]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Don't call "error" in sysroot-prefix.exp
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
8b302db8
TT
1455/* Implement la_sniff_from_mangled_name for Ada. */
1456
1457static int
1458ada_sniff_from_mangled_name (const char *mangled, char **out)
1459{
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
14f9c5c9 1494/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
14f9c5c9 1500
2c0b251b 1501static int
40658b94 1502match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1503{
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
73589123 1507 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1508 else
1509 {
1510 int len_name = strlen (name);
5b4ee69b 1511
4c4b4cd2
PH
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
61012eef 1514 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1517 }
14f9c5c9 1518}
14f9c5c9 1519\f
d2e4a39e 1520
4c4b4cd2 1521 /* Arrays */
14f9c5c9 1522
28c85d6c
JB
1523/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546void
1547ada_fixup_array_indexes_type (struct type *index_desc_type)
1548{
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
0d5cff50 1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576}
1577
4c4b4cd2 1578/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1579
d2e4a39e
AS
1580static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583};
1584
1585/* Maximum number of array dimensions we are prepared to handle. */
1586
4c4b4cd2 1587#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1588
14f9c5c9 1589
4c4b4cd2
PH
1590/* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
14f9c5c9
AS
1592
1593/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1594 level of indirection, if needed. */
1595
d2e4a39e
AS
1596static struct type *
1597desc_base_type (struct type *type)
14f9c5c9
AS
1598{
1599 if (type == NULL)
1600 return NULL;
61ee279c 1601 type = ada_check_typedef (type);
720d1a40
JB
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1265e4aa
JB
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1609 else
1610 return type;
1611}
1612
4c4b4cd2
PH
1613/* True iff TYPE indicates a "thin" array pointer type. */
1614
14f9c5c9 1615static int
d2e4a39e 1616is_thin_pntr (struct type *type)
14f9c5c9 1617{
d2e4a39e 1618 return
14f9c5c9
AS
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621}
1622
4c4b4cd2
PH
1623/* The descriptor type for thin pointer type TYPE. */
1624
d2e4a39e
AS
1625static struct type *
1626thin_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *base_type = desc_base_type (type);
5b4ee69b 1629
14f9c5c9
AS
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
d2e4a39e 1634 else
14f9c5c9 1635 {
d2e4a39e 1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1637
14f9c5c9 1638 if (alt_type == NULL)
4c4b4cd2 1639 return base_type;
14f9c5c9 1640 else
4c4b4cd2 1641 return alt_type;
14f9c5c9
AS
1642 }
1643}
1644
4c4b4cd2
PH
1645/* A pointer to the array data for thin-pointer value VAL. */
1646
d2e4a39e
AS
1647static struct value *
1648thin_data_pntr (struct value *val)
14f9c5c9 1649{
828292f2 1650 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1652
556bdfd4
UW
1653 data_type = lookup_pointer_type (data_type);
1654
14f9c5c9 1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1656 return value_cast (data_type, value_copy (val));
d2e4a39e 1657 else
42ae5230 1658 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1659}
1660
4c4b4cd2
PH
1661/* True iff TYPE indicates a "thick" array pointer type. */
1662
14f9c5c9 1663static int
d2e4a39e 1664is_thick_pntr (struct type *type)
14f9c5c9
AS
1665{
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1669}
1670
4c4b4cd2
PH
1671/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1673
d2e4a39e
AS
1674static struct type *
1675desc_bounds_type (struct type *type)
14f9c5c9 1676{
d2e4a39e 1677 struct type *r;
14f9c5c9
AS
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
4c4b4cd2 1687 return NULL;
14f9c5c9
AS
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (r);
14f9c5c9
AS
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
61ee279c 1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1697 }
1698 return NULL;
1699}
1700
1701/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
d2e4a39e
AS
1704static struct value *
1705desc_bounds (struct value *arr)
14f9c5c9 1706{
df407dfe 1707 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1708
d2e4a39e 1709 if (is_thin_pntr (type))
14f9c5c9 1710 {
d2e4a39e 1711 struct type *bounds_type =
4c4b4cd2 1712 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1713 LONGEST addr;
1714
4cdfadb1 1715 if (bounds_type == NULL)
323e0a4a 1716 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1717
1718 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1719 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1720 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1722 addr = value_as_long (arr);
d2e4a39e 1723 else
42ae5230 1724 addr = value_address (arr);
14f9c5c9 1725
d2e4a39e 1726 return
4c4b4cd2
PH
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1729 }
1730
1731 else if (is_thick_pntr (type))
05e522ef
JB
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
14f9c5c9
AS
1752 else
1753 return NULL;
1754}
1755
4c4b4cd2
PH
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1761{
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763}
1764
1765/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1766 size of the field containing the address of the bounds data. */
1767
14f9c5c9 1768static int
d2e4a39e 1769fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1770{
1771 type = desc_base_type (type);
1772
d2e4a39e 1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
61ee279c 1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1777}
1778
4c4b4cd2 1779/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
4c4b4cd2 1783
d2e4a39e 1784static struct type *
556bdfd4 1785desc_data_target_type (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
4c4b4cd2 1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1790 if (is_thin_pntr (type))
556bdfd4 1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1792 else if (is_thick_pntr (type))
556bdfd4
UW
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1799 }
1800
1801 return NULL;
14f9c5c9
AS
1802}
1803
1804/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
4c4b4cd2 1806
d2e4a39e
AS
1807static struct value *
1808desc_data (struct value *arr)
14f9c5c9 1809{
df407dfe 1810 struct type *type = value_type (arr);
5b4ee69b 1811
14f9c5c9
AS
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
d2e4a39e 1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1816 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1817 else
1818 return NULL;
1819}
1820
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 position of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1827{
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829}
1830
1831/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1832 size of the field containing the address of the data. */
1833
14f9c5c9 1834static int
d2e4a39e 1835fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1841 else
14f9c5c9
AS
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843}
1844
4c4b4cd2 1845/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
d2e4a39e
AS
1849static struct value *
1850desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1851{
d2e4a39e 1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1853 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1854}
1855
1856/* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
14f9c5c9 1860static int
d2e4a39e 1861desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1862{
d2e4a39e 1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1864}
1865
1866/* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
76a01679 1870static int
d2e4a39e 1871desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1872{
1873 type = desc_base_type (type);
1874
d2e4a39e
AS
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1879}
1880
1881/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
d2e4a39e
AS
1884static struct type *
1885desc_index_type (struct type *type, int i)
14f9c5c9
AS
1886{
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
14f9c5c9
AS
1892 return NULL;
1893}
1894
4c4b4cd2
PH
1895/* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
14f9c5c9 1898static int
d2e4a39e 1899desc_arity (struct type *type)
14f9c5c9
AS
1900{
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
76a01679
JB
1912static int
1913ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1914{
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
4c4b4cd2 1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1919 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1920}
1921
52ce6436 1922/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1923 * to one. */
52ce6436 1924
2c0b251b 1925static int
52ce6436
PH
1926ada_is_array_type (struct type *type)
1927{
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933}
1934
4c4b4cd2 1935/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1936
14f9c5c9 1937int
4c4b4cd2 1938ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1939{
1940 if (type == NULL)
1941 return 0;
61ee279c 1942 type = ada_check_typedef (type);
14f9c5c9 1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1947}
1948
4c4b4cd2
PH
1949/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
14f9c5c9 1951int
4c4b4cd2 1952ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1953{
556bdfd4 1954 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1955
1956 if (type == NULL)
1957 return 0;
61ee279c 1958 type = ada_check_typedef (type);
556bdfd4
UW
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1962}
1963
1964/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1965 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1966 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1967 is still needed. */
1968
14f9c5c9 1969int
ebf56fd3 1970ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1971{
d2e4a39e 1972 return
14f9c5c9
AS
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1978}
1979
1980
4c4b4cd2 1981/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1982 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1984 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1987 a descriptor. */
d2e4a39e
AS
1988struct type *
1989ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1990{
ad82864c
JB
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1993
df407dfe
AC
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
d2e4a39e
AS
1996
1997 if (!bounds)
ad82864c
JB
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
14f9c5c9
AS
2008 else
2009 {
d2e4a39e 2010 struct type *elt_type;
14f9c5c9 2011 int arity;
d2e4a39e 2012 struct value *descriptor;
14f9c5c9 2013
df407dfe
AC
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
14f9c5c9 2016
d2e4a39e 2017 if (elt_type == NULL || arity == 0)
df407dfe 2018 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2019
2020 descriptor = desc_bounds (arr);
d2e4a39e 2021 if (value_as_long (descriptor) == 0)
4c4b4cd2 2022 return NULL;
d2e4a39e 2023 while (arity > 0)
4c4b4cd2 2024 {
e9bb382b
UW
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2029
5b4ee69b 2030 arity -= 1;
0c9c3474
SA
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
4c4b4cd2 2034 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
4c4b4cd2 2056 }
14f9c5c9
AS
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060}
2061
2062/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
d2e4a39e
AS
2067struct value *
2068ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2069{
df407dfe 2070 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2071 {
d2e4a39e 2072 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2073
14f9c5c9 2074 if (arrType == NULL)
4c4b4cd2 2075 return NULL;
14f9c5c9
AS
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
ad82864c
JB
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2080 else
2081 return arr;
2082}
2083
2084/* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2086 be ARR itself if it already is in the proper form). */
2087
720d1a40 2088struct value *
d2e4a39e 2089ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2090{
df407dfe 2091 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2092 {
d2e4a39e 2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2094
14f9c5c9 2095 if (arrVal == NULL)
323e0a4a 2096 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2098 return value_ind (arrVal);
2099 }
ad82864c
JB
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
d2e4a39e 2102 else
14f9c5c9
AS
2103 return arr;
2104}
2105
2106/* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2108 packing). For other types, is the identity. */
2109
d2e4a39e
AS
2110struct type *
2111ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2112{
ad82864c
JB
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
17280b9f
UW
2115
2116 if (ada_is_array_descriptor_type (type))
556bdfd4 2117 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2118
2119 return type;
14f9c5c9
AS
2120}
2121
4c4b4cd2
PH
2122/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
ad82864c
JB
2124static int
2125ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2126{
2127 if (type == NULL)
2128 return 0;
4c4b4cd2 2129 type = desc_base_type (type);
61ee279c 2130 type = ada_check_typedef (type);
d2e4a39e 2131 return
14f9c5c9
AS
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134}
2135
ad82864c
JB
2136/* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139int
2140ada_is_constrained_packed_array_type (struct type *type)
2141{
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144}
2145
2146/* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149static int
2150ada_is_unconstrained_packed_array_type (struct type *type)
2151{
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154}
2155
2156/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159static long
2160decode_packed_array_bitsize (struct type *type)
2161{
0d5cff50
DE
2162 const char *raw_name;
2163 const char *tail;
ad82864c
JB
2164 long bits;
2165
720d1a40
JB
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
720d1a40 2180 gdb_assert (tail != NULL);
ad82864c
JB
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190}
2191
14f9c5c9
AS
2192/* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
4c4b4cd2 2208
d2e4a39e 2209static struct type *
ad82864c 2210constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2211{
d2e4a39e
AS
2212 struct type *new_elt_type;
2213 struct type *new_type;
99b1c762
JB
2214 struct type *index_type_desc;
2215 struct type *index_type;
14f9c5c9
AS
2216 LONGEST low_bound, high_bound;
2217
61ee279c 2218 type = ada_check_typedef (type);
14f9c5c9
AS
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
99b1c762
JB
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
e9bb382b 2229 new_type = alloc_type_copy (type);
ad82864c
JB
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
99b1c762 2233 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
4a46959e
JB
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2246 TYPE_LENGTH (new_type) =
4c4b4cd2 2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2248 }
2249
876cecd0 2250 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2251 return new_type;
2252}
2253
ad82864c
JB
2254/* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2256
d2e4a39e 2257static struct type *
ad82864c 2258decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2259{
0d5cff50 2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2261 char *name;
0d5cff50 2262 const char *tail;
d2e4a39e 2263 struct type *shadow_type;
14f9c5c9 2264 long bits;
14f9c5c9 2265
727e3d2e
JB
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2274 type = desc_base_type (type);
2275
14f9c5c9
AS
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
b4ba55a1
JB
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
14f9c5c9 2282 {
323e0a4a 2283 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2284 return NULL;
2285 }
f168693b 2286 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
0963b4bd
MS
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
14f9c5c9
AS
2292 return NULL;
2293 }
d2e4a39e 2294
ad82864c
JB
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2297}
2298
ad82864c
JB
2299/* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
4c4b4cd2 2303 type length is set appropriately. */
14f9c5c9 2304
d2e4a39e 2305static struct value *
ad82864c 2306decode_constrained_packed_array (struct value *arr)
14f9c5c9 2307{
4c4b4cd2 2308 struct type *type;
14f9c5c9 2309
11aa919a
PMR
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
828292f2 2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2319 arr = value_ind (arr);
4c4b4cd2 2320
ad82864c 2321 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2322 if (type == NULL)
2323 {
323e0a4a 2324 error (_("can't unpack array"));
14f9c5c9
AS
2325 return NULL;
2326 }
61ee279c 2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2329 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
df407dfe 2338 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
df407dfe 2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
4c4b4cd2 2353 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2354}
2355
2356
2357/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2358 given in IND. ARR must be a simple array. */
14f9c5c9 2359
d2e4a39e
AS
2360static struct value *
2361value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2362{
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
d2e4a39e
AS
2366 struct type *elt_type;
2367 struct value *v;
14f9c5c9
AS
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
df407dfe 2371 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2372 for (i = 0; i < arity; i += 1)
14f9c5c9 2373 {
d2e4a39e 2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
0963b4bd
MS
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
14f9c5c9 2379 else
4c4b4cd2
PH
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
323e0a4a 2387 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2388 lowerbound = upperbound = 0;
2389 }
2390
3cb382c9 2391 idx = pos_atr (ind[i]);
4c4b4cd2 2392 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
4c4b4cd2
PH
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2398 }
14f9c5c9
AS
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2404 bits, elt_type);
14f9c5c9
AS
2405 return v;
2406}
2407
4c4b4cd2 2408/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2409
2410static int
d2e4a39e 2411has_negatives (struct type *type)
14f9c5c9 2412{
d2e4a39e
AS
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
14f9c5c9 2422}
d2e4a39e 2423
f93fca70 2424/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2426 the unpacked buffer.
14f9c5c9 2427
5b639dea
JB
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
f93fca70
JB
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
14f9c5c9 2433
f93fca70 2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2435
f93fca70
JB
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438static void
2439ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443{
a1c95e6b
JB
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
a1c95e6b
JB
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
4c4b4cd2 2454 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2455 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2456 unsigned char sign;
a1c95e6b 2457
4c4b4cd2
PH
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
f93fca70 2460 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2461
5b639dea
JB
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
14f9c5c9 2468 srcBitsLeft = bit_size;
086ca51f 2469 src_bytes_left = src_len;
f93fca70 2470 unpacked_bytes_left = unpacked_len;
14f9c5c9 2471 sign = 0;
f93fca70
JB
2472
2473 if (is_big_endian)
14f9c5c9 2474 {
086ca51f 2475 src_idx = src_len - 1;
f93fca70
JB
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2478 sign = ~0;
d2e4a39e
AS
2479
2480 unusedLS =
4c4b4cd2
PH
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
14f9c5c9 2483
f93fca70
JB
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
4c4b4cd2
PH
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
086ca51f
JB
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2498 }
14f9c5c9 2499 }
d2e4a39e 2500 else
14f9c5c9
AS
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
086ca51f 2504 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
f93fca70 2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2509 sign = ~0;
14f9c5c9 2510 }
d2e4a39e 2511
14f9c5c9 2512 accum = 0;
086ca51f 2513 while (src_bytes_left > 0)
14f9c5c9
AS
2514 {
2515 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2516 part of the value. */
d2e4a39e 2517 unsigned int unusedMSMask =
4c4b4cd2
PH
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
14f9c5c9 2521 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2522
d2e4a39e 2523 accum |=
086ca51f 2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2525 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2526 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2527 {
db297a65 2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
4c4b4cd2 2533 }
14f9c5c9
AS
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
086ca51f
JB
2536 src_bytes_left -= 1;
2537 src_idx += delta;
14f9c5c9 2538 }
086ca51f 2539 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2540 {
2541 accum |= sign << accumSize;
db297a65 2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2543 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2544 if (accumSize < 0)
2545 accumSize = 0;
14f9c5c9 2546 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
14f9c5c9 2549 }
f93fca70
JB
2550}
2551
2552/* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561struct value *
2562ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565{
2566 struct value *v;
bfb1c796 2567 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2568 gdb_byte *unpacked;
220475ed 2569 const int is_scalar = is_scalar_type (type);
d0a9e810 2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
200069c7 2571 std::unique_ptr<gdb_byte[]> staging;
d0a9e810 2572 int staging_len = 0;
f93fca70
JB
2573
2574 type = ada_check_typedef (type);
2575
d0a9e810 2576 if (obj == NULL)
bfb1c796 2577 src = valaddr + offset;
d0a9e810 2578 else
bfb1c796 2579 src = value_contents (obj) + offset;
d0a9e810
JB
2580
2581 if (is_dynamic_type (type))
2582 {
2583 /* The length of TYPE might by dynamic, so we need to resolve
2584 TYPE in order to know its actual size, which we then use
2585 to create the contents buffer of the value we return.
2586 The difficulty is that the data containing our object is
2587 packed, and therefore maybe not at a byte boundary. So, what
2588 we do, is unpack the data into a byte-aligned buffer, and then
2589 use that buffer as our object's value for resolving the type. */
2590 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
200069c7 2591 staging.reset (new gdb_byte[staging_len]);
d0a9e810
JB
2592
2593 ada_unpack_from_contents (src, bit_offset, bit_size,
200069c7 2594 staging.get (), staging_len,
d0a9e810
JB
2595 is_big_endian, has_negatives (type),
2596 is_scalar);
200069c7 2597 type = resolve_dynamic_type (type, staging.get (), 0);
0cafa88c
JB
2598 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2599 {
2600 /* This happens when the length of the object is dynamic,
2601 and is actually smaller than the space reserved for it.
2602 For instance, in an array of variant records, the bit_size
2603 we're given is the array stride, which is constant and
2604 normally equal to the maximum size of its element.
2605 But, in reality, each element only actually spans a portion
2606 of that stride. */
2607 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 }
d0a9e810
JB
2609 }
2610
f93fca70
JB
2611 if (obj == NULL)
2612 {
2613 v = allocate_value (type);
bfb1c796 2614 src = valaddr + offset;
f93fca70
JB
2615 }
2616 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2617 {
0cafa88c 2618 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2619 gdb_byte *buf;
0cafa88c 2620
f93fca70 2621 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2622 buf = (gdb_byte *) alloca (src_len);
2623 read_memory (value_address (v), buf, src_len);
2624 src = buf;
f93fca70
JB
2625 }
2626 else
2627 {
2628 v = allocate_value (type);
bfb1c796 2629 src = value_contents (obj) + offset;
f93fca70
JB
2630 }
2631
2632 if (obj != NULL)
2633 {
2634 long new_offset = offset;
2635
2636 set_value_component_location (v, obj);
2637 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2638 set_value_bitsize (v, bit_size);
2639 if (value_bitpos (v) >= HOST_CHAR_BIT)
2640 {
2641 ++new_offset;
2642 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2643 }
2644 set_value_offset (v, new_offset);
2645
2646 /* Also set the parent value. This is needed when trying to
2647 assign a new value (in inferior memory). */
2648 set_value_parent (v, obj);
2649 }
2650 else
2651 set_value_bitsize (v, bit_size);
bfb1c796 2652 unpacked = value_contents_writeable (v);
f93fca70
JB
2653
2654 if (bit_size == 0)
2655 {
2656 memset (unpacked, 0, TYPE_LENGTH (type));
2657 return v;
2658 }
2659
d0a9e810 2660 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2661 {
d0a9e810
JB
2662 /* Small short-cut: If we've unpacked the data into a buffer
2663 of the same size as TYPE's length, then we can reuse that,
2664 instead of doing the unpacking again. */
200069c7 2665 memcpy (unpacked, staging.get (), staging_len);
f93fca70 2666 }
d0a9e810
JB
2667 else
2668 ada_unpack_from_contents (src, bit_offset, bit_size,
2669 unpacked, TYPE_LENGTH (type),
2670 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2671
14f9c5c9
AS
2672 return v;
2673}
d2e4a39e 2674
14f9c5c9
AS
2675/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2676 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2677 not overlap. */
14f9c5c9 2678static void
fc1a4b47 2679move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2680 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2681{
2682 unsigned int accum, mask;
2683 int accum_bits, chunk_size;
2684
2685 target += targ_offset / HOST_CHAR_BIT;
2686 targ_offset %= HOST_CHAR_BIT;
2687 source += src_offset / HOST_CHAR_BIT;
2688 src_offset %= HOST_CHAR_BIT;
50810684 2689 if (bits_big_endian_p)
14f9c5c9
AS
2690 {
2691 accum = (unsigned char) *source;
2692 source += 1;
2693 accum_bits = HOST_CHAR_BIT - src_offset;
2694
d2e4a39e 2695 while (n > 0)
4c4b4cd2
PH
2696 {
2697 int unused_right;
5b4ee69b 2698
4c4b4cd2
PH
2699 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2700 accum_bits += HOST_CHAR_BIT;
2701 source += 1;
2702 chunk_size = HOST_CHAR_BIT - targ_offset;
2703 if (chunk_size > n)
2704 chunk_size = n;
2705 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2706 mask = ((1 << chunk_size) - 1) << unused_right;
2707 *target =
2708 (*target & ~mask)
2709 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2710 n -= chunk_size;
2711 accum_bits -= chunk_size;
2712 target += 1;
2713 targ_offset = 0;
2714 }
14f9c5c9
AS
2715 }
2716 else
2717 {
2718 accum = (unsigned char) *source >> src_offset;
2719 source += 1;
2720 accum_bits = HOST_CHAR_BIT - src_offset;
2721
d2e4a39e 2722 while (n > 0)
4c4b4cd2
PH
2723 {
2724 accum = accum + ((unsigned char) *source << accum_bits);
2725 accum_bits += HOST_CHAR_BIT;
2726 source += 1;
2727 chunk_size = HOST_CHAR_BIT - targ_offset;
2728 if (chunk_size > n)
2729 chunk_size = n;
2730 mask = ((1 << chunk_size) - 1) << targ_offset;
2731 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2732 n -= chunk_size;
2733 accum_bits -= chunk_size;
2734 accum >>= chunk_size;
2735 target += 1;
2736 targ_offset = 0;
2737 }
14f9c5c9
AS
2738 }
2739}
2740
14f9c5c9
AS
2741/* Store the contents of FROMVAL into the location of TOVAL.
2742 Return a new value with the location of TOVAL and contents of
2743 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2744 floating-point or non-scalar types. */
14f9c5c9 2745
d2e4a39e
AS
2746static struct value *
2747ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2748{
df407dfe
AC
2749 struct type *type = value_type (toval);
2750 int bits = value_bitsize (toval);
14f9c5c9 2751
52ce6436
PH
2752 toval = ada_coerce_ref (toval);
2753 fromval = ada_coerce_ref (fromval);
2754
2755 if (ada_is_direct_array_type (value_type (toval)))
2756 toval = ada_coerce_to_simple_array (toval);
2757 if (ada_is_direct_array_type (value_type (fromval)))
2758 fromval = ada_coerce_to_simple_array (fromval);
2759
88e3b34b 2760 if (!deprecated_value_modifiable (toval))
323e0a4a 2761 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2762
d2e4a39e 2763 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2764 && bits > 0
d2e4a39e 2765 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2766 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2767 {
df407dfe
AC
2768 int len = (value_bitpos (toval)
2769 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2770 int from_size;
224c3ddb 2771 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2772 struct value *val;
42ae5230 2773 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2774
2775 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2776 fromval = value_cast (type, fromval);
14f9c5c9 2777
52ce6436 2778 read_memory (to_addr, buffer, len);
aced2898
PH
2779 from_size = value_bitsize (fromval);
2780 if (from_size == 0)
2781 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2782 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2783 move_bits (buffer, value_bitpos (toval),
50810684 2784 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2785 else
50810684
UW
2786 move_bits (buffer, value_bitpos (toval),
2787 value_contents (fromval), 0, bits, 0);
972daa01 2788 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2789
14f9c5c9 2790 val = value_copy (toval);
0fd88904 2791 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2792 TYPE_LENGTH (type));
04624583 2793 deprecated_set_value_type (val, type);
d2e4a39e 2794
14f9c5c9
AS
2795 return val;
2796 }
2797
2798 return value_assign (toval, fromval);
2799}
2800
2801
7c512744
JB
2802/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2803 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2804 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2805 COMPONENT, and not the inferior's memory. The current contents
2806 of COMPONENT are ignored.
2807
2808 Although not part of the initial design, this function also works
2809 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2810 had a null address, and COMPONENT had an address which is equal to
2811 its offset inside CONTAINER. */
2812
52ce6436
PH
2813static void
2814value_assign_to_component (struct value *container, struct value *component,
2815 struct value *val)
2816{
2817 LONGEST offset_in_container =
42ae5230 2818 (LONGEST) (value_address (component) - value_address (container));
7c512744 2819 int bit_offset_in_container =
52ce6436
PH
2820 value_bitpos (component) - value_bitpos (container);
2821 int bits;
7c512744 2822
52ce6436
PH
2823 val = value_cast (value_type (component), val);
2824
2825 if (value_bitsize (component) == 0)
2826 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2827 else
2828 bits = value_bitsize (component);
2829
50810684 2830 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2831 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2832 value_bitpos (container) + bit_offset_in_container,
2833 value_contents (val),
2834 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2835 bits, 1);
52ce6436 2836 else
7c512744 2837 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2838 value_bitpos (container) + bit_offset_in_container,
50810684 2839 value_contents (val), 0, bits, 0);
7c512744
JB
2840}
2841
4c4b4cd2
PH
2842/* The value of the element of array ARR at the ARITY indices given in IND.
2843 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2844 thereto. */
2845
d2e4a39e
AS
2846struct value *
2847ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2848{
2849 int k;
d2e4a39e
AS
2850 struct value *elt;
2851 struct type *elt_type;
14f9c5c9
AS
2852
2853 elt = ada_coerce_to_simple_array (arr);
2854
df407dfe 2855 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2856 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2857 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2858 return value_subscript_packed (elt, arity, ind);
2859
2860 for (k = 0; k < arity; k += 1)
2861 {
2862 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2863 error (_("too many subscripts (%d expected)"), k);
2497b498 2864 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2865 }
2866 return elt;
2867}
2868
deede10c
JB
2869/* Assuming ARR is a pointer to a GDB array, the value of the element
2870 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2871 Does not read the entire array into memory.
2872
2873 Note: Unlike what one would expect, this function is used instead of
2874 ada_value_subscript for basically all non-packed array types. The reason
2875 for this is that a side effect of doing our own pointer arithmetics instead
2876 of relying on value_subscript is that there is no implicit typedef peeling.
2877 This is important for arrays of array accesses, where it allows us to
2878 preserve the fact that the array's element is an array access, where the
2879 access part os encoded in a typedef layer. */
14f9c5c9 2880
2c0b251b 2881static struct value *
deede10c 2882ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2883{
2884 int k;
919e6dbe 2885 struct value *array_ind = ada_value_ind (arr);
deede10c 2886 struct type *type
919e6dbe
PMR
2887 = check_typedef (value_enclosing_type (array_ind));
2888
2889 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2890 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2891 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2892
2893 for (k = 0; k < arity; k += 1)
2894 {
2895 LONGEST lwb, upb;
aa715135 2896 struct value *lwb_value;
14f9c5c9
AS
2897
2898 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2899 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2900 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2901 value_copy (arr));
14f9c5c9 2902 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2903 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2904 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2905 type = TYPE_TARGET_TYPE (type);
2906 }
2907
2908 return value_ind (arr);
2909}
2910
0b5d8877 2911/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2912 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2913 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2914 this array is LOW, as per Ada rules. */
0b5d8877 2915static struct value *
f5938064
JG
2916ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2917 int low, int high)
0b5d8877 2918{
b0dd7688 2919 struct type *type0 = ada_check_typedef (type);
aa715135 2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2921 struct type *index_type
aa715135 2922 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2923 struct type *slice_type =
b0dd7688 2924 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2925 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2926 LONGEST base_low_pos, low_pos;
2927 CORE_ADDR base;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, base_low, &base_low_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 base_low_pos = base_low;
2935 }
5b4ee69b 2936
aa715135
JG
2937 base = value_as_address (array_ptr)
2938 + ((low_pos - base_low_pos)
2939 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2940 return value_at_lazy (slice_type, base);
0b5d8877
PH
2941}
2942
2943
2944static struct value *
2945ada_value_slice (struct value *array, int low, int high)
2946{
b0dd7688 2947 struct type *type = ada_check_typedef (value_type (array));
aa715135 2948 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2949 struct type *index_type
2950 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2951 struct type *slice_type =
0b5d8877 2952 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2953 LONGEST low_pos, high_pos;
5b4ee69b 2954
aa715135
JG
2955 if (!discrete_position (base_index_type, low, &low_pos)
2956 || !discrete_position (base_index_type, high, &high_pos))
2957 {
2958 warning (_("unable to get positions in slice, use bounds instead"));
2959 low_pos = low;
2960 high_pos = high;
2961 }
2962
2963 return value_cast (slice_type,
2964 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2965}
2966
14f9c5c9
AS
2967/* If type is a record type in the form of a standard GNAT array
2968 descriptor, returns the number of dimensions for type. If arr is a
2969 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2970 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2971
2972int
d2e4a39e 2973ada_array_arity (struct type *type)
14f9c5c9
AS
2974{
2975 int arity;
2976
2977 if (type == NULL)
2978 return 0;
2979
2980 type = desc_base_type (type);
2981
2982 arity = 0;
d2e4a39e 2983 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2984 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2985 else
2986 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2987 {
4c4b4cd2 2988 arity += 1;
61ee279c 2989 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2990 }
d2e4a39e 2991
14f9c5c9
AS
2992 return arity;
2993}
2994
2995/* If TYPE is a record type in the form of a standard GNAT array
2996 descriptor or a simple array type, returns the element type for
2997 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2998 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2999
d2e4a39e
AS
3000struct type *
3001ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3002{
3003 type = desc_base_type (type);
3004
d2e4a39e 3005 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3006 {
3007 int k;
d2e4a39e 3008 struct type *p_array_type;
14f9c5c9 3009
556bdfd4 3010 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3011
3012 k = ada_array_arity (type);
3013 if (k == 0)
4c4b4cd2 3014 return NULL;
d2e4a39e 3015
4c4b4cd2 3016 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3017 if (nindices >= 0 && k > nindices)
4c4b4cd2 3018 k = nindices;
d2e4a39e 3019 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3020 {
61ee279c 3021 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3022 k -= 1;
3023 }
14f9c5c9
AS
3024 return p_array_type;
3025 }
3026 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 {
3028 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3029 {
3030 type = TYPE_TARGET_TYPE (type);
3031 nindices -= 1;
3032 }
14f9c5c9
AS
3033 return type;
3034 }
3035
3036 return NULL;
3037}
3038
4c4b4cd2 3039/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3040 Does not examine memory. Throws an error if N is invalid or TYPE
3041 is not an array type. NAME is the name of the Ada attribute being
3042 evaluated ('range, 'first, 'last, or 'length); it is used in building
3043 the error message. */
14f9c5c9 3044
1eea4ebd
UW
3045static struct type *
3046ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3047{
4c4b4cd2
PH
3048 struct type *result_type;
3049
14f9c5c9
AS
3050 type = desc_base_type (type);
3051
1eea4ebd
UW
3052 if (n < 0 || n > ada_array_arity (type))
3053 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3054
4c4b4cd2 3055 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3056 {
3057 int i;
3058
3059 for (i = 1; i < n; i += 1)
4c4b4cd2 3060 type = TYPE_TARGET_TYPE (type);
262452ec 3061 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3062 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3063 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3064 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3065 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3066 result_type = NULL;
14f9c5c9 3067 }
d2e4a39e 3068 else
1eea4ebd
UW
3069 {
3070 result_type = desc_index_type (desc_bounds_type (type), n);
3071 if (result_type == NULL)
3072 error (_("attempt to take bound of something that is not an array"));
3073 }
3074
3075 return result_type;
14f9c5c9
AS
3076}
3077
3078/* Given that arr is an array type, returns the lower bound of the
3079 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3080 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3081 array-descriptor type. It works for other arrays with bounds supplied
3082 by run-time quantities other than discriminants. */
14f9c5c9 3083
abb68b3e 3084static LONGEST
fb5e3d5c 3085ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3086{
8a48ac95 3087 struct type *type, *index_type_desc, *index_type;
1ce677a4 3088 int i;
262452ec
JK
3089
3090 gdb_assert (which == 0 || which == 1);
14f9c5c9 3091
ad82864c
JB
3092 if (ada_is_constrained_packed_array_type (arr_type))
3093 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3094
4c4b4cd2 3095 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3096 return (LONGEST) - which;
14f9c5c9
AS
3097
3098 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3099 type = TYPE_TARGET_TYPE (arr_type);
3100 else
3101 type = arr_type;
3102
bafffb51
JB
3103 if (TYPE_FIXED_INSTANCE (type))
3104 {
3105 /* The array has already been fixed, so we do not need to
3106 check the parallel ___XA type again. That encoding has
3107 already been applied, so ignore it now. */
3108 index_type_desc = NULL;
3109 }
3110 else
3111 {
3112 index_type_desc = ada_find_parallel_type (type, "___XA");
3113 ada_fixup_array_indexes_type (index_type_desc);
3114 }
3115
262452ec 3116 if (index_type_desc != NULL)
28c85d6c
JB
3117 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3118 NULL);
262452ec 3119 else
8a48ac95
JB
3120 {
3121 struct type *elt_type = check_typedef (type);
3122
3123 for (i = 1; i < n; i++)
3124 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3125
3126 index_type = TYPE_INDEX_TYPE (elt_type);
3127 }
262452ec 3128
43bbcdc2
PH
3129 return
3130 (LONGEST) (which == 0
3131 ? ada_discrete_type_low_bound (index_type)
3132 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3133}
3134
3135/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3136 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3137 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3138 supplied by run-time quantities other than discriminants. */
14f9c5c9 3139
1eea4ebd 3140static LONGEST
4dc81987 3141ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3142{
eb479039
JB
3143 struct type *arr_type;
3144
3145 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3146 arr = value_ind (arr);
3147 arr_type = value_enclosing_type (arr);
14f9c5c9 3148
ad82864c
JB
3149 if (ada_is_constrained_packed_array_type (arr_type))
3150 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3151 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3152 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3153 else
1eea4ebd 3154 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3155}
3156
3157/* Given that arr is an array value, returns the length of the
3158 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3159 supplied by run-time quantities other than discriminants.
3160 Does not work for arrays indexed by enumeration types with representation
3161 clauses at the moment. */
14f9c5c9 3162
1eea4ebd 3163static LONGEST
d2e4a39e 3164ada_array_length (struct value *arr, int n)
14f9c5c9 3165{
aa715135
JG
3166 struct type *arr_type, *index_type;
3167 int low, high;
eb479039
JB
3168
3169 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3170 arr = value_ind (arr);
3171 arr_type = value_enclosing_type (arr);
14f9c5c9 3172
ad82864c
JB
3173 if (ada_is_constrained_packed_array_type (arr_type))
3174 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3175
4c4b4cd2 3176 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3177 {
3178 low = ada_array_bound_from_type (arr_type, n, 0);
3179 high = ada_array_bound_from_type (arr_type, n, 1);
3180 }
14f9c5c9 3181 else
aa715135
JG
3182 {
3183 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3184 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3185 }
3186
f168693b 3187 arr_type = check_typedef (arr_type);
aa715135
JG
3188 index_type = TYPE_INDEX_TYPE (arr_type);
3189 if (index_type != NULL)
3190 {
3191 struct type *base_type;
3192 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3193 base_type = TYPE_TARGET_TYPE (index_type);
3194 else
3195 base_type = index_type;
3196
3197 low = pos_atr (value_from_longest (base_type, low));
3198 high = pos_atr (value_from_longest (base_type, high));
3199 }
3200 return high - low + 1;
4c4b4cd2
PH
3201}
3202
3203/* An empty array whose type is that of ARR_TYPE (an array type),
3204 with bounds LOW to LOW-1. */
3205
3206static struct value *
3207empty_array (struct type *arr_type, int low)
3208{
b0dd7688 3209 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3210 struct type *index_type
3211 = create_static_range_type
3212 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3213 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3214
0b5d8877 3215 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3216}
14f9c5c9 3217\f
d2e4a39e 3218
4c4b4cd2 3219 /* Name resolution */
14f9c5c9 3220
4c4b4cd2
PH
3221/* The "decoded" name for the user-definable Ada operator corresponding
3222 to OP. */
14f9c5c9 3223
d2e4a39e 3224static const char *
4c4b4cd2 3225ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3226{
3227 int i;
3228
4c4b4cd2 3229 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3230 {
3231 if (ada_opname_table[i].op == op)
4c4b4cd2 3232 return ada_opname_table[i].decoded;
14f9c5c9 3233 }
323e0a4a 3234 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3235}
3236
3237
4c4b4cd2
PH
3238/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3239 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3240 undefined namespace) and converts operators that are
3241 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3242 non-null, it provides a preferred result type [at the moment, only
3243 type void has any effect---causing procedures to be preferred over
3244 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3245 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3246
4c4b4cd2
PH
3247static void
3248resolve (struct expression **expp, int void_context_p)
14f9c5c9 3249{
30b15541
UW
3250 struct type *context_type = NULL;
3251 int pc = 0;
3252
3253 if (void_context_p)
3254 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3255
3256 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3257}
3258
4c4b4cd2
PH
3259/* Resolve the operator of the subexpression beginning at
3260 position *POS of *EXPP. "Resolving" consists of replacing
3261 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3262 with their resolutions, replacing built-in operators with
3263 function calls to user-defined operators, where appropriate, and,
3264 when DEPROCEDURE_P is non-zero, converting function-valued variables
3265 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3266 are as in ada_resolve, above. */
14f9c5c9 3267
d2e4a39e 3268static struct value *
4c4b4cd2 3269resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3270 struct type *context_type)
14f9c5c9
AS
3271{
3272 int pc = *pos;
3273 int i;
4c4b4cd2 3274 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3275 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3276 struct value **argvec; /* Vector of operand types (alloca'ed). */
3277 int nargs; /* Number of operands. */
52ce6436 3278 int oplen;
14f9c5c9
AS
3279
3280 argvec = NULL;
3281 nargs = 0;
3282 exp = *expp;
3283
52ce6436
PH
3284 /* Pass one: resolve operands, saving their types and updating *pos,
3285 if needed. */
14f9c5c9
AS
3286 switch (op)
3287 {
4c4b4cd2
PH
3288 case OP_FUNCALL:
3289 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3290 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3291 *pos += 7;
4c4b4cd2
PH
3292 else
3293 {
3294 *pos += 3;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 }
3297 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3298 break;
3299
14f9c5c9 3300 case UNOP_ADDR:
4c4b4cd2
PH
3301 *pos += 1;
3302 resolve_subexp (expp, pos, 0, NULL);
3303 break;
3304
52ce6436
PH
3305 case UNOP_QUAL:
3306 *pos += 3;
17466c1a 3307 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3308 break;
3309
52ce6436 3310 case OP_ATR_MODULUS:
4c4b4cd2
PH
3311 case OP_ATR_SIZE:
3312 case OP_ATR_TAG:
4c4b4cd2
PH
3313 case OP_ATR_FIRST:
3314 case OP_ATR_LAST:
3315 case OP_ATR_LENGTH:
3316 case OP_ATR_POS:
3317 case OP_ATR_VAL:
4c4b4cd2
PH
3318 case OP_ATR_MIN:
3319 case OP_ATR_MAX:
52ce6436
PH
3320 case TERNOP_IN_RANGE:
3321 case BINOP_IN_BOUNDS:
3322 case UNOP_IN_RANGE:
3323 case OP_AGGREGATE:
3324 case OP_OTHERS:
3325 case OP_CHOICES:
3326 case OP_POSITIONAL:
3327 case OP_DISCRETE_RANGE:
3328 case OP_NAME:
3329 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3330 *pos += oplen;
14f9c5c9
AS
3331 break;
3332
3333 case BINOP_ASSIGN:
3334 {
4c4b4cd2
PH
3335 struct value *arg1;
3336
3337 *pos += 1;
3338 arg1 = resolve_subexp (expp, pos, 0, NULL);
3339 if (arg1 == NULL)
3340 resolve_subexp (expp, pos, 1, NULL);
3341 else
df407dfe 3342 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3343 break;
14f9c5c9
AS
3344 }
3345
4c4b4cd2 3346 case UNOP_CAST:
4c4b4cd2
PH
3347 *pos += 3;
3348 nargs = 1;
3349 break;
14f9c5c9 3350
4c4b4cd2
PH
3351 case BINOP_ADD:
3352 case BINOP_SUB:
3353 case BINOP_MUL:
3354 case BINOP_DIV:
3355 case BINOP_REM:
3356 case BINOP_MOD:
3357 case BINOP_EXP:
3358 case BINOP_CONCAT:
3359 case BINOP_LOGICAL_AND:
3360 case BINOP_LOGICAL_OR:
3361 case BINOP_BITWISE_AND:
3362 case BINOP_BITWISE_IOR:
3363 case BINOP_BITWISE_XOR:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_EQUAL:
3366 case BINOP_NOTEQUAL:
3367 case BINOP_LESS:
3368 case BINOP_GTR:
3369 case BINOP_LEQ:
3370 case BINOP_GEQ:
14f9c5c9 3371
4c4b4cd2
PH
3372 case BINOP_REPEAT:
3373 case BINOP_SUBSCRIPT:
3374 case BINOP_COMMA:
40c8aaa9
JB
3375 *pos += 1;
3376 nargs = 2;
3377 break;
14f9c5c9 3378
4c4b4cd2
PH
3379 case UNOP_NEG:
3380 case UNOP_PLUS:
3381 case UNOP_LOGICAL_NOT:
3382 case UNOP_ABS:
3383 case UNOP_IND:
3384 *pos += 1;
3385 nargs = 1;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_LONG:
3389 case OP_DOUBLE:
3390 case OP_VAR_VALUE:
3391 *pos += 4;
3392 break;
14f9c5c9 3393
4c4b4cd2
PH
3394 case OP_TYPE:
3395 case OP_BOOL:
3396 case OP_LAST:
4c4b4cd2
PH
3397 case OP_INTERNALVAR:
3398 *pos += 3;
3399 break;
14f9c5c9 3400
4c4b4cd2
PH
3401 case UNOP_MEMVAL:
3402 *pos += 3;
3403 nargs = 1;
3404 break;
3405
67f3407f
DJ
3406 case OP_REGISTER:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 break;
3409
4c4b4cd2
PH
3410 case STRUCTOP_STRUCT:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 nargs = 1;
3413 break;
3414
4c4b4cd2 3415 case TERNOP_SLICE:
4c4b4cd2
PH
3416 *pos += 1;
3417 nargs = 3;
3418 break;
3419
52ce6436 3420 case OP_STRING:
14f9c5c9 3421 break;
4c4b4cd2
PH
3422
3423 default:
323e0a4a 3424 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3425 }
3426
8d749320 3427 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3428 for (i = 0; i < nargs; i += 1)
3429 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3430 argvec[i] = NULL;
3431 exp = *expp;
3432
3433 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3434 switch (op)
3435 {
3436 default:
3437 break;
3438
14f9c5c9 3439 case OP_VAR_VALUE:
4c4b4cd2 3440 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3441 {
d12307c1 3442 struct block_symbol *candidates;
76a01679
JB
3443 int n_candidates;
3444
3445 n_candidates =
3446 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3447 (exp->elts[pc + 2].symbol),
3448 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3449 &candidates);
76a01679
JB
3450
3451 if (n_candidates > 1)
3452 {
3453 /* Types tend to get re-introduced locally, so if there
3454 are any local symbols that are not types, first filter
3455 out all types. */
3456 int j;
3457 for (j = 0; j < n_candidates; j += 1)
d12307c1 3458 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3459 {
3460 case LOC_REGISTER:
3461 case LOC_ARG:
3462 case LOC_REF_ARG:
76a01679
JB
3463 case LOC_REGPARM_ADDR:
3464 case LOC_LOCAL:
76a01679 3465 case LOC_COMPUTED:
76a01679
JB
3466 goto FoundNonType;
3467 default:
3468 break;
3469 }
3470 FoundNonType:
3471 if (j < n_candidates)
3472 {
3473 j = 0;
3474 while (j < n_candidates)
3475 {
d12307c1 3476 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3477 {
3478 candidates[j] = candidates[n_candidates - 1];
3479 n_candidates -= 1;
3480 }
3481 else
3482 j += 1;
3483 }
3484 }
3485 }
3486
3487 if (n_candidates == 0)
323e0a4a 3488 error (_("No definition found for %s"),
76a01679
JB
3489 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3490 else if (n_candidates == 1)
3491 i = 0;
3492 else if (deprocedure_p
3493 && !is_nonfunction (candidates, n_candidates))
3494 {
06d5cf63
JB
3495 i = ada_resolve_function
3496 (candidates, n_candidates, NULL, 0,
3497 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3498 context_type);
76a01679 3499 if (i < 0)
323e0a4a 3500 error (_("Could not find a match for %s"),
76a01679
JB
3501 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3502 }
3503 else
3504 {
323e0a4a 3505 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3506 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3507 user_select_syms (candidates, n_candidates, 1);
3508 i = 0;
3509 }
3510
3511 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3512 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3513 if (innermost_block == NULL
3514 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3515 innermost_block = candidates[i].block;
3516 }
3517
3518 if (deprocedure_p
3519 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3520 == TYPE_CODE_FUNC))
3521 {
3522 replace_operator_with_call (expp, pc, 0, 0,
3523 exp->elts[pc + 2].symbol,
3524 exp->elts[pc + 1].block);
3525 exp = *expp;
3526 }
14f9c5c9
AS
3527 break;
3528
3529 case OP_FUNCALL:
3530 {
4c4b4cd2 3531 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3532 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3533 {
d12307c1 3534 struct block_symbol *candidates;
4c4b4cd2
PH
3535 int n_candidates;
3536
3537 n_candidates =
76a01679
JB
3538 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3539 (exp->elts[pc + 5].symbol),
3540 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3541 &candidates);
4c4b4cd2
PH
3542 if (n_candidates == 1)
3543 i = 0;
3544 else
3545 {
06d5cf63
JB
3546 i = ada_resolve_function
3547 (candidates, n_candidates,
3548 argvec, nargs,
3549 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3550 context_type);
4c4b4cd2 3551 if (i < 0)
323e0a4a 3552 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3553 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3554 }
3555
3556 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3557 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3558 if (innermost_block == NULL
3559 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3560 innermost_block = candidates[i].block;
3561 }
14f9c5c9
AS
3562 }
3563 break;
3564 case BINOP_ADD:
3565 case BINOP_SUB:
3566 case BINOP_MUL:
3567 case BINOP_DIV:
3568 case BINOP_REM:
3569 case BINOP_MOD:
3570 case BINOP_CONCAT:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574 case BINOP_EQUAL:
3575 case BINOP_NOTEQUAL:
3576 case BINOP_LESS:
3577 case BINOP_GTR:
3578 case BINOP_LEQ:
3579 case BINOP_GEQ:
3580 case BINOP_EXP:
3581 case UNOP_NEG:
3582 case UNOP_PLUS:
3583 case UNOP_LOGICAL_NOT:
3584 case UNOP_ABS:
3585 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3586 {
d12307c1 3587 struct block_symbol *candidates;
4c4b4cd2
PH
3588 int n_candidates;
3589
3590 n_candidates =
3591 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3592 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3593 &candidates);
4c4b4cd2 3594 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3595 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3596 if (i < 0)
3597 break;
3598
d12307c1
PMR
3599 replace_operator_with_call (expp, pc, nargs, 1,
3600 candidates[i].symbol,
3601 candidates[i].block);
4c4b4cd2
PH
3602 exp = *expp;
3603 }
14f9c5c9 3604 break;
4c4b4cd2
PH
3605
3606 case OP_TYPE:
b3dbf008 3607 case OP_REGISTER:
4c4b4cd2 3608 return NULL;
14f9c5c9
AS
3609 }
3610
3611 *pos = pc;
3612 return evaluate_subexp_type (exp, pos);
3613}
3614
3615/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3617 a non-pointer. */
14f9c5c9 3618/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3619 liberal. */
14f9c5c9
AS
3620
3621static int
4dc81987 3622ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3623{
61ee279c
PH
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
14f9c5c9
AS
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
d2e4a39e 3632 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3633 {
3634 default:
5b3d5b7d 3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3640 else
1265e4aa
JB
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
14f9c5c9
AS
3655
3656 case TYPE_CODE_ARRAY:
d2e4a39e 3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3658 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3659
3660 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
14f9c5c9 3664 else
4c4b4cd2
PH
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672}
3673
3674/* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3677 argument function. */
14f9c5c9
AS
3678
3679static int
d2e4a39e 3680ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3681{
3682 int i;
d2e4a39e 3683 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3684
1265e4aa
JB
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
4c4b4cd2 3696 if (actuals[i] == NULL)
76a01679
JB
3697 return 0;
3698 else
3699 {
5b4ee69b
MS
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
df407dfe 3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3703
76a01679
JB
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
14f9c5c9
AS
3707 }
3708 return 1;
3709}
3710
3711/* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716static int
d2e4a39e 3717return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3718{
d2e4a39e 3719 struct type *return_type;
14f9c5c9
AS
3720
3721 if (func_type == NULL)
3722 return 1;
3723
4c4b4cd2 3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3726 else
18af8284 3727 return_type = get_base_type (func_type);
14f9c5c9
AS
3728 if (return_type == NULL)
3729 return 1;
3730
18af8284 3731 context_type = get_base_type (context_type);
14f9c5c9
AS
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739}
3740
3741
4c4b4cd2 3742/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3743 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
14f9c5c9
AS
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
14f9c5c9 3753
4c4b4cd2 3754static int
d12307c1 3755ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
14f9c5c9 3758{
30b15541 3759 int fallback;
14f9c5c9 3760 int k;
4c4b4cd2 3761 int m; /* Number of hits */
14f9c5c9 3762
d2e4a39e 3763 m = 0;
30b15541
UW
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3768 {
3769 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3770 {
d12307c1 3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3772
d12307c1 3773 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3774 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
14f9c5c9
AS
3780 }
3781
dc5c8746
PMR
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3786 if (m == 0)
3787 return -1;
dc5c8746 3788 else if (m > 1 && !parse_completion)
14f9c5c9 3789 {
323e0a4a 3790 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3791 user_select_syms (syms, m, 1);
14f9c5c9
AS
3792 return 0;
3793 }
3794 return 0;
3795}
3796
4c4b4cd2
PH
3797/* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
14f9c5c9 3803static int
0d5cff50 3804encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3805{
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
5b4ee69b 3813
d2e4a39e 3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3815 ;
d2e4a39e 3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3817 ;
d2e4a39e 3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
5b4ee69b 3822
4c4b4cd2
PH
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
14f9c5c9
AS
3832 return (strcmp (N0, N1) < 0);
3833 }
3834}
d2e4a39e 3835
4c4b4cd2
PH
3836/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
d2e4a39e 3839static void
d12307c1 3840sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3841{
4c4b4cd2 3842 int i;
5b4ee69b 3843
d2e4a39e 3844 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3845 {
d12307c1 3846 struct block_symbol sym = syms[i];
14f9c5c9
AS
3847 int j;
3848
d2e4a39e 3849 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3850 {
d12307c1
PMR
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
d2e4a39e 3856 syms[j + 1] = sym;
14f9c5c9
AS
3857 }
3858}
3859
d72413e6
PMR
3860/* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862static int print_signatures = 1;
3863
3864/* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869static void
3870ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872{
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901}
3902
4c4b4cd2
PH
3903/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
14f9c5c9
AS
3907
3908/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3909 to be re-integrated one of these days. */
14f9c5c9
AS
3910
3911int
d12307c1 3912user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3913{
3914 int i;
8d749320 3915 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3918 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3919
3920 if (max_results < 1)
323e0a4a 3921 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3922 if (nsyms <= 1)
3923 return nsyms;
3924
717d2f5a
JB
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927canceled because the command is ambiguous\n\
3928See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
323e0a4a 3936 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3937 if (max_results > 1)
323e0a4a 3938 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3939
4c4b4cd2 3940 sort_choices (syms, nsyms);
14f9c5c9
AS
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
d12307c1 3944 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3945 continue;
3946
d12307c1 3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3948 {
76a01679 3949 struct symtab_and_line sal =
d12307c1 3950 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3951
d72413e6
PMR
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
323e0a4a 3955 if (sal.symtab == NULL)
d72413e6 3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3957 sal.line);
3958 else
d72413e6 3959 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
4c4b4cd2
PH
3962 continue;
3963 }
d2e4a39e 3964 else
4c4b4cd2
PH
3965 {
3966 int is_enumeral =
d12307c1
PMR
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3970 struct symtab *symtab = NULL;
3971
d12307c1
PMR
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3974
d12307c1 3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
76a01679 3984 else if (is_enumeral
d12307c1 3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3986 {
a3f17187 3987 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3989 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3991 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3992 }
d72413e6
PMR
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4c4b4cd2 4009 }
14f9c5c9 4010 }
d2e4a39e 4011
14f9c5c9 4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4013 "overload-choice");
14f9c5c9
AS
4014
4015 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4016 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4017
4018 return n_chosen;
4019}
4020
4021/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4022 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4c4b4cd2 4028 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4c4b4cd2 4032 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4035 prompts (for use with the -f switch). */
14f9c5c9
AS
4036
4037int
d2e4a39e 4038get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 4039 int is_all_choice, char *annotation_suffix)
14f9c5c9 4040{
d2e4a39e 4041 char *args;
0bcd0149 4042 char *prompt;
14f9c5c9
AS
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4045
14f9c5c9
AS
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
0bcd0149 4048 prompt = "> ";
14f9c5c9 4049
0bcd0149 4050 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4051
14f9c5c9 4052 if (args == NULL)
323e0a4a 4053 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4054
4055 n_chosen = 0;
76a01679 4056
4c4b4cd2
PH
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
14f9c5c9
AS
4059 while (1)
4060 {
d2e4a39e 4061 char *args2;
14f9c5c9
AS
4062 int choice, j;
4063
0fcd72ba 4064 args = skip_spaces (args);
14f9c5c9 4065 if (*args == '\0' && n_chosen == 0)
323e0a4a 4066 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4067 else if (*args == '\0')
4c4b4cd2 4068 break;
14f9c5c9
AS
4069
4070 choice = strtol (args, &args2, 10);
d2e4a39e 4071 if (args == args2 || choice < 0
4c4b4cd2 4072 || choice > n_choices + first_choice - 1)
323e0a4a 4073 error (_("Argument must be choice number"));
14f9c5c9
AS
4074 args = args2;
4075
d2e4a39e 4076 if (choice == 0)
323e0a4a 4077 error (_("cancelled"));
14f9c5c9
AS
4078
4079 if (choice < first_choice)
4c4b4cd2
PH
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
14f9c5c9
AS
4086 choice -= first_choice;
4087
d2e4a39e 4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4089 {
4090 }
14f9c5c9
AS
4091
4092 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4093 {
4094 int k;
5b4ee69b 4095
4c4b4cd2
PH
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
14f9c5c9
AS
4101 }
4102
4103 if (n_chosen > max_results)
323e0a4a 4104 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4105
14f9c5c9
AS
4106 return n_chosen;
4107}
4108
4c4b4cd2
PH
4109/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4112
4113static void
d2e4a39e 4114replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4115 int oplen, struct symbol *sym,
270140bd 4116 const struct block *block)
14f9c5c9
AS
4117{
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4119 symbol, -oplen for operator being replaced). */
d2e4a39e 4120 struct expression *newexp = (struct expression *)
8c1a34e7 4121 xzalloc (sizeof (struct expression)
4c4b4cd2 4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4123 struct expression *exp = *expp;
14f9c5c9
AS
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
3489610d 4127 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 *expp = newexp;
aacb1f0a 4140 xfree (exp);
d2e4a39e 4141}
14f9c5c9
AS
4142
4143/* Type-class predicates */
4144
4c4b4cd2
PH
4145/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
14f9c5c9
AS
4147
4148static int
d2e4a39e 4149numeric_type_p (struct type *type)
14f9c5c9
AS
4150{
4151 if (type == NULL)
4152 return 0;
d2e4a39e
AS
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4c4b4cd2
PH
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
d2e4a39e 4166 }
14f9c5c9
AS
4167}
4168
4c4b4cd2 4169/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4170
4171static int
d2e4a39e 4172integer_type_p (struct type *type)
14f9c5c9
AS
4173{
4174 if (type == NULL)
4175 return 0;
d2e4a39e
AS
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4c4b4cd2
PH
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
d2e4a39e 4188 }
14f9c5c9
AS
4189}
4190
4c4b4cd2 4191/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4192
4193static int
d2e4a39e 4194scalar_type_p (struct type *type)
14f9c5c9
AS
4195{
4196 if (type == NULL)
4197 return 0;
d2e4a39e
AS
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4c4b4cd2
PH
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
d2e4a39e 4210 }
14f9c5c9
AS
4211}
4212
4c4b4cd2 4213/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4214
4215static int
d2e4a39e 4216discrete_type_p (struct type *type)
14f9c5c9
AS
4217{
4218 if (type == NULL)
4219 return 0;
d2e4a39e
AS
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4c4b4cd2
PH
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
872f0337 4227 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4228 return 1;
4229 default:
4230 return 0;
4231 }
d2e4a39e 4232 }
14f9c5c9
AS
4233}
4234
4c4b4cd2
PH
4235/* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
14f9c5c9
AS
4238
4239static int
d2e4a39e 4240possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4241{
76a01679 4242 struct type *type0 =
df407dfe 4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4244 struct type *type1 =
df407dfe 4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4246
4c4b4cd2
PH
4247 if (type0 == NULL)
4248 return 0;
4249
14f9c5c9
AS
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
d2e4a39e 4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
d2e4a39e 4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
d2e4a39e 4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4275
4276 case BINOP_CONCAT:
ee90b9ab 4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4278
4279 case BINOP_EXP:
d2e4a39e 4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
14f9c5c9
AS
4287
4288 }
4289}
4290\f
4c4b4cd2 4291 /* Renaming */
14f9c5c9 4292
aeb5907d
JB
4293/* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305/* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
0963b4bd 4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324enum ada_renaming_category
4325ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328{
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
14f9c5c9 4336 {
aeb5907d
JB
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
14f9c5c9 4370 }
4c4b4cd2 4371
aeb5907d
JB
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383}
4384
4385/* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389static enum ada_renaming_category
4390parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393{
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
14f9c5c9 4398
aeb5907d
JB
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
14f9c5c9 4402
aeb5907d
JB
4403 name = type_name_no_tag (type);
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
14f9c5c9 4428
aeb5907d
JB
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
a5ee536b
JB
4442}
4443
4444/* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
52ce6436 4447
a5ee536b
JB
4448static struct value *
4449ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4450 const struct block *block)
a5ee536b 4451{
bbc13ae3 4452 const char *sym_name;
a5ee536b 4453
bbc13ae3 4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
a5ee536b 4457}
14f9c5c9 4458\f
d2e4a39e 4459
4c4b4cd2 4460 /* Evaluation: Function Calls */
14f9c5c9 4461
4c4b4cd2 4462/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4465
d2e4a39e 4466static struct value *
40bc484c 4467ensure_lval (struct value *val)
14f9c5c9 4468{
40bc484c
JB
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4471 {
df407dfe 4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4475
a84a8a0d 4476 VALUE_LVAL (val) = lval_memory;
1a088441 4477 set_value_address (val, addr);
40bc484c 4478 write_memory (addr, value_contents (val), len);
c3e5cd34 4479 }
14f9c5c9
AS
4480
4481 return val;
4482}
4483
4484/* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4487 values not residing in memory, updating it as needed. */
14f9c5c9 4488
a93c0eb6 4489struct value *
40bc484c 4490ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4491{
df407dfe 4492 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4493 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4500
4c4b4cd2 4501 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4503 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4506 {
a84a8a0d 4507 struct value *result;
5b4ee69b 4508
14f9c5c9 4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4510 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4511 result = desc_data (actual);
14f9c5c9 4512 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
5b4ee69b 4517
df407dfe 4518 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4519 val = allocate_value (actual_type);
990a07ab 4520 memcpy ((char *) value_contents_raw (val),
0fd88904 4521 (char *) value_contents (actual),
4c4b4cd2 4522 TYPE_LENGTH (actual_type));
40bc484c 4523 actual = ensure_lval (val);
4c4b4cd2 4524 }
a84a8a0d 4525 result = value_addr (actual);
4c4b4cd2 4526 }
a84a8a0d
JB
4527 else
4528 return actual;
b1af9e97 4529 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
8344af1e
JB
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
14f9c5c9
AS
4543
4544 return actual;
4545}
4546
438c98a1
JB
4547/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552static CORE_ADDR
4553value_pointer (struct value *value, struct type *type)
4554{
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
224c3ddb 4557 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564}
4565
14f9c5c9 4566
4c4b4cd2
PH
4567/* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
14f9c5c9 4572
d2e4a39e 4573static struct value *
40bc484c 4574make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4575{
d2e4a39e
AS
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4580 int i;
d2e4a39e 4581
0963b4bd
MS
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
14f9c5c9 4584 {
19f220c3
JK
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4593 }
d2e4a39e 4594
40bc484c 4595 bounds = ensure_lval (bounds);
d2e4a39e 4596
19f220c3
JK
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4610
40bc484c 4611 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617}
14f9c5c9 4618\f
3d9434b5
JB
4619 /* Symbol Cache Module */
4620
3d9434b5 4621/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4622 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
ee01b665 4631/* Initialize the contents of SYM_CACHE. */
3d9434b5 4632
ee01b665
JB
4633static void
4634ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635{
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638}
3d9434b5 4639
ee01b665
JB
4640/* Free the memory used by SYM_CACHE. */
4641
4642static void
4643ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4644{
ee01b665
JB
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647}
3d9434b5 4648
ee01b665
JB
4649/* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4651
ee01b665
JB
4652static struct ada_symbol_cache *
4653ada_get_symbol_cache (struct program_space *pspace)
4654{
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4656
66c168ae 4657 if (pspace_data->sym_cache == NULL)
ee01b665 4658 {
66c168ae
JB
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4661 }
4662
66c168ae 4663 return pspace_data->sym_cache;
ee01b665 4664}
3d9434b5
JB
4665
4666/* Clear all entries from the symbol cache. */
4667
4668static void
4669ada_clear_symbol_cache (void)
4670{
ee01b665
JB
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4676}
4677
fe978cb0 4678/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4679 Return it if found, or NULL otherwise. */
4680
4681static struct cache_entry **
fe978cb0 4682find_entry (const char *name, domain_enum domain)
3d9434b5 4683{
ee01b665
JB
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
ee01b665 4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4690 {
fe978cb0 4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4692 return e;
4693 }
4694 return NULL;
4695}
4696
fe978cb0 4697/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4702
96d887e8 4703static int
fe978cb0 4704lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4705 struct symbol **sym, const struct block **block)
96d887e8 4706{
fe978cb0 4707 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
96d887e8
PH
4716}
4717
3d9434b5 4718/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4719 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4720
96d887e8 4721static void
fe978cb0 4722cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4723 const struct block *block)
96d887e8 4724{
ee01b665
JB
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
1994afbf
DE
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
3d9434b5
JB
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
08be3fe3 4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4742 GLOBAL_BLOCK) != block
08be3fe3 4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4744 STATIC_BLOCK) != block)
3d9434b5
JB
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4748 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 sizeof (*e));
4750 e->next = sym_cache->root[h];
4751 sym_cache->root[h] = e;
224c3ddb
SM
4752 e->name = copy
4753 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4754 strcpy (copy, name);
4755 e->sym = sym;
fe978cb0 4756 e->domain = domain;
3d9434b5 4757 e->block = block;
96d887e8 4758}
4c4b4cd2
PH
4759\f
4760 /* Symbol Lookup */
4761
c0431670
JB
4762/* Return nonzero if wild matching should be used when searching for
4763 all symbols matching LOOKUP_NAME.
4764
4765 LOOKUP_NAME is expected to be a symbol name after transformation
4766 for Ada lookups (see ada_name_for_lookup). */
4767
4768static int
4769should_use_wild_match (const char *lookup_name)
4770{
4771 return (strstr (lookup_name, "__") == NULL);
4772}
4773
4c4b4cd2
PH
4774/* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777static struct symbol *
4778standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780{
acbd605d 4781 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4782 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4783
d12307c1
PMR
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
2570f2b7 4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4c4b4cd2
PH
4789}
4790
4791
4792/* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795static int
d12307c1 4796is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4797{
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
d12307c1
PMR
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4804 return 1;
4805
4806 return 0;
4807}
4808
4809/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4810 struct types. Otherwise, they may not. */
14f9c5c9
AS
4811
4812static int
d2e4a39e 4813equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4814{
d2e4a39e 4815 if (type0 == type1)
14f9c5c9 4816 return 1;
d2e4a39e 4817 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
d2e4a39e 4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4824 return 1;
d2e4a39e 4825
14f9c5c9
AS
4826 return 0;
4827}
4828
4829/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4830 no more defined than that of SYM1. */
14f9c5c9
AS
4831
4832static int
d2e4a39e 4833lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4834{
4835 if (sym0 == sym1)
4836 return 1;
176620f1 4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
d2e4a39e 4841 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4c4b4cd2
PH
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4851 int len0 = strlen (name0);
5b4ee69b 4852
4c4b4cd2
PH
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4857 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4862 default:
4863 return 0;
14f9c5c9
AS
4864 }
4865}
4866
d12307c1 4867/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4869
4870static void
76a01679
JB
4871add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
f0c5f9b2 4873 const struct block *block)
14f9c5c9
AS
4874{
4875 int i;
d12307c1 4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4877
529cad9c
PH
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4c4b4cd2
PH
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
d12307c1 4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4890 return;
d12307c1 4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4892 {
d12307c1 4893 prevDefns[i].symbol = sym;
4c4b4cd2 4894 prevDefns[i].block = block;
4c4b4cd2 4895 return;
76a01679 4896 }
4c4b4cd2
PH
4897 }
4898
4899 {
d12307c1 4900 struct block_symbol info;
4c4b4cd2 4901
d12307c1 4902 info.symbol = sym;
4c4b4cd2 4903 info.block = block;
d12307c1 4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4905 }
4906}
4907
d12307c1
PMR
4908/* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4c4b4cd2 4910
76a01679
JB
4911static int
4912num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4913{
d12307c1 4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4915}
4916
d12307c1
PMR
4917/* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4919
d12307c1 4920static struct block_symbol *
4c4b4cd2
PH
4921defns_collected (struct obstack *obstackp, int finish)
4922{
4923 if (finish)
224c3ddb 4924 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4925 else
d12307c1 4926 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4927}
4928
7c7b6655
TT
4929/* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4c4b4cd2 4934
7c7b6655 4935struct bound_minimal_symbol
96d887e8 4936ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4937{
7c7b6655 4938 struct bound_minimal_symbol result;
4c4b4cd2 4939 struct objfile *objfile;
96d887e8 4940 struct minimal_symbol *msymbol;
dc4024cd 4941 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4942
7c7b6655
TT
4943 memset (&result, 0, sizeof (result));
4944
c0431670
JB
4945 /* Special case: If the user specifies a symbol name inside package
4946 Standard, do a non-wild matching of the symbol name without
4947 the "standard__" prefix. This was primarily introduced in order
4948 to allow the user to specifically access the standard exceptions
4949 using, for instance, Standard.Constraint_Error when Constraint_Error
4950 is ambiguous (due to the user defining its own Constraint_Error
4951 entity inside its program). */
61012eef 4952 if (startswith (name, "standard__"))
c0431670 4953 name += sizeof ("standard__") - 1;
4c4b4cd2 4954
96d887e8
PH
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
efd66ac6 4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
96d887e8 4964 }
4c4b4cd2 4965
7c7b6655 4966 return result;
96d887e8 4967}
4c4b4cd2 4968
96d887e8
PH
4969/* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4c4b4cd2 4974
96d887e8
PH
4975static void
4976add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4977 const char *name, domain_enum domain,
48b78332 4978 int wild_match_p)
96d887e8 4979{
96d887e8 4980}
14f9c5c9 4981
96d887e8
PH
4982/* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
14f9c5c9 4984
96d887e8
PH
4985static int
4986is_nondebugging_type (struct type *type)
4987{
0d5cff50 4988 const char *name = ada_type_name (type);
5b4ee69b 4989
96d887e8
PH
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991}
4c4b4cd2 4992
8f17729f
JB
4993/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000static int
5001ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002{
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
0d5cff50
DE
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034}
5035
5036/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056static int
d12307c1 5057symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5058{
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
d12307c1 5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
d12307c1 5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5090 return 0;
5091
5092 return 1;
5093}
5094
96d887e8
PH
5095/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
4c4b4cd2 5101
96d887e8 5102static int
d12307c1 5103remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5104{
5105 int i, j;
4c4b4cd2 5106
8f17729f
JB
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
96d887e8
PH
5113 i = 0;
5114 while (i < nsyms)
5115 {
a35ddb44 5116 int remove_p = 0;
339c13b6
JB
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
d12307c1
PMR
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
d12307c1
PMR
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5131 remove_p = 1;
339c13b6
JB
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
d12307c1
PMR
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
d12307c1
PMR
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5152 remove_p = 1;
4c4b4cd2 5153 }
4c4b4cd2 5154 }
339c13b6 5155
a35ddb44 5156 if (remove_p)
339c13b6
JB
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
96d887e8 5163 i += 1;
14f9c5c9 5164 }
8f17729f
JB
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
96d887e8 5181 return nsyms;
14f9c5c9
AS
5182}
5183
96d887e8
PH
5184/* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5188
96d887e8
PH
5189static char *
5190xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5191{
96d887e8 5192 /* The renaming types adhere to the following convention:
0963b4bd 5193 <scope>__<rename>___<XR extension>.
96d887e8
PH
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
76a01679 5196
96d887e8 5197 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
96d887e8
PH
5200 int scope_len;
5201 char *scope;
14f9c5c9 5202
96d887e8
PH
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5205
96d887e8
PH
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
76a01679 5209
96d887e8 5210 /* Make a copy of scope and return it. */
14f9c5c9 5211
96d887e8
PH
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5214
96d887e8
PH
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
4c4b4cd2 5217
96d887e8 5218 return scope;
4c4b4cd2
PH
5219}
5220
96d887e8 5221/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5222
96d887e8
PH
5223static int
5224is_package_name (const char *name)
4c4b4cd2 5225{
96d887e8
PH
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
4c4b4cd2 5231
96d887e8 5232 char *fun_name;
76a01679 5233
96d887e8
PH
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
14f9c5c9 5238
96d887e8
PH
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
14f9c5c9 5241
96d887e8 5242 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5243 functions names cannot contain "__" in them. */
96d887e8
PH
5244 if (strstr (name, "__") != NULL)
5245 return 0;
4c4b4cd2 5246
b435e160 5247 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5248
96d887e8
PH
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250}
14f9c5c9 5251
96d887e8 5252/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5253 not visible from FUNCTION_NAME. */
14f9c5c9 5254
96d887e8 5255static int
0d5cff50 5256old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5257{
aeb5907d 5258 char *scope;
1509e573 5259 struct cleanup *old_chain;
aeb5907d
JB
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5265 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5266
96d887e8
PH
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
1509e573
JB
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
14f9c5c9 5273
96d887e8
PH
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
76a01679 5276
96d887e8
PH
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
61012eef 5281 if (startswith (function_name, "_ada_"))
96d887e8 5282 function_name += 5;
f26caa11 5283
1509e573 5284 {
61012eef 5285 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
f26caa11
PH
5290}
5291
aeb5907d
JB
5292/* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
96d887e8
PH
5297
5298 Rationale:
aeb5907d
JB
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
f26caa11 5311
96d887e8
PH
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
4c4b4cd2 5328
14f9c5c9 5329static int
d12307c1 5330remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5331 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5332{
5333 struct symbol *current_function;
0d5cff50 5334 const char *current_function_name;
4c4b4cd2 5335 int i;
aeb5907d
JB
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
0963b4bd 5340 First, zero out such symbols, then compress. */
aeb5907d
JB
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
d12307c1 5344 struct symbol *sym = syms[i].symbol;
270140bd 5345 const struct block *block = syms[i].block;
aeb5907d
JB
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5b4ee69b 5358
aeb5907d
JB
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5363 name_len) == 0
5364 && block == syms[j].block)
d12307c1 5365 syms[j].symbol = NULL;
aeb5907d
JB
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5373 if (syms[j].symbol != NULL)
aeb5907d
JB
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
4c4b4cd2
PH
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
76a01679 5383
4c4b4cd2
PH
5384 if (current_block == NULL)
5385 return nsyms;
76a01679 5386
7f0df278 5387 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
d12307c1 5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5403 == ADA_OBJECT_RENAMING
d12307c1 5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5405 {
5406 int j;
5b4ee69b 5407
aeb5907d 5408 for (j = i + 1; j < nsyms; j += 1)
76a01679 5409 syms[j - 1] = syms[j];
4c4b4cd2
PH
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417}
5418
339c13b6
JB
5419/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429static void
5430ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5431 const struct block *block, domain_enum domain,
d0a8ab18 5432 int wild_match_p)
339c13b6
JB
5433{
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
d0a8ab18
JB
5439 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5440 wild_match_p);
339c13b6
JB
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5453 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5454}
5455
ccefe4c4 5456/* An object of this type is used as the user_data argument when
40658b94 5457 calling the map_matching_symbols method. */
ccefe4c4 5458
40658b94 5459struct match_data
ccefe4c4 5460{
40658b94 5461 struct objfile *objfile;
ccefe4c4 5462 struct obstack *obstackp;
40658b94
PH
5463 struct symbol *arg_sym;
5464 int found_sym;
ccefe4c4
TT
5465};
5466
22cee43f 5467/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
ccefe4c4 5475
40658b94
PH
5476static int
5477aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5478{
40658b94
PH
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505}
5506
22cee43f
PMR
5507/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5508 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5509 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5510 function "wild_match" for more information). Return whether we found such
5511 symbols. */
5512
5513static int
5514ada_add_block_renamings (struct obstack *obstackp,
5515 const struct block *block,
5516 const char *name,
5517 domain_enum domain,
5518 int wild_match_p)
5519{
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528 int name_match;
5529
5530 /* Avoid infinite recursions: skip this renaming if we are actually
5531 already traversing it.
5532
5533 Currently, symbol lookup in Ada don't use the namespace machinery from
5534 C++/Fortran support: skip namespace imports that use them. */
5535 if (renaming->searched
5536 || (renaming->import_src != NULL
5537 && renaming->import_src[0] != '\0')
5538 || (renaming->import_dest != NULL
5539 && renaming->import_dest[0] != '\0'))
5540 continue;
5541 renaming->searched = 1;
5542
5543 /* TODO: here, we perform another name-based symbol lookup, which can
5544 pull its own multiple overloads. In theory, we should be able to do
5545 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5546 not a simple name. But in order to do this, we would need to enhance
5547 the DWARF reader to associate a symbol to this renaming, instead of a
5548 name. So, for now, we do something simpler: re-use the C++/Fortran
5549 namespace machinery. */
5550 r_name = (renaming->alias != NULL
5551 ? renaming->alias
5552 : renaming->declaration);
5553 name_match
5554 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5555 if (name_match == 0)
5556 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 1, NULL);
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561}
5562
db230ce3
JB
5563/* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5b4ee69b 5565
40658b94 5566static int
db230ce3
JB
5567compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
40658b94
PH
5569{
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
db230ce3
JB
5572 char c1, c2;
5573
40658b94
PH
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
40658b94 5588 break;
db230ce3 5589
40658b94
PH
5590 string1 += 1;
5591 string2 += 1;
5592 }
db230ce3 5593
40658b94
PH
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
052874e8 5601 if (is_name_suffix (string1))
40658b94
PH
5602 return 0;
5603 else
1a1d5513 5604 return 1;
40658b94 5605 }
dbb8534f 5606 /* FALLTHROUGH */
40658b94
PH
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
db230ce3
JB
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
40658b94 5617 }
ccefe4c4
TT
5618}
5619
db230ce3
JB
5620/* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631static int
5632compare_names (const char *string1, const char *string2)
5633{
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646}
5647
339c13b6
JB
5648/* Add to OBSTACKP all non-local symbols whose name and domain match
5649 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5650 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5651
5652static void
40658b94
PH
5653add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5654 domain_enum domain, int global,
5655 int is_wild_match)
339c13b6
JB
5656{
5657 struct objfile *objfile;
22cee43f 5658 struct compunit_symtab *cu;
40658b94 5659 struct match_data data;
339c13b6 5660
6475f2fe 5661 memset (&data, 0, sizeof data);
ccefe4c4 5662 data.obstackp = obstackp;
339c13b6 5663
ccefe4c4 5664 ALL_OBJFILES (objfile)
40658b94
PH
5665 {
5666 data.objfile = objfile;
5667
5668 if (is_wild_match)
4186eb54
KS
5669 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5670 aux_add_nonlocal_symbols, &data,
5671 wild_match, NULL);
40658b94 5672 else
4186eb54
KS
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 full_match, compare_names);
22cee43f
PMR
5676
5677 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 {
5679 const struct block *global_block
5680 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681
5682 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5683 is_wild_match))
5684 data.found_sym = 1;
5685 }
40658b94
PH
5686 }
5687
5688 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 {
5690 ALL_OBJFILES (objfile)
5691 {
224c3ddb 5692 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5693 strcpy (name1, "_ada_");
5694 strcpy (name1 + sizeof ("_ada_") - 1, name);
5695 data.objfile = objfile;
ade7ed9e
DE
5696 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 global,
0963b4bd
MS
5698 aux_add_nonlocal_symbols,
5699 &data,
40658b94
PH
5700 full_match, compare_names);
5701 }
5702 }
339c13b6
JB
5703}
5704
22cee43f 5705/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5706 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5707 matches. Add these to OBSTACKP.
4eeaa230 5708
22cee43f
PMR
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5711 is the one match returned (no other matches in that or
d9680e73 5712 enclosing blocks is returned). If there are any matches in or
22cee43f 5713 surrounding BLOCK, then these alone are returned.
4eeaa230 5714
9f88c959 5715 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5716 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5717
22cee43f
PMR
5718 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5719 to lookup global symbols. */
5720
5721static void
5722ada_add_all_symbols (struct obstack *obstackp,
5723 const struct block *block,
5724 const char *name,
5725 domain_enum domain,
5726 int full_search,
5727 int *made_global_lookup_p)
14f9c5c9
AS
5728{
5729 struct symbol *sym;
22cee43f 5730 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5731
22cee43f
PMR
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
339c13b6
JB
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
22cee43f 5742 if (startswith (name, "standard__"))
4c4b4cd2 5743 {
4c4b4cd2 5744 block = NULL;
22cee43f 5745 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5746 }
5747
339c13b6 5748 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5749
4eeaa230
DE
5750 if (block != NULL)
5751 {
5752 if (full_search)
22cee43f 5753 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5754 else
5755 {
5756 /* In the !full_search case we're are being called by
5757 ada_iterate_over_symbols, and we don't want to search
5758 superblocks. */
22cee43f
PMR
5759 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5760 wild_match_p);
4eeaa230 5761 }
22cee43f
PMR
5762 if (num_defns_collected (obstackp) > 0 || !full_search)
5763 return;
4eeaa230 5764 }
d2e4a39e 5765
339c13b6
JB
5766 /* No non-global symbols found. Check our cache to see if we have
5767 already performed this search before. If we have, then return
5768 the same result. */
5769
22cee43f 5770 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5771 {
5772 if (sym != NULL)
22cee43f
PMR
5773 add_defn_to_vec (obstackp, sym, block);
5774 return;
4c4b4cd2 5775 }
14f9c5c9 5776
22cee43f
PMR
5777 if (made_global_lookup_p)
5778 *made_global_lookup_p = 1;
b1eedac9 5779
339c13b6
JB
5780 /* Search symbols from all global blocks. */
5781
22cee43f 5782 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5783
4c4b4cd2 5784 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5785 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5786
22cee43f
PMR
5787 if (num_defns_collected (obstackp) == 0)
5788 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5789}
5790
5791/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5792 non-zero, enclosing scope and in global scopes, returning the number of
5793 matches.
5794 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5795 indicating the symbols found and the blocks and symbol tables (if
5796 any) in which they were found. This vector is transient---good only to
5797 the next call of ada_lookup_symbol_list.
5798
5799 When full_search is non-zero, any non-function/non-enumeral
5800 symbol match within the nest of blocks whose innermost member is BLOCK,
5801 is the one match returned (no other matches in that or
5802 enclosing blocks is returned). If there are any matches in or
5803 surrounding BLOCK, then these alone are returned.
5804
5805 Names prefixed with "standard__" are handled specially: "standard__"
5806 is first stripped off, and only static and global symbols are searched. */
5807
5808static int
5809ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 domain_enum domain,
5811 struct block_symbol **results,
5812 int full_search)
5813{
5814 const int wild_match_p = should_use_wild_match (name);
5815 int syms_from_global_search;
5816 int ndefns;
5817
5818 obstack_free (&symbol_list_obstack, NULL);
5819 obstack_init (&symbol_list_obstack);
5820 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5821 full_search, &syms_from_global_search);
14f9c5c9 5822
4c4b4cd2
PH
5823 ndefns = num_defns_collected (&symbol_list_obstack);
5824 *results = defns_collected (&symbol_list_obstack, 1);
5825
5826 ndefns = remove_extra_symbols (*results, ndefns);
5827
b1eedac9 5828 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5829 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5830
b1eedac9 5831 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5832 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5833
22cee43f 5834 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5835 return ndefns;
5836}
5837
4eeaa230
DE
5838/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5839 in global scopes, returning the number of matches, and setting *RESULTS
5840 to a vector of (SYM,BLOCK) tuples.
5841 See ada_lookup_symbol_list_worker for further details. */
5842
5843int
5844ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5845 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5846{
5847 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5848}
5849
5850/* Implementation of the la_iterate_over_symbols method. */
5851
5852static void
5853ada_iterate_over_symbols (const struct block *block,
5854 const char *name, domain_enum domain,
5855 symbol_found_callback_ftype *callback,
5856 void *data)
5857{
5858 int ndefs, i;
d12307c1 5859 struct block_symbol *results;
4eeaa230
DE
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 for (i = 0; i < ndefs; ++i)
5863 {
d12307c1 5864 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5865 break;
5866 }
5867}
5868
f8eba3c6 5869/* If NAME is the name of an entity, return a string that should
2f408ecb 5870 be used to look that entity up in Ada units.
f8eba3c6
TT
5871
5872 NAME can have any form that the "break" or "print" commands might
5873 recognize. In other words, it does not have to be the "natural"
5874 name, or the "encoded" name. */
5875
2f408ecb 5876std::string
f8eba3c6
TT
5877ada_name_for_lookup (const char *name)
5878{
f8eba3c6
TT
5879 int nlen = strlen (name);
5880
5881 if (name[0] == '<' && name[nlen - 1] == '>')
2f408ecb 5882 return std::string (name + 1, nlen - 2);
f8eba3c6 5883 else
2f408ecb 5884 return ada_encode (ada_fold_name (name));
f8eba3c6
TT
5885}
5886
4e5c77fe
JB
5887/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5888 to 1, but choosing the first symbol found if there are multiple
5889 choices.
5890
5e2336be
JB
5891 The result is stored in *INFO, which must be non-NULL.
5892 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5893
5894void
5895ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5896 domain_enum domain,
d12307c1 5897 struct block_symbol *info)
14f9c5c9 5898{
d12307c1 5899 struct block_symbol *candidates;
14f9c5c9
AS
5900 int n_candidates;
5901
5e2336be 5902 gdb_assert (info != NULL);
d12307c1 5903 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5904
fe978cb0 5905 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5906 if (n_candidates == 0)
4e5c77fe 5907 return;
4c4b4cd2 5908
5e2336be 5909 *info = candidates[0];
d12307c1 5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5922{
d12307c1 5923 struct block_symbol info;
4e5c77fe 5924
aeb5907d
JB
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
4e5c77fe 5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5929 block0, domain, &info);
d12307c1 5930 return info;
4c4b4cd2 5931}
14f9c5c9 5932
d12307c1 5933static struct block_symbol
f606139a
DE
5934ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
76a01679 5936 const struct block *block,
21b556f4 5937 const domain_enum domain)
4c4b4cd2 5938{
d12307c1 5939 struct block_symbol sym;
04dccad0
JB
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5942 if (sym.symbol != NULL)
04dccad0
JB
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
d12307c1
PMR
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
04dccad0
JB
5967 return sym;
5968 }
5969
d12307c1 5970 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5971}
5972
5973
4c4b4cd2
PH
5974/* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5977 are given by any of the regular expressions:
4c4b4cd2 5978
babe1480
JB
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5981 TKB [subprogram suffix for task bodies]
babe1480 5982 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
4c4b4cd2 5988
14f9c5c9 5989static int
d2e4a39e 5990is_name_suffix (const char *str)
14f9c5c9
AS
5991{
5992 int k;
4c4b4cd2
PH
5993 const char *matching;
5994 const int len = strlen (str);
5995
babe1480
JB
5996 /* Skip optional leading __[0-9]+. */
5997
4c4b4cd2
PH
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
babe1480
JB
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
4c4b4cd2 6003 }
babe1480
JB
6004
6005 /* [.$][0-9]+ */
4c4b4cd2 6006
babe1480 6007 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6008 {
babe1480 6009 matching = str + 1;
4c4b4cd2
PH
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
babe1480 6017
4c4b4cd2
PH
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
9ac7f98e
JB
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
529cad9c
PH
6032#if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
529cad9c 6036 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
0963b4bd 6041 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047#endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
4c4b4cd2
PH
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
d2e4a39e 6068 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
14f9c5c9 6074 }
babe1480 6075
14f9c5c9
AS
6076 if (str[0] == '\000')
6077 return 1;
babe1480 6078
d2e4a39e 6079 if (str[0] == '_')
14f9c5c9
AS
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6082 return 0;
d2e4a39e 6083 if (str[2] == '_')
4c4b4cd2 6084 {
61ee279c
PH
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
4c4b4cd2
PH
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
1265e4aa
JB
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
14f9c5c9
AS
6108 return 1;
6109 }
4c4b4cd2 6110 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6111 {
4c4b4cd2
PH
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
14f9c5c9
AS
6115 return 1;
6116 }
6117 return 0;
6118}
d2e4a39e 6119
aeb5907d
JB
6120/* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
529cad9c
PH
6122
6123static int
6124is_valid_name_for_wild_match (const char *name0)
6125{
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
5823c3ef
JB
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
529cad9c
PH
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140}
6141
73589123
PH
6142/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
4c4b4cd2 6145
14f9c5c9 6146static int
73589123 6147advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6148{
73589123 6149 const char *name = *namep;
5b4ee69b 6150
5823c3ef 6151 while (1)
14f9c5c9 6152 {
aa27d0b3 6153 int t0, t1;
73589123
PH
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
61012eef 6162 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6163 break;
6164 else
6165 name += 1;
6166 }
aa27d0b3
JB
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
73589123
PH
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
5823c3ef 6179 return 0;
73589123
PH
6180 }
6181
6182 *namep = name;
6183 return 1;
6184}
6185
6186/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6187 informational suffixes of NAME (i.e., for which is_name_suffix is
6188 true). Assumes that PATN is a lower-cased Ada simple name. */
6189
6190static int
6191wild_match (const char *name, const char *patn)
6192{
22e048c9 6193 const char *p;
73589123
PH
6194 const char *name0 = name;
6195
6196 while (1)
6197 {
6198 const char *match = name;
6199
6200 if (*name == *patn)
6201 {
6202 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p != *name)
6204 break;
6205 if (*p == '\0' && is_name_suffix (name))
6206 return match != name0 && !is_valid_name_for_wild_match (name0);
6207
6208 if (name[-1] == '_')
6209 name -= 1;
6210 }
6211 if (!advance_wild_match (&name, name0, *patn))
6212 return 1;
96d887e8 6213 }
96d887e8
PH
6214}
6215
40658b94
PH
6216/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6217 informational suffix. */
6218
c4d840bd
PH
6219static int
6220full_match (const char *sym_name, const char *search_name)
6221{
40658b94 6222 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6223}
6224
6225
96d887e8
PH
6226/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6227 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6228 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6229 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6230
6231static void
6232ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6233 const struct block *block, const char *name,
96d887e8 6234 domain_enum domain, struct objfile *objfile,
2570f2b7 6235 int wild)
96d887e8 6236{
8157b174 6237 struct block_iterator iter;
96d887e8
PH
6238 int name_len = strlen (name);
6239 /* A matching argument symbol, if any. */
6240 struct symbol *arg_sym;
6241 /* Set true when we find a matching non-argument symbol. */
6242 int found_sym;
6243 struct symbol *sym;
6244
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 if (wild)
6248 {
8157b174
TT
6249 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6250 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6251 {
4186eb54
KS
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain)
73589123 6254 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6255 {
2a2d4dc3
AS
6256 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6257 continue;
6258 else if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
76a01679
JB
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
2570f2b7 6265 block);
76a01679
JB
6266 }
6267 }
6268 }
96d887e8
PH
6269 }
6270 else
6271 {
8157b174
TT
6272 for (sym = block_iter_match_first (block, name, full_match, &iter);
6273 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6274 {
4186eb54
KS
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
76a01679 6277 {
c4d840bd
PH
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
2a2d4dc3 6283 {
c4d840bd
PH
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
2a2d4dc3 6288 }
c4d840bd 6289 }
76a01679
JB
6290 }
6291 }
96d887e8
PH
6292 }
6293
22cee43f
PMR
6294 /* Handle renamings. */
6295
6296 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 found_sym = 1;
6298
96d887e8
PH
6299 if (!found_sym && arg_sym != NULL)
6300 {
76a01679
JB
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6303 block);
96d887e8
PH
6304 }
6305
6306 if (!wild)
6307 {
6308 arg_sym = NULL;
6309 found_sym = 0;
6310
6311 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6312 {
4186eb54
KS
6313 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6314 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6315 {
6316 int cmp;
6317
6318 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 if (cmp == 0)
6320 {
61012eef 6321 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6322 if (cmp == 0)
6323 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6324 name_len);
6325 }
6326
6327 if (cmp == 0
6328 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6329 {
2a2d4dc3
AS
6330 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6331 {
6332 if (SYMBOL_IS_ARGUMENT (sym))
6333 arg_sym = sym;
6334 else
6335 {
6336 found_sym = 1;
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (sym, objfile),
6339 block);
6340 }
6341 }
76a01679
JB
6342 }
6343 }
76a01679 6344 }
96d887e8
PH
6345
6346 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6347 They aren't parameters, right? */
6348 if (!found_sym && arg_sym != NULL)
6349 {
6350 add_defn_to_vec (obstackp,
76a01679 6351 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6352 block);
96d887e8
PH
6353 }
6354 }
6355}
6356\f
41d27058
JB
6357
6358 /* Symbol Completion */
6359
6360/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6361 name in a form that's appropriate for the completion. The result
6362 does not need to be deallocated, but is only good until the next call.
6363
6364 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6365 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6366 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6367 in its encoded form. */
6368
6369static const char *
6370symbol_completion_match (const char *sym_name,
6371 const char *text, int text_len,
6ea35997 6372 int wild_match_p, int encoded_p)
41d27058 6373{
41d27058
JB
6374 const int verbatim_match = (text[0] == '<');
6375 int match = 0;
6376
6377 if (verbatim_match)
6378 {
6379 /* Strip the leading angle bracket. */
6380 text = text + 1;
6381 text_len--;
6382 }
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = 1;
6388
6ea35997 6389 if (match && !encoded_p)
41d27058
JB
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 int has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == verbatim_match);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !verbatim_match)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = 0;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
e701b3c0 6420 if (!match && wild_match_p)
41d27058
JB
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = 1;
6429 }
6430
6431 /* Finally: If we found a mach, prepare the result to return. */
6432
6433 if (!match)
6434 return NULL;
6435
6436 if (verbatim_match)
6437 sym_name = add_angle_brackets (sym_name);
6438
6ea35997 6439 if (!encoded_p)
41d27058
JB
6440 sym_name = ada_decode (sym_name);
6441
6442 return sym_name;
6443}
6444
6445/* A companion function to ada_make_symbol_completion_list().
6446 Check if SYM_NAME represents a symbol which name would be suitable
6447 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6448 it is appended at the end of the given string vector SV.
6449
6450 ORIG_TEXT is the string original string from the user command
6451 that needs to be completed. WORD is the entire command on which
6452 completion should be performed. These two parameters are used to
6453 determine which part of the symbol name should be added to the
6454 completion vector.
c0af1706 6455 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6456 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6457 encoded formed (in which case the completion should also be
6458 encoded). */
6459
6460static void
d6565258 6461symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6462 const char *sym_name,
6463 const char *text, int text_len,
6464 const char *orig_text, const char *word,
cb8e9b97 6465 int wild_match_p, int encoded_p)
41d27058
JB
6466{
6467 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6468 wild_match_p, encoded_p);
41d27058
JB
6469 char *completion;
6470
6471 if (match == NULL)
6472 return;
6473
6474 /* We found a match, so add the appropriate completion to the given
6475 string vector. */
6476
6477 if (word == orig_text)
6478 {
224c3ddb 6479 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6480 strcpy (completion, match);
6481 }
6482 else if (word > orig_text)
6483 {
6484 /* Return some portion of sym_name. */
224c3ddb 6485 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6486 strcpy (completion, match + (word - orig_text));
6487 }
6488 else
6489 {
6490 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6491 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6492 strncpy (completion, word, orig_text - word);
6493 completion[orig_text - word] = '\0';
6494 strcat (completion, match);
6495 }
6496
d6565258 6497 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6498}
6499
ccefe4c4 6500/* An object of this type is passed as the user_data argument to the
bb4142cf 6501 expand_symtabs_matching method. */
ccefe4c4
TT
6502struct add_partial_datum
6503{
6504 VEC(char_ptr) **completions;
6f937416 6505 const char *text;
ccefe4c4 6506 int text_len;
6f937416
PA
6507 const char *text0;
6508 const char *word;
ccefe4c4
TT
6509 int wild_match;
6510 int encoded;
6511};
6512
bb4142cf
DE
6513/* A callback for expand_symtabs_matching. */
6514
7b08b9eb 6515static int
bb4142cf 6516ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6517{
9a3c8263 6518 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6519
6520 return symbol_completion_match (name, data->text, data->text_len,
6521 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6522}
6523
49c4e619
TT
6524/* Return a list of possible symbol names completing TEXT0. WORD is
6525 the entire command on which completion is made. */
41d27058 6526
49c4e619 6527static VEC (char_ptr) *
6f937416
PA
6528ada_make_symbol_completion_list (const char *text0, const char *word,
6529 enum type_code code)
41d27058
JB
6530{
6531 char *text;
6532 int text_len;
b1ed564a
JB
6533 int wild_match_p;
6534 int encoded_p;
2ba95b9b 6535 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6536 struct symbol *sym;
43f3e411 6537 struct compunit_symtab *s;
41d27058
JB
6538 struct minimal_symbol *msymbol;
6539 struct objfile *objfile;
3977b71f 6540 const struct block *b, *surrounding_static_block = 0;
41d27058 6541 int i;
8157b174 6542 struct block_iterator iter;
b8fea896 6543 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6544
2f68a895
TT
6545 gdb_assert (code == TYPE_CODE_UNDEF);
6546
41d27058
JB
6547 if (text0[0] == '<')
6548 {
6549 text = xstrdup (text0);
6550 make_cleanup (xfree, text);
6551 text_len = strlen (text);
b1ed564a
JB
6552 wild_match_p = 0;
6553 encoded_p = 1;
41d27058
JB
6554 }
6555 else
6556 {
6557 text = xstrdup (ada_encode (text0));
6558 make_cleanup (xfree, text);
6559 text_len = strlen (text);
6560 for (i = 0; i < text_len; i++)
6561 text[i] = tolower (text[i]);
6562
b1ed564a 6563 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6564 /* If the name contains a ".", then the user is entering a fully
6565 qualified entity name, and the match must not be done in wild
6566 mode. Similarly, if the user wants to complete what looks like
6567 an encoded name, the match must not be done in wild mode. */
b1ed564a 6568 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6569 }
6570
6571 /* First, look at the partial symtab symbols. */
41d27058 6572 {
ccefe4c4
TT
6573 struct add_partial_datum data;
6574
6575 data.completions = &completions;
6576 data.text = text;
6577 data.text_len = text_len;
6578 data.text0 = text0;
6579 data.word = word;
b1ed564a
JB
6580 data.wild_match = wild_match_p;
6581 data.encoded = encoded_p;
276d885b
GB
6582 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6583 ALL_DOMAIN, &data);
41d27058
JB
6584 }
6585
6586 /* At this point scan through the misc symbol vectors and add each
6587 symbol you find to the list. Eventually we want to ignore
6588 anything that isn't a text symbol (everything else will be
6589 handled by the psymtab code above). */
6590
6591 ALL_MSYMBOLS (objfile, msymbol)
6592 {
6593 QUIT;
efd66ac6 6594 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6595 text, text_len, text0, word, wild_match_p,
6596 encoded_p);
41d27058
JB
6597 }
6598
6599 /* Search upwards from currently selected frame (so that we can
6600 complete on local vars. */
6601
6602 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6603 {
6604 if (!BLOCK_SUPERBLOCK (b))
6605 surrounding_static_block = b; /* For elmin of dups */
6606
6607 ALL_BLOCK_SYMBOLS (b, iter, sym)
6608 {
d6565258 6609 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6610 text, text_len, text0, word,
b1ed564a 6611 wild_match_p, encoded_p);
41d27058
JB
6612 }
6613 }
6614
6615 /* Go through the symtabs and check the externs and statics for
43f3e411 6616 symbols which match. */
41d27058 6617
43f3e411 6618 ALL_COMPUNITS (objfile, s)
41d27058
JB
6619 {
6620 QUIT;
43f3e411 6621 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6622 ALL_BLOCK_SYMBOLS (b, iter, sym)
6623 {
d6565258 6624 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6625 text, text_len, text0, word,
b1ed564a 6626 wild_match_p, encoded_p);
41d27058
JB
6627 }
6628 }
6629
43f3e411 6630 ALL_COMPUNITS (objfile, s)
41d27058
JB
6631 {
6632 QUIT;
43f3e411 6633 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6634 /* Don't do this block twice. */
6635 if (b == surrounding_static_block)
6636 continue;
6637 ALL_BLOCK_SYMBOLS (b, iter, sym)
6638 {
d6565258 6639 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6640 text, text_len, text0, word,
b1ed564a 6641 wild_match_p, encoded_p);
41d27058
JB
6642 }
6643 }
6644
b8fea896 6645 do_cleanups (old_chain);
49c4e619 6646 return completions;
41d27058
JB
6647}
6648
963a6417 6649 /* Field Access */
96d887e8 6650
73fb9985
JB
6651/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6652 for tagged types. */
6653
6654static int
6655ada_is_dispatch_table_ptr_type (struct type *type)
6656{
0d5cff50 6657 const char *name;
73fb9985
JB
6658
6659 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6660 return 0;
6661
6662 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6663 if (name == NULL)
6664 return 0;
6665
6666 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6667}
6668
ac4a2da4
JG
6669/* Return non-zero if TYPE is an interface tag. */
6670
6671static int
6672ada_is_interface_tag (struct type *type)
6673{
6674 const char *name = TYPE_NAME (type);
6675
6676 if (name == NULL)
6677 return 0;
6678
6679 return (strcmp (name, "ada__tags__interface_tag") == 0);
6680}
6681
963a6417
PH
6682/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6683 to be invisible to users. */
96d887e8 6684
963a6417
PH
6685int
6686ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6687{
963a6417
PH
6688 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6689 return 1;
ffde82bf 6690
73fb9985
JB
6691 /* Check the name of that field. */
6692 {
6693 const char *name = TYPE_FIELD_NAME (type, field_num);
6694
6695 /* Anonymous field names should not be printed.
6696 brobecker/2007-02-20: I don't think this can actually happen
6697 but we don't want to print the value of annonymous fields anyway. */
6698 if (name == NULL)
6699 return 1;
6700
ffde82bf
JB
6701 /* Normally, fields whose name start with an underscore ("_")
6702 are fields that have been internally generated by the compiler,
6703 and thus should not be printed. The "_parent" field is special,
6704 however: This is a field internally generated by the compiler
6705 for tagged types, and it contains the components inherited from
6706 the parent type. This field should not be printed as is, but
6707 should not be ignored either. */
61012eef 6708 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6709 return 1;
6710 }
6711
ac4a2da4
JG
6712 /* If this is the dispatch table of a tagged type or an interface tag,
6713 then ignore. */
73fb9985 6714 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6715 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6716 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6717 return 1;
6718
6719 /* Not a special field, so it should not be ignored. */
6720 return 0;
963a6417 6721}
96d887e8 6722
963a6417 6723/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6724 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6725
963a6417
PH
6726int
6727ada_is_tagged_type (struct type *type, int refok)
6728{
6729 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6730}
96d887e8 6731
963a6417 6732/* True iff TYPE represents the type of X'Tag */
96d887e8 6733
963a6417
PH
6734int
6735ada_is_tag_type (struct type *type)
6736{
460efde1
JB
6737 type = ada_check_typedef (type);
6738
963a6417
PH
6739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6740 return 0;
6741 else
96d887e8 6742 {
963a6417 6743 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6744
963a6417
PH
6745 return (name != NULL
6746 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6747 }
96d887e8
PH
6748}
6749
963a6417 6750/* The type of the tag on VAL. */
76a01679 6751
963a6417
PH
6752struct type *
6753ada_tag_type (struct value *val)
96d887e8 6754{
df407dfe 6755 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6756}
96d887e8 6757
b50d69b5
JG
6758/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6759 retired at Ada 05). */
6760
6761static int
6762is_ada95_tag (struct value *tag)
6763{
6764 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6765}
6766
963a6417 6767/* The value of the tag on VAL. */
96d887e8 6768
963a6417
PH
6769struct value *
6770ada_value_tag (struct value *val)
6771{
03ee6b2e 6772 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6773}
6774
963a6417
PH
6775/* The value of the tag on the object of type TYPE whose contents are
6776 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6777 ADDRESS. */
96d887e8 6778
963a6417 6779static struct value *
10a2c479 6780value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6781 const gdb_byte *valaddr,
963a6417 6782 CORE_ADDR address)
96d887e8 6783{
b5385fc0 6784 int tag_byte_offset;
963a6417 6785 struct type *tag_type;
5b4ee69b 6786
963a6417 6787 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6788 NULL, NULL, NULL))
96d887e8 6789 {
fc1a4b47 6790 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6791 ? NULL
6792 : valaddr + tag_byte_offset);
963a6417 6793 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6794
963a6417 6795 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6796 }
963a6417
PH
6797 return NULL;
6798}
96d887e8 6799
963a6417
PH
6800static struct type *
6801type_from_tag (struct value *tag)
6802{
6803 const char *type_name = ada_tag_name (tag);
5b4ee69b 6804
963a6417
PH
6805 if (type_name != NULL)
6806 return ada_find_any_type (ada_encode (type_name));
6807 return NULL;
6808}
96d887e8 6809
b50d69b5
JG
6810/* Given a value OBJ of a tagged type, return a value of this
6811 type at the base address of the object. The base address, as
6812 defined in Ada.Tags, it is the address of the primary tag of
6813 the object, and therefore where the field values of its full
6814 view can be fetched. */
6815
6816struct value *
6817ada_tag_value_at_base_address (struct value *obj)
6818{
b50d69b5
JG
6819 struct value *val;
6820 LONGEST offset_to_top = 0;
6821 struct type *ptr_type, *obj_type;
6822 struct value *tag;
6823 CORE_ADDR base_address;
6824
6825 obj_type = value_type (obj);
6826
6827 /* It is the responsability of the caller to deref pointers. */
6828
6829 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6830 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6831 return obj;
6832
6833 tag = ada_value_tag (obj);
6834 if (!tag)
6835 return obj;
6836
6837 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6838
6839 if (is_ada95_tag (tag))
6840 return obj;
6841
6842 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6843 ptr_type = lookup_pointer_type (ptr_type);
6844 val = value_cast (ptr_type, tag);
6845 if (!val)
6846 return obj;
6847
6848 /* It is perfectly possible that an exception be raised while
6849 trying to determine the base address, just like for the tag;
6850 see ada_tag_name for more details. We do not print the error
6851 message for the same reason. */
6852
492d29ea 6853 TRY
b50d69b5
JG
6854 {
6855 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6856 }
6857
492d29ea
PA
6858 CATCH (e, RETURN_MASK_ERROR)
6859 {
6860 return obj;
6861 }
6862 END_CATCH
b50d69b5
JG
6863
6864 /* If offset is null, nothing to do. */
6865
6866 if (offset_to_top == 0)
6867 return obj;
6868
6869 /* -1 is a special case in Ada.Tags; however, what should be done
6870 is not quite clear from the documentation. So do nothing for
6871 now. */
6872
6873 if (offset_to_top == -1)
6874 return obj;
6875
6876 base_address = value_address (obj) - offset_to_top;
6877 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6878
6879 /* Make sure that we have a proper tag at the new address.
6880 Otherwise, offset_to_top is bogus (which can happen when
6881 the object is not initialized yet). */
6882
6883 if (!tag)
6884 return obj;
6885
6886 obj_type = type_from_tag (tag);
6887
6888 if (!obj_type)
6889 return obj;
6890
6891 return value_from_contents_and_address (obj_type, NULL, base_address);
6892}
6893
1b611343
JB
6894/* Return the "ada__tags__type_specific_data" type. */
6895
6896static struct type *
6897ada_get_tsd_type (struct inferior *inf)
963a6417 6898{
1b611343 6899 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6900
1b611343
JB
6901 if (data->tsd_type == 0)
6902 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6903 return data->tsd_type;
6904}
529cad9c 6905
1b611343
JB
6906/* Return the TSD (type-specific data) associated to the given TAG.
6907 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6908
1b611343 6909 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6910
1b611343
JB
6911static struct value *
6912ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6913{
4c4b4cd2 6914 struct value *val;
1b611343 6915 struct type *type;
5b4ee69b 6916
1b611343
JB
6917 /* First option: The TSD is simply stored as a field of our TAG.
6918 Only older versions of GNAT would use this format, but we have
6919 to test it first, because there are no visible markers for
6920 the current approach except the absence of that field. */
529cad9c 6921
1b611343
JB
6922 val = ada_value_struct_elt (tag, "tsd", 1);
6923 if (val)
6924 return val;
e802dbe0 6925
1b611343
JB
6926 /* Try the second representation for the dispatch table (in which
6927 there is no explicit 'tsd' field in the referent of the tag pointer,
6928 and instead the tsd pointer is stored just before the dispatch
6929 table. */
e802dbe0 6930
1b611343
JB
6931 type = ada_get_tsd_type (current_inferior());
6932 if (type == NULL)
6933 return NULL;
6934 type = lookup_pointer_type (lookup_pointer_type (type));
6935 val = value_cast (type, tag);
6936 if (val == NULL)
6937 return NULL;
6938 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6939}
6940
1b611343
JB
6941/* Given the TSD of a tag (type-specific data), return a string
6942 containing the name of the associated type.
6943
6944 The returned value is good until the next call. May return NULL
6945 if we are unable to determine the tag name. */
6946
6947static char *
6948ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6949{
529cad9c
PH
6950 static char name[1024];
6951 char *p;
1b611343 6952 struct value *val;
529cad9c 6953
1b611343 6954 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6955 if (val == NULL)
1b611343 6956 return NULL;
4c4b4cd2
PH
6957 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6958 for (p = name; *p != '\0'; p += 1)
6959 if (isalpha (*p))
6960 *p = tolower (*p);
1b611343 6961 return name;
4c4b4cd2
PH
6962}
6963
6964/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6965 a C string.
6966
6967 Return NULL if the TAG is not an Ada tag, or if we were unable to
6968 determine the name of that tag. The result is good until the next
6969 call. */
4c4b4cd2
PH
6970
6971const char *
6972ada_tag_name (struct value *tag)
6973{
1b611343 6974 char *name = NULL;
5b4ee69b 6975
df407dfe 6976 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6977 return NULL;
1b611343
JB
6978
6979 /* It is perfectly possible that an exception be raised while trying
6980 to determine the TAG's name, even under normal circumstances:
6981 The associated variable may be uninitialized or corrupted, for
6982 instance. We do not let any exception propagate past this point.
6983 instead we return NULL.
6984
6985 We also do not print the error message either (which often is very
6986 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6987 the caller print a more meaningful message if necessary. */
492d29ea 6988 TRY
1b611343
JB
6989 {
6990 struct value *tsd = ada_get_tsd_from_tag (tag);
6991
6992 if (tsd != NULL)
6993 name = ada_tag_name_from_tsd (tsd);
6994 }
492d29ea
PA
6995 CATCH (e, RETURN_MASK_ERROR)
6996 {
6997 }
6998 END_CATCH
1b611343
JB
6999
7000 return name;
4c4b4cd2
PH
7001}
7002
7003/* The parent type of TYPE, or NULL if none. */
14f9c5c9 7004
d2e4a39e 7005struct type *
ebf56fd3 7006ada_parent_type (struct type *type)
14f9c5c9
AS
7007{
7008 int i;
7009
61ee279c 7010 type = ada_check_typedef (type);
14f9c5c9
AS
7011
7012 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7013 return NULL;
7014
7015 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7016 if (ada_is_parent_field (type, i))
0c1f74cf
JB
7017 {
7018 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7019
7020 /* If the _parent field is a pointer, then dereference it. */
7021 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7022 parent_type = TYPE_TARGET_TYPE (parent_type);
7023 /* If there is a parallel XVS type, get the actual base type. */
7024 parent_type = ada_get_base_type (parent_type);
7025
7026 return ada_check_typedef (parent_type);
7027 }
14f9c5c9
AS
7028
7029 return NULL;
7030}
7031
4c4b4cd2
PH
7032/* True iff field number FIELD_NUM of structure type TYPE contains the
7033 parent-type (inherited) fields of a derived type. Assumes TYPE is
7034 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7035
7036int
ebf56fd3 7037ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7038{
61ee279c 7039 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7040
4c4b4cd2 7041 return (name != NULL
61012eef
GB
7042 && (startswith (name, "PARENT")
7043 || startswith (name, "_parent")));
14f9c5c9
AS
7044}
7045
4c4b4cd2 7046/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7047 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7048 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7049 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7050 structures. */
14f9c5c9
AS
7051
7052int
ebf56fd3 7053ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7054{
d2e4a39e 7055 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7056
dddc0e16
JB
7057 if (name != NULL && strcmp (name, "RETVAL") == 0)
7058 {
7059 /* This happens in functions with "out" or "in out" parameters
7060 which are passed by copy. For such functions, GNAT describes
7061 the function's return type as being a struct where the return
7062 value is in a field called RETVAL, and where the other "out"
7063 or "in out" parameters are fields of that struct. This is not
7064 a wrapper. */
7065 return 0;
7066 }
7067
d2e4a39e 7068 return (name != NULL
61012eef 7069 && (startswith (name, "PARENT")
4c4b4cd2 7070 || strcmp (name, "REP") == 0
61012eef 7071 || startswith (name, "_parent")
4c4b4cd2 7072 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7073}
7074
4c4b4cd2
PH
7075/* True iff field number FIELD_NUM of structure or union type TYPE
7076 is a variant wrapper. Assumes TYPE is a structure type with at least
7077 FIELD_NUM+1 fields. */
14f9c5c9
AS
7078
7079int
ebf56fd3 7080ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7081{
d2e4a39e 7082 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7083
14f9c5c9 7084 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7085 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7086 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7087 == TYPE_CODE_UNION)));
14f9c5c9
AS
7088}
7089
7090/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7091 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7092 returns the type of the controlling discriminant for the variant.
7093 May return NULL if the type could not be found. */
14f9c5c9 7094
d2e4a39e 7095struct type *
ebf56fd3 7096ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7097{
d2e4a39e 7098 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7099
7c964f07 7100 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7101}
7102
4c4b4cd2 7103/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7104 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7105 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7106
7107int
ebf56fd3 7108ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7109{
d2e4a39e 7110 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7111
14f9c5c9
AS
7112 return (name != NULL && name[0] == 'O');
7113}
7114
7115/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7116 returns the name of the discriminant controlling the variant.
7117 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7118
d2e4a39e 7119char *
ebf56fd3 7120ada_variant_discrim_name (struct type *type0)
14f9c5c9 7121{
d2e4a39e 7122 static char *result = NULL;
14f9c5c9 7123 static size_t result_len = 0;
d2e4a39e
AS
7124 struct type *type;
7125 const char *name;
7126 const char *discrim_end;
7127 const char *discrim_start;
14f9c5c9
AS
7128
7129 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7130 type = TYPE_TARGET_TYPE (type0);
7131 else
7132 type = type0;
7133
7134 name = ada_type_name (type);
7135
7136 if (name == NULL || name[0] == '\000')
7137 return "";
7138
7139 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7140 discrim_end -= 1)
7141 {
61012eef 7142 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7143 break;
14f9c5c9
AS
7144 }
7145 if (discrim_end == name)
7146 return "";
7147
d2e4a39e 7148 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7149 discrim_start -= 1)
7150 {
d2e4a39e 7151 if (discrim_start == name + 1)
4c4b4cd2 7152 return "";
76a01679 7153 if ((discrim_start > name + 3
61012eef 7154 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7155 || discrim_start[-1] == '.')
7156 break;
14f9c5c9
AS
7157 }
7158
7159 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7160 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7161 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7162 return result;
7163}
7164
4c4b4cd2
PH
7165/* Scan STR for a subtype-encoded number, beginning at position K.
7166 Put the position of the character just past the number scanned in
7167 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7168 Return 1 if there was a valid number at the given position, and 0
7169 otherwise. A "subtype-encoded" number consists of the absolute value
7170 in decimal, followed by the letter 'm' to indicate a negative number.
7171 Assumes 0m does not occur. */
14f9c5c9
AS
7172
7173int
d2e4a39e 7174ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7175{
7176 ULONGEST RU;
7177
d2e4a39e 7178 if (!isdigit (str[k]))
14f9c5c9
AS
7179 return 0;
7180
4c4b4cd2 7181 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7182 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7183 LONGEST. */
14f9c5c9
AS
7184 RU = 0;
7185 while (isdigit (str[k]))
7186 {
d2e4a39e 7187 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7188 k += 1;
7189 }
7190
d2e4a39e 7191 if (str[k] == 'm')
14f9c5c9
AS
7192 {
7193 if (R != NULL)
4c4b4cd2 7194 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7195 k += 1;
7196 }
7197 else if (R != NULL)
7198 *R = (LONGEST) RU;
7199
4c4b4cd2 7200 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7201 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7202 number representable as a LONGEST (although either would probably work
7203 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7204 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7205
7206 if (new_k != NULL)
7207 *new_k = k;
7208 return 1;
7209}
7210
4c4b4cd2
PH
7211/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7212 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7213 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7214
d2e4a39e 7215int
ebf56fd3 7216ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7217{
d2e4a39e 7218 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7219 int p;
7220
7221 p = 0;
7222 while (1)
7223 {
d2e4a39e 7224 switch (name[p])
4c4b4cd2
PH
7225 {
7226 case '\0':
7227 return 0;
7228 case 'S':
7229 {
7230 LONGEST W;
5b4ee69b 7231
4c4b4cd2
PH
7232 if (!ada_scan_number (name, p + 1, &W, &p))
7233 return 0;
7234 if (val == W)
7235 return 1;
7236 break;
7237 }
7238 case 'R':
7239 {
7240 LONGEST L, U;
5b4ee69b 7241
4c4b4cd2
PH
7242 if (!ada_scan_number (name, p + 1, &L, &p)
7243 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7244 return 0;
7245 if (val >= L && val <= U)
7246 return 1;
7247 break;
7248 }
7249 case 'O':
7250 return 1;
7251 default:
7252 return 0;
7253 }
7254 }
7255}
7256
0963b4bd 7257/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7258
7259/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7260 ARG_TYPE, extract and return the value of one of its (non-static)
7261 fields. FIELDNO says which field. Differs from value_primitive_field
7262 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7263
4c4b4cd2 7264static struct value *
d2e4a39e 7265ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7266 struct type *arg_type)
14f9c5c9 7267{
14f9c5c9
AS
7268 struct type *type;
7269
61ee279c 7270 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7271 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7272
4c4b4cd2 7273 /* Handle packed fields. */
14f9c5c9
AS
7274
7275 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7276 {
7277 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7278 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7279
0fd88904 7280 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7281 offset + bit_pos / 8,
7282 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7283 }
7284 else
7285 return value_primitive_field (arg1, offset, fieldno, arg_type);
7286}
7287
52ce6436
PH
7288/* Find field with name NAME in object of type TYPE. If found,
7289 set the following for each argument that is non-null:
7290 - *FIELD_TYPE_P to the field's type;
7291 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7292 an object of that type;
7293 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7294 - *BIT_SIZE_P to its size in bits if the field is packed, and
7295 0 otherwise;
7296 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7297 fields up to but not including the desired field, or by the total
7298 number of fields if not found. A NULL value of NAME never
7299 matches; the function just counts visible fields in this case.
7300
0963b4bd 7301 Returns 1 if found, 0 otherwise. */
52ce6436 7302
4c4b4cd2 7303static int
0d5cff50 7304find_struct_field (const char *name, struct type *type, int offset,
76a01679 7305 struct type **field_type_p,
52ce6436
PH
7306 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7307 int *index_p)
4c4b4cd2
PH
7308{
7309 int i;
7310
61ee279c 7311 type = ada_check_typedef (type);
76a01679 7312
52ce6436
PH
7313 if (field_type_p != NULL)
7314 *field_type_p = NULL;
7315 if (byte_offset_p != NULL)
d5d6fca5 7316 *byte_offset_p = 0;
52ce6436
PH
7317 if (bit_offset_p != NULL)
7318 *bit_offset_p = 0;
7319 if (bit_size_p != NULL)
7320 *bit_size_p = 0;
7321
7322 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7323 {
7324 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7325 int fld_offset = offset + bit_pos / 8;
0d5cff50 7326 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7327
4c4b4cd2
PH
7328 if (t_field_name == NULL)
7329 continue;
7330
52ce6436 7331 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7332 {
7333 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7334
52ce6436
PH
7335 if (field_type_p != NULL)
7336 *field_type_p = TYPE_FIELD_TYPE (type, i);
7337 if (byte_offset_p != NULL)
7338 *byte_offset_p = fld_offset;
7339 if (bit_offset_p != NULL)
7340 *bit_offset_p = bit_pos % 8;
7341 if (bit_size_p != NULL)
7342 *bit_size_p = bit_size;
76a01679
JB
7343 return 1;
7344 }
4c4b4cd2
PH
7345 else if (ada_is_wrapper_field (type, i))
7346 {
52ce6436
PH
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7348 field_type_p, byte_offset_p, bit_offset_p,
7349 bit_size_p, index_p))
76a01679
JB
7350 return 1;
7351 }
4c4b4cd2
PH
7352 else if (ada_is_variant_part (type, i))
7353 {
52ce6436
PH
7354 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7355 fixed type?? */
4c4b4cd2 7356 int j;
52ce6436
PH
7357 struct type *field_type
7358 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7359
52ce6436 7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7361 {
76a01679
JB
7362 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7363 fld_offset
7364 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7365 field_type_p, byte_offset_p,
52ce6436 7366 bit_offset_p, bit_size_p, index_p))
76a01679 7367 return 1;
4c4b4cd2
PH
7368 }
7369 }
52ce6436
PH
7370 else if (index_p != NULL)
7371 *index_p += 1;
4c4b4cd2
PH
7372 }
7373 return 0;
7374}
7375
0963b4bd 7376/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7377
52ce6436
PH
7378static int
7379num_visible_fields (struct type *type)
7380{
7381 int n;
5b4ee69b 7382
52ce6436
PH
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386}
14f9c5c9 7387
4c4b4cd2 7388/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
4c4b4cd2 7392 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7393
4c4b4cd2 7394static struct value *
108d56a4 7395ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7396 struct type *type)
14f9c5c9
AS
7397{
7398 int i;
14f9c5c9 7399
5b4ee69b 7400 type = ada_check_typedef (type);
52ce6436 7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7402 {
0d5cff50 7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7404
7405 if (t_field_name == NULL)
4c4b4cd2 7406 continue;
14f9c5c9
AS
7407
7408 else if (field_name_match (t_field_name, name))
4c4b4cd2 7409 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7410
7411 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7412 {
0963b4bd 7413 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7414 ada_search_struct_field (name, arg,
7415 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7416 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7417
4c4b4cd2
PH
7418 if (v != NULL)
7419 return v;
7420 }
14f9c5c9
AS
7421
7422 else if (ada_is_variant_part (type, i))
4c4b4cd2 7423 {
0963b4bd 7424 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7425 int j;
5b4ee69b
MS
7426 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7427 i));
4c4b4cd2
PH
7428 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7429
52ce6436 7430 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7431 {
0963b4bd
MS
7432 struct value *v = ada_search_struct_field /* Force line
7433 break. */
06d5cf63
JB
7434 (name, arg,
7435 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7436 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7437
4c4b4cd2
PH
7438 if (v != NULL)
7439 return v;
7440 }
7441 }
14f9c5c9
AS
7442 }
7443 return NULL;
7444}
d2e4a39e 7445
52ce6436
PH
7446static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450/* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7453 * If found, return value, else return NULL. */
52ce6436
PH
7454
7455static struct value *
7456ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458{
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460}
7461
7462
7463/* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7465 * *INDEX_P. */
52ce6436
PH
7466
7467static struct value *
7468ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470{
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
0963b4bd 7480 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7484
52ce6436
PH
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7492 find_struct_field. */
52ce6436
PH
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501}
7502
4c4b4cd2
PH
7503/* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
f5938064 7506 appropriate type.
14f9c5c9 7507
4c4b4cd2
PH
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7510 (e.g., '_parent').
7511
03ee6b2e
PH
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
14f9c5c9 7514
d2e4a39e 7515struct value *
03ee6b2e 7516ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7517{
4c4b4cd2 7518 struct type *t, *t1;
d2e4a39e 7519 struct value *v;
14f9c5c9 7520
4c4b4cd2 7521 v = NULL;
df407dfe 7522 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
03ee6b2e 7527 goto BadValue;
61ee279c 7528 t1 = ada_check_typedef (t1);
4c4b4cd2 7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7530 {
994b9211 7531 arg = coerce_ref (arg);
76a01679
JB
7532 t = t1;
7533 }
4c4b4cd2 7534 }
14f9c5c9 7535
4c4b4cd2
PH
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
03ee6b2e 7540 goto BadValue;
61ee279c 7541 t1 = ada_check_typedef (t1);
4c4b4cd2 7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
4c4b4cd2 7547 else
76a01679 7548 break;
4c4b4cd2 7549 }
14f9c5c9 7550
4c4b4cd2 7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7552 goto BadValue;
14f9c5c9 7553
4c4b4cd2
PH
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
76a01679 7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7563 address = value_address (ada_value_ind (arg));
4c4b4cd2 7564 else
b50d69b5 7565 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7566
1ed6ede0 7567 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7568 if (find_struct_field (name, t1, 0,
7569 &field_type, &byte_offset, &bit_offset,
52ce6436 7570 &bit_size, NULL))
76a01679
JB
7571 {
7572 if (bit_size != 0)
7573 {
714e53ab
PH
7574 if (TYPE_CODE (t) == TYPE_CODE_REF)
7575 arg = ada_coerce_ref (arg);
7576 else
7577 arg = ada_value_ind (arg);
76a01679
JB
7578 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7579 bit_offset, bit_size,
7580 field_type);
7581 }
7582 else
f5938064 7583 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7584 }
7585 }
7586
03ee6b2e
PH
7587 if (v != NULL || no_err)
7588 return v;
7589 else
323e0a4a 7590 error (_("There is no member named %s."), name);
14f9c5c9 7591
03ee6b2e
PH
7592 BadValue:
7593 if (no_err)
7594 return NULL;
7595 else
0963b4bd
MS
7596 error (_("Attempt to extract a component of "
7597 "a value that is not a record."));
14f9c5c9
AS
7598}
7599
3b4de39c 7600/* Return a string representation of type TYPE. */
99bbb428 7601
3b4de39c 7602static std::string
99bbb428
PA
7603type_as_string (struct type *type)
7604{
7605 struct ui_file *tmp_stream = mem_fileopen ();
7606 struct cleanup *old_chain;
99bbb428
PA
7607
7608 tmp_stream = mem_fileopen ();
7609 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7610
7611 type_print (type, "", tmp_stream, -1);
3b4de39c 7612 std::string str = ui_file_as_string (tmp_stream);
99bbb428
PA
7613
7614 do_cleanups (old_chain);
7615 return str;
7616}
7617
14f9c5c9 7618/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7619 If DISPP is non-null, add its byte displacement from the beginning of a
7620 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7621 work for packed fields).
7622
7623 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7624 followed by "___".
14f9c5c9 7625
0963b4bd 7626 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7627 be a (pointer or reference)+ to a struct or union, and the
7628 ultimate target type will be searched.
14f9c5c9
AS
7629
7630 Looks recursively into variant clauses and parent types.
7631
4c4b4cd2
PH
7632 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7633 TYPE is not a type of the right kind. */
14f9c5c9 7634
4c4b4cd2 7635static struct type *
76a01679
JB
7636ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7637 int noerr, int *dispp)
14f9c5c9
AS
7638{
7639 int i;
7640
7641 if (name == NULL)
7642 goto BadName;
7643
76a01679 7644 if (refok && type != NULL)
4c4b4cd2
PH
7645 while (1)
7646 {
61ee279c 7647 type = ada_check_typedef (type);
76a01679
JB
7648 if (TYPE_CODE (type) != TYPE_CODE_PTR
7649 && TYPE_CODE (type) != TYPE_CODE_REF)
7650 break;
7651 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7652 }
14f9c5c9 7653
76a01679 7654 if (type == NULL
1265e4aa
JB
7655 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7656 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7657 {
4c4b4cd2 7658 if (noerr)
76a01679 7659 return NULL;
99bbb428 7660
3b4de39c
PA
7661 error (_("Type %s is not a structure or union type"),
7662 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7663 }
7664
7665 type = to_static_fixed_type (type);
7666
7667 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7668 {
0d5cff50 7669 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7670 struct type *t;
7671 int disp;
d2e4a39e 7672
14f9c5c9 7673 if (t_field_name == NULL)
4c4b4cd2 7674 continue;
14f9c5c9
AS
7675
7676 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7677 {
7678 if (dispp != NULL)
7679 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7680 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7681 }
14f9c5c9
AS
7682
7683 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7684 {
7685 disp = 0;
7686 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7687 0, 1, &disp);
7688 if (t != NULL)
7689 {
7690 if (dispp != NULL)
7691 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7692 return t;
7693 }
7694 }
14f9c5c9
AS
7695
7696 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7697 {
7698 int j;
5b4ee69b
MS
7699 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7700 i));
4c4b4cd2
PH
7701
7702 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7703 {
b1f33ddd
JB
7704 /* FIXME pnh 2008/01/26: We check for a field that is
7705 NOT wrapped in a struct, since the compiler sometimes
7706 generates these for unchecked variant types. Revisit
0963b4bd 7707 if the compiler changes this practice. */
0d5cff50 7708 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7709 disp = 0;
b1f33ddd
JB
7710 if (v_field_name != NULL
7711 && field_name_match (v_field_name, name))
460efde1 7712 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7713 else
0963b4bd
MS
7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7715 j),
b1f33ddd
JB
7716 name, 0, 1, &disp);
7717
4c4b4cd2
PH
7718 if (t != NULL)
7719 {
7720 if (dispp != NULL)
7721 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7722 return t;
7723 }
7724 }
7725 }
14f9c5c9
AS
7726
7727 }
7728
7729BadName:
d2e4a39e 7730 if (!noerr)
14f9c5c9 7731 {
2b2798cc 7732 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7733
7734 error (_("Type %s has no component named %s"),
3b4de39c 7735 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7736 }
7737
7738 return NULL;
7739}
7740
b1f33ddd
JB
7741/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7742 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7743 represents an unchecked union (that is, the variant part of a
0963b4bd 7744 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7745
7746static int
7747is_unchecked_variant (struct type *var_type, struct type *outer_type)
7748{
7749 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7750
b1f33ddd
JB
7751 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7752 == NULL);
7753}
7754
7755
14f9c5c9
AS
7756/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7757 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7758 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7759 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7760
d2e4a39e 7761int
ebf56fd3 7762ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7763 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7764{
7765 int others_clause;
7766 int i;
d2e4a39e 7767 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7768 struct value *outer;
7769 struct value *discrim;
14f9c5c9
AS
7770 LONGEST discrim_val;
7771
012370f6
TT
7772 /* Using plain value_from_contents_and_address here causes problems
7773 because we will end up trying to resolve a type that is currently
7774 being constructed. */
7775 outer = value_from_contents_and_address_unresolved (outer_type,
7776 outer_valaddr, 0);
0c281816
JB
7777 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7778 if (discrim == NULL)
14f9c5c9 7779 return -1;
0c281816 7780 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7781
7782 others_clause = -1;
7783 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7784 {
7785 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7786 others_clause = i;
14f9c5c9 7787 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7788 return i;
14f9c5c9
AS
7789 }
7790
7791 return others_clause;
7792}
d2e4a39e 7793\f
14f9c5c9
AS
7794
7795
4c4b4cd2 7796 /* Dynamic-Sized Records */
14f9c5c9
AS
7797
7798/* Strategy: The type ostensibly attached to a value with dynamic size
7799 (i.e., a size that is not statically recorded in the debugging
7800 data) does not accurately reflect the size or layout of the value.
7801 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7802 conventional types that are constructed on the fly. */
14f9c5c9
AS
7803
7804/* There is a subtle and tricky problem here. In general, we cannot
7805 determine the size of dynamic records without its data. However,
7806 the 'struct value' data structure, which GDB uses to represent
7807 quantities in the inferior process (the target), requires the size
7808 of the type at the time of its allocation in order to reserve space
7809 for GDB's internal copy of the data. That's why the
7810 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7811 rather than struct value*s.
14f9c5c9
AS
7812
7813 However, GDB's internal history variables ($1, $2, etc.) are
7814 struct value*s containing internal copies of the data that are not, in
7815 general, the same as the data at their corresponding addresses in
7816 the target. Fortunately, the types we give to these values are all
7817 conventional, fixed-size types (as per the strategy described
7818 above), so that we don't usually have to perform the
7819 'to_fixed_xxx_type' conversions to look at their values.
7820 Unfortunately, there is one exception: if one of the internal
7821 history variables is an array whose elements are unconstrained
7822 records, then we will need to create distinct fixed types for each
7823 element selected. */
7824
7825/* The upshot of all of this is that many routines take a (type, host
7826 address, target address) triple as arguments to represent a value.
7827 The host address, if non-null, is supposed to contain an internal
7828 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7829 target at the target address. */
14f9c5c9
AS
7830
7831/* Assuming that VAL0 represents a pointer value, the result of
7832 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7833 dynamic-sized types. */
14f9c5c9 7834
d2e4a39e
AS
7835struct value *
7836ada_value_ind (struct value *val0)
14f9c5c9 7837{
c48db5ca 7838 struct value *val = value_ind (val0);
5b4ee69b 7839
b50d69b5
JG
7840 if (ada_is_tagged_type (value_type (val), 0))
7841 val = ada_tag_value_at_base_address (val);
7842
4c4b4cd2 7843 return ada_to_fixed_value (val);
14f9c5c9
AS
7844}
7845
7846/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7847 qualifiers on VAL0. */
7848
d2e4a39e
AS
7849static struct value *
7850ada_coerce_ref (struct value *val0)
7851{
df407dfe 7852 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7853 {
7854 struct value *val = val0;
5b4ee69b 7855
994b9211 7856 val = coerce_ref (val);
b50d69b5
JG
7857
7858 if (ada_is_tagged_type (value_type (val), 0))
7859 val = ada_tag_value_at_base_address (val);
7860
4c4b4cd2 7861 return ada_to_fixed_value (val);
d2e4a39e
AS
7862 }
7863 else
14f9c5c9
AS
7864 return val0;
7865}
7866
7867/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7868 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7869
7870static unsigned int
ebf56fd3 7871align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7872{
7873 return (off + alignment - 1) & ~(alignment - 1);
7874}
7875
4c4b4cd2 7876/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7877
7878static unsigned int
ebf56fd3 7879field_alignment (struct type *type, int f)
14f9c5c9 7880{
d2e4a39e 7881 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7882 int len;
14f9c5c9
AS
7883 int align_offset;
7884
64a1bf19
JB
7885 /* The field name should never be null, unless the debugging information
7886 is somehow malformed. In this case, we assume the field does not
7887 require any alignment. */
7888 if (name == NULL)
7889 return 1;
7890
7891 len = strlen (name);
7892
4c4b4cd2
PH
7893 if (!isdigit (name[len - 1]))
7894 return 1;
14f9c5c9 7895
d2e4a39e 7896 if (isdigit (name[len - 2]))
14f9c5c9
AS
7897 align_offset = len - 2;
7898 else
7899 align_offset = len - 1;
7900
61012eef 7901 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7902 return TARGET_CHAR_BIT;
7903
4c4b4cd2
PH
7904 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7905}
7906
852dff6c 7907/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7908
852dff6c
JB
7909static struct symbol *
7910ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7911{
7912 struct symbol *sym;
7913
7914 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7915 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7916 return sym;
7917
4186eb54
KS
7918 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7919 return sym;
14f9c5c9
AS
7920}
7921
dddfab26
UW
7922/* Find a type named NAME. Ignores ambiguity. This routine will look
7923 solely for types defined by debug info, it will not search the GDB
7924 primitive types. */
4c4b4cd2 7925
852dff6c 7926static struct type *
ebf56fd3 7927ada_find_any_type (const char *name)
14f9c5c9 7928{
852dff6c 7929 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7930
14f9c5c9 7931 if (sym != NULL)
dddfab26 7932 return SYMBOL_TYPE (sym);
14f9c5c9 7933
dddfab26 7934 return NULL;
14f9c5c9
AS
7935}
7936
739593e0
JB
7937/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7938 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7939 symbol, in which case it is returned. Otherwise, this looks for
7940 symbols whose name is that of NAME_SYM suffixed with "___XR".
7941 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7942
7943struct symbol *
270140bd 7944ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7945{
739593e0 7946 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7947 struct symbol *sym;
7948
739593e0
JB
7949 if (strstr (name, "___XR") != NULL)
7950 return name_sym;
7951
aeb5907d
JB
7952 sym = find_old_style_renaming_symbol (name, block);
7953
7954 if (sym != NULL)
7955 return sym;
7956
0963b4bd 7957 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7958 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7959 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7960 return sym;
7961 else
7962 return NULL;
7963}
7964
7965static struct symbol *
270140bd 7966find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7967{
7f0df278 7968 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7969 char *rename;
7970
7971 if (function_sym != NULL)
7972 {
7973 /* If the symbol is defined inside a function, NAME is not fully
7974 qualified. This means we need to prepend the function name
7975 as well as adding the ``___XR'' suffix to build the name of
7976 the associated renaming symbol. */
0d5cff50 7977 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7978 /* Function names sometimes contain suffixes used
7979 for instance to qualify nested subprograms. When building
7980 the XR type name, we need to make sure that this suffix is
7981 not included. So do not include any suffix in the function
7982 name length below. */
69fadcdf 7983 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7984 const int rename_len = function_name_len + 2 /* "__" */
7985 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7986
529cad9c 7987 /* Strip the suffix if necessary. */
69fadcdf
JB
7988 ada_remove_trailing_digits (function_name, &function_name_len);
7989 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7990 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7991
4c4b4cd2
PH
7992 /* Library-level functions are a special case, as GNAT adds
7993 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7994 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7995 have this prefix, so we need to skip this prefix if present. */
7996 if (function_name_len > 5 /* "_ada_" */
7997 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7998 {
7999 function_name += 5;
8000 function_name_len -= 5;
8001 }
4c4b4cd2
PH
8002
8003 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8004 strncpy (rename, function_name, function_name_len);
8005 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8006 "__%s___XR", name);
4c4b4cd2
PH
8007 }
8008 else
8009 {
8010 const int rename_len = strlen (name) + 6;
5b4ee69b 8011
4c4b4cd2 8012 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8013 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8014 }
8015
852dff6c 8016 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8017}
8018
14f9c5c9 8019/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8020 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8021 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8022 otherwise return 0. */
8023
14f9c5c9 8024int
d2e4a39e 8025ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8026{
8027 if (type1 == NULL)
8028 return 1;
8029 else if (type0 == NULL)
8030 return 0;
8031 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8032 return 1;
8033 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8034 return 0;
4c4b4cd2
PH
8035 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8036 return 1;
ad82864c 8037 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8038 return 1;
4c4b4cd2
PH
8039 else if (ada_is_array_descriptor_type (type0)
8040 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8041 return 1;
aeb5907d
JB
8042 else
8043 {
8044 const char *type0_name = type_name_no_tag (type0);
8045 const char *type1_name = type_name_no_tag (type1);
8046
8047 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8048 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8049 return 1;
8050 }
14f9c5c9
AS
8051 return 0;
8052}
8053
8054/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8055 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8056
0d5cff50 8057const char *
d2e4a39e 8058ada_type_name (struct type *type)
14f9c5c9 8059{
d2e4a39e 8060 if (type == NULL)
14f9c5c9
AS
8061 return NULL;
8062 else if (TYPE_NAME (type) != NULL)
8063 return TYPE_NAME (type);
8064 else
8065 return TYPE_TAG_NAME (type);
8066}
8067
b4ba55a1
JB
8068/* Search the list of "descriptive" types associated to TYPE for a type
8069 whose name is NAME. */
8070
8071static struct type *
8072find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8073{
931e5bc3 8074 struct type *result, *tmp;
b4ba55a1 8075
c6044dd1
JB
8076 if (ada_ignore_descriptive_types_p)
8077 return NULL;
8078
b4ba55a1
JB
8079 /* If there no descriptive-type info, then there is no parallel type
8080 to be found. */
8081 if (!HAVE_GNAT_AUX_INFO (type))
8082 return NULL;
8083
8084 result = TYPE_DESCRIPTIVE_TYPE (type);
8085 while (result != NULL)
8086 {
0d5cff50 8087 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8088
8089 if (result_name == NULL)
8090 {
8091 warning (_("unexpected null name on descriptive type"));
8092 return NULL;
8093 }
8094
8095 /* If the names match, stop. */
8096 if (strcmp (result_name, name) == 0)
8097 break;
8098
8099 /* Otherwise, look at the next item on the list, if any. */
8100 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8101 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8102 else
8103 tmp = NULL;
8104
8105 /* If not found either, try after having resolved the typedef. */
8106 if (tmp != NULL)
8107 result = tmp;
b4ba55a1 8108 else
931e5bc3 8109 {
f168693b 8110 result = check_typedef (result);
931e5bc3
JG
8111 if (HAVE_GNAT_AUX_INFO (result))
8112 result = TYPE_DESCRIPTIVE_TYPE (result);
8113 else
8114 result = NULL;
8115 }
b4ba55a1
JB
8116 }
8117
8118 /* If we didn't find a match, see whether this is a packed array. With
8119 older compilers, the descriptive type information is either absent or
8120 irrelevant when it comes to packed arrays so the above lookup fails.
8121 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8122 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8123 return ada_find_any_type (name);
8124
8125 return result;
8126}
8127
8128/* Find a parallel type to TYPE with the specified NAME, using the
8129 descriptive type taken from the debugging information, if available,
8130 and otherwise using the (slower) name-based method. */
8131
8132static struct type *
8133ada_find_parallel_type_with_name (struct type *type, const char *name)
8134{
8135 struct type *result = NULL;
8136
8137 if (HAVE_GNAT_AUX_INFO (type))
8138 result = find_parallel_type_by_descriptive_type (type, name);
8139 else
8140 result = ada_find_any_type (name);
8141
8142 return result;
8143}
8144
8145/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8146 SUFFIX to the name of TYPE. */
14f9c5c9 8147
d2e4a39e 8148struct type *
ebf56fd3 8149ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8150{
0d5cff50 8151 char *name;
fe978cb0 8152 const char *type_name = ada_type_name (type);
14f9c5c9 8153 int len;
d2e4a39e 8154
fe978cb0 8155 if (type_name == NULL)
14f9c5c9
AS
8156 return NULL;
8157
fe978cb0 8158 len = strlen (type_name);
14f9c5c9 8159
b4ba55a1 8160 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8161
fe978cb0 8162 strcpy (name, type_name);
14f9c5c9
AS
8163 strcpy (name + len, suffix);
8164
b4ba55a1 8165 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8166}
8167
14f9c5c9 8168/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8169 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8170
d2e4a39e
AS
8171static struct type *
8172dynamic_template_type (struct type *type)
14f9c5c9 8173{
61ee279c 8174 type = ada_check_typedef (type);
14f9c5c9
AS
8175
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8177 || ada_type_name (type) == NULL)
14f9c5c9 8178 return NULL;
d2e4a39e 8179 else
14f9c5c9
AS
8180 {
8181 int len = strlen (ada_type_name (type));
5b4ee69b 8182
4c4b4cd2
PH
8183 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8184 return type;
14f9c5c9 8185 else
4c4b4cd2 8186 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8187 }
8188}
8189
8190/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8191 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8192
d2e4a39e
AS
8193static int
8194is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8195{
8196 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8197
d2e4a39e 8198 return name != NULL
14f9c5c9
AS
8199 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8200 && strstr (name, "___XVL") != NULL;
8201}
8202
4c4b4cd2
PH
8203/* The index of the variant field of TYPE, or -1 if TYPE does not
8204 represent a variant record type. */
14f9c5c9 8205
d2e4a39e 8206static int
4c4b4cd2 8207variant_field_index (struct type *type)
14f9c5c9
AS
8208{
8209 int f;
8210
4c4b4cd2
PH
8211 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8212 return -1;
8213
8214 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8215 {
8216 if (ada_is_variant_part (type, f))
8217 return f;
8218 }
8219 return -1;
14f9c5c9
AS
8220}
8221
4c4b4cd2
PH
8222/* A record type with no fields. */
8223
d2e4a39e 8224static struct type *
fe978cb0 8225empty_record (struct type *templ)
14f9c5c9 8226{
fe978cb0 8227 struct type *type = alloc_type_copy (templ);
5b4ee69b 8228
14f9c5c9
AS
8229 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8230 TYPE_NFIELDS (type) = 0;
8231 TYPE_FIELDS (type) = NULL;
b1f33ddd 8232 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8233 TYPE_NAME (type) = "<empty>";
8234 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8235 TYPE_LENGTH (type) = 0;
8236 return type;
8237}
8238
8239/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8240 the value of type TYPE at VALADDR or ADDRESS (see comments at
8241 the beginning of this section) VAL according to GNAT conventions.
8242 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8243 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8244 an outer-level type (i.e., as opposed to a branch of a variant.) A
8245 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8246 of the variant.
14f9c5c9 8247
4c4b4cd2
PH
8248 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8249 length are not statically known are discarded. As a consequence,
8250 VALADDR, ADDRESS and DVAL0 are ignored.
8251
8252 NOTE: Limitations: For now, we assume that dynamic fields and
8253 variants occupy whole numbers of bytes. However, they need not be
8254 byte-aligned. */
8255
8256struct type *
10a2c479 8257ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8258 const gdb_byte *valaddr,
4c4b4cd2
PH
8259 CORE_ADDR address, struct value *dval0,
8260 int keep_dynamic_fields)
14f9c5c9 8261{
d2e4a39e
AS
8262 struct value *mark = value_mark ();
8263 struct value *dval;
8264 struct type *rtype;
14f9c5c9 8265 int nfields, bit_len;
4c4b4cd2 8266 int variant_field;
14f9c5c9 8267 long off;
d94e4f4f 8268 int fld_bit_len;
14f9c5c9
AS
8269 int f;
8270
4c4b4cd2
PH
8271 /* Compute the number of fields in this record type that are going
8272 to be processed: unless keep_dynamic_fields, this includes only
8273 fields whose position and length are static will be processed. */
8274 if (keep_dynamic_fields)
8275 nfields = TYPE_NFIELDS (type);
8276 else
8277 {
8278 nfields = 0;
76a01679 8279 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8280 && !ada_is_variant_part (type, nfields)
8281 && !is_dynamic_field (type, nfields))
8282 nfields++;
8283 }
8284
e9bb382b 8285 rtype = alloc_type_copy (type);
14f9c5c9
AS
8286 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8287 INIT_CPLUS_SPECIFIC (rtype);
8288 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8289 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8290 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8291 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8292 TYPE_NAME (rtype) = ada_type_name (type);
8293 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8294 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8295
d2e4a39e
AS
8296 off = 0;
8297 bit_len = 0;
4c4b4cd2
PH
8298 variant_field = -1;
8299
14f9c5c9
AS
8300 for (f = 0; f < nfields; f += 1)
8301 {
6c038f32
PH
8302 off = align_value (off, field_alignment (type, f))
8303 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8304 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8305 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8306
d2e4a39e 8307 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8308 {
8309 variant_field = f;
d94e4f4f 8310 fld_bit_len = 0;
4c4b4cd2 8311 }
14f9c5c9 8312 else if (is_dynamic_field (type, f))
4c4b4cd2 8313 {
284614f0
JB
8314 const gdb_byte *field_valaddr = valaddr;
8315 CORE_ADDR field_address = address;
8316 struct type *field_type =
8317 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8318
4c4b4cd2 8319 if (dval0 == NULL)
b5304971
JG
8320 {
8321 /* rtype's length is computed based on the run-time
8322 value of discriminants. If the discriminants are not
8323 initialized, the type size may be completely bogus and
0963b4bd 8324 GDB may fail to allocate a value for it. So check the
b5304971 8325 size first before creating the value. */
c1b5a1a6 8326 ada_ensure_varsize_limit (rtype);
012370f6
TT
8327 /* Using plain value_from_contents_and_address here
8328 causes problems because we will end up trying to
8329 resolve a type that is currently being
8330 constructed. */
8331 dval = value_from_contents_and_address_unresolved (rtype,
8332 valaddr,
8333 address);
9f1f738a 8334 rtype = value_type (dval);
b5304971 8335 }
4c4b4cd2
PH
8336 else
8337 dval = dval0;
8338
284614f0
JB
8339 /* If the type referenced by this field is an aligner type, we need
8340 to unwrap that aligner type, because its size might not be set.
8341 Keeping the aligner type would cause us to compute the wrong
8342 size for this field, impacting the offset of the all the fields
8343 that follow this one. */
8344 if (ada_is_aligner_type (field_type))
8345 {
8346 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8347
8348 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8349 field_address = cond_offset_target (field_address, field_offset);
8350 field_type = ada_aligned_type (field_type);
8351 }
8352
8353 field_valaddr = cond_offset_host (field_valaddr,
8354 off / TARGET_CHAR_BIT);
8355 field_address = cond_offset_target (field_address,
8356 off / TARGET_CHAR_BIT);
8357
8358 /* Get the fixed type of the field. Note that, in this case,
8359 we do not want to get the real type out of the tag: if
8360 the current field is the parent part of a tagged record,
8361 we will get the tag of the object. Clearly wrong: the real
8362 type of the parent is not the real type of the child. We
8363 would end up in an infinite loop. */
8364 field_type = ada_get_base_type (field_type);
8365 field_type = ada_to_fixed_type (field_type, field_valaddr,
8366 field_address, dval, 0);
27f2a97b
JB
8367 /* If the field size is already larger than the maximum
8368 object size, then the record itself will necessarily
8369 be larger than the maximum object size. We need to make
8370 this check now, because the size might be so ridiculously
8371 large (due to an uninitialized variable in the inferior)
8372 that it would cause an overflow when adding it to the
8373 record size. */
c1b5a1a6 8374 ada_ensure_varsize_limit (field_type);
284614f0
JB
8375
8376 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8377 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8378 /* The multiplication can potentially overflow. But because
8379 the field length has been size-checked just above, and
8380 assuming that the maximum size is a reasonable value,
8381 an overflow should not happen in practice. So rather than
8382 adding overflow recovery code to this already complex code,
8383 we just assume that it's not going to happen. */
d94e4f4f 8384 fld_bit_len =
4c4b4cd2
PH
8385 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8386 }
14f9c5c9 8387 else
4c4b4cd2 8388 {
5ded5331
JB
8389 /* Note: If this field's type is a typedef, it is important
8390 to preserve the typedef layer.
8391
8392 Otherwise, we might be transforming a typedef to a fat
8393 pointer (encoding a pointer to an unconstrained array),
8394 into a basic fat pointer (encoding an unconstrained
8395 array). As both types are implemented using the same
8396 structure, the typedef is the only clue which allows us
8397 to distinguish between the two options. Stripping it
8398 would prevent us from printing this field appropriately. */
8399 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8400 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8401 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8402 fld_bit_len =
4c4b4cd2
PH
8403 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8404 else
5ded5331
JB
8405 {
8406 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8407
8408 /* We need to be careful of typedefs when computing
8409 the length of our field. If this is a typedef,
8410 get the length of the target type, not the length
8411 of the typedef. */
8412 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8413 field_type = ada_typedef_target_type (field_type);
8414
8415 fld_bit_len =
8416 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8417 }
4c4b4cd2 8418 }
14f9c5c9 8419 if (off + fld_bit_len > bit_len)
4c4b4cd2 8420 bit_len = off + fld_bit_len;
d94e4f4f 8421 off += fld_bit_len;
4c4b4cd2
PH
8422 TYPE_LENGTH (rtype) =
8423 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8424 }
4c4b4cd2
PH
8425
8426 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8427 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8428 the record. This can happen in the presence of representation
8429 clauses. */
8430 if (variant_field >= 0)
8431 {
8432 struct type *branch_type;
8433
8434 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8435
8436 if (dval0 == NULL)
9f1f738a 8437 {
012370f6
TT
8438 /* Using plain value_from_contents_and_address here causes
8439 problems because we will end up trying to resolve a type
8440 that is currently being constructed. */
8441 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8442 address);
9f1f738a
SA
8443 rtype = value_type (dval);
8444 }
4c4b4cd2
PH
8445 else
8446 dval = dval0;
8447
8448 branch_type =
8449 to_fixed_variant_branch_type
8450 (TYPE_FIELD_TYPE (type, variant_field),
8451 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8452 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8453 if (branch_type == NULL)
8454 {
8455 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8456 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8457 TYPE_NFIELDS (rtype) -= 1;
8458 }
8459 else
8460 {
8461 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8462 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8463 fld_bit_len =
8464 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8465 TARGET_CHAR_BIT;
8466 if (off + fld_bit_len > bit_len)
8467 bit_len = off + fld_bit_len;
8468 TYPE_LENGTH (rtype) =
8469 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8470 }
8471 }
8472
714e53ab
PH
8473 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8474 should contain the alignment of that record, which should be a strictly
8475 positive value. If null or negative, then something is wrong, most
8476 probably in the debug info. In that case, we don't round up the size
0963b4bd 8477 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8478 the current RTYPE length might be good enough for our purposes. */
8479 if (TYPE_LENGTH (type) <= 0)
8480 {
323e0a4a
AC
8481 if (TYPE_NAME (rtype))
8482 warning (_("Invalid type size for `%s' detected: %d."),
8483 TYPE_NAME (rtype), TYPE_LENGTH (type));
8484 else
8485 warning (_("Invalid type size for <unnamed> detected: %d."),
8486 TYPE_LENGTH (type));
714e53ab
PH
8487 }
8488 else
8489 {
8490 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8491 TYPE_LENGTH (type));
8492 }
14f9c5c9
AS
8493
8494 value_free_to_mark (mark);
d2e4a39e 8495 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8496 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8497 return rtype;
8498}
8499
4c4b4cd2
PH
8500/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8501 of 1. */
14f9c5c9 8502
d2e4a39e 8503static struct type *
fc1a4b47 8504template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8505 CORE_ADDR address, struct value *dval0)
8506{
8507 return ada_template_to_fixed_record_type_1 (type, valaddr,
8508 address, dval0, 1);
8509}
8510
8511/* An ordinary record type in which ___XVL-convention fields and
8512 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8513 static approximations, containing all possible fields. Uses
8514 no runtime values. Useless for use in values, but that's OK,
8515 since the results are used only for type determinations. Works on both
8516 structs and unions. Representation note: to save space, we memorize
8517 the result of this function in the TYPE_TARGET_TYPE of the
8518 template type. */
8519
8520static struct type *
8521template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8522{
8523 struct type *type;
8524 int nfields;
8525 int f;
8526
9e195661
PMR
8527 /* No need no do anything if the input type is already fixed. */
8528 if (TYPE_FIXED_INSTANCE (type0))
8529 return type0;
8530
8531 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8532 if (TYPE_TARGET_TYPE (type0) != NULL)
8533 return TYPE_TARGET_TYPE (type0);
8534
9e195661 8535 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8536 type = type0;
9e195661
PMR
8537 nfields = TYPE_NFIELDS (type0);
8538
8539 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8540 recompute all over next time. */
8541 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8542
8543 for (f = 0; f < nfields; f += 1)
8544 {
460efde1 8545 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8546 struct type *new_type;
14f9c5c9 8547
4c4b4cd2 8548 if (is_dynamic_field (type0, f))
460efde1
JB
8549 {
8550 field_type = ada_check_typedef (field_type);
8551 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8552 }
14f9c5c9 8553 else
f192137b 8554 new_type = static_unwrap_type (field_type);
9e195661
PMR
8555
8556 if (new_type != field_type)
8557 {
8558 /* Clone TYPE0 only the first time we get a new field type. */
8559 if (type == type0)
8560 {
8561 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8562 TYPE_CODE (type) = TYPE_CODE (type0);
8563 INIT_CPLUS_SPECIFIC (type);
8564 TYPE_NFIELDS (type) = nfields;
8565 TYPE_FIELDS (type) = (struct field *)
8566 TYPE_ALLOC (type, nfields * sizeof (struct field));
8567 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8568 sizeof (struct field) * nfields);
8569 TYPE_NAME (type) = ada_type_name (type0);
8570 TYPE_TAG_NAME (type) = NULL;
8571 TYPE_FIXED_INSTANCE (type) = 1;
8572 TYPE_LENGTH (type) = 0;
8573 }
8574 TYPE_FIELD_TYPE (type, f) = new_type;
8575 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8576 }
14f9c5c9 8577 }
9e195661 8578
14f9c5c9
AS
8579 return type;
8580}
8581
4c4b4cd2 8582/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8583 whose address in memory is ADDRESS, returns a revision of TYPE,
8584 which should be a non-dynamic-sized record, in which the variant
8585 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8586 for discriminant values in DVAL0, which can be NULL if the record
8587 contains the necessary discriminant values. */
8588
d2e4a39e 8589static struct type *
fc1a4b47 8590to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8591 CORE_ADDR address, struct value *dval0)
14f9c5c9 8592{
d2e4a39e 8593 struct value *mark = value_mark ();
4c4b4cd2 8594 struct value *dval;
d2e4a39e 8595 struct type *rtype;
14f9c5c9
AS
8596 struct type *branch_type;
8597 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8598 int variant_field = variant_field_index (type);
14f9c5c9 8599
4c4b4cd2 8600 if (variant_field == -1)
14f9c5c9
AS
8601 return type;
8602
4c4b4cd2 8603 if (dval0 == NULL)
9f1f738a
SA
8604 {
8605 dval = value_from_contents_and_address (type, valaddr, address);
8606 type = value_type (dval);
8607 }
4c4b4cd2
PH
8608 else
8609 dval = dval0;
8610
e9bb382b 8611 rtype = alloc_type_copy (type);
14f9c5c9 8612 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8613 INIT_CPLUS_SPECIFIC (rtype);
8614 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8615 TYPE_FIELDS (rtype) =
8616 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8617 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8618 sizeof (struct field) * nfields);
14f9c5c9
AS
8619 TYPE_NAME (rtype) = ada_type_name (type);
8620 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8621 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8622 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8623
4c4b4cd2
PH
8624 branch_type = to_fixed_variant_branch_type
8625 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8626 cond_offset_host (valaddr,
4c4b4cd2
PH
8627 TYPE_FIELD_BITPOS (type, variant_field)
8628 / TARGET_CHAR_BIT),
d2e4a39e 8629 cond_offset_target (address,
4c4b4cd2
PH
8630 TYPE_FIELD_BITPOS (type, variant_field)
8631 / TARGET_CHAR_BIT), dval);
d2e4a39e 8632 if (branch_type == NULL)
14f9c5c9 8633 {
4c4b4cd2 8634 int f;
5b4ee69b 8635
4c4b4cd2
PH
8636 for (f = variant_field + 1; f < nfields; f += 1)
8637 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8638 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8639 }
8640 else
8641 {
4c4b4cd2
PH
8642 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8643 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8644 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8645 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8646 }
4c4b4cd2 8647 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8648
4c4b4cd2 8649 value_free_to_mark (mark);
14f9c5c9
AS
8650 return rtype;
8651}
8652
8653/* An ordinary record type (with fixed-length fields) that describes
8654 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8655 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8656 should be in DVAL, a record value; it may be NULL if the object
8657 at ADDR itself contains any necessary discriminant values.
8658 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8659 values from the record are needed. Except in the case that DVAL,
8660 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8661 unchecked) is replaced by a particular branch of the variant.
8662
8663 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8664 is questionable and may be removed. It can arise during the
8665 processing of an unconstrained-array-of-record type where all the
8666 variant branches have exactly the same size. This is because in
8667 such cases, the compiler does not bother to use the XVS convention
8668 when encoding the record. I am currently dubious of this
8669 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8670
d2e4a39e 8671static struct type *
fc1a4b47 8672to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8673 CORE_ADDR address, struct value *dval)
14f9c5c9 8674{
d2e4a39e 8675 struct type *templ_type;
14f9c5c9 8676
876cecd0 8677 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8678 return type0;
8679
d2e4a39e 8680 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8681
8682 if (templ_type != NULL)
8683 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8684 else if (variant_field_index (type0) >= 0)
8685 {
8686 if (dval == NULL && valaddr == NULL && address == 0)
8687 return type0;
8688 return to_record_with_fixed_variant_part (type0, valaddr, address,
8689 dval);
8690 }
14f9c5c9
AS
8691 else
8692 {
876cecd0 8693 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8694 return type0;
8695 }
8696
8697}
8698
8699/* An ordinary record type (with fixed-length fields) that describes
8700 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8701 union type. Any necessary discriminants' values should be in DVAL,
8702 a record value. That is, this routine selects the appropriate
8703 branch of the union at ADDR according to the discriminant value
b1f33ddd 8704 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8705 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8706
d2e4a39e 8707static struct type *
fc1a4b47 8708to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8709 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8710{
8711 int which;
d2e4a39e
AS
8712 struct type *templ_type;
8713 struct type *var_type;
14f9c5c9
AS
8714
8715 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8716 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8717 else
14f9c5c9
AS
8718 var_type = var_type0;
8719
8720 templ_type = ada_find_parallel_type (var_type, "___XVU");
8721
8722 if (templ_type != NULL)
8723 var_type = templ_type;
8724
b1f33ddd
JB
8725 if (is_unchecked_variant (var_type, value_type (dval)))
8726 return var_type0;
d2e4a39e
AS
8727 which =
8728 ada_which_variant_applies (var_type,
0fd88904 8729 value_type (dval), value_contents (dval));
14f9c5c9
AS
8730
8731 if (which < 0)
e9bb382b 8732 return empty_record (var_type);
14f9c5c9 8733 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8734 return to_fixed_record_type
d2e4a39e
AS
8735 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8736 valaddr, address, dval);
4c4b4cd2 8737 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8738 return
8739 to_fixed_record_type
8740 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8741 else
8742 return TYPE_FIELD_TYPE (var_type, which);
8743}
8744
8908fca5
JB
8745/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8746 ENCODING_TYPE, a type following the GNAT conventions for discrete
8747 type encodings, only carries redundant information. */
8748
8749static int
8750ada_is_redundant_range_encoding (struct type *range_type,
8751 struct type *encoding_type)
8752{
8753 struct type *fixed_range_type;
108d56a4 8754 const char *bounds_str;
8908fca5
JB
8755 int n;
8756 LONGEST lo, hi;
8757
8758 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8759
005e2509
JB
8760 if (TYPE_CODE (get_base_type (range_type))
8761 != TYPE_CODE (get_base_type (encoding_type)))
8762 {
8763 /* The compiler probably used a simple base type to describe
8764 the range type instead of the range's actual base type,
8765 expecting us to get the real base type from the encoding
8766 anyway. In this situation, the encoding cannot be ignored
8767 as redundant. */
8768 return 0;
8769 }
8770
8908fca5
JB
8771 if (is_dynamic_type (range_type))
8772 return 0;
8773
8774 if (TYPE_NAME (encoding_type) == NULL)
8775 return 0;
8776
8777 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8778 if (bounds_str == NULL)
8779 return 0;
8780
8781 n = 8; /* Skip "___XDLU_". */
8782 if (!ada_scan_number (bounds_str, n, &lo, &n))
8783 return 0;
8784 if (TYPE_LOW_BOUND (range_type) != lo)
8785 return 0;
8786
8787 n += 2; /* Skip the "__" separator between the two bounds. */
8788 if (!ada_scan_number (bounds_str, n, &hi, &n))
8789 return 0;
8790 if (TYPE_HIGH_BOUND (range_type) != hi)
8791 return 0;
8792
8793 return 1;
8794}
8795
8796/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8797 a type following the GNAT encoding for describing array type
8798 indices, only carries redundant information. */
8799
8800static int
8801ada_is_redundant_index_type_desc (struct type *array_type,
8802 struct type *desc_type)
8803{
8804 struct type *this_layer = check_typedef (array_type);
8805 int i;
8806
8807 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8808 {
8809 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8810 TYPE_FIELD_TYPE (desc_type, i)))
8811 return 0;
8812 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8813 }
8814
8815 return 1;
8816}
8817
14f9c5c9
AS
8818/* Assuming that TYPE0 is an array type describing the type of a value
8819 at ADDR, and that DVAL describes a record containing any
8820 discriminants used in TYPE0, returns a type for the value that
8821 contains no dynamic components (that is, no components whose sizes
8822 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8823 true, gives an error message if the resulting type's size is over
4c4b4cd2 8824 varsize_limit. */
14f9c5c9 8825
d2e4a39e
AS
8826static struct type *
8827to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8828 int ignore_too_big)
14f9c5c9 8829{
d2e4a39e
AS
8830 struct type *index_type_desc;
8831 struct type *result;
ad82864c 8832 int constrained_packed_array_p;
931e5bc3 8833 static const char *xa_suffix = "___XA";
14f9c5c9 8834
b0dd7688 8835 type0 = ada_check_typedef (type0);
284614f0 8836 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8837 return type0;
14f9c5c9 8838
ad82864c
JB
8839 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8840 if (constrained_packed_array_p)
8841 type0 = decode_constrained_packed_array_type (type0);
284614f0 8842
931e5bc3
JG
8843 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8844
8845 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8846 encoding suffixed with 'P' may still be generated. If so,
8847 it should be used to find the XA type. */
8848
8849 if (index_type_desc == NULL)
8850 {
1da0522e 8851 const char *type_name = ada_type_name (type0);
931e5bc3 8852
1da0522e 8853 if (type_name != NULL)
931e5bc3 8854 {
1da0522e 8855 const int len = strlen (type_name);
931e5bc3
JG
8856 char *name = (char *) alloca (len + strlen (xa_suffix));
8857
1da0522e 8858 if (type_name[len - 1] == 'P')
931e5bc3 8859 {
1da0522e 8860 strcpy (name, type_name);
931e5bc3
JG
8861 strcpy (name + len - 1, xa_suffix);
8862 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8863 }
8864 }
8865 }
8866
28c85d6c 8867 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8868 if (index_type_desc != NULL
8869 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8870 {
8871 /* Ignore this ___XA parallel type, as it does not bring any
8872 useful information. This allows us to avoid creating fixed
8873 versions of the array's index types, which would be identical
8874 to the original ones. This, in turn, can also help avoid
8875 the creation of fixed versions of the array itself. */
8876 index_type_desc = NULL;
8877 }
8878
14f9c5c9
AS
8879 if (index_type_desc == NULL)
8880 {
61ee279c 8881 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8882
14f9c5c9 8883 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8884 depend on the contents of the array in properly constructed
8885 debugging data. */
529cad9c
PH
8886 /* Create a fixed version of the array element type.
8887 We're not providing the address of an element here,
e1d5a0d2 8888 and thus the actual object value cannot be inspected to do
529cad9c
PH
8889 the conversion. This should not be a problem, since arrays of
8890 unconstrained objects are not allowed. In particular, all
8891 the elements of an array of a tagged type should all be of
8892 the same type specified in the debugging info. No need to
8893 consult the object tag. */
1ed6ede0 8894 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8895
284614f0
JB
8896 /* Make sure we always create a new array type when dealing with
8897 packed array types, since we're going to fix-up the array
8898 type length and element bitsize a little further down. */
ad82864c 8899 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8900 result = type0;
14f9c5c9 8901 else
e9bb382b 8902 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8903 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8904 }
8905 else
8906 {
8907 int i;
8908 struct type *elt_type0;
8909
8910 elt_type0 = type0;
8911 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8912 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8913
8914 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8915 depend on the contents of the array in properly constructed
8916 debugging data. */
529cad9c
PH
8917 /* Create a fixed version of the array element type.
8918 We're not providing the address of an element here,
e1d5a0d2 8919 and thus the actual object value cannot be inspected to do
529cad9c
PH
8920 the conversion. This should not be a problem, since arrays of
8921 unconstrained objects are not allowed. In particular, all
8922 the elements of an array of a tagged type should all be of
8923 the same type specified in the debugging info. No need to
8924 consult the object tag. */
1ed6ede0
JB
8925 result =
8926 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8927
8928 elt_type0 = type0;
14f9c5c9 8929 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8930 {
8931 struct type *range_type =
28c85d6c 8932 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8933
e9bb382b 8934 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8935 result, range_type);
1ce677a4 8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8937 }
d2e4a39e 8938 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8939 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8940 }
8941
2e6fda7d
JB
8942 /* We want to preserve the type name. This can be useful when
8943 trying to get the type name of a value that has already been
8944 printed (for instance, if the user did "print VAR; whatis $". */
8945 TYPE_NAME (result) = TYPE_NAME (type0);
8946
ad82864c 8947 if (constrained_packed_array_p)
284614f0
JB
8948 {
8949 /* So far, the resulting type has been created as if the original
8950 type was a regular (non-packed) array type. As a result, the
8951 bitsize of the array elements needs to be set again, and the array
8952 length needs to be recomputed based on that bitsize. */
8953 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8954 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8955
8956 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8957 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8958 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8959 TYPE_LENGTH (result)++;
8960 }
8961
876cecd0 8962 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8963 return result;
d2e4a39e 8964}
14f9c5c9
AS
8965
8966
8967/* A standard type (containing no dynamically sized components)
8968 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8969 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8970 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8971 ADDRESS or in VALADDR contains these discriminants.
8972
1ed6ede0
JB
8973 If CHECK_TAG is not null, in the case of tagged types, this function
8974 attempts to locate the object's tag and use it to compute the actual
8975 type. However, when ADDRESS is null, we cannot use it to determine the
8976 location of the tag, and therefore compute the tagged type's actual type.
8977 So we return the tagged type without consulting the tag. */
529cad9c 8978
f192137b
JB
8979static struct type *
8980ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8981 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8982{
61ee279c 8983 type = ada_check_typedef (type);
d2e4a39e
AS
8984 switch (TYPE_CODE (type))
8985 {
8986 default:
14f9c5c9 8987 return type;
d2e4a39e 8988 case TYPE_CODE_STRUCT:
4c4b4cd2 8989 {
76a01679 8990 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8991 struct type *fixed_record_type =
8992 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8993
529cad9c
PH
8994 /* If STATIC_TYPE is a tagged type and we know the object's address,
8995 then we can determine its tag, and compute the object's actual
0963b4bd 8996 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8997 type (the parent part of the record may have dynamic fields
8998 and the way the location of _tag is expressed may depend on
8999 them). */
529cad9c 9000
1ed6ede0 9001 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9002 {
b50d69b5
JG
9003 struct value *tag =
9004 value_tag_from_contents_and_address
9005 (fixed_record_type,
9006 valaddr,
9007 address);
9008 struct type *real_type = type_from_tag (tag);
9009 struct value *obj =
9010 value_from_contents_and_address (fixed_record_type,
9011 valaddr,
9012 address);
9f1f738a 9013 fixed_record_type = value_type (obj);
76a01679 9014 if (real_type != NULL)
b50d69b5
JG
9015 return to_fixed_record_type
9016 (real_type, NULL,
9017 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9018 }
4af88198
JB
9019
9020 /* Check to see if there is a parallel ___XVZ variable.
9021 If there is, then it provides the actual size of our type. */
9022 else if (ada_type_name (fixed_record_type) != NULL)
9023 {
0d5cff50 9024 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9025 char *xvz_name
9026 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
9027 int xvz_found = 0;
9028 LONGEST size;
9029
88c15c34 9030 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
9031 size = get_int_var_value (xvz_name, &xvz_found);
9032 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9033 {
9034 fixed_record_type = copy_type (fixed_record_type);
9035 TYPE_LENGTH (fixed_record_type) = size;
9036
9037 /* The FIXED_RECORD_TYPE may have be a stub. We have
9038 observed this when the debugging info is STABS, and
9039 apparently it is something that is hard to fix.
9040
9041 In practice, we don't need the actual type definition
9042 at all, because the presence of the XVZ variable allows us
9043 to assume that there must be a XVS type as well, which we
9044 should be able to use later, when we need the actual type
9045 definition.
9046
9047 In the meantime, pretend that the "fixed" type we are
9048 returning is NOT a stub, because this can cause trouble
9049 when using this type to create new types targeting it.
9050 Indeed, the associated creation routines often check
9051 whether the target type is a stub and will try to replace
0963b4bd 9052 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9053 might cause the new type to have the wrong size too.
9054 Consider the case of an array, for instance, where the size
9055 of the array is computed from the number of elements in
9056 our array multiplied by the size of its element. */
9057 TYPE_STUB (fixed_record_type) = 0;
9058 }
9059 }
1ed6ede0 9060 return fixed_record_type;
4c4b4cd2 9061 }
d2e4a39e 9062 case TYPE_CODE_ARRAY:
4c4b4cd2 9063 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9064 case TYPE_CODE_UNION:
9065 if (dval == NULL)
4c4b4cd2 9066 return type;
d2e4a39e 9067 else
4c4b4cd2 9068 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9069 }
14f9c5c9
AS
9070}
9071
f192137b
JB
9072/* The same as ada_to_fixed_type_1, except that it preserves the type
9073 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9074
9075 The typedef layer needs be preserved in order to differentiate between
9076 arrays and array pointers when both types are implemented using the same
9077 fat pointer. In the array pointer case, the pointer is encoded as
9078 a typedef of the pointer type. For instance, considering:
9079
9080 type String_Access is access String;
9081 S1 : String_Access := null;
9082
9083 To the debugger, S1 is defined as a typedef of type String. But
9084 to the user, it is a pointer. So if the user tries to print S1,
9085 we should not dereference the array, but print the array address
9086 instead.
9087
9088 If we didn't preserve the typedef layer, we would lose the fact that
9089 the type is to be presented as a pointer (needs de-reference before
9090 being printed). And we would also use the source-level type name. */
f192137b
JB
9091
9092struct type *
9093ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9094 CORE_ADDR address, struct value *dval, int check_tag)
9095
9096{
9097 struct type *fixed_type =
9098 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9099
96dbd2c1
JB
9100 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9101 then preserve the typedef layer.
9102
9103 Implementation note: We can only check the main-type portion of
9104 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9105 from TYPE now returns a type that has the same instance flags
9106 as TYPE. For instance, if TYPE is a "typedef const", and its
9107 target type is a "struct", then the typedef elimination will return
9108 a "const" version of the target type. See check_typedef for more
9109 details about how the typedef layer elimination is done.
9110
9111 brobecker/2010-11-19: It seems to me that the only case where it is
9112 useful to preserve the typedef layer is when dealing with fat pointers.
9113 Perhaps, we could add a check for that and preserve the typedef layer
9114 only in that situation. But this seems unecessary so far, probably
9115 because we call check_typedef/ada_check_typedef pretty much everywhere.
9116 */
f192137b 9117 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9118 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9119 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9120 return type;
9121
9122 return fixed_type;
9123}
9124
14f9c5c9 9125/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9126 TYPE0, but based on no runtime data. */
14f9c5c9 9127
d2e4a39e
AS
9128static struct type *
9129to_static_fixed_type (struct type *type0)
14f9c5c9 9130{
d2e4a39e 9131 struct type *type;
14f9c5c9
AS
9132
9133 if (type0 == NULL)
9134 return NULL;
9135
876cecd0 9136 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9137 return type0;
9138
61ee279c 9139 type0 = ada_check_typedef (type0);
d2e4a39e 9140
14f9c5c9
AS
9141 switch (TYPE_CODE (type0))
9142 {
9143 default:
9144 return type0;
9145 case TYPE_CODE_STRUCT:
9146 type = dynamic_template_type (type0);
d2e4a39e 9147 if (type != NULL)
4c4b4cd2
PH
9148 return template_to_static_fixed_type (type);
9149 else
9150 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9151 case TYPE_CODE_UNION:
9152 type = ada_find_parallel_type (type0, "___XVU");
9153 if (type != NULL)
4c4b4cd2
PH
9154 return template_to_static_fixed_type (type);
9155 else
9156 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9157 }
9158}
9159
4c4b4cd2
PH
9160/* A static approximation of TYPE with all type wrappers removed. */
9161
d2e4a39e
AS
9162static struct type *
9163static_unwrap_type (struct type *type)
14f9c5c9
AS
9164{
9165 if (ada_is_aligner_type (type))
9166 {
61ee279c 9167 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9168 if (ada_type_name (type1) == NULL)
4c4b4cd2 9169 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9170
9171 return static_unwrap_type (type1);
9172 }
d2e4a39e 9173 else
14f9c5c9 9174 {
d2e4a39e 9175 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9176
d2e4a39e 9177 if (raw_real_type == type)
4c4b4cd2 9178 return type;
14f9c5c9 9179 else
4c4b4cd2 9180 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9181 }
9182}
9183
9184/* In some cases, incomplete and private types require
4c4b4cd2 9185 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9186 type Foo;
9187 type FooP is access Foo;
9188 V: FooP;
9189 type Foo is array ...;
4c4b4cd2 9190 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9191 cross-references to such types, we instead substitute for FooP a
9192 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9193 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9194
9195/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9196 exists, otherwise TYPE. */
9197
d2e4a39e 9198struct type *
61ee279c 9199ada_check_typedef (struct type *type)
14f9c5c9 9200{
727e3d2e
JB
9201 if (type == NULL)
9202 return NULL;
9203
720d1a40
JB
9204 /* If our type is a typedef type of a fat pointer, then we're done.
9205 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9206 what allows us to distinguish between fat pointers that represent
9207 array types, and fat pointers that represent array access types
9208 (in both cases, the compiler implements them as fat pointers). */
9209 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9210 && is_thick_pntr (ada_typedef_target_type (type)))
9211 return type;
9212
f168693b 9213 type = check_typedef (type);
14f9c5c9 9214 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9215 || !TYPE_STUB (type)
14f9c5c9
AS
9216 || TYPE_TAG_NAME (type) == NULL)
9217 return type;
d2e4a39e 9218 else
14f9c5c9 9219 {
0d5cff50 9220 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9221 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9222
05e522ef
JB
9223 if (type1 == NULL)
9224 return type;
9225
9226 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9227 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9228 types, only for the typedef-to-array types). If that's the case,
9229 strip the typedef layer. */
9230 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9231 type1 = ada_check_typedef (type1);
9232
9233 return type1;
14f9c5c9
AS
9234 }
9235}
9236
9237/* A value representing the data at VALADDR/ADDRESS as described by
9238 type TYPE0, but with a standard (static-sized) type that correctly
9239 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9240 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9241 creation of struct values]. */
14f9c5c9 9242
4c4b4cd2
PH
9243static struct value *
9244ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9245 struct value *val0)
14f9c5c9 9246{
1ed6ede0 9247 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9248
14f9c5c9
AS
9249 if (type == type0 && val0 != NULL)
9250 return val0;
d2e4a39e 9251 else
4c4b4cd2
PH
9252 return value_from_contents_and_address (type, 0, address);
9253}
9254
9255/* A value representing VAL, but with a standard (static-sized) type
9256 that correctly describes it. Does not necessarily create a new
9257 value. */
9258
0c3acc09 9259struct value *
4c4b4cd2
PH
9260ada_to_fixed_value (struct value *val)
9261{
c48db5ca
JB
9262 val = unwrap_value (val);
9263 val = ada_to_fixed_value_create (value_type (val),
9264 value_address (val),
9265 val);
9266 return val;
14f9c5c9 9267}
d2e4a39e 9268\f
14f9c5c9 9269
14f9c5c9
AS
9270/* Attributes */
9271
4c4b4cd2
PH
9272/* Table mapping attribute numbers to names.
9273 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9274
d2e4a39e 9275static const char *attribute_names[] = {
14f9c5c9
AS
9276 "<?>",
9277
d2e4a39e 9278 "first",
14f9c5c9
AS
9279 "last",
9280 "length",
9281 "image",
14f9c5c9
AS
9282 "max",
9283 "min",
4c4b4cd2
PH
9284 "modulus",
9285 "pos",
9286 "size",
9287 "tag",
14f9c5c9 9288 "val",
14f9c5c9
AS
9289 0
9290};
9291
d2e4a39e 9292const char *
4c4b4cd2 9293ada_attribute_name (enum exp_opcode n)
14f9c5c9 9294{
4c4b4cd2
PH
9295 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9296 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9297 else
9298 return attribute_names[0];
9299}
9300
4c4b4cd2 9301/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9302
4c4b4cd2
PH
9303static LONGEST
9304pos_atr (struct value *arg)
14f9c5c9 9305{
24209737
PH
9306 struct value *val = coerce_ref (arg);
9307 struct type *type = value_type (val);
aa715135 9308 LONGEST result;
14f9c5c9 9309
d2e4a39e 9310 if (!discrete_type_p (type))
323e0a4a 9311 error (_("'POS only defined on discrete types"));
14f9c5c9 9312
aa715135
JG
9313 if (!discrete_position (type, value_as_long (val), &result))
9314 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9315
aa715135 9316 return result;
4c4b4cd2
PH
9317}
9318
9319static struct value *
3cb382c9 9320value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9321{
3cb382c9 9322 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9323}
9324
4c4b4cd2 9325/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9326
d2e4a39e
AS
9327static struct value *
9328value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9329{
d2e4a39e 9330 if (!discrete_type_p (type))
323e0a4a 9331 error (_("'VAL only defined on discrete types"));
df407dfe 9332 if (!integer_type_p (value_type (arg)))
323e0a4a 9333 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9334
9335 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9336 {
9337 long pos = value_as_long (arg);
5b4ee69b 9338
14f9c5c9 9339 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9340 error (_("argument to 'VAL out of range"));
14e75d8e 9341 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9342 }
9343 else
9344 return value_from_longest (type, value_as_long (arg));
9345}
14f9c5c9 9346\f
d2e4a39e 9347
4c4b4cd2 9348 /* Evaluation */
14f9c5c9 9349
4c4b4cd2
PH
9350/* True if TYPE appears to be an Ada character type.
9351 [At the moment, this is true only for Character and Wide_Character;
9352 It is a heuristic test that could stand improvement]. */
14f9c5c9 9353
d2e4a39e
AS
9354int
9355ada_is_character_type (struct type *type)
14f9c5c9 9356{
7b9f71f2
JB
9357 const char *name;
9358
9359 /* If the type code says it's a character, then assume it really is,
9360 and don't check any further. */
9361 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9362 return 1;
9363
9364 /* Otherwise, assume it's a character type iff it is a discrete type
9365 with a known character type name. */
9366 name = ada_type_name (type);
9367 return (name != NULL
9368 && (TYPE_CODE (type) == TYPE_CODE_INT
9369 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9370 && (strcmp (name, "character") == 0
9371 || strcmp (name, "wide_character") == 0
5a517ebd 9372 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9373 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9374}
9375
4c4b4cd2 9376/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9377
9378int
ebf56fd3 9379ada_is_string_type (struct type *type)
14f9c5c9 9380{
61ee279c 9381 type = ada_check_typedef (type);
d2e4a39e 9382 if (type != NULL
14f9c5c9 9383 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9384 && (ada_is_simple_array_type (type)
9385 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9386 && ada_array_arity (type) == 1)
9387 {
9388 struct type *elttype = ada_array_element_type (type, 1);
9389
9390 return ada_is_character_type (elttype);
9391 }
d2e4a39e 9392 else
14f9c5c9
AS
9393 return 0;
9394}
9395
5bf03f13
JB
9396/* The compiler sometimes provides a parallel XVS type for a given
9397 PAD type. Normally, it is safe to follow the PAD type directly,
9398 but older versions of the compiler have a bug that causes the offset
9399 of its "F" field to be wrong. Following that field in that case
9400 would lead to incorrect results, but this can be worked around
9401 by ignoring the PAD type and using the associated XVS type instead.
9402
9403 Set to True if the debugger should trust the contents of PAD types.
9404 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9405static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9406
9407/* True if TYPE is a struct type introduced by the compiler to force the
9408 alignment of a value. Such types have a single field with a
4c4b4cd2 9409 distinctive name. */
14f9c5c9
AS
9410
9411int
ebf56fd3 9412ada_is_aligner_type (struct type *type)
14f9c5c9 9413{
61ee279c 9414 type = ada_check_typedef (type);
714e53ab 9415
5bf03f13 9416 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9417 return 0;
9418
14f9c5c9 9419 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9420 && TYPE_NFIELDS (type) == 1
9421 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9422}
9423
9424/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9425 the parallel type. */
14f9c5c9 9426
d2e4a39e
AS
9427struct type *
9428ada_get_base_type (struct type *raw_type)
14f9c5c9 9429{
d2e4a39e
AS
9430 struct type *real_type_namer;
9431 struct type *raw_real_type;
14f9c5c9
AS
9432
9433 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9434 return raw_type;
9435
284614f0
JB
9436 if (ada_is_aligner_type (raw_type))
9437 /* The encoding specifies that we should always use the aligner type.
9438 So, even if this aligner type has an associated XVS type, we should
9439 simply ignore it.
9440
9441 According to the compiler gurus, an XVS type parallel to an aligner
9442 type may exist because of a stabs limitation. In stabs, aligner
9443 types are empty because the field has a variable-sized type, and
9444 thus cannot actually be used as an aligner type. As a result,
9445 we need the associated parallel XVS type to decode the type.
9446 Since the policy in the compiler is to not change the internal
9447 representation based on the debugging info format, we sometimes
9448 end up having a redundant XVS type parallel to the aligner type. */
9449 return raw_type;
9450
14f9c5c9 9451 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9452 if (real_type_namer == NULL
14f9c5c9
AS
9453 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9454 || TYPE_NFIELDS (real_type_namer) != 1)
9455 return raw_type;
9456
f80d3ff2
JB
9457 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9458 {
9459 /* This is an older encoding form where the base type needs to be
9460 looked up by name. We prefer the newer enconding because it is
9461 more efficient. */
9462 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9463 if (raw_real_type == NULL)
9464 return raw_type;
9465 else
9466 return raw_real_type;
9467 }
9468
9469 /* The field in our XVS type is a reference to the base type. */
9470 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9471}
14f9c5c9 9472
4c4b4cd2 9473/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9474
d2e4a39e
AS
9475struct type *
9476ada_aligned_type (struct type *type)
14f9c5c9
AS
9477{
9478 if (ada_is_aligner_type (type))
9479 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9480 else
9481 return ada_get_base_type (type);
9482}
9483
9484
9485/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9486 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9487
fc1a4b47
AC
9488const gdb_byte *
9489ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9490{
d2e4a39e 9491 if (ada_is_aligner_type (type))
14f9c5c9 9492 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9493 valaddr +
9494 TYPE_FIELD_BITPOS (type,
9495 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9496 else
9497 return valaddr;
9498}
9499
4c4b4cd2
PH
9500
9501
14f9c5c9 9502/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9503 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9504const char *
9505ada_enum_name (const char *name)
14f9c5c9 9506{
4c4b4cd2
PH
9507 static char *result;
9508 static size_t result_len = 0;
e6a959d6 9509 const char *tmp;
14f9c5c9 9510
4c4b4cd2
PH
9511 /* First, unqualify the enumeration name:
9512 1. Search for the last '.' character. If we find one, then skip
177b42fe 9513 all the preceding characters, the unqualified name starts
76a01679 9514 right after that dot.
4c4b4cd2 9515 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9516 translates dots into "__". Search forward for double underscores,
9517 but stop searching when we hit an overloading suffix, which is
9518 of the form "__" followed by digits. */
4c4b4cd2 9519
c3e5cd34
PH
9520 tmp = strrchr (name, '.');
9521 if (tmp != NULL)
4c4b4cd2
PH
9522 name = tmp + 1;
9523 else
14f9c5c9 9524 {
4c4b4cd2
PH
9525 while ((tmp = strstr (name, "__")) != NULL)
9526 {
9527 if (isdigit (tmp[2]))
9528 break;
9529 else
9530 name = tmp + 2;
9531 }
14f9c5c9
AS
9532 }
9533
9534 if (name[0] == 'Q')
9535 {
14f9c5c9 9536 int v;
5b4ee69b 9537
14f9c5c9 9538 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9539 {
9540 if (sscanf (name + 2, "%x", &v) != 1)
9541 return name;
9542 }
14f9c5c9 9543 else
4c4b4cd2 9544 return name;
14f9c5c9 9545
4c4b4cd2 9546 GROW_VECT (result, result_len, 16);
14f9c5c9 9547 if (isascii (v) && isprint (v))
88c15c34 9548 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9549 else if (name[1] == 'U')
88c15c34 9550 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9551 else
88c15c34 9552 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9553
9554 return result;
9555 }
d2e4a39e 9556 else
4c4b4cd2 9557 {
c3e5cd34
PH
9558 tmp = strstr (name, "__");
9559 if (tmp == NULL)
9560 tmp = strstr (name, "$");
9561 if (tmp != NULL)
4c4b4cd2
PH
9562 {
9563 GROW_VECT (result, result_len, tmp - name + 1);
9564 strncpy (result, name, tmp - name);
9565 result[tmp - name] = '\0';
9566 return result;
9567 }
9568
9569 return name;
9570 }
14f9c5c9
AS
9571}
9572
14f9c5c9
AS
9573/* Evaluate the subexpression of EXP starting at *POS as for
9574 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9575 expression. */
14f9c5c9 9576
d2e4a39e
AS
9577static struct value *
9578evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9579{
4b27a620 9580 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9581}
9582
9583/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9584 value it wraps. */
14f9c5c9 9585
d2e4a39e
AS
9586static struct value *
9587unwrap_value (struct value *val)
14f9c5c9 9588{
df407dfe 9589 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9590
14f9c5c9
AS
9591 if (ada_is_aligner_type (type))
9592 {
de4d072f 9593 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9594 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9595
14f9c5c9 9596 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9597 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9598
9599 return unwrap_value (v);
9600 }
d2e4a39e 9601 else
14f9c5c9 9602 {
d2e4a39e 9603 struct type *raw_real_type =
61ee279c 9604 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9605
5bf03f13
JB
9606 /* If there is no parallel XVS or XVE type, then the value is
9607 already unwrapped. Return it without further modification. */
9608 if ((type == raw_real_type)
9609 && ada_find_parallel_type (type, "___XVE") == NULL)
9610 return val;
14f9c5c9 9611
d2e4a39e 9612 return
4c4b4cd2
PH
9613 coerce_unspec_val_to_type
9614 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9615 value_address (val),
1ed6ede0 9616 NULL, 1));
14f9c5c9
AS
9617 }
9618}
d2e4a39e
AS
9619
9620static struct value *
9621cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9622{
9623 LONGEST val;
9624
df407dfe 9625 if (type == value_type (arg))
14f9c5c9 9626 return arg;
df407dfe 9627 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9628 val = ada_float_to_fixed (type,
df407dfe 9629 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9630 value_as_long (arg)));
d2e4a39e 9631 else
14f9c5c9 9632 {
a53b7a21 9633 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9634
14f9c5c9
AS
9635 val = ada_float_to_fixed (type, argd);
9636 }
9637
9638 return value_from_longest (type, val);
9639}
9640
d2e4a39e 9641static struct value *
a53b7a21 9642cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9643{
df407dfe 9644 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9645 value_as_long (arg));
5b4ee69b 9646
a53b7a21 9647 return value_from_double (type, val);
14f9c5c9
AS
9648}
9649
d99dcf51
JB
9650/* Given two array types T1 and T2, return nonzero iff both arrays
9651 contain the same number of elements. */
9652
9653static int
9654ada_same_array_size_p (struct type *t1, struct type *t2)
9655{
9656 LONGEST lo1, hi1, lo2, hi2;
9657
9658 /* Get the array bounds in order to verify that the size of
9659 the two arrays match. */
9660 if (!get_array_bounds (t1, &lo1, &hi1)
9661 || !get_array_bounds (t2, &lo2, &hi2))
9662 error (_("unable to determine array bounds"));
9663
9664 /* To make things easier for size comparison, normalize a bit
9665 the case of empty arrays by making sure that the difference
9666 between upper bound and lower bound is always -1. */
9667 if (lo1 > hi1)
9668 hi1 = lo1 - 1;
9669 if (lo2 > hi2)
9670 hi2 = lo2 - 1;
9671
9672 return (hi1 - lo1 == hi2 - lo2);
9673}
9674
9675/* Assuming that VAL is an array of integrals, and TYPE represents
9676 an array with the same number of elements, but with wider integral
9677 elements, return an array "casted" to TYPE. In practice, this
9678 means that the returned array is built by casting each element
9679 of the original array into TYPE's (wider) element type. */
9680
9681static struct value *
9682ada_promote_array_of_integrals (struct type *type, struct value *val)
9683{
9684 struct type *elt_type = TYPE_TARGET_TYPE (type);
9685 LONGEST lo, hi;
9686 struct value *res;
9687 LONGEST i;
9688
9689 /* Verify that both val and type are arrays of scalars, and
9690 that the size of val's elements is smaller than the size
9691 of type's element. */
9692 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9693 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9694 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9695 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9696 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9697 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9698
9699 if (!get_array_bounds (type, &lo, &hi))
9700 error (_("unable to determine array bounds"));
9701
9702 res = allocate_value (type);
9703
9704 /* Promote each array element. */
9705 for (i = 0; i < hi - lo + 1; i++)
9706 {
9707 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9708
9709 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9710 value_contents_all (elt), TYPE_LENGTH (elt_type));
9711 }
9712
9713 return res;
9714}
9715
4c4b4cd2
PH
9716/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9717 return the converted value. */
9718
d2e4a39e
AS
9719static struct value *
9720coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9721{
df407dfe 9722 struct type *type2 = value_type (val);
5b4ee69b 9723
14f9c5c9
AS
9724 if (type == type2)
9725 return val;
9726
61ee279c
PH
9727 type2 = ada_check_typedef (type2);
9728 type = ada_check_typedef (type);
14f9c5c9 9729
d2e4a39e
AS
9730 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9731 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9732 {
9733 val = ada_value_ind (val);
df407dfe 9734 type2 = value_type (val);
14f9c5c9
AS
9735 }
9736
d2e4a39e 9737 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9738 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9739 {
d99dcf51
JB
9740 if (!ada_same_array_size_p (type, type2))
9741 error (_("cannot assign arrays of different length"));
9742
9743 if (is_integral_type (TYPE_TARGET_TYPE (type))
9744 && is_integral_type (TYPE_TARGET_TYPE (type2))
9745 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9746 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9747 {
9748 /* Allow implicit promotion of the array elements to
9749 a wider type. */
9750 return ada_promote_array_of_integrals (type, val);
9751 }
9752
9753 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9754 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9755 error (_("Incompatible types in assignment"));
04624583 9756 deprecated_set_value_type (val, type);
14f9c5c9 9757 }
d2e4a39e 9758 return val;
14f9c5c9
AS
9759}
9760
4c4b4cd2
PH
9761static struct value *
9762ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9763{
9764 struct value *val;
9765 struct type *type1, *type2;
9766 LONGEST v, v1, v2;
9767
994b9211
AC
9768 arg1 = coerce_ref (arg1);
9769 arg2 = coerce_ref (arg2);
18af8284
JB
9770 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9771 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9772
76a01679
JB
9773 if (TYPE_CODE (type1) != TYPE_CODE_INT
9774 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9775 return value_binop (arg1, arg2, op);
9776
76a01679 9777 switch (op)
4c4b4cd2
PH
9778 {
9779 case BINOP_MOD:
9780 case BINOP_DIV:
9781 case BINOP_REM:
9782 break;
9783 default:
9784 return value_binop (arg1, arg2, op);
9785 }
9786
9787 v2 = value_as_long (arg2);
9788 if (v2 == 0)
323e0a4a 9789 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9790
9791 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9792 return value_binop (arg1, arg2, op);
9793
9794 v1 = value_as_long (arg1);
9795 switch (op)
9796 {
9797 case BINOP_DIV:
9798 v = v1 / v2;
76a01679
JB
9799 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9800 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9801 break;
9802 case BINOP_REM:
9803 v = v1 % v2;
76a01679
JB
9804 if (v * v1 < 0)
9805 v -= v2;
4c4b4cd2
PH
9806 break;
9807 default:
9808 /* Should not reach this point. */
9809 v = 0;
9810 }
9811
9812 val = allocate_value (type1);
990a07ab 9813 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9814 TYPE_LENGTH (value_type (val)),
9815 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9816 return val;
9817}
9818
9819static int
9820ada_value_equal (struct value *arg1, struct value *arg2)
9821{
df407dfe
AC
9822 if (ada_is_direct_array_type (value_type (arg1))
9823 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9824 {
f58b38bf
JB
9825 /* Automatically dereference any array reference before
9826 we attempt to perform the comparison. */
9827 arg1 = ada_coerce_ref (arg1);
9828 arg2 = ada_coerce_ref (arg2);
9829
4c4b4cd2
PH
9830 arg1 = ada_coerce_to_simple_array (arg1);
9831 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9832 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9833 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9834 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9835 /* FIXME: The following works only for types whose
76a01679
JB
9836 representations use all bits (no padding or undefined bits)
9837 and do not have user-defined equality. */
9838 return
df407dfe 9839 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9840 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9841 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9842 }
9843 return value_equal (arg1, arg2);
9844}
9845
52ce6436
PH
9846/* Total number of component associations in the aggregate starting at
9847 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9848 OP_AGGREGATE. */
52ce6436
PH
9849
9850static int
9851num_component_specs (struct expression *exp, int pc)
9852{
9853 int n, m, i;
5b4ee69b 9854
52ce6436
PH
9855 m = exp->elts[pc + 1].longconst;
9856 pc += 3;
9857 n = 0;
9858 for (i = 0; i < m; i += 1)
9859 {
9860 switch (exp->elts[pc].opcode)
9861 {
9862 default:
9863 n += 1;
9864 break;
9865 case OP_CHOICES:
9866 n += exp->elts[pc + 1].longconst;
9867 break;
9868 }
9869 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9870 }
9871 return n;
9872}
9873
9874/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9875 component of LHS (a simple array or a record), updating *POS past
9876 the expression, assuming that LHS is contained in CONTAINER. Does
9877 not modify the inferior's memory, nor does it modify LHS (unless
9878 LHS == CONTAINER). */
9879
9880static void
9881assign_component (struct value *container, struct value *lhs, LONGEST index,
9882 struct expression *exp, int *pos)
9883{
9884 struct value *mark = value_mark ();
9885 struct value *elt;
5b4ee69b 9886
52ce6436
PH
9887 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9888 {
22601c15
UW
9889 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9890 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9891
52ce6436
PH
9892 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9893 }
9894 else
9895 {
9896 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9897 elt = ada_to_fixed_value (elt);
52ce6436
PH
9898 }
9899
9900 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9901 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9902 else
9903 value_assign_to_component (container, elt,
9904 ada_evaluate_subexp (NULL, exp, pos,
9905 EVAL_NORMAL));
9906
9907 value_free_to_mark (mark);
9908}
9909
9910/* Assuming that LHS represents an lvalue having a record or array
9911 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9912 of that aggregate's value to LHS, advancing *POS past the
9913 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9914 lvalue containing LHS (possibly LHS itself). Does not modify
9915 the inferior's memory, nor does it modify the contents of
0963b4bd 9916 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9917
9918static struct value *
9919assign_aggregate (struct value *container,
9920 struct value *lhs, struct expression *exp,
9921 int *pos, enum noside noside)
9922{
9923 struct type *lhs_type;
9924 int n = exp->elts[*pos+1].longconst;
9925 LONGEST low_index, high_index;
9926 int num_specs;
9927 LONGEST *indices;
9928 int max_indices, num_indices;
52ce6436 9929 int i;
52ce6436
PH
9930
9931 *pos += 3;
9932 if (noside != EVAL_NORMAL)
9933 {
52ce6436
PH
9934 for (i = 0; i < n; i += 1)
9935 ada_evaluate_subexp (NULL, exp, pos, noside);
9936 return container;
9937 }
9938
9939 container = ada_coerce_ref (container);
9940 if (ada_is_direct_array_type (value_type (container)))
9941 container = ada_coerce_to_simple_array (container);
9942 lhs = ada_coerce_ref (lhs);
9943 if (!deprecated_value_modifiable (lhs))
9944 error (_("Left operand of assignment is not a modifiable lvalue."));
9945
9946 lhs_type = value_type (lhs);
9947 if (ada_is_direct_array_type (lhs_type))
9948 {
9949 lhs = ada_coerce_to_simple_array (lhs);
9950 lhs_type = value_type (lhs);
9951 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9952 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9953 }
9954 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9955 {
9956 low_index = 0;
9957 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9958 }
9959 else
9960 error (_("Left-hand side must be array or record."));
9961
9962 num_specs = num_component_specs (exp, *pos - 3);
9963 max_indices = 4 * num_specs + 4;
8d749320 9964 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9965 indices[0] = indices[1] = low_index - 1;
9966 indices[2] = indices[3] = high_index + 1;
9967 num_indices = 4;
9968
9969 for (i = 0; i < n; i += 1)
9970 {
9971 switch (exp->elts[*pos].opcode)
9972 {
1fbf5ada
JB
9973 case OP_CHOICES:
9974 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9975 &num_indices, max_indices,
9976 low_index, high_index);
9977 break;
9978 case OP_POSITIONAL:
9979 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9980 &num_indices, max_indices,
9981 low_index, high_index);
1fbf5ada
JB
9982 break;
9983 case OP_OTHERS:
9984 if (i != n-1)
9985 error (_("Misplaced 'others' clause"));
9986 aggregate_assign_others (container, lhs, exp, pos, indices,
9987 num_indices, low_index, high_index);
9988 break;
9989 default:
9990 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9991 }
9992 }
9993
9994 return container;
9995}
9996
9997/* Assign into the component of LHS indexed by the OP_POSITIONAL
9998 construct at *POS, updating *POS past the construct, given that
9999 the positions are relative to lower bound LOW, where HIGH is the
10000 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10001 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10002 assign_aggregate. */
52ce6436
PH
10003static void
10004aggregate_assign_positional (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, LONGEST *indices, int *num_indices,
10007 int max_indices, LONGEST low, LONGEST high)
10008{
10009 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10010
10011 if (ind - 1 == high)
e1d5a0d2 10012 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10013 if (ind <= high)
10014 {
10015 add_component_interval (ind, ind, indices, num_indices, max_indices);
10016 *pos += 3;
10017 assign_component (container, lhs, ind, exp, pos);
10018 }
10019 else
10020 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10021}
10022
10023/* Assign into the components of LHS indexed by the OP_CHOICES
10024 construct at *POS, updating *POS past the construct, given that
10025 the allowable indices are LOW..HIGH. Record the indices assigned
10026 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10027 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10028static void
10029aggregate_assign_from_choices (struct value *container,
10030 struct value *lhs, struct expression *exp,
10031 int *pos, LONGEST *indices, int *num_indices,
10032 int max_indices, LONGEST low, LONGEST high)
10033{
10034 int j;
10035 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10036 int choice_pos, expr_pc;
10037 int is_array = ada_is_direct_array_type (value_type (lhs));
10038
10039 choice_pos = *pos += 3;
10040
10041 for (j = 0; j < n_choices; j += 1)
10042 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043 expr_pc = *pos;
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045
10046 for (j = 0; j < n_choices; j += 1)
10047 {
10048 LONGEST lower, upper;
10049 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10050
52ce6436
PH
10051 if (op == OP_DISCRETE_RANGE)
10052 {
10053 choice_pos += 1;
10054 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10055 EVAL_NORMAL));
10056 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10057 EVAL_NORMAL));
10058 }
10059 else if (is_array)
10060 {
10061 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10062 EVAL_NORMAL));
10063 upper = lower;
10064 }
10065 else
10066 {
10067 int ind;
0d5cff50 10068 const char *name;
5b4ee69b 10069
52ce6436
PH
10070 switch (op)
10071 {
10072 case OP_NAME:
10073 name = &exp->elts[choice_pos + 2].string;
10074 break;
10075 case OP_VAR_VALUE:
10076 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10077 break;
10078 default:
10079 error (_("Invalid record component association."));
10080 }
10081 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10082 ind = 0;
10083 if (! find_struct_field (name, value_type (lhs), 0,
10084 NULL, NULL, NULL, NULL, &ind))
10085 error (_("Unknown component name: %s."), name);
10086 lower = upper = ind;
10087 }
10088
10089 if (lower <= upper && (lower < low || upper > high))
10090 error (_("Index in component association out of bounds."));
10091
10092 add_component_interval (lower, upper, indices, num_indices,
10093 max_indices);
10094 while (lower <= upper)
10095 {
10096 int pos1;
5b4ee69b 10097
52ce6436
PH
10098 pos1 = expr_pc;
10099 assign_component (container, lhs, lower, exp, &pos1);
10100 lower += 1;
10101 }
10102 }
10103}
10104
10105/* Assign the value of the expression in the OP_OTHERS construct in
10106 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10107 have not been previously assigned. The index intervals already assigned
10108 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10109 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10110static void
10111aggregate_assign_others (struct value *container,
10112 struct value *lhs, struct expression *exp,
10113 int *pos, LONGEST *indices, int num_indices,
10114 LONGEST low, LONGEST high)
10115{
10116 int i;
5ce64950 10117 int expr_pc = *pos + 1;
52ce6436
PH
10118
10119 for (i = 0; i < num_indices - 2; i += 2)
10120 {
10121 LONGEST ind;
5b4ee69b 10122
52ce6436
PH
10123 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10124 {
5ce64950 10125 int localpos;
5b4ee69b 10126
5ce64950
MS
10127 localpos = expr_pc;
10128 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10129 }
10130 }
10131 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10132}
10133
10134/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10135 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10136 modifying *SIZE as needed. It is an error if *SIZE exceeds
10137 MAX_SIZE. The resulting intervals do not overlap. */
10138static void
10139add_component_interval (LONGEST low, LONGEST high,
10140 LONGEST* indices, int *size, int max_size)
10141{
10142 int i, j;
5b4ee69b 10143
52ce6436
PH
10144 for (i = 0; i < *size; i += 2) {
10145 if (high >= indices[i] && low <= indices[i + 1])
10146 {
10147 int kh;
5b4ee69b 10148
52ce6436
PH
10149 for (kh = i + 2; kh < *size; kh += 2)
10150 if (high < indices[kh])
10151 break;
10152 if (low < indices[i])
10153 indices[i] = low;
10154 indices[i + 1] = indices[kh - 1];
10155 if (high > indices[i + 1])
10156 indices[i + 1] = high;
10157 memcpy (indices + i + 2, indices + kh, *size - kh);
10158 *size -= kh - i - 2;
10159 return;
10160 }
10161 else if (high < indices[i])
10162 break;
10163 }
10164
10165 if (*size == max_size)
10166 error (_("Internal error: miscounted aggregate components."));
10167 *size += 2;
10168 for (j = *size-1; j >= i+2; j -= 1)
10169 indices[j] = indices[j - 2];
10170 indices[i] = low;
10171 indices[i + 1] = high;
10172}
10173
6e48bd2c
JB
10174/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10175 is different. */
10176
10177static struct value *
10178ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10179{
10180 if (type == ada_check_typedef (value_type (arg2)))
10181 return arg2;
10182
10183 if (ada_is_fixed_point_type (type))
10184 return (cast_to_fixed (type, arg2));
10185
10186 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10187 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10188
10189 return value_cast (type, arg2);
10190}
10191
284614f0
JB
10192/* Evaluating Ada expressions, and printing their result.
10193 ------------------------------------------------------
10194
21649b50
JB
10195 1. Introduction:
10196 ----------------
10197
284614f0
JB
10198 We usually evaluate an Ada expression in order to print its value.
10199 We also evaluate an expression in order to print its type, which
10200 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10201 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10202 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10203 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10204 similar.
10205
10206 Evaluating expressions is a little more complicated for Ada entities
10207 than it is for entities in languages such as C. The main reason for
10208 this is that Ada provides types whose definition might be dynamic.
10209 One example of such types is variant records. Or another example
10210 would be an array whose bounds can only be known at run time.
10211
10212 The following description is a general guide as to what should be
10213 done (and what should NOT be done) in order to evaluate an expression
10214 involving such types, and when. This does not cover how the semantic
10215 information is encoded by GNAT as this is covered separatly. For the
10216 document used as the reference for the GNAT encoding, see exp_dbug.ads
10217 in the GNAT sources.
10218
10219 Ideally, we should embed each part of this description next to its
10220 associated code. Unfortunately, the amount of code is so vast right
10221 now that it's hard to see whether the code handling a particular
10222 situation might be duplicated or not. One day, when the code is
10223 cleaned up, this guide might become redundant with the comments
10224 inserted in the code, and we might want to remove it.
10225
21649b50
JB
10226 2. ``Fixing'' an Entity, the Simple Case:
10227 -----------------------------------------
10228
284614f0
JB
10229 When evaluating Ada expressions, the tricky issue is that they may
10230 reference entities whose type contents and size are not statically
10231 known. Consider for instance a variant record:
10232
10233 type Rec (Empty : Boolean := True) is record
10234 case Empty is
10235 when True => null;
10236 when False => Value : Integer;
10237 end case;
10238 end record;
10239 Yes : Rec := (Empty => False, Value => 1);
10240 No : Rec := (empty => True);
10241
10242 The size and contents of that record depends on the value of the
10243 descriminant (Rec.Empty). At this point, neither the debugging
10244 information nor the associated type structure in GDB are able to
10245 express such dynamic types. So what the debugger does is to create
10246 "fixed" versions of the type that applies to the specific object.
10247 We also informally refer to this opperation as "fixing" an object,
10248 which means creating its associated fixed type.
10249
10250 Example: when printing the value of variable "Yes" above, its fixed
10251 type would look like this:
10252
10253 type Rec is record
10254 Empty : Boolean;
10255 Value : Integer;
10256 end record;
10257
10258 On the other hand, if we printed the value of "No", its fixed type
10259 would become:
10260
10261 type Rec is record
10262 Empty : Boolean;
10263 end record;
10264
10265 Things become a little more complicated when trying to fix an entity
10266 with a dynamic type that directly contains another dynamic type,
10267 such as an array of variant records, for instance. There are
10268 two possible cases: Arrays, and records.
10269
21649b50
JB
10270 3. ``Fixing'' Arrays:
10271 ---------------------
10272
10273 The type structure in GDB describes an array in terms of its bounds,
10274 and the type of its elements. By design, all elements in the array
10275 have the same type and we cannot represent an array of variant elements
10276 using the current type structure in GDB. When fixing an array,
10277 we cannot fix the array element, as we would potentially need one
10278 fixed type per element of the array. As a result, the best we can do
10279 when fixing an array is to produce an array whose bounds and size
10280 are correct (allowing us to read it from memory), but without having
10281 touched its element type. Fixing each element will be done later,
10282 when (if) necessary.
10283
10284 Arrays are a little simpler to handle than records, because the same
10285 amount of memory is allocated for each element of the array, even if
1b536f04 10286 the amount of space actually used by each element differs from element
21649b50 10287 to element. Consider for instance the following array of type Rec:
284614f0
JB
10288
10289 type Rec_Array is array (1 .. 2) of Rec;
10290
1b536f04
JB
10291 The actual amount of memory occupied by each element might be different
10292 from element to element, depending on the value of their discriminant.
21649b50 10293 But the amount of space reserved for each element in the array remains
1b536f04 10294 fixed regardless. So we simply need to compute that size using
21649b50
JB
10295 the debugging information available, from which we can then determine
10296 the array size (we multiply the number of elements of the array by
10297 the size of each element).
10298
10299 The simplest case is when we have an array of a constrained element
10300 type. For instance, consider the following type declarations:
10301
10302 type Bounded_String (Max_Size : Integer) is
10303 Length : Integer;
10304 Buffer : String (1 .. Max_Size);
10305 end record;
10306 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10307
10308 In this case, the compiler describes the array as an array of
10309 variable-size elements (identified by its XVS suffix) for which
10310 the size can be read in the parallel XVZ variable.
10311
10312 In the case of an array of an unconstrained element type, the compiler
10313 wraps the array element inside a private PAD type. This type should not
10314 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10315 that we also use the adjective "aligner" in our code to designate
10316 these wrapper types.
10317
1b536f04 10318 In some cases, the size allocated for each element is statically
21649b50
JB
10319 known. In that case, the PAD type already has the correct size,
10320 and the array element should remain unfixed.
10321
10322 But there are cases when this size is not statically known.
10323 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10324
10325 type Dynamic is array (1 .. Five) of Integer;
10326 type Wrapper (Has_Length : Boolean := False) is record
10327 Data : Dynamic;
10328 case Has_Length is
10329 when True => Length : Integer;
10330 when False => null;
10331 end case;
10332 end record;
10333 type Wrapper_Array is array (1 .. 2) of Wrapper;
10334
10335 Hello : Wrapper_Array := (others => (Has_Length => True,
10336 Data => (others => 17),
10337 Length => 1));
10338
10339
10340 The debugging info would describe variable Hello as being an
10341 array of a PAD type. The size of that PAD type is not statically
10342 known, but can be determined using a parallel XVZ variable.
10343 In that case, a copy of the PAD type with the correct size should
10344 be used for the fixed array.
10345
21649b50
JB
10346 3. ``Fixing'' record type objects:
10347 ----------------------------------
10348
10349 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10350 record types. In this case, in order to compute the associated
10351 fixed type, we need to determine the size and offset of each of
10352 its components. This, in turn, requires us to compute the fixed
10353 type of each of these components.
10354
10355 Consider for instance the example:
10356
10357 type Bounded_String (Max_Size : Natural) is record
10358 Str : String (1 .. Max_Size);
10359 Length : Natural;
10360 end record;
10361 My_String : Bounded_String (Max_Size => 10);
10362
10363 In that case, the position of field "Length" depends on the size
10364 of field Str, which itself depends on the value of the Max_Size
21649b50 10365 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10366 we need to fix the type of field Str. Therefore, fixing a variant
10367 record requires us to fix each of its components.
10368
10369 However, if a component does not have a dynamic size, the component
10370 should not be fixed. In particular, fields that use a PAD type
10371 should not fixed. Here is an example where this might happen
10372 (assuming type Rec above):
10373
10374 type Container (Big : Boolean) is record
10375 First : Rec;
10376 After : Integer;
10377 case Big is
10378 when True => Another : Integer;
10379 when False => null;
10380 end case;
10381 end record;
10382 My_Container : Container := (Big => False,
10383 First => (Empty => True),
10384 After => 42);
10385
10386 In that example, the compiler creates a PAD type for component First,
10387 whose size is constant, and then positions the component After just
10388 right after it. The offset of component After is therefore constant
10389 in this case.
10390
10391 The debugger computes the position of each field based on an algorithm
10392 that uses, among other things, the actual position and size of the field
21649b50
JB
10393 preceding it. Let's now imagine that the user is trying to print
10394 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10395 end up computing the offset of field After based on the size of the
10396 fixed version of field First. And since in our example First has
10397 only one actual field, the size of the fixed type is actually smaller
10398 than the amount of space allocated to that field, and thus we would
10399 compute the wrong offset of field After.
10400
21649b50
JB
10401 To make things more complicated, we need to watch out for dynamic
10402 components of variant records (identified by the ___XVL suffix in
10403 the component name). Even if the target type is a PAD type, the size
10404 of that type might not be statically known. So the PAD type needs
10405 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10406 we might end up with the wrong size for our component. This can be
10407 observed with the following type declarations:
284614f0
JB
10408
10409 type Octal is new Integer range 0 .. 7;
10410 type Octal_Array is array (Positive range <>) of Octal;
10411 pragma Pack (Octal_Array);
10412
10413 type Octal_Buffer (Size : Positive) is record
10414 Buffer : Octal_Array (1 .. Size);
10415 Length : Integer;
10416 end record;
10417
10418 In that case, Buffer is a PAD type whose size is unset and needs
10419 to be computed by fixing the unwrapped type.
10420
21649b50
JB
10421 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10422 ----------------------------------------------------------
10423
10424 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10425 thus far, be actually fixed?
10426
10427 The answer is: Only when referencing that element. For instance
10428 when selecting one component of a record, this specific component
10429 should be fixed at that point in time. Or when printing the value
10430 of a record, each component should be fixed before its value gets
10431 printed. Similarly for arrays, the element of the array should be
10432 fixed when printing each element of the array, or when extracting
10433 one element out of that array. On the other hand, fixing should
10434 not be performed on the elements when taking a slice of an array!
10435
10436 Note that one of the side-effects of miscomputing the offset and
10437 size of each field is that we end up also miscomputing the size
10438 of the containing type. This can have adverse results when computing
10439 the value of an entity. GDB fetches the value of an entity based
10440 on the size of its type, and thus a wrong size causes GDB to fetch
10441 the wrong amount of memory. In the case where the computed size is
10442 too small, GDB fetches too little data to print the value of our
10443 entiry. Results in this case as unpredicatble, as we usually read
10444 past the buffer containing the data =:-o. */
10445
10446/* Implement the evaluate_exp routine in the exp_descriptor structure
10447 for the Ada language. */
10448
52ce6436 10449static struct value *
ebf56fd3 10450ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10451 int *pos, enum noside noside)
14f9c5c9
AS
10452{
10453 enum exp_opcode op;
b5385fc0 10454 int tem;
14f9c5c9 10455 int pc;
5ec18f2b 10456 int preeval_pos;
14f9c5c9
AS
10457 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10458 struct type *type;
52ce6436 10459 int nargs, oplen;
d2e4a39e 10460 struct value **argvec;
14f9c5c9 10461
d2e4a39e
AS
10462 pc = *pos;
10463 *pos += 1;
14f9c5c9
AS
10464 op = exp->elts[pc].opcode;
10465
d2e4a39e 10466 switch (op)
14f9c5c9
AS
10467 {
10468 default:
10469 *pos -= 1;
6e48bd2c 10470 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10471
10472 if (noside == EVAL_NORMAL)
10473 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10474
10475 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10476 then we need to perform the conversion manually, because
10477 evaluate_subexp_standard doesn't do it. This conversion is
10478 necessary in Ada because the different kinds of float/fixed
10479 types in Ada have different representations.
10480
10481 Similarly, we need to perform the conversion from OP_LONG
10482 ourselves. */
10483 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10484 arg1 = ada_value_cast (expect_type, arg1, noside);
10485
10486 return arg1;
4c4b4cd2
PH
10487
10488 case OP_STRING:
10489 {
76a01679 10490 struct value *result;
5b4ee69b 10491
76a01679
JB
10492 *pos -= 1;
10493 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10494 /* The result type will have code OP_STRING, bashed there from
10495 OP_ARRAY. Bash it back. */
df407dfe
AC
10496 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10497 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10498 return result;
4c4b4cd2 10499 }
14f9c5c9
AS
10500
10501 case UNOP_CAST:
10502 (*pos) += 2;
10503 type = exp->elts[pc + 1].type;
10504 arg1 = evaluate_subexp (type, exp, pos, noside);
10505 if (noside == EVAL_SKIP)
4c4b4cd2 10506 goto nosideret;
6e48bd2c 10507 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10508 return arg1;
10509
4c4b4cd2
PH
10510 case UNOP_QUAL:
10511 (*pos) += 2;
10512 type = exp->elts[pc + 1].type;
10513 return ada_evaluate_subexp (type, exp, pos, noside);
10514
14f9c5c9
AS
10515 case BINOP_ASSIGN:
10516 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10517 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10518 {
10519 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10520 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10521 return arg1;
10522 return ada_value_assign (arg1, arg1);
10523 }
003f3813
JB
10524 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10525 except if the lhs of our assignment is a convenience variable.
10526 In the case of assigning to a convenience variable, the lhs
10527 should be exactly the result of the evaluation of the rhs. */
10528 type = value_type (arg1);
10529 if (VALUE_LVAL (arg1) == lval_internalvar)
10530 type = NULL;
10531 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10532 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10533 return arg1;
df407dfe
AC
10534 if (ada_is_fixed_point_type (value_type (arg1)))
10535 arg2 = cast_to_fixed (value_type (arg1), arg2);
10536 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10537 error
323e0a4a 10538 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10539 else
df407dfe 10540 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10541 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10542
10543 case BINOP_ADD:
10544 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10545 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10546 if (noside == EVAL_SKIP)
4c4b4cd2 10547 goto nosideret;
2ac8a782
JB
10548 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10549 return (value_from_longest
10550 (value_type (arg1),
10551 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10552 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10553 return (value_from_longest
10554 (value_type (arg2),
10555 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10556 if ((ada_is_fixed_point_type (value_type (arg1))
10557 || ada_is_fixed_point_type (value_type (arg2)))
10558 && value_type (arg1) != value_type (arg2))
323e0a4a 10559 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10560 /* Do the addition, and cast the result to the type of the first
10561 argument. We cannot cast the result to a reference type, so if
10562 ARG1 is a reference type, find its underlying type. */
10563 type = value_type (arg1);
10564 while (TYPE_CODE (type) == TYPE_CODE_REF)
10565 type = TYPE_TARGET_TYPE (type);
f44316fa 10566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10567 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10568
10569 case BINOP_SUB:
10570 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10571 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10572 if (noside == EVAL_SKIP)
4c4b4cd2 10573 goto nosideret;
2ac8a782
JB
10574 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10575 return (value_from_longest
10576 (value_type (arg1),
10577 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10578 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg2),
10581 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10582 if ((ada_is_fixed_point_type (value_type (arg1))
10583 || ada_is_fixed_point_type (value_type (arg2)))
10584 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10585 error (_("Operands of fixed-point subtraction "
10586 "must have the same type"));
b7789565
JB
10587 /* Do the substraction, and cast the result to the type of the first
10588 argument. We cannot cast the result to a reference type, so if
10589 ARG1 is a reference type, find its underlying type. */
10590 type = value_type (arg1);
10591 while (TYPE_CODE (type) == TYPE_CODE_REF)
10592 type = TYPE_TARGET_TYPE (type);
f44316fa 10593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10594 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10595
10596 case BINOP_MUL:
10597 case BINOP_DIV:
e1578042
JB
10598 case BINOP_REM:
10599 case BINOP_MOD:
14f9c5c9
AS
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10602 if (noside == EVAL_SKIP)
4c4b4cd2 10603 goto nosideret;
e1578042 10604 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10605 {
10606 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10607 return value_zero (value_type (arg1), not_lval);
10608 }
14f9c5c9 10609 else
4c4b4cd2 10610 {
a53b7a21 10611 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10612 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10613 arg1 = cast_from_fixed (type, arg1);
df407dfe 10614 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10615 arg2 = cast_from_fixed (type, arg2);
f44316fa 10616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10617 return ada_value_binop (arg1, arg2, op);
10618 }
10619
4c4b4cd2
PH
10620 case BINOP_EQUAL:
10621 case BINOP_NOTEQUAL:
14f9c5c9 10622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10623 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10624 if (noside == EVAL_SKIP)
76a01679 10625 goto nosideret;
4c4b4cd2 10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10627 tem = 0;
4c4b4cd2 10628 else
f44316fa
UW
10629 {
10630 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10631 tem = ada_value_equal (arg1, arg2);
10632 }
4c4b4cd2 10633 if (op == BINOP_NOTEQUAL)
76a01679 10634 tem = !tem;
fbb06eb1
UW
10635 type = language_bool_type (exp->language_defn, exp->gdbarch);
10636 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10637
10638 case UNOP_NEG:
10639 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10640 if (noside == EVAL_SKIP)
10641 goto nosideret;
df407dfe
AC
10642 else if (ada_is_fixed_point_type (value_type (arg1)))
10643 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10644 else
f44316fa
UW
10645 {
10646 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10647 return value_neg (arg1);
10648 }
4c4b4cd2 10649
2330c6c6
JB
10650 case BINOP_LOGICAL_AND:
10651 case BINOP_LOGICAL_OR:
10652 case UNOP_LOGICAL_NOT:
000d5124
JB
10653 {
10654 struct value *val;
10655
10656 *pos -= 1;
10657 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10658 type = language_bool_type (exp->language_defn, exp->gdbarch);
10659 return value_cast (type, val);
000d5124 10660 }
2330c6c6
JB
10661
10662 case BINOP_BITWISE_AND:
10663 case BINOP_BITWISE_IOR:
10664 case BINOP_BITWISE_XOR:
000d5124
JB
10665 {
10666 struct value *val;
10667
10668 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10669 *pos = pc;
10670 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10671
10672 return value_cast (value_type (arg1), val);
10673 }
2330c6c6 10674
14f9c5c9
AS
10675 case OP_VAR_VALUE:
10676 *pos -= 1;
6799def4 10677
14f9c5c9 10678 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10679 {
10680 *pos += 4;
10681 goto nosideret;
10682 }
da5c522f
JB
10683
10684 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10685 /* Only encountered when an unresolved symbol occurs in a
10686 context other than a function call, in which case, it is
52ce6436 10687 invalid. */
323e0a4a 10688 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10689 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10690
10691 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10692 {
0c1f74cf 10693 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10694 /* Check to see if this is a tagged type. We also need to handle
10695 the case where the type is a reference to a tagged type, but
10696 we have to be careful to exclude pointers to tagged types.
10697 The latter should be shown as usual (as a pointer), whereas
10698 a reference should mostly be transparent to the user. */
10699 if (ada_is_tagged_type (type, 0)
023db19c 10700 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10701 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10702 {
10703 /* Tagged types are a little special in the fact that the real
10704 type is dynamic and can only be determined by inspecting the
10705 object's tag. This means that we need to get the object's
10706 value first (EVAL_NORMAL) and then extract the actual object
10707 type from its tag.
10708
10709 Note that we cannot skip the final step where we extract
10710 the object type from its tag, because the EVAL_NORMAL phase
10711 results in dynamic components being resolved into fixed ones.
10712 This can cause problems when trying to print the type
10713 description of tagged types whose parent has a dynamic size:
10714 We use the type name of the "_parent" component in order
10715 to print the name of the ancestor type in the type description.
10716 If that component had a dynamic size, the resolution into
10717 a fixed type would result in the loss of that type name,
10718 thus preventing us from printing the name of the ancestor
10719 type in the type description. */
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10721
10722 if (TYPE_CODE (type) != TYPE_CODE_REF)
10723 {
10724 struct type *actual_type;
10725
10726 actual_type = type_from_tag (ada_value_tag (arg1));
10727 if (actual_type == NULL)
10728 /* If, for some reason, we were unable to determine
10729 the actual type from the tag, then use the static
10730 approximation that we just computed as a fallback.
10731 This can happen if the debugging information is
10732 incomplete, for instance. */
10733 actual_type = type;
10734 return value_zero (actual_type, not_lval);
10735 }
10736 else
10737 {
10738 /* In the case of a ref, ada_coerce_ref takes care
10739 of determining the actual type. But the evaluation
10740 should return a ref as it should be valid to ask
10741 for its address; so rebuild a ref after coerce. */
10742 arg1 = ada_coerce_ref (arg1);
10743 return value_ref (arg1);
10744 }
10745 }
0c1f74cf 10746
84754697
JB
10747 /* Records and unions for which GNAT encodings have been
10748 generated need to be statically fixed as well.
10749 Otherwise, non-static fixing produces a type where
10750 all dynamic properties are removed, which prevents "ptype"
10751 from being able to completely describe the type.
10752 For instance, a case statement in a variant record would be
10753 replaced by the relevant components based on the actual
10754 value of the discriminants. */
10755 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10756 && dynamic_template_type (type) != NULL)
10757 || (TYPE_CODE (type) == TYPE_CODE_UNION
10758 && ada_find_parallel_type (type, "___XVU") != NULL))
10759 {
10760 *pos += 4;
10761 return value_zero (to_static_fixed_type (type), not_lval);
10762 }
4c4b4cd2 10763 }
da5c522f
JB
10764
10765 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10767
10768 case OP_FUNCALL:
10769 (*pos) += 2;
10770
10771 /* Allocate arg vector, including space for the function to be
10772 called in argvec[0] and a terminating NULL. */
10773 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10774 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10775
10776 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10777 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10779 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10780 else
10781 {
10782 for (tem = 0; tem <= nargs; tem += 1)
10783 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10784 argvec[tem] = 0;
10785
10786 if (noside == EVAL_SKIP)
10787 goto nosideret;
10788 }
10789
ad82864c
JB
10790 if (ada_is_constrained_packed_array_type
10791 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10792 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10793 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10794 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10795 /* This is a packed array that has already been fixed, and
10796 therefore already coerced to a simple array. Nothing further
10797 to do. */
10798 ;
e6c2c623
PMR
10799 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10800 {
10801 /* Make sure we dereference references so that all the code below
10802 feels like it's really handling the referenced value. Wrapping
10803 types (for alignment) may be there, so make sure we strip them as
10804 well. */
10805 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10806 }
10807 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10808 && VALUE_LVAL (argvec[0]) == lval_memory)
10809 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10810
df407dfe 10811 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10812
10813 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10814 them. So, if this is an array typedef (encoding use for array
10815 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10816 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10817 type = ada_typedef_target_type (type);
10818
4c4b4cd2
PH
10819 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10820 {
61ee279c 10821 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10822 {
10823 case TYPE_CODE_FUNC:
61ee279c 10824 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10825 break;
10826 case TYPE_CODE_ARRAY:
10827 break;
10828 case TYPE_CODE_STRUCT:
10829 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10830 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10831 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10832 break;
10833 default:
323e0a4a 10834 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10835 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10836 break;
10837 }
10838 }
10839
10840 switch (TYPE_CODE (type))
10841 {
10842 case TYPE_CODE_FUNC:
10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10844 {
10845 struct type *rtype = TYPE_TARGET_TYPE (type);
10846
10847 if (TYPE_GNU_IFUNC (type))
10848 return allocate_value (TYPE_TARGET_TYPE (rtype));
10849 return allocate_value (rtype);
10850 }
4c4b4cd2 10851 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10852 case TYPE_CODE_INTERNAL_FUNCTION:
10853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10854 /* We don't know anything about what the internal
10855 function might return, but we have to return
10856 something. */
10857 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10858 not_lval);
10859 else
10860 return call_internal_function (exp->gdbarch, exp->language_defn,
10861 argvec[0], nargs, argvec + 1);
10862
4c4b4cd2
PH
10863 case TYPE_CODE_STRUCT:
10864 {
10865 int arity;
10866
4c4b4cd2
PH
10867 arity = ada_array_arity (type);
10868 type = ada_array_element_type (type, nargs);
10869 if (type == NULL)
323e0a4a 10870 error (_("cannot subscript or call a record"));
4c4b4cd2 10871 if (arity != nargs)
323e0a4a 10872 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10874 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10875 return
10876 unwrap_value (ada_value_subscript
10877 (argvec[0], nargs, argvec + 1));
10878 }
10879 case TYPE_CODE_ARRAY:
10880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 {
10882 type = ada_array_element_type (type, nargs);
10883 if (type == NULL)
323e0a4a 10884 error (_("element type of array unknown"));
4c4b4cd2 10885 else
0a07e705 10886 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10887 }
10888 return
10889 unwrap_value (ada_value_subscript
10890 (ada_coerce_to_simple_array (argvec[0]),
10891 nargs, argvec + 1));
10892 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10894 {
deede10c 10895 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10896 type = ada_array_element_type (type, nargs);
10897 if (type == NULL)
323e0a4a 10898 error (_("element type of array unknown"));
4c4b4cd2 10899 else
0a07e705 10900 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10901 }
10902 return
deede10c
JB
10903 unwrap_value (ada_value_ptr_subscript (argvec[0],
10904 nargs, argvec + 1));
4c4b4cd2
PH
10905
10906 default:
e1d5a0d2
PH
10907 error (_("Attempt to index or call something other than an "
10908 "array or function"));
4c4b4cd2
PH
10909 }
10910
10911 case TERNOP_SLICE:
10912 {
10913 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 struct value *low_bound_val =
10915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10916 struct value *high_bound_val =
10917 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 LONGEST low_bound;
10919 LONGEST high_bound;
5b4ee69b 10920
994b9211
AC
10921 low_bound_val = coerce_ref (low_bound_val);
10922 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10923 low_bound = value_as_long (low_bound_val);
10924 high_bound = value_as_long (high_bound_val);
963a6417 10925
4c4b4cd2
PH
10926 if (noside == EVAL_SKIP)
10927 goto nosideret;
10928
4c4b4cd2
PH
10929 /* If this is a reference to an aligner type, then remove all
10930 the aligners. */
df407dfe
AC
10931 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10932 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10933 TYPE_TARGET_TYPE (value_type (array)) =
10934 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10935
ad82864c 10936 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10937 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10938
10939 /* If this is a reference to an array or an array lvalue,
10940 convert to a pointer. */
df407dfe
AC
10941 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10942 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10943 && VALUE_LVAL (array) == lval_memory))
10944 array = value_addr (array);
10945
1265e4aa 10946 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10947 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10948 (value_type (array))))
0b5d8877 10949 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10950
10951 array = ada_coerce_to_simple_array_ptr (array);
10952
714e53ab
PH
10953 /* If we have more than one level of pointer indirection,
10954 dereference the value until we get only one level. */
df407dfe
AC
10955 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10956 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10957 == TYPE_CODE_PTR))
10958 array = value_ind (array);
10959
10960 /* Make sure we really do have an array type before going further,
10961 to avoid a SEGV when trying to get the index type or the target
10962 type later down the road if the debug info generated by
10963 the compiler is incorrect or incomplete. */
df407dfe 10964 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10965 error (_("cannot take slice of non-array"));
714e53ab 10966
828292f2
JB
10967 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10968 == TYPE_CODE_PTR)
4c4b4cd2 10969 {
828292f2
JB
10970 struct type *type0 = ada_check_typedef (value_type (array));
10971
0b5d8877 10972 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10973 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10974 else
10975 {
10976 struct type *arr_type0 =
828292f2 10977 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10978
f5938064
JG
10979 return ada_value_slice_from_ptr (array, arr_type0,
10980 longest_to_int (low_bound),
10981 longest_to_int (high_bound));
4c4b4cd2
PH
10982 }
10983 }
10984 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 return array;
10986 else if (high_bound < low_bound)
df407dfe 10987 return empty_array (value_type (array), low_bound);
4c4b4cd2 10988 else
529cad9c
PH
10989 return ada_value_slice (array, longest_to_int (low_bound),
10990 longest_to_int (high_bound));
4c4b4cd2 10991 }
14f9c5c9 10992
4c4b4cd2
PH
10993 case UNOP_IN_RANGE:
10994 (*pos) += 2;
10995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10996 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10997
14f9c5c9 10998 if (noside == EVAL_SKIP)
4c4b4cd2 10999 goto nosideret;
14f9c5c9 11000
4c4b4cd2
PH
11001 switch (TYPE_CODE (type))
11002 {
11003 default:
e1d5a0d2
PH
11004 lim_warning (_("Membership test incompletely implemented; "
11005 "always returns true"));
fbb06eb1
UW
11006 type = language_bool_type (exp->language_defn, exp->gdbarch);
11007 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11008
11009 case TYPE_CODE_RANGE:
030b4912
UW
11010 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11011 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 return
11016 value_from_longest (type,
4c4b4cd2
PH
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021 }
11022
11023 case BINOP_IN_BOUNDS:
14f9c5c9 11024 (*pos) += 2;
4c4b4cd2
PH
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11027
4c4b4cd2
PH
11028 if (noside == EVAL_SKIP)
11029 goto nosideret;
14f9c5c9 11030
4c4b4cd2 11031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11032 {
11033 type = language_bool_type (exp->language_defn, exp->gdbarch);
11034 return value_zero (type, not_lval);
11035 }
14f9c5c9 11036
4c4b4cd2 11037 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11038
1eea4ebd
UW
11039 type = ada_index_type (value_type (arg2), tem, "range");
11040 if (!type)
11041 type = value_type (arg1);
14f9c5c9 11042
1eea4ebd
UW
11043 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11044 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11045
f44316fa
UW
11046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11047 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11048 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11049 return
fbb06eb1 11050 value_from_longest (type,
4c4b4cd2
PH
11051 (value_less (arg1, arg3)
11052 || value_equal (arg1, arg3))
11053 && (value_less (arg2, arg1)
11054 || value_equal (arg2, arg1)));
11055
11056 case TERNOP_IN_RANGE:
11057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11059 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063
f44316fa
UW
11064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11066 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11067 return
fbb06eb1 11068 value_from_longest (type,
4c4b4cd2
PH
11069 (value_less (arg1, arg3)
11070 || value_equal (arg1, arg3))
11071 && (value_less (arg2, arg1)
11072 || value_equal (arg2, arg1)));
11073
11074 case OP_ATR_FIRST:
11075 case OP_ATR_LAST:
11076 case OP_ATR_LENGTH:
11077 {
76a01679 11078 struct type *type_arg;
5b4ee69b 11079
76a01679
JB
11080 if (exp->elts[*pos].opcode == OP_TYPE)
11081 {
11082 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11083 arg1 = NULL;
5bc23cb3 11084 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11085 }
11086 else
11087 {
11088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11089 type_arg = NULL;
11090 }
11091
11092 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11093 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11094 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11095 *pos += 4;
11096
11097 if (noside == EVAL_SKIP)
11098 goto nosideret;
11099
11100 if (type_arg == NULL)
11101 {
11102 arg1 = ada_coerce_ref (arg1);
11103
ad82864c 11104 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11105 arg1 = ada_coerce_to_simple_array (arg1);
11106
aa4fb036 11107 if (op == OP_ATR_LENGTH)
1eea4ebd 11108 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11109 else
11110 {
11111 type = ada_index_type (value_type (arg1), tem,
11112 ada_attribute_name (op));
11113 if (type == NULL)
11114 type = builtin_type (exp->gdbarch)->builtin_int;
11115 }
76a01679
JB
11116
11117 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11118 return allocate_value (type);
76a01679
JB
11119
11120 switch (op)
11121 {
11122 default: /* Should never happen. */
323e0a4a 11123 error (_("unexpected attribute encountered"));
76a01679 11124 case OP_ATR_FIRST:
1eea4ebd
UW
11125 return value_from_longest
11126 (type, ada_array_bound (arg1, tem, 0));
76a01679 11127 case OP_ATR_LAST:
1eea4ebd
UW
11128 return value_from_longest
11129 (type, ada_array_bound (arg1, tem, 1));
76a01679 11130 case OP_ATR_LENGTH:
1eea4ebd
UW
11131 return value_from_longest
11132 (type, ada_array_length (arg1, tem));
76a01679
JB
11133 }
11134 }
11135 else if (discrete_type_p (type_arg))
11136 {
11137 struct type *range_type;
0d5cff50 11138 const char *name = ada_type_name (type_arg);
5b4ee69b 11139
76a01679
JB
11140 range_type = NULL;
11141 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11142 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11143 if (range_type == NULL)
11144 range_type = type_arg;
11145 switch (op)
11146 {
11147 default:
323e0a4a 11148 error (_("unexpected attribute encountered"));
76a01679 11149 case OP_ATR_FIRST:
690cc4eb 11150 return value_from_longest
43bbcdc2 11151 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11152 case OP_ATR_LAST:
690cc4eb 11153 return value_from_longest
43bbcdc2 11154 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11155 case OP_ATR_LENGTH:
323e0a4a 11156 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11157 }
11158 }
11159 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11160 error (_("unimplemented type attribute"));
76a01679
JB
11161 else
11162 {
11163 LONGEST low, high;
11164
ad82864c
JB
11165 if (ada_is_constrained_packed_array_type (type_arg))
11166 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11167
aa4fb036 11168 if (op == OP_ATR_LENGTH)
1eea4ebd 11169 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11170 else
11171 {
11172 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11173 if (type == NULL)
11174 type = builtin_type (exp->gdbarch)->builtin_int;
11175 }
1eea4ebd 11176
76a01679
JB
11177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11178 return allocate_value (type);
11179
11180 switch (op)
11181 {
11182 default:
323e0a4a 11183 error (_("unexpected attribute encountered"));
76a01679 11184 case OP_ATR_FIRST:
1eea4ebd 11185 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11186 return value_from_longest (type, low);
11187 case OP_ATR_LAST:
1eea4ebd 11188 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11189 return value_from_longest (type, high);
11190 case OP_ATR_LENGTH:
1eea4ebd
UW
11191 low = ada_array_bound_from_type (type_arg, tem, 0);
11192 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11193 return value_from_longest (type, high - low + 1);
11194 }
11195 }
14f9c5c9
AS
11196 }
11197
4c4b4cd2
PH
11198 case OP_ATR_TAG:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 if (noside == EVAL_SKIP)
76a01679 11201 goto nosideret;
4c4b4cd2
PH
11202
11203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11204 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11205
11206 return ada_value_tag (arg1);
11207
11208 case OP_ATR_MIN:
11209 case OP_ATR_MAX:
11210 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11211 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11212 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 if (noside == EVAL_SKIP)
76a01679 11214 goto nosideret;
d2e4a39e 11215 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11216 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11217 else
f44316fa
UW
11218 {
11219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11220 return value_binop (arg1, arg2,
11221 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11222 }
14f9c5c9 11223
4c4b4cd2
PH
11224 case OP_ATR_MODULUS:
11225 {
31dedfee 11226 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11227
5b4ee69b 11228 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
4c4b4cd2 11231
76a01679 11232 if (!ada_is_modular_type (type_arg))
323e0a4a 11233 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11234
76a01679
JB
11235 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11236 ada_modulus (type_arg));
4c4b4cd2
PH
11237 }
11238
11239
11240 case OP_ATR_POS:
11241 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
76a01679 11244 goto nosideret;
3cb382c9
UW
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11247 return value_zero (type, not_lval);
14f9c5c9 11248 else
3cb382c9 11249 return value_pos_atr (type, arg1);
14f9c5c9 11250
4c4b4cd2
PH
11251 case OP_ATR_SIZE:
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11253 type = value_type (arg1);
11254
11255 /* If the argument is a reference, then dereference its type, since
11256 the user is really asking for the size of the actual object,
11257 not the size of the pointer. */
11258 if (TYPE_CODE (type) == TYPE_CODE_REF)
11259 type = TYPE_TARGET_TYPE (type);
11260
4c4b4cd2 11261 if (noside == EVAL_SKIP)
76a01679 11262 goto nosideret;
4c4b4cd2 11263 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11264 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11265 else
22601c15 11266 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11267 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11268
11269 case OP_ATR_VAL:
11270 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11272 type = exp->elts[pc + 2].type;
14f9c5c9 11273 if (noside == EVAL_SKIP)
76a01679 11274 goto nosideret;
4c4b4cd2 11275 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11276 return value_zero (type, not_lval);
4c4b4cd2 11277 else
76a01679 11278 return value_val_atr (type, arg1);
4c4b4cd2
PH
11279
11280 case BINOP_EXP:
11281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11282 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11284 goto nosideret;
11285 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11286 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11287 else
f44316fa
UW
11288 {
11289 /* For integer exponentiation operations,
11290 only promote the first argument. */
11291 if (is_integral_type (value_type (arg2)))
11292 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11293 else
11294 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11295
11296 return value_binop (arg1, arg2, op);
11297 }
4c4b4cd2
PH
11298
11299 case UNOP_PLUS:
11300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11301 if (noside == EVAL_SKIP)
11302 goto nosideret;
11303 else
11304 return arg1;
11305
11306 case UNOP_ABS:
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 if (noside == EVAL_SKIP)
11309 goto nosideret;
f44316fa 11310 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11311 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11312 return value_neg (arg1);
14f9c5c9 11313 else
4c4b4cd2 11314 return arg1;
14f9c5c9
AS
11315
11316 case UNOP_IND:
5ec18f2b 11317 preeval_pos = *pos;
6b0d7253 11318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11319 if (noside == EVAL_SKIP)
4c4b4cd2 11320 goto nosideret;
df407dfe 11321 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11323 {
11324 if (ada_is_array_descriptor_type (type))
11325 /* GDB allows dereferencing GNAT array descriptors. */
11326 {
11327 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11328
4c4b4cd2 11329 if (arrType == NULL)
323e0a4a 11330 error (_("Attempt to dereference null array pointer."));
00a4c844 11331 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11332 }
11333 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11334 || TYPE_CODE (type) == TYPE_CODE_REF
11335 /* In C you can dereference an array to get the 1st elt. */
11336 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11337 {
5ec18f2b
JG
11338 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11339 only be determined by inspecting the object's tag.
11340 This means that we need to evaluate completely the
11341 expression in order to get its type. */
11342
023db19c
JB
11343 if ((TYPE_CODE (type) == TYPE_CODE_REF
11344 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11345 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11346 {
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11348 EVAL_NORMAL);
11349 type = value_type (ada_value_ind (arg1));
11350 }
11351 else
11352 {
11353 type = to_static_fixed_type
11354 (ada_aligned_type
11355 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11356 }
c1b5a1a6 11357 ada_ensure_varsize_limit (type);
714e53ab
PH
11358 return value_zero (type, lval_memory);
11359 }
4c4b4cd2 11360 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11361 {
11362 /* GDB allows dereferencing an int. */
11363 if (expect_type == NULL)
11364 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11365 lval_memory);
11366 else
11367 {
11368 expect_type =
11369 to_static_fixed_type (ada_aligned_type (expect_type));
11370 return value_zero (expect_type, lval_memory);
11371 }
11372 }
4c4b4cd2 11373 else
323e0a4a 11374 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11375 }
0963b4bd 11376 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11377 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11378
96967637
JB
11379 if (TYPE_CODE (type) == TYPE_CODE_INT)
11380 /* GDB allows dereferencing an int. If we were given
11381 the expect_type, then use that as the target type.
11382 Otherwise, assume that the target type is an int. */
11383 {
11384 if (expect_type != NULL)
11385 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11386 arg1));
11387 else
11388 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11389 (CORE_ADDR) value_as_address (arg1));
11390 }
6b0d7253 11391
4c4b4cd2
PH
11392 if (ada_is_array_descriptor_type (type))
11393 /* GDB allows dereferencing GNAT array descriptors. */
11394 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11395 else
4c4b4cd2 11396 return ada_value_ind (arg1);
14f9c5c9
AS
11397
11398 case STRUCTOP_STRUCT:
11399 tem = longest_to_int (exp->elts[pc + 1].longconst);
11400 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11401 preeval_pos = *pos;
14f9c5c9
AS
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
4c4b4cd2 11404 goto nosideret;
14f9c5c9 11405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11406 {
df407dfe 11407 struct type *type1 = value_type (arg1);
5b4ee69b 11408
76a01679
JB
11409 if (ada_is_tagged_type (type1, 1))
11410 {
11411 type = ada_lookup_struct_elt_type (type1,
11412 &exp->elts[pc + 2].string,
11413 1, 1, NULL);
5ec18f2b
JG
11414
11415 /* If the field is not found, check if it exists in the
11416 extension of this object's type. This means that we
11417 need to evaluate completely the expression. */
11418
76a01679 11419 if (type == NULL)
5ec18f2b
JG
11420 {
11421 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11422 EVAL_NORMAL);
11423 arg1 = ada_value_struct_elt (arg1,
11424 &exp->elts[pc + 2].string,
11425 0);
11426 arg1 = unwrap_value (arg1);
11427 type = value_type (ada_to_fixed_value (arg1));
11428 }
76a01679
JB
11429 }
11430 else
11431 type =
11432 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11433 0, NULL);
11434
11435 return value_zero (ada_aligned_type (type), lval_memory);
11436 }
14f9c5c9 11437 else
a579cd9a
MW
11438 {
11439 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11440 arg1 = unwrap_value (arg1);
11441 return ada_to_fixed_value (arg1);
11442 }
284614f0 11443
14f9c5c9 11444 case OP_TYPE:
4c4b4cd2
PH
11445 /* The value is not supposed to be used. This is here to make it
11446 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11447 (*pos) += 2;
11448 if (noside == EVAL_SKIP)
4c4b4cd2 11449 goto nosideret;
14f9c5c9 11450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11451 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11452 else
323e0a4a 11453 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11454
11455 case OP_AGGREGATE:
11456 case OP_CHOICES:
11457 case OP_OTHERS:
11458 case OP_DISCRETE_RANGE:
11459 case OP_POSITIONAL:
11460 case OP_NAME:
11461 if (noside == EVAL_NORMAL)
11462 switch (op)
11463 {
11464 case OP_NAME:
11465 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11466 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11467 case OP_AGGREGATE:
11468 error (_("Aggregates only allowed on the right of an assignment"));
11469 default:
0963b4bd
MS
11470 internal_error (__FILE__, __LINE__,
11471 _("aggregate apparently mangled"));
52ce6436
PH
11472 }
11473
11474 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11475 *pos += oplen - 1;
11476 for (tem = 0; tem < nargs; tem += 1)
11477 ada_evaluate_subexp (NULL, exp, pos, noside);
11478 goto nosideret;
14f9c5c9
AS
11479 }
11480
11481nosideret:
22601c15 11482 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11483}
14f9c5c9 11484\f
d2e4a39e 11485
4c4b4cd2 11486 /* Fixed point */
14f9c5c9
AS
11487
11488/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11489 type name that encodes the 'small and 'delta information.
4c4b4cd2 11490 Otherwise, return NULL. */
14f9c5c9 11491
d2e4a39e 11492static const char *
ebf56fd3 11493fixed_type_info (struct type *type)
14f9c5c9 11494{
d2e4a39e 11495 const char *name = ada_type_name (type);
14f9c5c9
AS
11496 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11497
d2e4a39e
AS
11498 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11499 {
14f9c5c9 11500 const char *tail = strstr (name, "___XF_");
5b4ee69b 11501
14f9c5c9 11502 if (tail == NULL)
4c4b4cd2 11503 return NULL;
d2e4a39e 11504 else
4c4b4cd2 11505 return tail + 5;
14f9c5c9
AS
11506 }
11507 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11508 return fixed_type_info (TYPE_TARGET_TYPE (type));
11509 else
11510 return NULL;
11511}
11512
4c4b4cd2 11513/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11514
11515int
ebf56fd3 11516ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11517{
11518 return fixed_type_info (type) != NULL;
11519}
11520
4c4b4cd2
PH
11521/* Return non-zero iff TYPE represents a System.Address type. */
11522
11523int
11524ada_is_system_address_type (struct type *type)
11525{
11526 return (TYPE_NAME (type)
11527 && strcmp (TYPE_NAME (type), "system__address") == 0);
11528}
11529
14f9c5c9
AS
11530/* Assuming that TYPE is the representation of an Ada fixed-point
11531 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11532 delta cannot be determined. */
14f9c5c9
AS
11533
11534DOUBLEST
ebf56fd3 11535ada_delta (struct type *type)
14f9c5c9
AS
11536{
11537 const char *encoding = fixed_type_info (type);
facc390f 11538 DOUBLEST num, den;
14f9c5c9 11539
facc390f
JB
11540 /* Strictly speaking, num and den are encoded as integer. However,
11541 they may not fit into a long, and they will have to be converted
11542 to DOUBLEST anyway. So scan them as DOUBLEST. */
11543 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11544 &num, &den) < 2)
14f9c5c9 11545 return -1.0;
d2e4a39e 11546 else
facc390f 11547 return num / den;
14f9c5c9
AS
11548}
11549
11550/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11551 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11552
11553static DOUBLEST
ebf56fd3 11554scaling_factor (struct type *type)
14f9c5c9
AS
11555{
11556 const char *encoding = fixed_type_info (type);
facc390f 11557 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11558 int n;
d2e4a39e 11559
facc390f
JB
11560 /* Strictly speaking, num's and den's are encoded as integer. However,
11561 they may not fit into a long, and they will have to be converted
11562 to DOUBLEST anyway. So scan them as DOUBLEST. */
11563 n = sscanf (encoding,
11564 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11565 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11566 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11567
11568 if (n < 2)
11569 return 1.0;
11570 else if (n == 4)
facc390f 11571 return num1 / den1;
d2e4a39e 11572 else
facc390f 11573 return num0 / den0;
14f9c5c9
AS
11574}
11575
11576
11577/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11578 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11579
11580DOUBLEST
ebf56fd3 11581ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11582{
d2e4a39e 11583 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11584}
11585
4c4b4cd2
PH
11586/* The representation of a fixed-point value of type TYPE
11587 corresponding to the value X. */
14f9c5c9
AS
11588
11589LONGEST
ebf56fd3 11590ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11591{
11592 return (LONGEST) (x / scaling_factor (type) + 0.5);
11593}
11594
14f9c5c9 11595\f
d2e4a39e 11596
4c4b4cd2 11597 /* Range types */
14f9c5c9
AS
11598
11599/* Scan STR beginning at position K for a discriminant name, and
11600 return the value of that discriminant field of DVAL in *PX. If
11601 PNEW_K is not null, put the position of the character beyond the
11602 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11603 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11604
11605static int
108d56a4 11606scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11607 int *pnew_k)
14f9c5c9
AS
11608{
11609 static char *bound_buffer = NULL;
11610 static size_t bound_buffer_len = 0;
5da1a4d3 11611 const char *pstart, *pend, *bound;
d2e4a39e 11612 struct value *bound_val;
14f9c5c9
AS
11613
11614 if (dval == NULL || str == NULL || str[k] == '\0')
11615 return 0;
11616
5da1a4d3
SM
11617 pstart = str + k;
11618 pend = strstr (pstart, "__");
14f9c5c9
AS
11619 if (pend == NULL)
11620 {
5da1a4d3 11621 bound = pstart;
14f9c5c9
AS
11622 k += strlen (bound);
11623 }
d2e4a39e 11624 else
14f9c5c9 11625 {
5da1a4d3
SM
11626 int len = pend - pstart;
11627
11628 /* Strip __ and beyond. */
11629 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11630 strncpy (bound_buffer, pstart, len);
11631 bound_buffer[len] = '\0';
11632
14f9c5c9 11633 bound = bound_buffer;
d2e4a39e 11634 k = pend - str;
14f9c5c9 11635 }
d2e4a39e 11636
df407dfe 11637 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11638 if (bound_val == NULL)
11639 return 0;
11640
11641 *px = value_as_long (bound_val);
11642 if (pnew_k != NULL)
11643 *pnew_k = k;
11644 return 1;
11645}
11646
11647/* Value of variable named NAME in the current environment. If
11648 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11649 otherwise causes an error with message ERR_MSG. */
11650
d2e4a39e
AS
11651static struct value *
11652get_var_value (char *name, char *err_msg)
14f9c5c9 11653{
d12307c1 11654 struct block_symbol *syms;
14f9c5c9
AS
11655 int nsyms;
11656
4c4b4cd2 11657 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11658 &syms);
14f9c5c9
AS
11659
11660 if (nsyms != 1)
11661 {
11662 if (err_msg == NULL)
4c4b4cd2 11663 return 0;
14f9c5c9 11664 else
8a3fe4f8 11665 error (("%s"), err_msg);
14f9c5c9
AS
11666 }
11667
d12307c1 11668 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11669}
d2e4a39e 11670
14f9c5c9 11671/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11672 no such variable found, returns 0, and sets *FLAG to 0. If
11673 successful, sets *FLAG to 1. */
11674
14f9c5c9 11675LONGEST
4c4b4cd2 11676get_int_var_value (char *name, int *flag)
14f9c5c9 11677{
4c4b4cd2 11678 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11679
14f9c5c9
AS
11680 if (var_val == 0)
11681 {
11682 if (flag != NULL)
4c4b4cd2 11683 *flag = 0;
14f9c5c9
AS
11684 return 0;
11685 }
11686 else
11687 {
11688 if (flag != NULL)
4c4b4cd2 11689 *flag = 1;
14f9c5c9
AS
11690 return value_as_long (var_val);
11691 }
11692}
d2e4a39e 11693
14f9c5c9
AS
11694
11695/* Return a range type whose base type is that of the range type named
11696 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11697 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11698 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11699 corresponding range type from debug information; fall back to using it
11700 if symbol lookup fails. If a new type must be created, allocate it
11701 like ORIG_TYPE was. The bounds information, in general, is encoded
11702 in NAME, the base type given in the named range type. */
14f9c5c9 11703
d2e4a39e 11704static struct type *
28c85d6c 11705to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11706{
0d5cff50 11707 const char *name;
14f9c5c9 11708 struct type *base_type;
108d56a4 11709 const char *subtype_info;
14f9c5c9 11710
28c85d6c
JB
11711 gdb_assert (raw_type != NULL);
11712 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11713
1ce677a4 11714 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11715 base_type = TYPE_TARGET_TYPE (raw_type);
11716 else
11717 base_type = raw_type;
11718
28c85d6c 11719 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11720 subtype_info = strstr (name, "___XD");
11721 if (subtype_info == NULL)
690cc4eb 11722 {
43bbcdc2
PH
11723 LONGEST L = ada_discrete_type_low_bound (raw_type);
11724 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11725
690cc4eb
PH
11726 if (L < INT_MIN || U > INT_MAX)
11727 return raw_type;
11728 else
0c9c3474
SA
11729 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11730 L, U);
690cc4eb 11731 }
14f9c5c9
AS
11732 else
11733 {
11734 static char *name_buf = NULL;
11735 static size_t name_len = 0;
11736 int prefix_len = subtype_info - name;
11737 LONGEST L, U;
11738 struct type *type;
108d56a4 11739 const char *bounds_str;
14f9c5c9
AS
11740 int n;
11741
11742 GROW_VECT (name_buf, name_len, prefix_len + 5);
11743 strncpy (name_buf, name, prefix_len);
11744 name_buf[prefix_len] = '\0';
11745
11746 subtype_info += 5;
11747 bounds_str = strchr (subtype_info, '_');
11748 n = 1;
11749
d2e4a39e 11750 if (*subtype_info == 'L')
4c4b4cd2
PH
11751 {
11752 if (!ada_scan_number (bounds_str, n, &L, &n)
11753 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11754 return raw_type;
11755 if (bounds_str[n] == '_')
11756 n += 2;
0963b4bd 11757 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11758 n += 1;
11759 subtype_info += 1;
11760 }
d2e4a39e 11761 else
4c4b4cd2
PH
11762 {
11763 int ok;
5b4ee69b 11764
4c4b4cd2
PH
11765 strcpy (name_buf + prefix_len, "___L");
11766 L = get_int_var_value (name_buf, &ok);
11767 if (!ok)
11768 {
323e0a4a 11769 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11770 L = 1;
11771 }
11772 }
14f9c5c9 11773
d2e4a39e 11774 if (*subtype_info == 'U')
4c4b4cd2
PH
11775 {
11776 if (!ada_scan_number (bounds_str, n, &U, &n)
11777 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11778 return raw_type;
11779 }
d2e4a39e 11780 else
4c4b4cd2
PH
11781 {
11782 int ok;
5b4ee69b 11783
4c4b4cd2
PH
11784 strcpy (name_buf + prefix_len, "___U");
11785 U = get_int_var_value (name_buf, &ok);
11786 if (!ok)
11787 {
323e0a4a 11788 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11789 U = L;
11790 }
11791 }
14f9c5c9 11792
0c9c3474
SA
11793 type = create_static_range_type (alloc_type_copy (raw_type),
11794 base_type, L, U);
d2e4a39e 11795 TYPE_NAME (type) = name;
14f9c5c9
AS
11796 return type;
11797 }
11798}
11799
4c4b4cd2
PH
11800/* True iff NAME is the name of a range type. */
11801
14f9c5c9 11802int
d2e4a39e 11803ada_is_range_type_name (const char *name)
14f9c5c9
AS
11804{
11805 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11806}
14f9c5c9 11807\f
d2e4a39e 11808
4c4b4cd2
PH
11809 /* Modular types */
11810
11811/* True iff TYPE is an Ada modular type. */
14f9c5c9 11812
14f9c5c9 11813int
d2e4a39e 11814ada_is_modular_type (struct type *type)
14f9c5c9 11815{
18af8284 11816 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11817
11818 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11819 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11820 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11821}
11822
4c4b4cd2
PH
11823/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11824
61ee279c 11825ULONGEST
0056e4d5 11826ada_modulus (struct type *type)
14f9c5c9 11827{
43bbcdc2 11828 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11829}
d2e4a39e 11830\f
f7f9143b
JB
11831
11832/* Ada exception catchpoint support:
11833 ---------------------------------
11834
11835 We support 3 kinds of exception catchpoints:
11836 . catchpoints on Ada exceptions
11837 . catchpoints on unhandled Ada exceptions
11838 . catchpoints on failed assertions
11839
11840 Exceptions raised during failed assertions, or unhandled exceptions
11841 could perfectly be caught with the general catchpoint on Ada exceptions.
11842 However, we can easily differentiate these two special cases, and having
11843 the option to distinguish these two cases from the rest can be useful
11844 to zero-in on certain situations.
11845
11846 Exception catchpoints are a specialized form of breakpoint,
11847 since they rely on inserting breakpoints inside known routines
11848 of the GNAT runtime. The implementation therefore uses a standard
11849 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11850 of breakpoint_ops.
11851
0259addd
JB
11852 Support in the runtime for exception catchpoints have been changed
11853 a few times already, and these changes affect the implementation
11854 of these catchpoints. In order to be able to support several
11855 variants of the runtime, we use a sniffer that will determine
28010a5d 11856 the runtime variant used by the program being debugged. */
f7f9143b 11857
82eacd52
JB
11858/* Ada's standard exceptions.
11859
11860 The Ada 83 standard also defined Numeric_Error. But there so many
11861 situations where it was unclear from the Ada 83 Reference Manual
11862 (RM) whether Constraint_Error or Numeric_Error should be raised,
11863 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11864 Interpretation saying that anytime the RM says that Numeric_Error
11865 should be raised, the implementation may raise Constraint_Error.
11866 Ada 95 went one step further and pretty much removed Numeric_Error
11867 from the list of standard exceptions (it made it a renaming of
11868 Constraint_Error, to help preserve compatibility when compiling
11869 an Ada83 compiler). As such, we do not include Numeric_Error from
11870 this list of standard exceptions. */
3d0b0fa3
JB
11871
11872static char *standard_exc[] = {
11873 "constraint_error",
11874 "program_error",
11875 "storage_error",
11876 "tasking_error"
11877};
11878
0259addd
JB
11879typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11880
11881/* A structure that describes how to support exception catchpoints
11882 for a given executable. */
11883
11884struct exception_support_info
11885{
11886 /* The name of the symbol to break on in order to insert
11887 a catchpoint on exceptions. */
11888 const char *catch_exception_sym;
11889
11890 /* The name of the symbol to break on in order to insert
11891 a catchpoint on unhandled exceptions. */
11892 const char *catch_exception_unhandled_sym;
11893
11894 /* The name of the symbol to break on in order to insert
11895 a catchpoint on failed assertions. */
11896 const char *catch_assert_sym;
11897
11898 /* Assuming that the inferior just triggered an unhandled exception
11899 catchpoint, this function is responsible for returning the address
11900 in inferior memory where the name of that exception is stored.
11901 Return zero if the address could not be computed. */
11902 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11903};
11904
11905static CORE_ADDR ada_unhandled_exception_name_addr (void);
11906static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11907
11908/* The following exception support info structure describes how to
11909 implement exception catchpoints with the latest version of the
11910 Ada runtime (as of 2007-03-06). */
11911
11912static const struct exception_support_info default_exception_support_info =
11913{
11914 "__gnat_debug_raise_exception", /* catch_exception_sym */
11915 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11916 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11917 ada_unhandled_exception_name_addr
11918};
11919
11920/* The following exception support info structure describes how to
11921 implement exception catchpoints with a slightly older version
11922 of the Ada runtime. */
11923
11924static const struct exception_support_info exception_support_info_fallback =
11925{
11926 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11927 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11928 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11929 ada_unhandled_exception_name_addr_from_raise
11930};
11931
f17011e0
JB
11932/* Return nonzero if we can detect the exception support routines
11933 described in EINFO.
11934
11935 This function errors out if an abnormal situation is detected
11936 (for instance, if we find the exception support routines, but
11937 that support is found to be incomplete). */
11938
11939static int
11940ada_has_this_exception_support (const struct exception_support_info *einfo)
11941{
11942 struct symbol *sym;
11943
11944 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11945 that should be compiled with debugging information. As a result, we
11946 expect to find that symbol in the symtabs. */
11947
11948 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11949 if (sym == NULL)
a6af7abe
JB
11950 {
11951 /* Perhaps we did not find our symbol because the Ada runtime was
11952 compiled without debugging info, or simply stripped of it.
11953 It happens on some GNU/Linux distributions for instance, where
11954 users have to install a separate debug package in order to get
11955 the runtime's debugging info. In that situation, let the user
11956 know why we cannot insert an Ada exception catchpoint.
11957
11958 Note: Just for the purpose of inserting our Ada exception
11959 catchpoint, we could rely purely on the associated minimal symbol.
11960 But we would be operating in degraded mode anyway, since we are
11961 still lacking the debugging info needed later on to extract
11962 the name of the exception being raised (this name is printed in
11963 the catchpoint message, and is also used when trying to catch
11964 a specific exception). We do not handle this case for now. */
3b7344d5 11965 struct bound_minimal_symbol msym
1c8e84b0
JB
11966 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11967
3b7344d5 11968 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11969 error (_("Your Ada runtime appears to be missing some debugging "
11970 "information.\nCannot insert Ada exception catchpoint "
11971 "in this configuration."));
11972
11973 return 0;
11974 }
f17011e0
JB
11975
11976 /* Make sure that the symbol we found corresponds to a function. */
11977
11978 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11979 error (_("Symbol \"%s\" is not a function (class = %d)"),
11980 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11981
11982 return 1;
11983}
11984
0259addd
JB
11985/* Inspect the Ada runtime and determine which exception info structure
11986 should be used to provide support for exception catchpoints.
11987
3eecfa55
JB
11988 This function will always set the per-inferior exception_info,
11989 or raise an error. */
0259addd
JB
11990
11991static void
11992ada_exception_support_info_sniffer (void)
11993{
3eecfa55 11994 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11995
11996 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11997 if (data->exception_info != NULL)
0259addd
JB
11998 return;
11999
12000 /* Check the latest (default) exception support info. */
f17011e0 12001 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12002 {
3eecfa55 12003 data->exception_info = &default_exception_support_info;
0259addd
JB
12004 return;
12005 }
12006
12007 /* Try our fallback exception suport info. */
f17011e0 12008 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12009 {
3eecfa55 12010 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12011 return;
12012 }
12013
12014 /* Sometimes, it is normal for us to not be able to find the routine
12015 we are looking for. This happens when the program is linked with
12016 the shared version of the GNAT runtime, and the program has not been
12017 started yet. Inform the user of these two possible causes if
12018 applicable. */
12019
ccefe4c4 12020 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12021 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12022
12023 /* If the symbol does not exist, then check that the program is
12024 already started, to make sure that shared libraries have been
12025 loaded. If it is not started, this may mean that the symbol is
12026 in a shared library. */
12027
12028 if (ptid_get_pid (inferior_ptid) == 0)
12029 error (_("Unable to insert catchpoint. Try to start the program first."));
12030
12031 /* At this point, we know that we are debugging an Ada program and
12032 that the inferior has been started, but we still are not able to
0963b4bd 12033 find the run-time symbols. That can mean that we are in
0259addd
JB
12034 configurable run time mode, or that a-except as been optimized
12035 out by the linker... In any case, at this point it is not worth
12036 supporting this feature. */
12037
7dda8cff 12038 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12039}
12040
f7f9143b
JB
12041/* True iff FRAME is very likely to be that of a function that is
12042 part of the runtime system. This is all very heuristic, but is
12043 intended to be used as advice as to what frames are uninteresting
12044 to most users. */
12045
12046static int
12047is_known_support_routine (struct frame_info *frame)
12048{
4ed6b5be 12049 struct symtab_and_line sal;
55b87a52 12050 char *func_name;
692465f1 12051 enum language func_lang;
f7f9143b 12052 int i;
f35a17b5 12053 const char *fullname;
f7f9143b 12054
4ed6b5be
JB
12055 /* If this code does not have any debugging information (no symtab),
12056 This cannot be any user code. */
f7f9143b 12057
4ed6b5be 12058 find_frame_sal (frame, &sal);
f7f9143b
JB
12059 if (sal.symtab == NULL)
12060 return 1;
12061
4ed6b5be
JB
12062 /* If there is a symtab, but the associated source file cannot be
12063 located, then assume this is not user code: Selecting a frame
12064 for which we cannot display the code would not be very helpful
12065 for the user. This should also take care of case such as VxWorks
12066 where the kernel has some debugging info provided for a few units. */
f7f9143b 12067
f35a17b5
JK
12068 fullname = symtab_to_fullname (sal.symtab);
12069 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12070 return 1;
12071
4ed6b5be
JB
12072 /* Check the unit filename againt the Ada runtime file naming.
12073 We also check the name of the objfile against the name of some
12074 known system libraries that sometimes come with debugging info
12075 too. */
12076
f7f9143b
JB
12077 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12078 {
12079 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12080 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12081 return 1;
eb822aa6
DE
12082 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12083 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12084 return 1;
f7f9143b
JB
12085 }
12086
4ed6b5be 12087 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12088
e9e07ba6 12089 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12090 if (func_name == NULL)
12091 return 1;
12092
12093 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12094 {
12095 re_comp (known_auxiliary_function_name_patterns[i]);
12096 if (re_exec (func_name))
55b87a52
KS
12097 {
12098 xfree (func_name);
12099 return 1;
12100 }
f7f9143b
JB
12101 }
12102
55b87a52 12103 xfree (func_name);
f7f9143b
JB
12104 return 0;
12105}
12106
12107/* Find the first frame that contains debugging information and that is not
12108 part of the Ada run-time, starting from FI and moving upward. */
12109
0ef643c8 12110void
f7f9143b
JB
12111ada_find_printable_frame (struct frame_info *fi)
12112{
12113 for (; fi != NULL; fi = get_prev_frame (fi))
12114 {
12115 if (!is_known_support_routine (fi))
12116 {
12117 select_frame (fi);
12118 break;
12119 }
12120 }
12121
12122}
12123
12124/* Assuming that the inferior just triggered an unhandled exception
12125 catchpoint, return the address in inferior memory where the name
12126 of the exception is stored.
12127
12128 Return zero if the address could not be computed. */
12129
12130static CORE_ADDR
12131ada_unhandled_exception_name_addr (void)
0259addd
JB
12132{
12133 return parse_and_eval_address ("e.full_name");
12134}
12135
12136/* Same as ada_unhandled_exception_name_addr, except that this function
12137 should be used when the inferior uses an older version of the runtime,
12138 where the exception name needs to be extracted from a specific frame
12139 several frames up in the callstack. */
12140
12141static CORE_ADDR
12142ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12143{
12144 int frame_level;
12145 struct frame_info *fi;
3eecfa55 12146 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12147 struct cleanup *old_chain;
f7f9143b
JB
12148
12149 /* To determine the name of this exception, we need to select
12150 the frame corresponding to RAISE_SYM_NAME. This frame is
12151 at least 3 levels up, so we simply skip the first 3 frames
12152 without checking the name of their associated function. */
12153 fi = get_current_frame ();
12154 for (frame_level = 0; frame_level < 3; frame_level += 1)
12155 if (fi != NULL)
12156 fi = get_prev_frame (fi);
12157
55b87a52 12158 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12159 while (fi != NULL)
12160 {
55b87a52 12161 char *func_name;
692465f1
JB
12162 enum language func_lang;
12163
e9e07ba6 12164 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12165 if (func_name != NULL)
12166 {
12167 make_cleanup (xfree, func_name);
12168
12169 if (strcmp (func_name,
12170 data->exception_info->catch_exception_sym) == 0)
12171 break; /* We found the frame we were looking for... */
12172 fi = get_prev_frame (fi);
12173 }
f7f9143b 12174 }
55b87a52 12175 do_cleanups (old_chain);
f7f9143b
JB
12176
12177 if (fi == NULL)
12178 return 0;
12179
12180 select_frame (fi);
12181 return parse_and_eval_address ("id.full_name");
12182}
12183
12184/* Assuming the inferior just triggered an Ada exception catchpoint
12185 (of any type), return the address in inferior memory where the name
12186 of the exception is stored, if applicable.
12187
45db7c09
PA
12188 Assumes the selected frame is the current frame.
12189
f7f9143b
JB
12190 Return zero if the address could not be computed, or if not relevant. */
12191
12192static CORE_ADDR
761269c8 12193ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12194 struct breakpoint *b)
12195{
3eecfa55
JB
12196 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12197
f7f9143b
JB
12198 switch (ex)
12199 {
761269c8 12200 case ada_catch_exception:
f7f9143b
JB
12201 return (parse_and_eval_address ("e.full_name"));
12202 break;
12203
761269c8 12204 case ada_catch_exception_unhandled:
3eecfa55 12205 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12206 break;
12207
761269c8 12208 case ada_catch_assert:
f7f9143b
JB
12209 return 0; /* Exception name is not relevant in this case. */
12210 break;
12211
12212 default:
12213 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12214 break;
12215 }
12216
12217 return 0; /* Should never be reached. */
12218}
12219
12220/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12221 any error that ada_exception_name_addr_1 might cause to be thrown.
12222 When an error is intercepted, a warning with the error message is printed,
12223 and zero is returned. */
12224
12225static CORE_ADDR
761269c8 12226ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12227 struct breakpoint *b)
12228{
f7f9143b
JB
12229 CORE_ADDR result = 0;
12230
492d29ea 12231 TRY
f7f9143b
JB
12232 {
12233 result = ada_exception_name_addr_1 (ex, b);
12234 }
12235
492d29ea 12236 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12237 {
12238 warning (_("failed to get exception name: %s"), e.message);
12239 return 0;
12240 }
492d29ea 12241 END_CATCH
f7f9143b
JB
12242
12243 return result;
12244}
12245
28010a5d
PA
12246static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12247
12248/* Ada catchpoints.
12249
12250 In the case of catchpoints on Ada exceptions, the catchpoint will
12251 stop the target on every exception the program throws. When a user
12252 specifies the name of a specific exception, we translate this
12253 request into a condition expression (in text form), and then parse
12254 it into an expression stored in each of the catchpoint's locations.
12255 We then use this condition to check whether the exception that was
12256 raised is the one the user is interested in. If not, then the
12257 target is resumed again. We store the name of the requested
12258 exception, in order to be able to re-set the condition expression
12259 when symbols change. */
12260
12261/* An instance of this type is used to represent an Ada catchpoint
12262 breakpoint location. It includes a "struct bp_location" as a kind
12263 of base class; users downcast to "struct bp_location *" when
12264 needed. */
12265
12266struct ada_catchpoint_location
12267{
12268 /* The base class. */
12269 struct bp_location base;
12270
12271 /* The condition that checks whether the exception that was raised
12272 is the specific exception the user specified on catchpoint
12273 creation. */
4d01a485 12274 expression_up excep_cond_expr;
28010a5d
PA
12275};
12276
12277/* Implement the DTOR method in the bp_location_ops structure for all
12278 Ada exception catchpoint kinds. */
12279
12280static void
12281ada_catchpoint_location_dtor (struct bp_location *bl)
12282{
12283 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12284
4d01a485 12285 al->excep_cond_expr.reset ();
28010a5d
PA
12286}
12287
12288/* The vtable to be used in Ada catchpoint locations. */
12289
12290static const struct bp_location_ops ada_catchpoint_location_ops =
12291{
12292 ada_catchpoint_location_dtor
12293};
12294
12295/* An instance of this type is used to represent an Ada catchpoint.
12296 It includes a "struct breakpoint" as a kind of base class; users
12297 downcast to "struct breakpoint *" when needed. */
12298
12299struct ada_catchpoint
12300{
12301 /* The base class. */
12302 struct breakpoint base;
12303
12304 /* The name of the specific exception the user specified. */
12305 char *excep_string;
12306};
12307
12308/* Parse the exception condition string in the context of each of the
12309 catchpoint's locations, and store them for later evaluation. */
12310
12311static void
12312create_excep_cond_exprs (struct ada_catchpoint *c)
12313{
12314 struct cleanup *old_chain;
12315 struct bp_location *bl;
12316 char *cond_string;
12317
12318 /* Nothing to do if there's no specific exception to catch. */
12319 if (c->excep_string == NULL)
12320 return;
12321
12322 /* Same if there are no locations... */
12323 if (c->base.loc == NULL)
12324 return;
12325
12326 /* Compute the condition expression in text form, from the specific
12327 expection we want to catch. */
12328 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12329 old_chain = make_cleanup (xfree, cond_string);
12330
12331 /* Iterate over all the catchpoint's locations, and parse an
12332 expression for each. */
12333 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12334 {
12335 struct ada_catchpoint_location *ada_loc
12336 = (struct ada_catchpoint_location *) bl;
4d01a485 12337 expression_up exp;
28010a5d
PA
12338
12339 if (!bl->shlib_disabled)
12340 {
bbc13ae3 12341 const char *s;
28010a5d
PA
12342
12343 s = cond_string;
492d29ea 12344 TRY
28010a5d 12345 {
036e657b
JB
12346 exp = parse_exp_1 (&s, bl->address,
12347 block_for_pc (bl->address),
12348 0);
28010a5d 12349 }
492d29ea 12350 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12351 {
12352 warning (_("failed to reevaluate internal exception condition "
12353 "for catchpoint %d: %s"),
12354 c->base.number, e.message);
849f2b52 12355 }
492d29ea 12356 END_CATCH
28010a5d
PA
12357 }
12358
b22e99fd 12359 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12360 }
12361
12362 do_cleanups (old_chain);
12363}
12364
12365/* Implement the DTOR method in the breakpoint_ops structure for all
12366 exception catchpoint kinds. */
12367
12368static void
761269c8 12369dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12370{
12371 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12372
12373 xfree (c->excep_string);
348d480f 12374
2060206e 12375 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12376}
12377
12378/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12379 structure for all exception catchpoint kinds. */
12380
12381static struct bp_location *
761269c8 12382allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12383 struct breakpoint *self)
12384{
12385 struct ada_catchpoint_location *loc;
12386
4d01a485 12387 loc = new ada_catchpoint_location ();
28010a5d
PA
12388 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12389 loc->excep_cond_expr = NULL;
12390 return &loc->base;
12391}
12392
12393/* Implement the RE_SET method in the breakpoint_ops structure for all
12394 exception catchpoint kinds. */
12395
12396static void
761269c8 12397re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12398{
12399 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12400
12401 /* Call the base class's method. This updates the catchpoint's
12402 locations. */
2060206e 12403 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12404
12405 /* Reparse the exception conditional expressions. One for each
12406 location. */
12407 create_excep_cond_exprs (c);
12408}
12409
12410/* Returns true if we should stop for this breakpoint hit. If the
12411 user specified a specific exception, we only want to cause a stop
12412 if the program thrown that exception. */
12413
12414static int
12415should_stop_exception (const struct bp_location *bl)
12416{
12417 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12418 const struct ada_catchpoint_location *ada_loc
12419 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12420 int stop;
12421
12422 /* With no specific exception, should always stop. */
12423 if (c->excep_string == NULL)
12424 return 1;
12425
12426 if (ada_loc->excep_cond_expr == NULL)
12427 {
12428 /* We will have a NULL expression if back when we were creating
12429 the expressions, this location's had failed to parse. */
12430 return 1;
12431 }
12432
12433 stop = 1;
492d29ea 12434 TRY
28010a5d
PA
12435 {
12436 struct value *mark;
12437
12438 mark = value_mark ();
4d01a485 12439 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12440 value_free_to_mark (mark);
12441 }
492d29ea
PA
12442 CATCH (ex, RETURN_MASK_ALL)
12443 {
12444 exception_fprintf (gdb_stderr, ex,
12445 _("Error in testing exception condition:\n"));
12446 }
12447 END_CATCH
12448
28010a5d
PA
12449 return stop;
12450}
12451
12452/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12453 for all exception catchpoint kinds. */
12454
12455static void
761269c8 12456check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12457{
12458 bs->stop = should_stop_exception (bs->bp_location_at);
12459}
12460
f7f9143b
JB
12461/* Implement the PRINT_IT method in the breakpoint_ops structure
12462 for all exception catchpoint kinds. */
12463
12464static enum print_stop_action
761269c8 12465print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12466{
79a45e25 12467 struct ui_out *uiout = current_uiout;
348d480f
PA
12468 struct breakpoint *b = bs->breakpoint_at;
12469
956a9fb9 12470 annotate_catchpoint (b->number);
f7f9143b 12471
956a9fb9 12472 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12473 {
956a9fb9
JB
12474 ui_out_field_string (uiout, "reason",
12475 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12476 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12477 }
12478
00eb2c4a
JB
12479 ui_out_text (uiout,
12480 b->disposition == disp_del ? "\nTemporary catchpoint "
12481 : "\nCatchpoint ");
956a9fb9
JB
12482 ui_out_field_int (uiout, "bkptno", b->number);
12483 ui_out_text (uiout, ", ");
f7f9143b 12484
45db7c09
PA
12485 /* ada_exception_name_addr relies on the selected frame being the
12486 current frame. Need to do this here because this function may be
12487 called more than once when printing a stop, and below, we'll
12488 select the first frame past the Ada run-time (see
12489 ada_find_printable_frame). */
12490 select_frame (get_current_frame ());
12491
f7f9143b
JB
12492 switch (ex)
12493 {
761269c8
JB
12494 case ada_catch_exception:
12495 case ada_catch_exception_unhandled:
956a9fb9
JB
12496 {
12497 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12498 char exception_name[256];
12499
12500 if (addr != 0)
12501 {
c714b426
PA
12502 read_memory (addr, (gdb_byte *) exception_name,
12503 sizeof (exception_name) - 1);
956a9fb9
JB
12504 exception_name [sizeof (exception_name) - 1] = '\0';
12505 }
12506 else
12507 {
12508 /* For some reason, we were unable to read the exception
12509 name. This could happen if the Runtime was compiled
12510 without debugging info, for instance. In that case,
12511 just replace the exception name by the generic string
12512 "exception" - it will read as "an exception" in the
12513 notification we are about to print. */
967cff16 12514 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12515 }
12516 /* In the case of unhandled exception breakpoints, we print
12517 the exception name as "unhandled EXCEPTION_NAME", to make
12518 it clearer to the user which kind of catchpoint just got
12519 hit. We used ui_out_text to make sure that this extra
12520 info does not pollute the exception name in the MI case. */
761269c8 12521 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12522 ui_out_text (uiout, "unhandled ");
12523 ui_out_field_string (uiout, "exception-name", exception_name);
12524 }
12525 break;
761269c8 12526 case ada_catch_assert:
956a9fb9
JB
12527 /* In this case, the name of the exception is not really
12528 important. Just print "failed assertion" to make it clearer
12529 that his program just hit an assertion-failure catchpoint.
12530 We used ui_out_text because this info does not belong in
12531 the MI output. */
12532 ui_out_text (uiout, "failed assertion");
12533 break;
f7f9143b 12534 }
956a9fb9
JB
12535 ui_out_text (uiout, " at ");
12536 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12537
12538 return PRINT_SRC_AND_LOC;
12539}
12540
12541/* Implement the PRINT_ONE method in the breakpoint_ops structure
12542 for all exception catchpoint kinds. */
12543
12544static void
761269c8 12545print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12546 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12547{
79a45e25 12548 struct ui_out *uiout = current_uiout;
28010a5d 12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12550 struct value_print_options opts;
12551
12552 get_user_print_options (&opts);
12553 if (opts.addressprint)
f7f9143b
JB
12554 {
12555 annotate_field (4);
5af949e3 12556 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12557 }
12558
12559 annotate_field (5);
a6d9a66e 12560 *last_loc = b->loc;
f7f9143b
JB
12561 switch (ex)
12562 {
761269c8 12563 case ada_catch_exception:
28010a5d 12564 if (c->excep_string != NULL)
f7f9143b 12565 {
28010a5d
PA
12566 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12567
f7f9143b
JB
12568 ui_out_field_string (uiout, "what", msg);
12569 xfree (msg);
12570 }
12571 else
12572 ui_out_field_string (uiout, "what", "all Ada exceptions");
12573
12574 break;
12575
761269c8 12576 case ada_catch_exception_unhandled:
f7f9143b
JB
12577 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12578 break;
12579
761269c8 12580 case ada_catch_assert:
f7f9143b
JB
12581 ui_out_field_string (uiout, "what", "failed Ada assertions");
12582 break;
12583
12584 default:
12585 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12586 break;
12587 }
12588}
12589
12590/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12591 for all exception catchpoint kinds. */
12592
12593static void
761269c8 12594print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12595 struct breakpoint *b)
12596{
28010a5d 12597 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12598 struct ui_out *uiout = current_uiout;
28010a5d 12599
00eb2c4a
JB
12600 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12601 : _("Catchpoint "));
12602 ui_out_field_int (uiout, "bkptno", b->number);
12603 ui_out_text (uiout, ": ");
12604
f7f9143b
JB
12605 switch (ex)
12606 {
761269c8 12607 case ada_catch_exception:
28010a5d 12608 if (c->excep_string != NULL)
00eb2c4a
JB
12609 {
12610 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12611 struct cleanup *old_chain = make_cleanup (xfree, info);
12612
12613 ui_out_text (uiout, info);
12614 do_cleanups (old_chain);
12615 }
f7f9143b 12616 else
00eb2c4a 12617 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12618 break;
12619
761269c8 12620 case ada_catch_exception_unhandled:
00eb2c4a 12621 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12622 break;
12623
761269c8 12624 case ada_catch_assert:
00eb2c4a 12625 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12626 break;
12627
12628 default:
12629 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12630 break;
12631 }
12632}
12633
6149aea9
PA
12634/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12635 for all exception catchpoint kinds. */
12636
12637static void
761269c8 12638print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12639 struct breakpoint *b, struct ui_file *fp)
12640{
28010a5d
PA
12641 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12642
6149aea9
PA
12643 switch (ex)
12644 {
761269c8 12645 case ada_catch_exception:
6149aea9 12646 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12647 if (c->excep_string != NULL)
12648 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12649 break;
12650
761269c8 12651 case ada_catch_exception_unhandled:
78076abc 12652 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12653 break;
12654
761269c8 12655 case ada_catch_assert:
6149aea9
PA
12656 fprintf_filtered (fp, "catch assert");
12657 break;
12658
12659 default:
12660 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12661 }
d9b3f62e 12662 print_recreate_thread (b, fp);
6149aea9
PA
12663}
12664
f7f9143b
JB
12665/* Virtual table for "catch exception" breakpoints. */
12666
28010a5d
PA
12667static void
12668dtor_catch_exception (struct breakpoint *b)
12669{
761269c8 12670 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12671}
12672
12673static struct bp_location *
12674allocate_location_catch_exception (struct breakpoint *self)
12675{
761269c8 12676 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12677}
12678
12679static void
12680re_set_catch_exception (struct breakpoint *b)
12681{
761269c8 12682 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12683}
12684
12685static void
12686check_status_catch_exception (bpstat bs)
12687{
761269c8 12688 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12689}
12690
f7f9143b 12691static enum print_stop_action
348d480f 12692print_it_catch_exception (bpstat bs)
f7f9143b 12693{
761269c8 12694 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12695}
12696
12697static void
a6d9a66e 12698print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12699{
761269c8 12700 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12701}
12702
12703static void
12704print_mention_catch_exception (struct breakpoint *b)
12705{
761269c8 12706 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12707}
12708
6149aea9
PA
12709static void
12710print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12711{
761269c8 12712 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12713}
12714
2060206e 12715static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12716
12717/* Virtual table for "catch exception unhandled" breakpoints. */
12718
28010a5d
PA
12719static void
12720dtor_catch_exception_unhandled (struct breakpoint *b)
12721{
761269c8 12722 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12723}
12724
12725static struct bp_location *
12726allocate_location_catch_exception_unhandled (struct breakpoint *self)
12727{
761269c8 12728 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12729}
12730
12731static void
12732re_set_catch_exception_unhandled (struct breakpoint *b)
12733{
761269c8 12734 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12735}
12736
12737static void
12738check_status_catch_exception_unhandled (bpstat bs)
12739{
761269c8 12740 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12741}
12742
f7f9143b 12743static enum print_stop_action
348d480f 12744print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12745{
761269c8 12746 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12747}
12748
12749static void
a6d9a66e
UW
12750print_one_catch_exception_unhandled (struct breakpoint *b,
12751 struct bp_location **last_loc)
f7f9143b 12752{
761269c8 12753 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12754}
12755
12756static void
12757print_mention_catch_exception_unhandled (struct breakpoint *b)
12758{
761269c8 12759 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12760}
12761
6149aea9
PA
12762static void
12763print_recreate_catch_exception_unhandled (struct breakpoint *b,
12764 struct ui_file *fp)
12765{
761269c8 12766 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12767}
12768
2060206e 12769static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12770
12771/* Virtual table for "catch assert" breakpoints. */
12772
28010a5d
PA
12773static void
12774dtor_catch_assert (struct breakpoint *b)
12775{
761269c8 12776 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12777}
12778
12779static struct bp_location *
12780allocate_location_catch_assert (struct breakpoint *self)
12781{
761269c8 12782 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12783}
12784
12785static void
12786re_set_catch_assert (struct breakpoint *b)
12787{
761269c8 12788 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12789}
12790
12791static void
12792check_status_catch_assert (bpstat bs)
12793{
761269c8 12794 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12795}
12796
f7f9143b 12797static enum print_stop_action
348d480f 12798print_it_catch_assert (bpstat bs)
f7f9143b 12799{
761269c8 12800 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12801}
12802
12803static void
a6d9a66e 12804print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12805{
761269c8 12806 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12807}
12808
12809static void
12810print_mention_catch_assert (struct breakpoint *b)
12811{
761269c8 12812 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12813}
12814
6149aea9
PA
12815static void
12816print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12817{
761269c8 12818 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12819}
12820
2060206e 12821static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12822
f7f9143b
JB
12823/* Return a newly allocated copy of the first space-separated token
12824 in ARGSP, and then adjust ARGSP to point immediately after that
12825 token.
12826
12827 Return NULL if ARGPS does not contain any more tokens. */
12828
12829static char *
12830ada_get_next_arg (char **argsp)
12831{
12832 char *args = *argsp;
12833 char *end;
12834 char *result;
12835
0fcd72ba 12836 args = skip_spaces (args);
f7f9143b
JB
12837 if (args[0] == '\0')
12838 return NULL; /* No more arguments. */
12839
12840 /* Find the end of the current argument. */
12841
0fcd72ba 12842 end = skip_to_space (args);
f7f9143b
JB
12843
12844 /* Adjust ARGSP to point to the start of the next argument. */
12845
12846 *argsp = end;
12847
12848 /* Make a copy of the current argument and return it. */
12849
224c3ddb 12850 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12851 strncpy (result, args, end - args);
12852 result[end - args] = '\0';
12853
12854 return result;
12855}
12856
12857/* Split the arguments specified in a "catch exception" command.
12858 Set EX to the appropriate catchpoint type.
28010a5d 12859 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12860 specified by the user.
12861 If a condition is found at the end of the arguments, the condition
12862 expression is stored in COND_STRING (memory must be deallocated
12863 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12864
12865static void
12866catch_ada_exception_command_split (char *args,
761269c8 12867 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12868 char **excep_string,
12869 char **cond_string)
f7f9143b
JB
12870{
12871 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12872 char *exception_name;
5845583d 12873 char *cond = NULL;
f7f9143b
JB
12874
12875 exception_name = ada_get_next_arg (&args);
5845583d
JB
12876 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12877 {
12878 /* This is not an exception name; this is the start of a condition
12879 expression for a catchpoint on all exceptions. So, "un-get"
12880 this token, and set exception_name to NULL. */
12881 xfree (exception_name);
12882 exception_name = NULL;
12883 args -= 2;
12884 }
f7f9143b
JB
12885 make_cleanup (xfree, exception_name);
12886
5845583d 12887 /* Check to see if we have a condition. */
f7f9143b 12888
0fcd72ba 12889 args = skip_spaces (args);
61012eef 12890 if (startswith (args, "if")
5845583d
JB
12891 && (isspace (args[2]) || args[2] == '\0'))
12892 {
12893 args += 2;
12894 args = skip_spaces (args);
12895
12896 if (args[0] == '\0')
12897 error (_("Condition missing after `if' keyword"));
12898 cond = xstrdup (args);
12899 make_cleanup (xfree, cond);
12900
12901 args += strlen (args);
12902 }
12903
12904 /* Check that we do not have any more arguments. Anything else
12905 is unexpected. */
f7f9143b
JB
12906
12907 if (args[0] != '\0')
12908 error (_("Junk at end of expression"));
12909
12910 discard_cleanups (old_chain);
12911
12912 if (exception_name == NULL)
12913 {
12914 /* Catch all exceptions. */
761269c8 12915 *ex = ada_catch_exception;
28010a5d 12916 *excep_string = NULL;
f7f9143b
JB
12917 }
12918 else if (strcmp (exception_name, "unhandled") == 0)
12919 {
12920 /* Catch unhandled exceptions. */
761269c8 12921 *ex = ada_catch_exception_unhandled;
28010a5d 12922 *excep_string = NULL;
f7f9143b
JB
12923 }
12924 else
12925 {
12926 /* Catch a specific exception. */
761269c8 12927 *ex = ada_catch_exception;
28010a5d 12928 *excep_string = exception_name;
f7f9143b 12929 }
5845583d 12930 *cond_string = cond;
f7f9143b
JB
12931}
12932
12933/* Return the name of the symbol on which we should break in order to
12934 implement a catchpoint of the EX kind. */
12935
12936static const char *
761269c8 12937ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12938{
3eecfa55
JB
12939 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12940
12941 gdb_assert (data->exception_info != NULL);
0259addd 12942
f7f9143b
JB
12943 switch (ex)
12944 {
761269c8 12945 case ada_catch_exception:
3eecfa55 12946 return (data->exception_info->catch_exception_sym);
f7f9143b 12947 break;
761269c8 12948 case ada_catch_exception_unhandled:
3eecfa55 12949 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12950 break;
761269c8 12951 case ada_catch_assert:
3eecfa55 12952 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12953 break;
12954 default:
12955 internal_error (__FILE__, __LINE__,
12956 _("unexpected catchpoint kind (%d)"), ex);
12957 }
12958}
12959
12960/* Return the breakpoint ops "virtual table" used for catchpoints
12961 of the EX kind. */
12962
c0a91b2b 12963static const struct breakpoint_ops *
761269c8 12964ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12965{
12966 switch (ex)
12967 {
761269c8 12968 case ada_catch_exception:
f7f9143b
JB
12969 return (&catch_exception_breakpoint_ops);
12970 break;
761269c8 12971 case ada_catch_exception_unhandled:
f7f9143b
JB
12972 return (&catch_exception_unhandled_breakpoint_ops);
12973 break;
761269c8 12974 case ada_catch_assert:
f7f9143b
JB
12975 return (&catch_assert_breakpoint_ops);
12976 break;
12977 default:
12978 internal_error (__FILE__, __LINE__,
12979 _("unexpected catchpoint kind (%d)"), ex);
12980 }
12981}
12982
12983/* Return the condition that will be used to match the current exception
12984 being raised with the exception that the user wants to catch. This
12985 assumes that this condition is used when the inferior just triggered
12986 an exception catchpoint.
12987
12988 The string returned is a newly allocated string that needs to be
12989 deallocated later. */
12990
12991static char *
28010a5d 12992ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12993{
3d0b0fa3
JB
12994 int i;
12995
0963b4bd 12996 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12997 runtime units that have been compiled without debugging info; if
28010a5d 12998 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12999 exception (e.g. "constraint_error") then, during the evaluation
13000 of the condition expression, the symbol lookup on this name would
0963b4bd 13001 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13002 may then be set only on user-defined exceptions which have the
13003 same not-fully-qualified name (e.g. my_package.constraint_error).
13004
13005 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13006 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13007 exception constraint_error" is rewritten into "catch exception
13008 standard.constraint_error".
13009
13010 If an exception named contraint_error is defined in another package of
13011 the inferior program, then the only way to specify this exception as a
13012 breakpoint condition is to use its fully-qualified named:
13013 e.g. my_package.constraint_error. */
13014
13015 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13016 {
28010a5d 13017 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13018 {
13019 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13020 excep_string);
3d0b0fa3
JB
13021 }
13022 }
28010a5d 13023 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13024}
13025
13026/* Return the symtab_and_line that should be used to insert an exception
13027 catchpoint of the TYPE kind.
13028
28010a5d
PA
13029 EXCEP_STRING should contain the name of a specific exception that
13030 the catchpoint should catch, or NULL otherwise.
f7f9143b 13031
28010a5d
PA
13032 ADDR_STRING returns the name of the function where the real
13033 breakpoint that implements the catchpoints is set, depending on the
13034 type of catchpoint we need to create. */
f7f9143b
JB
13035
13036static struct symtab_and_line
761269c8 13037ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 13038 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13039{
13040 const char *sym_name;
13041 struct symbol *sym;
f7f9143b 13042
0259addd
JB
13043 /* First, find out which exception support info to use. */
13044 ada_exception_support_info_sniffer ();
13045
13046 /* Then lookup the function on which we will break in order to catch
f7f9143b 13047 the Ada exceptions requested by the user. */
f7f9143b
JB
13048 sym_name = ada_exception_sym_name (ex);
13049 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13050
f17011e0
JB
13051 /* We can assume that SYM is not NULL at this stage. If the symbol
13052 did not exist, ada_exception_support_info_sniffer would have
13053 raised an exception.
f7f9143b 13054
f17011e0
JB
13055 Also, ada_exception_support_info_sniffer should have already
13056 verified that SYM is a function symbol. */
13057 gdb_assert (sym != NULL);
13058 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13059
13060 /* Set ADDR_STRING. */
f7f9143b
JB
13061 *addr_string = xstrdup (sym_name);
13062
f7f9143b 13063 /* Set OPS. */
4b9eee8c 13064 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13065
f17011e0 13066 return find_function_start_sal (sym, 1);
f7f9143b
JB
13067}
13068
b4a5b78b 13069/* Create an Ada exception catchpoint.
f7f9143b 13070
b4a5b78b 13071 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13072
2df4d1d5
JB
13073 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13074 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13075 of the exception to which this catchpoint applies. When not NULL,
13076 the string must be allocated on the heap, and its deallocation
13077 is no longer the responsibility of the caller.
13078
13079 COND_STRING, if not NULL, is the catchpoint condition. This string
13080 must be allocated on the heap, and its deallocation is no longer
13081 the responsibility of the caller.
f7f9143b 13082
b4a5b78b
JB
13083 TEMPFLAG, if nonzero, means that the underlying breakpoint
13084 should be temporary.
28010a5d 13085
b4a5b78b 13086 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13087
349774ef 13088void
28010a5d 13089create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13090 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13091 char *excep_string,
5845583d 13092 char *cond_string,
28010a5d 13093 int tempflag,
349774ef 13094 int disabled,
28010a5d
PA
13095 int from_tty)
13096{
13097 struct ada_catchpoint *c;
b4a5b78b
JB
13098 char *addr_string = NULL;
13099 const struct breakpoint_ops *ops = NULL;
13100 struct symtab_and_line sal
13101 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13102
4d01a485 13103 c = new ada_catchpoint ();
28010a5d 13104 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13105 ops, tempflag, disabled, from_tty);
28010a5d
PA
13106 c->excep_string = excep_string;
13107 create_excep_cond_exprs (c);
5845583d
JB
13108 if (cond_string != NULL)
13109 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13110 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13111}
13112
9ac4176b
PA
13113/* Implement the "catch exception" command. */
13114
13115static void
13116catch_ada_exception_command (char *arg, int from_tty,
13117 struct cmd_list_element *command)
13118{
13119 struct gdbarch *gdbarch = get_current_arch ();
13120 int tempflag;
761269c8 13121 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13122 char *excep_string = NULL;
5845583d 13123 char *cond_string = NULL;
9ac4176b
PA
13124
13125 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13126
13127 if (!arg)
13128 arg = "";
b4a5b78b
JB
13129 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13130 &cond_string);
13131 create_ada_exception_catchpoint (gdbarch, ex_kind,
13132 excep_string, cond_string,
349774ef
JB
13133 tempflag, 1 /* enabled */,
13134 from_tty);
9ac4176b
PA
13135}
13136
b4a5b78b 13137/* Split the arguments specified in a "catch assert" command.
5845583d 13138
b4a5b78b
JB
13139 ARGS contains the command's arguments (or the empty string if
13140 no arguments were passed).
5845583d
JB
13141
13142 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13143 (the memory needs to be deallocated after use). */
5845583d 13144
b4a5b78b
JB
13145static void
13146catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13147{
5845583d 13148 args = skip_spaces (args);
f7f9143b 13149
5845583d 13150 /* Check whether a condition was provided. */
61012eef 13151 if (startswith (args, "if")
5845583d 13152 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13153 {
5845583d 13154 args += 2;
0fcd72ba 13155 args = skip_spaces (args);
5845583d
JB
13156 if (args[0] == '\0')
13157 error (_("condition missing after `if' keyword"));
13158 *cond_string = xstrdup (args);
f7f9143b
JB
13159 }
13160
5845583d
JB
13161 /* Otherwise, there should be no other argument at the end of
13162 the command. */
13163 else if (args[0] != '\0')
13164 error (_("Junk at end of arguments."));
f7f9143b
JB
13165}
13166
9ac4176b
PA
13167/* Implement the "catch assert" command. */
13168
13169static void
13170catch_assert_command (char *arg, int from_tty,
13171 struct cmd_list_element *command)
13172{
13173 struct gdbarch *gdbarch = get_current_arch ();
13174 int tempflag;
5845583d 13175 char *cond_string = NULL;
9ac4176b
PA
13176
13177 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13178
13179 if (!arg)
13180 arg = "";
b4a5b78b 13181 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13182 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13183 NULL, cond_string,
349774ef
JB
13184 tempflag, 1 /* enabled */,
13185 from_tty);
9ac4176b 13186}
778865d3
JB
13187
13188/* Return non-zero if the symbol SYM is an Ada exception object. */
13189
13190static int
13191ada_is_exception_sym (struct symbol *sym)
13192{
13193 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13194
13195 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13196 && SYMBOL_CLASS (sym) != LOC_BLOCK
13197 && SYMBOL_CLASS (sym) != LOC_CONST
13198 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13199 && type_name != NULL && strcmp (type_name, "exception") == 0);
13200}
13201
13202/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13203 Ada exception object. This matches all exceptions except the ones
13204 defined by the Ada language. */
13205
13206static int
13207ada_is_non_standard_exception_sym (struct symbol *sym)
13208{
13209 int i;
13210
13211 if (!ada_is_exception_sym (sym))
13212 return 0;
13213
13214 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13215 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13216 return 0; /* A standard exception. */
13217
13218 /* Numeric_Error is also a standard exception, so exclude it.
13219 See the STANDARD_EXC description for more details as to why
13220 this exception is not listed in that array. */
13221 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13222 return 0;
13223
13224 return 1;
13225}
13226
13227/* A helper function for qsort, comparing two struct ada_exc_info
13228 objects.
13229
13230 The comparison is determined first by exception name, and then
13231 by exception address. */
13232
13233static int
13234compare_ada_exception_info (const void *a, const void *b)
13235{
13236 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13237 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13238 int result;
13239
13240 result = strcmp (exc_a->name, exc_b->name);
13241 if (result != 0)
13242 return result;
13243
13244 if (exc_a->addr < exc_b->addr)
13245 return -1;
13246 if (exc_a->addr > exc_b->addr)
13247 return 1;
13248
13249 return 0;
13250}
13251
13252/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13253 routine, but keeping the first SKIP elements untouched.
13254
13255 All duplicates are also removed. */
13256
13257static void
13258sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13259 int skip)
13260{
13261 struct ada_exc_info *to_sort
13262 = VEC_address (ada_exc_info, *exceptions) + skip;
13263 int to_sort_len
13264 = VEC_length (ada_exc_info, *exceptions) - skip;
13265 int i, j;
13266
13267 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13268 compare_ada_exception_info);
13269
13270 for (i = 1, j = 1; i < to_sort_len; i++)
13271 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13272 to_sort[j++] = to_sort[i];
13273 to_sort_len = j;
13274 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13275}
13276
13277/* A function intended as the "name_matcher" callback in the struct
13278 quick_symbol_functions' expand_symtabs_matching method.
13279
13280 SEARCH_NAME is the symbol's search name.
13281
13282 If USER_DATA is not NULL, it is a pointer to a regext_t object
13283 used to match the symbol (by natural name). Otherwise, when USER_DATA
13284 is null, no filtering is performed, and all symbols are a positive
13285 match. */
13286
13287static int
13288ada_exc_search_name_matches (const char *search_name, void *user_data)
13289{
9a3c8263 13290 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13291
13292 if (preg == NULL)
13293 return 1;
13294
13295 /* In Ada, the symbol "search name" is a linkage name, whereas
13296 the regular expression used to do the matching refers to
13297 the natural name. So match against the decoded name. */
13298 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13299}
13300
13301/* Add all exceptions defined by the Ada standard whose name match
13302 a regular expression.
13303
13304 If PREG is not NULL, then this regexp_t object is used to
13305 perform the symbol name matching. Otherwise, no name-based
13306 filtering is performed.
13307
13308 EXCEPTIONS is a vector of exceptions to which matching exceptions
13309 gets pushed. */
13310
13311static void
13312ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13313{
13314 int i;
13315
13316 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13317 {
13318 if (preg == NULL
13319 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13320 {
13321 struct bound_minimal_symbol msymbol
13322 = ada_lookup_simple_minsym (standard_exc[i]);
13323
13324 if (msymbol.minsym != NULL)
13325 {
13326 struct ada_exc_info info
77e371c0 13327 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13328
13329 VEC_safe_push (ada_exc_info, *exceptions, &info);
13330 }
13331 }
13332 }
13333}
13334
13335/* Add all Ada exceptions defined locally and accessible from the given
13336 FRAME.
13337
13338 If PREG is not NULL, then this regexp_t object is used to
13339 perform the symbol name matching. Otherwise, no name-based
13340 filtering is performed.
13341
13342 EXCEPTIONS is a vector of exceptions to which matching exceptions
13343 gets pushed. */
13344
13345static void
13346ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13347 VEC(ada_exc_info) **exceptions)
13348{
3977b71f 13349 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13350
13351 while (block != 0)
13352 {
13353 struct block_iterator iter;
13354 struct symbol *sym;
13355
13356 ALL_BLOCK_SYMBOLS (block, iter, sym)
13357 {
13358 switch (SYMBOL_CLASS (sym))
13359 {
13360 case LOC_TYPEDEF:
13361 case LOC_BLOCK:
13362 case LOC_CONST:
13363 break;
13364 default:
13365 if (ada_is_exception_sym (sym))
13366 {
13367 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13368 SYMBOL_VALUE_ADDRESS (sym)};
13369
13370 VEC_safe_push (ada_exc_info, *exceptions, &info);
13371 }
13372 }
13373 }
13374 if (BLOCK_FUNCTION (block) != NULL)
13375 break;
13376 block = BLOCK_SUPERBLOCK (block);
13377 }
13378}
13379
13380/* Add all exceptions defined globally whose name name match
13381 a regular expression, excluding standard exceptions.
13382
13383 The reason we exclude standard exceptions is that they need
13384 to be handled separately: Standard exceptions are defined inside
13385 a runtime unit which is normally not compiled with debugging info,
13386 and thus usually do not show up in our symbol search. However,
13387 if the unit was in fact built with debugging info, we need to
13388 exclude them because they would duplicate the entry we found
13389 during the special loop that specifically searches for those
13390 standard exceptions.
13391
13392 If PREG is not NULL, then this regexp_t object is used to
13393 perform the symbol name matching. Otherwise, no name-based
13394 filtering is performed.
13395
13396 EXCEPTIONS is a vector of exceptions to which matching exceptions
13397 gets pushed. */
13398
13399static void
13400ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13401{
13402 struct objfile *objfile;
43f3e411 13403 struct compunit_symtab *s;
778865d3 13404
276d885b 13405 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13406 VARIABLES_DOMAIN, preg);
778865d3 13407
43f3e411 13408 ALL_COMPUNITS (objfile, s)
778865d3 13409 {
43f3e411 13410 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13411 int i;
13412
13413 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13414 {
13415 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13416 struct block_iterator iter;
13417 struct symbol *sym;
13418
13419 ALL_BLOCK_SYMBOLS (b, iter, sym)
13420 if (ada_is_non_standard_exception_sym (sym)
13421 && (preg == NULL
13422 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13423 0, NULL, 0) == 0))
13424 {
13425 struct ada_exc_info info
13426 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13427
13428 VEC_safe_push (ada_exc_info, *exceptions, &info);
13429 }
13430 }
13431 }
13432}
13433
13434/* Implements ada_exceptions_list with the regular expression passed
13435 as a regex_t, rather than a string.
13436
13437 If not NULL, PREG is used to filter out exceptions whose names
13438 do not match. Otherwise, all exceptions are listed. */
13439
13440static VEC(ada_exc_info) *
13441ada_exceptions_list_1 (regex_t *preg)
13442{
13443 VEC(ada_exc_info) *result = NULL;
13444 struct cleanup *old_chain
13445 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13446 int prev_len;
13447
13448 /* First, list the known standard exceptions. These exceptions
13449 need to be handled separately, as they are usually defined in
13450 runtime units that have been compiled without debugging info. */
13451
13452 ada_add_standard_exceptions (preg, &result);
13453
13454 /* Next, find all exceptions whose scope is local and accessible
13455 from the currently selected frame. */
13456
13457 if (has_stack_frames ())
13458 {
13459 prev_len = VEC_length (ada_exc_info, result);
13460 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13461 &result);
13462 if (VEC_length (ada_exc_info, result) > prev_len)
13463 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13464 }
13465
13466 /* Add all exceptions whose scope is global. */
13467
13468 prev_len = VEC_length (ada_exc_info, result);
13469 ada_add_global_exceptions (preg, &result);
13470 if (VEC_length (ada_exc_info, result) > prev_len)
13471 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13472
13473 discard_cleanups (old_chain);
13474 return result;
13475}
13476
13477/* Return a vector of ada_exc_info.
13478
13479 If REGEXP is NULL, all exceptions are included in the result.
13480 Otherwise, it should contain a valid regular expression,
13481 and only the exceptions whose names match that regular expression
13482 are included in the result.
13483
13484 The exceptions are sorted in the following order:
13485 - Standard exceptions (defined by the Ada language), in
13486 alphabetical order;
13487 - Exceptions only visible from the current frame, in
13488 alphabetical order;
13489 - Exceptions whose scope is global, in alphabetical order. */
13490
13491VEC(ada_exc_info) *
13492ada_exceptions_list (const char *regexp)
13493{
13494 VEC(ada_exc_info) *result = NULL;
13495 struct cleanup *old_chain = NULL;
13496 regex_t reg;
13497
13498 if (regexp != NULL)
13499 old_chain = compile_rx_or_error (&reg, regexp,
13500 _("invalid regular expression"));
13501
13502 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13503
13504 if (old_chain != NULL)
13505 do_cleanups (old_chain);
13506 return result;
13507}
13508
13509/* Implement the "info exceptions" command. */
13510
13511static void
13512info_exceptions_command (char *regexp, int from_tty)
13513{
13514 VEC(ada_exc_info) *exceptions;
13515 struct cleanup *cleanup;
13516 struct gdbarch *gdbarch = get_current_arch ();
13517 int ix;
13518 struct ada_exc_info *info;
13519
13520 exceptions = ada_exceptions_list (regexp);
13521 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13522
13523 if (regexp != NULL)
13524 printf_filtered
13525 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13526 else
13527 printf_filtered (_("All defined Ada exceptions:\n"));
13528
13529 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13530 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13531
13532 do_cleanups (cleanup);
13533}
13534
4c4b4cd2
PH
13535 /* Operators */
13536/* Information about operators given special treatment in functions
13537 below. */
13538/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13539
13540#define ADA_OPERATORS \
13541 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13542 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13543 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13544 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13545 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13546 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13547 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13548 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13549 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13550 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13551 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13552 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13553 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13554 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13555 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13556 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13557 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13558 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13559 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13560
13561static void
554794dc
SDJ
13562ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13563 int *argsp)
4c4b4cd2
PH
13564{
13565 switch (exp->elts[pc - 1].opcode)
13566 {
76a01679 13567 default:
4c4b4cd2
PH
13568 operator_length_standard (exp, pc, oplenp, argsp);
13569 break;
13570
13571#define OP_DEFN(op, len, args, binop) \
13572 case op: *oplenp = len; *argsp = args; break;
13573 ADA_OPERATORS;
13574#undef OP_DEFN
52ce6436
PH
13575
13576 case OP_AGGREGATE:
13577 *oplenp = 3;
13578 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13579 break;
13580
13581 case OP_CHOICES:
13582 *oplenp = 3;
13583 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13584 break;
4c4b4cd2
PH
13585 }
13586}
13587
c0201579
JK
13588/* Implementation of the exp_descriptor method operator_check. */
13589
13590static int
13591ada_operator_check (struct expression *exp, int pos,
13592 int (*objfile_func) (struct objfile *objfile, void *data),
13593 void *data)
13594{
13595 const union exp_element *const elts = exp->elts;
13596 struct type *type = NULL;
13597
13598 switch (elts[pos].opcode)
13599 {
13600 case UNOP_IN_RANGE:
13601 case UNOP_QUAL:
13602 type = elts[pos + 1].type;
13603 break;
13604
13605 default:
13606 return operator_check_standard (exp, pos, objfile_func, data);
13607 }
13608
13609 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13610
13611 if (type && TYPE_OBJFILE (type)
13612 && (*objfile_func) (TYPE_OBJFILE (type), data))
13613 return 1;
13614
13615 return 0;
13616}
13617
4c4b4cd2
PH
13618static char *
13619ada_op_name (enum exp_opcode opcode)
13620{
13621 switch (opcode)
13622 {
76a01679 13623 default:
4c4b4cd2 13624 return op_name_standard (opcode);
52ce6436 13625
4c4b4cd2
PH
13626#define OP_DEFN(op, len, args, binop) case op: return #op;
13627 ADA_OPERATORS;
13628#undef OP_DEFN
52ce6436
PH
13629
13630 case OP_AGGREGATE:
13631 return "OP_AGGREGATE";
13632 case OP_CHOICES:
13633 return "OP_CHOICES";
13634 case OP_NAME:
13635 return "OP_NAME";
4c4b4cd2
PH
13636 }
13637}
13638
13639/* As for operator_length, but assumes PC is pointing at the first
13640 element of the operator, and gives meaningful results only for the
52ce6436 13641 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13642
13643static void
76a01679
JB
13644ada_forward_operator_length (struct expression *exp, int pc,
13645 int *oplenp, int *argsp)
4c4b4cd2 13646{
76a01679 13647 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13648 {
13649 default:
13650 *oplenp = *argsp = 0;
13651 break;
52ce6436 13652
4c4b4cd2
PH
13653#define OP_DEFN(op, len, args, binop) \
13654 case op: *oplenp = len; *argsp = args; break;
13655 ADA_OPERATORS;
13656#undef OP_DEFN
52ce6436
PH
13657
13658 case OP_AGGREGATE:
13659 *oplenp = 3;
13660 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13661 break;
13662
13663 case OP_CHOICES:
13664 *oplenp = 3;
13665 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13666 break;
13667
13668 case OP_STRING:
13669 case OP_NAME:
13670 {
13671 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13672
52ce6436
PH
13673 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13674 *argsp = 0;
13675 break;
13676 }
4c4b4cd2
PH
13677 }
13678}
13679
13680static int
13681ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13682{
13683 enum exp_opcode op = exp->elts[elt].opcode;
13684 int oplen, nargs;
13685 int pc = elt;
13686 int i;
76a01679 13687
4c4b4cd2
PH
13688 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13689
76a01679 13690 switch (op)
4c4b4cd2 13691 {
76a01679 13692 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13693 case OP_ATR_FIRST:
13694 case OP_ATR_LAST:
13695 case OP_ATR_LENGTH:
13696 case OP_ATR_IMAGE:
13697 case OP_ATR_MAX:
13698 case OP_ATR_MIN:
13699 case OP_ATR_MODULUS:
13700 case OP_ATR_POS:
13701 case OP_ATR_SIZE:
13702 case OP_ATR_TAG:
13703 case OP_ATR_VAL:
13704 break;
13705
13706 case UNOP_IN_RANGE:
13707 case UNOP_QUAL:
323e0a4a
AC
13708 /* XXX: gdb_sprint_host_address, type_sprint */
13709 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13710 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13711 fprintf_filtered (stream, " (");
13712 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13713 fprintf_filtered (stream, ")");
13714 break;
13715 case BINOP_IN_BOUNDS:
52ce6436
PH
13716 fprintf_filtered (stream, " (%d)",
13717 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13718 break;
13719 case TERNOP_IN_RANGE:
13720 break;
13721
52ce6436
PH
13722 case OP_AGGREGATE:
13723 case OP_OTHERS:
13724 case OP_DISCRETE_RANGE:
13725 case OP_POSITIONAL:
13726 case OP_CHOICES:
13727 break;
13728
13729 case OP_NAME:
13730 case OP_STRING:
13731 {
13732 char *name = &exp->elts[elt + 2].string;
13733 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13734
52ce6436
PH
13735 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13736 break;
13737 }
13738
4c4b4cd2
PH
13739 default:
13740 return dump_subexp_body_standard (exp, stream, elt);
13741 }
13742
13743 elt += oplen;
13744 for (i = 0; i < nargs; i += 1)
13745 elt = dump_subexp (exp, stream, elt);
13746
13747 return elt;
13748}
13749
13750/* The Ada extension of print_subexp (q.v.). */
13751
76a01679
JB
13752static void
13753ada_print_subexp (struct expression *exp, int *pos,
13754 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13755{
52ce6436 13756 int oplen, nargs, i;
4c4b4cd2
PH
13757 int pc = *pos;
13758 enum exp_opcode op = exp->elts[pc].opcode;
13759
13760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13761
52ce6436 13762 *pos += oplen;
4c4b4cd2
PH
13763 switch (op)
13764 {
13765 default:
52ce6436 13766 *pos -= oplen;
4c4b4cd2
PH
13767 print_subexp_standard (exp, pos, stream, prec);
13768 return;
13769
13770 case OP_VAR_VALUE:
4c4b4cd2
PH
13771 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13772 return;
13773
13774 case BINOP_IN_BOUNDS:
323e0a4a 13775 /* XXX: sprint_subexp */
4c4b4cd2 13776 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13777 fputs_filtered (" in ", stream);
4c4b4cd2 13778 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13779 fputs_filtered ("'range", stream);
4c4b4cd2 13780 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13781 fprintf_filtered (stream, "(%ld)",
13782 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13783 return;
13784
13785 case TERNOP_IN_RANGE:
4c4b4cd2 13786 if (prec >= PREC_EQUAL)
76a01679 13787 fputs_filtered ("(", stream);
323e0a4a 13788 /* XXX: sprint_subexp */
4c4b4cd2 13789 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13790 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13791 print_subexp (exp, pos, stream, PREC_EQUAL);
13792 fputs_filtered (" .. ", stream);
13793 print_subexp (exp, pos, stream, PREC_EQUAL);
13794 if (prec >= PREC_EQUAL)
76a01679
JB
13795 fputs_filtered (")", stream);
13796 return;
4c4b4cd2
PH
13797
13798 case OP_ATR_FIRST:
13799 case OP_ATR_LAST:
13800 case OP_ATR_LENGTH:
13801 case OP_ATR_IMAGE:
13802 case OP_ATR_MAX:
13803 case OP_ATR_MIN:
13804 case OP_ATR_MODULUS:
13805 case OP_ATR_POS:
13806 case OP_ATR_SIZE:
13807 case OP_ATR_TAG:
13808 case OP_ATR_VAL:
4c4b4cd2 13809 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13810 {
13811 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13812 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13813 &type_print_raw_options);
76a01679
JB
13814 *pos += 3;
13815 }
4c4b4cd2 13816 else
76a01679 13817 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13818 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13819 if (nargs > 1)
76a01679
JB
13820 {
13821 int tem;
5b4ee69b 13822
76a01679
JB
13823 for (tem = 1; tem < nargs; tem += 1)
13824 {
13825 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13826 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13827 }
13828 fputs_filtered (")", stream);
13829 }
4c4b4cd2 13830 return;
14f9c5c9 13831
4c4b4cd2 13832 case UNOP_QUAL:
4c4b4cd2
PH
13833 type_print (exp->elts[pc + 1].type, "", stream, 0);
13834 fputs_filtered ("'(", stream);
13835 print_subexp (exp, pos, stream, PREC_PREFIX);
13836 fputs_filtered (")", stream);
13837 return;
14f9c5c9 13838
4c4b4cd2 13839 case UNOP_IN_RANGE:
323e0a4a 13840 /* XXX: sprint_subexp */
4c4b4cd2 13841 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13842 fputs_filtered (" in ", stream);
79d43c61
TT
13843 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13844 &type_print_raw_options);
4c4b4cd2 13845 return;
52ce6436
PH
13846
13847 case OP_DISCRETE_RANGE:
13848 print_subexp (exp, pos, stream, PREC_SUFFIX);
13849 fputs_filtered ("..", stream);
13850 print_subexp (exp, pos, stream, PREC_SUFFIX);
13851 return;
13852
13853 case OP_OTHERS:
13854 fputs_filtered ("others => ", stream);
13855 print_subexp (exp, pos, stream, PREC_SUFFIX);
13856 return;
13857
13858 case OP_CHOICES:
13859 for (i = 0; i < nargs-1; i += 1)
13860 {
13861 if (i > 0)
13862 fputs_filtered ("|", stream);
13863 print_subexp (exp, pos, stream, PREC_SUFFIX);
13864 }
13865 fputs_filtered (" => ", stream);
13866 print_subexp (exp, pos, stream, PREC_SUFFIX);
13867 return;
13868
13869 case OP_POSITIONAL:
13870 print_subexp (exp, pos, stream, PREC_SUFFIX);
13871 return;
13872
13873 case OP_AGGREGATE:
13874 fputs_filtered ("(", stream);
13875 for (i = 0; i < nargs; i += 1)
13876 {
13877 if (i > 0)
13878 fputs_filtered (", ", stream);
13879 print_subexp (exp, pos, stream, PREC_SUFFIX);
13880 }
13881 fputs_filtered (")", stream);
13882 return;
4c4b4cd2
PH
13883 }
13884}
14f9c5c9
AS
13885
13886/* Table mapping opcodes into strings for printing operators
13887 and precedences of the operators. */
13888
d2e4a39e
AS
13889static const struct op_print ada_op_print_tab[] = {
13890 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13891 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13892 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13893 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13894 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13895 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13896 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13897 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13898 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13899 {">=", BINOP_GEQ, PREC_ORDER, 0},
13900 {">", BINOP_GTR, PREC_ORDER, 0},
13901 {"<", BINOP_LESS, PREC_ORDER, 0},
13902 {">>", BINOP_RSH, PREC_SHIFT, 0},
13903 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13904 {"+", BINOP_ADD, PREC_ADD, 0},
13905 {"-", BINOP_SUB, PREC_ADD, 0},
13906 {"&", BINOP_CONCAT, PREC_ADD, 0},
13907 {"*", BINOP_MUL, PREC_MUL, 0},
13908 {"/", BINOP_DIV, PREC_MUL, 0},
13909 {"rem", BINOP_REM, PREC_MUL, 0},
13910 {"mod", BINOP_MOD, PREC_MUL, 0},
13911 {"**", BINOP_EXP, PREC_REPEAT, 0},
13912 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13913 {"-", UNOP_NEG, PREC_PREFIX, 0},
13914 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13915 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13916 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13917 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13918 {".all", UNOP_IND, PREC_SUFFIX, 1},
13919 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13920 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13921 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13922};
13923\f
72d5681a
PH
13924enum ada_primitive_types {
13925 ada_primitive_type_int,
13926 ada_primitive_type_long,
13927 ada_primitive_type_short,
13928 ada_primitive_type_char,
13929 ada_primitive_type_float,
13930 ada_primitive_type_double,
13931 ada_primitive_type_void,
13932 ada_primitive_type_long_long,
13933 ada_primitive_type_long_double,
13934 ada_primitive_type_natural,
13935 ada_primitive_type_positive,
13936 ada_primitive_type_system_address,
13937 nr_ada_primitive_types
13938};
6c038f32
PH
13939
13940static void
d4a9a881 13941ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13942 struct language_arch_info *lai)
13943{
d4a9a881 13944 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13945
72d5681a 13946 lai->primitive_type_vector
d4a9a881 13947 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13948 struct type *);
e9bb382b
UW
13949
13950 lai->primitive_type_vector [ada_primitive_type_int]
13951 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13952 0, "integer");
13953 lai->primitive_type_vector [ada_primitive_type_long]
13954 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13955 0, "long_integer");
13956 lai->primitive_type_vector [ada_primitive_type_short]
13957 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13958 0, "short_integer");
13959 lai->string_char_type
13960 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13961 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13962 lai->primitive_type_vector [ada_primitive_type_float]
13963 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13964 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13965 lai->primitive_type_vector [ada_primitive_type_double]
13966 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13967 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13968 lai->primitive_type_vector [ada_primitive_type_long_long]
13969 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13970 0, "long_long_integer");
13971 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13972 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13973 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13974 lai->primitive_type_vector [ada_primitive_type_natural]
13975 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13976 0, "natural");
13977 lai->primitive_type_vector [ada_primitive_type_positive]
13978 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13979 0, "positive");
13980 lai->primitive_type_vector [ada_primitive_type_void]
13981 = builtin->builtin_void;
13982
13983 lai->primitive_type_vector [ada_primitive_type_system_address]
13984 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13985 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13986 = "system__address";
fbb06eb1 13987
47e729a8 13988 lai->bool_type_symbol = NULL;
fbb06eb1 13989 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13990}
6c038f32
PH
13991\f
13992 /* Language vector */
13993
13994/* Not really used, but needed in the ada_language_defn. */
13995
13996static void
6c7a06a3 13997emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13998{
6c7a06a3 13999 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14000}
14001
14002static int
410a0ff2 14003parse (struct parser_state *ps)
6c038f32
PH
14004{
14005 warnings_issued = 0;
410a0ff2 14006 return ada_parse (ps);
6c038f32
PH
14007}
14008
14009static const struct exp_descriptor ada_exp_descriptor = {
14010 ada_print_subexp,
14011 ada_operator_length,
c0201579 14012 ada_operator_check,
6c038f32
PH
14013 ada_op_name,
14014 ada_dump_subexp_body,
14015 ada_evaluate_subexp
14016};
14017
1a119f36 14018/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
14019 for Ada. */
14020
1a119f36
JB
14021static symbol_name_cmp_ftype
14022ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
14023{
14024 if (should_use_wild_match (lookup_name))
14025 return wild_match;
14026 else
14027 return compare_names;
14028}
14029
a5ee536b
JB
14030/* Implement the "la_read_var_value" language_defn method for Ada. */
14031
14032static struct value *
63e43d3a
PMR
14033ada_read_var_value (struct symbol *var, const struct block *var_block,
14034 struct frame_info *frame)
a5ee536b 14035{
3977b71f 14036 const struct block *frame_block = NULL;
a5ee536b
JB
14037 struct symbol *renaming_sym = NULL;
14038
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
14041 if (frame)
14042 frame_block = get_frame_block (frame, NULL);
14043 if (frame_block)
14044 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14045 if (renaming_sym != NULL)
14046 return ada_read_renaming_var_value (renaming_sym, frame_block);
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
63e43d3a 14050 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14051}
14052
56618e20
TT
14053static const char *ada_extensions[] =
14054{
14055 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14056};
14057
6c038f32
PH
14058const struct language_defn ada_language_defn = {
14059 "ada", /* Language name */
6abde28f 14060 "Ada",
6c038f32 14061 language_ada,
6c038f32 14062 range_check_off,
6c038f32
PH
14063 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14064 that's not quite what this means. */
6c038f32 14065 array_row_major,
9a044a89 14066 macro_expansion_no,
56618e20 14067 ada_extensions,
6c038f32
PH
14068 &ada_exp_descriptor,
14069 parse,
b3f11165 14070 ada_yyerror,
6c038f32
PH
14071 resolve,
14072 ada_printchar, /* Print a character constant */
14073 ada_printstr, /* Function to print string constant */
14074 emit_char, /* Function to print single char (not used) */
6c038f32 14075 ada_print_type, /* Print a type using appropriate syntax */
be942545 14076 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14077 ada_val_print, /* Print a value using appropriate syntax */
14078 ada_value_print, /* Print a top-level value */
a5ee536b 14079 ada_read_var_value, /* la_read_var_value */
6c038f32 14080 NULL, /* Language specific skip_trampoline */
2b2d9e11 14081 NULL, /* name_of_this */
6c038f32
PH
14082 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14083 basic_lookup_transparent_type, /* lookup_transparent_type */
14084 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14085 ada_sniff_from_mangled_name,
0963b4bd
MS
14086 NULL, /* Language specific
14087 class_name_from_physname */
6c038f32
PH
14088 ada_op_print_tab, /* expression operators for printing */
14089 0, /* c-style arrays */
14090 1, /* String lower bound */
6c038f32 14091 ada_get_gdb_completer_word_break_characters,
41d27058 14092 ada_make_symbol_completion_list,
72d5681a 14093 ada_language_arch_info,
e79af960 14094 ada_print_array_index,
41f1b697 14095 default_pass_by_reference,
ae6a3a4c 14096 c_get_string,
1a119f36 14097 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14098 ada_iterate_over_symbols,
a53b64ea 14099 &ada_varobj_ops,
bb2ec1b3
TT
14100 NULL,
14101 NULL,
6c038f32
PH
14102 LANG_MAGIC
14103};
14104
2c0b251b
PA
14105/* Provide a prototype to silence -Wmissing-prototypes. */
14106extern initialize_file_ftype _initialize_ada_language;
14107
5bf03f13
JB
14108/* Command-list for the "set/show ada" prefix command. */
14109static struct cmd_list_element *set_ada_list;
14110static struct cmd_list_element *show_ada_list;
14111
14112/* Implement the "set ada" prefix command. */
14113
14114static void
14115set_ada_command (char *arg, int from_tty)
14116{
14117 printf_unfiltered (_(\
14118"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14119 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14120}
14121
14122/* Implement the "show ada" prefix command. */
14123
14124static void
14125show_ada_command (char *args, int from_tty)
14126{
14127 cmd_show_list (show_ada_list, from_tty, "");
14128}
14129
2060206e
PA
14130static void
14131initialize_ada_catchpoint_ops (void)
14132{
14133 struct breakpoint_ops *ops;
14134
14135 initialize_breakpoint_ops ();
14136
14137 ops = &catch_exception_breakpoint_ops;
14138 *ops = bkpt_breakpoint_ops;
14139 ops->dtor = dtor_catch_exception;
14140 ops->allocate_location = allocate_location_catch_exception;
14141 ops->re_set = re_set_catch_exception;
14142 ops->check_status = check_status_catch_exception;
14143 ops->print_it = print_it_catch_exception;
14144 ops->print_one = print_one_catch_exception;
14145 ops->print_mention = print_mention_catch_exception;
14146 ops->print_recreate = print_recreate_catch_exception;
14147
14148 ops = &catch_exception_unhandled_breakpoint_ops;
14149 *ops = bkpt_breakpoint_ops;
14150 ops->dtor = dtor_catch_exception_unhandled;
14151 ops->allocate_location = allocate_location_catch_exception_unhandled;
14152 ops->re_set = re_set_catch_exception_unhandled;
14153 ops->check_status = check_status_catch_exception_unhandled;
14154 ops->print_it = print_it_catch_exception_unhandled;
14155 ops->print_one = print_one_catch_exception_unhandled;
14156 ops->print_mention = print_mention_catch_exception_unhandled;
14157 ops->print_recreate = print_recreate_catch_exception_unhandled;
14158
14159 ops = &catch_assert_breakpoint_ops;
14160 *ops = bkpt_breakpoint_ops;
14161 ops->dtor = dtor_catch_assert;
14162 ops->allocate_location = allocate_location_catch_assert;
14163 ops->re_set = re_set_catch_assert;
14164 ops->check_status = check_status_catch_assert;
14165 ops->print_it = print_it_catch_assert;
14166 ops->print_one = print_one_catch_assert;
14167 ops->print_mention = print_mention_catch_assert;
14168 ops->print_recreate = print_recreate_catch_assert;
14169}
14170
3d9434b5
JB
14171/* This module's 'new_objfile' observer. */
14172
14173static void
14174ada_new_objfile_observer (struct objfile *objfile)
14175{
14176 ada_clear_symbol_cache ();
14177}
14178
14179/* This module's 'free_objfile' observer. */
14180
14181static void
14182ada_free_objfile_observer (struct objfile *objfile)
14183{
14184 ada_clear_symbol_cache ();
14185}
14186
d2e4a39e 14187void
6c038f32 14188_initialize_ada_language (void)
14f9c5c9 14189{
6c038f32
PH
14190 add_language (&ada_language_defn);
14191
2060206e
PA
14192 initialize_ada_catchpoint_ops ();
14193
5bf03f13
JB
14194 add_prefix_cmd ("ada", no_class, set_ada_command,
14195 _("Prefix command for changing Ada-specfic settings"),
14196 &set_ada_list, "set ada ", 0, &setlist);
14197
14198 add_prefix_cmd ("ada", no_class, show_ada_command,
14199 _("Generic command for showing Ada-specific settings."),
14200 &show_ada_list, "show ada ", 0, &showlist);
14201
14202 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14203 &trust_pad_over_xvs, _("\
14204Enable or disable an optimization trusting PAD types over XVS types"), _("\
14205Show whether an optimization trusting PAD types over XVS types is activated"),
14206 _("\
14207This is related to the encoding used by the GNAT compiler. The debugger\n\
14208should normally trust the contents of PAD types, but certain older versions\n\
14209of GNAT have a bug that sometimes causes the information in the PAD type\n\
14210to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14211work around this bug. It is always safe to turn this option \"off\", but\n\
14212this incurs a slight performance penalty, so it is recommended to NOT change\n\
14213this option to \"off\" unless necessary."),
14214 NULL, NULL, &set_ada_list, &show_ada_list);
14215
d72413e6
PMR
14216 add_setshow_boolean_cmd ("print-signatures", class_vars,
14217 &print_signatures, _("\
14218Enable or disable the output of formal and return types for functions in the \
14219overloads selection menu"), _("\
14220Show whether the output of formal and return types for functions in the \
14221overloads selection menu is activated"),
14222 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14223
9ac4176b
PA
14224 add_catch_command ("exception", _("\
14225Catch Ada exceptions, when raised.\n\
14226With an argument, catch only exceptions with the given name."),
14227 catch_ada_exception_command,
14228 NULL,
14229 CATCH_PERMANENT,
14230 CATCH_TEMPORARY);
14231 add_catch_command ("assert", _("\
14232Catch failed Ada assertions, when raised.\n\
14233With an argument, catch only exceptions with the given name."),
14234 catch_assert_command,
14235 NULL,
14236 CATCH_PERMANENT,
14237 CATCH_TEMPORARY);
14238
6c038f32 14239 varsize_limit = 65536;
6c038f32 14240
778865d3
JB
14241 add_info ("exceptions", info_exceptions_command,
14242 _("\
14243List all Ada exception names.\n\
14244If a regular expression is passed as an argument, only those matching\n\
14245the regular expression are listed."));
14246
c6044dd1
JB
14247 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14248 _("Set Ada maintenance-related variables."),
14249 &maint_set_ada_cmdlist, "maintenance set ada ",
14250 0/*allow-unknown*/, &maintenance_set_cmdlist);
14251
14252 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14253 _("Show Ada maintenance-related variables"),
14254 &maint_show_ada_cmdlist, "maintenance show ada ",
14255 0/*allow-unknown*/, &maintenance_show_cmdlist);
14256
14257 add_setshow_boolean_cmd
14258 ("ignore-descriptive-types", class_maintenance,
14259 &ada_ignore_descriptive_types_p,
14260 _("Set whether descriptive types generated by GNAT should be ignored."),
14261 _("Show whether descriptive types generated by GNAT should be ignored."),
14262 _("\
14263When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14264DWARF attribute."),
14265 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14266
6c038f32
PH
14267 obstack_init (&symbol_list_obstack);
14268
14269 decoded_names_store = htab_create_alloc
14270 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14271 NULL, xcalloc, xfree);
6b69afc4 14272
3d9434b5
JB
14273 /* The ada-lang observers. */
14274 observer_attach_new_objfile (ada_new_objfile_observer);
14275 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14276 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14277
14278 /* Setup various context-specific data. */
e802dbe0 14279 ada_inferior_data
8e260fc0 14280 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14281 ada_pspace_data_handle
14282 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14283}