
4784 return 0;
14f9c5c9
AS
4785 }
4786}
4787
d12307c1 4788/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4789 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4790
4791static void
76a01679
JB
4792add_defn_to_vec (struct obstack *obstackp,
4793 struct symbol *sym,
f0c5f9b2 4794 const struct block *block)
14f9c5c9
AS
4795{
4796 int i;
d12307c1 4797 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4798
529cad9c
PH
4799 /* Do not try to complete stub types, as the debugger is probably
4800 already scanning all symbols matching a certain name at the
4801 time when this function is called. Trying to replace the stub
4802 type by its associated full type will cause us to restart a scan
4803 which may lead to an infinite recursion. Instead, the client
4804 collecting the matching symbols will end up collecting several
4805 matches, with at least one of them complete. It can then filter
4806 out the stub ones if needed. */
4807
4c4b4cd2
PH
4808 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4809 {
d12307c1 4810 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4811 return;
d12307c1 4812 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4813 {
d12307c1 4814 prevDefns[i].symbol = sym;
4c4b4cd2 4815 prevDefns[i].block = block;
4c4b4cd2 4816 return;
76a01679 4817 }
4c4b4cd2
PH
4818 }
4819
4820 {
d12307c1 4821 struct block_symbol info;
4c4b4cd2 4822
d12307c1 4823 info.symbol = sym;
4c4b4cd2 4824 info.block = block;
d12307c1 4825 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4826 }
4827}
4828
d12307c1
PMR
4829/* Number of block_symbol structures currently collected in current vector in
4830 OBSTACKP. */
4c4b4cd2 4831
76a01679
JB
4832static int
4833num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4834{
d12307c1 4835 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4836}
4837
d12307c1
PMR
4838/* Vector of block_symbol structures currently collected in current vector in
4839 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4840
d12307c1 4841static struct block_symbol *
4c4b4cd2
PH
4842defns_collected (struct obstack *obstackp, int finish)
4843{
4844 if (finish)
224c3ddb 4845 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4846 else
d12307c1 4847 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4848}
4849
7c7b6655
TT
4850/* Return a bound minimal symbol matching NAME according to Ada
4851 decoding rules. Returns an invalid symbol if there is no such
4852 minimal symbol. Names prefixed with "standard__" are handled
4853 specially: "standard__" is first stripped off, and only static and
4854 global symbols are searched. */
4c4b4cd2 4855
7c7b6655 4856struct bound_minimal_symbol
96d887e8 4857ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4858{
7c7b6655 4859 struct bound_minimal_symbol result;
4c4b4cd2 4860 struct objfile *objfile;
96d887e8 4861 struct minimal_symbol *msymbol;
dc4024cd 4862 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4863
7c7b6655
TT
4864 memset (&result, 0, sizeof (result));
4865
c0431670
JB
4866 /* Special case: If the user specifies a symbol name inside package
4867 Standard, do a non-wild matching of the symbol name without
4868 the "standard__" prefix. This was primarily introduced in order
4869 to allow the user to specifically access the standard exceptions
4870 using, for instance, Standard.Constraint_Error when Constraint_Error
4871 is ambiguous (due to the user defining its own Constraint_Error
4872 entity inside its program). */
61012eef 4873 if (startswith (name, "standard__"))
c0431670 4874 name += sizeof ("standard__") - 1;
4c4b4cd2 4875
96d887e8
PH
4876 ALL_MSYMBOLS (objfile, msymbol)
4877 {
efd66ac6 4878 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4879 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4880 {
4881 result.minsym = msymbol;
4882 result.objfile = objfile;
4883 break;
4884 }
96d887e8 4885 }
4c4b4cd2 4886
7c7b6655 4887 return result;
96d887e8 4888}
4c4b4cd2 4889
96d887e8
PH
4890/* For all subprograms that statically enclose the subprogram of the
4891 selected frame, add symbols matching identifier NAME in DOMAIN
4892 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4893 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4894 with a wildcard prefix. */
4c4b4cd2 4895
96d887e8
PH
4896static void
4897add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4898 const char *name, domain_enum domain,
48b78332 4899 int wild_match_p)
96d887e8 4900{
96d887e8 4901}
14f9c5c9 4902
96d887e8
PH
4903/* True if TYPE is definitely an artificial type supplied to a symbol
4904 for which no debugging information was given in the symbol file. */
14f9c5c9 4905
96d887e8
PH
4906static int
4907is_nondebugging_type (struct type *type)
4908{
0d5cff50 4909 const char *name = ada_type_name (type);
5b4ee69b 4910
96d887e8
PH
4911 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4912}
4c4b4cd2 4913
8f17729f
JB
4914/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4915 that are deemed "identical" for practical purposes.
4916
4917 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4918 types and that their number of enumerals is identical (in other
4919 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4920
4921static int
4922ada_identical_enum_types_p (struct type *type1, struct type *type2)
4923{
4924 int i;
4925
4926 /* The heuristic we use here is fairly conservative. We consider
4927 that 2 enumerate types are identical if they have the same
4928 number of enumerals and that all enumerals have the same
4929 underlying value and name. */
4930
4931 /* All enums in the type should have an identical underlying value. */
4932 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4933 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4934 return 0;
4935
4936 /* All enumerals should also have the same name (modulo any numerical
4937 suffix). */
4938 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4939 {
0d5cff50
DE
4940 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4941 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4942 int len_1 = strlen (name_1);
4943 int len_2 = strlen (name_2);
4944
4945 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4946 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4947 if (len_1 != len_2
4948 || strncmp (TYPE_FIELD_NAME (type1, i),
4949 TYPE_FIELD_NAME (type2, i),
4950 len_1) != 0)
4951 return 0;
4952 }
4953
4954 return 1;
4955}
4956
4957/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4958 that are deemed "identical" for practical purposes. Sometimes,
4959 enumerals are not strictly identical, but their types are so similar
4960 that they can be considered identical.
4961
4962 For instance, consider the following code:
4963
4964 type Color is (Black, Red, Green, Blue, White);
4965 type RGB_Color is new Color range Red .. Blue;
4966
4967 Type RGB_Color is a subrange of an implicit type which is a copy
4968 of type Color. If we call that implicit type RGB_ColorB ("B" is
4969 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4970 As a result, when an expression references any of the enumeral
4971 by name (Eg. "print green"), the expression is technically
4972 ambiguous and the user should be asked to disambiguate. But
4973 doing so would only hinder the user, since it wouldn't matter
4974 what choice he makes, the outcome would always be the same.
4975 So, for practical purposes, we consider them as the same. */
4976
4977static int
d12307c1 4978symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4979{
4980 int i;
4981
4982 /* Before performing a thorough comparison check of each type,
4983 we perform a series of inexpensive checks. We expect that these
4984 checks will quickly fail in the vast majority of cases, and thus
4985 help prevent the unnecessary use of a more expensive comparison.
4986 Said comparison also expects us to make some of these checks
4987 (see ada_identical_enum_types_p). */
4988
4989 /* Quick check: All symbols should have an enum type. */
4990 for (i = 0; i < nsyms; i++)
d12307c1 4991 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4992 return 0;
4993
4994 /* Quick check: They should all have the same value. */
4995 for (i = 1; i < nsyms; i++)
d12307c1 4996 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4997 return 0;
4998
4999 /* Quick check: They should all have the same number of enumerals. */
5000 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5001 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5002 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5003 return 0;
5004
5005 /* All the sanity checks passed, so we might have a set of
5006 identical enumeration types. Perform a more complete
5007 comparison of the type of each symbol. */
5008 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5009 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5010 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5011 return 0;
5012
5013 return 1;
5014}
5015
96d887e8
PH
5016/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5017 duplicate other symbols in the list (The only case I know of where
5018 this happens is when object files containing stabs-in-ecoff are
5019 linked with files containing ordinary ecoff debugging symbols (or no
5020 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5021 Returns the number of items in the modified list. */
4c4b4cd2 5022
96d887e8 5023static int
d12307c1 5024remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5025{
5026 int i, j;
4c4b4cd2 5027
8f17729f
JB
5028 /* We should never be called with less than 2 symbols, as there
5029 cannot be any extra symbol in that case. But it's easy to
5030 handle, since we have nothing to do in that case. */
5031 if (nsyms < 2)
5032 return nsyms;
5033
96d887e8
PH
5034 i = 0;
5035 while (i < nsyms)
5036 {
a35ddb44 5037 int remove_p = 0;
339c13b6
JB
5038
5039 /* If two symbols have the same name and one of them is a stub type,
5040 the get rid of the stub. */
5041
d12307c1
PMR
5042 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5043 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5044 {
5045 for (j = 0; j < nsyms; j++)
5046 {
5047 if (j != i
d12307c1
PMR
5048 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5049 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5050 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5051 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5052 remove_p = 1;
339c13b6
JB
5053 }
5054 }
5055
5056 /* Two symbols with the same name, same class and same address
5057 should be identical. */
5058
d12307c1
PMR
5059 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5060 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5061 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5062 {
5063 for (j = 0; j < nsyms; j += 1)
5064 {
5065 if (i != j
d12307c1
PMR
5066 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5067 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5068 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5069 && SYMBOL_CLASS (syms[i].symbol)
5070 == SYMBOL_CLASS (syms[j].symbol)
5071 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5072 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5073 remove_p = 1;
4c4b4cd2 5074 }
4c4b4cd2 5075 }
339c13b6 5076
a35ddb44 5077 if (remove_p)
339c13b6
JB
5078 {
5079 for (j = i + 1; j < nsyms; j += 1)
5080 syms[j - 1] = syms[j];
5081 nsyms -= 1;
5082 }
5083
96d887e8 5084 i += 1;
14f9c5c9 5085 }
8f17729f
JB
5086
5087 /* If all the remaining symbols are identical enumerals, then
5088 just keep the first one and discard the rest.
5089
5090 Unlike what we did previously, we do not discard any entry
5091 unless they are ALL identical. This is because the symbol
5092 comparison is not a strict comparison, but rather a practical
5093 comparison. If all symbols are considered identical, then
5094 we can just go ahead and use the first one and discard the rest.
5095 But if we cannot reduce the list to a single element, we have
5096 to ask the user to disambiguate anyways. And if we have to
5097 present a multiple-choice menu, it's less confusing if the list
5098 isn't missing some choices that were identical and yet distinct. */
5099 if (symbols_are_identical_enums (syms, nsyms))
5100 nsyms = 1;
5101
96d887e8 5102 return nsyms;
14f9c5c9
AS
5103}
5104
96d887e8
PH
5105/* Given a type that corresponds to a renaming entity, use the type name
5106 to extract the scope (package name or function name, fully qualified,
5107 and following the GNAT encoding convention) where this renaming has been
5108 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5109
96d887e8
PH
5110static char *
5111xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5112{
96d887e8 5113 /* The renaming types adhere to the following convention:
0963b4bd 5114 <scope>__<rename>___<XR extension>.
96d887e8
PH
5115 So, to extract the scope, we search for the "___XR" extension,
5116 and then backtrack until we find the first "__". */
76a01679 5117
96d887e8 5118 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5119 const char *suffix = strstr (name, "___XR");
5120 const char *last;
96d887e8
PH
5121 int scope_len;
5122 char *scope;
14f9c5c9 5123
96d887e8
PH
5124 /* Now, backtrack a bit until we find the first "__". Start looking
5125 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5126
96d887e8
PH
5127 for (last = suffix - 3; last > name; last--)
5128 if (last[0] == '_' && last[1] == '_')
5129 break;
76a01679 5130
96d887e8 5131 /* Make a copy of scope and return it. */
14f9c5c9 5132
96d887e8
PH
5133 scope_len = last - name;
5134 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5135
96d887e8
PH
5136 strncpy (scope, name, scope_len);
5137 scope[scope_len] = '\0';
4c4b4cd2 5138
96d887e8 5139 return scope;
4c4b4cd2
PH
5140}
5141
96d887e8 5142/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5143
96d887e8
PH
5144static int
5145is_package_name (const char *name)
4c4b4cd2 5146{
96d887e8
PH
5147 /* Here, We take advantage of the fact that no symbols are generated
5148 for packages, while symbols are generated for each function.
5149 So the condition for NAME represent a package becomes equivalent
5150 to NAME not existing in our list of symbols. There is only one
5151 small complication with library-level functions (see below). */
4c4b4cd2 5152
96d887e8 5153 char *fun_name;
76a01679 5154
96d887e8
PH
5155 /* If it is a function that has not been defined at library level,
5156 then we should be able to look it up in the symbols. */
5157 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5158 return 0;
14f9c5c9 5159
96d887e8
PH
5160 /* Library-level function names start with "_ada_". See if function
5161 "_ada_" followed by NAME can be found. */
14f9c5c9 5162
96d887e8 5163 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5164 functions names cannot contain "__" in them. */
96d887e8
PH
5165 if (strstr (name, "__") != NULL)
5166 return 0;
4c4b4cd2 5167
b435e160 5168 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5169
96d887e8
PH
5170 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5171}
14f9c5c9 5172
96d887e8 5173/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5174 not visible from FUNCTION_NAME. */
14f9c5c9 5175
96d887e8 5176static int
0d5cff50 5177old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5178{
aeb5907d 5179 char *scope;
1509e573 5180 struct cleanup *old_chain;
aeb5907d
JB
5181
5182 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5183 return 0;
5184
5185 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5186 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5187
96d887e8
PH
5188 /* If the rename has been defined in a package, then it is visible. */
5189 if (is_package_name (scope))
1509e573
JB
5190 {
5191 do_cleanups (old_chain);
5192 return 0;
5193 }
14f9c5c9 5194
96d887e8
PH
5195 /* Check that the rename is in the current function scope by checking
5196 that its name starts with SCOPE. */
76a01679 5197
96d887e8
PH
5198 /* If the function name starts with "_ada_", it means that it is
5199 a library-level function. Strip this prefix before doing the
5200 comparison, as the encoding for the renaming does not contain
5201 this prefix. */
61012eef 5202 if (startswith (function_name, "_ada_"))
96d887e8 5203 function_name += 5;
f26caa11 5204
1509e573 5205 {
61012eef 5206 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5207
5208 do_cleanups (old_chain);
5209 return is_invisible;
5210 }
f26caa11
PH
5211}
5212
aeb5907d
JB
5213/* Remove entries from SYMS that corresponds to a renaming entity that
5214 is not visible from the function associated with CURRENT_BLOCK or
5215 that is superfluous due to the presence of more specific renaming
5216 information. Places surviving symbols in the initial entries of
5217 SYMS and returns the number of surviving symbols.
96d887e8
PH
5218
5219 Rationale:
aeb5907d
JB
5220 First, in cases where an object renaming is implemented as a
5221 reference variable, GNAT may produce both the actual reference
5222 variable and the renaming encoding. In this case, we discard the
5223 latter.
5224
5225 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5226 entity. Unfortunately, STABS currently does not support the definition
5227 of types that are local to a given lexical block, so all renamings types
5228 are emitted at library level. As a consequence, if an application
5229 contains two renaming entities using the same name, and a user tries to
5230 print the value of one of these entities, the result of the ada symbol
5231 lookup will also contain the wrong renaming type.
f26caa11 5232
96d887e8
PH
5233 This function partially covers for this limitation by attempting to
5234 remove from the SYMS list renaming symbols that should be visible
5235 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5236 method with the current information available. The implementation
5237 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5238
5239 - When the user tries to print a rename in a function while there
5240 is another rename entity defined in a package: Normally, the
5241 rename in the function has precedence over the rename in the
5242 package, so the latter should be removed from the list. This is
5243 currently not the case.
5244
5245 - This function will incorrectly remove valid renames if
5246 the CURRENT_BLOCK corresponds to a function which symbol name
5247 has been changed by an "Export" pragma. As a consequence,
5248 the user will be unable to print such rename entities. */
4c4b4cd2 5249
14f9c5c9 5250static int
d12307c1 5251remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5252 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5253{
5254 struct symbol *current_function;
0d5cff50 5255 const char *current_function_name;
4c4b4cd2 5256 int i;
aeb5907d
JB
5257 int is_new_style_renaming;
5258
5259 /* If there is both a renaming foo___XR... encoded as a variable and
5260 a simple variable foo in the same block, discard the latter.
0963b4bd 5261 First, zero out such symbols, then compress. */
aeb5907d
JB
5262 is_new_style_renaming = 0;
5263 for (i = 0; i < nsyms; i += 1)
5264 {
d12307c1 5265 struct symbol *sym = syms[i].symbol;
270140bd 5266 const struct block *block = syms[i].block;
aeb5907d
JB
5267 const char *name;
5268 const char *suffix;
5269
5270 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5271 continue;
5272 name = SYMBOL_LINKAGE_NAME (sym);
5273 suffix = strstr (name, "___XR");
5274
5275 if (suffix != NULL)
5276 {
5277 int name_len = suffix - name;
5278 int j;
5b4ee69b 5279
aeb5907d
JB
5280 is_new_style_renaming = 1;
5281 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5282 if (i != j && syms[j].symbol != NULL
5283 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5284 name_len) == 0
5285 && block == syms[j].block)
d12307c1 5286 syms[j].symbol = NULL;
aeb5907d
JB
5287 }
5288 }
5289 if (is_new_style_renaming)
5290 {
5291 int j, k;
5292
5293 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5294 if (syms[j].symbol != NULL)
aeb5907d
JB
5295 {
5296 syms[k] = syms[j];
5297 k += 1;
5298 }
5299 return k;
5300 }
4c4b4cd2
PH
5301
5302 /* Extract the function name associated to CURRENT_BLOCK.
5303 Abort if unable to do so. */
76a01679 5304
4c4b4cd2
PH
5305 if (current_block == NULL)
5306 return nsyms;
76a01679 5307
7f0df278 5308 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5309 if (current_function == NULL)
5310 return nsyms;
5311
5312 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5313 if (current_function_name == NULL)
5314 return nsyms;
5315
5316 /* Check each of the symbols, and remove it from the list if it is
5317 a type corresponding to a renaming that is out of the scope of
5318 the current block. */
5319
5320 i = 0;
5321 while (i < nsyms)
5322 {
d12307c1 5323 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5324 == ADA_OBJECT_RENAMING
d12307c1 5325 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5326 {
5327 int j;
5b4ee69b 5328
aeb5907d 5329 for (j = i + 1; j < nsyms; j += 1)
76a01679 5330 syms[j - 1] = syms[j];
4c4b4cd2
PH
5331 nsyms -= 1;
5332 }
5333 else
5334 i += 1;
5335 }
5336
5337 return nsyms;
5338}
5339
339c13b6
JB
5340/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5341 whose name and domain match NAME and DOMAIN respectively.
5342 If no match was found, then extend the search to "enclosing"
5343 routines (in other words, if we're inside a nested function,
5344 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5345 If WILD_MATCH_P is nonzero, perform the naming matching in
5346 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5347
5348 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5349
5350static void
5351ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5352 const struct block *block, domain_enum domain,
d0a8ab18 5353 int wild_match_p)
339c13b6
JB
5354{
5355 int block_depth = 0;
5356
5357 while (block != NULL)
5358 {
5359 block_depth += 1;
d0a8ab18
JB
5360 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5361 wild_match_p);
339c13b6
JB
5362
5363 /* If we found a non-function match, assume that's the one. */
5364 if (is_nonfunction (defns_collected (obstackp, 0),
5365 num_defns_collected (obstackp)))
5366 return;
5367
5368 block = BLOCK_SUPERBLOCK (block);
5369 }
5370
5371 /* If no luck so far, try to find NAME as a local symbol in some lexically
5372 enclosing subprogram. */
5373 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5374 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5375}
5376
ccefe4c4 5377/* An object of this type is used as the user_data argument when
40658b94 5378 calling the map_matching_symbols method. */
ccefe4c4 5379
40658b94 5380struct match_data
ccefe4c4 5381{
40658b94 5382 struct objfile *objfile;
ccefe4c4 5383 struct obstack *obstackp;
40658b94
PH
5384 struct symbol *arg_sym;
5385 int found_sym;
ccefe4c4
TT
5386};
5387
22cee43f 5388/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5389 to a list of symbols. DATA0 is a pointer to a struct match_data *
5390 containing the obstack that collects the symbol list, the file that SYM
5391 must come from, a flag indicating whether a non-argument symbol has
5392 been found in the current block, and the last argument symbol
5393 passed in SYM within the current block (if any). When SYM is null,
5394 marking the end of a block, the argument symbol is added if no
5395 other has been found. */
ccefe4c4 5396
40658b94
PH
5397static int
5398aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5399{
40658b94
PH
5400 struct match_data *data = (struct match_data *) data0;
5401
5402 if (sym == NULL)
5403 {
5404 if (!data->found_sym && data->arg_sym != NULL)
5405 add_defn_to_vec (data->obstackp,
5406 fixup_symbol_section (data->arg_sym, data->objfile),
5407 block);
5408 data->found_sym = 0;
5409 data->arg_sym = NULL;
5410 }
5411 else
5412 {
5413 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5414 return 0;
5415 else if (SYMBOL_IS_ARGUMENT (sym))
5416 data->arg_sym = sym;
5417 else
5418 {
5419 data->found_sym = 1;
5420 add_defn_to_vec (data->obstackp,
5421 fixup_symbol_section (sym, data->objfile),
5422 block);
5423 }
5424 }
5425 return 0;
5426}
5427
22cee43f
PMR
5428/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5429 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5430 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5431 function "wild_match" for more information). Return whether we found such
5432 symbols. */
5433
5434static int
5435ada_add_block_renamings (struct obstack *obstackp,
5436 const struct block *block,
5437 const char *name,
5438 domain_enum domain,
5439 int wild_match_p)
5440{
5441 struct using_direct *renaming;
5442 int defns_mark = num_defns_collected (obstackp);
5443
5444 for (renaming = block_using (block);
5445 renaming != NULL;
5446 renaming = renaming->next)
5447 {
5448 const char *r_name;
5449 int name_match;
5450
5451 /* Avoid infinite recursions: skip this renaming if we are actually
5452 already traversing it.
5453
5454 Currently, symbol lookup in Ada don't use the namespace machinery from
5455 C++/Fortran support: skip namespace imports that use them. */
5456 if (renaming->searched
5457 || (renaming->import_src != NULL
5458 && renaming->import_src[0] != '\0')
5459 || (renaming->import_dest != NULL
5460 && renaming->import_dest[0] != '\0'))
5461 continue;
5462 renaming->searched = 1;
5463
5464 /* TODO: here, we perform another name-based symbol lookup, which can
5465 pull its own multiple overloads. In theory, we should be able to do
5466 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5467 not a simple name. But in order to do this, we would need to enhance
5468 the DWARF reader to associate a symbol to this renaming, instead of a
5469 name. So, for now, we do something simpler: re-use the C++/Fortran
5470 namespace machinery. */
5471 r_name = (renaming->alias != NULL
5472 ? renaming->alias
5473 : renaming->declaration);
5474 name_match
5475 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5476 if (name_match == 0)
5477 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5478 1, NULL);
5479 renaming->searched = 0;
5480 }
5481 return num_defns_collected (obstackp) != defns_mark;
5482}
5483
db230ce3
JB
5484/* Implements compare_names, but only applying the comparision using
5485 the given CASING. */
5b4ee69b 5486
40658b94 5487static int
db230ce3
JB
5488compare_names_with_case (const char *string1, const char *string2,
5489 enum case_sensitivity casing)
40658b94
PH
5490{
5491 while (*string1 != '\0' && *string2 != '\0')
5492 {
db230ce3
JB
5493 char c1, c2;
5494
40658b94
PH
5495 if (isspace (*string1) || isspace (*string2))
5496 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5497
5498 if (casing == case_sensitive_off)
5499 {
5500 c1 = tolower (*string1);
5501 c2 = tolower (*string2);
5502 }
5503 else
5504 {
5505 c1 = *string1;
5506 c2 = *string2;
5507 }
5508 if (c1 != c2)
40658b94 5509 break;
db230ce3 5510
40658b94
PH
5511 string1 += 1;
5512 string2 += 1;
5513 }
db230ce3 5514
40658b94
PH
5515 switch (*string1)
5516 {
5517 case '(':
5518 return strcmp_iw_ordered (string1, string2);
5519 case '_':
5520 if (*string2 == '\0')
5521 {
052874e8 5522 if (is_name_suffix (string1))
40658b94
PH
5523 return 0;
5524 else
1a1d5513 5525 return 1;
40658b94 5526 }
dbb8534f 5527 /* FALLTHROUGH */
40658b94
PH
5528 default:
5529 if (*string2 == '(')
5530 return strcmp_iw_ordered (string1, string2);
5531 else
db230ce3
JB
5532 {
5533 if (casing == case_sensitive_off)
5534 return tolower (*string1) - tolower (*string2);
5535 else
5536 return *string1 - *string2;
5537 }
40658b94 5538 }
ccefe4c4
TT
5539}
5540
db230ce3
JB
5541/* Compare STRING1 to STRING2, with results as for strcmp.
5542 Compatible with strcmp_iw_ordered in that...
5543
5544 strcmp_iw_ordered (STRING1, STRING2) <= 0
5545
5546 ... implies...
5547
5548 compare_names (STRING1, STRING2) <= 0
5549
5550 (they may differ as to what symbols compare equal). */
5551
5552static int
5553compare_names (const char *string1, const char *string2)
5554{
5555 int result;
5556
5557 /* Similar to what strcmp_iw_ordered does, we need to perform
5558 a case-insensitive comparison first, and only resort to
5559 a second, case-sensitive, comparison if the first one was
5560 not sufficient to differentiate the two strings. */
5561
5562 result = compare_names_with_case (string1, string2, case_sensitive_off);
5563 if (result == 0)
5564 result = compare_names_with_case (string1, string2, case_sensitive_on);
5565
5566 return result;
5567}
5568
339c13b6
JB
5569/* Add to OBSTACKP all non-local symbols whose name and domain match
5570 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5571 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5572
5573static void
40658b94
PH
5574add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5575 domain_enum domain, int global,
5576 int is_wild_match)
339c13b6
JB
5577{
5578 struct objfile *objfile;
22cee43f 5579 struct compunit_symtab *cu;
40658b94 5580 struct match_data data;
339c13b6 5581
6475f2fe 5582 memset (&data, 0, sizeof data);
ccefe4c4 5583 data.obstackp = obstackp;
339c13b6 5584
ccefe4c4 5585 ALL_OBJFILES (objfile)
40658b94
PH
5586 {
5587 data.objfile = objfile;
5588
5589 if (is_wild_match)
4186eb54
KS
5590 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5591 aux_add_nonlocal_symbols, &data,
5592 wild_match, NULL);
40658b94 5593 else
4186eb54
KS
5594 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5595 aux_add_nonlocal_symbols, &data,
5596 full_match, compare_names);
22cee43f
PMR
5597
5598 ALL_OBJFILE_COMPUNITS (objfile, cu)
5599 {
5600 const struct block *global_block
5601 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5602
5603 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5604 is_wild_match))
5605 data.found_sym = 1;
5606 }
40658b94
PH
5607 }
5608
5609 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5610 {
5611 ALL_OBJFILES (objfile)
5612 {
224c3ddb 5613 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5614 strcpy (name1, "_ada_");
5615 strcpy (name1 + sizeof ("_ada_") - 1, name);
5616 data.objfile = objfile;
ade7ed9e
DE
5617 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5618 global,
0963b4bd
MS
5619 aux_add_nonlocal_symbols,
5620 &data,
40658b94
PH
5621 full_match, compare_names);
5622 }
5623 }
339c13b6
JB
5624}
5625
22cee43f 5626/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5627 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5628 matches. Add these to OBSTACKP.
4eeaa230 5629
22cee43f
PMR
5630 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5631 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5632 is the one match returned (no other matches in that or
d9680e73 5633 enclosing blocks is returned). If there are any matches in or
22cee43f 5634 surrounding BLOCK, then these alone are returned.
4eeaa230 5635
9f88c959 5636 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5637 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5638
22cee43f
PMR
5639 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5640 to lookup global symbols. */
5641
5642static void
5643ada_add_all_symbols (struct obstack *obstackp,
5644 const struct block *block,
5645 const char *name,
5646 domain_enum domain,
5647 int full_search,
5648 int *made_global_lookup_p)
14f9c5c9
AS
5649{
5650 struct symbol *sym;
22cee43f 5651 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5652
22cee43f
PMR
5653 if (made_global_lookup_p)
5654 *made_global_lookup_p = 0;
339c13b6
JB
5655
5656 /* Special case: If the user specifies a symbol name inside package
5657 Standard, do a non-wild matching of the symbol name without
5658 the "standard__" prefix. This was primarily introduced in order
5659 to allow the user to specifically access the standard exceptions
5660 using, for instance, Standard.Constraint_Error when Constraint_Error
5661 is ambiguous (due to the user defining its own Constraint_Error
5662 entity inside its program). */
22cee43f 5663 if (startswith (name, "standard__"))
4c4b4cd2 5664 {
4c4b4cd2 5665 block = NULL;
22cee43f 5666 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5667 }
5668
339c13b6 5669 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5670
4eeaa230
DE
5671 if (block != NULL)
5672 {
5673 if (full_search)
22cee43f 5674 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5675 else
5676 {
5677 /* In the !full_search case we're are being called by
5678 ada_iterate_over_symbols, and we don't want to search
5679 superblocks. */
22cee43f
PMR
5680 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5681 wild_match_p);
4eeaa230 5682 }
22cee43f
PMR
5683 if (num_defns_collected (obstackp) > 0 || !full_search)
5684 return;
4eeaa230 5685 }
d2e4a39e 5686
339c13b6
JB
5687 /* No non-global symbols found. Check our cache to see if we have
5688 already performed this search before. If we have, then return
5689 the same result. */
5690
22cee43f 5691 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5692 {
5693 if (sym != NULL)
22cee43f
PMR
5694 add_defn_to_vec (obstackp, sym, block);
5695 return;
4c4b4cd2 5696 }
14f9c5c9 5697
22cee43f
PMR
5698 if (made_global_lookup_p)
5699 *made_global_lookup_p = 1;
b1eedac9 5700
339c13b6
JB
5701 /* Search symbols from all global blocks. */
5702
22cee43f 5703 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5704
4c4b4cd2 5705 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5706 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5707
22cee43f
PMR
5708 if (num_defns_collected (obstackp) == 0)
5709 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5710}
5711
5712/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5713 non-zero, enclosing scope and in global scopes, returning the number of
5714 matches.
5715 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5716 indicating the symbols found and the blocks and symbol tables (if
5717 any) in which they were found. This vector is transient---good only to
5718 the next call of ada_lookup_symbol_list.
5719
5720 When full_search is non-zero, any non-function/non-enumeral
5721 symbol match within the nest of blocks whose innermost member is BLOCK,
5722 is the one match returned (no other matches in that or
5723 enclosing blocks is returned). If there are any matches in or
5724 surrounding BLOCK, then these alone are returned.
5725
5726 Names prefixed with "standard__" are handled specially: "standard__"
5727 is first stripped off, and only static and global symbols are searched. */
5728
5729static int
5730ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5731 domain_enum domain,
5732 struct block_symbol **results,
5733 int full_search)
5734{
5735 const int wild_match_p = should_use_wild_match (name);
5736 int syms_from_global_search;
5737 int ndefns;
5738
5739 obstack_free (&symbol_list_obstack, NULL);
5740 obstack_init (&symbol_list_obstack);
5741 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5742 full_search, &syms_from_global_search);
14f9c5c9 5743
4c4b4cd2
PH
5744 ndefns = num_defns_collected (&symbol_list_obstack);
5745 *results = defns_collected (&symbol_list_obstack, 1);
5746
5747 ndefns = remove_extra_symbols (*results, ndefns);
5748
b1eedac9 5749 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5750 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5751
b1eedac9 5752 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5753 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5754
22cee43f 5755 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5756 return ndefns;
5757}
5758
4eeaa230
DE
5759/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5760 in global scopes, returning the number of matches, and setting *RESULTS
5761 to a vector of (SYM,BLOCK) tuples.
5762 See ada_lookup_symbol_list_worker for further details. */
5763
5764int
5765ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5766 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5767{
5768 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5769}
5770
5771/* Implementation of the la_iterate_over_symbols method. */
5772
5773static void
5774ada_iterate_over_symbols (const struct block *block,
5775 const char *name, domain_enum domain,
5776 symbol_found_callback_ftype *callback,
5777 void *data)
5778{
5779 int ndefs, i;
d12307c1 5780 struct block_symbol *results;
4eeaa230
DE
5781
5782 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5783 for (i = 0; i < ndefs; ++i)
5784 {
d12307c1 5785 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5786 break;
5787 }
5788}
5789
f8eba3c6
TT
5790/* If NAME is the name of an entity, return a string that should
5791 be used to look that entity up in Ada units. This string should
5792 be deallocated after use using xfree.
5793
5794 NAME can have any form that the "break" or "print" commands might
5795 recognize. In other words, it does not have to be the "natural"
5796 name, or the "encoded" name. */
5797
5798char *
5799ada_name_for_lookup (const char *name)
5800{
5801 char *canon;
5802 int nlen = strlen (name);
5803
5804 if (name[0] == '<' && name[nlen - 1] == '>')
5805 {
224c3ddb 5806 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5807 memcpy (canon, name + 1, nlen - 2);
5808 canon[nlen - 2] = '\0';
5809 }
5810 else
5811 canon = xstrdup (ada_encode (ada_fold_name (name)));
5812 return canon;
5813}
5814
4e5c77fe
JB
5815/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5816 to 1, but choosing the first symbol found if there are multiple
5817 choices.
5818
5e2336be
JB
5819 The result is stored in *INFO, which must be non-NULL.
5820 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5821
5822void
5823ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5824 domain_enum domain,
d12307c1 5825 struct block_symbol *info)
14f9c5c9 5826{
d12307c1 5827 struct block_symbol *candidates;
14f9c5c9
AS
5828 int n_candidates;
5829
5e2336be 5830 gdb_assert (info != NULL);
d12307c1 5831 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5832
fe978cb0 5833 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5834 if (n_candidates == 0)
4e5c77fe 5835 return;
4c4b4cd2 5836
5e2336be 5837 *info = candidates[0];
d12307c1 5838 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5839}
aeb5907d
JB
5840
5841/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5842 scope and in global scopes, or NULL if none. NAME is folded and
5843 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5844 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5845 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5846
d12307c1 5847struct block_symbol
aeb5907d 5848ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5849 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5850{
d12307c1 5851 struct block_symbol info;
4e5c77fe 5852
aeb5907d
JB
5853 if (is_a_field_of_this != NULL)
5854 *is_a_field_of_this = 0;
5855
4e5c77fe 5856 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5857 block0, domain, &info);
d12307c1 5858 return info;
4c4b4cd2 5859}
14f9c5c9 5860
d12307c1 5861static struct block_symbol
f606139a
DE
5862ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5863 const char *name,
76a01679 5864 const struct block *block,
21b556f4 5865 const domain_enum domain)
4c4b4cd2 5866{
d12307c1 5867 struct block_symbol sym;
04dccad0
JB
5868
5869 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5870 if (sym.symbol != NULL)
04dccad0
JB
5871 return sym;
5872
5873 /* If we haven't found a match at this point, try the primitive
5874 types. In other languages, this search is performed before
5875 searching for global symbols in order to short-circuit that
5876 global-symbol search if it happens that the name corresponds
5877 to a primitive type. But we cannot do the same in Ada, because
5878 it is perfectly legitimate for a program to declare a type which
5879 has the same name as a standard type. If looking up a type in
5880 that situation, we have traditionally ignored the primitive type
5881 in favor of user-defined types. This is why, unlike most other
5882 languages, we search the primitive types this late and only after
5883 having searched the global symbols without success. */
5884
5885 if (domain == VAR_DOMAIN)
5886 {
5887 struct gdbarch *gdbarch;
5888
5889 if (block == NULL)
5890 gdbarch = target_gdbarch ();
5891 else
5892 gdbarch = block_gdbarch (block);
d12307c1
PMR
5893 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5894 if (sym.symbol != NULL)
04dccad0
JB
5895 return sym;
5896 }
5897
d12307c1 5898 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5899}
5900
5901
4c4b4cd2
PH
5902/* True iff STR is a possible encoded suffix of a normal Ada name
5903 that is to be ignored for matching purposes. Suffixes of parallel
5904 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5905 are given by any of the regular expressions:
4c4b4cd2 5906
babe1480
JB
5907 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5908 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5909 TKB [subprogram suffix for task bodies]
babe1480 5910 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5911 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5912
5913 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5914 match is performed. This sequence is used to differentiate homonyms,
5915 is an optional part of a valid name suffix. */
4c4b4cd2 5916
14f9c5c9 5917static int
d2e4a39e 5918is_name_suffix (const char *str)
14f9c5c9
AS
5919{
5920 int k;
4c4b4cd2
PH
5921 const char *matching;
5922 const int len = strlen (str);
5923
babe1480
JB
5924 /* Skip optional leading __[0-9]+. */
5925
4c4b4cd2
PH
5926 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5927 {
babe1480
JB
5928 str += 3;
5929 while (isdigit (str[0]))
5930 str += 1;
4c4b4cd2 5931 }
babe1480
JB
5932
5933 /* [.$][0-9]+ */
4c4b4cd2 5934
babe1480 5935 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5936 {
babe1480 5937 matching = str + 1;
4c4b4cd2
PH
5938 while (isdigit (matching[0]))
5939 matching += 1;
5940 if (matching[0] == '\0')
5941 return 1;
5942 }
5943
5944 /* ___[0-9]+ */
babe1480 5945
4c4b4cd2
PH
5946 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5947 {
5948 matching = str + 3;
5949 while (isdigit (matching[0]))
5950 matching += 1;
5951 if (matching[0] == '\0')
5952 return 1;
5953 }
5954
9ac7f98e
JB
5955 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5956
5957 if (strcmp (str, "TKB") == 0)
5958 return 1;
5959
529cad9c
PH
5960#if 0
5961 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5962 with a N at the end. Unfortunately, the compiler uses the same
5963 convention for other internal types it creates. So treating
529cad9c 5964 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5965 some regressions. For instance, consider the case of an enumerated
5966 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5967 name ends with N.
5968 Having a single character like this as a suffix carrying some
0963b4bd 5969 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5970 to be something like "_N" instead. In the meantime, do not do
5971 the following check. */
5972 /* Protected Object Subprograms */
5973 if (len == 1 && str [0] == 'N')
5974 return 1;
5975#endif
5976
5977 /* _E[0-9]+[bs]$ */
5978 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5979 {
5980 matching = str + 3;
5981 while (isdigit (matching[0]))
5982 matching += 1;
5983 if ((matching[0] == 'b' || matching[0] == 's')
5984 && matching [1] == '\0')
5985 return 1;
5986 }
5987
4c4b4cd2
PH
5988 /* ??? We should not modify STR directly, as we are doing below. This
5989 is fine in this case, but may become problematic later if we find
5990 that this alternative did not work, and want to try matching
5991 another one from the begining of STR. Since we modified it, we
5992 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5993 if (str[0] == 'X')
5994 {
5995 str += 1;
d2e4a39e 5996 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5997 {
5998 if (str[0] != 'n' && str[0] != 'b')
5999 return 0;
6000 str += 1;
6001 }
14f9c5c9 6002 }
babe1480 6003
14f9c5c9
AS
6004 if (str[0] == '\000')
6005 return 1;
babe1480 6006
d2e4a39e 6007 if (str[0] == '_')
14f9c5c9
AS
6008 {
6009 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6010 return 0;
d2e4a39e 6011 if (str[2] == '_')
4c4b4cd2 6012 {
61ee279c
PH
6013 if (strcmp (str + 3, "JM") == 0)
6014 return 1;
6015 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6016 the LJM suffix in favor of the JM one. But we will
6017 still accept LJM as a valid suffix for a reasonable
6018 amount of time, just to allow ourselves to debug programs
6019 compiled using an older version of GNAT. */
4c4b4cd2
PH
6020 if (strcmp (str + 3, "LJM") == 0)
6021 return 1;
6022 if (str[3] != 'X')
6023 return 0;
1265e4aa
JB
6024 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6025 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6026 return 1;
6027 if (str[4] == 'R' && str[5] != 'T')
6028 return 1;
6029 return 0;
6030 }
6031 if (!isdigit (str[2]))
6032 return 0;
6033 for (k = 3; str[k] != '\0'; k += 1)
6034 if (!isdigit (str[k]) && str[k] != '_')
6035 return 0;
14f9c5c9
AS
6036 return 1;
6037 }
4c4b4cd2 6038 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6039 {
4c4b4cd2
PH
6040 for (k = 2; str[k] != '\0'; k += 1)
6041 if (!isdigit (str[k]) && str[k] != '_')
6042 return 0;
14f9c5c9
AS
6043 return 1;
6044 }
6045 return 0;
6046}
d2e4a39e 6047
aeb5907d
JB
6048/* Return non-zero if the string starting at NAME and ending before
6049 NAME_END contains no capital letters. */
529cad9c
PH
6050
6051static int
6052is_valid_name_for_wild_match (const char *name0)
6053{
6054 const char *decoded_name = ada_decode (name0);
6055 int i;
6056
5823c3ef
JB
6057 /* If the decoded name starts with an angle bracket, it means that
6058 NAME0 does not follow the GNAT encoding format. It should then
6059 not be allowed as a possible wild match. */
6060 if (decoded_name[0] == '<')
6061 return 0;
6062
529cad9c
PH
6063 for (i=0; decoded_name[i] != '\0'; i++)
6064 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6065 return 0;
6066
6067 return 1;
6068}
6069
73589123
PH
6070/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6071 that could start a simple name. Assumes that *NAMEP points into
6072 the string beginning at NAME0. */
4c4b4cd2 6073
14f9c5c9 6074static int
73589123 6075advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6076{
73589123 6077 const char *name = *namep;
5b4ee69b 6078
5823c3ef 6079 while (1)
14f9c5c9 6080 {
aa27d0b3 6081 int t0, t1;
73589123
PH
6082
6083 t0 = *name;
6084 if (t0 == '_')
6085 {
6086 t1 = name[1];
6087 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6088 {
6089 name += 1;
61012eef 6090 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6091 break;
6092 else
6093 name += 1;
6094 }
aa27d0b3
JB
6095 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6096 || name[2] == target0))
73589123
PH
6097 {
6098 name += 2;
6099 break;
6100 }
6101 else
6102 return 0;
6103 }
6104 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6105 name += 1;
6106 else
5823c3ef 6107 return 0;
73589123
PH
6108 }
6109
6110 *namep = name;
6111 return 1;
6112}
6113
6114/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6115 informational suffixes of NAME (i.e., for which is_name_suffix is
6116 true). Assumes that PATN is a lower-cased Ada simple name. */
6117
6118static int
6119wild_match (const char *name, const char *patn)
6120{
22e048c9 6121 const char *p;
73589123
PH
6122 const char *name0 = name;
6123
6124 while (1)
6125 {
6126 const char *match = name;
6127
6128 if (*name == *patn)
6129 {
6130 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6131 if (*p != *name)
6132 break;
6133 if (*p == '\0' && is_name_suffix (name))
6134 return match != name0 && !is_valid_name_for_wild_match (name0);
6135
6136 if (name[-1] == '_')
6137 name -= 1;
6138 }
6139 if (!advance_wild_match (&name, name0, *patn))
6140 return 1;
96d887e8 6141 }
96d887e8
PH
6142}
6143
40658b94
PH
6144/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6145 informational suffix. */
6146
c4d840bd
PH
6147static int
6148full_match (const char *sym_name, const char *search_name)
6149{
40658b94 6150 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6151}
6152
6153
96d887e8
PH
6154/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6155 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6156 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6157 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6158
6159static void
6160ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6161 const struct block *block, const char *name,
96d887e8 6162 domain_enum domain, struct objfile *objfile,
2570f2b7 6163 int wild)
96d887e8 6164{
8157b174 6165 struct block_iterator iter;
96d887e8
PH
6166 int name_len = strlen (name);
6167 /* A matching argument symbol, if any. */
6168 struct symbol *arg_sym;
6169 /* Set true when we find a matching non-argument symbol. */
6170 int found_sym;
6171 struct symbol *sym;
6172
6173 arg_sym = NULL;
6174 found_sym = 0;
6175 if (wild)
6176 {
8157b174
TT
6177 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6178 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6179 {
4186eb54
KS
6180 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6181 SYMBOL_DOMAIN (sym), domain)
73589123 6182 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6183 {
2a2d4dc3
AS
6184 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6185 continue;
6186 else if (SYMBOL_IS_ARGUMENT (sym))
6187 arg_sym = sym;
6188 else
6189 {
76a01679
JB
6190 found_sym = 1;
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (sym, objfile),
2570f2b7 6193 block);
76a01679
JB
6194 }
6195 }
6196 }
96d887e8
PH
6197 }
6198 else
6199 {
8157b174
TT
6200 for (sym = block_iter_match_first (block, name, full_match, &iter);
6201 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6202 {
4186eb54
KS
6203 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6204 SYMBOL_DOMAIN (sym), domain))
76a01679 6205 {
c4d840bd
PH
6206 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6207 {
6208 if (SYMBOL_IS_ARGUMENT (sym))
6209 arg_sym = sym;
6210 else
2a2d4dc3 6211 {
c4d840bd
PH
6212 found_sym = 1;
6213 add_defn_to_vec (obstackp,
6214 fixup_symbol_section (sym, objfile),
6215 block);
2a2d4dc3 6216 }
c4d840bd 6217 }
76a01679
JB
6218 }
6219 }
96d887e8
PH
6220 }
6221
22cee43f
PMR
6222 /* Handle renamings. */
6223
6224 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6225 found_sym = 1;
6226
96d887e8
PH
6227 if (!found_sym && arg_sym != NULL)
6228 {
76a01679
JB
6229 add_defn_to_vec (obstackp,
6230 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6231 block);
96d887e8
PH
6232 }
6233
6234 if (!wild)
6235 {
6236 arg_sym = NULL;
6237 found_sym = 0;
6238
6239 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6240 {
4186eb54
KS
6241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6242 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6243 {
6244 int cmp;
6245
6246 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6247 if (cmp == 0)
6248 {
61012eef 6249 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6250 if (cmp == 0)
6251 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6252 name_len);
6253 }
6254
6255 if (cmp == 0
6256 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6257 {
2a2d4dc3
AS
6258 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6259 {
6260 if (SYMBOL_IS_ARGUMENT (sym))
6261 arg_sym = sym;
6262 else
6263 {
6264 found_sym = 1;
6265 add_defn_to_vec (obstackp,
6266 fixup_symbol_section (sym, objfile),
6267 block);
6268 }
6269 }
76a01679
JB
6270 }
6271 }
76a01679 6272 }
96d887e8
PH
6273
6274 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6275 They aren't parameters, right? */
6276 if (!found_sym && arg_sym != NULL)
6277 {
6278 add_defn_to_vec (obstackp,
76a01679 6279 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6280 block);
96d887e8
PH
6281 }
6282 }
6283}
6284\f
41d27058
JB
6285
6286 /* Symbol Completion */
6287
6288/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6289 name in a form that's appropriate for the completion. The result
6290 does not need to be deallocated, but is only good until the next call.
6291
6292 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6293 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6294 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6295 in its encoded form. */
6296
6297static const char *
6298symbol_completion_match (const char *sym_name,
6299 const char *text, int text_len,
6ea35997 6300 int wild_match_p, int encoded_p)
41d27058 6301{
41d27058
JB
6302 const int verbatim_match = (text[0] == '<');
6303 int match = 0;
6304
6305 if (verbatim_match)
6306 {
6307 /* Strip the leading angle bracket. */
6308 text = text + 1;
6309 text_len--;
6310 }
6311
6312 /* First, test against the fully qualified name of the symbol. */
6313
6314 if (strncmp (sym_name, text, text_len) == 0)
6315 match = 1;
6316
6ea35997 6317 if (match && !encoded_p)
41d27058
JB
6318 {
6319 /* One needed check before declaring a positive match is to verify
6320 that iff we are doing a verbatim match, the decoded version
6321 of the symbol name starts with '<'. Otherwise, this symbol name
6322 is not a suitable completion. */
6323 const char *sym_name_copy = sym_name;
6324 int has_angle_bracket;
6325
6326 sym_name = ada_decode (sym_name);
6327 has_angle_bracket = (sym_name[0] == '<');
6328 match = (has_angle_bracket == verbatim_match);
6329 sym_name = sym_name_copy;
6330 }
6331
6332 if (match && !verbatim_match)
6333 {
6334 /* When doing non-verbatim match, another check that needs to
6335 be done is to verify that the potentially matching symbol name
6336 does not include capital letters, because the ada-mode would
6337 not be able to understand these symbol names without the
6338 angle bracket notation. */
6339 const char *tmp;
6340
6341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6342 if (*tmp != '\0')
6343 match = 0;
6344 }
6345
6346 /* Second: Try wild matching... */
6347
e701b3c0 6348 if (!match && wild_match_p)
41d27058
JB
6349 {
6350 /* Since we are doing wild matching, this means that TEXT
6351 may represent an unqualified symbol name. We therefore must
6352 also compare TEXT against the unqualified name of the symbol. */
6353 sym_name = ada_unqualified_name (ada_decode (sym_name));
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
6356 match = 1;
6357 }
6358
6359 /* Finally: If we found a mach, prepare the result to return. */
6360
6361 if (!match)
6362 return NULL;
6363
6364 if (verbatim_match)
6365 sym_name = add_angle_brackets (sym_name);
6366
6ea35997 6367 if (!encoded_p)
41d27058
JB
6368 sym_name = ada_decode (sym_name);
6369
6370 return sym_name;
6371}
6372
6373/* A companion function to ada_make_symbol_completion_list().
6374 Check if SYM_NAME represents a symbol which name would be suitable
6375 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6376 it is appended at the end of the given string vector SV.
6377
6378 ORIG_TEXT is the string original string from the user command
6379 that needs to be completed. WORD is the entire command on which
6380 completion should be performed. These two parameters are used to
6381 determine which part of the symbol name should be added to the
6382 completion vector.
c0af1706 6383 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6384 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6385 encoded formed (in which case the completion should also be
6386 encoded). */
6387
6388static void
d6565258 6389symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6390 const char *sym_name,
6391 const char *text, int text_len,
6392 const char *orig_text, const char *word,
cb8e9b97 6393 int wild_match_p, int encoded_p)
41d27058
JB
6394{
6395 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6396 wild_match_p, encoded_p);
41d27058
JB
6397 char *completion;
6398
6399 if (match == NULL)
6400 return;
6401
6402 /* We found a match, so add the appropriate completion to the given
6403 string vector. */
6404
6405 if (word == orig_text)
6406 {
224c3ddb 6407 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6408 strcpy (completion, match);
6409 }
6410 else if (word > orig_text)
6411 {
6412 /* Return some portion of sym_name. */
224c3ddb 6413 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6414 strcpy (completion, match + (word - orig_text));
6415 }
6416 else
6417 {
6418 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6419 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6420 strncpy (completion, word, orig_text - word);
6421 completion[orig_text - word] = '\0';
6422 strcat (completion, match);
6423 }
6424
d6565258 6425 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6426}
6427
ccefe4c4 6428/* An object of this type is passed as the user_data argument to the
bb4142cf 6429 expand_symtabs_matching method. */
ccefe4c4
TT
6430struct add_partial_datum
6431{
6432 VEC(char_ptr) **completions;
6f937416 6433 const char *text;
ccefe4c4 6434 int text_len;
6f937416
PA
6435 const char *text0;
6436 const char *word;
ccefe4c4
TT
6437 int wild_match;
6438 int encoded;
6439};
6440
bb4142cf
DE
6441/* A callback for expand_symtabs_matching. */
6442
7b08b9eb 6443static int
bb4142cf 6444ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6445{
9a3c8263 6446 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6447
6448 return symbol_completion_match (name, data->text, data->text_len,
6449 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6450}
6451
49c4e619
TT
6452/* Return a list of possible symbol names completing TEXT0. WORD is
6453 the entire command on which completion is made. */
41d27058 6454
49c4e619 6455static VEC (char_ptr) *
6f937416
PA
6456ada_make_symbol_completion_list (const char *text0, const char *word,
6457 enum type_code code)
41d27058
JB
6458{
6459 char *text;
6460 int text_len;
b1ed564a
JB
6461 int wild_match_p;
6462 int encoded_p;
2ba95b9b 6463 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6464 struct symbol *sym;
43f3e411 6465 struct compunit_symtab *s;
41d27058
JB
6466 struct minimal_symbol *msymbol;
6467 struct objfile *objfile;
3977b71f 6468 const struct block *b, *surrounding_static_block = 0;
41d27058 6469 int i;
8157b174 6470 struct block_iterator iter;
b8fea896 6471 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6472
2f68a895
TT
6473 gdb_assert (code == TYPE_CODE_UNDEF);
6474
41d27058
JB
6475 if (text0[0] == '<')
6476 {
6477 text = xstrdup (text0);
6478 make_cleanup (xfree, text);
6479 text_len = strlen (text);
b1ed564a
JB
6480 wild_match_p = 0;
6481 encoded_p = 1;
41d27058
JB
6482 }
6483 else
6484 {
6485 text = xstrdup (ada_encode (text0));
6486 make_cleanup (xfree, text);
6487 text_len = strlen (text);
6488 for (i = 0; i < text_len; i++)
6489 text[i] = tolower (text[i]);
6490
b1ed564a 6491 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6492 /* If the name contains a ".", then the user is entering a fully
6493 qualified entity name, and the match must not be done in wild
6494 mode. Similarly, if the user wants to complete what looks like
6495 an encoded name, the match must not be done in wild mode. */
b1ed564a 6496 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6497 }
6498
6499 /* First, look at the partial symtab symbols. */
41d27058 6500 {
ccefe4c4
TT
6501 struct add_partial_datum data;
6502
6503 data.completions = &completions;
6504 data.text = text;
6505 data.text_len = text_len;
6506 data.text0 = text0;
6507 data.word = word;
b1ed564a
JB
6508 data.wild_match = wild_match_p;
6509 data.encoded = encoded_p;
276d885b
GB
6510 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6511 ALL_DOMAIN, &data);
41d27058
JB
6512 }
6513
6514 /* At this point scan through the misc symbol vectors and add each
6515 symbol you find to the list. Eventually we want to ignore
6516 anything that isn't a text symbol (everything else will be
6517 handled by the psymtab code above). */
6518
6519 ALL_MSYMBOLS (objfile, msymbol)
6520 {
6521 QUIT;
efd66ac6 6522 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6523 text, text_len, text0, word, wild_match_p,
6524 encoded_p);
41d27058
JB
6525 }
6526
6527 /* Search upwards from currently selected frame (so that we can
6528 complete on local vars. */
6529
6530 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6531 {
6532 if (!BLOCK_SUPERBLOCK (b))
6533 surrounding_static_block = b; /* For elmin of dups */
6534
6535 ALL_BLOCK_SYMBOLS (b, iter, sym)
6536 {
d6565258 6537 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6538 text, text_len, text0, word,
b1ed564a 6539 wild_match_p, encoded_p);
41d27058
JB
6540 }
6541 }
6542
6543 /* Go through the symtabs and check the externs and statics for
43f3e411 6544 symbols which match. */
41d27058 6545
43f3e411 6546 ALL_COMPUNITS (objfile, s)
41d27058
JB
6547 {
6548 QUIT;
43f3e411 6549 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6550 ALL_BLOCK_SYMBOLS (b, iter, sym)
6551 {
d6565258 6552 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6553 text, text_len, text0, word,
b1ed564a 6554 wild_match_p, encoded_p);
41d27058
JB
6555 }
6556 }
6557
43f3e411 6558 ALL_COMPUNITS (objfile, s)
41d27058
JB
6559 {
6560 QUIT;
43f3e411 6561 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6562 /* Don't do this block twice. */
6563 if (b == surrounding_static_block)
6564 continue;
6565 ALL_BLOCK_SYMBOLS (b, iter, sym)
6566 {
d6565258 6567 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6568 text, text_len, text0, word,
b1ed564a 6569 wild_match_p, encoded_p);
41d27058
JB
6570 }
6571 }
6572
b8fea896 6573 do_cleanups (old_chain);
49c4e619 6574 return completions;
41d27058
JB
6575}
6576
963a6417 6577 /* Field Access */
96d887e8 6578
73fb9985
JB
6579/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6580 for tagged types. */
6581
6582static int
6583ada_is_dispatch_table_ptr_type (struct type *type)
6584{
0d5cff50 6585 const char *name;
73fb9985
JB
6586
6587 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6588 return 0;
6589
6590 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6591 if (name == NULL)
6592 return 0;
6593
6594 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6595}
6596
ac4a2da4
JG
6597/* Return non-zero if TYPE is an interface tag. */
6598
6599static int
6600ada_is_interface_tag (struct type *type)
6601{
6602 const char *name = TYPE_NAME (type);
6603
6604 if (name == NULL)
6605 return 0;
6606
6607 return (strcmp (name, "ada__tags__interface_tag") == 0);
6608}
6609
963a6417
PH
6610/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6611 to be invisible to users. */
96d887e8 6612
963a6417
PH
6613int
6614ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6615{
963a6417
PH
6616 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6617 return 1;
ffde82bf 6618
73fb9985
JB
6619 /* Check the name of that field. */
6620 {
6621 const char *name = TYPE_FIELD_NAME (type, field_num);
6622
6623 /* Anonymous field names should not be printed.
6624 brobecker/2007-02-20: I don't think this can actually happen
6625 but we don't want to print the value of annonymous fields anyway. */
6626 if (name == NULL)
6627 return 1;
6628
ffde82bf
JB
6629 /* Normally, fields whose name start with an underscore ("_")
6630 are fields that have been internally generated by the compiler,
6631 and thus should not be printed. The "_parent" field is special,
6632 however: This is a field internally generated by the compiler
6633 for tagged types, and it contains the components inherited from
6634 the parent type. This field should not be printed as is, but
6635 should not be ignored either. */
61012eef 6636 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6637 return 1;
6638 }
6639
ac4a2da4
JG
6640 /* If this is the dispatch table of a tagged type or an interface tag,
6641 then ignore. */
73fb9985 6642 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6643 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6644 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6645 return 1;
6646
6647 /* Not a special field, so it should not be ignored. */
6648 return 0;
963a6417 6649}
96d887e8 6650
963a6417 6651/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6652 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6653
963a6417
PH
6654int
6655ada_is_tagged_type (struct type *type, int refok)
6656{
6657 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6658}
96d887e8 6659
963a6417 6660/* True iff TYPE represents the type of X'Tag */
96d887e8 6661
963a6417
PH
6662int
6663ada_is_tag_type (struct type *type)
6664{
460efde1
JB
6665 type = ada_check_typedef (type);
6666
963a6417
PH
6667 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6668 return 0;
6669 else
96d887e8 6670 {
963a6417 6671 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6672
963a6417
PH
6673 return (name != NULL
6674 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6675 }
96d887e8
PH
6676}
6677
963a6417 6678/* The type of the tag on VAL. */
76a01679 6679
963a6417
PH
6680struct type *
6681ada_tag_type (struct value *val)
96d887e8 6682{
df407dfe 6683 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6684}
96d887e8 6685
b50d69b5
JG
6686/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6687 retired at Ada 05). */
6688
6689static int
6690is_ada95_tag (struct value *tag)
6691{
6692 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6693}
6694
963a6417 6695/* The value of the tag on VAL. */
96d887e8 6696
963a6417
PH
6697struct value *
6698ada_value_tag (struct value *val)
6699{
03ee6b2e 6700 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6701}
6702
963a6417
PH
6703/* The value of the tag on the object of type TYPE whose contents are
6704 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6705 ADDRESS. */
96d887e8 6706
963a6417 6707static struct value *
10a2c479 6708value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6709 const gdb_byte *valaddr,
963a6417 6710 CORE_ADDR address)
96d887e8 6711{
b5385fc0 6712 int tag_byte_offset;
963a6417 6713 struct type *tag_type;
5b4ee69b 6714
963a6417 6715 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6716 NULL, NULL, NULL))
96d887e8 6717 {
fc1a4b47 6718 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6719 ? NULL
6720 : valaddr + tag_byte_offset);
963a6417 6721 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6722
963a6417 6723 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6724 }
963a6417
PH
6725 return NULL;
6726}
96d887e8 6727
963a6417
PH
6728static struct type *
6729type_from_tag (struct value *tag)
6730{
6731 const char *type_name = ada_tag_name (tag);
5b4ee69b 6732
963a6417
PH
6733 if (type_name != NULL)
6734 return ada_find_any_type (ada_encode (type_name));
6735 return NULL;
6736}
96d887e8 6737
b50d69b5
JG
6738/* Given a value OBJ of a tagged type, return a value of this
6739 type at the base address of the object. The base address, as
6740 defined in Ada.Tags, it is the address of the primary tag of
6741 the object, and therefore where the field values of its full
6742 view can be fetched. */
6743
6744struct value *
6745ada_tag_value_at_base_address (struct value *obj)
6746{
b50d69b5
JG
6747 struct value *val;
6748 LONGEST offset_to_top = 0;
6749 struct type *ptr_type, *obj_type;
6750 struct value *tag;
6751 CORE_ADDR base_address;
6752
6753 obj_type = value_type (obj);
6754
6755 /* It is the responsability of the caller to deref pointers. */
6756
6757 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6758 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6759 return obj;
6760
6761 tag = ada_value_tag (obj);
6762 if (!tag)
6763 return obj;
6764
6765 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6766
6767 if (is_ada95_tag (tag))
6768 return obj;
6769
6770 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6771 ptr_type = lookup_pointer_type (ptr_type);
6772 val = value_cast (ptr_type, tag);
6773 if (!val)
6774 return obj;
6775
6776 /* It is perfectly possible that an exception be raised while
6777 trying to determine the base address, just like for the tag;
6778 see ada_tag_name for more details. We do not print the error
6779 message for the same reason. */
6780
492d29ea 6781 TRY
b50d69b5
JG
6782 {
6783 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6784 }
6785
492d29ea
PA
6786 CATCH (e, RETURN_MASK_ERROR)
6787 {
6788 return obj;
6789 }
6790 END_CATCH
b50d69b5
JG
6791
6792 /* If offset is null, nothing to do. */
6793
6794 if (offset_to_top == 0)
6795 return obj;
6796
6797 /* -1 is a special case in Ada.Tags; however, what should be done
6798 is not quite clear from the documentation. So do nothing for
6799 now. */
6800
6801 if (offset_to_top == -1)
6802 return obj;
6803
6804 base_address = value_address (obj) - offset_to_top;
6805 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6806
6807 /* Make sure that we have a proper tag at the new address.
6808 Otherwise, offset_to_top is bogus (which can happen when
6809 the object is not initialized yet). */
6810
6811 if (!tag)
6812 return obj;
6813
6814 obj_type = type_from_tag (tag);
6815
6816 if (!obj_type)
6817 return obj;
6818
6819 return value_from_contents_and_address (obj_type, NULL, base_address);
6820}
6821
1b611343
JB
6822/* Return the "ada__tags__type_specific_data" type. */
6823
6824static struct type *
6825ada_get_tsd_type (struct inferior *inf)
963a6417 6826{
1b611343 6827 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6828
1b611343
JB
6829 if (data->tsd_type == 0)
6830 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6831 return data->tsd_type;
6832}
529cad9c 6833
1b611343
JB
6834/* Return the TSD (type-specific data) associated to the given TAG.
6835 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6836
1b611343 6837 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6838
1b611343
JB
6839static struct value *
6840ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6841{
4c4b4cd2 6842 struct value *val;
1b611343 6843 struct type *type;
5b4ee69b 6844
1b611343
JB
6845 /* First option: The TSD is simply stored as a field of our TAG.
6846 Only older versions of GNAT would use this format, but we have
6847 to test it first, because there are no visible markers for
6848 the current approach except the absence of that field. */
529cad9c 6849
1b611343
JB
6850 val = ada_value_struct_elt (tag, "tsd", 1);
6851 if (val)
6852 return val;
e802dbe0 6853
1b611343
JB
6854 /* Try the second representation for the dispatch table (in which
6855 there is no explicit 'tsd' field in the referent of the tag pointer,
6856 and instead the tsd pointer is stored just before the dispatch
6857 table. */
e802dbe0 6858
1b611343
JB
6859 type = ada_get_tsd_type (current_inferior());
6860 if (type == NULL)
6861 return NULL;
6862 type = lookup_pointer_type (lookup_pointer_type (type));
6863 val = value_cast (type, tag);
6864 if (val == NULL)
6865 return NULL;
6866 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6867}
6868
1b611343
JB
6869/* Given the TSD of a tag (type-specific data), return a string
6870 containing the name of the associated type.
6871
6872 The returned value is good until the next call. May return NULL
6873 if we are unable to determine the tag name. */
6874
6875static char *
6876ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6877{
529cad9c
PH
6878 static char name[1024];
6879 char *p;
1b611343 6880 struct value *val;
529cad9c 6881
1b611343 6882 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6883 if (val == NULL)
1b611343 6884 return NULL;
4c4b4cd2
PH
6885 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6886 for (p = name; *p != '\0'; p += 1)
6887 if (isalpha (*p))
6888 *p = tolower (*p);
1b611343 6889 return name;
4c4b4cd2
PH
6890}
6891
6892/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6893 a C string.
6894
6895 Return NULL if the TAG is not an Ada tag, or if we were unable to
6896 determine the name of that tag. The result is good until the next
6897 call. */
4c4b4cd2
PH
6898
6899const char *
6900ada_tag_name (struct value *tag)
6901{
1b611343 6902 char *name = NULL;
5b4ee69b 6903
df407dfe 6904 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6905 return NULL;
1b611343
JB
6906
6907 /* It is perfectly possible that an exception be raised while trying
6908 to determine the TAG's name, even under normal circumstances:
6909 The associated variable may be uninitialized or corrupted, for
6910 instance. We do not let any exception propagate past this point.
6911 instead we return NULL.
6912
6913 We also do not print the error message either (which often is very
6914 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6915 the caller print a more meaningful message if necessary. */
492d29ea 6916 TRY
1b611343
JB
6917 {
6918 struct value *tsd = ada_get_tsd_from_tag (tag);
6919
6920 if (tsd != NULL)
6921 name = ada_tag_name_from_tsd (tsd);
6922 }
492d29ea
PA
6923 CATCH (e, RETURN_MASK_ERROR)
6924 {
6925 }
6926 END_CATCH
1b611343
JB
6927
6928 return name;
4c4b4cd2
PH
6929}
6930
6931/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6932
d2e4a39e 6933struct type *
ebf56fd3 6934ada_parent_type (struct type *type)
14f9c5c9
AS
6935{
6936 int i;
6937
61ee279c 6938 type = ada_check_typedef (type);
14f9c5c9
AS
6939
6940 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6941 return NULL;
6942
6943 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6944 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6945 {
6946 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6947
6948 /* If the _parent field is a pointer, then dereference it. */
6949 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6950 parent_type = TYPE_TARGET_TYPE (parent_type);
6951 /* If there is a parallel XVS type, get the actual base type. */
6952 parent_type = ada_get_base_type (parent_type);
6953
6954 return ada_check_typedef (parent_type);
6955 }
14f9c5c9
AS
6956
6957 return NULL;
6958}
6959
4c4b4cd2
PH
6960/* True iff field number FIELD_NUM of structure type TYPE contains the
6961 parent-type (inherited) fields of a derived type. Assumes TYPE is
6962 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6963
6964int
ebf56fd3 6965ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6966{
61ee279c 6967 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6968
4c4b4cd2 6969 return (name != NULL
61012eef
GB
6970 && (startswith (name, "PARENT")
6971 || startswith (name, "_parent")));
14f9c5c9
AS
6972}
6973
4c4b4cd2 6974/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6975 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6976 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6977 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6978 structures. */
14f9c5c9
AS
6979
6980int
ebf56fd3 6981ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6982{
d2e4a39e 6983 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6984
d2e4a39e 6985 return (name != NULL
61012eef 6986 && (startswith (name, "PARENT")
4c4b4cd2 6987 || strcmp (name, "REP") == 0
61012eef 6988 || startswith (name, "_parent")
4c4b4cd2 6989 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6990}
6991
4c4b4cd2
PH
6992/* True iff field number FIELD_NUM of structure or union type TYPE
6993 is a variant wrapper. Assumes TYPE is a structure type with at least
6994 FIELD_NUM+1 fields. */
14f9c5c9
AS
6995
6996int
ebf56fd3 6997ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6998{
d2e4a39e 6999 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7000
14f9c5c9 7001 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7002 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7003 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7004 == TYPE_CODE_UNION)));
14f9c5c9
AS
7005}
7006
7007/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7008 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7009 returns the type of the controlling discriminant for the variant.
7010 May return NULL if the type could not be found. */
14f9c5c9 7011
d2e4a39e 7012struct type *
ebf56fd3 7013ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7014{
d2e4a39e 7015 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7016
7c964f07 7017 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7018}
7019
4c4b4cd2 7020/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7021 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7022 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7023
7024int
ebf56fd3 7025ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7026{
d2e4a39e 7027 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7028
14f9c5c9
AS
7029 return (name != NULL && name[0] == 'O');
7030}
7031
7032/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7033 returns the name of the discriminant controlling the variant.
7034 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7035
d2e4a39e 7036char *
ebf56fd3 7037ada_variant_discrim_name (struct type *type0)
14f9c5c9 7038{
d2e4a39e 7039 static char *result = NULL;
14f9c5c9 7040 static size_t result_len = 0;
d2e4a39e
AS
7041 struct type *type;
7042 const char *name;
7043 const char *discrim_end;
7044 const char *discrim_start;
14f9c5c9
AS
7045
7046 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7047 type = TYPE_TARGET_TYPE (type0);
7048 else
7049 type = type0;
7050
7051 name = ada_type_name (type);
7052
7053 if (name == NULL || name[0] == '\000')
7054 return "";
7055
7056 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7057 discrim_end -= 1)
7058 {
61012eef 7059 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7060 break;
14f9c5c9
AS
7061 }
7062 if (discrim_end == name)
7063 return "";
7064
d2e4a39e 7065 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7066 discrim_start -= 1)
7067 {
d2e4a39e 7068 if (discrim_start == name + 1)
4c4b4cd2 7069 return "";
76a01679 7070 if ((discrim_start > name + 3
61012eef 7071 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7072 || discrim_start[-1] == '.')
7073 break;
14f9c5c9
AS
7074 }
7075
7076 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7077 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7078 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7079 return result;
7080}
7081
4c4b4cd2
PH
7082/* Scan STR for a subtype-encoded number, beginning at position K.
7083 Put the position of the character just past the number scanned in
7084 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7085 Return 1 if there was a valid number at the given position, and 0
7086 otherwise. A "subtype-encoded" number consists of the absolute value
7087 in decimal, followed by the letter 'm' to indicate a negative number.
7088 Assumes 0m does not occur. */
14f9c5c9
AS
7089
7090int
d2e4a39e 7091ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7092{
7093 ULONGEST RU;
7094
d2e4a39e 7095 if (!isdigit (str[k]))
14f9c5c9
AS
7096 return 0;
7097
4c4b4cd2 7098 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7099 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7100 LONGEST. */
14f9c5c9
AS
7101 RU = 0;
7102 while (isdigit (str[k]))
7103 {
d2e4a39e 7104 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7105 k += 1;
7106 }
7107
d2e4a39e 7108 if (str[k] == 'm')
14f9c5c9
AS
7109 {
7110 if (R != NULL)
4c4b4cd2 7111 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7112 k += 1;
7113 }
7114 else if (R != NULL)
7115 *R = (LONGEST) RU;
7116
4c4b4cd2 7117 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7118 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7119 number representable as a LONGEST (although either would probably work
7120 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7121 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7122
7123 if (new_k != NULL)
7124 *new_k = k;
7125 return 1;
7126}
7127
4c4b4cd2
PH
7128/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7129 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7130 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7131
d2e4a39e 7132int
ebf56fd3 7133ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7134{
d2e4a39e 7135 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7136 int p;
7137
7138 p = 0;
7139 while (1)
7140 {
d2e4a39e 7141 switch (name[p])
4c4b4cd2
PH
7142 {
7143 case '\0':
7144 return 0;
7145 case 'S':
7146 {
7147 LONGEST W;
5b4ee69b 7148
4c4b4cd2
PH
7149 if (!ada_scan_number (name, p + 1, &W, &p))
7150 return 0;
7151 if (val == W)
7152 return 1;
7153 break;
7154 }
7155 case 'R':
7156 {
7157 LONGEST L, U;
5b4ee69b 7158
4c4b4cd2
PH
7159 if (!ada_scan_number (name, p + 1, &L, &p)
7160 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7161 return 0;
7162 if (val >= L && val <= U)
7163 return 1;
7164 break;
7165 }
7166 case 'O':
7167 return 1;
7168 default:
7169 return 0;
7170 }
7171 }
7172}
7173
0963b4bd 7174/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7175
7176/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7177 ARG_TYPE, extract and return the value of one of its (non-static)
7178 fields. FIELDNO says which field. Differs from value_primitive_field
7179 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7180
4c4b4cd2 7181static struct value *
d2e4a39e 7182ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7183 struct type *arg_type)
14f9c5c9 7184{
14f9c5c9
AS
7185 struct type *type;
7186
61ee279c 7187 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7188 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7189
4c4b4cd2 7190 /* Handle packed fields. */
14f9c5c9
AS
7191
7192 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7193 {
7194 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7195 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7196
0fd88904 7197 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7198 offset + bit_pos / 8,
7199 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7200 }
7201 else
7202 return value_primitive_field (arg1, offset, fieldno, arg_type);
7203}
7204
52ce6436
PH
7205/* Find field with name NAME in object of type TYPE. If found,
7206 set the following for each argument that is non-null:
7207 - *FIELD_TYPE_P to the field's type;
7208 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7209 an object of that type;
7210 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7211 - *BIT_SIZE_P to its size in bits if the field is packed, and
7212 0 otherwise;
7213 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7214 fields up to but not including the desired field, or by the total
7215 number of fields if not found. A NULL value of NAME never
7216 matches; the function just counts visible fields in this case.
7217
0963b4bd 7218 Returns 1 if found, 0 otherwise. */
52ce6436 7219
4c4b4cd2 7220static int
0d5cff50 7221find_struct_field (const char *name, struct type *type, int offset,
76a01679 7222 struct type **field_type_p,
52ce6436
PH
7223 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7224 int *index_p)
4c4b4cd2
PH
7225{
7226 int i;
7227
61ee279c 7228 type = ada_check_typedef (type);
76a01679 7229
52ce6436
PH
7230 if (field_type_p != NULL)
7231 *field_type_p = NULL;
7232 if (byte_offset_p != NULL)
d5d6fca5 7233 *byte_offset_p = 0;
52ce6436
PH
7234 if (bit_offset_p != NULL)
7235 *bit_offset_p = 0;
7236 if (bit_size_p != NULL)
7237 *bit_size_p = 0;
7238
7239 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7240 {
7241 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7242 int fld_offset = offset + bit_pos / 8;
0d5cff50 7243 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7244
4c4b4cd2
PH
7245 if (t_field_name == NULL)
7246 continue;
7247
52ce6436 7248 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7249 {
7250 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7251
52ce6436
PH
7252 if (field_type_p != NULL)
7253 *field_type_p = TYPE_FIELD_TYPE (type, i);
7254 if (byte_offset_p != NULL)
7255 *byte_offset_p = fld_offset;
7256 if (bit_offset_p != NULL)
7257 *bit_offset_p = bit_pos % 8;
7258 if (bit_size_p != NULL)
7259 *bit_size_p = bit_size;
76a01679
JB
7260 return 1;
7261 }
4c4b4cd2
PH
7262 else if (ada_is_wrapper_field (type, i))
7263 {
52ce6436
PH
7264 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7265 field_type_p, byte_offset_p, bit_offset_p,
7266 bit_size_p, index_p))
76a01679
JB
7267 return 1;
7268 }
4c4b4cd2
PH
7269 else if (ada_is_variant_part (type, i))
7270 {
52ce6436
PH
7271 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7272 fixed type?? */
4c4b4cd2 7273 int j;
52ce6436
PH
7274 struct type *field_type
7275 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7276
52ce6436 7277 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7278 {
76a01679
JB
7279 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7280 fld_offset
7281 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7282 field_type_p, byte_offset_p,
52ce6436 7283 bit_offset_p, bit_size_p, index_p))
76a01679 7284 return 1;
4c4b4cd2
PH
7285 }
7286 }
52ce6436
PH
7287 else if (index_p != NULL)
7288 *index_p += 1;
4c4b4cd2
PH
7289 }
7290 return 0;
7291}
7292
0963b4bd 7293/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7294
52ce6436
PH
7295static int
7296num_visible_fields (struct type *type)
7297{
7298 int n;
5b4ee69b 7299
52ce6436
PH
7300 n = 0;
7301 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7302 return n;
7303}
14f9c5c9 7304
4c4b4cd2 7305/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7306 and search in it assuming it has (class) type TYPE.
7307 If found, return value, else return NULL.
7308
4c4b4cd2 7309 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7310
4c4b4cd2 7311static struct value *
108d56a4 7312ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7313 struct type *type)
14f9c5c9
AS
7314{
7315 int i;
14f9c5c9 7316
5b4ee69b 7317 type = ada_check_typedef (type);
52ce6436 7318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7319 {
0d5cff50 7320 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7321
7322 if (t_field_name == NULL)
4c4b4cd2 7323 continue;
14f9c5c9
AS
7324
7325 else if (field_name_match (t_field_name, name))
4c4b4cd2 7326 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7327
7328 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7329 {
0963b4bd 7330 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7331 ada_search_struct_field (name, arg,
7332 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7333 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7334
4c4b4cd2
PH
7335 if (v != NULL)
7336 return v;
7337 }
14f9c5c9
AS
7338
7339 else if (ada_is_variant_part (type, i))
4c4b4cd2 7340 {
0963b4bd 7341 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7342 int j;
5b4ee69b
MS
7343 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7344 i));
4c4b4cd2
PH
7345 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7346
52ce6436 7347 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7348 {
0963b4bd
MS
7349 struct value *v = ada_search_struct_field /* Force line
7350 break. */
06d5cf63
JB
7351 (name, arg,
7352 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7353 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7354
4c4b4cd2
PH
7355 if (v != NULL)
7356 return v;
7357 }
7358 }
14f9c5c9
AS
7359 }
7360 return NULL;
7361}
d2e4a39e 7362
52ce6436
PH
7363static struct value *ada_index_struct_field_1 (int *, struct value *,
7364 int, struct type *);
7365
7366
7367/* Return field #INDEX in ARG, where the index is that returned by
7368 * find_struct_field through its INDEX_P argument. Adjust the address
7369 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7370 * If found, return value, else return NULL. */
52ce6436
PH
7371
7372static struct value *
7373ada_index_struct_field (int index, struct value *arg, int offset,
7374 struct type *type)
7375{
7376 return ada_index_struct_field_1 (&index, arg, offset, type);
7377}
7378
7379
7380/* Auxiliary function for ada_index_struct_field. Like
7381 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7382 * *INDEX_P. */
52ce6436
PH
7383
7384static struct value *
7385ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7386 struct type *type)
7387{
7388 int i;
7389 type = ada_check_typedef (type);
7390
7391 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7392 {
7393 if (TYPE_FIELD_NAME (type, i) == NULL)
7394 continue;
7395 else if (ada_is_wrapper_field (type, i))
7396 {
0963b4bd 7397 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7398 ada_index_struct_field_1 (index_p, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7401
52ce6436
PH
7402 if (v != NULL)
7403 return v;
7404 }
7405
7406 else if (ada_is_variant_part (type, i))
7407 {
7408 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7409 find_struct_field. */
52ce6436
PH
7410 error (_("Cannot assign this kind of variant record"));
7411 }
7412 else if (*index_p == 0)
7413 return ada_value_primitive_field (arg, offset, i, type);
7414 else
7415 *index_p -= 1;
7416 }
7417 return NULL;
7418}
7419
4c4b4cd2
PH
7420/* Given ARG, a value of type (pointer or reference to a)*
7421 structure/union, extract the component named NAME from the ultimate
7422 target structure/union and return it as a value with its
f5938064 7423 appropriate type.
14f9c5c9 7424
4c4b4cd2
PH
7425 The routine searches for NAME among all members of the structure itself
7426 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7427 (e.g., '_parent').
7428
03ee6b2e
PH
7429 If NO_ERR, then simply return NULL in case of error, rather than
7430 calling error. */
14f9c5c9 7431
d2e4a39e 7432struct value *
03ee6b2e 7433ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7434{
4c4b4cd2 7435 struct type *t, *t1;
d2e4a39e 7436 struct value *v;
14f9c5c9 7437
4c4b4cd2 7438 v = NULL;
df407dfe 7439 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7440 if (TYPE_CODE (t) == TYPE_CODE_REF)
7441 {
7442 t1 = TYPE_TARGET_TYPE (t);
7443 if (t1 == NULL)
03ee6b2e 7444 goto BadValue;
61ee279c 7445 t1 = ada_check_typedef (t1);
4c4b4cd2 7446 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7447 {
994b9211 7448 arg = coerce_ref (arg);
76a01679
JB
7449 t = t1;
7450 }
4c4b4cd2 7451 }
14f9c5c9 7452
4c4b4cd2
PH
7453 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7454 {
7455 t1 = TYPE_TARGET_TYPE (t);
7456 if (t1 == NULL)
03ee6b2e 7457 goto BadValue;
61ee279c 7458 t1 = ada_check_typedef (t1);
4c4b4cd2 7459 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7460 {
7461 arg = value_ind (arg);
7462 t = t1;
7463 }
4c4b4cd2 7464 else
76a01679 7465 break;
4c4b4cd2 7466 }
14f9c5c9 7467
4c4b4cd2 7468 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7469 goto BadValue;
14f9c5c9 7470
4c4b4cd2
PH
7471 if (t1 == t)
7472 v = ada_search_struct_field (name, arg, 0, t);
7473 else
7474 {
7475 int bit_offset, bit_size, byte_offset;
7476 struct type *field_type;
7477 CORE_ADDR address;
7478
76a01679 7479 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7480 address = value_address (ada_value_ind (arg));
4c4b4cd2 7481 else
b50d69b5 7482 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7483
1ed6ede0 7484 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7485 if (find_struct_field (name, t1, 0,
7486 &field_type, &byte_offset, &bit_offset,
52ce6436 7487 &bit_size, NULL))
76a01679
JB
7488 {
7489 if (bit_size != 0)
7490 {
714e53ab
PH
7491 if (TYPE_CODE (t) == TYPE_CODE_REF)
7492 arg = ada_coerce_ref (arg);
7493 else
7494 arg = ada_value_ind (arg);
76a01679
JB
7495 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7496 bit_offset, bit_size,
7497 field_type);
7498 }
7499 else
f5938064 7500 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7501 }
7502 }
7503
03ee6b2e
PH
7504 if (v != NULL || no_err)
7505 return v;
7506 else
323e0a4a 7507 error (_("There is no member named %s."), name);
14f9c5c9 7508
03ee6b2e
PH
7509 BadValue:
7510 if (no_err)
7511 return NULL;
7512 else
0963b4bd
MS
7513 error (_("Attempt to extract a component of "
7514 "a value that is not a record."));
14f9c5c9
AS
7515}
7516
7517/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7518 If DISPP is non-null, add its byte displacement from the beginning of a
7519 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7520 work for packed fields).
7521
7522 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7523 followed by "___".
14f9c5c9 7524
0963b4bd 7525 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7526 be a (pointer or reference)+ to a struct or union, and the
7527 ultimate target type will be searched.
14f9c5c9
AS
7528
7529 Looks recursively into variant clauses and parent types.
7530
4c4b4cd2
PH
7531 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7532 TYPE is not a type of the right kind. */
14f9c5c9 7533
4c4b4cd2 7534static struct type *
76a01679
JB
7535ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7536 int noerr, int *dispp)
14f9c5c9
AS
7537{
7538 int i;
7539
7540 if (name == NULL)
7541 goto BadName;
7542
76a01679 7543 if (refok && type != NULL)
4c4b4cd2
PH
7544 while (1)
7545 {
61ee279c 7546 type = ada_check_typedef (type);
76a01679
JB
7547 if (TYPE_CODE (type) != TYPE_CODE_PTR
7548 && TYPE_CODE (type) != TYPE_CODE_REF)
7549 break;
7550 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7551 }
14f9c5c9 7552
76a01679 7553 if (type == NULL
1265e4aa
JB
7554 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7555 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7556 {
4c4b4cd2 7557 if (noerr)
76a01679 7558 return NULL;
4c4b4cd2 7559 else
76a01679
JB
7560 {
7561 target_terminal_ours ();
7562 gdb_flush (gdb_stdout);
323e0a4a
AC
7563 if (type == NULL)
7564 error (_("Type (null) is not a structure or union type"));
7565 else
7566 {
7567 /* XXX: type_sprint */
7568 fprintf_unfiltered (gdb_stderr, _("Type "));
7569 type_print (type, "", gdb_stderr, -1);
7570 error (_(" is not a structure or union type"));
7571 }
76a01679 7572 }
14f9c5c9
AS
7573 }
7574
7575 type = to_static_fixed_type (type);
7576
7577 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7578 {
0d5cff50 7579 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7580 struct type *t;
7581 int disp;
d2e4a39e 7582
14f9c5c9 7583 if (t_field_name == NULL)
4c4b4cd2 7584 continue;
14f9c5c9
AS
7585
7586 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7587 {
7588 if (dispp != NULL)
7589 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7590 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7591 }
14f9c5c9
AS
7592
7593 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7594 {
7595 disp = 0;
7596 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7597 0, 1, &disp);
7598 if (t != NULL)
7599 {
7600 if (dispp != NULL)
7601 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7602 return t;
7603 }
7604 }
14f9c5c9
AS
7605
7606 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7607 {
7608 int j;
5b4ee69b
MS
7609 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7610 i));
4c4b4cd2
PH
7611
7612 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7613 {
b1f33ddd
JB
7614 /* FIXME pnh 2008/01/26: We check for a field that is
7615 NOT wrapped in a struct, since the compiler sometimes
7616 generates these for unchecked variant types. Revisit
0963b4bd 7617 if the compiler changes this practice. */
0d5cff50 7618 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7619 disp = 0;
b1f33ddd
JB
7620 if (v_field_name != NULL
7621 && field_name_match (v_field_name, name))
460efde1 7622 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7623 else
0963b4bd
MS
7624 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7625 j),
b1f33ddd
JB
7626 name, 0, 1, &disp);
7627
4c4b4cd2
PH
7628 if (t != NULL)
7629 {
7630 if (dispp != NULL)
7631 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7632 return t;
7633 }
7634 }
7635 }
14f9c5c9
AS
7636
7637 }
7638
7639BadName:
d2e4a39e 7640 if (!noerr)
14f9c5c9
AS
7641 {
7642 target_terminal_ours ();
7643 gdb_flush (gdb_stdout);
323e0a4a
AC
7644 if (name == NULL)
7645 {
7646 /* XXX: type_sprint */
7647 fprintf_unfiltered (gdb_stderr, _("Type "));
7648 type_print (type, "", gdb_stderr, -1);
7649 error (_(" has no component named <null>"));
7650 }
7651 else
7652 {
7653 /* XXX: type_sprint */
7654 fprintf_unfiltered (gdb_stderr, _("Type "));
7655 type_print (type, "", gdb_stderr, -1);
7656 error (_(" has no component named %s"), name);
7657 }
14f9c5c9
AS
7658 }
7659
7660 return NULL;
7661}
7662
b1f33ddd
JB
7663/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7664 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7665 represents an unchecked union (that is, the variant part of a
0963b4bd 7666 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7667
7668static int
7669is_unchecked_variant (struct type *var_type, struct type *outer_type)
7670{
7671 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7672
b1f33ddd
JB
7673 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7674 == NULL);
7675}
7676
7677
14f9c5c9
AS
7678/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7679 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7680 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7681 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7682
d2e4a39e 7683int
ebf56fd3 7684ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7685 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7686{
7687 int others_clause;
7688 int i;
d2e4a39e 7689 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7690 struct value *outer;
7691 struct value *discrim;
14f9c5c9
AS
7692 LONGEST discrim_val;
7693
012370f6
TT
7694 /* Using plain value_from_contents_and_address here causes problems
7695 because we will end up trying to resolve a type that is currently
7696 being constructed. */
7697 outer = value_from_contents_and_address_unresolved (outer_type,
7698 outer_valaddr, 0);
0c281816
JB
7699 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7700 if (discrim == NULL)
14f9c5c9 7701 return -1;
0c281816 7702 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7703
7704 others_clause = -1;
7705 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7706 {
7707 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7708 others_clause = i;
14f9c5c9 7709 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7710 return i;
14f9c5c9
AS
7711 }
7712
7713 return others_clause;
7714}
d2e4a39e 7715\f
14f9c5c9
AS
7716
7717
4c4b4cd2 7718 /* Dynamic-Sized Records */
14f9c5c9
AS
7719
7720/* Strategy: The type ostensibly attached to a value with dynamic size
7721 (i.e., a size that is not statically recorded in the debugging
7722 data) does not accurately reflect the size or layout of the value.
7723 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7724 conventional types that are constructed on the fly. */
14f9c5c9
AS
7725
7726/* There is a subtle and tricky problem here. In general, we cannot
7727 determine the size of dynamic records without its data. However,
7728 the 'struct value' data structure, which GDB uses to represent
7729 quantities in the inferior process (the target), requires the size
7730 of the type at the time of its allocation in order to reserve space
7731 for GDB's internal copy of the data. That's why the
7732 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7733 rather than struct value*s.
14f9c5c9
AS
7734
7735 However, GDB's internal history variables ($1, $2, etc.) are
7736 struct value*s containing internal copies of the data that are not, in
7737 general, the same as the data at their corresponding addresses in
7738 the target. Fortunately, the types we give to these values are all
7739 conventional, fixed-size types (as per the strategy described
7740 above), so that we don't usually have to perform the
7741 'to_fixed_xxx_type' conversions to look at their values.
7742 Unfortunately, there is one exception: if one of the internal
7743 history variables is an array whose elements are unconstrained
7744 records, then we will need to create distinct fixed types for each
7745 element selected. */
7746
7747/* The upshot of all of this is that many routines take a (type, host
7748 address, target address) triple as arguments to represent a value.
7749 The host address, if non-null, is supposed to contain an internal
7750 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7751 target at the target address. */
14f9c5c9
AS
7752
7753/* Assuming that VAL0 represents a pointer value, the result of
7754 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7755 dynamic-sized types. */
14f9c5c9 7756
d2e4a39e
AS
7757struct value *
7758ada_value_ind (struct value *val0)
14f9c5c9 7759{
c48db5ca 7760 struct value *val = value_ind (val0);
5b4ee69b 7761
b50d69b5
JG
7762 if (ada_is_tagged_type (value_type (val), 0))
7763 val = ada_tag_value_at_base_address (val);
7764
4c4b4cd2 7765 return ada_to_fixed_value (val);
14f9c5c9
AS
7766}
7767
7768/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7769 qualifiers on VAL0. */
7770
d2e4a39e
AS
7771static struct value *
7772ada_coerce_ref (struct value *val0)
7773{
df407dfe 7774 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7775 {
7776 struct value *val = val0;
5b4ee69b 7777
994b9211 7778 val = coerce_ref (val);
b50d69b5
JG
7779
7780 if (ada_is_tagged_type (value_type (val), 0))
7781 val = ada_tag_value_at_base_address (val);
7782
4c4b4cd2 7783 return ada_to_fixed_value (val);
d2e4a39e
AS
7784 }
7785 else
14f9c5c9
AS
7786 return val0;
7787}
7788
7789/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7790 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7791
7792static unsigned int
ebf56fd3 7793align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7794{
7795 return (off + alignment - 1) & ~(alignment - 1);
7796}
7797
4c4b4cd2 7798/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7799
7800static unsigned int
ebf56fd3 7801field_alignment (struct type *type, int f)
14f9c5c9 7802{
d2e4a39e 7803 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7804 int len;
14f9c5c9
AS
7805 int align_offset;
7806
64a1bf19
JB
7807 /* The field name should never be null, unless the debugging information
7808 is somehow malformed. In this case, we assume the field does not
7809 require any alignment. */
7810 if (name == NULL)
7811 return 1;
7812
7813 len = strlen (name);
7814
4c4b4cd2
PH
7815 if (!isdigit (name[len - 1]))
7816 return 1;
14f9c5c9 7817
d2e4a39e 7818 if (isdigit (name[len - 2]))
14f9c5c9
AS
7819 align_offset = len - 2;
7820 else
7821 align_offset = len - 1;
7822
61012eef 7823 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7824 return TARGET_CHAR_BIT;
7825
4c4b4cd2
PH
7826 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7827}
7828
852dff6c 7829/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7830
852dff6c
JB
7831static struct symbol *
7832ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7833{
7834 struct symbol *sym;
7835
7836 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7837 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7838 return sym;
7839
4186eb54
KS
7840 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7841 return sym;
14f9c5c9
AS
7842}
7843
dddfab26
UW
7844/* Find a type named NAME. Ignores ambiguity. This routine will look
7845 solely for types defined by debug info, it will not search the GDB
7846 primitive types. */
4c4b4cd2 7847
852dff6c 7848static struct type *
ebf56fd3 7849ada_find_any_type (const char *name)
14f9c5c9 7850{
852dff6c 7851 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7852
14f9c5c9 7853 if (sym != NULL)
dddfab26 7854 return SYMBOL_TYPE (sym);
14f9c5c9 7855
dddfab26 7856 return NULL;
14f9c5c9
AS
7857}
7858
739593e0
JB
7859/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7860 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7861 symbol, in which case it is returned. Otherwise, this looks for
7862 symbols whose name is that of NAME_SYM suffixed with "___XR".
7863 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7864
7865struct symbol *
270140bd 7866ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7867{
739593e0 7868 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7869 struct symbol *sym;
7870
739593e0
JB
7871 if (strstr (name, "___XR") != NULL)
7872 return name_sym;
7873
aeb5907d
JB
7874 sym = find_old_style_renaming_symbol (name, block);
7875
7876 if (sym != NULL)
7877 return sym;
7878
0963b4bd 7879 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7880 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7881 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7882 return sym;
7883 else
7884 return NULL;
7885}
7886
7887static struct symbol *
270140bd 7888find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7889{
7f0df278 7890 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7891 char *rename;
7892
7893 if (function_sym != NULL)
7894 {
7895 /* If the symbol is defined inside a function, NAME is not fully
7896 qualified. This means we need to prepend the function name
7897 as well as adding the ``___XR'' suffix to build the name of
7898 the associated renaming symbol. */
0d5cff50 7899 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7900 /* Function names sometimes contain suffixes used
7901 for instance to qualify nested subprograms. When building
7902 the XR type name, we need to make sure that this suffix is
7903 not included. So do not include any suffix in the function
7904 name length below. */
69fadcdf 7905 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7906 const int rename_len = function_name_len + 2 /* "__" */
7907 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7908
529cad9c 7909 /* Strip the suffix if necessary. */
69fadcdf
JB
7910 ada_remove_trailing_digits (function_name, &function_name_len);
7911 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7912 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7913
4c4b4cd2
PH
7914 /* Library-level functions are a special case, as GNAT adds
7915 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7916 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7917 have this prefix, so we need to skip this prefix if present. */
7918 if (function_name_len > 5 /* "_ada_" */
7919 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7920 {
7921 function_name += 5;
7922 function_name_len -= 5;
7923 }
4c4b4cd2
PH
7924
7925 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7926 strncpy (rename, function_name, function_name_len);
7927 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7928 "__%s___XR", name);
4c4b4cd2
PH
7929 }
7930 else
7931 {
7932 const int rename_len = strlen (name) + 6;
5b4ee69b 7933
4c4b4cd2 7934 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7935 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7936 }
7937
852dff6c 7938 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7939}
7940
14f9c5c9 7941/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7942 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7943 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7944 otherwise return 0. */
7945
14f9c5c9 7946int
d2e4a39e 7947ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7948{
7949 if (type1 == NULL)
7950 return 1;
7951 else if (type0 == NULL)
7952 return 0;
7953 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7954 return 1;
7955 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7956 return 0;
4c4b4cd2
PH
7957 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7958 return 1;
ad82864c 7959 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7960 return 1;
4c4b4cd2
PH
7961 else if (ada_is_array_descriptor_type (type0)
7962 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7963 return 1;
aeb5907d
JB
7964 else
7965 {
7966 const char *type0_name = type_name_no_tag (type0);
7967 const char *type1_name = type_name_no_tag (type1);
7968
7969 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7970 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7971 return 1;
7972 }
14f9c5c9
AS
7973 return 0;
7974}
7975
7976/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7977 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7978
0d5cff50 7979const char *
d2e4a39e 7980ada_type_name (struct type *type)
14f9c5c9 7981{
d2e4a39e 7982 if (type == NULL)
14f9c5c9
AS
7983 return NULL;
7984 else if (TYPE_NAME (type) != NULL)
7985 return TYPE_NAME (type);
7986 else
7987 return TYPE_TAG_NAME (type);
7988}
7989
b4ba55a1
JB
7990/* Search the list of "descriptive" types associated to TYPE for a type
7991 whose name is NAME. */
7992
7993static struct type *
7994find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7995{
931e5bc3 7996 struct type *result, *tmp;
b4ba55a1 7997
c6044dd1
JB
7998 if (ada_ignore_descriptive_types_p)
7999 return NULL;
8000
b4ba55a1
JB
8001 /* If there no descriptive-type info, then there is no parallel type
8002 to be found. */
8003 if (!HAVE_GNAT_AUX_INFO (type))
8004 return NULL;
8005
8006 result = TYPE_DESCRIPTIVE_TYPE (type);
8007 while (result != NULL)
8008 {
0d5cff50 8009 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8010
8011 if (result_name == NULL)
8012 {
8013 warning (_("unexpected null name on descriptive type"));
8014 return NULL;
8015 }
8016
8017 /* If the names match, stop. */
8018 if (strcmp (result_name, name) == 0)
8019 break;
8020
8021 /* Otherwise, look at the next item on the list, if any. */
8022 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8023 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8024 else
8025 tmp = NULL;
8026
8027 /* If not found either, try after having resolved the typedef. */
8028 if (tmp != NULL)
8029 result = tmp;
b4ba55a1 8030 else
931e5bc3 8031 {
f168693b 8032 result = check_typedef (result);
931e5bc3
JG
8033 if (HAVE_GNAT_AUX_INFO (result))
8034 result = TYPE_DESCRIPTIVE_TYPE (result);
8035 else
8036 result = NULL;
8037 }
b4ba55a1
JB
8038 }
8039
8040 /* If we didn't find a match, see whether this is a packed array. With
8041 older compilers, the descriptive type information is either absent or
8042 irrelevant when it comes to packed arrays so the above lookup fails.
8043 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8044 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8045 return ada_find_any_type (name);
8046
8047 return result;
8048}
8049
8050/* Find a parallel type to TYPE with the specified NAME, using the
8051 descriptive type taken from the debugging information, if available,
8052 and otherwise using the (slower) name-based method. */
8053
8054static struct type *
8055ada_find_parallel_type_with_name (struct type *type, const char *name)
8056{
8057 struct type *result = NULL;
8058
8059 if (HAVE_GNAT_AUX_INFO (type))
8060 result = find_parallel_type_by_descriptive_type (type, name);
8061 else
8062 result = ada_find_any_type (name);
8063
8064 return result;
8065}
8066
8067/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8068 SUFFIX to the name of TYPE. */
14f9c5c9 8069
d2e4a39e 8070struct type *
ebf56fd3 8071ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8072{
0d5cff50 8073 char *name;
fe978cb0 8074 const char *type_name = ada_type_name (type);
14f9c5c9 8075 int len;
d2e4a39e 8076
fe978cb0 8077 if (type_name == NULL)
14f9c5c9
AS
8078 return NULL;
8079
fe978cb0 8080 len = strlen (type_name);
14f9c5c9 8081
b4ba55a1 8082 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8083
fe978cb0 8084 strcpy (name, type_name);
14f9c5c9
AS
8085 strcpy (name + len, suffix);
8086
b4ba55a1 8087 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8088}
8089
14f9c5c9 8090/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8091 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8092
d2e4a39e
AS
8093static struct type *
8094dynamic_template_type (struct type *type)
14f9c5c9 8095{
61ee279c 8096 type = ada_check_typedef (type);
14f9c5c9
AS
8097
8098 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8099 || ada_type_name (type) == NULL)
14f9c5c9 8100 return NULL;
d2e4a39e 8101 else
14f9c5c9
AS
8102 {
8103 int len = strlen (ada_type_name (type));
5b4ee69b 8104
4c4b4cd2
PH
8105 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8106 return type;
14f9c5c9 8107 else
4c4b4cd2 8108 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8109 }
8110}
8111
8112/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8113 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8114
d2e4a39e
AS
8115static int
8116is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8117{
8118 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8119
d2e4a39e 8120 return name != NULL
14f9c5c9
AS
8121 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8122 && strstr (name, "___XVL") != NULL;
8123}
8124
4c4b4cd2
PH
8125/* The index of the variant field of TYPE, or -1 if TYPE does not
8126 represent a variant record type. */
14f9c5c9 8127
d2e4a39e 8128static int
4c4b4cd2 8129variant_field_index (struct type *type)
14f9c5c9
AS
8130{
8131 int f;
8132
4c4b4cd2
PH
8133 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8134 return -1;
8135
8136 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8137 {
8138 if (ada_is_variant_part (type, f))
8139 return f;
8140 }
8141 return -1;
14f9c5c9
AS
8142}
8143
4c4b4cd2
PH
8144/* A record type with no fields. */
8145
d2e4a39e 8146static struct type *
fe978cb0 8147empty_record (struct type *templ)
14f9c5c9 8148{
fe978cb0 8149 struct type *type = alloc_type_copy (templ);
5b4ee69b 8150
14f9c5c9
AS
8151 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8152 TYPE_NFIELDS (type) = 0;
8153 TYPE_FIELDS (type) = NULL;
b1f33ddd 8154 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8155 TYPE_NAME (type) = "<empty>";
8156 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8157 TYPE_LENGTH (type) = 0;
8158 return type;
8159}
8160
8161/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8162 the value of type TYPE at VALADDR or ADDRESS (see comments at
8163 the beginning of this section) VAL according to GNAT conventions.
8164 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8165 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8166 an outer-level type (i.e., as opposed to a branch of a variant.) A
8167 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8168 of the variant.
14f9c5c9 8169
4c4b4cd2
PH
8170 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8171 length are not statically known are discarded. As a consequence,
8172 VALADDR, ADDRESS and DVAL0 are ignored.
8173
8174 NOTE: Limitations: For now, we assume that dynamic fields and
8175 variants occupy whole numbers of bytes. However, they need not be
8176 byte-aligned. */
8177
8178struct type *
10a2c479 8179ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8180 const gdb_byte *valaddr,
4c4b4cd2
PH
8181 CORE_ADDR address, struct value *dval0,
8182 int keep_dynamic_fields)
14f9c5c9 8183{
d2e4a39e
AS
8184 struct value *mark = value_mark ();
8185 struct value *dval;
8186 struct type *rtype;
14f9c5c9 8187 int nfields, bit_len;
4c4b4cd2 8188 int variant_field;
14f9c5c9 8189 long off;
d94e4f4f 8190 int fld_bit_len;
14f9c5c9
AS
8191 int f;
8192
4c4b4cd2
PH
8193 /* Compute the number of fields in this record type that are going
8194 to be processed: unless keep_dynamic_fields, this includes only
8195 fields whose position and length are static will be processed. */
8196 if (keep_dynamic_fields)
8197 nfields = TYPE_NFIELDS (type);
8198 else
8199 {
8200 nfields = 0;
76a01679 8201 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8202 && !ada_is_variant_part (type, nfields)
8203 && !is_dynamic_field (type, nfields))
8204 nfields++;
8205 }
8206
e9bb382b 8207 rtype = alloc_type_copy (type);
14f9c5c9
AS
8208 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8209 INIT_CPLUS_SPECIFIC (rtype);
8210 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8211 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8212 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8213 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8214 TYPE_NAME (rtype) = ada_type_name (type);
8215 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8216 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8217
d2e4a39e
AS
8218 off = 0;
8219 bit_len = 0;
4c4b4cd2
PH
8220 variant_field = -1;
8221
14f9c5c9
AS
8222 for (f = 0; f < nfields; f += 1)
8223 {
6c038f32
PH
8224 off = align_value (off, field_alignment (type, f))
8225 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8226 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8227 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8228
d2e4a39e 8229 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8230 {
8231 variant_field = f;
d94e4f4f 8232 fld_bit_len = 0;
4c4b4cd2 8233 }
14f9c5c9 8234 else if (is_dynamic_field (type, f))
4c4b4cd2 8235 {
284614f0
JB
8236 const gdb_byte *field_valaddr = valaddr;
8237 CORE_ADDR field_address = address;
8238 struct type *field_type =
8239 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8240
4c4b4cd2 8241 if (dval0 == NULL)
b5304971
JG
8242 {
8243 /* rtype's length is computed based on the run-time
8244 value of discriminants. If the discriminants are not
8245 initialized, the type size may be completely bogus and
0963b4bd 8246 GDB may fail to allocate a value for it. So check the
b5304971 8247 size first before creating the value. */
c1b5a1a6 8248 ada_ensure_varsize_limit (rtype);
012370f6
TT
8249 /* Using plain value_from_contents_and_address here
8250 causes problems because we will end up trying to
8251 resolve a type that is currently being
8252 constructed. */
8253 dval = value_from_contents_and_address_unresolved (rtype,
8254 valaddr,
8255 address);
9f1f738a 8256 rtype = value_type (dval);
b5304971 8257 }
4c4b4cd2
PH
8258 else
8259 dval = dval0;
8260
284614f0
JB
8261 /* If the type referenced by this field is an aligner type, we need
8262 to unwrap that aligner type, because its size might not be set.
8263 Keeping the aligner type would cause us to compute the wrong
8264 size for this field, impacting the offset of the all the fields
8265 that follow this one. */
8266 if (ada_is_aligner_type (field_type))
8267 {
8268 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8269
8270 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8271 field_address = cond_offset_target (field_address, field_offset);
8272 field_type = ada_aligned_type (field_type);
8273 }
8274
8275 field_valaddr = cond_offset_host (field_valaddr,
8276 off / TARGET_CHAR_BIT);
8277 field_address = cond_offset_target (field_address,
8278 off / TARGET_CHAR_BIT);
8279
8280 /* Get the fixed type of the field. Note that, in this case,
8281 we do not want to get the real type out of the tag: if
8282 the current field is the parent part of a tagged record,
8283 we will get the tag of the object. Clearly wrong: the real
8284 type of the parent is not the real type of the child. We
8285 would end up in an infinite loop. */
8286 field_type = ada_get_base_type (field_type);
8287 field_type = ada_to_fixed_type (field_type, field_valaddr,
8288 field_address, dval, 0);
27f2a97b
JB
8289 /* If the field size is already larger than the maximum
8290 object size, then the record itself will necessarily
8291 be larger than the maximum object size. We need to make
8292 this check now, because the size might be so ridiculously
8293 large (due to an uninitialized variable in the inferior)
8294 that it would cause an overflow when adding it to the
8295 record size. */
c1b5a1a6 8296 ada_ensure_varsize_limit (field_type);
284614f0
JB
8297
8298 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8299 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8300 /* The multiplication can potentially overflow. But because
8301 the field length has been size-checked just above, and
8302 assuming that the maximum size is a reasonable value,
8303 an overflow should not happen in practice. So rather than
8304 adding overflow recovery code to this already complex code,
8305 we just assume that it's not going to happen. */
d94e4f4f 8306 fld_bit_len =
4c4b4cd2
PH
8307 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8308 }
14f9c5c9 8309 else
4c4b4cd2 8310 {
5ded5331
JB
8311 /* Note: If this field's type is a typedef, it is important
8312 to preserve the typedef layer.
8313
8314 Otherwise, we might be transforming a typedef to a fat
8315 pointer (encoding a pointer to an unconstrained array),
8316 into a basic fat pointer (encoding an unconstrained
8317 array). As both types are implemented using the same
8318 structure, the typedef is the only clue which allows us
8319 to distinguish between the two options. Stripping it
8320 would prevent us from printing this field appropriately. */
8321 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8322 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8323 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8324 fld_bit_len =
4c4b4cd2
PH
8325 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8326 else
5ded5331
JB
8327 {
8328 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8329
8330 /* We need to be careful of typedefs when computing
8331 the length of our field. If this is a typedef,
8332 get the length of the target type, not the length
8333 of the typedef. */
8334 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8335 field_type = ada_typedef_target_type (field_type);
8336
8337 fld_bit_len =
8338 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8339 }
4c4b4cd2 8340 }
14f9c5c9 8341 if (off + fld_bit_len > bit_len)
4c4b4cd2 8342 bit_len = off + fld_bit_len;
d94e4f4f 8343 off += fld_bit_len;
4c4b4cd2
PH
8344 TYPE_LENGTH (rtype) =
8345 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8346 }
4c4b4cd2
PH
8347
8348 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8349 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8350 the record. This can happen in the presence of representation
8351 clauses. */
8352 if (variant_field >= 0)
8353 {
8354 struct type *branch_type;
8355
8356 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8357
8358 if (dval0 == NULL)
9f1f738a 8359 {
012370f6
TT
8360 /* Using plain value_from_contents_and_address here causes
8361 problems because we will end up trying to resolve a type
8362 that is currently being constructed. */
8363 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8364 address);
9f1f738a
SA
8365 rtype = value_type (dval);
8366 }
4c4b4cd2
PH
8367 else
8368 dval = dval0;
8369
8370 branch_type =
8371 to_fixed_variant_branch_type
8372 (TYPE_FIELD_TYPE (type, variant_field),
8373 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8374 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8375 if (branch_type == NULL)
8376 {
8377 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8378 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8379 TYPE_NFIELDS (rtype) -= 1;
8380 }
8381 else
8382 {
8383 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8384 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8385 fld_bit_len =
8386 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8387 TARGET_CHAR_BIT;
8388 if (off + fld_bit_len > bit_len)
8389 bit_len = off + fld_bit_len;
8390 TYPE_LENGTH (rtype) =
8391 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8392 }
8393 }
8394
714e53ab
PH
8395 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8396 should contain the alignment of that record, which should be a strictly
8397 positive value. If null or negative, then something is wrong, most
8398 probably in the debug info. In that case, we don't round up the size
0963b4bd 8399 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8400 the current RTYPE length might be good enough for our purposes. */
8401 if (TYPE_LENGTH (type) <= 0)
8402 {
323e0a4a
AC
8403 if (TYPE_NAME (rtype))
8404 warning (_("Invalid type size for `%s' detected: %d."),
8405 TYPE_NAME (rtype), TYPE_LENGTH (type));
8406 else
8407 warning (_("Invalid type size for <unnamed> detected: %d."),
8408 TYPE_LENGTH (type));
714e53ab
PH
8409 }
8410 else
8411 {
8412 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8413 TYPE_LENGTH (type));
8414 }
14f9c5c9
AS
8415
8416 value_free_to_mark (mark);
d2e4a39e 8417 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8418 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8419 return rtype;
8420}
8421
4c4b4cd2
PH
8422/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8423 of 1. */
14f9c5c9 8424
d2e4a39e 8425static struct type *
fc1a4b47 8426template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8427 CORE_ADDR address, struct value *dval0)
8428{
8429 return ada_template_to_fixed_record_type_1 (type, valaddr,
8430 address, dval0, 1);
8431}
8432
8433/* An ordinary record type in which ___XVL-convention fields and
8434 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8435 static approximations, containing all possible fields. Uses
8436 no runtime values. Useless for use in values, but that's OK,
8437 since the results are used only for type determinations. Works on both
8438 structs and unions. Representation note: to save space, we memorize
8439 the result of this function in the TYPE_TARGET_TYPE of the
8440 template type. */
8441
8442static struct type *
8443template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8444{
8445 struct type *type;
8446 int nfields;
8447 int f;
8448
9e195661
PMR
8449 /* No need no do anything if the input type is already fixed. */
8450 if (TYPE_FIXED_INSTANCE (type0))
8451 return type0;
8452
8453 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8454 if (TYPE_TARGET_TYPE (type0) != NULL)
8455 return TYPE_TARGET_TYPE (type0);
8456
9e195661 8457 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8458 type = type0;
9e195661
PMR
8459 nfields = TYPE_NFIELDS (type0);
8460
8461 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8462 recompute all over next time. */
8463 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8464
8465 for (f = 0; f < nfields; f += 1)
8466 {
460efde1 8467 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8468 struct type *new_type;
14f9c5c9 8469
4c4b4cd2 8470 if (is_dynamic_field (type0, f))
460efde1
JB
8471 {
8472 field_type = ada_check_typedef (field_type);
8473 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8474 }
14f9c5c9 8475 else
f192137b 8476 new_type = static_unwrap_type (field_type);
9e195661
PMR
8477
8478 if (new_type != field_type)
8479 {
8480 /* Clone TYPE0 only the first time we get a new field type. */
8481 if (type == type0)
8482 {
8483 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8484 TYPE_CODE (type) = TYPE_CODE (type0);
8485 INIT_CPLUS_SPECIFIC (type);
8486 TYPE_NFIELDS (type) = nfields;
8487 TYPE_FIELDS (type) = (struct field *)
8488 TYPE_ALLOC (type, nfields * sizeof (struct field));
8489 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8490 sizeof (struct field) * nfields);
8491 TYPE_NAME (type) = ada_type_name (type0);
8492 TYPE_TAG_NAME (type) = NULL;
8493 TYPE_FIXED_INSTANCE (type) = 1;
8494 TYPE_LENGTH (type) = 0;
8495 }
8496 TYPE_FIELD_TYPE (type, f) = new_type;
8497 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8498 }
14f9c5c9 8499 }
9e195661 8500
14f9c5c9
AS
8501 return type;
8502}
8503
4c4b4cd2 8504/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8505 whose address in memory is ADDRESS, returns a revision of TYPE,
8506 which should be a non-dynamic-sized record, in which the variant
8507 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8508 for discriminant values in DVAL0, which can be NULL if the record
8509 contains the necessary discriminant values. */
8510
d2e4a39e 8511static struct type *
fc1a4b47 8512to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8513 CORE_ADDR address, struct value *dval0)
14f9c5c9 8514{
d2e4a39e 8515 struct value *mark = value_mark ();
4c4b4cd2 8516 struct value *dval;
d2e4a39e 8517 struct type *rtype;
14f9c5c9
AS
8518 struct type *branch_type;
8519 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8520 int variant_field = variant_field_index (type);
14f9c5c9 8521
4c4b4cd2 8522 if (variant_field == -1)
14f9c5c9
AS
8523 return type;
8524
4c4b4cd2 8525 if (dval0 == NULL)
9f1f738a
SA
8526 {
8527 dval = value_from_contents_and_address (type, valaddr, address);
8528 type = value_type (dval);
8529 }
4c4b4cd2
PH
8530 else
8531 dval = dval0;
8532
e9bb382b 8533 rtype = alloc_type_copy (type);
14f9c5c9 8534 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8535 INIT_CPLUS_SPECIFIC (rtype);
8536 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8537 TYPE_FIELDS (rtype) =
8538 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8539 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8540 sizeof (struct field) * nfields);
14f9c5c9
AS
8541 TYPE_NAME (rtype) = ada_type_name (type);
8542 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8543 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8544 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8545
4c4b4cd2
PH
8546 branch_type = to_fixed_variant_branch_type
8547 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8548 cond_offset_host (valaddr,
4c4b4cd2
PH
8549 TYPE_FIELD_BITPOS (type, variant_field)
8550 / TARGET_CHAR_BIT),
d2e4a39e 8551 cond_offset_target (address,
4c4b4cd2
PH
8552 TYPE_FIELD_BITPOS (type, variant_field)
8553 / TARGET_CHAR_BIT), dval);
d2e4a39e 8554 if (branch_type == NULL)
14f9c5c9 8555 {
4c4b4cd2 8556 int f;
5b4ee69b 8557
4c4b4cd2
PH
8558 for (f = variant_field + 1; f < nfields; f += 1)
8559 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8560 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8561 }
8562 else
8563 {
4c4b4cd2
PH
8564 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8565 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8566 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8567 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8568 }
4c4b4cd2 8569 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8570
4c4b4cd2 8571 value_free_to_mark (mark);
14f9c5c9
AS
8572 return rtype;
8573}
8574
8575/* An ordinary record type (with fixed-length fields) that describes
8576 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8577 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8578 should be in DVAL, a record value; it may be NULL if the object
8579 at ADDR itself contains any necessary discriminant values.
8580 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8581 values from the record are needed. Except in the case that DVAL,
8582 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8583 unchecked) is replaced by a particular branch of the variant.
8584
8585 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8586 is questionable and may be removed. It can arise during the
8587 processing of an unconstrained-array-of-record type where all the
8588 variant branches have exactly the same size. This is because in
8589 such cases, the compiler does not bother to use the XVS convention
8590 when encoding the record. I am currently dubious of this
8591 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8592
d2e4a39e 8593static struct type *
fc1a4b47 8594to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8595 CORE_ADDR address, struct value *dval)
14f9c5c9 8596{
d2e4a39e 8597 struct type *templ_type;
14f9c5c9 8598
876cecd0 8599 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8600 return type0;
8601
d2e4a39e 8602 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8603
8604 if (templ_type != NULL)
8605 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8606 else if (variant_field_index (type0) >= 0)
8607 {
8608 if (dval == NULL && valaddr == NULL && address == 0)
8609 return type0;
8610 return to_record_with_fixed_variant_part (type0, valaddr, address,
8611 dval);
8612 }
14f9c5c9
AS
8613 else
8614 {
876cecd0 8615 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8616 return type0;
8617 }
8618
8619}
8620
8621/* An ordinary record type (with fixed-length fields) that describes
8622 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8623 union type. Any necessary discriminants' values should be in DVAL,
8624 a record value. That is, this routine selects the appropriate
8625 branch of the union at ADDR according to the discriminant value
b1f33ddd 8626 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8627 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8628
d2e4a39e 8629static struct type *
fc1a4b47 8630to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8631 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8632{
8633 int which;
d2e4a39e
AS
8634 struct type *templ_type;
8635 struct type *var_type;
14f9c5c9
AS
8636
8637 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8638 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8639 else
14f9c5c9
AS
8640 var_type = var_type0;
8641
8642 templ_type = ada_find_parallel_type (var_type, "___XVU");
8643
8644 if (templ_type != NULL)
8645 var_type = templ_type;
8646
b1f33ddd
JB
8647 if (is_unchecked_variant (var_type, value_type (dval)))
8648 return var_type0;
d2e4a39e
AS
8649 which =
8650 ada_which_variant_applies (var_type,
0fd88904 8651 value_type (dval), value_contents (dval));
14f9c5c9
AS
8652
8653 if (which < 0)
e9bb382b 8654 return empty_record (var_type);
14f9c5c9 8655 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8656 return to_fixed_record_type
d2e4a39e
AS
8657 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8658 valaddr, address, dval);
4c4b4cd2 8659 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8660 return
8661 to_fixed_record_type
8662 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8663 else
8664 return TYPE_FIELD_TYPE (var_type, which);
8665}
8666
8908fca5
JB
8667/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8668 ENCODING_TYPE, a type following the GNAT conventions for discrete
8669 type encodings, only carries redundant information. */
8670
8671static int
8672ada_is_redundant_range_encoding (struct type *range_type,
8673 struct type *encoding_type)
8674{
8675 struct type *fixed_range_type;
108d56a4 8676 const char *bounds_str;
8908fca5
JB
8677 int n;
8678 LONGEST lo, hi;
8679
8680 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8681
005e2509
JB
8682 if (TYPE_CODE (get_base_type (range_type))
8683 != TYPE_CODE (get_base_type (encoding_type)))
8684 {
8685 /* The compiler probably used a simple base type to describe
8686 the range type instead of the range's actual base type,
8687 expecting us to get the real base type from the encoding
8688 anyway. In this situation, the encoding cannot be ignored
8689 as redundant. */
8690 return 0;
8691 }
8692
8908fca5
JB
8693 if (is_dynamic_type (range_type))
8694 return 0;
8695
8696 if (TYPE_NAME (encoding_type) == NULL)
8697 return 0;
8698
8699 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8700 if (bounds_str == NULL)
8701 return 0;
8702
8703 n = 8; /* Skip "___XDLU_". */
8704 if (!ada_scan_number (bounds_str, n, &lo, &n))
8705 return 0;
8706 if (TYPE_LOW_BOUND (range_type) != lo)
8707 return 0;
8708
8709 n += 2; /* Skip the "__" separator between the two bounds. */
8710 if (!ada_scan_number (bounds_str, n, &hi, &n))
8711 return 0;
8712 if (TYPE_HIGH_BOUND (range_type) != hi)
8713 return 0;
8714
8715 return 1;
8716}
8717
8718/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8719 a type following the GNAT encoding for describing array type
8720 indices, only carries redundant information. */
8721
8722static int
8723ada_is_redundant_index_type_desc (struct type *array_type,
8724 struct type *desc_type)
8725{
8726 struct type *this_layer = check_typedef (array_type);
8727 int i;
8728
8729 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8730 {
8731 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8732 TYPE_FIELD_TYPE (desc_type, i)))
8733 return 0;
8734 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8735 }
8736
8737 return 1;
8738}
8739
14f9c5c9
AS
8740/* Assuming that TYPE0 is an array type describing the type of a value
8741 at ADDR, and that DVAL describes a record containing any
8742 discriminants used in TYPE0, returns a type for the value that
8743 contains no dynamic components (that is, no components whose sizes
8744 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8745 true, gives an error message if the resulting type's size is over
4c4b4cd2 8746 varsize_limit. */
14f9c5c9 8747
d2e4a39e
AS
8748static struct type *
8749to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8750 int ignore_too_big)
14f9c5c9 8751{
d2e4a39e
AS
8752 struct type *index_type_desc;
8753 struct type *result;
ad82864c 8754 int constrained_packed_array_p;
931e5bc3 8755 static const char *xa_suffix = "___XA";
14f9c5c9 8756
b0dd7688 8757 type0 = ada_check_typedef (type0);
284614f0 8758 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8759 return type0;
14f9c5c9 8760
ad82864c
JB
8761 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8762 if (constrained_packed_array_p)
8763 type0 = decode_constrained_packed_array_type (type0);
284614f0 8764
931e5bc3
JG
8765 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8766
8767 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8768 encoding suffixed with 'P' may still be generated. If so,
8769 it should be used to find the XA type. */
8770
8771 if (index_type_desc == NULL)
8772 {
1da0522e 8773 const char *type_name = ada_type_name (type0);
931e5bc3 8774
1da0522e 8775 if (type_name != NULL)
931e5bc3 8776 {
1da0522e 8777 const int len = strlen (type_name);
931e5bc3
JG
8778 char *name = (char *) alloca (len + strlen (xa_suffix));
8779
1da0522e 8780 if (type_name[len - 1] == 'P')
931e5bc3 8781 {
1da0522e 8782 strcpy (name, type_name);
931e5bc3
JG
8783 strcpy (name + len - 1, xa_suffix);
8784 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8785 }
8786 }
8787 }
8788
28c85d6c 8789 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8790 if (index_type_desc != NULL
8791 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8792 {
8793 /* Ignore this ___XA parallel type, as it does not bring any
8794 useful information. This allows us to avoid creating fixed
8795 versions of the array's index types, which would be identical
8796 to the original ones. This, in turn, can also help avoid
8797 the creation of fixed versions of the array itself. */
8798 index_type_desc = NULL;
8799 }
8800
14f9c5c9
AS
8801 if (index_type_desc == NULL)
8802 {
61ee279c 8803 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8804
14f9c5c9 8805 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8806 depend on the contents of the array in properly constructed
8807 debugging data. */
529cad9c
PH
8808 /* Create a fixed version of the array element type.
8809 We're not providing the address of an element here,
e1d5a0d2 8810 and thus the actual object value cannot be inspected to do
529cad9c
PH
8811 the conversion. This should not be a problem, since arrays of
8812 unconstrained objects are not allowed. In particular, all
8813 the elements of an array of a tagged type should all be of
8814 the same type specified in the debugging info. No need to
8815 consult the object tag. */
1ed6ede0 8816 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8817
284614f0
JB
8818 /* Make sure we always create a new array type when dealing with
8819 packed array types, since we're going to fix-up the array
8820 type length and element bitsize a little further down. */
ad82864c 8821 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8822 result = type0;
14f9c5c9 8823 else
e9bb382b 8824 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8825 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8826 }
8827 else
8828 {
8829 int i;
8830 struct type *elt_type0;
8831
8832 elt_type0 = type0;
8833 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8834 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8835
8836 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8837 depend on the contents of the array in properly constructed
8838 debugging data. */
529cad9c
PH
8839 /* Create a fixed version of the array element type.
8840 We're not providing the address of an element here,
e1d5a0d2 8841 and thus the actual object value cannot be inspected to do
529cad9c
PH
8842 the conversion. This should not be a problem, since arrays of
8843 unconstrained objects are not allowed. In particular, all
8844 the elements of an array of a tagged type should all be of
8845 the same type specified in the debugging info. No need to
8846 consult the object tag. */
1ed6ede0
JB
8847 result =
8848 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8849
8850 elt_type0 = type0;
14f9c5c9 8851 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8852 {
8853 struct type *range_type =
28c85d6c 8854 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8855
e9bb382b 8856 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8857 result, range_type);
1ce677a4 8858 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8859 }
d2e4a39e 8860 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8861 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8862 }
8863
2e6fda7d
JB
8864 /* We want to preserve the type name. This can be useful when
8865 trying to get the type name of a value that has already been
8866 printed (for instance, if the user did "print VAR; whatis $". */
8867 TYPE_NAME (result) = TYPE_NAME (type0);
8868
ad82864c 8869 if (constrained_packed_array_p)
284614f0
JB
8870 {
8871 /* So far, the resulting type has been created as if the original
8872 type was a regular (non-packed) array type. As a result, the
8873 bitsize of the array elements needs to be set again, and the array
8874 length needs to be recomputed based on that bitsize. */
8875 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8876 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8877
8878 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8879 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8880 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8881 TYPE_LENGTH (result)++;
8882 }
8883
876cecd0 8884 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8885 return result;
d2e4a39e 8886}
14f9c5c9
AS
8887
8888
8889/* A standard type (containing no dynamically sized components)
8890 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8891 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8892 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8893 ADDRESS or in VALADDR contains these discriminants.
8894
1ed6ede0
JB
8895 If CHECK_TAG is not null, in the case of tagged types, this function
8896 attempts to locate the object's tag and use it to compute the actual
8897 type. However, when ADDRESS is null, we cannot use it to determine the
8898 location of the tag, and therefore compute the tagged type's actual type.
8899 So we return the tagged type without consulting the tag. */
529cad9c 8900
f192137b
JB
8901static struct type *
8902ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8903 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8904{
61ee279c 8905 type = ada_check_typedef (type);
d2e4a39e
AS
8906 switch (TYPE_CODE (type))
8907 {
8908 default:
14f9c5c9 8909 return type;
d2e4a39e 8910 case TYPE_CODE_STRUCT:
4c4b4cd2 8911 {
76a01679 8912 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8913 struct type *fixed_record_type =
8914 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8915
529cad9c
PH
8916 /* If STATIC_TYPE is a tagged type and we know the object's address,
8917 then we can determine its tag, and compute the object's actual
0963b4bd 8918 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8919 type (the parent part of the record may have dynamic fields
8920 and the way the location of _tag is expressed may depend on
8921 them). */
529cad9c 8922
1ed6ede0 8923 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8924 {
b50d69b5
JG
8925 struct value *tag =
8926 value_tag_from_contents_and_address
8927 (fixed_record_type,
8928 valaddr,
8929 address);
8930 struct type *real_type = type_from_tag (tag);
8931 struct value *obj =
8932 value_from_contents_and_address (fixed_record_type,
8933 valaddr,
8934 address);
9f1f738a 8935 fixed_record_type = value_type (obj);
76a01679 8936 if (real_type != NULL)
b50d69b5
JG
8937 return to_fixed_record_type
8938 (real_type, NULL,
8939 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8940 }
4af88198
JB
8941
8942 /* Check to see if there is a parallel ___XVZ variable.
8943 If there is, then it provides the actual size of our type. */
8944 else if (ada_type_name (fixed_record_type) != NULL)
8945 {
0d5cff50 8946 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8947 char *xvz_name
8948 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8949 int xvz_found = 0;
8950 LONGEST size;
8951
88c15c34 8952 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8953 size = get_int_var_value (xvz_name, &xvz_found);
8954 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8955 {
8956 fixed_record_type = copy_type (fixed_record_type);
8957 TYPE_LENGTH (fixed_record_type) = size;
8958
8959 /* The FIXED_RECORD_TYPE may have be a stub. We have
8960 observed this when the debugging info is STABS, and
8961 apparently it is something that is hard to fix.
8962
8963 In practice, we don't need the actual type definition
8964 at all, because the presence of the XVZ variable allows us
8965 to assume that there must be a XVS type as well, which we
8966 should be able to use later, when we need the actual type
8967 definition.
8968
8969 In the meantime, pretend that the "fixed" type we are
8970 returning is NOT a stub, because this can cause trouble
8971 when using this type to create new types targeting it.
8972 Indeed, the associated creation routines often check
8973 whether the target type is a stub and will try to replace
0963b4bd 8974 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8975 might cause the new type to have the wrong size too.
8976 Consider the case of an array, for instance, where the size
8977 of the array is computed from the number of elements in
8978 our array multiplied by the size of its element. */
8979 TYPE_STUB (fixed_record_type) = 0;
8980 }
8981 }
1ed6ede0 8982 return fixed_record_type;
4c4b4cd2 8983 }
d2e4a39e 8984 case TYPE_CODE_ARRAY:
4c4b4cd2 8985 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8986 case TYPE_CODE_UNION:
8987 if (dval == NULL)
4c4b4cd2 8988 return type;
d2e4a39e 8989 else
4c4b4cd2 8990 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8991 }
14f9c5c9
AS
8992}
8993
f192137b
JB
8994/* The same as ada_to_fixed_type_1, except that it preserves the type
8995 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8996
8997 The typedef layer needs be preserved in order to differentiate between
8998 arrays and array pointers when both types are implemented using the same
8999 fat pointer. In the array pointer case, the pointer is encoded as
9000 a typedef of the pointer type. For instance, considering:
9001
9002 type String_Access is access String;
9003 S1 : String_Access := null;
9004
9005 To the debugger, S1 is defined as a typedef of type String. But
9006 to the user, it is a pointer. So if the user tries to print S1,
9007 we should not dereference the array, but print the array address
9008 instead.
9009
9010 If we didn't preserve the typedef layer, we would lose the fact that
9011 the type is to be presented as a pointer (needs de-reference before
9012 being printed). And we would also use the source-level type name. */
f192137b
JB
9013
9014struct type *
9015ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9016 CORE_ADDR address, struct value *dval, int check_tag)
9017
9018{
9019 struct type *fixed_type =
9020 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9021
96dbd2c1
JB
9022 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9023 then preserve the typedef layer.
9024
9025 Implementation note: We can only check the main-type portion of
9026 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9027 from TYPE now returns a type that has the same instance flags
9028 as TYPE. For instance, if TYPE is a "typedef const", and its
9029 target type is a "struct", then the typedef elimination will return
9030 a "const" version of the target type. See check_typedef for more
9031 details about how the typedef layer elimination is done.
9032
9033 brobecker/2010-11-19: It seems to me that the only case where it is
9034 useful to preserve the typedef layer is when dealing with fat pointers.
9035 Perhaps, we could add a check for that and preserve the typedef layer
9036 only in that situation. But this seems unecessary so far, probably
9037 because we call check_typedef/ada_check_typedef pretty much everywhere.
9038 */
f192137b 9039 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9040 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9041 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9042 return type;
9043
9044 return fixed_type;
9045}
9046
14f9c5c9 9047/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9048 TYPE0, but based on no runtime data. */
14f9c5c9 9049
d2e4a39e
AS
9050static struct type *
9051to_static_fixed_type (struct type *type0)
14f9c5c9 9052{
d2e4a39e 9053 struct type *type;
14f9c5c9
AS
9054
9055 if (type0 == NULL)
9056 return NULL;
9057
876cecd0 9058 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9059 return type0;
9060
61ee279c 9061 type0 = ada_check_typedef (type0);
d2e4a39e 9062
14f9c5c9
AS
9063 switch (TYPE_CODE (type0))
9064 {
9065 default:
9066 return type0;
9067 case TYPE_CODE_STRUCT:
9068 type = dynamic_template_type (type0);
d2e4a39e 9069 if (type != NULL)
4c4b4cd2
PH
9070 return template_to_static_fixed_type (type);
9071 else
9072 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9073 case TYPE_CODE_UNION:
9074 type = ada_find_parallel_type (type0, "___XVU");
9075 if (type != NULL)
4c4b4cd2
PH
9076 return template_to_static_fixed_type (type);
9077 else
9078 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9079 }
9080}
9081
4c4b4cd2
PH
9082/* A static approximation of TYPE with all type wrappers removed. */
9083
d2e4a39e
AS
9084static struct type *
9085static_unwrap_type (struct type *type)
14f9c5c9
AS
9086{
9087 if (ada_is_aligner_type (type))
9088 {
61ee279c 9089 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9090 if (ada_type_name (type1) == NULL)
4c4b4cd2 9091 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9092
9093 return static_unwrap_type (type1);
9094 }
d2e4a39e 9095 else
14f9c5c9 9096 {
d2e4a39e 9097 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9098
d2e4a39e 9099 if (raw_real_type == type)
4c4b4cd2 9100 return type;
14f9c5c9 9101 else
4c4b4cd2 9102 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9103 }
9104}
9105
9106/* In some cases, incomplete and private types require
4c4b4cd2 9107 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9108 type Foo;
9109 type FooP is access Foo;
9110 V: FooP;
9111 type Foo is array ...;
4c4b4cd2 9112 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9113 cross-references to such types, we instead substitute for FooP a
9114 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9115 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9116
9117/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9118 exists, otherwise TYPE. */
9119
d2e4a39e 9120struct type *
61ee279c 9121ada_check_typedef (struct type *type)
14f9c5c9 9122{
727e3d2e
JB
9123 if (type == NULL)
9124 return NULL;
9125
720d1a40
JB
9126 /* If our type is a typedef type of a fat pointer, then we're done.
9127 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9128 what allows us to distinguish between fat pointers that represent
9129 array types, and fat pointers that represent array access types
9130 (in both cases, the compiler implements them as fat pointers). */
9131 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9132 && is_thick_pntr (ada_typedef_target_type (type)))
9133 return type;
9134
f168693b 9135 type = check_typedef (type);
14f9c5c9 9136 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9137 || !TYPE_STUB (type)
14f9c5c9
AS
9138 || TYPE_TAG_NAME (type) == NULL)
9139 return type;
d2e4a39e 9140 else
14f9c5c9 9141 {
0d5cff50 9142 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9143 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9144
05e522ef
JB
9145 if (type1 == NULL)
9146 return type;
9147
9148 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9149 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9150 types, only for the typedef-to-array types). If that's the case,
9151 strip the typedef layer. */
9152 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9153 type1 = ada_check_typedef (type1);
9154
9155 return type1;
14f9c5c9
AS
9156 }
9157}
9158
9159/* A value representing the data at VALADDR/ADDRESS as described by
9160 type TYPE0, but with a standard (static-sized) type that correctly
9161 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9162 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9163 creation of struct values]. */
14f9c5c9 9164
4c4b4cd2
PH
9165static struct value *
9166ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9167 struct value *val0)
14f9c5c9 9168{
1ed6ede0 9169 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9170
14f9c5c9
AS
9171 if (type == type0 && val0 != NULL)
9172 return val0;
d2e4a39e 9173 else
4c4b4cd2
PH
9174 return value_from_contents_and_address (type, 0, address);
9175}
9176
9177/* A value representing VAL, but with a standard (static-sized) type
9178 that correctly describes it. Does not necessarily create a new
9179 value. */
9180
0c3acc09 9181struct value *
4c4b4cd2
PH
9182ada_to_fixed_value (struct value *val)
9183{
c48db5ca
JB
9184 val = unwrap_value (val);
9185 val = ada_to_fixed_value_create (value_type (val),
9186 value_address (val),
9187 val);
9188 return val;
14f9c5c9 9189}
d2e4a39e 9190\f
14f9c5c9 9191
14f9c5c9
AS
9192/* Attributes */
9193
4c4b4cd2
PH
9194/* Table mapping attribute numbers to names.
9195 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9196
d2e4a39e 9197static const char *attribute_names[] = {
14f9c5c9
AS
9198 "<?>",
9199
d2e4a39e 9200 "first",
14f9c5c9
AS
9201 "last",
9202 "length",
9203 "image",
14f9c5c9
AS
9204 "max",
9205 "min",
4c4b4cd2
PH
9206 "modulus",
9207 "pos",
9208 "size",
9209 "tag",
14f9c5c9 9210 "val",
14f9c5c9
AS
9211 0
9212};
9213
d2e4a39e 9214const char *
4c4b4cd2 9215ada_attribute_name (enum exp_opcode n)
14f9c5c9 9216{
4c4b4cd2
PH
9217 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9218 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9219 else
9220 return attribute_names[0];
9221}
9222
4c4b4cd2 9223/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9224
4c4b4cd2
PH
9225static LONGEST
9226pos_atr (struct value *arg)
14f9c5c9 9227{
24209737
PH
9228 struct value *val = coerce_ref (arg);
9229 struct type *type = value_type (val);
aa715135 9230 LONGEST result;
14f9c5c9 9231
d2e4a39e 9232 if (!discrete_type_p (type))
323e0a4a 9233 error (_("'POS only defined on discrete types"));
14f9c5c9 9234
aa715135
JG
9235 if (!discrete_position (type, value_as_long (val), &result))
9236 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9237
aa715135 9238 return result;
4c4b4cd2
PH
9239}
9240
9241static struct value *
3cb382c9 9242value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9243{
3cb382c9 9244 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9245}
9246
4c4b4cd2 9247/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9248
d2e4a39e
AS
9249static struct value *
9250value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9251{
d2e4a39e 9252 if (!discrete_type_p (type))
323e0a4a 9253 error (_("'VAL only defined on discrete types"));
df407dfe 9254 if (!integer_type_p (value_type (arg)))
323e0a4a 9255 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9256
9257 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9258 {
9259 long pos = value_as_long (arg);
5b4ee69b 9260
14f9c5c9 9261 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9262 error (_("argument to 'VAL out of range"));
14e75d8e 9263 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9264 }
9265 else
9266 return value_from_longest (type, value_as_long (arg));
9267}
14f9c5c9 9268\f
d2e4a39e 9269
4c4b4cd2 9270 /* Evaluation */
14f9c5c9 9271
4c4b4cd2
PH
9272/* True if TYPE appears to be an Ada character type.
9273 [At the moment, this is true only for Character and Wide_Character;
9274 It is a heuristic test that could stand improvement]. */
14f9c5c9 9275
d2e4a39e
AS
9276int
9277ada_is_character_type (struct type *type)
14f9c5c9 9278{
7b9f71f2
JB
9279 const char *name;
9280
9281 /* If the type code says it's a character, then assume it really is,
9282 and don't check any further. */
9283 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9284 return 1;
9285
9286 /* Otherwise, assume it's a character type iff it is a discrete type
9287 with a known character type name. */
9288 name = ada_type_name (type);
9289 return (name != NULL
9290 && (TYPE_CODE (type) == TYPE_CODE_INT
9291 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9292 && (strcmp (name, "character") == 0
9293 || strcmp (name, "wide_character") == 0
5a517ebd 9294 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9295 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9296}
9297
4c4b4cd2 9298/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9299
9300int
ebf56fd3 9301ada_is_string_type (struct type *type)
14f9c5c9 9302{
61ee279c 9303 type = ada_check_typedef (type);
d2e4a39e 9304 if (type != NULL
14f9c5c9 9305 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9306 && (ada_is_simple_array_type (type)
9307 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9308 && ada_array_arity (type) == 1)
9309 {
9310 struct type *elttype = ada_array_element_type (type, 1);
9311
9312 return ada_is_character_type (elttype);
9313 }
d2e4a39e 9314 else
14f9c5c9
AS
9315 return 0;
9316}
9317
5bf03f13
JB
9318/* The compiler sometimes provides a parallel XVS type for a given
9319 PAD type. Normally, it is safe to follow the PAD type directly,
9320 but older versions of the compiler have a bug that causes the offset
9321 of its "F" field to be wrong. Following that field in that case
9322 would lead to incorrect results, but this can be worked around
9323 by ignoring the PAD type and using the associated XVS type instead.
9324
9325 Set to True if the debugger should trust the contents of PAD types.
9326 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9327static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9328
9329/* True if TYPE is a struct type introduced by the compiler to force the
9330 alignment of a value. Such types have a single field with a
4c4b4cd2 9331 distinctive name. */
14f9c5c9
AS
9332
9333int
ebf56fd3 9334ada_is_aligner_type (struct type *type)
14f9c5c9 9335{
61ee279c 9336 type = ada_check_typedef (type);
714e53ab 9337
5bf03f13 9338 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9339 return 0;
9340
14f9c5c9 9341 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9342 && TYPE_NFIELDS (type) == 1
9343 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9344}
9345
9346/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9347 the parallel type. */
14f9c5c9 9348
d2e4a39e
AS
9349struct type *
9350ada_get_base_type (struct type *raw_type)
14f9c5c9 9351{
d2e4a39e
AS
9352 struct type *real_type_namer;
9353 struct type *raw_real_type;
14f9c5c9
AS
9354
9355 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9356 return raw_type;
9357
284614f0
JB
9358 if (ada_is_aligner_type (raw_type))
9359 /* The encoding specifies that we should always use the aligner type.
9360 So, even if this aligner type has an associated XVS type, we should
9361 simply ignore it.
9362
9363 According to the compiler gurus, an XVS type parallel to an aligner
9364 type may exist because of a stabs limitation. In stabs, aligner
9365 types are empty because the field has a variable-sized type, and
9366 thus cannot actually be used as an aligner type. As a result,
9367 we need the associated parallel XVS type to decode the type.
9368 Since the policy in the compiler is to not change the internal
9369 representation based on the debugging info format, we sometimes
9370 end up having a redundant XVS type parallel to the aligner type. */
9371 return raw_type;
9372
14f9c5c9 9373 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9374 if (real_type_namer == NULL
14f9c5c9
AS
9375 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9376 || TYPE_NFIELDS (real_type_namer) != 1)
9377 return raw_type;
9378
f80d3ff2
JB
9379 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9380 {
9381 /* This is an older encoding form where the base type needs to be
9382 looked up by name. We prefer the newer enconding because it is
9383 more efficient. */
9384 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9385 if (raw_real_type == NULL)
9386 return raw_type;
9387 else
9388 return raw_real_type;
9389 }
9390
9391 /* The field in our XVS type is a reference to the base type. */
9392 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9393}
14f9c5c9 9394
4c4b4cd2 9395/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9396
d2e4a39e
AS
9397struct type *
9398ada_aligned_type (struct type *type)
14f9c5c9
AS
9399{
9400 if (ada_is_aligner_type (type))
9401 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9402 else
9403 return ada_get_base_type (type);
9404}
9405
9406
9407/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9408 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9409
fc1a4b47
AC
9410const gdb_byte *
9411ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9412{
d2e4a39e 9413 if (ada_is_aligner_type (type))
14f9c5c9 9414 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9415 valaddr +
9416 TYPE_FIELD_BITPOS (type,
9417 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9418 else
9419 return valaddr;
9420}
9421
4c4b4cd2
PH
9422
9423
14f9c5c9 9424/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9425 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9426const char *
9427ada_enum_name (const char *name)
14f9c5c9 9428{
4c4b4cd2
PH
9429 static char *result;
9430 static size_t result_len = 0;
d2e4a39e 9431 char *tmp;
14f9c5c9 9432
4c4b4cd2
PH
9433 /* First, unqualify the enumeration name:
9434 1. Search for the last '.' character. If we find one, then skip
177b42fe 9435 all the preceding characters, the unqualified name starts
76a01679 9436 right after that dot.
4c4b4cd2 9437 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9438 translates dots into "__". Search forward for double underscores,
9439 but stop searching when we hit an overloading suffix, which is
9440 of the form "__" followed by digits. */
4c4b4cd2 9441
c3e5cd34
PH
9442 tmp = strrchr (name, '.');
9443 if (tmp != NULL)
4c4b4cd2
PH
9444 name = tmp + 1;
9445 else
14f9c5c9 9446 {
4c4b4cd2
PH
9447 while ((tmp = strstr (name, "__")) != NULL)
9448 {
9449 if (isdigit (tmp[2]))
9450 break;
9451 else
9452 name = tmp + 2;
9453 }
14f9c5c9
AS
9454 }
9455
9456 if (name[0] == 'Q')
9457 {
14f9c5c9 9458 int v;
5b4ee69b 9459
14f9c5c9 9460 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9461 {
9462 if (sscanf (name + 2, "%x", &v) != 1)
9463 return name;
9464 }
14f9c5c9 9465 else
4c4b4cd2 9466 return name;
14f9c5c9 9467
4c4b4cd2 9468 GROW_VECT (result, result_len, 16);
14f9c5c9 9469 if (isascii (v) && isprint (v))
88c15c34 9470 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9471 else if (name[1] == 'U')
88c15c34 9472 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9473 else
88c15c34 9474 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9475
9476 return result;
9477 }
d2e4a39e 9478 else
4c4b4cd2 9479 {
c3e5cd34
PH
9480 tmp = strstr (name, "__");
9481 if (tmp == NULL)
9482 tmp = strstr (name, "$");
9483 if (tmp != NULL)
4c4b4cd2
PH
9484 {
9485 GROW_VECT (result, result_len, tmp - name + 1);
9486 strncpy (result, name, tmp - name);
9487 result[tmp - name] = '\0';
9488 return result;
9489 }
9490
9491 return name;
9492 }
14f9c5c9
AS
9493}
9494
14f9c5c9
AS
9495/* Evaluate the subexpression of EXP starting at *POS as for
9496 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9497 expression. */
14f9c5c9 9498
d2e4a39e
AS
9499static struct value *
9500evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9501{
4b27a620 9502 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9503}
9504
9505/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9506 value it wraps. */
14f9c5c9 9507
d2e4a39e
AS
9508static struct value *
9509unwrap_value (struct value *val)
14f9c5c9 9510{
df407dfe 9511 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9512
14f9c5c9
AS
9513 if (ada_is_aligner_type (type))
9514 {
de4d072f 9515 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9516 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9517
14f9c5c9 9518 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9519 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9520
9521 return unwrap_value (v);
9522 }
d2e4a39e 9523 else
14f9c5c9 9524 {
d2e4a39e 9525 struct type *raw_real_type =
61ee279c 9526 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9527
5bf03f13
JB
9528 /* If there is no parallel XVS or XVE type, then the value is
9529 already unwrapped. Return it without further modification. */
9530 if ((type == raw_real_type)
9531 && ada_find_parallel_type (type, "___XVE") == NULL)
9532 return val;
14f9c5c9 9533
d2e4a39e 9534 return
4c4b4cd2
PH
9535 coerce_unspec_val_to_type
9536 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9537 value_address (val),
1ed6ede0 9538 NULL, 1));
14f9c5c9
AS
9539 }
9540}
d2e4a39e
AS
9541
9542static struct value *
9543cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9544{
9545 LONGEST val;
9546
df407dfe 9547 if (type == value_type (arg))
14f9c5c9 9548 return arg;
df407dfe 9549 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9550 val = ada_float_to_fixed (type,
df407dfe 9551 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9552 value_as_long (arg)));
d2e4a39e 9553 else
14f9c5c9 9554 {
a53b7a21 9555 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9556
14f9c5c9
AS
9557 val = ada_float_to_fixed (type, argd);
9558 }
9559
9560 return value_from_longest (type, val);
9561}
9562
d2e4a39e 9563static struct value *
a53b7a21 9564cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9565{
df407dfe 9566 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9567 value_as_long (arg));
5b4ee69b 9568
a53b7a21 9569 return value_from_double (type, val);
14f9c5c9
AS
9570}
9571
d99dcf51
JB
9572/* Given two array types T1 and T2, return nonzero iff both arrays
9573 contain the same number of elements. */
9574
9575static int
9576ada_same_array_size_p (struct type *t1, struct type *t2)
9577{
9578 LONGEST lo1, hi1, lo2, hi2;
9579
9580 /* Get the array bounds in order to verify that the size of
9581 the two arrays match. */
9582 if (!get_array_bounds (t1, &lo1, &hi1)
9583 || !get_array_bounds (t2, &lo2, &hi2))
9584 error (_("unable to determine array bounds"));
9585
9586 /* To make things easier for size comparison, normalize a bit
9587 the case of empty arrays by making sure that the difference
9588 between upper bound and lower bound is always -1. */
9589 if (lo1 > hi1)
9590 hi1 = lo1 - 1;
9591 if (lo2 > hi2)
9592 hi2 = lo2 - 1;
9593
9594 return (hi1 - lo1 == hi2 - lo2);
9595}
9596
9597/* Assuming that VAL is an array of integrals, and TYPE represents
9598 an array with the same number of elements, but with wider integral
9599 elements, return an array "casted" to TYPE. In practice, this
9600 means that the returned array is built by casting each element
9601 of the original array into TYPE's (wider) element type. */
9602
9603static struct value *
9604ada_promote_array_of_integrals (struct type *type, struct value *val)
9605{
9606 struct type *elt_type = TYPE_TARGET_TYPE (type);
9607 LONGEST lo, hi;
9608 struct value *res;
9609 LONGEST i;
9610
9611 /* Verify that both val and type are arrays of scalars, and
9612 that the size of val's elements is smaller than the size
9613 of type's element. */
9614 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9615 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9616 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9617 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9618 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9619 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9620
9621 if (!get_array_bounds (type, &lo, &hi))
9622 error (_("unable to determine array bounds"));
9623
9624 res = allocate_value (type);
9625
9626 /* Promote each array element. */
9627 for (i = 0; i < hi - lo + 1; i++)
9628 {
9629 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9630
9631 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9632 value_contents_all (elt), TYPE_LENGTH (elt_type));
9633 }
9634
9635 return res;
9636}
9637
4c4b4cd2
PH
9638/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9639 return the converted value. */
9640
d2e4a39e
AS
9641static struct value *
9642coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9643{
df407dfe 9644 struct type *type2 = value_type (val);
5b4ee69b 9645
14f9c5c9
AS
9646 if (type == type2)
9647 return val;
9648
61ee279c
PH
9649 type2 = ada_check_typedef (type2);
9650 type = ada_check_typedef (type);
14f9c5c9 9651
d2e4a39e
AS
9652 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9653 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9654 {
9655 val = ada_value_ind (val);
df407dfe 9656 type2 = value_type (val);
14f9c5c9
AS
9657 }
9658
d2e4a39e 9659 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9660 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9661 {
d99dcf51
JB
9662 if (!ada_same_array_size_p (type, type2))
9663 error (_("cannot assign arrays of different length"));
9664
9665 if (is_integral_type (TYPE_TARGET_TYPE (type))
9666 && is_integral_type (TYPE_TARGET_TYPE (type2))
9667 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9668 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9669 {
9670 /* Allow implicit promotion of the array elements to
9671 a wider type. */
9672 return ada_promote_array_of_integrals (type, val);
9673 }
9674
9675 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9676 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9677 error (_("Incompatible types in assignment"));
04624583 9678 deprecated_set_value_type (val, type);
14f9c5c9 9679 }
d2e4a39e 9680 return val;
14f9c5c9
AS
9681}
9682
4c4b4cd2
PH
9683static struct value *
9684ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9685{
9686 struct value *val;
9687 struct type *type1, *type2;
9688 LONGEST v, v1, v2;
9689
994b9211
AC
9690 arg1 = coerce_ref (arg1);
9691 arg2 = coerce_ref (arg2);
18af8284
JB
9692 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9693 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9694
76a01679
JB
9695 if (TYPE_CODE (type1) != TYPE_CODE_INT
9696 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9697 return value_binop (arg1, arg2, op);
9698
76a01679 9699 switch (op)
4c4b4cd2
PH
9700 {
9701 case BINOP_MOD:
9702 case BINOP_DIV:
9703 case BINOP_REM:
9704 break;
9705 default:
9706 return value_binop (arg1, arg2, op);
9707 }
9708
9709 v2 = value_as_long (arg2);
9710 if (v2 == 0)
323e0a4a 9711 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9712
9713 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9714 return value_binop (arg1, arg2, op);
9715
9716 v1 = value_as_long (arg1);
9717 switch (op)
9718 {
9719 case BINOP_DIV:
9720 v = v1 / v2;
76a01679
JB
9721 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9722 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9723 break;
9724 case BINOP_REM:
9725 v = v1 % v2;
76a01679
JB
9726 if (v * v1 < 0)
9727 v -= v2;
4c4b4cd2
PH
9728 break;
9729 default:
9730 /* Should not reach this point. */
9731 v = 0;
9732 }
9733
9734 val = allocate_value (type1);
990a07ab 9735 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9736 TYPE_LENGTH (value_type (val)),
9737 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9738 return val;
9739}
9740
9741static int
9742ada_value_equal (struct value *arg1, struct value *arg2)
9743{
df407dfe
AC
9744 if (ada_is_direct_array_type (value_type (arg1))
9745 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9746 {
f58b38bf
JB
9747 /* Automatically dereference any array reference before
9748 we attempt to perform the comparison. */
9749 arg1 = ada_coerce_ref (arg1);
9750 arg2 = ada_coerce_ref (arg2);
9751
4c4b4cd2
PH
9752 arg1 = ada_coerce_to_simple_array (arg1);
9753 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9754 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9755 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9756 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9757 /* FIXME: The following works only for types whose
76a01679
JB
9758 representations use all bits (no padding or undefined bits)
9759 and do not have user-defined equality. */
9760 return
df407dfe 9761 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9762 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9763 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9764 }
9765 return value_equal (arg1, arg2);
9766}
9767
52ce6436
PH
9768/* Total number of component associations in the aggregate starting at
9769 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9770 OP_AGGREGATE. */
52ce6436
PH
9771
9772static int
9773num_component_specs (struct expression *exp, int pc)
9774{
9775 int n, m, i;
5b4ee69b 9776
52ce6436
PH
9777 m = exp->elts[pc + 1].longconst;
9778 pc += 3;
9779 n = 0;
9780 for (i = 0; i < m; i += 1)
9781 {
9782 switch (exp->elts[pc].opcode)
9783 {
9784 default:
9785 n += 1;
9786 break;
9787 case OP_CHOICES:
9788 n += exp->elts[pc + 1].longconst;
9789 break;
9790 }
9791 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9792 }
9793 return n;
9794}
9795
9796/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9797 component of LHS (a simple array or a record), updating *POS past
9798 the expression, assuming that LHS is contained in CONTAINER. Does
9799 not modify the inferior's memory, nor does it modify LHS (unless
9800 LHS == CONTAINER). */
9801
9802static void
9803assign_component (struct value *container, struct value *lhs, LONGEST index,
9804 struct expression *exp, int *pos)
9805{
9806 struct value *mark = value_mark ();
9807 struct value *elt;
5b4ee69b 9808
52ce6436
PH
9809 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9810 {
22601c15
UW
9811 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9812 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9813
52ce6436
PH
9814 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9815 }
9816 else
9817 {
9818 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9819 elt = ada_to_fixed_value (elt);
52ce6436
PH
9820 }
9821
9822 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9823 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9824 else
9825 value_assign_to_component (container, elt,
9826 ada_evaluate_subexp (NULL, exp, pos,
9827 EVAL_NORMAL));
9828
9829 value_free_to_mark (mark);
9830}
9831
9832/* Assuming that LHS represents an lvalue having a record or array
9833 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9834 of that aggregate's value to LHS, advancing *POS past the
9835 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9836 lvalue containing LHS (possibly LHS itself). Does not modify
9837 the inferior's memory, nor does it modify the contents of
0963b4bd 9838 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9839
9840static struct value *
9841assign_aggregate (struct value *container,
9842 struct value *lhs, struct expression *exp,
9843 int *pos, enum noside noside)
9844{
9845 struct type *lhs_type;
9846 int n = exp->elts[*pos+1].longconst;
9847 LONGEST low_index, high_index;
9848 int num_specs;
9849 LONGEST *indices;
9850 int max_indices, num_indices;
52ce6436 9851 int i;
52ce6436
PH
9852
9853 *pos += 3;
9854 if (noside != EVAL_NORMAL)
9855 {
52ce6436
PH
9856 for (i = 0; i < n; i += 1)
9857 ada_evaluate_subexp (NULL, exp, pos, noside);
9858 return container;
9859 }
9860
9861 container = ada_coerce_ref (container);
9862 if (ada_is_direct_array_type (value_type (container)))
9863 container = ada_coerce_to_simple_array (container);
9864 lhs = ada_coerce_ref (lhs);
9865 if (!deprecated_value_modifiable (lhs))
9866 error (_("Left operand of assignment is not a modifiable lvalue."));
9867
9868 lhs_type = value_type (lhs);
9869 if (ada_is_direct_array_type (lhs_type))
9870 {
9871 lhs = ada_coerce_to_simple_array (lhs);
9872 lhs_type = value_type (lhs);
9873 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9874 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9875 }
9876 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9877 {
9878 low_index = 0;
9879 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9880 }
9881 else
9882 error (_("Left-hand side must be array or record."));
9883
9884 num_specs = num_component_specs (exp, *pos - 3);
9885 max_indices = 4 * num_specs + 4;
8d749320 9886 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9887 indices[0] = indices[1] = low_index - 1;
9888 indices[2] = indices[3] = high_index + 1;
9889 num_indices = 4;
9890
9891 for (i = 0; i < n; i += 1)
9892 {
9893 switch (exp->elts[*pos].opcode)
9894 {
1fbf5ada
JB
9895 case OP_CHOICES:
9896 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9897 &num_indices, max_indices,
9898 low_index, high_index);
9899 break;
9900 case OP_POSITIONAL:
9901 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9902 &num_indices, max_indices,
9903 low_index, high_index);
1fbf5ada
JB
9904 break;
9905 case OP_OTHERS:
9906 if (i != n-1)
9907 error (_("Misplaced 'others' clause"));
9908 aggregate_assign_others (container, lhs, exp, pos, indices,
9909 num_indices, low_index, high_index);
9910 break;
9911 default:
9912 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9913 }
9914 }
9915
9916 return container;
9917}
9918
9919/* Assign into the component of LHS indexed by the OP_POSITIONAL
9920 construct at *POS, updating *POS past the construct, given that
9921 the positions are relative to lower bound LOW, where HIGH is the
9922 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9923 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9924 assign_aggregate. */
52ce6436
PH
9925static void
9926aggregate_assign_positional (struct value *container,
9927 struct value *lhs, struct expression *exp,
9928 int *pos, LONGEST *indices, int *num_indices,
9929 int max_indices, LONGEST low, LONGEST high)
9930{
9931 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9932
9933 if (ind - 1 == high)
e1d5a0d2 9934 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9935 if (ind <= high)
9936 {
9937 add_component_interval (ind, ind, indices, num_indices, max_indices);
9938 *pos += 3;
9939 assign_component (container, lhs, ind, exp, pos);
9940 }
9941 else
9942 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9943}
9944
9945/* Assign into the components of LHS indexed by the OP_CHOICES
9946 construct at *POS, updating *POS past the construct, given that
9947 the allowable indices are LOW..HIGH. Record the indices assigned
9948 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9949 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9950static void
9951aggregate_assign_from_choices (struct value *container,
9952 struct value *lhs, struct expression *exp,
9953 int *pos, LONGEST *indices, int *num_indices,
9954 int max_indices, LONGEST low, LONGEST high)
9955{
9956 int j;
9957 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9958 int choice_pos, expr_pc;
9959 int is_array = ada_is_direct_array_type (value_type (lhs));
9960
9961 choice_pos = *pos += 3;
9962
9963 for (j = 0; j < n_choices; j += 1)
9964 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9965 expr_pc = *pos;
9966 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9967
9968 for (j = 0; j < n_choices; j += 1)
9969 {
9970 LONGEST lower, upper;
9971 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9972
52ce6436
PH
9973 if (op == OP_DISCRETE_RANGE)
9974 {
9975 choice_pos += 1;
9976 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9977 EVAL_NORMAL));
9978 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9979 EVAL_NORMAL));
9980 }
9981 else if (is_array)
9982 {
9983 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9984 EVAL_NORMAL));
9985 upper = lower;
9986 }
9987 else
9988 {
9989 int ind;
0d5cff50 9990 const char *name;
5b4ee69b 9991
52ce6436
PH
9992 switch (op)
9993 {
9994 case OP_NAME:
9995 name = &exp->elts[choice_pos + 2].string;
9996 break;
9997 case OP_VAR_VALUE:
9998 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9999 break;
10000 default:
10001 error (_("Invalid record component association."));
10002 }
10003 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10004 ind = 0;
10005 if (! find_struct_field (name, value_type (lhs), 0,
10006 NULL, NULL, NULL, NULL, &ind))
10007 error (_("Unknown component name: %s."), name);
10008 lower = upper = ind;
10009 }
10010
10011 if (lower <= upper && (lower < low || upper > high))
10012 error (_("Index in component association out of bounds."));
10013
10014 add_component_interval (lower, upper, indices, num_indices,
10015 max_indices);
10016 while (lower <= upper)
10017 {
10018 int pos1;
5b4ee69b 10019
52ce6436
PH
10020 pos1 = expr_pc;
10021 assign_component (container, lhs, lower, exp, &pos1);
10022 lower += 1;
10023 }
10024 }
10025}
10026
10027/* Assign the value of the expression in the OP_OTHERS construct in
10028 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10029 have not been previously assigned. The index intervals already assigned
10030 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10031 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10032static void
10033aggregate_assign_others (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, LONGEST *indices, int num_indices,
10036 LONGEST low, LONGEST high)
10037{
10038 int i;
5ce64950 10039 int expr_pc = *pos + 1;
52ce6436
PH
10040
10041 for (i = 0; i < num_indices - 2; i += 2)
10042 {
10043 LONGEST ind;
5b4ee69b 10044
52ce6436
PH
10045 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10046 {
5ce64950 10047 int localpos;
5b4ee69b 10048
5ce64950
MS
10049 localpos = expr_pc;
10050 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10051 }
10052 }
10053 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10054}
10055
10056/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10057 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10058 modifying *SIZE as needed. It is an error if *SIZE exceeds
10059 MAX_SIZE. The resulting intervals do not overlap. */
10060static void
10061add_component_interval (LONGEST low, LONGEST high,
10062 LONGEST* indices, int *size, int max_size)
10063{
10064 int i, j;
5b4ee69b 10065
52ce6436
PH
10066 for (i = 0; i < *size; i += 2) {
10067 if (high >= indices[i] && low <= indices[i + 1])
10068 {
10069 int kh;
5b4ee69b 10070
52ce6436
PH
10071 for (kh = i + 2; kh < *size; kh += 2)
10072 if (high < indices[kh])
10073 break;
10074 if (low < indices[i])
10075 indices[i] = low;
10076 indices[i + 1] = indices[kh - 1];
10077 if (high > indices[i + 1])
10078 indices[i + 1] = high;
10079 memcpy (indices + i + 2, indices + kh, *size - kh);
10080 *size -= kh - i - 2;
10081 return;
10082 }
10083 else if (high < indices[i])
10084 break;
10085 }
10086
10087 if (*size == max_size)
10088 error (_("Internal error: miscounted aggregate components."));
10089 *size += 2;
10090 for (j = *size-1; j >= i+2; j -= 1)
10091 indices[j] = indices[j - 2];
10092 indices[i] = low;
10093 indices[i + 1] = high;
10094}
10095
6e48bd2c
JB
10096/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10097 is different. */
10098
10099static struct value *
10100ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10101{
10102 if (type == ada_check_typedef (value_type (arg2)))
10103 return arg2;
10104
10105 if (ada_is_fixed_point_type (type))
10106 return (cast_to_fixed (type, arg2));
10107
10108 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10109 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10110
10111 return value_cast (type, arg2);
10112}
10113
284614f0
JB
10114/* Evaluating Ada expressions, and printing their result.
10115 ------------------------------------------------------
10116
21649b50
JB
10117 1. Introduction:
10118 ----------------
10119
284614f0
JB
10120 We usually evaluate an Ada expression in order to print its value.
10121 We also evaluate an expression in order to print its type, which
10122 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10123 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10124 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10125 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10126 similar.
10127
10128 Evaluating expressions is a little more complicated for Ada entities
10129 than it is for entities in languages such as C. The main reason for
10130 this is that Ada provides types whose definition might be dynamic.
10131 One example of such types is variant records. Or another example
10132 would be an array whose bounds can only be known at run time.
10133
10134 The following description is a general guide as to what should be
10135 done (and what should NOT be done) in order to evaluate an expression
10136 involving such types, and when. This does not cover how the semantic
10137 information is encoded by GNAT as this is covered separatly. For the
10138 document used as the reference for the GNAT encoding, see exp_dbug.ads
10139 in the GNAT sources.
10140
10141 Ideally, we should embed each part of this description next to its
10142 associated code. Unfortunately, the amount of code is so vast right
10143 now that it's hard to see whether the code handling a particular
10144 situation might be duplicated or not. One day, when the code is
10145 cleaned up, this guide might become redundant with the comments
10146 inserted in the code, and we might want to remove it.
10147
21649b50
JB
10148 2. ``Fixing'' an Entity, the Simple Case:
10149 -----------------------------------------
10150
284614f0
JB
10151 When evaluating Ada expressions, the tricky issue is that they may
10152 reference entities whose type contents and size are not statically
10153 known. Consider for instance a variant record:
10154
10155 type Rec (Empty : Boolean := True) is record
10156 case Empty is
10157 when True => null;
10158 when False => Value : Integer;
10159 end case;
10160 end record;
10161 Yes : Rec := (Empty => False, Value => 1);
10162 No : Rec := (empty => True);
10163
10164 The size and contents of that record depends on the value of the
10165 descriminant (Rec.Empty). At this point, neither the debugging
10166 information nor the associated type structure in GDB are able to
10167 express such dynamic types. So what the debugger does is to create
10168 "fixed" versions of the type that applies to the specific object.
10169 We also informally refer to this opperation as "fixing" an object,
10170 which means creating its associated fixed type.
10171
10172 Example: when printing the value of variable "Yes" above, its fixed
10173 type would look like this:
10174
10175 type Rec is record
10176 Empty : Boolean;
10177 Value : Integer;
10178 end record;
10179
10180 On the other hand, if we printed the value of "No", its fixed type
10181 would become:
10182
10183 type Rec is record
10184 Empty : Boolean;
10185 end record;
10186
10187 Things become a little more complicated when trying to fix an entity
10188 with a dynamic type that directly contains another dynamic type,
10189 such as an array of variant records, for instance. There are
10190 two possible cases: Arrays, and records.
10191
21649b50
JB
10192 3. ``Fixing'' Arrays:
10193 ---------------------
10194
10195 The type structure in GDB describes an array in terms of its bounds,
10196 and the type of its elements. By design, all elements in the array
10197 have the same type and we cannot represent an array of variant elements
10198 using the current type structure in GDB. When fixing an array,
10199 we cannot fix the array element, as we would potentially need one
10200 fixed type per element of the array. As a result, the best we can do
10201 when fixing an array is to produce an array whose bounds and size
10202 are correct (allowing us to read it from memory), but without having
10203 touched its element type. Fixing each element will be done later,
10204 when (if) necessary.
10205
10206 Arrays are a little simpler to handle than records, because the same
10207 amount of memory is allocated for each element of the array, even if
1b536f04 10208 the amount of space actually used by each element differs from element
21649b50 10209 to element. Consider for instance the following array of type Rec:
284614f0
JB
10210
10211 type Rec_Array is array (1 .. 2) of Rec;
10212
1b536f04
JB
10213 The actual amount of memory occupied by each element might be different
10214 from element to element, depending on the value of their discriminant.
21649b50 10215 But the amount of space reserved for each element in the array remains
1b536f04 10216 fixed regardless. So we simply need to compute that size using
21649b50
JB
10217 the debugging information available, from which we can then determine
10218 the array size (we multiply the number of elements of the array by
10219 the size of each element).
10220
10221 The simplest case is when we have an array of a constrained element
10222 type. For instance, consider the following type declarations:
10223
10224 type Bounded_String (Max_Size : Integer) is
10225 Length : Integer;
10226 Buffer : String (1 .. Max_Size);
10227 end record;
10228 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10229
10230 In this case, the compiler describes the array as an array of
10231 variable-size elements (identified by its XVS suffix) for which
10232 the size can be read in the parallel XVZ variable.
10233
10234 In the case of an array of an unconstrained element type, the compiler
10235 wraps the array element inside a private PAD type. This type should not
10236 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10237 that we also use the adjective "aligner" in our code to designate
10238 these wrapper types.
10239
1b536f04 10240 In some cases, the size allocated for each element is statically
21649b50
JB
10241 known. In that case, the PAD type already has the correct size,
10242 and the array element should remain unfixed.
10243
10244 But there are cases when this size is not statically known.
10245 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10246
10247 type Dynamic is array (1 .. Five) of Integer;
10248 type Wrapper (Has_Length : Boolean := False) is record
10249 Data : Dynamic;
10250 case Has_Length is
10251 when True => Length : Integer;
10252 when False => null;
10253 end case;
10254 end record;
10255 type Wrapper_Array is array (1 .. 2) of Wrapper;
10256
10257 Hello : Wrapper_Array := (others => (Has_Length => True,
10258 Data => (others => 17),
10259 Length => 1));
10260
10261
10262 The debugging info would describe variable Hello as being an
10263 array of a PAD type. The size of that PAD type is not statically
10264 known, but can be determined using a parallel XVZ variable.
10265 In that case, a copy of the PAD type with the correct size should
10266 be used for the fixed array.
10267
21649b50
JB
10268 3. ``Fixing'' record type objects:
10269 ----------------------------------
10270
10271 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10272 record types. In this case, in order to compute the associated
10273 fixed type, we need to determine the size and offset of each of
10274 its components. This, in turn, requires us to compute the fixed
10275 type of each of these components.
10276
10277 Consider for instance the example:
10278
10279 type Bounded_String (Max_Size : Natural) is record
10280 Str : String (1 .. Max_Size);
10281 Length : Natural;
10282 end record;
10283 My_String : Bounded_String (Max_Size => 10);
10284
10285 In that case, the position of field "Length" depends on the size
10286 of field Str, which itself depends on the value of the Max_Size
21649b50 10287 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10288 we need to fix the type of field Str. Therefore, fixing a variant
10289 record requires us to fix each of its components.
10290
10291 However, if a component does not have a dynamic size, the component
10292 should not be fixed. In particular, fields that use a PAD type
10293 should not fixed. Here is an example where this might happen
10294 (assuming type Rec above):
10295
10296 type Container (Big : Boolean) is record
10297 First : Rec;
10298 After : Integer;
10299 case Big is
10300 when True => Another : Integer;
10301 when False => null;
10302 end case;
10303 end record;
10304 My_Container : Container := (Big => False,
10305 First => (Empty => True),
10306 After => 42);
10307
10308 In that example, the compiler creates a PAD type for component First,
10309 whose size is constant, and then positions the component After just
10310 right after it. The offset of component After is therefore constant
10311 in this case.
10312
10313 The debugger computes the position of each field based on an algorithm
10314 that uses, among other things, the actual position and size of the field
21649b50
JB
10315 preceding it. Let's now imagine that the user is trying to print
10316 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10317 end up computing the offset of field After based on the size of the
10318 fixed version of field First. And since in our example First has
10319 only one actual field, the size of the fixed type is actually smaller
10320 than the amount of space allocated to that field, and thus we would
10321 compute the wrong offset of field After.
10322
21649b50
JB
10323 To make things more complicated, we need to watch out for dynamic
10324 components of variant records (identified by the ___XVL suffix in
10325 the component name). Even if the target type is a PAD type, the size
10326 of that type might not be statically known. So the PAD type needs
10327 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10328 we might end up with the wrong size for our component. This can be
10329 observed with the following type declarations:
284614f0
JB
10330
10331 type Octal is new Integer range 0 .. 7;
10332 type Octal_Array is array (Positive range <>) of Octal;
10333 pragma Pack (Octal_Array);
10334
10335 type Octal_Buffer (Size : Positive) is record
10336 Buffer : Octal_Array (1 .. Size);
10337 Length : Integer;
10338 end record;
10339
10340 In that case, Buffer is a PAD type whose size is unset and needs
10341 to be computed by fixing the unwrapped type.
10342
21649b50
JB
10343 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10344 ----------------------------------------------------------
10345
10346 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10347 thus far, be actually fixed?
10348
10349 The answer is: Only when referencing that element. For instance
10350 when selecting one component of a record, this specific component
10351 should be fixed at that point in time. Or when printing the value
10352 of a record, each component should be fixed before its value gets
10353 printed. Similarly for arrays, the element of the array should be
10354 fixed when printing each element of the array, or when extracting
10355 one element out of that array. On the other hand, fixing should
10356 not be performed on the elements when taking a slice of an array!
10357
10358 Note that one of the side-effects of miscomputing the offset and
10359 size of each field is that we end up also miscomputing the size
10360 of the containing type. This can have adverse results when computing
10361 the value of an entity. GDB fetches the value of an entity based
10362 on the size of its type, and thus a wrong size causes GDB to fetch
10363 the wrong amount of memory. In the case where the computed size is
10364 too small, GDB fetches too little data to print the value of our
10365 entiry. Results in this case as unpredicatble, as we usually read
10366 past the buffer containing the data =:-o. */
10367
10368/* Implement the evaluate_exp routine in the exp_descriptor structure
10369 for the Ada language. */
10370
52ce6436 10371static struct value *
ebf56fd3 10372ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10373 int *pos, enum noside noside)
14f9c5c9
AS
10374{
10375 enum exp_opcode op;
b5385fc0 10376 int tem;
14f9c5c9 10377 int pc;
5ec18f2b 10378 int preeval_pos;
14f9c5c9
AS
10379 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10380 struct type *type;
52ce6436 10381 int nargs, oplen;
d2e4a39e 10382 struct value **argvec;
14f9c5c9 10383
d2e4a39e
AS
10384 pc = *pos;
10385 *pos += 1;
14f9c5c9
AS
10386 op = exp->elts[pc].opcode;
10387
d2e4a39e 10388 switch (op)
14f9c5c9
AS
10389 {
10390 default:
10391 *pos -= 1;
6e48bd2c 10392 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10393
10394 if (noside == EVAL_NORMAL)
10395 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10396
10397 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10398 then we need to perform the conversion manually, because
10399 evaluate_subexp_standard doesn't do it. This conversion is
10400 necessary in Ada because the different kinds of float/fixed
10401 types in Ada have different representations.
10402
10403 Similarly, we need to perform the conversion from OP_LONG
10404 ourselves. */
10405 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10406 arg1 = ada_value_cast (expect_type, arg1, noside);
10407
10408 return arg1;
4c4b4cd2
PH
10409
10410 case OP_STRING:
10411 {
76a01679 10412 struct value *result;
5b4ee69b 10413
76a01679
JB
10414 *pos -= 1;
10415 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10416 /* The result type will have code OP_STRING, bashed there from
10417 OP_ARRAY. Bash it back. */
df407dfe
AC
10418 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10419 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10420 return result;
4c4b4cd2 10421 }
14f9c5c9
AS
10422
10423 case UNOP_CAST:
10424 (*pos) += 2;
10425 type = exp->elts[pc + 1].type;
10426 arg1 = evaluate_subexp (type, exp, pos, noside);
10427 if (noside == EVAL_SKIP)
4c4b4cd2 10428 goto nosideret;
6e48bd2c 10429 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10430 return arg1;
10431
4c4b4cd2
PH
10432 case UNOP_QUAL:
10433 (*pos) += 2;
10434 type = exp->elts[pc + 1].type;
10435 return ada_evaluate_subexp (type, exp, pos, noside);
10436
14f9c5c9
AS
10437 case BINOP_ASSIGN:
10438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10439 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10440 {
10441 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10442 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10443 return arg1;
10444 return ada_value_assign (arg1, arg1);
10445 }
003f3813
JB
10446 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10447 except if the lhs of our assignment is a convenience variable.
10448 In the case of assigning to a convenience variable, the lhs
10449 should be exactly the result of the evaluation of the rhs. */
10450 type = value_type (arg1);
10451 if (VALUE_LVAL (arg1) == lval_internalvar)
10452 type = NULL;
10453 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10454 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10455 return arg1;
df407dfe
AC
10456 if (ada_is_fixed_point_type (value_type (arg1)))
10457 arg2 = cast_to_fixed (value_type (arg1), arg2);
10458 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10459 error
323e0a4a 10460 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10461 else
df407dfe 10462 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10463 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10464
10465 case BINOP_ADD:
10466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10468 if (noside == EVAL_SKIP)
4c4b4cd2 10469 goto nosideret;
2ac8a782
JB
10470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg1),
10473 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10474 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10475 return (value_from_longest
10476 (value_type (arg2),
10477 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10478 if ((ada_is_fixed_point_type (value_type (arg1))
10479 || ada_is_fixed_point_type (value_type (arg2)))
10480 && value_type (arg1) != value_type (arg2))
323e0a4a 10481 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10482 /* Do the addition, and cast the result to the type of the first
10483 argument. We cannot cast the result to a reference type, so if
10484 ARG1 is a reference type, find its underlying type. */
10485 type = value_type (arg1);
10486 while (TYPE_CODE (type) == TYPE_CODE_REF)
10487 type = TYPE_TARGET_TYPE (type);
f44316fa 10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10489 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10490
10491 case BINOP_SUB:
10492 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 if (noside == EVAL_SKIP)
4c4b4cd2 10495 goto nosideret;
2ac8a782
JB
10496 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg1),
10499 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10500 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg2),
10503 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10504 if ((ada_is_fixed_point_type (value_type (arg1))
10505 || ada_is_fixed_point_type (value_type (arg2)))
10506 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10507 error (_("Operands of fixed-point subtraction "
10508 "must have the same type"));
b7789565
JB
10509 /* Do the substraction, and cast the result to the type of the first
10510 argument. We cannot cast the result to a reference type, so if
10511 ARG1 is a reference type, find its underlying type. */
10512 type = value_type (arg1);
10513 while (TYPE_CODE (type) == TYPE_CODE_REF)
10514 type = TYPE_TARGET_TYPE (type);
f44316fa 10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10516 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10517
10518 case BINOP_MUL:
10519 case BINOP_DIV:
e1578042
JB
10520 case BINOP_REM:
10521 case BINOP_MOD:
14f9c5c9
AS
10522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10524 if (noside == EVAL_SKIP)
4c4b4cd2 10525 goto nosideret;
e1578042 10526 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10527 {
10528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10529 return value_zero (value_type (arg1), not_lval);
10530 }
14f9c5c9 10531 else
4c4b4cd2 10532 {
a53b7a21 10533 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10534 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10535 arg1 = cast_from_fixed (type, arg1);
df407dfe 10536 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10537 arg2 = cast_from_fixed (type, arg2);
f44316fa 10538 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10539 return ada_value_binop (arg1, arg2, op);
10540 }
10541
4c4b4cd2
PH
10542 case BINOP_EQUAL:
10543 case BINOP_NOTEQUAL:
14f9c5c9 10544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10545 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10546 if (noside == EVAL_SKIP)
76a01679 10547 goto nosideret;
4c4b4cd2 10548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10549 tem = 0;
4c4b4cd2 10550 else
f44316fa
UW
10551 {
10552 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10553 tem = ada_value_equal (arg1, arg2);
10554 }
4c4b4cd2 10555 if (op == BINOP_NOTEQUAL)
76a01679 10556 tem = !tem;
fbb06eb1
UW
10557 type = language_bool_type (exp->language_defn, exp->gdbarch);
10558 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10559
10560 case UNOP_NEG:
10561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 if (noside == EVAL_SKIP)
10563 goto nosideret;
df407dfe
AC
10564 else if (ada_is_fixed_point_type (value_type (arg1)))
10565 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10566 else
f44316fa
UW
10567 {
10568 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10569 return value_neg (arg1);
10570 }
4c4b4cd2 10571
2330c6c6
JB
10572 case BINOP_LOGICAL_AND:
10573 case BINOP_LOGICAL_OR:
10574 case UNOP_LOGICAL_NOT:
000d5124
JB
10575 {
10576 struct value *val;
10577
10578 *pos -= 1;
10579 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10580 type = language_bool_type (exp->language_defn, exp->gdbarch);
10581 return value_cast (type, val);
000d5124 10582 }
2330c6c6
JB
10583
10584 case BINOP_BITWISE_AND:
10585 case BINOP_BITWISE_IOR:
10586 case BINOP_BITWISE_XOR:
000d5124
JB
10587 {
10588 struct value *val;
10589
10590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10591 *pos = pc;
10592 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593
10594 return value_cast (value_type (arg1), val);
10595 }
2330c6c6 10596
14f9c5c9
AS
10597 case OP_VAR_VALUE:
10598 *pos -= 1;
6799def4 10599
14f9c5c9 10600 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10601 {
10602 *pos += 4;
10603 goto nosideret;
10604 }
da5c522f
JB
10605
10606 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10607 /* Only encountered when an unresolved symbol occurs in a
10608 context other than a function call, in which case, it is
52ce6436 10609 invalid. */
323e0a4a 10610 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10611 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10612
10613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10614 {
0c1f74cf 10615 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10616 /* Check to see if this is a tagged type. We also need to handle
10617 the case where the type is a reference to a tagged type, but
10618 we have to be careful to exclude pointers to tagged types.
10619 The latter should be shown as usual (as a pointer), whereas
10620 a reference should mostly be transparent to the user. */
10621 if (ada_is_tagged_type (type, 0)
023db19c 10622 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10623 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10624 {
10625 /* Tagged types are a little special in the fact that the real
10626 type is dynamic and can only be determined by inspecting the
10627 object's tag. This means that we need to get the object's
10628 value first (EVAL_NORMAL) and then extract the actual object
10629 type from its tag.
10630
10631 Note that we cannot skip the final step where we extract
10632 the object type from its tag, because the EVAL_NORMAL phase
10633 results in dynamic components being resolved into fixed ones.
10634 This can cause problems when trying to print the type
10635 description of tagged types whose parent has a dynamic size:
10636 We use the type name of the "_parent" component in order
10637 to print the name of the ancestor type in the type description.
10638 If that component had a dynamic size, the resolution into
10639 a fixed type would result in the loss of that type name,
10640 thus preventing us from printing the name of the ancestor
10641 type in the type description. */
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10643
10644 if (TYPE_CODE (type) != TYPE_CODE_REF)
10645 {
10646 struct type *actual_type;
10647
10648 actual_type = type_from_tag (ada_value_tag (arg1));
10649 if (actual_type == NULL)
10650 /* If, for some reason, we were unable to determine
10651 the actual type from the tag, then use the static
10652 approximation that we just computed as a fallback.
10653 This can happen if the debugging information is
10654 incomplete, for instance. */
10655 actual_type = type;
10656 return value_zero (actual_type, not_lval);
10657 }
10658 else
10659 {
10660 /* In the case of a ref, ada_coerce_ref takes care
10661 of determining the actual type. But the evaluation
10662 should return a ref as it should be valid to ask
10663 for its address; so rebuild a ref after coerce. */
10664 arg1 = ada_coerce_ref (arg1);
10665 return value_ref (arg1);
10666 }
10667 }
0c1f74cf 10668
84754697
JB
10669 /* Records and unions for which GNAT encodings have been
10670 generated need to be statically fixed as well.
10671 Otherwise, non-static fixing produces a type where
10672 all dynamic properties are removed, which prevents "ptype"
10673 from being able to completely describe the type.
10674 For instance, a case statement in a variant record would be
10675 replaced by the relevant components based on the actual
10676 value of the discriminants. */
10677 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10678 && dynamic_template_type (type) != NULL)
10679 || (TYPE_CODE (type) == TYPE_CODE_UNION
10680 && ada_find_parallel_type (type, "___XVU") != NULL))
10681 {
10682 *pos += 4;
10683 return value_zero (to_static_fixed_type (type), not_lval);
10684 }
4c4b4cd2 10685 }
da5c522f
JB
10686
10687 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10688 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10689
10690 case OP_FUNCALL:
10691 (*pos) += 2;
10692
10693 /* Allocate arg vector, including space for the function to be
10694 called in argvec[0] and a terminating NULL. */
10695 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10696 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10697
10698 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10699 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10700 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10701 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10702 else
10703 {
10704 for (tem = 0; tem <= nargs; tem += 1)
10705 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 argvec[tem] = 0;
10707
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 }
10711
ad82864c
JB
10712 if (ada_is_constrained_packed_array_type
10713 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10714 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10715 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10716 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10717 /* This is a packed array that has already been fixed, and
10718 therefore already coerced to a simple array. Nothing further
10719 to do. */
10720 ;
e6c2c623
PMR
10721 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10722 {
10723 /* Make sure we dereference references so that all the code below
10724 feels like it's really handling the referenced value. Wrapping
10725 types (for alignment) may be there, so make sure we strip them as
10726 well. */
10727 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10728 }
10729 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10730 && VALUE_LVAL (argvec[0]) == lval_memory)
10731 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10732
df407dfe 10733 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10734
10735 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10736 them. So, if this is an array typedef (encoding use for array
10737 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10738 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10739 type = ada_typedef_target_type (type);
10740
4c4b4cd2
PH
10741 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10742 {
61ee279c 10743 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10744 {
10745 case TYPE_CODE_FUNC:
61ee279c 10746 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10747 break;
10748 case TYPE_CODE_ARRAY:
10749 break;
10750 case TYPE_CODE_STRUCT:
10751 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10752 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10753 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10754 break;
10755 default:
323e0a4a 10756 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10757 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10758 break;
10759 }
10760 }
10761
10762 switch (TYPE_CODE (type))
10763 {
10764 case TYPE_CODE_FUNC:
10765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10766 {
10767 struct type *rtype = TYPE_TARGET_TYPE (type);
10768
10769 if (TYPE_GNU_IFUNC (type))
10770 return allocate_value (TYPE_TARGET_TYPE (rtype));
10771 return allocate_value (rtype);
10772 }
4c4b4cd2 10773 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10774 case TYPE_CODE_INTERNAL_FUNCTION:
10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 /* We don't know anything about what the internal
10777 function might return, but we have to return
10778 something. */
10779 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10780 not_lval);
10781 else
10782 return call_internal_function (exp->gdbarch, exp->language_defn,
10783 argvec[0], nargs, argvec + 1);
10784
4c4b4cd2
PH
10785 case TYPE_CODE_STRUCT:
10786 {
10787 int arity;
10788
4c4b4cd2
PH
10789 arity = ada_array_arity (type);
10790 type = ada_array_element_type (type, nargs);
10791 if (type == NULL)
323e0a4a 10792 error (_("cannot subscript or call a record"));
4c4b4cd2 10793 if (arity != nargs)
323e0a4a 10794 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10796 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10797 return
10798 unwrap_value (ada_value_subscript
10799 (argvec[0], nargs, argvec + 1));
10800 }
10801 case TYPE_CODE_ARRAY:
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10803 {
10804 type = ada_array_element_type (type, nargs);
10805 if (type == NULL)
323e0a4a 10806 error (_("element type of array unknown"));
4c4b4cd2 10807 else
0a07e705 10808 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10809 }
10810 return
10811 unwrap_value (ada_value_subscript
10812 (ada_coerce_to_simple_array (argvec[0]),
10813 nargs, argvec + 1));
10814 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
deede10c 10817 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10818 type = ada_array_element_type (type, nargs);
10819 if (type == NULL)
323e0a4a 10820 error (_("element type of array unknown"));
4c4b4cd2 10821 else
0a07e705 10822 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10823 }
10824 return
deede10c
JB
10825 unwrap_value (ada_value_ptr_subscript (argvec[0],
10826 nargs, argvec + 1));
4c4b4cd2
PH
10827
10828 default:
e1d5a0d2
PH
10829 error (_("Attempt to index or call something other than an "
10830 "array or function"));
4c4b4cd2
PH
10831 }
10832
10833 case TERNOP_SLICE:
10834 {
10835 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 struct value *low_bound_val =
10837 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10838 struct value *high_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 LONGEST low_bound;
10841 LONGEST high_bound;
5b4ee69b 10842
994b9211
AC
10843 low_bound_val = coerce_ref (low_bound_val);
10844 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10845 low_bound = value_as_long (low_bound_val);
10846 high_bound = value_as_long (high_bound_val);
963a6417 10847
4c4b4cd2
PH
10848 if (noside == EVAL_SKIP)
10849 goto nosideret;
10850
4c4b4cd2
PH
10851 /* If this is a reference to an aligner type, then remove all
10852 the aligners. */
df407dfe
AC
10853 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10854 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10855 TYPE_TARGET_TYPE (value_type (array)) =
10856 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10857
ad82864c 10858 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10859 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10860
10861 /* If this is a reference to an array or an array lvalue,
10862 convert to a pointer. */
df407dfe
AC
10863 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10864 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10865 && VALUE_LVAL (array) == lval_memory))
10866 array = value_addr (array);
10867
1265e4aa 10868 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10869 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10870 (value_type (array))))
0b5d8877 10871 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10872
10873 array = ada_coerce_to_simple_array_ptr (array);
10874
714e53ab
PH
10875 /* If we have more than one level of pointer indirection,
10876 dereference the value until we get only one level. */
df407dfe
AC
10877 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10878 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10879 == TYPE_CODE_PTR))
10880 array = value_ind (array);
10881
10882 /* Make sure we really do have an array type before going further,
10883 to avoid a SEGV when trying to get the index type or the target
10884 type later down the road if the debug info generated by
10885 the compiler is incorrect or incomplete. */
df407dfe 10886 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10887 error (_("cannot take slice of non-array"));
714e53ab 10888
828292f2
JB
10889 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10890 == TYPE_CODE_PTR)
4c4b4cd2 10891 {
828292f2
JB
10892 struct type *type0 = ada_check_typedef (value_type (array));
10893
0b5d8877 10894 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10895 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10896 else
10897 {
10898 struct type *arr_type0 =
828292f2 10899 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10900
f5938064
JG
10901 return ada_value_slice_from_ptr (array, arr_type0,
10902 longest_to_int (low_bound),
10903 longest_to_int (high_bound));
4c4b4cd2
PH
10904 }
10905 }
10906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10907 return array;
10908 else if (high_bound < low_bound)
df407dfe 10909 return empty_array (value_type (array), low_bound);
4c4b4cd2 10910 else
529cad9c
PH
10911 return ada_value_slice (array, longest_to_int (low_bound),
10912 longest_to_int (high_bound));
4c4b4cd2 10913 }
14f9c5c9 10914
4c4b4cd2
PH
10915 case UNOP_IN_RANGE:
10916 (*pos) += 2;
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10918 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10919
14f9c5c9 10920 if (noside == EVAL_SKIP)
4c4b4cd2 10921 goto nosideret;
14f9c5c9 10922
4c4b4cd2
PH
10923 switch (TYPE_CODE (type))
10924 {
10925 default:
e1d5a0d2
PH
10926 lim_warning (_("Membership test incompletely implemented; "
10927 "always returns true"));
fbb06eb1
UW
10928 type = language_bool_type (exp->language_defn, exp->gdbarch);
10929 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10930
10931 case TYPE_CODE_RANGE:
030b4912
UW
10932 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10933 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10936 type = language_bool_type (exp->language_defn, exp->gdbarch);
10937 return
10938 value_from_longest (type,
4c4b4cd2
PH
10939 (value_less (arg1, arg3)
10940 || value_equal (arg1, arg3))
10941 && (value_less (arg2, arg1)
10942 || value_equal (arg2, arg1)));
10943 }
10944
10945 case BINOP_IN_BOUNDS:
14f9c5c9 10946 (*pos) += 2;
4c4b4cd2
PH
10947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10949
4c4b4cd2
PH
10950 if (noside == EVAL_SKIP)
10951 goto nosideret;
14f9c5c9 10952
4c4b4cd2 10953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10954 {
10955 type = language_bool_type (exp->language_defn, exp->gdbarch);
10956 return value_zero (type, not_lval);
10957 }
14f9c5c9 10958
4c4b4cd2 10959 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10960
1eea4ebd
UW
10961 type = ada_index_type (value_type (arg2), tem, "range");
10962 if (!type)
10963 type = value_type (arg1);
14f9c5c9 10964
1eea4ebd
UW
10965 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10966 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10967
f44316fa
UW
10968 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10970 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10971 return
fbb06eb1 10972 value_from_longest (type,
4c4b4cd2
PH
10973 (value_less (arg1, arg3)
10974 || value_equal (arg1, arg3))
10975 && (value_less (arg2, arg1)
10976 || value_equal (arg2, arg1)));
10977
10978 case TERNOP_IN_RANGE:
10979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982
10983 if (noside == EVAL_SKIP)
10984 goto nosideret;
10985
f44316fa
UW
10986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10988 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10989 return
fbb06eb1 10990 value_from_longest (type,
4c4b4cd2
PH
10991 (value_less (arg1, arg3)
10992 || value_equal (arg1, arg3))
10993 && (value_less (arg2, arg1)
10994 || value_equal (arg2, arg1)));
10995
10996 case OP_ATR_FIRST:
10997 case OP_ATR_LAST:
10998 case OP_ATR_LENGTH:
10999 {
76a01679 11000 struct type *type_arg;
5b4ee69b 11001
76a01679
JB
11002 if (exp->elts[*pos].opcode == OP_TYPE)
11003 {
11004 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11005 arg1 = NULL;
5bc23cb3 11006 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11007 }
11008 else
11009 {
11010 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 type_arg = NULL;
11012 }
11013
11014 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11015 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11016 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11017 *pos += 4;
11018
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021
11022 if (type_arg == NULL)
11023 {
11024 arg1 = ada_coerce_ref (arg1);
11025
ad82864c 11026 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11027 arg1 = ada_coerce_to_simple_array (arg1);
11028
aa4fb036 11029 if (op == OP_ATR_LENGTH)
1eea4ebd 11030 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11031 else
11032 {
11033 type = ada_index_type (value_type (arg1), tem,
11034 ada_attribute_name (op));
11035 if (type == NULL)
11036 type = builtin_type (exp->gdbarch)->builtin_int;
11037 }
76a01679
JB
11038
11039 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11040 return allocate_value (type);
76a01679
JB
11041
11042 switch (op)
11043 {
11044 default: /* Should never happen. */
323e0a4a 11045 error (_("unexpected attribute encountered"));
76a01679 11046 case OP_ATR_FIRST:
1eea4ebd
UW
11047 return value_from_longest
11048 (type, ada_array_bound (arg1, tem, 0));
76a01679 11049 case OP_ATR_LAST:
1eea4ebd
UW
11050 return value_from_longest
11051 (type, ada_array_bound (arg1, tem, 1));
76a01679 11052 case OP_ATR_LENGTH:
1eea4ebd
UW
11053 return value_from_longest
11054 (type, ada_array_length (arg1, tem));
76a01679
JB
11055 }
11056 }
11057 else if (discrete_type_p (type_arg))
11058 {
11059 struct type *range_type;
0d5cff50 11060 const char *name = ada_type_name (type_arg);
5b4ee69b 11061
76a01679
JB
11062 range_type = NULL;
11063 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11064 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11065 if (range_type == NULL)
11066 range_type = type_arg;
11067 switch (op)
11068 {
11069 default:
323e0a4a 11070 error (_("unexpected attribute encountered"));
76a01679 11071 case OP_ATR_FIRST:
690cc4eb 11072 return value_from_longest
43bbcdc2 11073 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11074 case OP_ATR_LAST:
690cc4eb 11075 return value_from_longest
43bbcdc2 11076 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11077 case OP_ATR_LENGTH:
323e0a4a 11078 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11079 }
11080 }
11081 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11082 error (_("unimplemented type attribute"));
76a01679
JB
11083 else
11084 {
11085 LONGEST low, high;
11086
ad82864c
JB
11087 if (ada_is_constrained_packed_array_type (type_arg))
11088 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11089
aa4fb036 11090 if (op == OP_ATR_LENGTH)
1eea4ebd 11091 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11092 else
11093 {
11094 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11095 if (type == NULL)
11096 type = builtin_type (exp->gdbarch)->builtin_int;
11097 }
1eea4ebd 11098
76a01679
JB
11099 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11100 return allocate_value (type);
11101
11102 switch (op)
11103 {
11104 default:
323e0a4a 11105 error (_("unexpected attribute encountered"));
76a01679 11106 case OP_ATR_FIRST:
1eea4ebd 11107 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11108 return value_from_longest (type, low);
11109 case OP_ATR_LAST:
1eea4ebd 11110 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11111 return value_from_longest (type, high);
11112 case OP_ATR_LENGTH:
1eea4ebd
UW
11113 low = ada_array_bound_from_type (type_arg, tem, 0);
11114 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11115 return value_from_longest (type, high - low + 1);
11116 }
11117 }
14f9c5c9
AS
11118 }
11119
4c4b4cd2
PH
11120 case OP_ATR_TAG:
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 if (noside == EVAL_SKIP)
76a01679 11123 goto nosideret;
4c4b4cd2
PH
11124
11125 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11126 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11127
11128 return ada_value_tag (arg1);
11129
11130 case OP_ATR_MIN:
11131 case OP_ATR_MAX:
11132 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
76a01679 11136 goto nosideret;
d2e4a39e 11137 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11138 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11139 else
f44316fa
UW
11140 {
11141 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11142 return value_binop (arg1, arg2,
11143 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11144 }
14f9c5c9 11145
4c4b4cd2
PH
11146 case OP_ATR_MODULUS:
11147 {
31dedfee 11148 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11149
5b4ee69b 11150 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
4c4b4cd2 11153
76a01679 11154 if (!ada_is_modular_type (type_arg))
323e0a4a 11155 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11156
76a01679
JB
11157 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11158 ada_modulus (type_arg));
4c4b4cd2
PH
11159 }
11160
11161
11162 case OP_ATR_POS:
11163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
76a01679 11166 goto nosideret;
3cb382c9
UW
11167 type = builtin_type (exp->gdbarch)->builtin_int;
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11169 return value_zero (type, not_lval);
14f9c5c9 11170 else
3cb382c9 11171 return value_pos_atr (type, arg1);
14f9c5c9 11172
4c4b4cd2
PH
11173 case OP_ATR_SIZE:
11174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11175 type = value_type (arg1);
11176
11177 /* If the argument is a reference, then dereference its type, since
11178 the user is really asking for the size of the actual object,
11179 not the size of the pointer. */
11180 if (TYPE_CODE (type) == TYPE_CODE_REF)
11181 type = TYPE_TARGET_TYPE (type);
11182
4c4b4cd2 11183 if (noside == EVAL_SKIP)
76a01679 11184 goto nosideret;
4c4b4cd2 11185 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11186 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11187 else
22601c15 11188 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11189 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11190
11191 case OP_ATR_VAL:
11192 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11194 type = exp->elts[pc + 2].type;
14f9c5c9 11195 if (noside == EVAL_SKIP)
76a01679 11196 goto nosideret;
4c4b4cd2 11197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11198 return value_zero (type, not_lval);
4c4b4cd2 11199 else
76a01679 11200 return value_val_atr (type, arg1);
4c4b4cd2
PH
11201
11202 case BINOP_EXP:
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11205 if (noside == EVAL_SKIP)
11206 goto nosideret;
11207 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11208 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11209 else
f44316fa
UW
11210 {
11211 /* For integer exponentiation operations,
11212 only promote the first argument. */
11213 if (is_integral_type (value_type (arg2)))
11214 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11215 else
11216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11217
11218 return value_binop (arg1, arg2, op);
11219 }
4c4b4cd2
PH
11220
11221 case UNOP_PLUS:
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 if (noside == EVAL_SKIP)
11224 goto nosideret;
11225 else
11226 return arg1;
11227
11228 case UNOP_ABS:
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
f44316fa 11232 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11233 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11234 return value_neg (arg1);
14f9c5c9 11235 else
4c4b4cd2 11236 return arg1;
14f9c5c9
AS
11237
11238 case UNOP_IND:
5ec18f2b 11239 preeval_pos = *pos;
6b0d7253 11240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11241 if (noside == EVAL_SKIP)
4c4b4cd2 11242 goto nosideret;
df407dfe 11243 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11245 {
11246 if (ada_is_array_descriptor_type (type))
11247 /* GDB allows dereferencing GNAT array descriptors. */
11248 {
11249 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11250
4c4b4cd2 11251 if (arrType == NULL)
323e0a4a 11252 error (_("Attempt to dereference null array pointer."));
00a4c844 11253 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11254 }
11255 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11256 || TYPE_CODE (type) == TYPE_CODE_REF
11257 /* In C you can dereference an array to get the 1st elt. */
11258 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11259 {
5ec18f2b
JG
11260 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11261 only be determined by inspecting the object's tag.
11262 This means that we need to evaluate completely the
11263 expression in order to get its type. */
11264
023db19c
JB
11265 if ((TYPE_CODE (type) == TYPE_CODE_REF
11266 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11267 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11268 {
11269 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11270 EVAL_NORMAL);
11271 type = value_type (ada_value_ind (arg1));
11272 }
11273 else
11274 {
11275 type = to_static_fixed_type
11276 (ada_aligned_type
11277 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11278 }
c1b5a1a6 11279 ada_ensure_varsize_limit (type);
714e53ab
PH
11280 return value_zero (type, lval_memory);
11281 }
4c4b4cd2 11282 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11283 {
11284 /* GDB allows dereferencing an int. */
11285 if (expect_type == NULL)
11286 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11287 lval_memory);
11288 else
11289 {
11290 expect_type =
11291 to_static_fixed_type (ada_aligned_type (expect_type));
11292 return value_zero (expect_type, lval_memory);
11293 }
11294 }
4c4b4cd2 11295 else
323e0a4a 11296 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11297 }
0963b4bd 11298 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11299 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11300
96967637
JB
11301 if (TYPE_CODE (type) == TYPE_CODE_INT)
11302 /* GDB allows dereferencing an int. If we were given
11303 the expect_type, then use that as the target type.
11304 Otherwise, assume that the target type is an int. */
11305 {
11306 if (expect_type != NULL)
11307 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11308 arg1));
11309 else
11310 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11311 (CORE_ADDR) value_as_address (arg1));
11312 }
6b0d7253 11313
4c4b4cd2
PH
11314 if (ada_is_array_descriptor_type (type))
11315 /* GDB allows dereferencing GNAT array descriptors. */
11316 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11317 else
4c4b4cd2 11318 return ada_value_ind (arg1);
14f9c5c9
AS
11319
11320 case STRUCTOP_STRUCT:
11321 tem = longest_to_int (exp->elts[pc + 1].longconst);
11322 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11323 preeval_pos = *pos;
14f9c5c9
AS
11324 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11325 if (noside == EVAL_SKIP)
4c4b4cd2 11326 goto nosideret;
14f9c5c9 11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11328 {
df407dfe 11329 struct type *type1 = value_type (arg1);
5b4ee69b 11330
76a01679
JB
11331 if (ada_is_tagged_type (type1, 1))
11332 {
11333 type = ada_lookup_struct_elt_type (type1,
11334 &exp->elts[pc + 2].string,
11335 1, 1, NULL);
5ec18f2b
JG
11336
11337 /* If the field is not found, check if it exists in the
11338 extension of this object's type. This means that we
11339 need to evaluate completely the expression. */
11340
76a01679 11341 if (type == NULL)
5ec18f2b
JG
11342 {
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11344 EVAL_NORMAL);
11345 arg1 = ada_value_struct_elt (arg1,
11346 &exp->elts[pc + 2].string,
11347 0);
11348 arg1 = unwrap_value (arg1);
11349 type = value_type (ada_to_fixed_value (arg1));
11350 }
76a01679
JB
11351 }
11352 else
11353 type =
11354 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11355 0, NULL);
11356
11357 return value_zero (ada_aligned_type (type), lval_memory);
11358 }
14f9c5c9 11359 else
284614f0
JB
11360 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11361 arg1 = unwrap_value (arg1);
11362 return ada_to_fixed_value (arg1);
11363
14f9c5c9 11364 case OP_TYPE:
4c4b4cd2
PH
11365 /* The value is not supposed to be used. This is here to make it
11366 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11367 (*pos) += 2;
11368 if (noside == EVAL_SKIP)
4c4b4cd2 11369 goto nosideret;
14f9c5c9 11370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11371 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11372 else
323e0a4a 11373 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11374
11375 case OP_AGGREGATE:
11376 case OP_CHOICES:
11377 case OP_OTHERS:
11378 case OP_DISCRETE_RANGE:
11379 case OP_POSITIONAL:
11380 case OP_NAME:
11381 if (noside == EVAL_NORMAL)
11382 switch (op)
11383 {
11384 case OP_NAME:
11385 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11386 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11387 case OP_AGGREGATE:
11388 error (_("Aggregates only allowed on the right of an assignment"));
11389 default:
0963b4bd
MS
11390 internal_error (__FILE__, __LINE__,
11391 _("aggregate apparently mangled"));
52ce6436
PH
11392 }
11393
11394 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11395 *pos += oplen - 1;
11396 for (tem = 0; tem < nargs; tem += 1)
11397 ada_evaluate_subexp (NULL, exp, pos, noside);
11398 goto nosideret;
14f9c5c9
AS
11399 }
11400
11401nosideret:
22601c15 11402 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11403}
14f9c5c9 11404\f
d2e4a39e 11405
4c4b4cd2 11406 /* Fixed point */
14f9c5c9
AS
11407
11408/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11409 type name that encodes the 'small and 'delta information.
4c4b4cd2 11410 Otherwise, return NULL. */
14f9c5c9 11411
d2e4a39e 11412static const char *
ebf56fd3 11413fixed_type_info (struct type *type)
14f9c5c9 11414{
d2e4a39e 11415 const char *name = ada_type_name (type);
14f9c5c9
AS
11416 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11417
d2e4a39e
AS
11418 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11419 {
14f9c5c9 11420 const char *tail = strstr (name, "___XF_");
5b4ee69b 11421
14f9c5c9 11422 if (tail == NULL)
4c4b4cd2 11423 return NULL;
d2e4a39e 11424 else
4c4b4cd2 11425 return tail + 5;
14f9c5c9
AS
11426 }
11427 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11428 return fixed_type_info (TYPE_TARGET_TYPE (type));
11429 else
11430 return NULL;
11431}
11432
4c4b4cd2 11433/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11434
11435int
ebf56fd3 11436ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11437{
11438 return fixed_type_info (type) != NULL;
11439}
11440
4c4b4cd2
PH
11441/* Return non-zero iff TYPE represents a System.Address type. */
11442
11443int
11444ada_is_system_address_type (struct type *type)
11445{
11446 return (TYPE_NAME (type)
11447 && strcmp (TYPE_NAME (type), "system__address") == 0);
11448}
11449
14f9c5c9
AS
11450/* Assuming that TYPE is the representation of an Ada fixed-point
11451 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11452 delta cannot be determined. */
14f9c5c9
AS
11453
11454DOUBLEST
ebf56fd3 11455ada_delta (struct type *type)
14f9c5c9
AS
11456{
11457 const char *encoding = fixed_type_info (type);
facc390f 11458 DOUBLEST num, den;
14f9c5c9 11459
facc390f
JB
11460 /* Strictly speaking, num and den are encoded as integer. However,
11461 they may not fit into a long, and they will have to be converted
11462 to DOUBLEST anyway. So scan them as DOUBLEST. */
11463 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11464 &num, &den) < 2)
14f9c5c9 11465 return -1.0;
d2e4a39e 11466 else
facc390f 11467 return num / den;
14f9c5c9
AS
11468}
11469
11470/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11471 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11472
11473static DOUBLEST
ebf56fd3 11474scaling_factor (struct type *type)
14f9c5c9
AS
11475{
11476 const char *encoding = fixed_type_info (type);
facc390f 11477 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11478 int n;
d2e4a39e 11479
facc390f
JB
11480 /* Strictly speaking, num's and den's are encoded as integer. However,
11481 they may not fit into a long, and they will have to be converted
11482 to DOUBLEST anyway. So scan them as DOUBLEST. */
11483 n = sscanf (encoding,
11484 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11485 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11486 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11487
11488 if (n < 2)
11489 return 1.0;
11490 else if (n == 4)
facc390f 11491 return num1 / den1;
d2e4a39e 11492 else
facc390f 11493 return num0 / den0;
14f9c5c9
AS
11494}
11495
11496
11497/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11498 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11499
11500DOUBLEST
ebf56fd3 11501ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11502{
d2e4a39e 11503 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11504}
11505
4c4b4cd2
PH
11506/* The representation of a fixed-point value of type TYPE
11507 corresponding to the value X. */
14f9c5c9
AS
11508
11509LONGEST
ebf56fd3 11510ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11511{
11512 return (LONGEST) (x / scaling_factor (type) + 0.5);
11513}
11514
14f9c5c9 11515\f
d2e4a39e 11516
4c4b4cd2 11517 /* Range types */
14f9c5c9
AS
11518
11519/* Scan STR beginning at position K for a discriminant name, and
11520 return the value of that discriminant field of DVAL in *PX. If
11521 PNEW_K is not null, put the position of the character beyond the
11522 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11523 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11524
11525static int
108d56a4 11526scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11527 int *pnew_k)
14f9c5c9
AS
11528{
11529 static char *bound_buffer = NULL;
11530 static size_t bound_buffer_len = 0;
5da1a4d3 11531 const char *pstart, *pend, *bound;
d2e4a39e 11532 struct value *bound_val;
14f9c5c9
AS
11533
11534 if (dval == NULL || str == NULL || str[k] == '\0')
11535 return 0;
11536
5da1a4d3
SM
11537 pstart = str + k;
11538 pend = strstr (pstart, "__");
14f9c5c9
AS
11539 if (pend == NULL)
11540 {
5da1a4d3 11541 bound = pstart;
14f9c5c9
AS
11542 k += strlen (bound);
11543 }
d2e4a39e 11544 else
14f9c5c9 11545 {
5da1a4d3
SM
11546 int len = pend - pstart;
11547
11548 /* Strip __ and beyond. */
11549 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11550 strncpy (bound_buffer, pstart, len);
11551 bound_buffer[len] = '\0';
11552
14f9c5c9 11553 bound = bound_buffer;
d2e4a39e 11554 k = pend - str;
14f9c5c9 11555 }
d2e4a39e 11556
df407dfe 11557 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11558 if (bound_val == NULL)
11559 return 0;
11560
11561 *px = value_as_long (bound_val);
11562 if (pnew_k != NULL)
11563 *pnew_k = k;
11564 return 1;
11565}
11566
11567/* Value of variable named NAME in the current environment. If
11568 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11569 otherwise causes an error with message ERR_MSG. */
11570
d2e4a39e
AS
11571static struct value *
11572get_var_value (char *name, char *err_msg)
14f9c5c9 11573{
d12307c1 11574 struct block_symbol *syms;
14f9c5c9
AS
11575 int nsyms;
11576
4c4b4cd2 11577 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11578 &syms);
14f9c5c9
AS
11579
11580 if (nsyms != 1)
11581 {
11582 if (err_msg == NULL)
4c4b4cd2 11583 return 0;
14f9c5c9 11584 else
8a3fe4f8 11585 error (("%s"), err_msg);
14f9c5c9
AS
11586 }
11587
d12307c1 11588 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11589}
d2e4a39e 11590
14f9c5c9 11591/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11592 no such variable found, returns 0, and sets *FLAG to 0. If
11593 successful, sets *FLAG to 1. */
11594
14f9c5c9 11595LONGEST
4c4b4cd2 11596get_int_var_value (char *name, int *flag)
14f9c5c9 11597{
4c4b4cd2 11598 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11599
14f9c5c9
AS
11600 if (var_val == 0)
11601 {
11602 if (flag != NULL)
4c4b4cd2 11603 *flag = 0;
14f9c5c9
AS
11604 return 0;
11605 }
11606 else
11607 {
11608 if (flag != NULL)
4c4b4cd2 11609 *flag = 1;
14f9c5c9
AS
11610 return value_as_long (var_val);
11611 }
11612}
d2e4a39e 11613
14f9c5c9
AS
11614
11615/* Return a range type whose base type is that of the range type named
11616 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11617 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11618 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11619 corresponding range type from debug information; fall back to using it
11620 if symbol lookup fails. If a new type must be created, allocate it
11621 like ORIG_TYPE was. The bounds information, in general, is encoded
11622 in NAME, the base type given in the named range type. */
14f9c5c9 11623
d2e4a39e 11624static struct type *
28c85d6c 11625to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11626{
0d5cff50 11627 const char *name;
14f9c5c9 11628 struct type *base_type;
108d56a4 11629 const char *subtype_info;
14f9c5c9 11630
28c85d6c
JB
11631 gdb_assert (raw_type != NULL);
11632 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11633
1ce677a4 11634 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11635 base_type = TYPE_TARGET_TYPE (raw_type);
11636 else
11637 base_type = raw_type;
11638
28c85d6c 11639 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11640 subtype_info = strstr (name, "___XD");
11641 if (subtype_info == NULL)
690cc4eb 11642 {
43bbcdc2
PH
11643 LONGEST L = ada_discrete_type_low_bound (raw_type);
11644 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11645
690cc4eb
PH
11646 if (L < INT_MIN || U > INT_MAX)
11647 return raw_type;
11648 else
0c9c3474
SA
11649 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11650 L, U);
690cc4eb 11651 }
14f9c5c9
AS
11652 else
11653 {
11654 static char *name_buf = NULL;
11655 static size_t name_len = 0;
11656 int prefix_len = subtype_info - name;
11657 LONGEST L, U;
11658 struct type *type;
108d56a4 11659 const char *bounds_str;
14f9c5c9
AS
11660 int n;
11661
11662 GROW_VECT (name_buf, name_len, prefix_len + 5);
11663 strncpy (name_buf, name, prefix_len);
11664 name_buf[prefix_len] = '\0';
11665
11666 subtype_info += 5;
11667 bounds_str = strchr (subtype_info, '_');
11668 n = 1;
11669
d2e4a39e 11670 if (*subtype_info == 'L')
4c4b4cd2
PH
11671 {
11672 if (!ada_scan_number (bounds_str, n, &L, &n)
11673 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11674 return raw_type;
11675 if (bounds_str[n] == '_')
11676 n += 2;
0963b4bd 11677 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11678 n += 1;
11679 subtype_info += 1;
11680 }
d2e4a39e 11681 else
4c4b4cd2
PH
11682 {
11683 int ok;
5b4ee69b 11684
4c4b4cd2
PH
11685 strcpy (name_buf + prefix_len, "___L");
11686 L = get_int_var_value (name_buf, &ok);
11687 if (!ok)
11688 {
323e0a4a 11689 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11690 L = 1;
11691 }
11692 }
14f9c5c9 11693
d2e4a39e 11694 if (*subtype_info == 'U')
4c4b4cd2
PH
11695 {
11696 if (!ada_scan_number (bounds_str, n, &U, &n)
11697 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11698 return raw_type;
11699 }
d2e4a39e 11700 else
4c4b4cd2
PH
11701 {
11702 int ok;
5b4ee69b 11703
4c4b4cd2
PH
11704 strcpy (name_buf + prefix_len, "___U");
11705 U = get_int_var_value (name_buf, &ok);
11706 if (!ok)
11707 {
323e0a4a 11708 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11709 U = L;
11710 }
11711 }
14f9c5c9 11712
0c9c3474
SA
11713 type = create_static_range_type (alloc_type_copy (raw_type),
11714 base_type, L, U);
d2e4a39e 11715 TYPE_NAME (type) = name;
14f9c5c9
AS
11716 return type;
11717 }
11718}
11719
4c4b4cd2
PH
11720/* True iff NAME is the name of a range type. */
11721
14f9c5c9 11722int
d2e4a39e 11723ada_is_range_type_name (const char *name)
14f9c5c9
AS
11724{
11725 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11726}
14f9c5c9 11727\f
d2e4a39e 11728
4c4b4cd2
PH
11729 /* Modular types */
11730
11731/* True iff TYPE is an Ada modular type. */
14f9c5c9 11732
14f9c5c9 11733int
d2e4a39e 11734ada_is_modular_type (struct type *type)
14f9c5c9 11735{
18af8284 11736 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11737
11738 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11739 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11740 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11741}
11742
4c4b4cd2
PH
11743/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11744
61ee279c 11745ULONGEST
0056e4d5 11746ada_modulus (struct type *type)
14f9c5c9 11747{
43bbcdc2 11748 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11749}
d2e4a39e 11750\f
f7f9143b
JB
11751
11752/* Ada exception catchpoint support:
11753 ---------------------------------
11754
11755 We support 3 kinds of exception catchpoints:
11756 . catchpoints on Ada exceptions
11757 . catchpoints on unhandled Ada exceptions
11758 . catchpoints on failed assertions
11759
11760 Exceptions raised during failed assertions, or unhandled exceptions
11761 could perfectly be caught with the general catchpoint on Ada exceptions.
11762 However, we can easily differentiate these two special cases, and having
11763 the option to distinguish these two cases from the rest can be useful
11764 to zero-in on certain situations.
11765
11766 Exception catchpoints are a specialized form of breakpoint,
11767 since they rely on inserting breakpoints inside known routines
11768 of the GNAT runtime. The implementation therefore uses a standard
11769 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11770 of breakpoint_ops.
11771
0259addd
JB
11772 Support in the runtime for exception catchpoints have been changed
11773 a few times already, and these changes affect the implementation
11774 of these catchpoints. In order to be able to support several
11775 variants of the runtime, we use a sniffer that will determine
28010a5d 11776 the runtime variant used by the program being debugged. */
f7f9143b 11777
82eacd52
JB
11778/* Ada's standard exceptions.
11779
11780 The Ada 83 standard also defined Numeric_Error. But there so many
11781 situations where it was unclear from the Ada 83 Reference Manual
11782 (RM) whether Constraint_Error or Numeric_Error should be raised,
11783 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11784 Interpretation saying that anytime the RM says that Numeric_Error
11785 should be raised, the implementation may raise Constraint_Error.
11786 Ada 95 went one step further and pretty much removed Numeric_Error
11787 from the list of standard exceptions (it made it a renaming of
11788 Constraint_Error, to help preserve compatibility when compiling
11789 an Ada83 compiler). As such, we do not include Numeric_Error from
11790 this list of standard exceptions. */
3d0b0fa3
JB
11791
11792static char *standard_exc[] = {
11793 "constraint_error",
11794 "program_error",
11795 "storage_error",
11796 "tasking_error"
11797};
11798
0259addd
JB
11799typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11800
11801/* A structure that describes how to support exception catchpoints
11802 for a given executable. */
11803
11804struct exception_support_info
11805{
11806 /* The name of the symbol to break on in order to insert
11807 a catchpoint on exceptions. */
11808 const char *catch_exception_sym;
11809
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on unhandled exceptions. */
11812 const char *catch_exception_unhandled_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on failed assertions. */
11816 const char *catch_assert_sym;
11817
11818 /* Assuming that the inferior just triggered an unhandled exception
11819 catchpoint, this function is responsible for returning the address
11820 in inferior memory where the name of that exception is stored.
11821 Return zero if the address could not be computed. */
11822 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11823};
11824
11825static CORE_ADDR ada_unhandled_exception_name_addr (void);
11826static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11827
11828/* The following exception support info structure describes how to
11829 implement exception catchpoints with the latest version of the
11830 Ada runtime (as of 2007-03-06). */
11831
11832static const struct exception_support_info default_exception_support_info =
11833{
11834 "__gnat_debug_raise_exception", /* catch_exception_sym */
11835 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11836 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11837 ada_unhandled_exception_name_addr
11838};
11839
11840/* The following exception support info structure describes how to
11841 implement exception catchpoints with a slightly older version
11842 of the Ada runtime. */
11843
11844static const struct exception_support_info exception_support_info_fallback =
11845{
11846 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11847 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11848 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11849 ada_unhandled_exception_name_addr_from_raise
11850};
11851
f17011e0
JB
11852/* Return nonzero if we can detect the exception support routines
11853 described in EINFO.
11854
11855 This function errors out if an abnormal situation is detected
11856 (for instance, if we find the exception support routines, but
11857 that support is found to be incomplete). */
11858
11859static int
11860ada_has_this_exception_support (const struct exception_support_info *einfo)
11861{
11862 struct symbol *sym;
11863
11864 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11865 that should be compiled with debugging information. As a result, we
11866 expect to find that symbol in the symtabs. */
11867
11868 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11869 if (sym == NULL)
a6af7abe
JB
11870 {
11871 /* Perhaps we did not find our symbol because the Ada runtime was
11872 compiled without debugging info, or simply stripped of it.
11873 It happens on some GNU/Linux distributions for instance, where
11874 users have to install a separate debug package in order to get
11875 the runtime's debugging info. In that situation, let the user
11876 know why we cannot insert an Ada exception catchpoint.
11877
11878 Note: Just for the purpose of inserting our Ada exception
11879 catchpoint, we could rely purely on the associated minimal symbol.
11880 But we would be operating in degraded mode anyway, since we are
11881 still lacking the debugging info needed later on to extract
11882 the name of the exception being raised (this name is printed in
11883 the catchpoint message, and is also used when trying to catch
11884 a specific exception). We do not handle this case for now. */
3b7344d5 11885 struct bound_minimal_symbol msym
1c8e84b0
JB
11886 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11887
3b7344d5 11888 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11889 error (_("Your Ada runtime appears to be missing some debugging "
11890 "information.\nCannot insert Ada exception catchpoint "
11891 "in this configuration."));
11892
11893 return 0;
11894 }
f17011e0
JB
11895
11896 /* Make sure that the symbol we found corresponds to a function. */
11897
11898 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11899 error (_("Symbol \"%s\" is not a function (class = %d)"),
11900 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11901
11902 return 1;
11903}
11904
0259addd
JB
11905/* Inspect the Ada runtime and determine which exception info structure
11906 should be used to provide support for exception catchpoints.
11907
3eecfa55
JB
11908 This function will always set the per-inferior exception_info,
11909 or raise an error. */
0259addd
JB
11910
11911static void
11912ada_exception_support_info_sniffer (void)
11913{
3eecfa55 11914 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11915
11916 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11917 if (data->exception_info != NULL)
0259addd
JB
11918 return;
11919
11920 /* Check the latest (default) exception support info. */
f17011e0 11921 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11922 {
3eecfa55 11923 data->exception_info = &default_exception_support_info;
0259addd
JB
11924 return;
11925 }
11926
11927 /* Try our fallback exception suport info. */
f17011e0 11928 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11929 {
3eecfa55 11930 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11931 return;
11932 }
11933
11934 /* Sometimes, it is normal for us to not be able to find the routine
11935 we are looking for. This happens when the program is linked with
11936 the shared version of the GNAT runtime, and the program has not been
11937 started yet. Inform the user of these two possible causes if
11938 applicable. */
11939
ccefe4c4 11940 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11941 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11942
11943 /* If the symbol does not exist, then check that the program is
11944 already started, to make sure that shared libraries have been
11945 loaded. If it is not started, this may mean that the symbol is
11946 in a shared library. */
11947
11948 if (ptid_get_pid (inferior_ptid) == 0)
11949 error (_("Unable to insert catchpoint. Try to start the program first."));
11950
11951 /* At this point, we know that we are debugging an Ada program and
11952 that the inferior has been started, but we still are not able to
0963b4bd 11953 find the run-time symbols. That can mean that we are in
0259addd
JB
11954 configurable run time mode, or that a-except as been optimized
11955 out by the linker... In any case, at this point it is not worth
11956 supporting this feature. */
11957
7dda8cff 11958 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11959}
11960
f7f9143b
JB
11961/* True iff FRAME is very likely to be that of a function that is
11962 part of the runtime system. This is all very heuristic, but is
11963 intended to be used as advice as to what frames are uninteresting
11964 to most users. */
11965
11966static int
11967is_known_support_routine (struct frame_info *frame)
11968{
4ed6b5be 11969 struct symtab_and_line sal;
55b87a52 11970 char *func_name;
692465f1 11971 enum language func_lang;
f7f9143b 11972 int i;
f35a17b5 11973 const char *fullname;
f7f9143b 11974
4ed6b5be
JB
11975 /* If this code does not have any debugging information (no symtab),
11976 This cannot be any user code. */
f7f9143b 11977
4ed6b5be 11978 find_frame_sal (frame, &sal);
f7f9143b
JB
11979 if (sal.symtab == NULL)
11980 return 1;
11981
4ed6b5be
JB
11982 /* If there is a symtab, but the associated source file cannot be
11983 located, then assume this is not user code: Selecting a frame
11984 for which we cannot display the code would not be very helpful
11985 for the user. This should also take care of case such as VxWorks
11986 where the kernel has some debugging info provided for a few units. */
f7f9143b 11987
f35a17b5
JK
11988 fullname = symtab_to_fullname (sal.symtab);
11989 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11990 return 1;
11991
4ed6b5be
JB
11992 /* Check the unit filename againt the Ada runtime file naming.
11993 We also check the name of the objfile against the name of some
11994 known system libraries that sometimes come with debugging info
11995 too. */
11996
f7f9143b
JB
11997 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11998 {
11999 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12000 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12001 return 1;
eb822aa6
DE
12002 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12003 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12004 return 1;
f7f9143b
JB
12005 }
12006
4ed6b5be 12007 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12008
e9e07ba6 12009 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12010 if (func_name == NULL)
12011 return 1;
12012
12013 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12014 {
12015 re_comp (known_auxiliary_function_name_patterns[i]);
12016 if (re_exec (func_name))
55b87a52
KS
12017 {
12018 xfree (func_name);
12019 return 1;
12020 }
f7f9143b
JB
12021 }
12022
55b87a52 12023 xfree (func_name);
f7f9143b
JB
12024 return 0;
12025}
12026
12027/* Find the first frame that contains debugging information and that is not
12028 part of the Ada run-time, starting from FI and moving upward. */
12029
0ef643c8 12030void
f7f9143b
JB
12031ada_find_printable_frame (struct frame_info *fi)
12032{
12033 for (; fi != NULL; fi = get_prev_frame (fi))
12034 {
12035 if (!is_known_support_routine (fi))
12036 {
12037 select_frame (fi);
12038 break;
12039 }
12040 }
12041
12042}
12043
12044/* Assuming that the inferior just triggered an unhandled exception
12045 catchpoint, return the address in inferior memory where the name
12046 of the exception is stored.
12047
12048 Return zero if the address could not be computed. */
12049
12050static CORE_ADDR
12051ada_unhandled_exception_name_addr (void)
0259addd
JB
12052{
12053 return parse_and_eval_address ("e.full_name");
12054}
12055
12056/* Same as ada_unhandled_exception_name_addr, except that this function
12057 should be used when the inferior uses an older version of the runtime,
12058 where the exception name needs to be extracted from a specific frame
12059 several frames up in the callstack. */
12060
12061static CORE_ADDR
12062ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12063{
12064 int frame_level;
12065 struct frame_info *fi;
3eecfa55 12066 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12067 struct cleanup *old_chain;
f7f9143b
JB
12068
12069 /* To determine the name of this exception, we need to select
12070 the frame corresponding to RAISE_SYM_NAME. This frame is
12071 at least 3 levels up, so we simply skip the first 3 frames
12072 without checking the name of their associated function. */
12073 fi = get_current_frame ();
12074 for (frame_level = 0; frame_level < 3; frame_level += 1)
12075 if (fi != NULL)
12076 fi = get_prev_frame (fi);
12077
55b87a52 12078 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12079 while (fi != NULL)
12080 {
55b87a52 12081 char *func_name;
692465f1
JB
12082 enum language func_lang;
12083
e9e07ba6 12084 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12085 if (func_name != NULL)
12086 {
12087 make_cleanup (xfree, func_name);
12088
12089 if (strcmp (func_name,
12090 data->exception_info->catch_exception_sym) == 0)
12091 break; /* We found the frame we were looking for... */
12092 fi = get_prev_frame (fi);
12093 }
f7f9143b 12094 }
55b87a52 12095 do_cleanups (old_chain);
f7f9143b
JB
12096
12097 if (fi == NULL)
12098 return 0;
12099
12100 select_frame (fi);
12101 return parse_and_eval_address ("id.full_name");
12102}
12103
12104/* Assuming the inferior just triggered an Ada exception catchpoint
12105 (of any type), return the address in inferior memory where the name
12106 of the exception is stored, if applicable.
12107
12108 Return zero if the address could not be computed, or if not relevant. */
12109
12110static CORE_ADDR
761269c8 12111ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12112 struct breakpoint *b)
12113{
3eecfa55
JB
12114 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12115
f7f9143b
JB
12116 switch (ex)
12117 {
761269c8 12118 case ada_catch_exception:
f7f9143b
JB
12119 return (parse_and_eval_address ("e.full_name"));
12120 break;
12121
761269c8 12122 case ada_catch_exception_unhandled:
3eecfa55 12123 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12124 break;
12125
761269c8 12126 case ada_catch_assert:
f7f9143b
JB
12127 return 0; /* Exception name is not relevant in this case. */
12128 break;
12129
12130 default:
12131 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12132 break;
12133 }
12134
12135 return 0; /* Should never be reached. */
12136}
12137
12138/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12139 any error that ada_exception_name_addr_1 might cause to be thrown.
12140 When an error is intercepted, a warning with the error message is printed,
12141 and zero is returned. */
12142
12143static CORE_ADDR
761269c8 12144ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12145 struct breakpoint *b)
12146{
f7f9143b
JB
12147 CORE_ADDR result = 0;
12148
492d29ea 12149 TRY
f7f9143b
JB
12150 {
12151 result = ada_exception_name_addr_1 (ex, b);
12152 }
12153
492d29ea 12154 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12155 {
12156 warning (_("failed to get exception name: %s"), e.message);
12157 return 0;
12158 }
492d29ea 12159 END_CATCH
f7f9143b
JB
12160
12161 return result;
12162}
12163
28010a5d
PA
12164static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12165
12166/* Ada catchpoints.
12167
12168 In the case of catchpoints on Ada exceptions, the catchpoint will
12169 stop the target on every exception the program throws. When a user
12170 specifies the name of a specific exception, we translate this
12171 request into a condition expression (in text form), and then parse
12172 it into an expression stored in each of the catchpoint's locations.
12173 We then use this condition to check whether the exception that was
12174 raised is the one the user is interested in. If not, then the
12175 target is resumed again. We store the name of the requested
12176 exception, in order to be able to re-set the condition expression
12177 when symbols change. */
12178
12179/* An instance of this type is used to represent an Ada catchpoint
12180 breakpoint location. It includes a "struct bp_location" as a kind
12181 of base class; users downcast to "struct bp_location *" when
12182 needed. */
12183
12184struct ada_catchpoint_location
12185{
12186 /* The base class. */
12187 struct bp_location base;
12188
12189 /* The condition that checks whether the exception that was raised
12190 is the specific exception the user specified on catchpoint
12191 creation. */
12192 struct expression *excep_cond_expr;
12193};
12194
12195/* Implement the DTOR method in the bp_location_ops structure for all
12196 Ada exception catchpoint kinds. */
12197
12198static void
12199ada_catchpoint_location_dtor (struct bp_location *bl)
12200{
12201 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12202
12203 xfree (al->excep_cond_expr);
12204}
12205
12206/* The vtable to be used in Ada catchpoint locations. */
12207
12208static const struct bp_location_ops ada_catchpoint_location_ops =
12209{
12210 ada_catchpoint_location_dtor
12211};
12212
12213/* An instance of this type is used to represent an Ada catchpoint.
12214 It includes a "struct breakpoint" as a kind of base class; users
12215 downcast to "struct breakpoint *" when needed. */
12216
12217struct ada_catchpoint
12218{
12219 /* The base class. */
12220 struct breakpoint base;
12221
12222 /* The name of the specific exception the user specified. */
12223 char *excep_string;
12224};
12225
12226/* Parse the exception condition string in the context of each of the
12227 catchpoint's locations, and store them for later evaluation. */
12228
12229static void
12230create_excep_cond_exprs (struct ada_catchpoint *c)
12231{
12232 struct cleanup *old_chain;
12233 struct bp_location *bl;
12234 char *cond_string;
12235
12236 /* Nothing to do if there's no specific exception to catch. */
12237 if (c->excep_string == NULL)
12238 return;
12239
12240 /* Same if there are no locations... */
12241 if (c->base.loc == NULL)
12242 return;
12243
12244 /* Compute the condition expression in text form, from the specific
12245 expection we want to catch. */
12246 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12247 old_chain = make_cleanup (xfree, cond_string);
12248
12249 /* Iterate over all the catchpoint's locations, and parse an
12250 expression for each. */
12251 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12252 {
12253 struct ada_catchpoint_location *ada_loc
12254 = (struct ada_catchpoint_location *) bl;
12255 struct expression *exp = NULL;
12256
12257 if (!bl->shlib_disabled)
12258 {
bbc13ae3 12259 const char *s;
28010a5d
PA
12260
12261 s = cond_string;
492d29ea 12262 TRY
28010a5d 12263 {
1bb9788d
TT
12264 exp = parse_exp_1 (&s, bl->address,
12265 block_for_pc (bl->address), 0);
28010a5d 12266 }
492d29ea 12267 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12268 {
12269 warning (_("failed to reevaluate internal exception condition "
12270 "for catchpoint %d: %s"),
12271 c->base.number, e.message);
12272 /* There is a bug in GCC on sparc-solaris when building with
12273 optimization which causes EXP to change unexpectedly
12274 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12275 The problem should be fixed starting with GCC 4.9.
12276 In the meantime, work around it by forcing EXP back
12277 to NULL. */
12278 exp = NULL;
12279 }
492d29ea 12280 END_CATCH
28010a5d
PA
12281 }
12282
12283 ada_loc->excep_cond_expr = exp;
12284 }
12285
12286 do_cleanups (old_chain);
12287}
12288
12289/* Implement the DTOR method in the breakpoint_ops structure for all
12290 exception catchpoint kinds. */
12291
12292static void
761269c8 12293dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12294{
12295 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12296
12297 xfree (c->excep_string);
348d480f 12298
2060206e 12299 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12300}
12301
12302/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12303 structure for all exception catchpoint kinds. */
12304
12305static struct bp_location *
761269c8 12306allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12307 struct breakpoint *self)
12308{
12309 struct ada_catchpoint_location *loc;
12310
12311 loc = XNEW (struct ada_catchpoint_location);
12312 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12313 loc->excep_cond_expr = NULL;
12314 return &loc->base;
12315}
12316
12317/* Implement the RE_SET method in the breakpoint_ops structure for all
12318 exception catchpoint kinds. */
12319
12320static void
761269c8 12321re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12322{
12323 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12324
12325 /* Call the base class's method. This updates the catchpoint's
12326 locations. */
2060206e 12327 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12328
12329 /* Reparse the exception conditional expressions. One for each
12330 location. */
12331 create_excep_cond_exprs (c);
12332}
12333
12334/* Returns true if we should stop for this breakpoint hit. If the
12335 user specified a specific exception, we only want to cause a stop
12336 if the program thrown that exception. */
12337
12338static int
12339should_stop_exception (const struct bp_location *bl)
12340{
12341 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12342 const struct ada_catchpoint_location *ada_loc
12343 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12344 int stop;
12345
12346 /* With no specific exception, should always stop. */
12347 if (c->excep_string == NULL)
12348 return 1;
12349
12350 if (ada_loc->excep_cond_expr == NULL)
12351 {
12352 /* We will have a NULL expression if back when we were creating
12353 the expressions, this location's had failed to parse. */
12354 return 1;
12355 }
12356
12357 stop = 1;
492d29ea 12358 TRY
28010a5d
PA
12359 {
12360 struct value *mark;
12361
12362 mark = value_mark ();
12363 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12364 value_free_to_mark (mark);
12365 }
492d29ea
PA
12366 CATCH (ex, RETURN_MASK_ALL)
12367 {
12368 exception_fprintf (gdb_stderr, ex,
12369 _("Error in testing exception condition:\n"));
12370 }
12371 END_CATCH
12372
28010a5d
PA
12373 return stop;
12374}
12375
12376/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12377 for all exception catchpoint kinds. */
12378
12379static void
761269c8 12380check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12381{
12382 bs->stop = should_stop_exception (bs->bp_location_at);
12383}
12384
f7f9143b
JB
12385/* Implement the PRINT_IT method in the breakpoint_ops structure
12386 for all exception catchpoint kinds. */
12387
12388static enum print_stop_action
761269c8 12389print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12390{
79a45e25 12391 struct ui_out *uiout = current_uiout;
348d480f
PA
12392 struct breakpoint *b = bs->breakpoint_at;
12393
956a9fb9 12394 annotate_catchpoint (b->number);
f7f9143b 12395
956a9fb9 12396 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12397 {
956a9fb9
JB
12398 ui_out_field_string (uiout, "reason",
12399 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12400 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12401 }
12402
00eb2c4a
JB
12403 ui_out_text (uiout,
12404 b->disposition == disp_del ? "\nTemporary catchpoint "
12405 : "\nCatchpoint ");
956a9fb9
JB
12406 ui_out_field_int (uiout, "bkptno", b->number);
12407 ui_out_text (uiout, ", ");
f7f9143b 12408
f7f9143b
JB
12409 switch (ex)
12410 {
761269c8
JB
12411 case ada_catch_exception:
12412 case ada_catch_exception_unhandled:
956a9fb9
JB
12413 {
12414 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12415 char exception_name[256];
12416
12417 if (addr != 0)
12418 {
c714b426
PA
12419 read_memory (addr, (gdb_byte *) exception_name,
12420 sizeof (exception_name) - 1);
956a9fb9
JB
12421 exception_name [sizeof (exception_name) - 1] = '\0';
12422 }
12423 else
12424 {
12425 /* For some reason, we were unable to read the exception
12426 name. This could happen if the Runtime was compiled
12427 without debugging info, for instance. In that case,
12428 just replace the exception name by the generic string
12429 "exception" - it will read as "an exception" in the
12430 notification we are about to print. */
967cff16 12431 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12432 }
12433 /* In the case of unhandled exception breakpoints, we print
12434 the exception name as "unhandled EXCEPTION_NAME", to make
12435 it clearer to the user which kind of catchpoint just got
12436 hit. We used ui_out_text to make sure that this extra
12437 info does not pollute the exception name in the MI case. */
761269c8 12438 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12439 ui_out_text (uiout, "unhandled ");
12440 ui_out_field_string (uiout, "exception-name", exception_name);
12441 }
12442 break;
761269c8 12443 case ada_catch_assert:
956a9fb9
JB
12444 /* In this case, the name of the exception is not really
12445 important. Just print "failed assertion" to make it clearer
12446 that his program just hit an assertion-failure catchpoint.
12447 We used ui_out_text because this info does not belong in
12448 the MI output. */
12449 ui_out_text (uiout, "failed assertion");
12450 break;
f7f9143b 12451 }
956a9fb9
JB
12452 ui_out_text (uiout, " at ");
12453 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12454
12455 return PRINT_SRC_AND_LOC;
12456}
12457
12458/* Implement the PRINT_ONE method in the breakpoint_ops structure
12459 for all exception catchpoint kinds. */
12460
12461static void
761269c8 12462print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12463 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12464{
79a45e25 12465 struct ui_out *uiout = current_uiout;
28010a5d 12466 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12467 struct value_print_options opts;
12468
12469 get_user_print_options (&opts);
12470 if (opts.addressprint)
f7f9143b
JB
12471 {
12472 annotate_field (4);
5af949e3 12473 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12474 }
12475
12476 annotate_field (5);
a6d9a66e 12477 *last_loc = b->loc;
f7f9143b
JB
12478 switch (ex)
12479 {
761269c8 12480 case ada_catch_exception:
28010a5d 12481 if (c->excep_string != NULL)
f7f9143b 12482 {
28010a5d
PA
12483 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12484
f7f9143b
JB
12485 ui_out_field_string (uiout, "what", msg);
12486 xfree (msg);
12487 }
12488 else
12489 ui_out_field_string (uiout, "what", "all Ada exceptions");
12490
12491 break;
12492
761269c8 12493 case ada_catch_exception_unhandled:
f7f9143b
JB
12494 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12495 break;
12496
761269c8 12497 case ada_catch_assert:
f7f9143b
JB
12498 ui_out_field_string (uiout, "what", "failed Ada assertions");
12499 break;
12500
12501 default:
12502 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12503 break;
12504 }
12505}
12506
12507/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12508 for all exception catchpoint kinds. */
12509
12510static void
761269c8 12511print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12512 struct breakpoint *b)
12513{
28010a5d 12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12515 struct ui_out *uiout = current_uiout;
28010a5d 12516
00eb2c4a
JB
12517 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12518 : _("Catchpoint "));
12519 ui_out_field_int (uiout, "bkptno", b->number);
12520 ui_out_text (uiout, ": ");
12521
f7f9143b
JB
12522 switch (ex)
12523 {
761269c8 12524 case ada_catch_exception:
28010a5d 12525 if (c->excep_string != NULL)
00eb2c4a
JB
12526 {
12527 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12528 struct cleanup *old_chain = make_cleanup (xfree, info);
12529
12530 ui_out_text (uiout, info);
12531 do_cleanups (old_chain);
12532 }
f7f9143b 12533 else
00eb2c4a 12534 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12535 break;
12536
761269c8 12537 case ada_catch_exception_unhandled:
00eb2c4a 12538 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12539 break;
12540
761269c8 12541 case ada_catch_assert:
00eb2c4a 12542 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12543 break;
12544
12545 default:
12546 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12547 break;
12548 }
12549}
12550
6149aea9
PA
12551/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12552 for all exception catchpoint kinds. */
12553
12554static void
761269c8 12555print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12556 struct breakpoint *b, struct ui_file *fp)
12557{
28010a5d
PA
12558 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12559
6149aea9
PA
12560 switch (ex)
12561 {
761269c8 12562 case ada_catch_exception:
6149aea9 12563 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12564 if (c->excep_string != NULL)
12565 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12566 break;
12567
761269c8 12568 case ada_catch_exception_unhandled:
78076abc 12569 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12570 break;
12571
761269c8 12572 case ada_catch_assert:
6149aea9
PA
12573 fprintf_filtered (fp, "catch assert");
12574 break;
12575
12576 default:
12577 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12578 }
d9b3f62e 12579 print_recreate_thread (b, fp);
6149aea9
PA
12580}
12581
f7f9143b
JB
12582/* Virtual table for "catch exception" breakpoints. */
12583
28010a5d
PA
12584static void
12585dtor_catch_exception (struct breakpoint *b)
12586{
761269c8 12587 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12588}
12589
12590static struct bp_location *
12591allocate_location_catch_exception (struct breakpoint *self)
12592{
761269c8 12593 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12594}
12595
12596static void
12597re_set_catch_exception (struct breakpoint *b)
12598{
761269c8 12599 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12600}
12601
12602static void
12603check_status_catch_exception (bpstat bs)
12604{
761269c8 12605 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12606}
12607
f7f9143b 12608static enum print_stop_action
348d480f 12609print_it_catch_exception (bpstat bs)
f7f9143b 12610{
761269c8 12611 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12612}
12613
12614static void
a6d9a66e 12615print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12616{
761269c8 12617 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12618}
12619
12620static void
12621print_mention_catch_exception (struct breakpoint *b)
12622{
761269c8 12623 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12624}
12625
6149aea9
PA
12626static void
12627print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12628{
761269c8 12629 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12630}
12631
2060206e 12632static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12633
12634/* Virtual table for "catch exception unhandled" breakpoints. */
12635
28010a5d
PA
12636static void
12637dtor_catch_exception_unhandled (struct breakpoint *b)
12638{
761269c8 12639 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12640}
12641
12642static struct bp_location *
12643allocate_location_catch_exception_unhandled (struct breakpoint *self)
12644{
761269c8 12645 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12646}
12647
12648static void
12649re_set_catch_exception_unhandled (struct breakpoint *b)
12650{
761269c8 12651 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12652}
12653
12654static void
12655check_status_catch_exception_unhandled (bpstat bs)
12656{
761269c8 12657 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12658}
12659
f7f9143b 12660static enum print_stop_action
348d480f 12661print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12662{
761269c8 12663 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12664}
12665
12666static void
a6d9a66e
UW
12667print_one_catch_exception_unhandled (struct breakpoint *b,
12668 struct bp_location **last_loc)
f7f9143b 12669{
761269c8 12670 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12671}
12672
12673static void
12674print_mention_catch_exception_unhandled (struct breakpoint *b)
12675{
761269c8 12676 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12677}
12678
6149aea9
PA
12679static void
12680print_recreate_catch_exception_unhandled (struct breakpoint *b,
12681 struct ui_file *fp)
12682{
761269c8 12683 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12684}
12685
2060206e 12686static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12687
12688/* Virtual table for "catch assert" breakpoints. */
12689
28010a5d
PA
12690static void
12691dtor_catch_assert (struct breakpoint *b)
12692{
761269c8 12693 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12694}
12695
12696static struct bp_location *
12697allocate_location_catch_assert (struct breakpoint *self)
12698{
761269c8 12699 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12700}
12701
12702static void
12703re_set_catch_assert (struct breakpoint *b)
12704{
761269c8 12705 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12706}
12707
12708static void
12709check_status_catch_assert (bpstat bs)
12710{
761269c8 12711 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12712}
12713
f7f9143b 12714static enum print_stop_action
348d480f 12715print_it_catch_assert (bpstat bs)
f7f9143b 12716{
761269c8 12717 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12718}
12719
12720static void
a6d9a66e 12721print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12722{
761269c8 12723 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12724}
12725
12726static void
12727print_mention_catch_assert (struct breakpoint *b)
12728{
761269c8 12729 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12730}
12731
6149aea9
PA
12732static void
12733print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12734{
761269c8 12735 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12736}
12737
2060206e 12738static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12739
f7f9143b
JB
12740/* Return a newly allocated copy of the first space-separated token
12741 in ARGSP, and then adjust ARGSP to point immediately after that
12742 token.
12743
12744 Return NULL if ARGPS does not contain any more tokens. */
12745
12746static char *
12747ada_get_next_arg (char **argsp)
12748{
12749 char *args = *argsp;
12750 char *end;
12751 char *result;
12752
0fcd72ba 12753 args = skip_spaces (args);
f7f9143b
JB
12754 if (args[0] == '\0')
12755 return NULL; /* No more arguments. */
12756
12757 /* Find the end of the current argument. */
12758
0fcd72ba 12759 end = skip_to_space (args);
f7f9143b
JB
12760
12761 /* Adjust ARGSP to point to the start of the next argument. */
12762
12763 *argsp = end;
12764
12765 /* Make a copy of the current argument and return it. */
12766
224c3ddb 12767 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12768 strncpy (result, args, end - args);
12769 result[end - args] = '\0';
12770
12771 return result;
12772}
12773
12774/* Split the arguments specified in a "catch exception" command.
12775 Set EX to the appropriate catchpoint type.
28010a5d 12776 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12777 specified by the user.
12778 If a condition is found at the end of the arguments, the condition
12779 expression is stored in COND_STRING (memory must be deallocated
12780 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12781
12782static void
12783catch_ada_exception_command_split (char *args,
761269c8 12784 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12785 char **excep_string,
12786 char **cond_string)
f7f9143b
JB
12787{
12788 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12789 char *exception_name;
5845583d 12790 char *cond = NULL;
f7f9143b
JB
12791
12792 exception_name = ada_get_next_arg (&args);
5845583d
JB
12793 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12794 {
12795 /* This is not an exception name; this is the start of a condition
12796 expression for a catchpoint on all exceptions. So, "un-get"
12797 this token, and set exception_name to NULL. */
12798 xfree (exception_name);
12799 exception_name = NULL;
12800 args -= 2;
12801 }
f7f9143b
JB
12802 make_cleanup (xfree, exception_name);
12803
5845583d 12804 /* Check to see if we have a condition. */
f7f9143b 12805
0fcd72ba 12806 args = skip_spaces (args);
61012eef 12807 if (startswith (args, "if")
5845583d
JB
12808 && (isspace (args[2]) || args[2] == '\0'))
12809 {
12810 args += 2;
12811 args = skip_spaces (args);
12812
12813 if (args[0] == '\0')
12814 error (_("Condition missing after `if' keyword"));
12815 cond = xstrdup (args);
12816 make_cleanup (xfree, cond);
12817
12818 args += strlen (args);
12819 }
12820
12821 /* Check that we do not have any more arguments. Anything else
12822 is unexpected. */
f7f9143b
JB
12823
12824 if (args[0] != '\0')
12825 error (_("Junk at end of expression"));
12826
12827 discard_cleanups (old_chain);
12828
12829 if (exception_name == NULL)
12830 {
12831 /* Catch all exceptions. */
761269c8 12832 *ex = ada_catch_exception;
28010a5d 12833 *excep_string = NULL;
f7f9143b
JB
12834 }
12835 else if (strcmp (exception_name, "unhandled") == 0)
12836 {
12837 /* Catch unhandled exceptions. */
761269c8 12838 *ex = ada_catch_exception_unhandled;
28010a5d 12839 *excep_string = NULL;
f7f9143b
JB
12840 }
12841 else
12842 {
12843 /* Catch a specific exception. */
761269c8 12844 *ex = ada_catch_exception;
28010a5d 12845 *excep_string = exception_name;
f7f9143b 12846 }
5845583d 12847 *cond_string = cond;
f7f9143b
JB
12848}
12849
12850/* Return the name of the symbol on which we should break in order to
12851 implement a catchpoint of the EX kind. */
12852
12853static const char *
761269c8 12854ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12855{
3eecfa55
JB
12856 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12857
12858 gdb_assert (data->exception_info != NULL);
0259addd 12859
f7f9143b
JB
12860 switch (ex)
12861 {
761269c8 12862 case ada_catch_exception:
3eecfa55 12863 return (data->exception_info->catch_exception_sym);
f7f9143b 12864 break;
761269c8 12865 case ada_catch_exception_unhandled:
3eecfa55 12866 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12867 break;
761269c8 12868 case ada_catch_assert:
3eecfa55 12869 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12870 break;
12871 default:
12872 internal_error (__FILE__, __LINE__,
12873 _("unexpected catchpoint kind (%d)"), ex);
12874 }
12875}
12876
12877/* Return the breakpoint ops "virtual table" used for catchpoints
12878 of the EX kind. */
12879
c0a91b2b 12880static const struct breakpoint_ops *
761269c8 12881ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12882{
12883 switch (ex)
12884 {
761269c8 12885 case ada_catch_exception:
f7f9143b
JB
12886 return (&catch_exception_breakpoint_ops);
12887 break;
761269c8 12888 case ada_catch_exception_unhandled:
f7f9143b
JB
12889 return (&catch_exception_unhandled_breakpoint_ops);
12890 break;
761269c8 12891 case ada_catch_assert:
f7f9143b
JB
12892 return (&catch_assert_breakpoint_ops);
12893 break;
12894 default:
12895 internal_error (__FILE__, __LINE__,
12896 _("unexpected catchpoint kind (%d)"), ex);
12897 }
12898}
12899
12900/* Return the condition that will be used to match the current exception
12901 being raised with the exception that the user wants to catch. This
12902 assumes that this condition is used when the inferior just triggered
12903 an exception catchpoint.
12904
12905 The string returned is a newly allocated string that needs to be
12906 deallocated later. */
12907
12908static char *
28010a5d 12909ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12910{
3d0b0fa3
JB
12911 int i;
12912
0963b4bd 12913 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12914 runtime units that have been compiled without debugging info; if
28010a5d 12915 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12916 exception (e.g. "constraint_error") then, during the evaluation
12917 of the condition expression, the symbol lookup on this name would
0963b4bd 12918 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12919 may then be set only on user-defined exceptions which have the
12920 same not-fully-qualified name (e.g. my_package.constraint_error).
12921
12922 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12923 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12924 exception constraint_error" is rewritten into "catch exception
12925 standard.constraint_error".
12926
12927 If an exception named contraint_error is defined in another package of
12928 the inferior program, then the only way to specify this exception as a
12929 breakpoint condition is to use its fully-qualified named:
12930 e.g. my_package.constraint_error. */
12931
12932 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12933 {
28010a5d 12934 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12935 {
12936 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12937 excep_string);
3d0b0fa3
JB
12938 }
12939 }
28010a5d 12940 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12941}
12942
12943/* Return the symtab_and_line that should be used to insert an exception
12944 catchpoint of the TYPE kind.
12945
28010a5d
PA
12946 EXCEP_STRING should contain the name of a specific exception that
12947 the catchpoint should catch, or NULL otherwise.
f7f9143b 12948
28010a5d
PA
12949 ADDR_STRING returns the name of the function where the real
12950 breakpoint that implements the catchpoints is set, depending on the
12951 type of catchpoint we need to create. */
f7f9143b
JB
12952
12953static struct symtab_and_line
761269c8 12954ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12955 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12956{
12957 const char *sym_name;
12958 struct symbol *sym;
f7f9143b 12959
0259addd
JB
12960 /* First, find out which exception support info to use. */
12961 ada_exception_support_info_sniffer ();
12962
12963 /* Then lookup the function on which we will break in order to catch
f7f9143b 12964 the Ada exceptions requested by the user. */
f7f9143b
JB
12965 sym_name = ada_exception_sym_name (ex);
12966 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12967
f17011e0
JB
12968 /* We can assume that SYM is not NULL at this stage. If the symbol
12969 did not exist, ada_exception_support_info_sniffer would have
12970 raised an exception.
f7f9143b 12971
f17011e0
JB
12972 Also, ada_exception_support_info_sniffer should have already
12973 verified that SYM is a function symbol. */
12974 gdb_assert (sym != NULL);
12975 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12976
12977 /* Set ADDR_STRING. */
f7f9143b
JB
12978 *addr_string = xstrdup (sym_name);
12979
f7f9143b 12980 /* Set OPS. */
4b9eee8c 12981 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12982
f17011e0 12983 return find_function_start_sal (sym, 1);
f7f9143b
JB
12984}
12985
b4a5b78b 12986/* Create an Ada exception catchpoint.
f7f9143b 12987
b4a5b78b 12988 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12989
2df4d1d5
JB
12990 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12991 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12992 of the exception to which this catchpoint applies. When not NULL,
12993 the string must be allocated on the heap, and its deallocation
12994 is no longer the responsibility of the caller.
12995
12996 COND_STRING, if not NULL, is the catchpoint condition. This string
12997 must be allocated on the heap, and its deallocation is no longer
12998 the responsibility of the caller.
f7f9143b 12999
b4a5b78b
JB
13000 TEMPFLAG, if nonzero, means that the underlying breakpoint
13001 should be temporary.
28010a5d 13002
b4a5b78b 13003 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13004
349774ef 13005void
28010a5d 13006create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13007 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13008 char *excep_string,
5845583d 13009 char *cond_string,
28010a5d 13010 int tempflag,
349774ef 13011 int disabled,
28010a5d
PA
13012 int from_tty)
13013{
13014 struct ada_catchpoint *c;
b4a5b78b
JB
13015 char *addr_string = NULL;
13016 const struct breakpoint_ops *ops = NULL;
13017 struct symtab_and_line sal
13018 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
13019
13020 c = XNEW (struct ada_catchpoint);
13021 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13022 ops, tempflag, disabled, from_tty);
28010a5d
PA
13023 c->excep_string = excep_string;
13024 create_excep_cond_exprs (c);
5845583d
JB
13025 if (cond_string != NULL)
13026 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13027 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13028}
13029
9ac4176b
PA
13030/* Implement the "catch exception" command. */
13031
13032static void
13033catch_ada_exception_command (char *arg, int from_tty,
13034 struct cmd_list_element *command)
13035{
13036 struct gdbarch *gdbarch = get_current_arch ();
13037 int tempflag;
761269c8 13038 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13039 char *excep_string = NULL;
5845583d 13040 char *cond_string = NULL;
9ac4176b
PA
13041
13042 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13043
13044 if (!arg)
13045 arg = "";
b4a5b78b
JB
13046 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13047 &cond_string);
13048 create_ada_exception_catchpoint (gdbarch, ex_kind,
13049 excep_string, cond_string,
349774ef
JB
13050 tempflag, 1 /* enabled */,
13051 from_tty);
9ac4176b
PA
13052}
13053
b4a5b78b 13054/* Split the arguments specified in a "catch assert" command.
5845583d 13055
b4a5b78b
JB
13056 ARGS contains the command's arguments (or the empty string if
13057 no arguments were passed).
5845583d
JB
13058
13059 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13060 (the memory needs to be deallocated after use). */
5845583d 13061
b4a5b78b
JB
13062static void
13063catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13064{
5845583d 13065 args = skip_spaces (args);
f7f9143b 13066
5845583d 13067 /* Check whether a condition was provided. */
61012eef 13068 if (startswith (args, "if")
5845583d 13069 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13070 {
5845583d 13071 args += 2;
0fcd72ba 13072 args = skip_spaces (args);
5845583d
JB
13073 if (args[0] == '\0')
13074 error (_("condition missing after `if' keyword"));
13075 *cond_string = xstrdup (args);
f7f9143b
JB
13076 }
13077
5845583d
JB
13078 /* Otherwise, there should be no other argument at the end of
13079 the command. */
13080 else if (args[0] != '\0')
13081 error (_("Junk at end of arguments."));
f7f9143b
JB
13082}
13083
9ac4176b
PA
13084/* Implement the "catch assert" command. */
13085
13086static void
13087catch_assert_command (char *arg, int from_tty,
13088 struct cmd_list_element *command)
13089{
13090 struct gdbarch *gdbarch = get_current_arch ();
13091 int tempflag;
5845583d 13092 char *cond_string = NULL;
9ac4176b
PA
13093
13094 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13095
13096 if (!arg)
13097 arg = "";
b4a5b78b 13098 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13099 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13100 NULL, cond_string,
349774ef
JB
13101 tempflag, 1 /* enabled */,
13102 from_tty);
9ac4176b 13103}
778865d3
JB
13104
13105/* Return non-zero if the symbol SYM is an Ada exception object. */
13106
13107static int
13108ada_is_exception_sym (struct symbol *sym)
13109{
13110 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13111
13112 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13113 && SYMBOL_CLASS (sym) != LOC_BLOCK
13114 && SYMBOL_CLASS (sym) != LOC_CONST
13115 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13116 && type_name != NULL && strcmp (type_name, "exception") == 0);
13117}
13118
13119/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13120 Ada exception object. This matches all exceptions except the ones
13121 defined by the Ada language. */
13122
13123static int
13124ada_is_non_standard_exception_sym (struct symbol *sym)
13125{
13126 int i;
13127
13128 if (!ada_is_exception_sym (sym))
13129 return 0;
13130
13131 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13132 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13133 return 0; /* A standard exception. */
13134
13135 /* Numeric_Error is also a standard exception, so exclude it.
13136 See the STANDARD_EXC description for more details as to why
13137 this exception is not listed in that array. */
13138 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13139 return 0;
13140
13141 return 1;
13142}
13143
13144/* A helper function for qsort, comparing two struct ada_exc_info
13145 objects.
13146
13147 The comparison is determined first by exception name, and then
13148 by exception address. */
13149
13150static int
13151compare_ada_exception_info (const void *a, const void *b)
13152{
13153 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13154 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13155 int result;
13156
13157 result = strcmp (exc_a->name, exc_b->name);
13158 if (result != 0)
13159 return result;
13160
13161 if (exc_a->addr < exc_b->addr)
13162 return -1;
13163 if (exc_a->addr > exc_b->addr)
13164 return 1;
13165
13166 return 0;
13167}
13168
13169/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13170 routine, but keeping the first SKIP elements untouched.
13171
13172 All duplicates are also removed. */
13173
13174static void
13175sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13176 int skip)
13177{
13178 struct ada_exc_info *to_sort
13179 = VEC_address (ada_exc_info, *exceptions) + skip;
13180 int to_sort_len
13181 = VEC_length (ada_exc_info, *exceptions) - skip;
13182 int i, j;
13183
13184 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13185 compare_ada_exception_info);
13186
13187 for (i = 1, j = 1; i < to_sort_len; i++)
13188 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13189 to_sort[j++] = to_sort[i];
13190 to_sort_len = j;
13191 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13192}
13193
13194/* A function intended as the "name_matcher" callback in the struct
13195 quick_symbol_functions' expand_symtabs_matching method.
13196
13197 SEARCH_NAME is the symbol's search name.
13198
13199 If USER_DATA is not NULL, it is a pointer to a regext_t object
13200 used to match the symbol (by natural name). Otherwise, when USER_DATA
13201 is null, no filtering is performed, and all symbols are a positive
13202 match. */
13203
13204static int
13205ada_exc_search_name_matches (const char *search_name, void *user_data)
13206{
9a3c8263 13207 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13208
13209 if (preg == NULL)
13210 return 1;
13211
13212 /* In Ada, the symbol "search name" is a linkage name, whereas
13213 the regular expression used to do the matching refers to
13214 the natural name. So match against the decoded name. */
13215 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13216}
13217
13218/* Add all exceptions defined by the Ada standard whose name match
13219 a regular expression.
13220
13221 If PREG is not NULL, then this regexp_t object is used to
13222 perform the symbol name matching. Otherwise, no name-based
13223 filtering is performed.
13224
13225 EXCEPTIONS is a vector of exceptions to which matching exceptions
13226 gets pushed. */
13227
13228static void
13229ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13230{
13231 int i;
13232
13233 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13234 {
13235 if (preg == NULL
13236 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13237 {
13238 struct bound_minimal_symbol msymbol
13239 = ada_lookup_simple_minsym (standard_exc[i]);
13240
13241 if (msymbol.minsym != NULL)
13242 {
13243 struct ada_exc_info info
77e371c0 13244 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13245
13246 VEC_safe_push (ada_exc_info, *exceptions, &info);
13247 }
13248 }
13249 }
13250}
13251
13252/* Add all Ada exceptions defined locally and accessible from the given
13253 FRAME.
13254
13255 If PREG is not NULL, then this regexp_t object is used to
13256 perform the symbol name matching. Otherwise, no name-based
13257 filtering is performed.
13258
13259 EXCEPTIONS is a vector of exceptions to which matching exceptions
13260 gets pushed. */
13261
13262static void
13263ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13264 VEC(ada_exc_info) **exceptions)
13265{
3977b71f 13266 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13267
13268 while (block != 0)
13269 {
13270 struct block_iterator iter;
13271 struct symbol *sym;
13272
13273 ALL_BLOCK_SYMBOLS (block, iter, sym)
13274 {
13275 switch (SYMBOL_CLASS (sym))
13276 {
13277 case LOC_TYPEDEF:
13278 case LOC_BLOCK:
13279 case LOC_CONST:
13280 break;
13281 default:
13282 if (ada_is_exception_sym (sym))
13283 {
13284 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13285 SYMBOL_VALUE_ADDRESS (sym)};
13286
13287 VEC_safe_push (ada_exc_info, *exceptions, &info);
13288 }
13289 }
13290 }
13291 if (BLOCK_FUNCTION (block) != NULL)
13292 break;
13293 block = BLOCK_SUPERBLOCK (block);
13294 }
13295}
13296
13297/* Add all exceptions defined globally whose name name match
13298 a regular expression, excluding standard exceptions.
13299
13300 The reason we exclude standard exceptions is that they need
13301 to be handled separately: Standard exceptions are defined inside
13302 a runtime unit which is normally not compiled with debugging info,
13303 and thus usually do not show up in our symbol search. However,
13304 if the unit was in fact built with debugging info, we need to
13305 exclude them because they would duplicate the entry we found
13306 during the special loop that specifically searches for those
13307 standard exceptions.
13308
13309 If PREG is not NULL, then this regexp_t object is used to
13310 perform the symbol name matching. Otherwise, no name-based
13311 filtering is performed.
13312
13313 EXCEPTIONS is a vector of exceptions to which matching exceptions
13314 gets pushed. */
13315
13316static void
13317ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13318{
13319 struct objfile *objfile;
43f3e411 13320 struct compunit_symtab *s;
778865d3 13321
276d885b 13322 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13323 VARIABLES_DOMAIN, preg);
778865d3 13324
43f3e411 13325 ALL_COMPUNITS (objfile, s)
778865d3 13326 {
43f3e411 13327 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13328 int i;
13329
13330 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13331 {
13332 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13333 struct block_iterator iter;
13334 struct symbol *sym;
13335
13336 ALL_BLOCK_SYMBOLS (b, iter, sym)
13337 if (ada_is_non_standard_exception_sym (sym)
13338 && (preg == NULL
13339 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13340 0, NULL, 0) == 0))
13341 {
13342 struct ada_exc_info info
13343 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13344
13345 VEC_safe_push (ada_exc_info, *exceptions, &info);
13346 }
13347 }
13348 }
13349}
13350
13351/* Implements ada_exceptions_list with the regular expression passed
13352 as a regex_t, rather than a string.
13353
13354 If not NULL, PREG is used to filter out exceptions whose names
13355 do not match. Otherwise, all exceptions are listed. */
13356
13357static VEC(ada_exc_info) *
13358ada_exceptions_list_1 (regex_t *preg)
13359{
13360 VEC(ada_exc_info) *result = NULL;
13361 struct cleanup *old_chain
13362 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13363 int prev_len;
13364
13365 /* First, list the known standard exceptions. These exceptions
13366 need to be handled separately, as they are usually defined in
13367 runtime units that have been compiled without debugging info. */
13368
13369 ada_add_standard_exceptions (preg, &result);
13370
13371 /* Next, find all exceptions whose scope is local and accessible
13372 from the currently selected frame. */
13373
13374 if (has_stack_frames ())
13375 {
13376 prev_len = VEC_length (ada_exc_info, result);
13377 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13378 &result);
13379 if (VEC_length (ada_exc_info, result) > prev_len)
13380 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13381 }
13382
13383 /* Add all exceptions whose scope is global. */
13384
13385 prev_len = VEC_length (ada_exc_info, result);
13386 ada_add_global_exceptions (preg, &result);
13387 if (VEC_length (ada_exc_info, result) > prev_len)
13388 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13389
13390 discard_cleanups (old_chain);
13391 return result;
13392}
13393
13394/* Return a vector of ada_exc_info.
13395
13396 If REGEXP is NULL, all exceptions are included in the result.
13397 Otherwise, it should contain a valid regular expression,
13398 and only the exceptions whose names match that regular expression
13399 are included in the result.
13400
13401 The exceptions are sorted in the following order:
13402 - Standard exceptions (defined by the Ada language), in
13403 alphabetical order;
13404 - Exceptions only visible from the current frame, in
13405 alphabetical order;
13406 - Exceptions whose scope is global, in alphabetical order. */
13407
13408VEC(ada_exc_info) *
13409ada_exceptions_list (const char *regexp)
13410{
13411 VEC(ada_exc_info) *result = NULL;
13412 struct cleanup *old_chain = NULL;
13413 regex_t reg;
13414
13415 if (regexp != NULL)
13416 old_chain = compile_rx_or_error (&reg, regexp,
13417 _("invalid regular expression"));
13418
13419 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13420
13421 if (old_chain != NULL)
13422 do_cleanups (old_chain);
13423 return result;
13424}
13425
13426/* Implement the "info exceptions" command. */
13427
13428static void
13429info_exceptions_command (char *regexp, int from_tty)
13430{
13431 VEC(ada_exc_info) *exceptions;
13432 struct cleanup *cleanup;
13433 struct gdbarch *gdbarch = get_current_arch ();
13434 int ix;
13435 struct ada_exc_info *info;
13436
13437 exceptions = ada_exceptions_list (regexp);
13438 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13439
13440 if (regexp != NULL)
13441 printf_filtered
13442 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13443 else
13444 printf_filtered (_("All defined Ada exceptions:\n"));
13445
13446 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13447 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13448
13449 do_cleanups (cleanup);
13450}
13451
4c4b4cd2
PH
13452 /* Operators */
13453/* Information about operators given special treatment in functions
13454 below. */
13455/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13456
13457#define ADA_OPERATORS \
13458 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13459 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13460 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13461 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13462 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13463 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13464 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13465 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13466 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13467 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13468 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13469 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13470 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13471 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13472 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13473 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13474 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13475 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13476 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13477
13478static void
554794dc
SDJ
13479ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13480 int *argsp)
4c4b4cd2
PH
13481{
13482 switch (exp->elts[pc - 1].opcode)
13483 {
76a01679 13484 default:
4c4b4cd2
PH
13485 operator_length_standard (exp, pc, oplenp, argsp);
13486 break;
13487
13488#define OP_DEFN(op, len, args, binop) \
13489 case op: *oplenp = len; *argsp = args; break;
13490 ADA_OPERATORS;
13491#undef OP_DEFN
52ce6436
PH
13492
13493 case OP_AGGREGATE:
13494 *oplenp = 3;
13495 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13496 break;
13497
13498 case OP_CHOICES:
13499 *oplenp = 3;
13500 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13501 break;
4c4b4cd2
PH
13502 }
13503}
13504
c0201579
JK
13505/* Implementation of the exp_descriptor method operator_check. */
13506
13507static int
13508ada_operator_check (struct expression *exp, int pos,
13509 int (*objfile_func) (struct objfile *objfile, void *data),
13510 void *data)
13511{
13512 const union exp_element *const elts = exp->elts;
13513 struct type *type = NULL;
13514
13515 switch (elts[pos].opcode)
13516 {
13517 case UNOP_IN_RANGE:
13518 case UNOP_QUAL:
13519 type = elts[pos + 1].type;
13520 break;
13521
13522 default:
13523 return operator_check_standard (exp, pos, objfile_func, data);
13524 }
13525
13526 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13527
13528 if (type && TYPE_OBJFILE (type)
13529 && (*objfile_func) (TYPE_OBJFILE (type), data))
13530 return 1;
13531
13532 return 0;
13533}
13534
4c4b4cd2
PH
13535static char *
13536ada_op_name (enum exp_opcode opcode)
13537{
13538 switch (opcode)
13539 {
76a01679 13540 default:
4c4b4cd2 13541 return op_name_standard (opcode);
52ce6436 13542
4c4b4cd2
PH
13543#define OP_DEFN(op, len, args, binop) case op: return #op;
13544 ADA_OPERATORS;
13545#undef OP_DEFN
52ce6436
PH
13546
13547 case OP_AGGREGATE:
13548 return "OP_AGGREGATE";
13549 case OP_CHOICES:
13550 return "OP_CHOICES";
13551 case OP_NAME:
13552 return "OP_NAME";
4c4b4cd2
PH
13553 }
13554}
13555
13556/* As for operator_length, but assumes PC is pointing at the first
13557 element of the operator, and gives meaningful results only for the
52ce6436 13558 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13559
13560static void
76a01679
JB
13561ada_forward_operator_length (struct expression *exp, int pc,
13562 int *oplenp, int *argsp)
4c4b4cd2 13563{
76a01679 13564 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13565 {
13566 default:
13567 *oplenp = *argsp = 0;
13568 break;
52ce6436 13569
4c4b4cd2
PH
13570#define OP_DEFN(op, len, args, binop) \
13571 case op: *oplenp = len; *argsp = args; break;
13572 ADA_OPERATORS;
13573#undef OP_DEFN
52ce6436
PH
13574
13575 case OP_AGGREGATE:
13576 *oplenp = 3;
13577 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13578 break;
13579
13580 case OP_CHOICES:
13581 *oplenp = 3;
13582 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13583 break;
13584
13585 case OP_STRING:
13586 case OP_NAME:
13587 {
13588 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13589
52ce6436
PH
13590 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13591 *argsp = 0;
13592 break;
13593 }
4c4b4cd2
PH
13594 }
13595}
13596
13597static int
13598ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13599{
13600 enum exp_opcode op = exp->elts[elt].opcode;
13601 int oplen, nargs;
13602 int pc = elt;
13603 int i;
76a01679 13604
4c4b4cd2
PH
13605 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13606
76a01679 13607 switch (op)
4c4b4cd2 13608 {
76a01679 13609 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13610 case OP_ATR_FIRST:
13611 case OP_ATR_LAST:
13612 case OP_ATR_LENGTH:
13613 case OP_ATR_IMAGE:
13614 case OP_ATR_MAX:
13615 case OP_ATR_MIN:
13616 case OP_ATR_MODULUS:
13617 case OP_ATR_POS:
13618 case OP_ATR_SIZE:
13619 case OP_ATR_TAG:
13620 case OP_ATR_VAL:
13621 break;
13622
13623 case UNOP_IN_RANGE:
13624 case UNOP_QUAL:
323e0a4a
AC
13625 /* XXX: gdb_sprint_host_address, type_sprint */
13626 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13627 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13628 fprintf_filtered (stream, " (");
13629 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13630 fprintf_filtered (stream, ")");
13631 break;
13632 case BINOP_IN_BOUNDS:
52ce6436
PH
13633 fprintf_filtered (stream, " (%d)",
13634 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13635 break;
13636 case TERNOP_IN_RANGE:
13637 break;
13638
52ce6436
PH
13639 case OP_AGGREGATE:
13640 case OP_OTHERS:
13641 case OP_DISCRETE_RANGE:
13642 case OP_POSITIONAL:
13643 case OP_CHOICES:
13644 break;
13645
13646 case OP_NAME:
13647 case OP_STRING:
13648 {
13649 char *name = &exp->elts[elt + 2].string;
13650 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13651
52ce6436
PH
13652 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13653 break;
13654 }
13655
4c4b4cd2
PH
13656 default:
13657 return dump_subexp_body_standard (exp, stream, elt);
13658 }
13659
13660 elt += oplen;
13661 for (i = 0; i < nargs; i += 1)
13662 elt = dump_subexp (exp, stream, elt);
13663
13664 return elt;
13665}
13666
13667/* The Ada extension of print_subexp (q.v.). */
13668
76a01679
JB
13669static void
13670ada_print_subexp (struct expression *exp, int *pos,
13671 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13672{
52ce6436 13673 int oplen, nargs, i;
4c4b4cd2
PH
13674 int pc = *pos;
13675 enum exp_opcode op = exp->elts[pc].opcode;
13676
13677 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13678
52ce6436 13679 *pos += oplen;
4c4b4cd2
PH
13680 switch (op)
13681 {
13682 default:
52ce6436 13683 *pos -= oplen;
4c4b4cd2
PH
13684 print_subexp_standard (exp, pos, stream, prec);
13685 return;
13686
13687 case OP_VAR_VALUE:
4c4b4cd2
PH
13688 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13689 return;
13690
13691 case BINOP_IN_BOUNDS:
323e0a4a 13692 /* XXX: sprint_subexp */
4c4b4cd2 13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13694 fputs_filtered (" in ", stream);
4c4b4cd2 13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13696 fputs_filtered ("'range", stream);
4c4b4cd2 13697 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13698 fprintf_filtered (stream, "(%ld)",
13699 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13700 return;
13701
13702 case TERNOP_IN_RANGE:
4c4b4cd2 13703 if (prec >= PREC_EQUAL)
76a01679 13704 fputs_filtered ("(", stream);
323e0a4a 13705 /* XXX: sprint_subexp */
4c4b4cd2 13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13707 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13708 print_subexp (exp, pos, stream, PREC_EQUAL);
13709 fputs_filtered (" .. ", stream);
13710 print_subexp (exp, pos, stream, PREC_EQUAL);
13711 if (prec >= PREC_EQUAL)
76a01679
JB
13712 fputs_filtered (")", stream);
13713 return;
4c4b4cd2
PH
13714
13715 case OP_ATR_FIRST:
13716 case OP_ATR_LAST:
13717 case OP_ATR_LENGTH:
13718 case OP_ATR_IMAGE:
13719 case OP_ATR_MAX:
13720 case OP_ATR_MIN:
13721 case OP_ATR_MODULUS:
13722 case OP_ATR_POS:
13723 case OP_ATR_SIZE:
13724 case OP_ATR_TAG:
13725 case OP_ATR_VAL:
4c4b4cd2 13726 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13727 {
13728 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13729 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13730 &type_print_raw_options);
76a01679
JB
13731 *pos += 3;
13732 }
4c4b4cd2 13733 else
76a01679 13734 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13735 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13736 if (nargs > 1)
76a01679
JB
13737 {
13738 int tem;
5b4ee69b 13739
76a01679
JB
13740 for (tem = 1; tem < nargs; tem += 1)
13741 {
13742 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13743 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13744 }
13745 fputs_filtered (")", stream);
13746 }
4c4b4cd2 13747 return;
14f9c5c9 13748
4c4b4cd2 13749 case UNOP_QUAL:
4c4b4cd2
PH
13750 type_print (exp->elts[pc + 1].type, "", stream, 0);
13751 fputs_filtered ("'(", stream);
13752 print_subexp (exp, pos, stream, PREC_PREFIX);
13753 fputs_filtered (")", stream);
13754 return;
14f9c5c9 13755
4c4b4cd2 13756 case UNOP_IN_RANGE:
323e0a4a 13757 /* XXX: sprint_subexp */
4c4b4cd2 13758 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13759 fputs_filtered (" in ", stream);
79d43c61
TT
13760 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13761 &type_print_raw_options);
4c4b4cd2 13762 return;
52ce6436
PH
13763
13764 case OP_DISCRETE_RANGE:
13765 print_subexp (exp, pos, stream, PREC_SUFFIX);
13766 fputs_filtered ("..", stream);
13767 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 return;
13769
13770 case OP_OTHERS:
13771 fputs_filtered ("others => ", stream);
13772 print_subexp (exp, pos, stream, PREC_SUFFIX);
13773 return;
13774
13775 case OP_CHOICES:
13776 for (i = 0; i < nargs-1; i += 1)
13777 {
13778 if (i > 0)
13779 fputs_filtered ("|", stream);
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 }
13782 fputs_filtered (" => ", stream);
13783 print_subexp (exp, pos, stream, PREC_SUFFIX);
13784 return;
13785
13786 case OP_POSITIONAL:
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 return;
13789
13790 case OP_AGGREGATE:
13791 fputs_filtered ("(", stream);
13792 for (i = 0; i < nargs; i += 1)
13793 {
13794 if (i > 0)
13795 fputs_filtered (", ", stream);
13796 print_subexp (exp, pos, stream, PREC_SUFFIX);
13797 }
13798 fputs_filtered (")", stream);
13799 return;
4c4b4cd2
PH
13800 }
13801}
14f9c5c9
AS
13802
13803/* Table mapping opcodes into strings for printing operators
13804 and precedences of the operators. */
13805
d2e4a39e
AS
13806static const struct op_print ada_op_print_tab[] = {
13807 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13808 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13809 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13810 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13811 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13812 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13813 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13814 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13815 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13816 {">=", BINOP_GEQ, PREC_ORDER, 0},
13817 {">", BINOP_GTR, PREC_ORDER, 0},
13818 {"<", BINOP_LESS, PREC_ORDER, 0},
13819 {">>", BINOP_RSH, PREC_SHIFT, 0},
13820 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13821 {"+", BINOP_ADD, PREC_ADD, 0},
13822 {"-", BINOP_SUB, PREC_ADD, 0},
13823 {"&", BINOP_CONCAT, PREC_ADD, 0},
13824 {"*", BINOP_MUL, PREC_MUL, 0},
13825 {"/", BINOP_DIV, PREC_MUL, 0},
13826 {"rem", BINOP_REM, PREC_MUL, 0},
13827 {"mod", BINOP_MOD, PREC_MUL, 0},
13828 {"**", BINOP_EXP, PREC_REPEAT, 0},
13829 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13830 {"-", UNOP_NEG, PREC_PREFIX, 0},
13831 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13832 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13833 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13834 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13835 {".all", UNOP_IND, PREC_SUFFIX, 1},
13836 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13837 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13838 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13839};
13840\f
72d5681a
PH
13841enum ada_primitive_types {
13842 ada_primitive_type_int,
13843 ada_primitive_type_long,
13844 ada_primitive_type_short,
13845 ada_primitive_type_char,
13846 ada_primitive_type_float,
13847 ada_primitive_type_double,
13848 ada_primitive_type_void,
13849 ada_primitive_type_long_long,
13850 ada_primitive_type_long_double,
13851 ada_primitive_type_natural,
13852 ada_primitive_type_positive,
13853 ada_primitive_type_system_address,
13854 nr_ada_primitive_types
13855};
6c038f32
PH
13856
13857static void
d4a9a881 13858ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13859 struct language_arch_info *lai)
13860{
d4a9a881 13861 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13862
72d5681a 13863 lai->primitive_type_vector
d4a9a881 13864 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13865 struct type *);
e9bb382b
UW
13866
13867 lai->primitive_type_vector [ada_primitive_type_int]
13868 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13869 0, "integer");
13870 lai->primitive_type_vector [ada_primitive_type_long]
13871 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13872 0, "long_integer");
13873 lai->primitive_type_vector [ada_primitive_type_short]
13874 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13875 0, "short_integer");
13876 lai->string_char_type
13877 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13878 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13879 lai->primitive_type_vector [ada_primitive_type_float]
13880 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13881 "float", NULL);
13882 lai->primitive_type_vector [ada_primitive_type_double]
13883 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13884 "long_float", NULL);
13885 lai->primitive_type_vector [ada_primitive_type_long_long]
13886 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13887 0, "long_long_integer");
13888 lai->primitive_type_vector [ada_primitive_type_long_double]
13889 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13890 "long_long_float", NULL);
13891 lai->primitive_type_vector [ada_primitive_type_natural]
13892 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13893 0, "natural");
13894 lai->primitive_type_vector [ada_primitive_type_positive]
13895 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13896 0, "positive");
13897 lai->primitive_type_vector [ada_primitive_type_void]
13898 = builtin->builtin_void;
13899
13900 lai->primitive_type_vector [ada_primitive_type_system_address]
13901 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13902 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13903 = "system__address";
fbb06eb1 13904
47e729a8 13905 lai->bool_type_symbol = NULL;
fbb06eb1 13906 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13907}
6c038f32
PH
13908\f
13909 /* Language vector */
13910
13911/* Not really used, but needed in the ada_language_defn. */
13912
13913static void
6c7a06a3 13914emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13915{
6c7a06a3 13916 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13917}
13918
13919static int
410a0ff2 13920parse (struct parser_state *ps)
6c038f32
PH
13921{
13922 warnings_issued = 0;
410a0ff2 13923 return ada_parse (ps);
6c038f32
PH
13924}
13925
13926static const struct exp_descriptor ada_exp_descriptor = {
13927 ada_print_subexp,
13928 ada_operator_length,
c0201579 13929 ada_operator_check,
6c038f32
PH
13930 ada_op_name,
13931 ada_dump_subexp_body,
13932 ada_evaluate_subexp
13933};
13934
1a119f36 13935/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13936 for Ada. */
13937
1a119f36
JB
13938static symbol_name_cmp_ftype
13939ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13940{
13941 if (should_use_wild_match (lookup_name))
13942 return wild_match;
13943 else
13944 return compare_names;
13945}
13946
a5ee536b
JB
13947/* Implement the "la_read_var_value" language_defn method for Ada. */
13948
13949static struct value *
63e43d3a
PMR
13950ada_read_var_value (struct symbol *var, const struct block *var_block,
13951 struct frame_info *frame)
a5ee536b 13952{
3977b71f 13953 const struct block *frame_block = NULL;
a5ee536b
JB
13954 struct symbol *renaming_sym = NULL;
13955
13956 /* The only case where default_read_var_value is not sufficient
13957 is when VAR is a renaming... */
13958 if (frame)
13959 frame_block = get_frame_block (frame, NULL);
13960 if (frame_block)
13961 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13962 if (renaming_sym != NULL)
13963 return ada_read_renaming_var_value (renaming_sym, frame_block);
13964
13965 /* This is a typical case where we expect the default_read_var_value
13966 function to work. */
63e43d3a 13967 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13968}
13969
6c038f32
PH
13970const struct language_defn ada_language_defn = {
13971 "ada", /* Language name */
6abde28f 13972 "Ada",
6c038f32 13973 language_ada,
6c038f32 13974 range_check_off,
6c038f32
PH
13975 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13976 that's not quite what this means. */
6c038f32 13977 array_row_major,
9a044a89 13978 macro_expansion_no,
6c038f32
PH
13979 &ada_exp_descriptor,
13980 parse,
13981 ada_error,
13982 resolve,
13983 ada_printchar, /* Print a character constant */
13984 ada_printstr, /* Function to print string constant */
13985 emit_char, /* Function to print single char (not used) */
6c038f32 13986 ada_print_type, /* Print a type using appropriate syntax */
be942545 13987 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13988 ada_val_print, /* Print a value using appropriate syntax */
13989 ada_value_print, /* Print a top-level value */
a5ee536b 13990 ada_read_var_value, /* la_read_var_value */
6c038f32 13991 NULL, /* Language specific skip_trampoline */
2b2d9e11 13992 NULL, /* name_of_this */
6c038f32
PH
13993 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13994 basic_lookup_transparent_type, /* lookup_transparent_type */
13995 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13996 NULL, /* Language specific
13997 class_name_from_physname */
6c038f32
PH
13998 ada_op_print_tab, /* expression operators for printing */
13999 0, /* c-style arrays */
14000 1, /* String lower bound */
6c038f32 14001 ada_get_gdb_completer_word_break_characters,
41d27058 14002 ada_make_symbol_completion_list,
72d5681a 14003 ada_language_arch_info,
e79af960 14004 ada_print_array_index,
41f1b697 14005 default_pass_by_reference,
ae6a3a4c 14006 c_get_string,
1a119f36 14007 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14008 ada_iterate_over_symbols,
a53b64ea 14009 &ada_varobj_ops,
bb2ec1b3
TT
14010 NULL,
14011 NULL,
6c038f32
PH
14012 LANG_MAGIC
14013};
14014
2c0b251b
PA
14015/* Provide a prototype to silence -Wmissing-prototypes. */
14016extern initialize_file_ftype _initialize_ada_language;
14017
5bf03f13
JB
14018/* Command-list for the "set/show ada" prefix command. */
14019static struct cmd_list_element *set_ada_list;
14020static struct cmd_list_element *show_ada_list;
14021
14022/* Implement the "set ada" prefix command. */
14023
14024static void
14025set_ada_command (char *arg, int from_tty)
14026{
14027 printf_unfiltered (_(\
14028"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14029 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14030}
14031
14032/* Implement the "show ada" prefix command. */
14033
14034static void
14035show_ada_command (char *args, int from_tty)
14036{
14037 cmd_show_list (show_ada_list, from_tty, "");
14038}
14039
2060206e
PA
14040static void
14041initialize_ada_catchpoint_ops (void)
14042{
14043 struct breakpoint_ops *ops;
14044
14045 initialize_breakpoint_ops ();
14046
14047 ops = &catch_exception_breakpoint_ops;
14048 *ops = bkpt_breakpoint_ops;
14049 ops->dtor = dtor_catch_exception;
14050 ops->allocate_location = allocate_location_catch_exception;
14051 ops->re_set = re_set_catch_exception;
14052 ops->check_status = check_status_catch_exception;
14053 ops->print_it = print_it_catch_exception;
14054 ops->print_one = print_one_catch_exception;
14055 ops->print_mention = print_mention_catch_exception;
14056 ops->print_recreate = print_recreate_catch_exception;
14057
14058 ops = &catch_exception_unhandled_breakpoint_ops;
14059 *ops = bkpt_breakpoint_ops;
14060 ops->dtor = dtor_catch_exception_unhandled;
14061 ops->allocate_location = allocate_location_catch_exception_unhandled;
14062 ops->re_set = re_set_catch_exception_unhandled;
14063 ops->check_status = check_status_catch_exception_unhandled;
14064 ops->print_it = print_it_catch_exception_unhandled;
14065 ops->print_one = print_one_catch_exception_unhandled;
14066 ops->print_mention = print_mention_catch_exception_unhandled;
14067 ops->print_recreate = print_recreate_catch_exception_unhandled;
14068
14069 ops = &catch_assert_breakpoint_ops;
14070 *ops = bkpt_breakpoint_ops;
14071 ops->dtor = dtor_catch_assert;
14072 ops->allocate_location = allocate_location_catch_assert;
14073 ops->re_set = re_set_catch_assert;
14074 ops->check_status = check_status_catch_assert;
14075 ops->print_it = print_it_catch_assert;
14076 ops->print_one = print_one_catch_assert;
14077 ops->print_mention = print_mention_catch_assert;
14078 ops->print_recreate = print_recreate_catch_assert;
14079}
14080
3d9434b5
JB
14081/* This module's 'new_objfile' observer. */
14082
14083static void
14084ada_new_objfile_observer (struct objfile *objfile)
14085{
14086 ada_clear_symbol_cache ();
14087}
14088
14089/* This module's 'free_objfile' observer. */
14090
14091static void
14092ada_free_objfile_observer (struct objfile *objfile)
14093{
14094 ada_clear_symbol_cache ();
14095}
14096
d2e4a39e 14097void
6c038f32 14098_initialize_ada_language (void)
14f9c5c9 14099{
6c038f32
PH
14100 add_language (&ada_language_defn);
14101
2060206e
PA
14102 initialize_ada_catchpoint_ops ();
14103
5bf03f13
JB
14104 add_prefix_cmd ("ada", no_class, set_ada_command,
14105 _("Prefix command for changing Ada-specfic settings"),
14106 &set_ada_list, "set ada ", 0, &setlist);
14107
14108 add_prefix_cmd ("ada", no_class, show_ada_command,
14109 _("Generic command for showing Ada-specific settings."),
14110 &show_ada_list, "show ada ", 0, &showlist);
14111
14112 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14113 &trust_pad_over_xvs, _("\
14114Enable or disable an optimization trusting PAD types over XVS types"), _("\
14115Show whether an optimization trusting PAD types over XVS types is activated"),
14116 _("\
14117This is related to the encoding used by the GNAT compiler. The debugger\n\
14118should normally trust the contents of PAD types, but certain older versions\n\
14119of GNAT have a bug that sometimes causes the information in the PAD type\n\
14120to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14121work around this bug. It is always safe to turn this option \"off\", but\n\
14122this incurs a slight performance penalty, so it is recommended to NOT change\n\
14123this option to \"off\" unless necessary."),
14124 NULL, NULL, &set_ada_list, &show_ada_list);
14125
9ac4176b
PA
14126 add_catch_command ("exception", _("\
14127Catch Ada exceptions, when raised.\n\
14128With an argument, catch only exceptions with the given name."),
14129 catch_ada_exception_command,
14130 NULL,
14131 CATCH_PERMANENT,
14132 CATCH_TEMPORARY);
14133 add_catch_command ("assert", _("\
14134Catch failed Ada assertions, when raised.\n\
14135With an argument, catch only exceptions with the given name."),
14136 catch_assert_command,
14137 NULL,
14138 CATCH_PERMANENT,
14139 CATCH_TEMPORARY);
14140
6c038f32 14141 varsize_limit = 65536;
6c038f32 14142
778865d3
JB
14143 add_info ("exceptions", info_exceptions_command,
14144 _("\
14145List all Ada exception names.\n\
14146If a regular expression is passed as an argument, only those matching\n\
14147the regular expression are listed."));
14148
c6044dd1
JB
14149 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14150 _("Set Ada maintenance-related variables."),
14151 &maint_set_ada_cmdlist, "maintenance set ada ",
14152 0/*allow-unknown*/, &maintenance_set_cmdlist);
14153
14154 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14155 _("Show Ada maintenance-related variables"),
14156 &maint_show_ada_cmdlist, "maintenance show ada ",
14157 0/*allow-unknown*/, &maintenance_show_cmdlist);
14158
14159 add_setshow_boolean_cmd
14160 ("ignore-descriptive-types", class_maintenance,
14161 &ada_ignore_descriptive_types_p,
14162 _("Set whether descriptive types generated by GNAT should be ignored."),
14163 _("Show whether descriptive types generated by GNAT should be ignored."),
14164 _("\
14165When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14166DWARF attribute."),
14167 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14168
6c038f32
PH
14169 obstack_init (&symbol_list_obstack);
14170
14171 decoded_names_store = htab_create_alloc
14172 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14173 NULL, xcalloc, xfree);
6b69afc4 14174
3d9434b5
JB
14175 /* The ada-lang observers. */
14176 observer_attach_new_objfile (ada_new_objfile_observer);
14177 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14178 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14179
14180 /* Setup various context-specific data. */
e802dbe0 14181 ada_inferior_data
8e260fc0 14182 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14183 ada_pspace_data_handle
14184 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14185}