]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
bitfield-parent-optimized-out: Fix struct definition
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
8b302db8
TT
1455/* Implement la_sniff_from_mangled_name for Ada. */
1456
1457static int
1458ada_sniff_from_mangled_name (const char *mangled, char **out)
1459{
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
14f9c5c9 1494/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
14f9c5c9 1500
2c0b251b 1501static int
40658b94 1502match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1503{
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
73589123 1507 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1508 else
1509 {
1510 int len_name = strlen (name);
5b4ee69b 1511
4c4b4cd2
PH
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
61012eef 1514 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1517 }
14f9c5c9 1518}
14f9c5c9 1519\f
d2e4a39e 1520
4c4b4cd2 1521 /* Arrays */
14f9c5c9 1522
28c85d6c
JB
1523/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546void
1547ada_fixup_array_indexes_type (struct type *index_desc_type)
1548{
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
0d5cff50 1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576}
1577
4c4b4cd2 1578/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1579
d2e4a39e
AS
1580static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583};
1584
1585/* Maximum number of array dimensions we are prepared to handle. */
1586
4c4b4cd2 1587#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1588
14f9c5c9 1589
4c4b4cd2
PH
1590/* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
14f9c5c9
AS
1592
1593/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1594 level of indirection, if needed. */
1595
d2e4a39e
AS
1596static struct type *
1597desc_base_type (struct type *type)
14f9c5c9
AS
1598{
1599 if (type == NULL)
1600 return NULL;
61ee279c 1601 type = ada_check_typedef (type);
720d1a40
JB
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1265e4aa
JB
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1609 else
1610 return type;
1611}
1612
4c4b4cd2
PH
1613/* True iff TYPE indicates a "thin" array pointer type. */
1614
14f9c5c9 1615static int
d2e4a39e 1616is_thin_pntr (struct type *type)
14f9c5c9 1617{
d2e4a39e 1618 return
14f9c5c9
AS
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621}
1622
4c4b4cd2
PH
1623/* The descriptor type for thin pointer type TYPE. */
1624
d2e4a39e
AS
1625static struct type *
1626thin_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *base_type = desc_base_type (type);
5b4ee69b 1629
14f9c5c9
AS
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
d2e4a39e 1634 else
14f9c5c9 1635 {
d2e4a39e 1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1637
14f9c5c9 1638 if (alt_type == NULL)
4c4b4cd2 1639 return base_type;
14f9c5c9 1640 else
4c4b4cd2 1641 return alt_type;
14f9c5c9
AS
1642 }
1643}
1644
4c4b4cd2
PH
1645/* A pointer to the array data for thin-pointer value VAL. */
1646
d2e4a39e
AS
1647static struct value *
1648thin_data_pntr (struct value *val)
14f9c5c9 1649{
828292f2 1650 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1652
556bdfd4
UW
1653 data_type = lookup_pointer_type (data_type);
1654
14f9c5c9 1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1656 return value_cast (data_type, value_copy (val));
d2e4a39e 1657 else
42ae5230 1658 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1659}
1660
4c4b4cd2
PH
1661/* True iff TYPE indicates a "thick" array pointer type. */
1662
14f9c5c9 1663static int
d2e4a39e 1664is_thick_pntr (struct type *type)
14f9c5c9
AS
1665{
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1669}
1670
4c4b4cd2
PH
1671/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1673
d2e4a39e
AS
1674static struct type *
1675desc_bounds_type (struct type *type)
14f9c5c9 1676{
d2e4a39e 1677 struct type *r;
14f9c5c9
AS
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
4c4b4cd2 1687 return NULL;
14f9c5c9
AS
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (r);
14f9c5c9
AS
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
61ee279c 1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1697 }
1698 return NULL;
1699}
1700
1701/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
d2e4a39e
AS
1704static struct value *
1705desc_bounds (struct value *arr)
14f9c5c9 1706{
df407dfe 1707 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1708
d2e4a39e 1709 if (is_thin_pntr (type))
14f9c5c9 1710 {
d2e4a39e 1711 struct type *bounds_type =
4c4b4cd2 1712 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1713 LONGEST addr;
1714
4cdfadb1 1715 if (bounds_type == NULL)
323e0a4a 1716 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1717
1718 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1719 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1720 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1722 addr = value_as_long (arr);
d2e4a39e 1723 else
42ae5230 1724 addr = value_address (arr);
14f9c5c9 1725
d2e4a39e 1726 return
4c4b4cd2
PH
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1729 }
1730
1731 else if (is_thick_pntr (type))
05e522ef
JB
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
14f9c5c9
AS
1752 else
1753 return NULL;
1754}
1755
4c4b4cd2
PH
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1761{
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763}
1764
1765/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1766 size of the field containing the address of the bounds data. */
1767
14f9c5c9 1768static int
d2e4a39e 1769fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1770{
1771 type = desc_base_type (type);
1772
d2e4a39e 1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
61ee279c 1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1777}
1778
4c4b4cd2 1779/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
4c4b4cd2 1783
d2e4a39e 1784static struct type *
556bdfd4 1785desc_data_target_type (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
4c4b4cd2 1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1790 if (is_thin_pntr (type))
556bdfd4 1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1792 else if (is_thick_pntr (type))
556bdfd4
UW
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1799 }
1800
1801 return NULL;
14f9c5c9
AS
1802}
1803
1804/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
4c4b4cd2 1806
d2e4a39e
AS
1807static struct value *
1808desc_data (struct value *arr)
14f9c5c9 1809{
df407dfe 1810 struct type *type = value_type (arr);
5b4ee69b 1811
14f9c5c9
AS
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
d2e4a39e 1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1816 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1817 else
1818 return NULL;
1819}
1820
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 position of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1827{
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829}
1830
1831/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1832 size of the field containing the address of the data. */
1833
14f9c5c9 1834static int
d2e4a39e 1835fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1841 else
14f9c5c9
AS
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843}
1844
4c4b4cd2 1845/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
d2e4a39e
AS
1849static struct value *
1850desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1851{
d2e4a39e 1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1853 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1854}
1855
1856/* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
14f9c5c9 1860static int
d2e4a39e 1861desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1862{
d2e4a39e 1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1864}
1865
1866/* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
76a01679 1870static int
d2e4a39e 1871desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1872{
1873 type = desc_base_type (type);
1874
d2e4a39e
AS
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1879}
1880
1881/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
d2e4a39e
AS
1884static struct type *
1885desc_index_type (struct type *type, int i)
14f9c5c9
AS
1886{
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
14f9c5c9
AS
1892 return NULL;
1893}
1894
4c4b4cd2
PH
1895/* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
14f9c5c9 1898static int
d2e4a39e 1899desc_arity (struct type *type)
14f9c5c9
AS
1900{
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
76a01679
JB
1912static int
1913ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1914{
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
4c4b4cd2 1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1919 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1920}
1921
52ce6436 1922/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1923 * to one. */
52ce6436 1924
2c0b251b 1925static int
52ce6436
PH
1926ada_is_array_type (struct type *type)
1927{
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933}
1934
4c4b4cd2 1935/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1936
14f9c5c9 1937int
4c4b4cd2 1938ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1939{
1940 if (type == NULL)
1941 return 0;
61ee279c 1942 type = ada_check_typedef (type);
14f9c5c9 1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1947}
1948
4c4b4cd2
PH
1949/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
14f9c5c9 1951int
4c4b4cd2 1952ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1953{
556bdfd4 1954 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1955
1956 if (type == NULL)
1957 return 0;
61ee279c 1958 type = ada_check_typedef (type);
556bdfd4
UW
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1962}
1963
1964/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1965 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1966 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1967 is still needed. */
1968
14f9c5c9 1969int
ebf56fd3 1970ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1971{
d2e4a39e 1972 return
14f9c5c9
AS
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1978}
1979
1980
4c4b4cd2 1981/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1982 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1984 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1987 a descriptor. */
d2e4a39e
AS
1988struct type *
1989ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1990{
ad82864c
JB
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1993
df407dfe
AC
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
d2e4a39e
AS
1996
1997 if (!bounds)
ad82864c
JB
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
14f9c5c9
AS
2008 else
2009 {
d2e4a39e 2010 struct type *elt_type;
14f9c5c9 2011 int arity;
d2e4a39e 2012 struct value *descriptor;
14f9c5c9 2013
df407dfe
AC
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
14f9c5c9 2016
d2e4a39e 2017 if (elt_type == NULL || arity == 0)
df407dfe 2018 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2019
2020 descriptor = desc_bounds (arr);
d2e4a39e 2021 if (value_as_long (descriptor) == 0)
4c4b4cd2 2022 return NULL;
d2e4a39e 2023 while (arity > 0)
4c4b4cd2 2024 {
e9bb382b
UW
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2029
5b4ee69b 2030 arity -= 1;
0c9c3474
SA
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
4c4b4cd2 2034 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
4c4b4cd2 2056 }
14f9c5c9
AS
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060}
2061
2062/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
d2e4a39e
AS
2067struct value *
2068ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2069{
df407dfe 2070 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2071 {
d2e4a39e 2072 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2073
14f9c5c9 2074 if (arrType == NULL)
4c4b4cd2 2075 return NULL;
14f9c5c9
AS
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
ad82864c
JB
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2080 else
2081 return arr;
2082}
2083
2084/* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2086 be ARR itself if it already is in the proper form). */
2087
720d1a40 2088struct value *
d2e4a39e 2089ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2090{
df407dfe 2091 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2092 {
d2e4a39e 2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2094
14f9c5c9 2095 if (arrVal == NULL)
323e0a4a 2096 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2098 return value_ind (arrVal);
2099 }
ad82864c
JB
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
d2e4a39e 2102 else
14f9c5c9
AS
2103 return arr;
2104}
2105
2106/* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2108 packing). For other types, is the identity. */
2109
d2e4a39e
AS
2110struct type *
2111ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2112{
ad82864c
JB
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
17280b9f
UW
2115
2116 if (ada_is_array_descriptor_type (type))
556bdfd4 2117 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2118
2119 return type;
14f9c5c9
AS
2120}
2121
4c4b4cd2
PH
2122/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
ad82864c
JB
2124static int
2125ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2126{
2127 if (type == NULL)
2128 return 0;
4c4b4cd2 2129 type = desc_base_type (type);
61ee279c 2130 type = ada_check_typedef (type);
d2e4a39e 2131 return
14f9c5c9
AS
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134}
2135
ad82864c
JB
2136/* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139int
2140ada_is_constrained_packed_array_type (struct type *type)
2141{
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144}
2145
2146/* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149static int
2150ada_is_unconstrained_packed_array_type (struct type *type)
2151{
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154}
2155
2156/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159static long
2160decode_packed_array_bitsize (struct type *type)
2161{
0d5cff50
DE
2162 const char *raw_name;
2163 const char *tail;
ad82864c
JB
2164 long bits;
2165
720d1a40
JB
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
720d1a40 2180 gdb_assert (tail != NULL);
ad82864c
JB
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190}
2191
14f9c5c9
AS
2192/* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
4c4b4cd2 2208
d2e4a39e 2209static struct type *
ad82864c 2210constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2211{
d2e4a39e
AS
2212 struct type *new_elt_type;
2213 struct type *new_type;
99b1c762
JB
2214 struct type *index_type_desc;
2215 struct type *index_type;
14f9c5c9
AS
2216 LONGEST low_bound, high_bound;
2217
61ee279c 2218 type = ada_check_typedef (type);
14f9c5c9
AS
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
99b1c762
JB
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
e9bb382b 2229 new_type = alloc_type_copy (type);
ad82864c
JB
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
99b1c762 2233 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
4a46959e
JB
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2246 TYPE_LENGTH (new_type) =
4c4b4cd2 2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2248 }
2249
876cecd0 2250 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2251 return new_type;
2252}
2253
ad82864c
JB
2254/* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2256
d2e4a39e 2257static struct type *
ad82864c 2258decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2259{
0d5cff50 2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2261 char *name;
0d5cff50 2262 const char *tail;
d2e4a39e 2263 struct type *shadow_type;
14f9c5c9 2264 long bits;
14f9c5c9 2265
727e3d2e
JB
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2274 type = desc_base_type (type);
2275
14f9c5c9
AS
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
b4ba55a1
JB
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
14f9c5c9 2282 {
323e0a4a 2283 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2284 return NULL;
2285 }
f168693b 2286 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
0963b4bd
MS
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
14f9c5c9
AS
2292 return NULL;
2293 }
d2e4a39e 2294
ad82864c
JB
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2297}
2298
ad82864c
JB
2299/* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
4c4b4cd2 2303 type length is set appropriately. */
14f9c5c9 2304
d2e4a39e 2305static struct value *
ad82864c 2306decode_constrained_packed_array (struct value *arr)
14f9c5c9 2307{
4c4b4cd2 2308 struct type *type;
14f9c5c9 2309
11aa919a
PMR
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
828292f2 2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2319 arr = value_ind (arr);
4c4b4cd2 2320
ad82864c 2321 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2322 if (type == NULL)
2323 {
323e0a4a 2324 error (_("can't unpack array"));
14f9c5c9
AS
2325 return NULL;
2326 }
61ee279c 2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2329 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
df407dfe 2338 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
df407dfe 2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
4c4b4cd2 2353 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2354}
2355
2356
2357/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2358 given in IND. ARR must be a simple array. */
14f9c5c9 2359
d2e4a39e
AS
2360static struct value *
2361value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2362{
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
d2e4a39e
AS
2366 struct type *elt_type;
2367 struct value *v;
14f9c5c9
AS
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
df407dfe 2371 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2372 for (i = 0; i < arity; i += 1)
14f9c5c9 2373 {
d2e4a39e 2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
0963b4bd
MS
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
14f9c5c9 2379 else
4c4b4cd2
PH
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
323e0a4a 2387 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2388 lowerbound = upperbound = 0;
2389 }
2390
3cb382c9 2391 idx = pos_atr (ind[i]);
4c4b4cd2 2392 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
4c4b4cd2
PH
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2398 }
14f9c5c9
AS
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2404 bits, elt_type);
14f9c5c9
AS
2405 return v;
2406}
2407
4c4b4cd2 2408/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2409
2410static int
d2e4a39e 2411has_negatives (struct type *type)
14f9c5c9 2412{
d2e4a39e
AS
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
14f9c5c9 2422}
d2e4a39e 2423
f93fca70 2424/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2426 the unpacked buffer.
14f9c5c9 2427
5b639dea
JB
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
f93fca70
JB
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
14f9c5c9 2433
f93fca70 2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2435
f93fca70
JB
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438static void
2439ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443{
a1c95e6b
JB
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
a1c95e6b
JB
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
4c4b4cd2 2454 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2455 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2456 unsigned char sign;
a1c95e6b 2457
4c4b4cd2
PH
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
f93fca70 2460 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2461
5b639dea
JB
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
14f9c5c9 2468 srcBitsLeft = bit_size;
086ca51f 2469 src_bytes_left = src_len;
f93fca70 2470 unpacked_bytes_left = unpacked_len;
14f9c5c9 2471 sign = 0;
f93fca70
JB
2472
2473 if (is_big_endian)
14f9c5c9 2474 {
086ca51f 2475 src_idx = src_len - 1;
f93fca70
JB
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2478 sign = ~0;
d2e4a39e
AS
2479
2480 unusedLS =
4c4b4cd2
PH
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
14f9c5c9 2483
f93fca70
JB
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
4c4b4cd2
PH
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
086ca51f
JB
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2498 }
14f9c5c9 2499 }
d2e4a39e 2500 else
14f9c5c9
AS
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
086ca51f 2504 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
f93fca70 2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2509 sign = ~0;
14f9c5c9 2510 }
d2e4a39e 2511
14f9c5c9 2512 accum = 0;
086ca51f 2513 while (src_bytes_left > 0)
14f9c5c9
AS
2514 {
2515 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2516 part of the value. */
d2e4a39e 2517 unsigned int unusedMSMask =
4c4b4cd2
PH
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
14f9c5c9 2521 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2522
d2e4a39e 2523 accum |=
086ca51f 2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2525 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2526 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2527 {
db297a65 2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
4c4b4cd2 2533 }
14f9c5c9
AS
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
086ca51f
JB
2536 src_bytes_left -= 1;
2537 src_idx += delta;
14f9c5c9 2538 }
086ca51f 2539 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2540 {
2541 accum |= sign << accumSize;
db297a65 2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2543 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2544 if (accumSize < 0)
2545 accumSize = 0;
14f9c5c9 2546 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
14f9c5c9 2549 }
f93fca70
JB
2550}
2551
2552/* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561struct value *
2562ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565{
2566 struct value *v;
bfb1c796 2567 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2568 gdb_byte *unpacked;
220475ed 2569 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb_byte *staging = NULL;
2572 int staging_len = 0;
2573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2574
2575 type = ada_check_typedef (type);
2576
d0a9e810 2577 if (obj == NULL)
bfb1c796 2578 src = valaddr + offset;
d0a9e810 2579 else
bfb1c796 2580 src = value_contents (obj) + offset;
d0a9e810
JB
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2592 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2593 make_cleanup (xfree, staging);
2594
2595 ada_unpack_from_contents (src, bit_offset, bit_size,
2596 staging, staging_len,
2597 is_big_endian, has_negatives (type),
2598 is_scalar);
2599 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2600 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 {
2602 /* This happens when the length of the object is dynamic,
2603 and is actually smaller than the space reserved for it.
2604 For instance, in an array of variant records, the bit_size
2605 we're given is the array stride, which is constant and
2606 normally equal to the maximum size of its element.
2607 But, in reality, each element only actually spans a portion
2608 of that stride. */
2609 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 }
d0a9e810
JB
2611 }
2612
f93fca70
JB
2613 if (obj == NULL)
2614 {
2615 v = allocate_value (type);
bfb1c796 2616 src = valaddr + offset;
f93fca70
JB
2617 }
2618 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619 {
0cafa88c 2620 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2621 gdb_byte *buf;
0cafa88c 2622
f93fca70 2623 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2624 buf = (gdb_byte *) alloca (src_len);
2625 read_memory (value_address (v), buf, src_len);
2626 src = buf;
f93fca70
JB
2627 }
2628 else
2629 {
2630 v = allocate_value (type);
bfb1c796 2631 src = value_contents (obj) + offset;
f93fca70
JB
2632 }
2633
2634 if (obj != NULL)
2635 {
2636 long new_offset = offset;
2637
2638 set_value_component_location (v, obj);
2639 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640 set_value_bitsize (v, bit_size);
2641 if (value_bitpos (v) >= HOST_CHAR_BIT)
2642 {
2643 ++new_offset;
2644 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645 }
2646 set_value_offset (v, new_offset);
2647
2648 /* Also set the parent value. This is needed when trying to
2649 assign a new value (in inferior memory). */
2650 set_value_parent (v, obj);
2651 }
2652 else
2653 set_value_bitsize (v, bit_size);
bfb1c796 2654 unpacked = value_contents_writeable (v);
f93fca70
JB
2655
2656 if (bit_size == 0)
2657 {
2658 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2659 do_cleanups (old_chain);
f93fca70
JB
2660 return v;
2661 }
2662
d0a9e810 2663 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2664 {
d0a9e810
JB
2665 /* Small short-cut: If we've unpacked the data into a buffer
2666 of the same size as TYPE's length, then we can reuse that,
2667 instead of doing the unpacking again. */
2668 memcpy (unpacked, staging, staging_len);
f93fca70 2669 }
d0a9e810
JB
2670 else
2671 ada_unpack_from_contents (src, bit_offset, bit_size,
2672 unpacked, TYPE_LENGTH (type),
2673 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2674
d0a9e810 2675 do_cleanups (old_chain);
14f9c5c9
AS
2676 return v;
2677}
d2e4a39e 2678
14f9c5c9
AS
2679/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2681 not overlap. */
14f9c5c9 2682static void
fc1a4b47 2683move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2684 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2685{
2686 unsigned int accum, mask;
2687 int accum_bits, chunk_size;
2688
2689 target += targ_offset / HOST_CHAR_BIT;
2690 targ_offset %= HOST_CHAR_BIT;
2691 source += src_offset / HOST_CHAR_BIT;
2692 src_offset %= HOST_CHAR_BIT;
50810684 2693 if (bits_big_endian_p)
14f9c5c9
AS
2694 {
2695 accum = (unsigned char) *source;
2696 source += 1;
2697 accum_bits = HOST_CHAR_BIT - src_offset;
2698
d2e4a39e 2699 while (n > 0)
4c4b4cd2
PH
2700 {
2701 int unused_right;
5b4ee69b 2702
4c4b4cd2
PH
2703 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704 accum_bits += HOST_CHAR_BIT;
2705 source += 1;
2706 chunk_size = HOST_CHAR_BIT - targ_offset;
2707 if (chunk_size > n)
2708 chunk_size = n;
2709 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710 mask = ((1 << chunk_size) - 1) << unused_right;
2711 *target =
2712 (*target & ~mask)
2713 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714 n -= chunk_size;
2715 accum_bits -= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
14f9c5c9
AS
2719 }
2720 else
2721 {
2722 accum = (unsigned char) *source >> src_offset;
2723 source += 1;
2724 accum_bits = HOST_CHAR_BIT - src_offset;
2725
d2e4a39e 2726 while (n > 0)
4c4b4cd2
PH
2727 {
2728 accum = accum + ((unsigned char) *source << accum_bits);
2729 accum_bits += HOST_CHAR_BIT;
2730 source += 1;
2731 chunk_size = HOST_CHAR_BIT - targ_offset;
2732 if (chunk_size > n)
2733 chunk_size = n;
2734 mask = ((1 << chunk_size) - 1) << targ_offset;
2735 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736 n -= chunk_size;
2737 accum_bits -= chunk_size;
2738 accum >>= chunk_size;
2739 target += 1;
2740 targ_offset = 0;
2741 }
14f9c5c9
AS
2742 }
2743}
2744
14f9c5c9
AS
2745/* Store the contents of FROMVAL into the location of TOVAL.
2746 Return a new value with the location of TOVAL and contents of
2747 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2748 floating-point or non-scalar types. */
14f9c5c9 2749
d2e4a39e
AS
2750static struct value *
2751ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2752{
df407dfe
AC
2753 struct type *type = value_type (toval);
2754 int bits = value_bitsize (toval);
14f9c5c9 2755
52ce6436
PH
2756 toval = ada_coerce_ref (toval);
2757 fromval = ada_coerce_ref (fromval);
2758
2759 if (ada_is_direct_array_type (value_type (toval)))
2760 toval = ada_coerce_to_simple_array (toval);
2761 if (ada_is_direct_array_type (value_type (fromval)))
2762 fromval = ada_coerce_to_simple_array (fromval);
2763
88e3b34b 2764 if (!deprecated_value_modifiable (toval))
323e0a4a 2765 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2766
d2e4a39e 2767 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2768 && bits > 0
d2e4a39e 2769 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2770 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2771 {
df407dfe
AC
2772 int len = (value_bitpos (toval)
2773 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2774 int from_size;
224c3ddb 2775 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2776 struct value *val;
42ae5230 2777 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2778
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2780 fromval = value_cast (type, fromval);
14f9c5c9 2781
52ce6436 2782 read_memory (to_addr, buffer, len);
aced2898
PH
2783 from_size = value_bitsize (fromval);
2784 if (from_size == 0)
2785 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2786 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2787 move_bits (buffer, value_bitpos (toval),
50810684 2788 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2789 else
50810684
UW
2790 move_bits (buffer, value_bitpos (toval),
2791 value_contents (fromval), 0, bits, 0);
972daa01 2792 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2793
14f9c5c9 2794 val = value_copy (toval);
0fd88904 2795 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2796 TYPE_LENGTH (type));
04624583 2797 deprecated_set_value_type (val, type);
d2e4a39e 2798
14f9c5c9
AS
2799 return val;
2800 }
2801
2802 return value_assign (toval, fromval);
2803}
2804
2805
7c512744
JB
2806/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2809 COMPONENT, and not the inferior's memory. The current contents
2810 of COMPONENT are ignored.
2811
2812 Although not part of the initial design, this function also works
2813 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814 had a null address, and COMPONENT had an address which is equal to
2815 its offset inside CONTAINER. */
2816
52ce6436
PH
2817static void
2818value_assign_to_component (struct value *container, struct value *component,
2819 struct value *val)
2820{
2821 LONGEST offset_in_container =
42ae5230 2822 (LONGEST) (value_address (component) - value_address (container));
7c512744 2823 int bit_offset_in_container =
52ce6436
PH
2824 value_bitpos (component) - value_bitpos (container);
2825 int bits;
7c512744 2826
52ce6436
PH
2827 val = value_cast (value_type (component), val);
2828
2829 if (value_bitsize (component) == 0)
2830 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831 else
2832 bits = value_bitsize (component);
2833
50810684 2834 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2835 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val),
2838 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2839 bits, 1);
52ce6436 2840 else
7c512744 2841 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2842 value_bitpos (container) + bit_offset_in_container,
50810684 2843 value_contents (val), 0, bits, 0);
7c512744
JB
2844}
2845
4c4b4cd2
PH
2846/* The value of the element of array ARR at the ARITY indices given in IND.
2847 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2848 thereto. */
2849
d2e4a39e
AS
2850struct value *
2851ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2852{
2853 int k;
d2e4a39e
AS
2854 struct value *elt;
2855 struct type *elt_type;
14f9c5c9
AS
2856
2857 elt = ada_coerce_to_simple_array (arr);
2858
df407dfe 2859 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2860 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2861 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862 return value_subscript_packed (elt, arity, ind);
2863
2864 for (k = 0; k < arity; k += 1)
2865 {
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2867 error (_("too many subscripts (%d expected)"), k);
2497b498 2868 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2869 }
2870 return elt;
2871}
2872
deede10c
JB
2873/* Assuming ARR is a pointer to a GDB array, the value of the element
2874 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2875 Does not read the entire array into memory.
2876
2877 Note: Unlike what one would expect, this function is used instead of
2878 ada_value_subscript for basically all non-packed array types. The reason
2879 for this is that a side effect of doing our own pointer arithmetics instead
2880 of relying on value_subscript is that there is no implicit typedef peeling.
2881 This is important for arrays of array accesses, where it allows us to
2882 preserve the fact that the array's element is an array access, where the
2883 access part os encoded in a typedef layer. */
14f9c5c9 2884
2c0b251b 2885static struct value *
deede10c 2886ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2887{
2888 int k;
919e6dbe 2889 struct value *array_ind = ada_value_ind (arr);
deede10c 2890 struct type *type
919e6dbe
PMR
2891 = check_typedef (value_enclosing_type (array_ind));
2892
2893 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2896
2897 for (k = 0; k < arity; k += 1)
2898 {
2899 LONGEST lwb, upb;
aa715135 2900 struct value *lwb_value;
14f9c5c9
AS
2901
2902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2903 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2904 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2905 value_copy (arr));
14f9c5c9 2906 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2907 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2909 type = TYPE_TARGET_TYPE (type);
2910 }
2911
2912 return value_ind (arr);
2913}
2914
0b5d8877 2915/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2916 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2918 this array is LOW, as per Ada rules. */
0b5d8877 2919static struct value *
f5938064
JG
2920ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921 int low, int high)
0b5d8877 2922{
b0dd7688 2923 struct type *type0 = ada_check_typedef (type);
aa715135 2924 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2925 struct type *index_type
aa715135 2926 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2927 struct type *slice_type =
b0dd7688 2928 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
5b4ee69b 2940
aa715135
JG
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2944 return value_at_lazy (slice_type, base);
0b5d8877
PH
2945}
2946
2947
2948static struct value *
2949ada_value_slice (struct value *array, int low, int high)
2950{
b0dd7688 2951 struct type *type = ada_check_typedef (value_type (array));
aa715135 2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2955 struct type *slice_type =
0b5d8877 2956 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2957 LONGEST low_pos, high_pos;
5b4ee69b 2958
aa715135
JG
2959 if (!discrete_position (base_index_type, low, &low_pos)
2960 || !discrete_position (base_index_type, high, &high_pos))
2961 {
2962 warning (_("unable to get positions in slice, use bounds instead"));
2963 low_pos = low;
2964 high_pos = high;
2965 }
2966
2967 return value_cast (slice_type,
2968 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2969}
2970
14f9c5c9
AS
2971/* If type is a record type in the form of a standard GNAT array
2972 descriptor, returns the number of dimensions for type. If arr is a
2973 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2974 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2975
2976int
d2e4a39e 2977ada_array_arity (struct type *type)
14f9c5c9
AS
2978{
2979 int arity;
2980
2981 if (type == NULL)
2982 return 0;
2983
2984 type = desc_base_type (type);
2985
2986 arity = 0;
d2e4a39e 2987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2988 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2989 else
2990 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2991 {
4c4b4cd2 2992 arity += 1;
61ee279c 2993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2994 }
d2e4a39e 2995
14f9c5c9
AS
2996 return arity;
2997}
2998
2999/* If TYPE is a record type in the form of a standard GNAT array
3000 descriptor or a simple array type, returns the element type for
3001 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3002 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3003
d2e4a39e
AS
3004struct type *
3005ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3006{
3007 type = desc_base_type (type);
3008
d2e4a39e 3009 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3010 {
3011 int k;
d2e4a39e 3012 struct type *p_array_type;
14f9c5c9 3013
556bdfd4 3014 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3015
3016 k = ada_array_arity (type);
3017 if (k == 0)
4c4b4cd2 3018 return NULL;
d2e4a39e 3019
4c4b4cd2 3020 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3021 if (nindices >= 0 && k > nindices)
4c4b4cd2 3022 k = nindices;
d2e4a39e 3023 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3024 {
61ee279c 3025 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3026 k -= 1;
3027 }
14f9c5c9
AS
3028 return p_array_type;
3029 }
3030 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3033 {
3034 type = TYPE_TARGET_TYPE (type);
3035 nindices -= 1;
3036 }
14f9c5c9
AS
3037 return type;
3038 }
3039
3040 return NULL;
3041}
3042
4c4b4cd2 3043/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3044 Does not examine memory. Throws an error if N is invalid or TYPE
3045 is not an array type. NAME is the name of the Ada attribute being
3046 evaluated ('range, 'first, 'last, or 'length); it is used in building
3047 the error message. */
14f9c5c9 3048
1eea4ebd
UW
3049static struct type *
3050ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3051{
4c4b4cd2
PH
3052 struct type *result_type;
3053
14f9c5c9
AS
3054 type = desc_base_type (type);
3055
1eea4ebd
UW
3056 if (n < 0 || n > ada_array_arity (type))
3057 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3058
4c4b4cd2 3059 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3060 {
3061 int i;
3062
3063 for (i = 1; i < n; i += 1)
4c4b4cd2 3064 type = TYPE_TARGET_TYPE (type);
262452ec 3065 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3066 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3068 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3069 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070 result_type = NULL;
14f9c5c9 3071 }
d2e4a39e 3072 else
1eea4ebd
UW
3073 {
3074 result_type = desc_index_type (desc_bounds_type (type), n);
3075 if (result_type == NULL)
3076 error (_("attempt to take bound of something that is not an array"));
3077 }
3078
3079 return result_type;
14f9c5c9
AS
3080}
3081
3082/* Given that arr is an array type, returns the lower bound of the
3083 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3084 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3085 array-descriptor type. It works for other arrays with bounds supplied
3086 by run-time quantities other than discriminants. */
14f9c5c9 3087
abb68b3e 3088static LONGEST
fb5e3d5c 3089ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3090{
8a48ac95 3091 struct type *type, *index_type_desc, *index_type;
1ce677a4 3092 int i;
262452ec
JK
3093
3094 gdb_assert (which == 0 || which == 1);
14f9c5c9 3095
ad82864c
JB
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3098
4c4b4cd2 3099 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3100 return (LONGEST) - which;
14f9c5c9
AS
3101
3102 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103 type = TYPE_TARGET_TYPE (arr_type);
3104 else
3105 type = arr_type;
3106
bafffb51
JB
3107 if (TYPE_FIXED_INSTANCE (type))
3108 {
3109 /* The array has already been fixed, so we do not need to
3110 check the parallel ___XA type again. That encoding has
3111 already been applied, so ignore it now. */
3112 index_type_desc = NULL;
3113 }
3114 else
3115 {
3116 index_type_desc = ada_find_parallel_type (type, "___XA");
3117 ada_fixup_array_indexes_type (index_type_desc);
3118 }
3119
262452ec 3120 if (index_type_desc != NULL)
28c85d6c
JB
3121 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 NULL);
262452ec 3123 else
8a48ac95
JB
3124 {
3125 struct type *elt_type = check_typedef (type);
3126
3127 for (i = 1; i < n; i++)
3128 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129
3130 index_type = TYPE_INDEX_TYPE (elt_type);
3131 }
262452ec 3132
43bbcdc2
PH
3133 return
3134 (LONGEST) (which == 0
3135 ? ada_discrete_type_low_bound (index_type)
3136 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3137}
3138
3139/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3140 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3142 supplied by run-time quantities other than discriminants. */
14f9c5c9 3143
1eea4ebd 3144static LONGEST
4dc81987 3145ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3146{
eb479039
JB
3147 struct type *arr_type;
3148
3149 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150 arr = value_ind (arr);
3151 arr_type = value_enclosing_type (arr);
14f9c5c9 3152
ad82864c
JB
3153 if (ada_is_constrained_packed_array_type (arr_type))
3154 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3155 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3156 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3157 else
1eea4ebd 3158 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3159}
3160
3161/* Given that arr is an array value, returns the length of the
3162 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3163 supplied by run-time quantities other than discriminants.
3164 Does not work for arrays indexed by enumeration types with representation
3165 clauses at the moment. */
14f9c5c9 3166
1eea4ebd 3167static LONGEST
d2e4a39e 3168ada_array_length (struct value *arr, int n)
14f9c5c9 3169{
aa715135
JG
3170 struct type *arr_type, *index_type;
3171 int low, high;
eb479039
JB
3172
3173 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174 arr = value_ind (arr);
3175 arr_type = value_enclosing_type (arr);
14f9c5c9 3176
ad82864c
JB
3177 if (ada_is_constrained_packed_array_type (arr_type))
3178 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3179
4c4b4cd2 3180 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3181 {
3182 low = ada_array_bound_from_type (arr_type, n, 0);
3183 high = ada_array_bound_from_type (arr_type, n, 1);
3184 }
14f9c5c9 3185 else
aa715135
JG
3186 {
3187 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189 }
3190
f168693b 3191 arr_type = check_typedef (arr_type);
aa715135
JG
3192 index_type = TYPE_INDEX_TYPE (arr_type);
3193 if (index_type != NULL)
3194 {
3195 struct type *base_type;
3196 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 base_type = TYPE_TARGET_TYPE (index_type);
3198 else
3199 base_type = index_type;
3200
3201 low = pos_atr (value_from_longest (base_type, low));
3202 high = pos_atr (value_from_longest (base_type, high));
3203 }
3204 return high - low + 1;
4c4b4cd2
PH
3205}
3206
3207/* An empty array whose type is that of ARR_TYPE (an array type),
3208 with bounds LOW to LOW-1. */
3209
3210static struct value *
3211empty_array (struct type *arr_type, int low)
3212{
b0dd7688 3213 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3214 struct type *index_type
3215 = create_static_range_type
3216 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3217 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3218
0b5d8877 3219 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3220}
14f9c5c9 3221\f
d2e4a39e 3222
4c4b4cd2 3223 /* Name resolution */
14f9c5c9 3224
4c4b4cd2
PH
3225/* The "decoded" name for the user-definable Ada operator corresponding
3226 to OP. */
14f9c5c9 3227
d2e4a39e 3228static const char *
4c4b4cd2 3229ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3230{
3231 int i;
3232
4c4b4cd2 3233 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3234 {
3235 if (ada_opname_table[i].op == op)
4c4b4cd2 3236 return ada_opname_table[i].decoded;
14f9c5c9 3237 }
323e0a4a 3238 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3239}
3240
3241
4c4b4cd2
PH
3242/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244 undefined namespace) and converts operators that are
3245 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3246 non-null, it provides a preferred result type [at the moment, only
3247 type void has any effect---causing procedures to be preferred over
3248 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3249 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3250
4c4b4cd2
PH
3251static void
3252resolve (struct expression **expp, int void_context_p)
14f9c5c9 3253{
30b15541
UW
3254 struct type *context_type = NULL;
3255 int pc = 0;
3256
3257 if (void_context_p)
3258 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259
3260 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3261}
3262
4c4b4cd2
PH
3263/* Resolve the operator of the subexpression beginning at
3264 position *POS of *EXPP. "Resolving" consists of replacing
3265 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266 with their resolutions, replacing built-in operators with
3267 function calls to user-defined operators, where appropriate, and,
3268 when DEPROCEDURE_P is non-zero, converting function-valued variables
3269 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3270 are as in ada_resolve, above. */
14f9c5c9 3271
d2e4a39e 3272static struct value *
4c4b4cd2 3273resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3274 struct type *context_type)
14f9c5c9
AS
3275{
3276 int pc = *pos;
3277 int i;
4c4b4cd2 3278 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3279 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3280 struct value **argvec; /* Vector of operand types (alloca'ed). */
3281 int nargs; /* Number of operands. */
52ce6436 3282 int oplen;
14f9c5c9
AS
3283
3284 argvec = NULL;
3285 nargs = 0;
3286 exp = *expp;
3287
52ce6436
PH
3288 /* Pass one: resolve operands, saving their types and updating *pos,
3289 if needed. */
14f9c5c9
AS
3290 switch (op)
3291 {
4c4b4cd2
PH
3292 case OP_FUNCALL:
3293 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3294 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295 *pos += 7;
4c4b4cd2
PH
3296 else
3297 {
3298 *pos += 3;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 }
3301 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3302 break;
3303
14f9c5c9 3304 case UNOP_ADDR:
4c4b4cd2
PH
3305 *pos += 1;
3306 resolve_subexp (expp, pos, 0, NULL);
3307 break;
3308
52ce6436
PH
3309 case UNOP_QUAL:
3310 *pos += 3;
17466c1a 3311 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3312 break;
3313
52ce6436 3314 case OP_ATR_MODULUS:
4c4b4cd2
PH
3315 case OP_ATR_SIZE:
3316 case OP_ATR_TAG:
4c4b4cd2
PH
3317 case OP_ATR_FIRST:
3318 case OP_ATR_LAST:
3319 case OP_ATR_LENGTH:
3320 case OP_ATR_POS:
3321 case OP_ATR_VAL:
4c4b4cd2
PH
3322 case OP_ATR_MIN:
3323 case OP_ATR_MAX:
52ce6436
PH
3324 case TERNOP_IN_RANGE:
3325 case BINOP_IN_BOUNDS:
3326 case UNOP_IN_RANGE:
3327 case OP_AGGREGATE:
3328 case OP_OTHERS:
3329 case OP_CHOICES:
3330 case OP_POSITIONAL:
3331 case OP_DISCRETE_RANGE:
3332 case OP_NAME:
3333 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334 *pos += oplen;
14f9c5c9
AS
3335 break;
3336
3337 case BINOP_ASSIGN:
3338 {
4c4b4cd2
PH
3339 struct value *arg1;
3340
3341 *pos += 1;
3342 arg1 = resolve_subexp (expp, pos, 0, NULL);
3343 if (arg1 == NULL)
3344 resolve_subexp (expp, pos, 1, NULL);
3345 else
df407dfe 3346 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3347 break;
14f9c5c9
AS
3348 }
3349
4c4b4cd2 3350 case UNOP_CAST:
4c4b4cd2
PH
3351 *pos += 3;
3352 nargs = 1;
3353 break;
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 case BINOP_REM:
3360 case BINOP_MOD:
3361 case BINOP_EXP:
3362 case BINOP_CONCAT:
3363 case BINOP_LOGICAL_AND:
3364 case BINOP_LOGICAL_OR:
3365 case BINOP_BITWISE_AND:
3366 case BINOP_BITWISE_IOR:
3367 case BINOP_BITWISE_XOR:
14f9c5c9 3368
4c4b4cd2
PH
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
14f9c5c9 3375
4c4b4cd2
PH
3376 case BINOP_REPEAT:
3377 case BINOP_SUBSCRIPT:
3378 case BINOP_COMMA:
40c8aaa9
JB
3379 *pos += 1;
3380 nargs = 2;
3381 break;
14f9c5c9 3382
4c4b4cd2
PH
3383 case UNOP_NEG:
3384 case UNOP_PLUS:
3385 case UNOP_LOGICAL_NOT:
3386 case UNOP_ABS:
3387 case UNOP_IND:
3388 *pos += 1;
3389 nargs = 1;
3390 break;
14f9c5c9 3391
4c4b4cd2
PH
3392 case OP_LONG:
3393 case OP_DOUBLE:
3394 case OP_VAR_VALUE:
3395 *pos += 4;
3396 break;
14f9c5c9 3397
4c4b4cd2
PH
3398 case OP_TYPE:
3399 case OP_BOOL:
3400 case OP_LAST:
4c4b4cd2
PH
3401 case OP_INTERNALVAR:
3402 *pos += 3;
3403 break;
14f9c5c9 3404
4c4b4cd2
PH
3405 case UNOP_MEMVAL:
3406 *pos += 3;
3407 nargs = 1;
3408 break;
3409
67f3407f
DJ
3410 case OP_REGISTER:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 break;
3413
4c4b4cd2
PH
3414 case STRUCTOP_STRUCT:
3415 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 nargs = 1;
3417 break;
3418
4c4b4cd2 3419 case TERNOP_SLICE:
4c4b4cd2
PH
3420 *pos += 1;
3421 nargs = 3;
3422 break;
3423
52ce6436 3424 case OP_STRING:
14f9c5c9 3425 break;
4c4b4cd2
PH
3426
3427 default:
323e0a4a 3428 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3429 }
3430
8d749320 3431 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3432 for (i = 0; i < nargs; i += 1)
3433 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434 argvec[i] = NULL;
3435 exp = *expp;
3436
3437 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3438 switch (op)
3439 {
3440 default:
3441 break;
3442
14f9c5c9 3443 case OP_VAR_VALUE:
4c4b4cd2 3444 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3445 {
d12307c1 3446 struct block_symbol *candidates;
76a01679
JB
3447 int n_candidates;
3448
3449 n_candidates =
3450 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451 (exp->elts[pc + 2].symbol),
3452 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3453 &candidates);
76a01679
JB
3454
3455 if (n_candidates > 1)
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 int j;
3461 for (j = 0; j < n_candidates; j += 1)
d12307c1 3462 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3463 {
3464 case LOC_REGISTER:
3465 case LOC_ARG:
3466 case LOC_REF_ARG:
76a01679
JB
3467 case LOC_REGPARM_ADDR:
3468 case LOC_LOCAL:
76a01679 3469 case LOC_COMPUTED:
76a01679
JB
3470 goto FoundNonType;
3471 default:
3472 break;
3473 }
3474 FoundNonType:
3475 if (j < n_candidates)
3476 {
3477 j = 0;
3478 while (j < n_candidates)
3479 {
d12307c1 3480 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3481 {
3482 candidates[j] = candidates[n_candidates - 1];
3483 n_candidates -= 1;
3484 }
3485 else
3486 j += 1;
3487 }
3488 }
3489 }
3490
3491 if (n_candidates == 0)
323e0a4a 3492 error (_("No definition found for %s"),
76a01679
JB
3493 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494 else if (n_candidates == 1)
3495 i = 0;
3496 else if (deprocedure_p
3497 && !is_nonfunction (candidates, n_candidates))
3498 {
06d5cf63
JB
3499 i = ada_resolve_function
3500 (candidates, n_candidates, NULL, 0,
3501 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502 context_type);
76a01679 3503 if (i < 0)
323e0a4a 3504 error (_("Could not find a match for %s"),
76a01679
JB
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 }
3507 else
3508 {
323e0a4a 3509 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3510 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511 user_select_syms (candidates, n_candidates, 1);
3512 i = 0;
3513 }
3514
3515 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3516 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3517 if (innermost_block == NULL
3518 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3519 innermost_block = candidates[i].block;
3520 }
3521
3522 if (deprocedure_p
3523 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524 == TYPE_CODE_FUNC))
3525 {
3526 replace_operator_with_call (expp, pc, 0, 0,
3527 exp->elts[pc + 2].symbol,
3528 exp->elts[pc + 1].block);
3529 exp = *expp;
3530 }
14f9c5c9
AS
3531 break;
3532
3533 case OP_FUNCALL:
3534 {
4c4b4cd2 3535 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3536 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3537 {
d12307c1 3538 struct block_symbol *candidates;
4c4b4cd2
PH
3539 int n_candidates;
3540
3541 n_candidates =
76a01679
JB
3542 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543 (exp->elts[pc + 5].symbol),
3544 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3545 &candidates);
4c4b4cd2
PH
3546 if (n_candidates == 1)
3547 i = 0;
3548 else
3549 {
06d5cf63
JB
3550 i = ada_resolve_function
3551 (candidates, n_candidates,
3552 argvec, nargs,
3553 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554 context_type);
4c4b4cd2 3555 if (i < 0)
323e0a4a 3556 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3557 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558 }
3559
3560 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3561 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3562 if (innermost_block == NULL
3563 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3564 innermost_block = candidates[i].block;
3565 }
14f9c5c9
AS
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3590 {
d12307c1 3591 struct block_symbol *candidates;
4c4b4cd2
PH
3592 int n_candidates;
3593
3594 n_candidates =
3595 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3597 &candidates);
4c4b4cd2 3598 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3599 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3600 if (i < 0)
3601 break;
3602
d12307c1
PMR
3603 replace_operator_with_call (expp, pc, nargs, 1,
3604 candidates[i].symbol,
3605 candidates[i].block);
4c4b4cd2
PH
3606 exp = *expp;
3607 }
14f9c5c9 3608 break;
4c4b4cd2
PH
3609
3610 case OP_TYPE:
b3dbf008 3611 case OP_REGISTER:
4c4b4cd2 3612 return NULL;
14f9c5c9
AS
3613 }
3614
3615 *pos = pc;
3616 return evaluate_subexp_type (exp, pos);
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 4043 int is_all_choice, char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
0bcd0149 4046 char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
d2e4a39e 4118replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4127 struct expression *exp = *expp;
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
aacb1f0a 4144 xfree (exp);
d2e4a39e 4145}
14f9c5c9
AS
4146
4147/* Type-class predicates */
4148
4c4b4cd2
PH
4149/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153numeric_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4c4b4cd2
PH
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
d2e4a39e 4170 }
14f9c5c9
AS
4171}
4172
4c4b4cd2 4173/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176integer_type_p (struct type *type)
14f9c5c9
AS
4177{
4178 if (type == NULL)
4179 return 0;
d2e4a39e
AS
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4c4b4cd2
PH
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
d2e4a39e 4192 }
14f9c5c9
AS
4193}
4194
4c4b4cd2 4195/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4196
4197static int
d2e4a39e 4198scalar_type_p (struct type *type)
14f9c5c9
AS
4199{
4200 if (type == NULL)
4201 return 0;
d2e4a39e
AS
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4c4b4cd2
PH
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
d2e4a39e 4214 }
14f9c5c9
AS
4215}
4216
4c4b4cd2 4217/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4218
4219static int
d2e4a39e 4220discrete_type_p (struct type *type)
14f9c5c9
AS
4221{
4222 if (type == NULL)
4223 return 0;
d2e4a39e
AS
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4c4b4cd2
PH
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
872f0337 4231 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4232 return 1;
4233 default:
4234 return 0;
4235 }
d2e4a39e 4236 }
14f9c5c9
AS
4237}
4238
4c4b4cd2
PH
4239/* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
14f9c5c9
AS
4242
4243static int
d2e4a39e 4244possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4245{
76a01679 4246 struct type *type0 =
df407dfe 4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4248 struct type *type1 =
df407dfe 4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4250
4c4b4cd2
PH
4251 if (type0 == NULL)
4252 return 0;
4253
14f9c5c9
AS
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
d2e4a39e 4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
d2e4a39e 4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
d2e4a39e 4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4279
4280 case BINOP_CONCAT:
ee90b9ab 4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4282
4283 case BINOP_EXP:
d2e4a39e 4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
14f9c5c9
AS
4291
4292 }
4293}
4294\f
4c4b4cd2 4295 /* Renaming */
14f9c5c9 4296
aeb5907d
JB
4297/* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309/* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
0963b4bd 4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328enum ada_renaming_category
4329ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332{
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
14f9c5c9 4340 {
aeb5907d
JB
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
14f9c5c9 4374 }
4c4b4cd2 4375
aeb5907d
JB
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387}
4388
4389/* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393static enum ada_renaming_category
4394parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397{
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
14f9c5c9 4402
aeb5907d
JB
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
14f9c5c9 4406
aeb5907d
JB
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
14f9c5c9 4432
aeb5907d
JB
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
a5ee536b
JB
4446}
4447
4448/* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
52ce6436 4451
a5ee536b
JB
4452static struct value *
4453ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4454 const struct block *block)
a5ee536b 4455{
bbc13ae3 4456 const char *sym_name;
a5ee536b 4457
bbc13ae3 4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
a5ee536b 4461}
14f9c5c9 4462\f
d2e4a39e 4463
4c4b4cd2 4464 /* Evaluation: Function Calls */
14f9c5c9 4465
4c4b4cd2 4466/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4469
d2e4a39e 4470static struct value *
40bc484c 4471ensure_lval (struct value *val)
14f9c5c9 4472{
40bc484c
JB
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4475 {
df407dfe 4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4479
40bc484c 4480 set_value_address (val, addr);
a84a8a0d 4481 VALUE_LVAL (val) = lval_memory;
40bc484c 4482 write_memory (addr, value_contents (val), len);
c3e5cd34 4483 }
14f9c5c9
AS
4484
4485 return val;
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
14f9c5c9 4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
14f9c5c9 4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
5b4ee69b 4521
df407dfe 4522 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4523 val = allocate_value (actual_type);
990a07ab 4524 memcpy ((char *) value_contents_raw (val),
0fd88904 4525 (char *) value_contents (actual),
4c4b4cd2 4526 TYPE_LENGTH (actual_type));
40bc484c 4527 actual = ensure_lval (val);
4c4b4cd2 4528 }
a84a8a0d 4529 result = value_addr (actual);
4c4b4cd2 4530 }
a84a8a0d
JB
4531 else
4532 return actual;
b1af9e97 4533 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
8344af1e
JB
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
14f9c5c9
AS
4547
4548 return actual;
4549}
4550
438c98a1
JB
4551/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556static CORE_ADDR
4557value_pointer (struct value *value, struct type *type)
4558{
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
224c3ddb 4561 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568}
4569
14f9c5c9 4570
4c4b4cd2
PH
4571/* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
14f9c5c9 4576
d2e4a39e 4577static struct value *
40bc484c 4578make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4579{
d2e4a39e
AS
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4584 int i;
d2e4a39e 4585
0963b4bd
MS
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
14f9c5c9 4588 {
19f220c3
JK
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4597 }
d2e4a39e 4598
40bc484c 4599 bounds = ensure_lval (bounds);
d2e4a39e 4600
19f220c3
JK
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4614
40bc484c 4615 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621}
14f9c5c9 4622\f
3d9434b5
JB
4623 /* Symbol Cache Module */
4624
3d9434b5 4625/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4626 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
ee01b665 4635/* Initialize the contents of SYM_CACHE. */
3d9434b5 4636
ee01b665
JB
4637static void
4638ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639{
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642}
3d9434b5 4643
ee01b665
JB
4644/* Free the memory used by SYM_CACHE. */
4645
4646static void
4647ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4648{
ee01b665
JB
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651}
3d9434b5 4652
ee01b665
JB
4653/* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4655
ee01b665
JB
4656static struct ada_symbol_cache *
4657ada_get_symbol_cache (struct program_space *pspace)
4658{
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4660
66c168ae 4661 if (pspace_data->sym_cache == NULL)
ee01b665 4662 {
66c168ae
JB
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4665 }
4666
66c168ae 4667 return pspace_data->sym_cache;
ee01b665 4668}
3d9434b5
JB
4669
4670/* Clear all entries from the symbol cache. */
4671
4672static void
4673ada_clear_symbol_cache (void)
4674{
ee01b665
JB
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4680}
4681
fe978cb0 4682/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return it if found, or NULL otherwise. */
4684
4685static struct cache_entry **
fe978cb0 4686find_entry (const char *name, domain_enum domain)
3d9434b5 4687{
ee01b665
JB
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
ee01b665 4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4694 {
fe978cb0 4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4696 return e;
4697 }
4698 return NULL;
4699}
4700
fe978cb0 4701/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4706
96d887e8 4707static int
fe978cb0 4708lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4709 struct symbol **sym, const struct block **block)
96d887e8 4710{
fe978cb0 4711 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
96d887e8
PH
4720}
4721
3d9434b5 4722/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4723 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4724
96d887e8 4725static void
fe978cb0 4726cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4727 const struct block *block)
96d887e8 4728{
ee01b665
JB
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
1994afbf
DE
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
3d9434b5
JB
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
08be3fe3 4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4746 GLOBAL_BLOCK) != block
08be3fe3 4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4748 STATIC_BLOCK) != block)
3d9434b5
JB
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
224c3ddb
SM
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4758 strcpy (copy, name);
4759 e->sym = sym;
fe978cb0 4760 e->domain = domain;
3d9434b5 4761 e->block = block;
96d887e8 4762}
4c4b4cd2
PH
4763\f
4764 /* Symbol Lookup */
4765
c0431670
JB
4766/* Return nonzero if wild matching should be used when searching for
4767 all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772static int
4773should_use_wild_match (const char *lookup_name)
4774{
4775 return (strstr (lookup_name, "__") == NULL);
4776}
4777
4c4b4cd2
PH
4778/* Return the result of a standard (literal, C-like) lookup of NAME in
4779 given DOMAIN, visible from lexical block BLOCK. */
4780
4781static struct symbol *
4782standard_lookup (const char *name, const struct block *block,
4783 domain_enum domain)
4784{
acbd605d 4785 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4786 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4787
d12307c1
PMR
4788 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4789 return sym.symbol;
2570f2b7 4790 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4791 cache_symbol (name, domain, sym.symbol, sym.block);
4792 return sym.symbol;
4c4b4cd2
PH
4793}
4794
4795
4796/* Non-zero iff there is at least one non-function/non-enumeral symbol
4797 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4798 since they contend in overloading in the same way. */
4799static int
d12307c1 4800is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4801{
4802 int i;
4803
4804 for (i = 0; i < n; i += 1)
d12307c1
PMR
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4806 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4807 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4808 return 1;
4809
4810 return 0;
4811}
4812
4813/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4814 struct types. Otherwise, they may not. */
14f9c5c9
AS
4815
4816static int
d2e4a39e 4817equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4818{
d2e4a39e 4819 if (type0 == type1)
14f9c5c9 4820 return 1;
d2e4a39e 4821 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4822 || TYPE_CODE (type0) != TYPE_CODE (type1))
4823 return 0;
d2e4a39e 4824 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4825 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4826 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4827 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4828 return 1;
d2e4a39e 4829
14f9c5c9
AS
4830 return 0;
4831}
4832
4833/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4834 no more defined than that of SYM1. */
14f9c5c9
AS
4835
4836static int
d2e4a39e 4837lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4838{
4839 if (sym0 == sym1)
4840 return 1;
176620f1 4841 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4842 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4843 return 0;
4844
d2e4a39e 4845 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4846 {
4847 case LOC_UNDEF:
4848 return 1;
4849 case LOC_TYPEDEF:
4850 {
4c4b4cd2
PH
4851 struct type *type0 = SYMBOL_TYPE (sym0);
4852 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4853 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4854 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4855 int len0 = strlen (name0);
5b4ee69b 4856
4c4b4cd2
PH
4857 return
4858 TYPE_CODE (type0) == TYPE_CODE (type1)
4859 && (equiv_types (type0, type1)
4860 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4861 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4862 }
4863 case LOC_CONST:
4864 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4865 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4866 default:
4867 return 0;
14f9c5c9
AS
4868 }
4869}
4870
d12307c1 4871/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4872 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4873
4874static void
76a01679
JB
4875add_defn_to_vec (struct obstack *obstackp,
4876 struct symbol *sym,
f0c5f9b2 4877 const struct block *block)
14f9c5c9
AS
4878{
4879 int i;
d12307c1 4880 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4881
529cad9c
PH
4882 /* Do not try to complete stub types, as the debugger is probably
4883 already scanning all symbols matching a certain name at the
4884 time when this function is called. Trying to replace the stub
4885 type by its associated full type will cause us to restart a scan
4886 which may lead to an infinite recursion. Instead, the client
4887 collecting the matching symbols will end up collecting several
4888 matches, with at least one of them complete. It can then filter
4889 out the stub ones if needed. */
4890
4c4b4cd2
PH
4891 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4892 {
d12307c1 4893 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4894 return;
d12307c1 4895 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4896 {
d12307c1 4897 prevDefns[i].symbol = sym;
4c4b4cd2 4898 prevDefns[i].block = block;
4c4b4cd2 4899 return;
76a01679 4900 }
4c4b4cd2
PH
4901 }
4902
4903 {
d12307c1 4904 struct block_symbol info;
4c4b4cd2 4905
d12307c1 4906 info.symbol = sym;
4c4b4cd2 4907 info.block = block;
d12307c1 4908 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4909 }
4910}
4911
d12307c1
PMR
4912/* Number of block_symbol structures currently collected in current vector in
4913 OBSTACKP. */
4c4b4cd2 4914
76a01679
JB
4915static int
4916num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4917{
d12307c1 4918 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4919}
4920
d12307c1
PMR
4921/* Vector of block_symbol structures currently collected in current vector in
4922 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4923
d12307c1 4924static struct block_symbol *
4c4b4cd2
PH
4925defns_collected (struct obstack *obstackp, int finish)
4926{
4927 if (finish)
224c3ddb 4928 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4929 else
d12307c1 4930 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4931}
4932
7c7b6655
TT
4933/* Return a bound minimal symbol matching NAME according to Ada
4934 decoding rules. Returns an invalid symbol if there is no such
4935 minimal symbol. Names prefixed with "standard__" are handled
4936 specially: "standard__" is first stripped off, and only static and
4937 global symbols are searched. */
4c4b4cd2 4938
7c7b6655 4939struct bound_minimal_symbol
96d887e8 4940ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4941{
7c7b6655 4942 struct bound_minimal_symbol result;
4c4b4cd2 4943 struct objfile *objfile;
96d887e8 4944 struct minimal_symbol *msymbol;
dc4024cd 4945 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4946
7c7b6655
TT
4947 memset (&result, 0, sizeof (result));
4948
c0431670
JB
4949 /* Special case: If the user specifies a symbol name inside package
4950 Standard, do a non-wild matching of the symbol name without
4951 the "standard__" prefix. This was primarily introduced in order
4952 to allow the user to specifically access the standard exceptions
4953 using, for instance, Standard.Constraint_Error when Constraint_Error
4954 is ambiguous (due to the user defining its own Constraint_Error
4955 entity inside its program). */
61012eef 4956 if (startswith (name, "standard__"))
c0431670 4957 name += sizeof ("standard__") - 1;
4c4b4cd2 4958
96d887e8
PH
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
efd66ac6 4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
96d887e8 4968 }
4c4b4cd2 4969
7c7b6655 4970 return result;
96d887e8 4971}
4c4b4cd2 4972
96d887e8
PH
4973/* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4c4b4cd2 4978
96d887e8
PH
4979static void
4980add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4981 const char *name, domain_enum domain,
48b78332 4982 int wild_match_p)
96d887e8 4983{
96d887e8 4984}
14f9c5c9 4985
96d887e8
PH
4986/* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
14f9c5c9 4988
96d887e8
PH
4989static int
4990is_nondebugging_type (struct type *type)
4991{
0d5cff50 4992 const char *name = ada_type_name (type);
5b4ee69b 4993
96d887e8
PH
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995}
4c4b4cd2 4996
8f17729f
JB
4997/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004static int
5005ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006{
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
0d5cff50
DE
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038}
5039
5040/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060static int
d12307c1 5061symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5062{
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
d12307c1 5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
d12307c1 5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5094 return 0;
5095
5096 return 1;
5097}
5098
96d887e8
PH
5099/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
4c4b4cd2 5105
96d887e8 5106static int
d12307c1 5107remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5108{
5109 int i, j;
4c4b4cd2 5110
8f17729f
JB
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
96d887e8
PH
5117 i = 0;
5118 while (i < nsyms)
5119 {
a35ddb44 5120 int remove_p = 0;
339c13b6
JB
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
d12307c1
PMR
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
d12307c1
PMR
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5135 remove_p = 1;
339c13b6
JB
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
d12307c1
PMR
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
d12307c1
PMR
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5156 remove_p = 1;
4c4b4cd2 5157 }
4c4b4cd2 5158 }
339c13b6 5159
a35ddb44 5160 if (remove_p)
339c13b6
JB
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
96d887e8 5167 i += 1;
14f9c5c9 5168 }
8f17729f
JB
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
96d887e8 5185 return nsyms;
14f9c5c9
AS
5186}
5187
96d887e8
PH
5188/* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5192
96d887e8
PH
5193static char *
5194xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5195{
96d887e8 5196 /* The renaming types adhere to the following convention:
0963b4bd 5197 <scope>__<rename>___<XR extension>.
96d887e8
PH
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
76a01679 5200
96d887e8 5201 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
96d887e8
PH
5204 int scope_len;
5205 char *scope;
14f9c5c9 5206
96d887e8
PH
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5209
96d887e8
PH
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
76a01679 5213
96d887e8 5214 /* Make a copy of scope and return it. */
14f9c5c9 5215
96d887e8
PH
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5218
96d887e8
PH
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
4c4b4cd2 5221
96d887e8 5222 return scope;
4c4b4cd2
PH
5223}
5224
96d887e8 5225/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5226
96d887e8
PH
5227static int
5228is_package_name (const char *name)
4c4b4cd2 5229{
96d887e8
PH
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
4c4b4cd2 5235
96d887e8 5236 char *fun_name;
76a01679 5237
96d887e8
PH
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
14f9c5c9 5245
96d887e8 5246 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5247 functions names cannot contain "__" in them. */
96d887e8
PH
5248 if (strstr (name, "__") != NULL)
5249 return 0;
4c4b4cd2 5250
b435e160 5251 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5252
96d887e8
PH
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254}
14f9c5c9 5255
96d887e8 5256/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5257 not visible from FUNCTION_NAME. */
14f9c5c9 5258
96d887e8 5259static int
0d5cff50 5260old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5261{
aeb5907d 5262 char *scope;
1509e573 5263 struct cleanup *old_chain;
aeb5907d
JB
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5269 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5270
96d887e8
PH
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
1509e573
JB
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
14f9c5c9 5277
96d887e8
PH
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
76a01679 5280
96d887e8
PH
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
61012eef 5285 if (startswith (function_name, "_ada_"))
96d887e8 5286 function_name += 5;
f26caa11 5287
1509e573 5288 {
61012eef 5289 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
f26caa11
PH
5294}
5295
aeb5907d
JB
5296/* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
96d887e8
PH
5301
5302 Rationale:
aeb5907d
JB
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
f26caa11 5315
96d887e8
PH
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
4c4b4cd2 5332
14f9c5c9 5333static int
d12307c1 5334remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5335 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5336{
5337 struct symbol *current_function;
0d5cff50 5338 const char *current_function_name;
4c4b4cd2 5339 int i;
aeb5907d
JB
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
0963b4bd 5344 First, zero out such symbols, then compress. */
aeb5907d
JB
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
d12307c1 5348 struct symbol *sym = syms[i].symbol;
270140bd 5349 const struct block *block = syms[i].block;
aeb5907d
JB
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5b4ee69b 5362
aeb5907d
JB
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5367 name_len) == 0
5368 && block == syms[j].block)
d12307c1 5369 syms[j].symbol = NULL;
aeb5907d
JB
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5377 if (syms[j].symbol != NULL)
aeb5907d
JB
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
4c4b4cd2
PH
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
76a01679 5387
4c4b4cd2
PH
5388 if (current_block == NULL)
5389 return nsyms;
76a01679 5390
7f0df278 5391 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
d12307c1 5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5407 == ADA_OBJECT_RENAMING
d12307c1 5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5409 {
5410 int j;
5b4ee69b 5411
aeb5907d 5412 for (j = i + 1; j < nsyms; j += 1)
76a01679 5413 syms[j - 1] = syms[j];
4c4b4cd2
PH
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421}
5422
339c13b6
JB
5423/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433static void
5434ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5435 const struct block *block, domain_enum domain,
d0a8ab18 5436 int wild_match_p)
339c13b6
JB
5437{
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
d0a8ab18
JB
5443 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5444 wild_match_p);
339c13b6
JB
5445
5446 /* If we found a non-function match, assume that's the one. */
5447 if (is_nonfunction (defns_collected (obstackp, 0),
5448 num_defns_collected (obstackp)))
5449 return;
5450
5451 block = BLOCK_SUPERBLOCK (block);
5452 }
5453
5454 /* If no luck so far, try to find NAME as a local symbol in some lexically
5455 enclosing subprogram. */
5456 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5457 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5458}
5459
ccefe4c4 5460/* An object of this type is used as the user_data argument when
40658b94 5461 calling the map_matching_symbols method. */
ccefe4c4 5462
40658b94 5463struct match_data
ccefe4c4 5464{
40658b94 5465 struct objfile *objfile;
ccefe4c4 5466 struct obstack *obstackp;
40658b94
PH
5467 struct symbol *arg_sym;
5468 int found_sym;
ccefe4c4
TT
5469};
5470
22cee43f 5471/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5472 to a list of symbols. DATA0 is a pointer to a struct match_data *
5473 containing the obstack that collects the symbol list, the file that SYM
5474 must come from, a flag indicating whether a non-argument symbol has
5475 been found in the current block, and the last argument symbol
5476 passed in SYM within the current block (if any). When SYM is null,
5477 marking the end of a block, the argument symbol is added if no
5478 other has been found. */
ccefe4c4 5479
40658b94
PH
5480static int
5481aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5482{
40658b94
PH
5483 struct match_data *data = (struct match_data *) data0;
5484
5485 if (sym == NULL)
5486 {
5487 if (!data->found_sym && data->arg_sym != NULL)
5488 add_defn_to_vec (data->obstackp,
5489 fixup_symbol_section (data->arg_sym, data->objfile),
5490 block);
5491 data->found_sym = 0;
5492 data->arg_sym = NULL;
5493 }
5494 else
5495 {
5496 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5497 return 0;
5498 else if (SYMBOL_IS_ARGUMENT (sym))
5499 data->arg_sym = sym;
5500 else
5501 {
5502 data->found_sym = 1;
5503 add_defn_to_vec (data->obstackp,
5504 fixup_symbol_section (sym, data->objfile),
5505 block);
5506 }
5507 }
5508 return 0;
5509}
5510
22cee43f
PMR
5511/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5512 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5513 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5514 function "wild_match" for more information). Return whether we found such
5515 symbols. */
5516
5517static int
5518ada_add_block_renamings (struct obstack *obstackp,
5519 const struct block *block,
5520 const char *name,
5521 domain_enum domain,
5522 int wild_match_p)
5523{
5524 struct using_direct *renaming;
5525 int defns_mark = num_defns_collected (obstackp);
5526
5527 for (renaming = block_using (block);
5528 renaming != NULL;
5529 renaming = renaming->next)
5530 {
5531 const char *r_name;
5532 int name_match;
5533
5534 /* Avoid infinite recursions: skip this renaming if we are actually
5535 already traversing it.
5536
5537 Currently, symbol lookup in Ada don't use the namespace machinery from
5538 C++/Fortran support: skip namespace imports that use them. */
5539 if (renaming->searched
5540 || (renaming->import_src != NULL
5541 && renaming->import_src[0] != '\0')
5542 || (renaming->import_dest != NULL
5543 && renaming->import_dest[0] != '\0'))
5544 continue;
5545 renaming->searched = 1;
5546
5547 /* TODO: here, we perform another name-based symbol lookup, which can
5548 pull its own multiple overloads. In theory, we should be able to do
5549 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5550 not a simple name. But in order to do this, we would need to enhance
5551 the DWARF reader to associate a symbol to this renaming, instead of a
5552 name. So, for now, we do something simpler: re-use the C++/Fortran
5553 namespace machinery. */
5554 r_name = (renaming->alias != NULL
5555 ? renaming->alias
5556 : renaming->declaration);
5557 name_match
5558 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5559 if (name_match == 0)
5560 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5561 1, NULL);
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565}
5566
db230ce3
JB
5567/* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5b4ee69b 5569
40658b94 5570static int
db230ce3
JB
5571compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
40658b94
PH
5573{
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
db230ce3
JB
5576 char c1, c2;
5577
40658b94
PH
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
40658b94 5592 break;
db230ce3 5593
40658b94
PH
5594 string1 += 1;
5595 string2 += 1;
5596 }
db230ce3 5597
40658b94
PH
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
052874e8 5605 if (is_name_suffix (string1))
40658b94
PH
5606 return 0;
5607 else
1a1d5513 5608 return 1;
40658b94 5609 }
dbb8534f 5610 /* FALLTHROUGH */
40658b94
PH
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
db230ce3
JB
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
40658b94 5621 }
ccefe4c4
TT
5622}
5623
db230ce3
JB
5624/* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635static int
5636compare_names (const char *string1, const char *string2)
5637{
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650}
5651
339c13b6
JB
5652/* Add to OBSTACKP all non-local symbols whose name and domain match
5653 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5654 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5655
5656static void
40658b94
PH
5657add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5658 domain_enum domain, int global,
5659 int is_wild_match)
339c13b6
JB
5660{
5661 struct objfile *objfile;
22cee43f 5662 struct compunit_symtab *cu;
40658b94 5663 struct match_data data;
339c13b6 5664
6475f2fe 5665 memset (&data, 0, sizeof data);
ccefe4c4 5666 data.obstackp = obstackp;
339c13b6 5667
ccefe4c4 5668 ALL_OBJFILES (objfile)
40658b94
PH
5669 {
5670 data.objfile = objfile;
5671
5672 if (is_wild_match)
4186eb54
KS
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 wild_match, NULL);
40658b94 5676 else
4186eb54
KS
5677 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5678 aux_add_nonlocal_symbols, &data,
5679 full_match, compare_names);
22cee43f
PMR
5680
5681 ALL_OBJFILE_COMPUNITS (objfile, cu)
5682 {
5683 const struct block *global_block
5684 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5685
5686 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 is_wild_match))
5688 data.found_sym = 1;
5689 }
40658b94
PH
5690 }
5691
5692 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5693 {
5694 ALL_OBJFILES (objfile)
5695 {
224c3ddb 5696 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5697 strcpy (name1, "_ada_");
5698 strcpy (name1 + sizeof ("_ada_") - 1, name);
5699 data.objfile = objfile;
ade7ed9e
DE
5700 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5701 global,
0963b4bd
MS
5702 aux_add_nonlocal_symbols,
5703 &data,
40658b94
PH
5704 full_match, compare_names);
5705 }
5706 }
339c13b6
JB
5707}
5708
22cee43f 5709/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5710 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5711 matches. Add these to OBSTACKP.
4eeaa230 5712
22cee43f
PMR
5713 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5714 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5715 is the one match returned (no other matches in that or
d9680e73 5716 enclosing blocks is returned). If there are any matches in or
22cee43f 5717 surrounding BLOCK, then these alone are returned.
4eeaa230 5718
9f88c959 5719 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5720 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5721
22cee43f
PMR
5722 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5723 to lookup global symbols. */
5724
5725static void
5726ada_add_all_symbols (struct obstack *obstackp,
5727 const struct block *block,
5728 const char *name,
5729 domain_enum domain,
5730 int full_search,
5731 int *made_global_lookup_p)
14f9c5c9
AS
5732{
5733 struct symbol *sym;
22cee43f 5734 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5735
22cee43f
PMR
5736 if (made_global_lookup_p)
5737 *made_global_lookup_p = 0;
339c13b6
JB
5738
5739 /* Special case: If the user specifies a symbol name inside package
5740 Standard, do a non-wild matching of the symbol name without
5741 the "standard__" prefix. This was primarily introduced in order
5742 to allow the user to specifically access the standard exceptions
5743 using, for instance, Standard.Constraint_Error when Constraint_Error
5744 is ambiguous (due to the user defining its own Constraint_Error
5745 entity inside its program). */
22cee43f 5746 if (startswith (name, "standard__"))
4c4b4cd2 5747 {
4c4b4cd2 5748 block = NULL;
22cee43f 5749 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5750 }
5751
339c13b6 5752 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5753
4eeaa230
DE
5754 if (block != NULL)
5755 {
5756 if (full_search)
22cee43f 5757 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5758 else
5759 {
5760 /* In the !full_search case we're are being called by
5761 ada_iterate_over_symbols, and we don't want to search
5762 superblocks. */
22cee43f
PMR
5763 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5764 wild_match_p);
4eeaa230 5765 }
22cee43f
PMR
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
4eeaa230 5768 }
d2e4a39e 5769
339c13b6
JB
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
22cee43f 5774 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5775 {
5776 if (sym != NULL)
22cee43f
PMR
5777 add_defn_to_vec (obstackp, sym, block);
5778 return;
4c4b4cd2 5779 }
14f9c5c9 5780
22cee43f
PMR
5781 if (made_global_lookup_p)
5782 *made_global_lookup_p = 1;
b1eedac9 5783
339c13b6
JB
5784 /* Search symbols from all global blocks. */
5785
22cee43f 5786 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5787
4c4b4cd2 5788 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5789 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5790
22cee43f
PMR
5791 if (num_defns_collected (obstackp) == 0)
5792 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5793}
5794
5795/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5796 non-zero, enclosing scope and in global scopes, returning the number of
5797 matches.
5798 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5799 indicating the symbols found and the blocks and symbol tables (if
5800 any) in which they were found. This vector is transient---good only to
5801 the next call of ada_lookup_symbol_list.
5802
5803 When full_search is non-zero, any non-function/non-enumeral
5804 symbol match within the nest of blocks whose innermost member is BLOCK,
5805 is the one match returned (no other matches in that or
5806 enclosing blocks is returned). If there are any matches in or
5807 surrounding BLOCK, then these alone are returned.
5808
5809 Names prefixed with "standard__" are handled specially: "standard__"
5810 is first stripped off, and only static and global symbols are searched. */
5811
5812static int
5813ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5814 domain_enum domain,
5815 struct block_symbol **results,
5816 int full_search)
5817{
5818 const int wild_match_p = should_use_wild_match (name);
5819 int syms_from_global_search;
5820 int ndefns;
5821
5822 obstack_free (&symbol_list_obstack, NULL);
5823 obstack_init (&symbol_list_obstack);
5824 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5825 full_search, &syms_from_global_search);
14f9c5c9 5826
4c4b4cd2
PH
5827 ndefns = num_defns_collected (&symbol_list_obstack);
5828 *results = defns_collected (&symbol_list_obstack, 1);
5829
5830 ndefns = remove_extra_symbols (*results, ndefns);
5831
b1eedac9 5832 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5833 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5834
b1eedac9 5835 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5836 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5837
22cee43f 5838 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5839 return ndefns;
5840}
5841
4eeaa230
DE
5842/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5843 in global scopes, returning the number of matches, and setting *RESULTS
5844 to a vector of (SYM,BLOCK) tuples.
5845 See ada_lookup_symbol_list_worker for further details. */
5846
5847int
5848ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5849 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5850{
5851 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5852}
5853
5854/* Implementation of the la_iterate_over_symbols method. */
5855
5856static void
5857ada_iterate_over_symbols (const struct block *block,
5858 const char *name, domain_enum domain,
5859 symbol_found_callback_ftype *callback,
5860 void *data)
5861{
5862 int ndefs, i;
d12307c1 5863 struct block_symbol *results;
4eeaa230
DE
5864
5865 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5866 for (i = 0; i < ndefs; ++i)
5867 {
d12307c1 5868 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5869 break;
5870 }
5871}
5872
f8eba3c6 5873/* If NAME is the name of an entity, return a string that should
2f408ecb 5874 be used to look that entity up in Ada units.
f8eba3c6
TT
5875
5876 NAME can have any form that the "break" or "print" commands might
5877 recognize. In other words, it does not have to be the "natural"
5878 name, or the "encoded" name. */
5879
2f408ecb 5880std::string
f8eba3c6
TT
5881ada_name_for_lookup (const char *name)
5882{
f8eba3c6
TT
5883 int nlen = strlen (name);
5884
5885 if (name[0] == '<' && name[nlen - 1] == '>')
2f408ecb 5886 return std::string (name + 1, nlen - 2);
f8eba3c6 5887 else
2f408ecb 5888 return ada_encode (ada_fold_name (name));
f8eba3c6
TT
5889}
5890
4e5c77fe
JB
5891/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5892 to 1, but choosing the first symbol found if there are multiple
5893 choices.
5894
5e2336be
JB
5895 The result is stored in *INFO, which must be non-NULL.
5896 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5897
5898void
5899ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5900 domain_enum domain,
d12307c1 5901 struct block_symbol *info)
14f9c5c9 5902{
d12307c1 5903 struct block_symbol *candidates;
14f9c5c9
AS
5904 int n_candidates;
5905
5e2336be 5906 gdb_assert (info != NULL);
d12307c1 5907 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5908
fe978cb0 5909 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5910 if (n_candidates == 0)
4e5c77fe 5911 return;
4c4b4cd2 5912
5e2336be 5913 *info = candidates[0];
d12307c1 5914 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5915}
aeb5907d
JB
5916
5917/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5918 scope and in global scopes, or NULL if none. NAME is folded and
5919 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5920 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5921 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5922
d12307c1 5923struct block_symbol
aeb5907d 5924ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5925 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5926{
d12307c1 5927 struct block_symbol info;
4e5c77fe 5928
aeb5907d
JB
5929 if (is_a_field_of_this != NULL)
5930 *is_a_field_of_this = 0;
5931
4e5c77fe 5932 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5933 block0, domain, &info);
d12307c1 5934 return info;
4c4b4cd2 5935}
14f9c5c9 5936
d12307c1 5937static struct block_symbol
f606139a
DE
5938ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5939 const char *name,
76a01679 5940 const struct block *block,
21b556f4 5941 const domain_enum domain)
4c4b4cd2 5942{
d12307c1 5943 struct block_symbol sym;
04dccad0
JB
5944
5945 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5946 if (sym.symbol != NULL)
04dccad0
JB
5947 return sym;
5948
5949 /* If we haven't found a match at this point, try the primitive
5950 types. In other languages, this search is performed before
5951 searching for global symbols in order to short-circuit that
5952 global-symbol search if it happens that the name corresponds
5953 to a primitive type. But we cannot do the same in Ada, because
5954 it is perfectly legitimate for a program to declare a type which
5955 has the same name as a standard type. If looking up a type in
5956 that situation, we have traditionally ignored the primitive type
5957 in favor of user-defined types. This is why, unlike most other
5958 languages, we search the primitive types this late and only after
5959 having searched the global symbols without success. */
5960
5961 if (domain == VAR_DOMAIN)
5962 {
5963 struct gdbarch *gdbarch;
5964
5965 if (block == NULL)
5966 gdbarch = target_gdbarch ();
5967 else
5968 gdbarch = block_gdbarch (block);
d12307c1
PMR
5969 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5970 if (sym.symbol != NULL)
04dccad0
JB
5971 return sym;
5972 }
5973
d12307c1 5974 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5975}
5976
5977
4c4b4cd2
PH
5978/* True iff STR is a possible encoded suffix of a normal Ada name
5979 that is to be ignored for matching purposes. Suffixes of parallel
5980 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5981 are given by any of the regular expressions:
4c4b4cd2 5982
babe1480
JB
5983 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5984 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5985 TKB [subprogram suffix for task bodies]
babe1480 5986 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5987 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5988
5989 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5990 match is performed. This sequence is used to differentiate homonyms,
5991 is an optional part of a valid name suffix. */
4c4b4cd2 5992
14f9c5c9 5993static int
d2e4a39e 5994is_name_suffix (const char *str)
14f9c5c9
AS
5995{
5996 int k;
4c4b4cd2
PH
5997 const char *matching;
5998 const int len = strlen (str);
5999
babe1480
JB
6000 /* Skip optional leading __[0-9]+. */
6001
4c4b4cd2
PH
6002 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6003 {
babe1480
JB
6004 str += 3;
6005 while (isdigit (str[0]))
6006 str += 1;
4c4b4cd2 6007 }
babe1480
JB
6008
6009 /* [.$][0-9]+ */
4c4b4cd2 6010
babe1480 6011 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6012 {
babe1480 6013 matching = str + 1;
4c4b4cd2
PH
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if (matching[0] == '\0')
6017 return 1;
6018 }
6019
6020 /* ___[0-9]+ */
babe1480 6021
4c4b4cd2
PH
6022 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6023 {
6024 matching = str + 3;
6025 while (isdigit (matching[0]))
6026 matching += 1;
6027 if (matching[0] == '\0')
6028 return 1;
6029 }
6030
9ac7f98e
JB
6031 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6032
6033 if (strcmp (str, "TKB") == 0)
6034 return 1;
6035
529cad9c
PH
6036#if 0
6037 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6038 with a N at the end. Unfortunately, the compiler uses the same
6039 convention for other internal types it creates. So treating
529cad9c 6040 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6041 some regressions. For instance, consider the case of an enumerated
6042 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6043 name ends with N.
6044 Having a single character like this as a suffix carrying some
0963b4bd 6045 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6046 to be something like "_N" instead. In the meantime, do not do
6047 the following check. */
6048 /* Protected Object Subprograms */
6049 if (len == 1 && str [0] == 'N')
6050 return 1;
6051#endif
6052
6053 /* _E[0-9]+[bs]$ */
6054 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6055 {
6056 matching = str + 3;
6057 while (isdigit (matching[0]))
6058 matching += 1;
6059 if ((matching[0] == 'b' || matching[0] == 's')
6060 && matching [1] == '\0')
6061 return 1;
6062 }
6063
4c4b4cd2
PH
6064 /* ??? We should not modify STR directly, as we are doing below. This
6065 is fine in this case, but may become problematic later if we find
6066 that this alternative did not work, and want to try matching
6067 another one from the begining of STR. Since we modified it, we
6068 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6069 if (str[0] == 'X')
6070 {
6071 str += 1;
d2e4a39e 6072 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6073 {
6074 if (str[0] != 'n' && str[0] != 'b')
6075 return 0;
6076 str += 1;
6077 }
14f9c5c9 6078 }
babe1480 6079
14f9c5c9
AS
6080 if (str[0] == '\000')
6081 return 1;
babe1480 6082
d2e4a39e 6083 if (str[0] == '_')
14f9c5c9
AS
6084 {
6085 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6086 return 0;
d2e4a39e 6087 if (str[2] == '_')
4c4b4cd2 6088 {
61ee279c
PH
6089 if (strcmp (str + 3, "JM") == 0)
6090 return 1;
6091 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6092 the LJM suffix in favor of the JM one. But we will
6093 still accept LJM as a valid suffix for a reasonable
6094 amount of time, just to allow ourselves to debug programs
6095 compiled using an older version of GNAT. */
4c4b4cd2
PH
6096 if (strcmp (str + 3, "LJM") == 0)
6097 return 1;
6098 if (str[3] != 'X')
6099 return 0;
1265e4aa
JB
6100 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6101 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6102 return 1;
6103 if (str[4] == 'R' && str[5] != 'T')
6104 return 1;
6105 return 0;
6106 }
6107 if (!isdigit (str[2]))
6108 return 0;
6109 for (k = 3; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
14f9c5c9
AS
6112 return 1;
6113 }
4c4b4cd2 6114 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6115 {
4c4b4cd2
PH
6116 for (k = 2; str[k] != '\0'; k += 1)
6117 if (!isdigit (str[k]) && str[k] != '_')
6118 return 0;
14f9c5c9
AS
6119 return 1;
6120 }
6121 return 0;
6122}
d2e4a39e 6123
aeb5907d
JB
6124/* Return non-zero if the string starting at NAME and ending before
6125 NAME_END contains no capital letters. */
529cad9c
PH
6126
6127static int
6128is_valid_name_for_wild_match (const char *name0)
6129{
6130 const char *decoded_name = ada_decode (name0);
6131 int i;
6132
5823c3ef
JB
6133 /* If the decoded name starts with an angle bracket, it means that
6134 NAME0 does not follow the GNAT encoding format. It should then
6135 not be allowed as a possible wild match. */
6136 if (decoded_name[0] == '<')
6137 return 0;
6138
529cad9c
PH
6139 for (i=0; decoded_name[i] != '\0'; i++)
6140 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6141 return 0;
6142
6143 return 1;
6144}
6145
73589123
PH
6146/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6147 that could start a simple name. Assumes that *NAMEP points into
6148 the string beginning at NAME0. */
4c4b4cd2 6149
14f9c5c9 6150static int
73589123 6151advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6152{
73589123 6153 const char *name = *namep;
5b4ee69b 6154
5823c3ef 6155 while (1)
14f9c5c9 6156 {
aa27d0b3 6157 int t0, t1;
73589123
PH
6158
6159 t0 = *name;
6160 if (t0 == '_')
6161 {
6162 t1 = name[1];
6163 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6164 {
6165 name += 1;
61012eef 6166 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6167 break;
6168 else
6169 name += 1;
6170 }
aa27d0b3
JB
6171 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6172 || name[2] == target0))
73589123
PH
6173 {
6174 name += 2;
6175 break;
6176 }
6177 else
6178 return 0;
6179 }
6180 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6181 name += 1;
6182 else
5823c3ef 6183 return 0;
73589123
PH
6184 }
6185
6186 *namep = name;
6187 return 1;
6188}
6189
6190/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6191 informational suffixes of NAME (i.e., for which is_name_suffix is
6192 true). Assumes that PATN is a lower-cased Ada simple name. */
6193
6194static int
6195wild_match (const char *name, const char *patn)
6196{
22e048c9 6197 const char *p;
73589123
PH
6198 const char *name0 = name;
6199
6200 while (1)
6201 {
6202 const char *match = name;
6203
6204 if (*name == *patn)
6205 {
6206 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6207 if (*p != *name)
6208 break;
6209 if (*p == '\0' && is_name_suffix (name))
6210 return match != name0 && !is_valid_name_for_wild_match (name0);
6211
6212 if (name[-1] == '_')
6213 name -= 1;
6214 }
6215 if (!advance_wild_match (&name, name0, *patn))
6216 return 1;
96d887e8 6217 }
96d887e8
PH
6218}
6219
40658b94
PH
6220/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6221 informational suffix. */
6222
c4d840bd
PH
6223static int
6224full_match (const char *sym_name, const char *search_name)
6225{
40658b94 6226 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6227}
6228
6229
96d887e8
PH
6230/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6231 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6232 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6233 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6234
6235static void
6236ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6237 const struct block *block, const char *name,
96d887e8 6238 domain_enum domain, struct objfile *objfile,
2570f2b7 6239 int wild)
96d887e8 6240{
8157b174 6241 struct block_iterator iter;
96d887e8
PH
6242 int name_len = strlen (name);
6243 /* A matching argument symbol, if any. */
6244 struct symbol *arg_sym;
6245 /* Set true when we find a matching non-argument symbol. */
6246 int found_sym;
6247 struct symbol *sym;
6248
6249 arg_sym = NULL;
6250 found_sym = 0;
6251 if (wild)
6252 {
8157b174
TT
6253 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6254 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6255 {
4186eb54
KS
6256 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6257 SYMBOL_DOMAIN (sym), domain)
73589123 6258 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6259 {
2a2d4dc3
AS
6260 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6261 continue;
6262 else if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
76a01679
JB
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
2570f2b7 6269 block);
76a01679
JB
6270 }
6271 }
6272 }
96d887e8
PH
6273 }
6274 else
6275 {
8157b174
TT
6276 for (sym = block_iter_match_first (block, name, full_match, &iter);
6277 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6278 {
4186eb54
KS
6279 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6280 SYMBOL_DOMAIN (sym), domain))
76a01679 6281 {
c4d840bd
PH
6282 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6283 {
6284 if (SYMBOL_IS_ARGUMENT (sym))
6285 arg_sym = sym;
6286 else
2a2d4dc3 6287 {
c4d840bd
PH
6288 found_sym = 1;
6289 add_defn_to_vec (obstackp,
6290 fixup_symbol_section (sym, objfile),
6291 block);
2a2d4dc3 6292 }
c4d840bd 6293 }
76a01679
JB
6294 }
6295 }
96d887e8
PH
6296 }
6297
22cee43f
PMR
6298 /* Handle renamings. */
6299
6300 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6301 found_sym = 1;
6302
96d887e8
PH
6303 if (!found_sym && arg_sym != NULL)
6304 {
76a01679
JB
6305 add_defn_to_vec (obstackp,
6306 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6307 block);
96d887e8
PH
6308 }
6309
6310 if (!wild)
6311 {
6312 arg_sym = NULL;
6313 found_sym = 0;
6314
6315 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6316 {
4186eb54
KS
6317 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6318 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6319 {
6320 int cmp;
6321
6322 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6323 if (cmp == 0)
6324 {
61012eef 6325 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6326 if (cmp == 0)
6327 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6328 name_len);
6329 }
6330
6331 if (cmp == 0
6332 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6333 {
2a2d4dc3
AS
6334 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6335 {
6336 if (SYMBOL_IS_ARGUMENT (sym))
6337 arg_sym = sym;
6338 else
6339 {
6340 found_sym = 1;
6341 add_defn_to_vec (obstackp,
6342 fixup_symbol_section (sym, objfile),
6343 block);
6344 }
6345 }
76a01679
JB
6346 }
6347 }
76a01679 6348 }
96d887e8
PH
6349
6350 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6351 They aren't parameters, right? */
6352 if (!found_sym && arg_sym != NULL)
6353 {
6354 add_defn_to_vec (obstackp,
76a01679 6355 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6356 block);
96d887e8
PH
6357 }
6358 }
6359}
6360\f
41d27058
JB
6361
6362 /* Symbol Completion */
6363
6364/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6365 name in a form that's appropriate for the completion. The result
6366 does not need to be deallocated, but is only good until the next call.
6367
6368 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6369 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6370 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6371 in its encoded form. */
6372
6373static const char *
6374symbol_completion_match (const char *sym_name,
6375 const char *text, int text_len,
6ea35997 6376 int wild_match_p, int encoded_p)
41d27058 6377{
41d27058
JB
6378 const int verbatim_match = (text[0] == '<');
6379 int match = 0;
6380
6381 if (verbatim_match)
6382 {
6383 /* Strip the leading angle bracket. */
6384 text = text + 1;
6385 text_len--;
6386 }
6387
6388 /* First, test against the fully qualified name of the symbol. */
6389
6390 if (strncmp (sym_name, text, text_len) == 0)
6391 match = 1;
6392
6ea35997 6393 if (match && !encoded_p)
41d27058
JB
6394 {
6395 /* One needed check before declaring a positive match is to verify
6396 that iff we are doing a verbatim match, the decoded version
6397 of the symbol name starts with '<'. Otherwise, this symbol name
6398 is not a suitable completion. */
6399 const char *sym_name_copy = sym_name;
6400 int has_angle_bracket;
6401
6402 sym_name = ada_decode (sym_name);
6403 has_angle_bracket = (sym_name[0] == '<');
6404 match = (has_angle_bracket == verbatim_match);
6405 sym_name = sym_name_copy;
6406 }
6407
6408 if (match && !verbatim_match)
6409 {
6410 /* When doing non-verbatim match, another check that needs to
6411 be done is to verify that the potentially matching symbol name
6412 does not include capital letters, because the ada-mode would
6413 not be able to understand these symbol names without the
6414 angle bracket notation. */
6415 const char *tmp;
6416
6417 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6418 if (*tmp != '\0')
6419 match = 0;
6420 }
6421
6422 /* Second: Try wild matching... */
6423
e701b3c0 6424 if (!match && wild_match_p)
41d27058
JB
6425 {
6426 /* Since we are doing wild matching, this means that TEXT
6427 may represent an unqualified symbol name. We therefore must
6428 also compare TEXT against the unqualified name of the symbol. */
6429 sym_name = ada_unqualified_name (ada_decode (sym_name));
6430
6431 if (strncmp (sym_name, text, text_len) == 0)
6432 match = 1;
6433 }
6434
6435 /* Finally: If we found a mach, prepare the result to return. */
6436
6437 if (!match)
6438 return NULL;
6439
6440 if (verbatim_match)
6441 sym_name = add_angle_brackets (sym_name);
6442
6ea35997 6443 if (!encoded_p)
41d27058
JB
6444 sym_name = ada_decode (sym_name);
6445
6446 return sym_name;
6447}
6448
6449/* A companion function to ada_make_symbol_completion_list().
6450 Check if SYM_NAME represents a symbol which name would be suitable
6451 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6452 it is appended at the end of the given string vector SV.
6453
6454 ORIG_TEXT is the string original string from the user command
6455 that needs to be completed. WORD is the entire command on which
6456 completion should be performed. These two parameters are used to
6457 determine which part of the symbol name should be added to the
6458 completion vector.
c0af1706 6459 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6460 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6461 encoded formed (in which case the completion should also be
6462 encoded). */
6463
6464static void
d6565258 6465symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6466 const char *sym_name,
6467 const char *text, int text_len,
6468 const char *orig_text, const char *word,
cb8e9b97 6469 int wild_match_p, int encoded_p)
41d27058
JB
6470{
6471 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6472 wild_match_p, encoded_p);
41d27058
JB
6473 char *completion;
6474
6475 if (match == NULL)
6476 return;
6477
6478 /* We found a match, so add the appropriate completion to the given
6479 string vector. */
6480
6481 if (word == orig_text)
6482 {
224c3ddb 6483 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6484 strcpy (completion, match);
6485 }
6486 else if (word > orig_text)
6487 {
6488 /* Return some portion of sym_name. */
224c3ddb 6489 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6490 strcpy (completion, match + (word - orig_text));
6491 }
6492 else
6493 {
6494 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6495 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6496 strncpy (completion, word, orig_text - word);
6497 completion[orig_text - word] = '\0';
6498 strcat (completion, match);
6499 }
6500
d6565258 6501 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6502}
6503
ccefe4c4 6504/* An object of this type is passed as the user_data argument to the
bb4142cf 6505 expand_symtabs_matching method. */
ccefe4c4
TT
6506struct add_partial_datum
6507{
6508 VEC(char_ptr) **completions;
6f937416 6509 const char *text;
ccefe4c4 6510 int text_len;
6f937416
PA
6511 const char *text0;
6512 const char *word;
ccefe4c4
TT
6513 int wild_match;
6514 int encoded;
6515};
6516
bb4142cf
DE
6517/* A callback for expand_symtabs_matching. */
6518
7b08b9eb 6519static int
bb4142cf 6520ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6521{
9a3c8263 6522 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6523
6524 return symbol_completion_match (name, data->text, data->text_len,
6525 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6526}
6527
49c4e619
TT
6528/* Return a list of possible symbol names completing TEXT0. WORD is
6529 the entire command on which completion is made. */
41d27058 6530
49c4e619 6531static VEC (char_ptr) *
6f937416
PA
6532ada_make_symbol_completion_list (const char *text0, const char *word,
6533 enum type_code code)
41d27058
JB
6534{
6535 char *text;
6536 int text_len;
b1ed564a
JB
6537 int wild_match_p;
6538 int encoded_p;
2ba95b9b 6539 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6540 struct symbol *sym;
43f3e411 6541 struct compunit_symtab *s;
41d27058
JB
6542 struct minimal_symbol *msymbol;
6543 struct objfile *objfile;
3977b71f 6544 const struct block *b, *surrounding_static_block = 0;
41d27058 6545 int i;
8157b174 6546 struct block_iterator iter;
b8fea896 6547 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6548
2f68a895
TT
6549 gdb_assert (code == TYPE_CODE_UNDEF);
6550
41d27058
JB
6551 if (text0[0] == '<')
6552 {
6553 text = xstrdup (text0);
6554 make_cleanup (xfree, text);
6555 text_len = strlen (text);
b1ed564a
JB
6556 wild_match_p = 0;
6557 encoded_p = 1;
41d27058
JB
6558 }
6559 else
6560 {
6561 text = xstrdup (ada_encode (text0));
6562 make_cleanup (xfree, text);
6563 text_len = strlen (text);
6564 for (i = 0; i < text_len; i++)
6565 text[i] = tolower (text[i]);
6566
b1ed564a 6567 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6568 /* If the name contains a ".", then the user is entering a fully
6569 qualified entity name, and the match must not be done in wild
6570 mode. Similarly, if the user wants to complete what looks like
6571 an encoded name, the match must not be done in wild mode. */
b1ed564a 6572 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6573 }
6574
6575 /* First, look at the partial symtab symbols. */
41d27058 6576 {
ccefe4c4
TT
6577 struct add_partial_datum data;
6578
6579 data.completions = &completions;
6580 data.text = text;
6581 data.text_len = text_len;
6582 data.text0 = text0;
6583 data.word = word;
b1ed564a
JB
6584 data.wild_match = wild_match_p;
6585 data.encoded = encoded_p;
276d885b
GB
6586 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6587 ALL_DOMAIN, &data);
41d27058
JB
6588 }
6589
6590 /* At this point scan through the misc symbol vectors and add each
6591 symbol you find to the list. Eventually we want to ignore
6592 anything that isn't a text symbol (everything else will be
6593 handled by the psymtab code above). */
6594
6595 ALL_MSYMBOLS (objfile, msymbol)
6596 {
6597 QUIT;
efd66ac6 6598 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6599 text, text_len, text0, word, wild_match_p,
6600 encoded_p);
41d27058
JB
6601 }
6602
6603 /* Search upwards from currently selected frame (so that we can
6604 complete on local vars. */
6605
6606 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6607 {
6608 if (!BLOCK_SUPERBLOCK (b))
6609 surrounding_static_block = b; /* For elmin of dups */
6610
6611 ALL_BLOCK_SYMBOLS (b, iter, sym)
6612 {
d6565258 6613 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6614 text, text_len, text0, word,
b1ed564a 6615 wild_match_p, encoded_p);
41d27058
JB
6616 }
6617 }
6618
6619 /* Go through the symtabs and check the externs and statics for
43f3e411 6620 symbols which match. */
41d27058 6621
43f3e411 6622 ALL_COMPUNITS (objfile, s)
41d27058
JB
6623 {
6624 QUIT;
43f3e411 6625 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6626 ALL_BLOCK_SYMBOLS (b, iter, sym)
6627 {
d6565258 6628 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6629 text, text_len, text0, word,
b1ed564a 6630 wild_match_p, encoded_p);
41d27058
JB
6631 }
6632 }
6633
43f3e411 6634 ALL_COMPUNITS (objfile, s)
41d27058
JB
6635 {
6636 QUIT;
43f3e411 6637 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6638 /* Don't do this block twice. */
6639 if (b == surrounding_static_block)
6640 continue;
6641 ALL_BLOCK_SYMBOLS (b, iter, sym)
6642 {
d6565258 6643 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6644 text, text_len, text0, word,
b1ed564a 6645 wild_match_p, encoded_p);
41d27058
JB
6646 }
6647 }
6648
b8fea896 6649 do_cleanups (old_chain);
49c4e619 6650 return completions;
41d27058
JB
6651}
6652
963a6417 6653 /* Field Access */
96d887e8 6654
73fb9985
JB
6655/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6656 for tagged types. */
6657
6658static int
6659ada_is_dispatch_table_ptr_type (struct type *type)
6660{
0d5cff50 6661 const char *name;
73fb9985
JB
6662
6663 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6664 return 0;
6665
6666 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6667 if (name == NULL)
6668 return 0;
6669
6670 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6671}
6672
ac4a2da4
JG
6673/* Return non-zero if TYPE is an interface tag. */
6674
6675static int
6676ada_is_interface_tag (struct type *type)
6677{
6678 const char *name = TYPE_NAME (type);
6679
6680 if (name == NULL)
6681 return 0;
6682
6683 return (strcmp (name, "ada__tags__interface_tag") == 0);
6684}
6685
963a6417
PH
6686/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6687 to be invisible to users. */
96d887e8 6688
963a6417
PH
6689int
6690ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6691{
963a6417
PH
6692 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6693 return 1;
ffde82bf 6694
73fb9985
JB
6695 /* Check the name of that field. */
6696 {
6697 const char *name = TYPE_FIELD_NAME (type, field_num);
6698
6699 /* Anonymous field names should not be printed.
6700 brobecker/2007-02-20: I don't think this can actually happen
6701 but we don't want to print the value of annonymous fields anyway. */
6702 if (name == NULL)
6703 return 1;
6704
ffde82bf
JB
6705 /* Normally, fields whose name start with an underscore ("_")
6706 are fields that have been internally generated by the compiler,
6707 and thus should not be printed. The "_parent" field is special,
6708 however: This is a field internally generated by the compiler
6709 for tagged types, and it contains the components inherited from
6710 the parent type. This field should not be printed as is, but
6711 should not be ignored either. */
61012eef 6712 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6713 return 1;
6714 }
6715
ac4a2da4
JG
6716 /* If this is the dispatch table of a tagged type or an interface tag,
6717 then ignore. */
73fb9985 6718 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6719 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6720 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6721 return 1;
6722
6723 /* Not a special field, so it should not be ignored. */
6724 return 0;
963a6417 6725}
96d887e8 6726
963a6417 6727/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6728 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6729
963a6417
PH
6730int
6731ada_is_tagged_type (struct type *type, int refok)
6732{
6733 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6734}
96d887e8 6735
963a6417 6736/* True iff TYPE represents the type of X'Tag */
96d887e8 6737
963a6417
PH
6738int
6739ada_is_tag_type (struct type *type)
6740{
460efde1
JB
6741 type = ada_check_typedef (type);
6742
963a6417
PH
6743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6744 return 0;
6745 else
96d887e8 6746 {
963a6417 6747 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6748
963a6417
PH
6749 return (name != NULL
6750 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6751 }
96d887e8
PH
6752}
6753
963a6417 6754/* The type of the tag on VAL. */
76a01679 6755
963a6417
PH
6756struct type *
6757ada_tag_type (struct value *val)
96d887e8 6758{
df407dfe 6759 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6760}
96d887e8 6761
b50d69b5
JG
6762/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6763 retired at Ada 05). */
6764
6765static int
6766is_ada95_tag (struct value *tag)
6767{
6768 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6769}
6770
963a6417 6771/* The value of the tag on VAL. */
96d887e8 6772
963a6417
PH
6773struct value *
6774ada_value_tag (struct value *val)
6775{
03ee6b2e 6776 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6777}
6778
963a6417
PH
6779/* The value of the tag on the object of type TYPE whose contents are
6780 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6781 ADDRESS. */
96d887e8 6782
963a6417 6783static struct value *
10a2c479 6784value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6785 const gdb_byte *valaddr,
963a6417 6786 CORE_ADDR address)
96d887e8 6787{
b5385fc0 6788 int tag_byte_offset;
963a6417 6789 struct type *tag_type;
5b4ee69b 6790
963a6417 6791 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6792 NULL, NULL, NULL))
96d887e8 6793 {
fc1a4b47 6794 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6795 ? NULL
6796 : valaddr + tag_byte_offset);
963a6417 6797 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6798
963a6417 6799 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6800 }
963a6417
PH
6801 return NULL;
6802}
96d887e8 6803
963a6417
PH
6804static struct type *
6805type_from_tag (struct value *tag)
6806{
6807 const char *type_name = ada_tag_name (tag);
5b4ee69b 6808
963a6417
PH
6809 if (type_name != NULL)
6810 return ada_find_any_type (ada_encode (type_name));
6811 return NULL;
6812}
96d887e8 6813
b50d69b5
JG
6814/* Given a value OBJ of a tagged type, return a value of this
6815 type at the base address of the object. The base address, as
6816 defined in Ada.Tags, it is the address of the primary tag of
6817 the object, and therefore where the field values of its full
6818 view can be fetched. */
6819
6820struct value *
6821ada_tag_value_at_base_address (struct value *obj)
6822{
b50d69b5
JG
6823 struct value *val;
6824 LONGEST offset_to_top = 0;
6825 struct type *ptr_type, *obj_type;
6826 struct value *tag;
6827 CORE_ADDR base_address;
6828
6829 obj_type = value_type (obj);
6830
6831 /* It is the responsability of the caller to deref pointers. */
6832
6833 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6834 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6835 return obj;
6836
6837 tag = ada_value_tag (obj);
6838 if (!tag)
6839 return obj;
6840
6841 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6842
6843 if (is_ada95_tag (tag))
6844 return obj;
6845
6846 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6847 ptr_type = lookup_pointer_type (ptr_type);
6848 val = value_cast (ptr_type, tag);
6849 if (!val)
6850 return obj;
6851
6852 /* It is perfectly possible that an exception be raised while
6853 trying to determine the base address, just like for the tag;
6854 see ada_tag_name for more details. We do not print the error
6855 message for the same reason. */
6856
492d29ea 6857 TRY
b50d69b5
JG
6858 {
6859 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6860 }
6861
492d29ea
PA
6862 CATCH (e, RETURN_MASK_ERROR)
6863 {
6864 return obj;
6865 }
6866 END_CATCH
b50d69b5
JG
6867
6868 /* If offset is null, nothing to do. */
6869
6870 if (offset_to_top == 0)
6871 return obj;
6872
6873 /* -1 is a special case in Ada.Tags; however, what should be done
6874 is not quite clear from the documentation. So do nothing for
6875 now. */
6876
6877 if (offset_to_top == -1)
6878 return obj;
6879
6880 base_address = value_address (obj) - offset_to_top;
6881 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6882
6883 /* Make sure that we have a proper tag at the new address.
6884 Otherwise, offset_to_top is bogus (which can happen when
6885 the object is not initialized yet). */
6886
6887 if (!tag)
6888 return obj;
6889
6890 obj_type = type_from_tag (tag);
6891
6892 if (!obj_type)
6893 return obj;
6894
6895 return value_from_contents_and_address (obj_type, NULL, base_address);
6896}
6897
1b611343
JB
6898/* Return the "ada__tags__type_specific_data" type. */
6899
6900static struct type *
6901ada_get_tsd_type (struct inferior *inf)
963a6417 6902{
1b611343 6903 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6904
1b611343
JB
6905 if (data->tsd_type == 0)
6906 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6907 return data->tsd_type;
6908}
529cad9c 6909
1b611343
JB
6910/* Return the TSD (type-specific data) associated to the given TAG.
6911 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6912
1b611343 6913 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6914
1b611343
JB
6915static struct value *
6916ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6917{
4c4b4cd2 6918 struct value *val;
1b611343 6919 struct type *type;
5b4ee69b 6920
1b611343
JB
6921 /* First option: The TSD is simply stored as a field of our TAG.
6922 Only older versions of GNAT would use this format, but we have
6923 to test it first, because there are no visible markers for
6924 the current approach except the absence of that field. */
529cad9c 6925
1b611343
JB
6926 val = ada_value_struct_elt (tag, "tsd", 1);
6927 if (val)
6928 return val;
e802dbe0 6929
1b611343
JB
6930 /* Try the second representation for the dispatch table (in which
6931 there is no explicit 'tsd' field in the referent of the tag pointer,
6932 and instead the tsd pointer is stored just before the dispatch
6933 table. */
e802dbe0 6934
1b611343
JB
6935 type = ada_get_tsd_type (current_inferior());
6936 if (type == NULL)
6937 return NULL;
6938 type = lookup_pointer_type (lookup_pointer_type (type));
6939 val = value_cast (type, tag);
6940 if (val == NULL)
6941 return NULL;
6942 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6943}
6944
1b611343
JB
6945/* Given the TSD of a tag (type-specific data), return a string
6946 containing the name of the associated type.
6947
6948 The returned value is good until the next call. May return NULL
6949 if we are unable to determine the tag name. */
6950
6951static char *
6952ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6953{
529cad9c
PH
6954 static char name[1024];
6955 char *p;
1b611343 6956 struct value *val;
529cad9c 6957
1b611343 6958 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6959 if (val == NULL)
1b611343 6960 return NULL;
4c4b4cd2
PH
6961 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6962 for (p = name; *p != '\0'; p += 1)
6963 if (isalpha (*p))
6964 *p = tolower (*p);
1b611343 6965 return name;
4c4b4cd2
PH
6966}
6967
6968/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6969 a C string.
6970
6971 Return NULL if the TAG is not an Ada tag, or if we were unable to
6972 determine the name of that tag. The result is good until the next
6973 call. */
4c4b4cd2
PH
6974
6975const char *
6976ada_tag_name (struct value *tag)
6977{
1b611343 6978 char *name = NULL;
5b4ee69b 6979
df407dfe 6980 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6981 return NULL;
1b611343
JB
6982
6983 /* It is perfectly possible that an exception be raised while trying
6984 to determine the TAG's name, even under normal circumstances:
6985 The associated variable may be uninitialized or corrupted, for
6986 instance. We do not let any exception propagate past this point.
6987 instead we return NULL.
6988
6989 We also do not print the error message either (which often is very
6990 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6991 the caller print a more meaningful message if necessary. */
492d29ea 6992 TRY
1b611343
JB
6993 {
6994 struct value *tsd = ada_get_tsd_from_tag (tag);
6995
6996 if (tsd != NULL)
6997 name = ada_tag_name_from_tsd (tsd);
6998 }
492d29ea
PA
6999 CATCH (e, RETURN_MASK_ERROR)
7000 {
7001 }
7002 END_CATCH
1b611343
JB
7003
7004 return name;
4c4b4cd2
PH
7005}
7006
7007/* The parent type of TYPE, or NULL if none. */
14f9c5c9 7008
d2e4a39e 7009struct type *
ebf56fd3 7010ada_parent_type (struct type *type)
14f9c5c9
AS
7011{
7012 int i;
7013
61ee279c 7014 type = ada_check_typedef (type);
14f9c5c9
AS
7015
7016 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7017 return NULL;
7018
7019 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7020 if (ada_is_parent_field (type, i))
0c1f74cf
JB
7021 {
7022 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7023
7024 /* If the _parent field is a pointer, then dereference it. */
7025 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7026 parent_type = TYPE_TARGET_TYPE (parent_type);
7027 /* If there is a parallel XVS type, get the actual base type. */
7028 parent_type = ada_get_base_type (parent_type);
7029
7030 return ada_check_typedef (parent_type);
7031 }
14f9c5c9
AS
7032
7033 return NULL;
7034}
7035
4c4b4cd2
PH
7036/* True iff field number FIELD_NUM of structure type TYPE contains the
7037 parent-type (inherited) fields of a derived type. Assumes TYPE is
7038 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7039
7040int
ebf56fd3 7041ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7042{
61ee279c 7043 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7044
4c4b4cd2 7045 return (name != NULL
61012eef
GB
7046 && (startswith (name, "PARENT")
7047 || startswith (name, "_parent")));
14f9c5c9
AS
7048}
7049
4c4b4cd2 7050/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7051 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7052 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7053 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7054 structures. */
14f9c5c9
AS
7055
7056int
ebf56fd3 7057ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7058{
d2e4a39e 7059 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7060
dddc0e16
JB
7061 if (name != NULL && strcmp (name, "RETVAL") == 0)
7062 {
7063 /* This happens in functions with "out" or "in out" parameters
7064 which are passed by copy. For such functions, GNAT describes
7065 the function's return type as being a struct where the return
7066 value is in a field called RETVAL, and where the other "out"
7067 or "in out" parameters are fields of that struct. This is not
7068 a wrapper. */
7069 return 0;
7070 }
7071
d2e4a39e 7072 return (name != NULL
61012eef 7073 && (startswith (name, "PARENT")
4c4b4cd2 7074 || strcmp (name, "REP") == 0
61012eef 7075 || startswith (name, "_parent")
4c4b4cd2 7076 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7077}
7078
4c4b4cd2
PH
7079/* True iff field number FIELD_NUM of structure or union type TYPE
7080 is a variant wrapper. Assumes TYPE is a structure type with at least
7081 FIELD_NUM+1 fields. */
14f9c5c9
AS
7082
7083int
ebf56fd3 7084ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7085{
d2e4a39e 7086 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7087
14f9c5c9 7088 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7089 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7090 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7091 == TYPE_CODE_UNION)));
14f9c5c9
AS
7092}
7093
7094/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7095 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7096 returns the type of the controlling discriminant for the variant.
7097 May return NULL if the type could not be found. */
14f9c5c9 7098
d2e4a39e 7099struct type *
ebf56fd3 7100ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7101{
d2e4a39e 7102 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7103
7c964f07 7104 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7105}
7106
4c4b4cd2 7107/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7108 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7109 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7110
7111int
ebf56fd3 7112ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7113{
d2e4a39e 7114 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7115
14f9c5c9
AS
7116 return (name != NULL && name[0] == 'O');
7117}
7118
7119/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7120 returns the name of the discriminant controlling the variant.
7121 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7122
d2e4a39e 7123char *
ebf56fd3 7124ada_variant_discrim_name (struct type *type0)
14f9c5c9 7125{
d2e4a39e 7126 static char *result = NULL;
14f9c5c9 7127 static size_t result_len = 0;
d2e4a39e
AS
7128 struct type *type;
7129 const char *name;
7130 const char *discrim_end;
7131 const char *discrim_start;
14f9c5c9
AS
7132
7133 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7134 type = TYPE_TARGET_TYPE (type0);
7135 else
7136 type = type0;
7137
7138 name = ada_type_name (type);
7139
7140 if (name == NULL || name[0] == '\000')
7141 return "";
7142
7143 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7144 discrim_end -= 1)
7145 {
61012eef 7146 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7147 break;
14f9c5c9
AS
7148 }
7149 if (discrim_end == name)
7150 return "";
7151
d2e4a39e 7152 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7153 discrim_start -= 1)
7154 {
d2e4a39e 7155 if (discrim_start == name + 1)
4c4b4cd2 7156 return "";
76a01679 7157 if ((discrim_start > name + 3
61012eef 7158 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7159 || discrim_start[-1] == '.')
7160 break;
14f9c5c9
AS
7161 }
7162
7163 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7164 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7165 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7166 return result;
7167}
7168
4c4b4cd2
PH
7169/* Scan STR for a subtype-encoded number, beginning at position K.
7170 Put the position of the character just past the number scanned in
7171 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7172 Return 1 if there was a valid number at the given position, and 0
7173 otherwise. A "subtype-encoded" number consists of the absolute value
7174 in decimal, followed by the letter 'm' to indicate a negative number.
7175 Assumes 0m does not occur. */
14f9c5c9
AS
7176
7177int
d2e4a39e 7178ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7179{
7180 ULONGEST RU;
7181
d2e4a39e 7182 if (!isdigit (str[k]))
14f9c5c9
AS
7183 return 0;
7184
4c4b4cd2 7185 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7186 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7187 LONGEST. */
14f9c5c9
AS
7188 RU = 0;
7189 while (isdigit (str[k]))
7190 {
d2e4a39e 7191 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7192 k += 1;
7193 }
7194
d2e4a39e 7195 if (str[k] == 'm')
14f9c5c9
AS
7196 {
7197 if (R != NULL)
4c4b4cd2 7198 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7199 k += 1;
7200 }
7201 else if (R != NULL)
7202 *R = (LONGEST) RU;
7203
4c4b4cd2 7204 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7205 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7206 number representable as a LONGEST (although either would probably work
7207 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7208 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7209
7210 if (new_k != NULL)
7211 *new_k = k;
7212 return 1;
7213}
7214
4c4b4cd2
PH
7215/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7216 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7217 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7218
d2e4a39e 7219int
ebf56fd3 7220ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7221{
d2e4a39e 7222 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7223 int p;
7224
7225 p = 0;
7226 while (1)
7227 {
d2e4a39e 7228 switch (name[p])
4c4b4cd2
PH
7229 {
7230 case '\0':
7231 return 0;
7232 case 'S':
7233 {
7234 LONGEST W;
5b4ee69b 7235
4c4b4cd2
PH
7236 if (!ada_scan_number (name, p + 1, &W, &p))
7237 return 0;
7238 if (val == W)
7239 return 1;
7240 break;
7241 }
7242 case 'R':
7243 {
7244 LONGEST L, U;
5b4ee69b 7245
4c4b4cd2
PH
7246 if (!ada_scan_number (name, p + 1, &L, &p)
7247 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7248 return 0;
7249 if (val >= L && val <= U)
7250 return 1;
7251 break;
7252 }
7253 case 'O':
7254 return 1;
7255 default:
7256 return 0;
7257 }
7258 }
7259}
7260
0963b4bd 7261/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7262
7263/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7264 ARG_TYPE, extract and return the value of one of its (non-static)
7265 fields. FIELDNO says which field. Differs from value_primitive_field
7266 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7267
4c4b4cd2 7268static struct value *
d2e4a39e 7269ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7270 struct type *arg_type)
14f9c5c9 7271{
14f9c5c9
AS
7272 struct type *type;
7273
61ee279c 7274 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7275 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7276
4c4b4cd2 7277 /* Handle packed fields. */
14f9c5c9
AS
7278
7279 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7280 {
7281 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7282 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7283
0fd88904 7284 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7285 offset + bit_pos / 8,
7286 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7287 }
7288 else
7289 return value_primitive_field (arg1, offset, fieldno, arg_type);
7290}
7291
52ce6436
PH
7292/* Find field with name NAME in object of type TYPE. If found,
7293 set the following for each argument that is non-null:
7294 - *FIELD_TYPE_P to the field's type;
7295 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7296 an object of that type;
7297 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7298 - *BIT_SIZE_P to its size in bits if the field is packed, and
7299 0 otherwise;
7300 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7301 fields up to but not including the desired field, or by the total
7302 number of fields if not found. A NULL value of NAME never
7303 matches; the function just counts visible fields in this case.
7304
0963b4bd 7305 Returns 1 if found, 0 otherwise. */
52ce6436 7306
4c4b4cd2 7307static int
0d5cff50 7308find_struct_field (const char *name, struct type *type, int offset,
76a01679 7309 struct type **field_type_p,
52ce6436
PH
7310 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7311 int *index_p)
4c4b4cd2
PH
7312{
7313 int i;
7314
61ee279c 7315 type = ada_check_typedef (type);
76a01679 7316
52ce6436
PH
7317 if (field_type_p != NULL)
7318 *field_type_p = NULL;
7319 if (byte_offset_p != NULL)
d5d6fca5 7320 *byte_offset_p = 0;
52ce6436
PH
7321 if (bit_offset_p != NULL)
7322 *bit_offset_p = 0;
7323 if (bit_size_p != NULL)
7324 *bit_size_p = 0;
7325
7326 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7327 {
7328 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7329 int fld_offset = offset + bit_pos / 8;
0d5cff50 7330 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7331
4c4b4cd2
PH
7332 if (t_field_name == NULL)
7333 continue;
7334
52ce6436 7335 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7336 {
7337 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7338
52ce6436
PH
7339 if (field_type_p != NULL)
7340 *field_type_p = TYPE_FIELD_TYPE (type, i);
7341 if (byte_offset_p != NULL)
7342 *byte_offset_p = fld_offset;
7343 if (bit_offset_p != NULL)
7344 *bit_offset_p = bit_pos % 8;
7345 if (bit_size_p != NULL)
7346 *bit_size_p = bit_size;
76a01679
JB
7347 return 1;
7348 }
4c4b4cd2
PH
7349 else if (ada_is_wrapper_field (type, i))
7350 {
52ce6436
PH
7351 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7352 field_type_p, byte_offset_p, bit_offset_p,
7353 bit_size_p, index_p))
76a01679
JB
7354 return 1;
7355 }
4c4b4cd2
PH
7356 else if (ada_is_variant_part (type, i))
7357 {
52ce6436
PH
7358 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7359 fixed type?? */
4c4b4cd2 7360 int j;
52ce6436
PH
7361 struct type *field_type
7362 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7363
52ce6436 7364 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7365 {
76a01679
JB
7366 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7367 fld_offset
7368 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7369 field_type_p, byte_offset_p,
52ce6436 7370 bit_offset_p, bit_size_p, index_p))
76a01679 7371 return 1;
4c4b4cd2
PH
7372 }
7373 }
52ce6436
PH
7374 else if (index_p != NULL)
7375 *index_p += 1;
4c4b4cd2
PH
7376 }
7377 return 0;
7378}
7379
0963b4bd 7380/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7381
52ce6436
PH
7382static int
7383num_visible_fields (struct type *type)
7384{
7385 int n;
5b4ee69b 7386
52ce6436
PH
7387 n = 0;
7388 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7389 return n;
7390}
14f9c5c9 7391
4c4b4cd2 7392/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7393 and search in it assuming it has (class) type TYPE.
7394 If found, return value, else return NULL.
7395
4c4b4cd2 7396 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7397
4c4b4cd2 7398static struct value *
108d56a4 7399ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7400 struct type *type)
14f9c5c9
AS
7401{
7402 int i;
14f9c5c9 7403
5b4ee69b 7404 type = ada_check_typedef (type);
52ce6436 7405 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7406 {
0d5cff50 7407 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7408
7409 if (t_field_name == NULL)
4c4b4cd2 7410 continue;
14f9c5c9
AS
7411
7412 else if (field_name_match (t_field_name, name))
4c4b4cd2 7413 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7414
7415 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7416 {
0963b4bd 7417 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7418 ada_search_struct_field (name, arg,
7419 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7420 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7421
4c4b4cd2
PH
7422 if (v != NULL)
7423 return v;
7424 }
14f9c5c9
AS
7425
7426 else if (ada_is_variant_part (type, i))
4c4b4cd2 7427 {
0963b4bd 7428 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7429 int j;
5b4ee69b
MS
7430 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7431 i));
4c4b4cd2
PH
7432 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7433
52ce6436 7434 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7435 {
0963b4bd
MS
7436 struct value *v = ada_search_struct_field /* Force line
7437 break. */
06d5cf63
JB
7438 (name, arg,
7439 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7440 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7441
4c4b4cd2
PH
7442 if (v != NULL)
7443 return v;
7444 }
7445 }
14f9c5c9
AS
7446 }
7447 return NULL;
7448}
d2e4a39e 7449
52ce6436
PH
7450static struct value *ada_index_struct_field_1 (int *, struct value *,
7451 int, struct type *);
7452
7453
7454/* Return field #INDEX in ARG, where the index is that returned by
7455 * find_struct_field through its INDEX_P argument. Adjust the address
7456 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7457 * If found, return value, else return NULL. */
52ce6436
PH
7458
7459static struct value *
7460ada_index_struct_field (int index, struct value *arg, int offset,
7461 struct type *type)
7462{
7463 return ada_index_struct_field_1 (&index, arg, offset, type);
7464}
7465
7466
7467/* Auxiliary function for ada_index_struct_field. Like
7468 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7469 * *INDEX_P. */
52ce6436
PH
7470
7471static struct value *
7472ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7473 struct type *type)
7474{
7475 int i;
7476 type = ada_check_typedef (type);
7477
7478 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7479 {
7480 if (TYPE_FIELD_NAME (type, i) == NULL)
7481 continue;
7482 else if (ada_is_wrapper_field (type, i))
7483 {
0963b4bd 7484 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7485 ada_index_struct_field_1 (index_p, arg,
7486 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7487 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7488
52ce6436
PH
7489 if (v != NULL)
7490 return v;
7491 }
7492
7493 else if (ada_is_variant_part (type, i))
7494 {
7495 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7496 find_struct_field. */
52ce6436
PH
7497 error (_("Cannot assign this kind of variant record"));
7498 }
7499 else if (*index_p == 0)
7500 return ada_value_primitive_field (arg, offset, i, type);
7501 else
7502 *index_p -= 1;
7503 }
7504 return NULL;
7505}
7506
4c4b4cd2
PH
7507/* Given ARG, a value of type (pointer or reference to a)*
7508 structure/union, extract the component named NAME from the ultimate
7509 target structure/union and return it as a value with its
f5938064 7510 appropriate type.
14f9c5c9 7511
4c4b4cd2
PH
7512 The routine searches for NAME among all members of the structure itself
7513 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7514 (e.g., '_parent').
7515
03ee6b2e
PH
7516 If NO_ERR, then simply return NULL in case of error, rather than
7517 calling error. */
14f9c5c9 7518
d2e4a39e 7519struct value *
03ee6b2e 7520ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7521{
4c4b4cd2 7522 struct type *t, *t1;
d2e4a39e 7523 struct value *v;
14f9c5c9 7524
4c4b4cd2 7525 v = NULL;
df407dfe 7526 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7527 if (TYPE_CODE (t) == TYPE_CODE_REF)
7528 {
7529 t1 = TYPE_TARGET_TYPE (t);
7530 if (t1 == NULL)
03ee6b2e 7531 goto BadValue;
61ee279c 7532 t1 = ada_check_typedef (t1);
4c4b4cd2 7533 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7534 {
994b9211 7535 arg = coerce_ref (arg);
76a01679
JB
7536 t = t1;
7537 }
4c4b4cd2 7538 }
14f9c5c9 7539
4c4b4cd2
PH
7540 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7541 {
7542 t1 = TYPE_TARGET_TYPE (t);
7543 if (t1 == NULL)
03ee6b2e 7544 goto BadValue;
61ee279c 7545 t1 = ada_check_typedef (t1);
4c4b4cd2 7546 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7547 {
7548 arg = value_ind (arg);
7549 t = t1;
7550 }
4c4b4cd2 7551 else
76a01679 7552 break;
4c4b4cd2 7553 }
14f9c5c9 7554
4c4b4cd2 7555 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7556 goto BadValue;
14f9c5c9 7557
4c4b4cd2
PH
7558 if (t1 == t)
7559 v = ada_search_struct_field (name, arg, 0, t);
7560 else
7561 {
7562 int bit_offset, bit_size, byte_offset;
7563 struct type *field_type;
7564 CORE_ADDR address;
7565
76a01679 7566 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7567 address = value_address (ada_value_ind (arg));
4c4b4cd2 7568 else
b50d69b5 7569 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7570
1ed6ede0 7571 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7572 if (find_struct_field (name, t1, 0,
7573 &field_type, &byte_offset, &bit_offset,
52ce6436 7574 &bit_size, NULL))
76a01679
JB
7575 {
7576 if (bit_size != 0)
7577 {
714e53ab
PH
7578 if (TYPE_CODE (t) == TYPE_CODE_REF)
7579 arg = ada_coerce_ref (arg);
7580 else
7581 arg = ada_value_ind (arg);
76a01679
JB
7582 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7583 bit_offset, bit_size,
7584 field_type);
7585 }
7586 else
f5938064 7587 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7588 }
7589 }
7590
03ee6b2e
PH
7591 if (v != NULL || no_err)
7592 return v;
7593 else
323e0a4a 7594 error (_("There is no member named %s."), name);
14f9c5c9 7595
03ee6b2e
PH
7596 BadValue:
7597 if (no_err)
7598 return NULL;
7599 else
0963b4bd
MS
7600 error (_("Attempt to extract a component of "
7601 "a value that is not a record."));
14f9c5c9
AS
7602}
7603
3b4de39c 7604/* Return a string representation of type TYPE. */
99bbb428 7605
3b4de39c 7606static std::string
99bbb428
PA
7607type_as_string (struct type *type)
7608{
7609 struct ui_file *tmp_stream = mem_fileopen ();
7610 struct cleanup *old_chain;
99bbb428
PA
7611
7612 tmp_stream = mem_fileopen ();
7613 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7614
7615 type_print (type, "", tmp_stream, -1);
3b4de39c 7616 std::string str = ui_file_as_string (tmp_stream);
99bbb428
PA
7617
7618 do_cleanups (old_chain);
7619 return str;
7620}
7621
14f9c5c9 7622/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7623 If DISPP is non-null, add its byte displacement from the beginning of a
7624 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7625 work for packed fields).
7626
7627 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7628 followed by "___".
14f9c5c9 7629
0963b4bd 7630 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7631 be a (pointer or reference)+ to a struct or union, and the
7632 ultimate target type will be searched.
14f9c5c9
AS
7633
7634 Looks recursively into variant clauses and parent types.
7635
4c4b4cd2
PH
7636 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7637 TYPE is not a type of the right kind. */
14f9c5c9 7638
4c4b4cd2 7639static struct type *
76a01679
JB
7640ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7641 int noerr, int *dispp)
14f9c5c9
AS
7642{
7643 int i;
7644
7645 if (name == NULL)
7646 goto BadName;
7647
76a01679 7648 if (refok && type != NULL)
4c4b4cd2
PH
7649 while (1)
7650 {
61ee279c 7651 type = ada_check_typedef (type);
76a01679
JB
7652 if (TYPE_CODE (type) != TYPE_CODE_PTR
7653 && TYPE_CODE (type) != TYPE_CODE_REF)
7654 break;
7655 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7656 }
14f9c5c9 7657
76a01679 7658 if (type == NULL
1265e4aa
JB
7659 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7660 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7661 {
4c4b4cd2 7662 if (noerr)
76a01679 7663 return NULL;
99bbb428 7664
3b4de39c
PA
7665 error (_("Type %s is not a structure or union type"),
7666 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7667 }
7668
7669 type = to_static_fixed_type (type);
7670
7671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7672 {
0d5cff50 7673 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7674 struct type *t;
7675 int disp;
d2e4a39e 7676
14f9c5c9 7677 if (t_field_name == NULL)
4c4b4cd2 7678 continue;
14f9c5c9
AS
7679
7680 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7681 {
7682 if (dispp != NULL)
7683 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7684 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7685 }
14f9c5c9
AS
7686
7687 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7688 {
7689 disp = 0;
7690 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7691 0, 1, &disp);
7692 if (t != NULL)
7693 {
7694 if (dispp != NULL)
7695 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7696 return t;
7697 }
7698 }
14f9c5c9
AS
7699
7700 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7701 {
7702 int j;
5b4ee69b
MS
7703 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7704 i));
4c4b4cd2
PH
7705
7706 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7707 {
b1f33ddd
JB
7708 /* FIXME pnh 2008/01/26: We check for a field that is
7709 NOT wrapped in a struct, since the compiler sometimes
7710 generates these for unchecked variant types. Revisit
0963b4bd 7711 if the compiler changes this practice. */
0d5cff50 7712 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7713 disp = 0;
b1f33ddd
JB
7714 if (v_field_name != NULL
7715 && field_name_match (v_field_name, name))
460efde1 7716 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7717 else
0963b4bd
MS
7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7719 j),
b1f33ddd
JB
7720 name, 0, 1, &disp);
7721
4c4b4cd2
PH
7722 if (t != NULL)
7723 {
7724 if (dispp != NULL)
7725 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7726 return t;
7727 }
7728 }
7729 }
14f9c5c9
AS
7730
7731 }
7732
7733BadName:
d2e4a39e 7734 if (!noerr)
14f9c5c9 7735 {
2b2798cc 7736 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7737
7738 error (_("Type %s has no component named %s"),
3b4de39c 7739 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7740 }
7741
7742 return NULL;
7743}
7744
b1f33ddd
JB
7745/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7746 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7747 represents an unchecked union (that is, the variant part of a
0963b4bd 7748 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7749
7750static int
7751is_unchecked_variant (struct type *var_type, struct type *outer_type)
7752{
7753 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7754
b1f33ddd
JB
7755 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7756 == NULL);
7757}
7758
7759
14f9c5c9
AS
7760/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7761 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7762 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7763 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7764
d2e4a39e 7765int
ebf56fd3 7766ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7767 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7768{
7769 int others_clause;
7770 int i;
d2e4a39e 7771 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7772 struct value *outer;
7773 struct value *discrim;
14f9c5c9
AS
7774 LONGEST discrim_val;
7775
012370f6
TT
7776 /* Using plain value_from_contents_and_address here causes problems
7777 because we will end up trying to resolve a type that is currently
7778 being constructed. */
7779 outer = value_from_contents_and_address_unresolved (outer_type,
7780 outer_valaddr, 0);
0c281816
JB
7781 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7782 if (discrim == NULL)
14f9c5c9 7783 return -1;
0c281816 7784 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7785
7786 others_clause = -1;
7787 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7788 {
7789 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7790 others_clause = i;
14f9c5c9 7791 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7792 return i;
14f9c5c9
AS
7793 }
7794
7795 return others_clause;
7796}
d2e4a39e 7797\f
14f9c5c9
AS
7798
7799
4c4b4cd2 7800 /* Dynamic-Sized Records */
14f9c5c9
AS
7801
7802/* Strategy: The type ostensibly attached to a value with dynamic size
7803 (i.e., a size that is not statically recorded in the debugging
7804 data) does not accurately reflect the size or layout of the value.
7805 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7806 conventional types that are constructed on the fly. */
14f9c5c9
AS
7807
7808/* There is a subtle and tricky problem here. In general, we cannot
7809 determine the size of dynamic records without its data. However,
7810 the 'struct value' data structure, which GDB uses to represent
7811 quantities in the inferior process (the target), requires the size
7812 of the type at the time of its allocation in order to reserve space
7813 for GDB's internal copy of the data. That's why the
7814 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7815 rather than struct value*s.
14f9c5c9
AS
7816
7817 However, GDB's internal history variables ($1, $2, etc.) are
7818 struct value*s containing internal copies of the data that are not, in
7819 general, the same as the data at their corresponding addresses in
7820 the target. Fortunately, the types we give to these values are all
7821 conventional, fixed-size types (as per the strategy described
7822 above), so that we don't usually have to perform the
7823 'to_fixed_xxx_type' conversions to look at their values.
7824 Unfortunately, there is one exception: if one of the internal
7825 history variables is an array whose elements are unconstrained
7826 records, then we will need to create distinct fixed types for each
7827 element selected. */
7828
7829/* The upshot of all of this is that many routines take a (type, host
7830 address, target address) triple as arguments to represent a value.
7831 The host address, if non-null, is supposed to contain an internal
7832 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7833 target at the target address. */
14f9c5c9
AS
7834
7835/* Assuming that VAL0 represents a pointer value, the result of
7836 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7837 dynamic-sized types. */
14f9c5c9 7838
d2e4a39e
AS
7839struct value *
7840ada_value_ind (struct value *val0)
14f9c5c9 7841{
c48db5ca 7842 struct value *val = value_ind (val0);
5b4ee69b 7843
b50d69b5
JG
7844 if (ada_is_tagged_type (value_type (val), 0))
7845 val = ada_tag_value_at_base_address (val);
7846
4c4b4cd2 7847 return ada_to_fixed_value (val);
14f9c5c9
AS
7848}
7849
7850/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7851 qualifiers on VAL0. */
7852
d2e4a39e
AS
7853static struct value *
7854ada_coerce_ref (struct value *val0)
7855{
df407dfe 7856 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7857 {
7858 struct value *val = val0;
5b4ee69b 7859
994b9211 7860 val = coerce_ref (val);
b50d69b5
JG
7861
7862 if (ada_is_tagged_type (value_type (val), 0))
7863 val = ada_tag_value_at_base_address (val);
7864
4c4b4cd2 7865 return ada_to_fixed_value (val);
d2e4a39e
AS
7866 }
7867 else
14f9c5c9
AS
7868 return val0;
7869}
7870
7871/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7872 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7873
7874static unsigned int
ebf56fd3 7875align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7876{
7877 return (off + alignment - 1) & ~(alignment - 1);
7878}
7879
4c4b4cd2 7880/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7881
7882static unsigned int
ebf56fd3 7883field_alignment (struct type *type, int f)
14f9c5c9 7884{
d2e4a39e 7885 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7886 int len;
14f9c5c9
AS
7887 int align_offset;
7888
64a1bf19
JB
7889 /* The field name should never be null, unless the debugging information
7890 is somehow malformed. In this case, we assume the field does not
7891 require any alignment. */
7892 if (name == NULL)
7893 return 1;
7894
7895 len = strlen (name);
7896
4c4b4cd2
PH
7897 if (!isdigit (name[len - 1]))
7898 return 1;
14f9c5c9 7899
d2e4a39e 7900 if (isdigit (name[len - 2]))
14f9c5c9
AS
7901 align_offset = len - 2;
7902 else
7903 align_offset = len - 1;
7904
61012eef 7905 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7906 return TARGET_CHAR_BIT;
7907
4c4b4cd2
PH
7908 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7909}
7910
852dff6c 7911/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7912
852dff6c
JB
7913static struct symbol *
7914ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7915{
7916 struct symbol *sym;
7917
7918 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7919 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7920 return sym;
7921
4186eb54
KS
7922 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7923 return sym;
14f9c5c9
AS
7924}
7925
dddfab26
UW
7926/* Find a type named NAME. Ignores ambiguity. This routine will look
7927 solely for types defined by debug info, it will not search the GDB
7928 primitive types. */
4c4b4cd2 7929
852dff6c 7930static struct type *
ebf56fd3 7931ada_find_any_type (const char *name)
14f9c5c9 7932{
852dff6c 7933 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7934
14f9c5c9 7935 if (sym != NULL)
dddfab26 7936 return SYMBOL_TYPE (sym);
14f9c5c9 7937
dddfab26 7938 return NULL;
14f9c5c9
AS
7939}
7940
739593e0
JB
7941/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7942 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7943 symbol, in which case it is returned. Otherwise, this looks for
7944 symbols whose name is that of NAME_SYM suffixed with "___XR".
7945 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7946
7947struct symbol *
270140bd 7948ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7949{
739593e0 7950 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7951 struct symbol *sym;
7952
739593e0
JB
7953 if (strstr (name, "___XR") != NULL)
7954 return name_sym;
7955
aeb5907d
JB
7956 sym = find_old_style_renaming_symbol (name, block);
7957
7958 if (sym != NULL)
7959 return sym;
7960
0963b4bd 7961 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7962 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7963 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7964 return sym;
7965 else
7966 return NULL;
7967}
7968
7969static struct symbol *
270140bd 7970find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7971{
7f0df278 7972 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7973 char *rename;
7974
7975 if (function_sym != NULL)
7976 {
7977 /* If the symbol is defined inside a function, NAME is not fully
7978 qualified. This means we need to prepend the function name
7979 as well as adding the ``___XR'' suffix to build the name of
7980 the associated renaming symbol. */
0d5cff50 7981 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7982 /* Function names sometimes contain suffixes used
7983 for instance to qualify nested subprograms. When building
7984 the XR type name, we need to make sure that this suffix is
7985 not included. So do not include any suffix in the function
7986 name length below. */
69fadcdf 7987 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7988 const int rename_len = function_name_len + 2 /* "__" */
7989 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7990
529cad9c 7991 /* Strip the suffix if necessary. */
69fadcdf
JB
7992 ada_remove_trailing_digits (function_name, &function_name_len);
7993 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7994 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7995
4c4b4cd2
PH
7996 /* Library-level functions are a special case, as GNAT adds
7997 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7998 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7999 have this prefix, so we need to skip this prefix if present. */
8000 if (function_name_len > 5 /* "_ada_" */
8001 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8002 {
8003 function_name += 5;
8004 function_name_len -= 5;
8005 }
4c4b4cd2
PH
8006
8007 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8008 strncpy (rename, function_name, function_name_len);
8009 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8010 "__%s___XR", name);
4c4b4cd2
PH
8011 }
8012 else
8013 {
8014 const int rename_len = strlen (name) + 6;
5b4ee69b 8015
4c4b4cd2 8016 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8017 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8018 }
8019
852dff6c 8020 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8021}
8022
14f9c5c9 8023/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8024 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8025 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8026 otherwise return 0. */
8027
14f9c5c9 8028int
d2e4a39e 8029ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8030{
8031 if (type1 == NULL)
8032 return 1;
8033 else if (type0 == NULL)
8034 return 0;
8035 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8036 return 1;
8037 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8038 return 0;
4c4b4cd2
PH
8039 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8040 return 1;
ad82864c 8041 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8042 return 1;
4c4b4cd2
PH
8043 else if (ada_is_array_descriptor_type (type0)
8044 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8045 return 1;
aeb5907d
JB
8046 else
8047 {
8048 const char *type0_name = type_name_no_tag (type0);
8049 const char *type1_name = type_name_no_tag (type1);
8050
8051 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8052 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8053 return 1;
8054 }
14f9c5c9
AS
8055 return 0;
8056}
8057
8058/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8059 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8060
0d5cff50 8061const char *
d2e4a39e 8062ada_type_name (struct type *type)
14f9c5c9 8063{
d2e4a39e 8064 if (type == NULL)
14f9c5c9
AS
8065 return NULL;
8066 else if (TYPE_NAME (type) != NULL)
8067 return TYPE_NAME (type);
8068 else
8069 return TYPE_TAG_NAME (type);
8070}
8071
b4ba55a1
JB
8072/* Search the list of "descriptive" types associated to TYPE for a type
8073 whose name is NAME. */
8074
8075static struct type *
8076find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8077{
931e5bc3 8078 struct type *result, *tmp;
b4ba55a1 8079
c6044dd1
JB
8080 if (ada_ignore_descriptive_types_p)
8081 return NULL;
8082
b4ba55a1
JB
8083 /* If there no descriptive-type info, then there is no parallel type
8084 to be found. */
8085 if (!HAVE_GNAT_AUX_INFO (type))
8086 return NULL;
8087
8088 result = TYPE_DESCRIPTIVE_TYPE (type);
8089 while (result != NULL)
8090 {
0d5cff50 8091 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8092
8093 if (result_name == NULL)
8094 {
8095 warning (_("unexpected null name on descriptive type"));
8096 return NULL;
8097 }
8098
8099 /* If the names match, stop. */
8100 if (strcmp (result_name, name) == 0)
8101 break;
8102
8103 /* Otherwise, look at the next item on the list, if any. */
8104 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8105 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8106 else
8107 tmp = NULL;
8108
8109 /* If not found either, try after having resolved the typedef. */
8110 if (tmp != NULL)
8111 result = tmp;
b4ba55a1 8112 else
931e5bc3 8113 {
f168693b 8114 result = check_typedef (result);
931e5bc3
JG
8115 if (HAVE_GNAT_AUX_INFO (result))
8116 result = TYPE_DESCRIPTIVE_TYPE (result);
8117 else
8118 result = NULL;
8119 }
b4ba55a1
JB
8120 }
8121
8122 /* If we didn't find a match, see whether this is a packed array. With
8123 older compilers, the descriptive type information is either absent or
8124 irrelevant when it comes to packed arrays so the above lookup fails.
8125 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8126 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8127 return ada_find_any_type (name);
8128
8129 return result;
8130}
8131
8132/* Find a parallel type to TYPE with the specified NAME, using the
8133 descriptive type taken from the debugging information, if available,
8134 and otherwise using the (slower) name-based method. */
8135
8136static struct type *
8137ada_find_parallel_type_with_name (struct type *type, const char *name)
8138{
8139 struct type *result = NULL;
8140
8141 if (HAVE_GNAT_AUX_INFO (type))
8142 result = find_parallel_type_by_descriptive_type (type, name);
8143 else
8144 result = ada_find_any_type (name);
8145
8146 return result;
8147}
8148
8149/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8150 SUFFIX to the name of TYPE. */
14f9c5c9 8151
d2e4a39e 8152struct type *
ebf56fd3 8153ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8154{
0d5cff50 8155 char *name;
fe978cb0 8156 const char *type_name = ada_type_name (type);
14f9c5c9 8157 int len;
d2e4a39e 8158
fe978cb0 8159 if (type_name == NULL)
14f9c5c9
AS
8160 return NULL;
8161
fe978cb0 8162 len = strlen (type_name);
14f9c5c9 8163
b4ba55a1 8164 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8165
fe978cb0 8166 strcpy (name, type_name);
14f9c5c9
AS
8167 strcpy (name + len, suffix);
8168
b4ba55a1 8169 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8170}
8171
14f9c5c9 8172/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8173 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8174
d2e4a39e
AS
8175static struct type *
8176dynamic_template_type (struct type *type)
14f9c5c9 8177{
61ee279c 8178 type = ada_check_typedef (type);
14f9c5c9
AS
8179
8180 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8181 || ada_type_name (type) == NULL)
14f9c5c9 8182 return NULL;
d2e4a39e 8183 else
14f9c5c9
AS
8184 {
8185 int len = strlen (ada_type_name (type));
5b4ee69b 8186
4c4b4cd2
PH
8187 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8188 return type;
14f9c5c9 8189 else
4c4b4cd2 8190 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8191 }
8192}
8193
8194/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8195 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8196
d2e4a39e
AS
8197static int
8198is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8199{
8200 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8201
d2e4a39e 8202 return name != NULL
14f9c5c9
AS
8203 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8204 && strstr (name, "___XVL") != NULL;
8205}
8206
4c4b4cd2
PH
8207/* The index of the variant field of TYPE, or -1 if TYPE does not
8208 represent a variant record type. */
14f9c5c9 8209
d2e4a39e 8210static int
4c4b4cd2 8211variant_field_index (struct type *type)
14f9c5c9
AS
8212{
8213 int f;
8214
4c4b4cd2
PH
8215 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8216 return -1;
8217
8218 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8219 {
8220 if (ada_is_variant_part (type, f))
8221 return f;
8222 }
8223 return -1;
14f9c5c9
AS
8224}
8225
4c4b4cd2
PH
8226/* A record type with no fields. */
8227
d2e4a39e 8228static struct type *
fe978cb0 8229empty_record (struct type *templ)
14f9c5c9 8230{
fe978cb0 8231 struct type *type = alloc_type_copy (templ);
5b4ee69b 8232
14f9c5c9
AS
8233 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8234 TYPE_NFIELDS (type) = 0;
8235 TYPE_FIELDS (type) = NULL;
b1f33ddd 8236 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8237 TYPE_NAME (type) = "<empty>";
8238 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8239 TYPE_LENGTH (type) = 0;
8240 return type;
8241}
8242
8243/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8244 the value of type TYPE at VALADDR or ADDRESS (see comments at
8245 the beginning of this section) VAL according to GNAT conventions.
8246 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8247 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8248 an outer-level type (i.e., as opposed to a branch of a variant.) A
8249 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8250 of the variant.
14f9c5c9 8251
4c4b4cd2
PH
8252 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8253 length are not statically known are discarded. As a consequence,
8254 VALADDR, ADDRESS and DVAL0 are ignored.
8255
8256 NOTE: Limitations: For now, we assume that dynamic fields and
8257 variants occupy whole numbers of bytes. However, they need not be
8258 byte-aligned. */
8259
8260struct type *
10a2c479 8261ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8262 const gdb_byte *valaddr,
4c4b4cd2
PH
8263 CORE_ADDR address, struct value *dval0,
8264 int keep_dynamic_fields)
14f9c5c9 8265{
d2e4a39e
AS
8266 struct value *mark = value_mark ();
8267 struct value *dval;
8268 struct type *rtype;
14f9c5c9 8269 int nfields, bit_len;
4c4b4cd2 8270 int variant_field;
14f9c5c9 8271 long off;
d94e4f4f 8272 int fld_bit_len;
14f9c5c9
AS
8273 int f;
8274
4c4b4cd2
PH
8275 /* Compute the number of fields in this record type that are going
8276 to be processed: unless keep_dynamic_fields, this includes only
8277 fields whose position and length are static will be processed. */
8278 if (keep_dynamic_fields)
8279 nfields = TYPE_NFIELDS (type);
8280 else
8281 {
8282 nfields = 0;
76a01679 8283 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8284 && !ada_is_variant_part (type, nfields)
8285 && !is_dynamic_field (type, nfields))
8286 nfields++;
8287 }
8288
e9bb382b 8289 rtype = alloc_type_copy (type);
14f9c5c9
AS
8290 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8291 INIT_CPLUS_SPECIFIC (rtype);
8292 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8293 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8294 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8295 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8296 TYPE_NAME (rtype) = ada_type_name (type);
8297 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8298 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8299
d2e4a39e
AS
8300 off = 0;
8301 bit_len = 0;
4c4b4cd2
PH
8302 variant_field = -1;
8303
14f9c5c9
AS
8304 for (f = 0; f < nfields; f += 1)
8305 {
6c038f32
PH
8306 off = align_value (off, field_alignment (type, f))
8307 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8308 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8309 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8310
d2e4a39e 8311 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8312 {
8313 variant_field = f;
d94e4f4f 8314 fld_bit_len = 0;
4c4b4cd2 8315 }
14f9c5c9 8316 else if (is_dynamic_field (type, f))
4c4b4cd2 8317 {
284614f0
JB
8318 const gdb_byte *field_valaddr = valaddr;
8319 CORE_ADDR field_address = address;
8320 struct type *field_type =
8321 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8322
4c4b4cd2 8323 if (dval0 == NULL)
b5304971
JG
8324 {
8325 /* rtype's length is computed based on the run-time
8326 value of discriminants. If the discriminants are not
8327 initialized, the type size may be completely bogus and
0963b4bd 8328 GDB may fail to allocate a value for it. So check the
b5304971 8329 size first before creating the value. */
c1b5a1a6 8330 ada_ensure_varsize_limit (rtype);
012370f6
TT
8331 /* Using plain value_from_contents_and_address here
8332 causes problems because we will end up trying to
8333 resolve a type that is currently being
8334 constructed. */
8335 dval = value_from_contents_and_address_unresolved (rtype,
8336 valaddr,
8337 address);
9f1f738a 8338 rtype = value_type (dval);
b5304971 8339 }
4c4b4cd2
PH
8340 else
8341 dval = dval0;
8342
284614f0
JB
8343 /* If the type referenced by this field is an aligner type, we need
8344 to unwrap that aligner type, because its size might not be set.
8345 Keeping the aligner type would cause us to compute the wrong
8346 size for this field, impacting the offset of the all the fields
8347 that follow this one. */
8348 if (ada_is_aligner_type (field_type))
8349 {
8350 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8351
8352 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8353 field_address = cond_offset_target (field_address, field_offset);
8354 field_type = ada_aligned_type (field_type);
8355 }
8356
8357 field_valaddr = cond_offset_host (field_valaddr,
8358 off / TARGET_CHAR_BIT);
8359 field_address = cond_offset_target (field_address,
8360 off / TARGET_CHAR_BIT);
8361
8362 /* Get the fixed type of the field. Note that, in this case,
8363 we do not want to get the real type out of the tag: if
8364 the current field is the parent part of a tagged record,
8365 we will get the tag of the object. Clearly wrong: the real
8366 type of the parent is not the real type of the child. We
8367 would end up in an infinite loop. */
8368 field_type = ada_get_base_type (field_type);
8369 field_type = ada_to_fixed_type (field_type, field_valaddr,
8370 field_address, dval, 0);
27f2a97b
JB
8371 /* If the field size is already larger than the maximum
8372 object size, then the record itself will necessarily
8373 be larger than the maximum object size. We need to make
8374 this check now, because the size might be so ridiculously
8375 large (due to an uninitialized variable in the inferior)
8376 that it would cause an overflow when adding it to the
8377 record size. */
c1b5a1a6 8378 ada_ensure_varsize_limit (field_type);
284614f0
JB
8379
8380 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8381 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8382 /* The multiplication can potentially overflow. But because
8383 the field length has been size-checked just above, and
8384 assuming that the maximum size is a reasonable value,
8385 an overflow should not happen in practice. So rather than
8386 adding overflow recovery code to this already complex code,
8387 we just assume that it's not going to happen. */
d94e4f4f 8388 fld_bit_len =
4c4b4cd2
PH
8389 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8390 }
14f9c5c9 8391 else
4c4b4cd2 8392 {
5ded5331
JB
8393 /* Note: If this field's type is a typedef, it is important
8394 to preserve the typedef layer.
8395
8396 Otherwise, we might be transforming a typedef to a fat
8397 pointer (encoding a pointer to an unconstrained array),
8398 into a basic fat pointer (encoding an unconstrained
8399 array). As both types are implemented using the same
8400 structure, the typedef is the only clue which allows us
8401 to distinguish between the two options. Stripping it
8402 would prevent us from printing this field appropriately. */
8403 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8405 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8406 fld_bit_len =
4c4b4cd2
PH
8407 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8408 else
5ded5331
JB
8409 {
8410 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8411
8412 /* We need to be careful of typedefs when computing
8413 the length of our field. If this is a typedef,
8414 get the length of the target type, not the length
8415 of the typedef. */
8416 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8417 field_type = ada_typedef_target_type (field_type);
8418
8419 fld_bit_len =
8420 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8421 }
4c4b4cd2 8422 }
14f9c5c9 8423 if (off + fld_bit_len > bit_len)
4c4b4cd2 8424 bit_len = off + fld_bit_len;
d94e4f4f 8425 off += fld_bit_len;
4c4b4cd2
PH
8426 TYPE_LENGTH (rtype) =
8427 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8428 }
4c4b4cd2
PH
8429
8430 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8431 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8432 the record. This can happen in the presence of representation
8433 clauses. */
8434 if (variant_field >= 0)
8435 {
8436 struct type *branch_type;
8437
8438 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8439
8440 if (dval0 == NULL)
9f1f738a 8441 {
012370f6
TT
8442 /* Using plain value_from_contents_and_address here causes
8443 problems because we will end up trying to resolve a type
8444 that is currently being constructed. */
8445 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8446 address);
9f1f738a
SA
8447 rtype = value_type (dval);
8448 }
4c4b4cd2
PH
8449 else
8450 dval = dval0;
8451
8452 branch_type =
8453 to_fixed_variant_branch_type
8454 (TYPE_FIELD_TYPE (type, variant_field),
8455 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8456 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8457 if (branch_type == NULL)
8458 {
8459 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8460 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8461 TYPE_NFIELDS (rtype) -= 1;
8462 }
8463 else
8464 {
8465 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8466 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8467 fld_bit_len =
8468 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8469 TARGET_CHAR_BIT;
8470 if (off + fld_bit_len > bit_len)
8471 bit_len = off + fld_bit_len;
8472 TYPE_LENGTH (rtype) =
8473 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8474 }
8475 }
8476
714e53ab
PH
8477 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8478 should contain the alignment of that record, which should be a strictly
8479 positive value. If null or negative, then something is wrong, most
8480 probably in the debug info. In that case, we don't round up the size
0963b4bd 8481 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8482 the current RTYPE length might be good enough for our purposes. */
8483 if (TYPE_LENGTH (type) <= 0)
8484 {
323e0a4a
AC
8485 if (TYPE_NAME (rtype))
8486 warning (_("Invalid type size for `%s' detected: %d."),
8487 TYPE_NAME (rtype), TYPE_LENGTH (type));
8488 else
8489 warning (_("Invalid type size for <unnamed> detected: %d."),
8490 TYPE_LENGTH (type));
714e53ab
PH
8491 }
8492 else
8493 {
8494 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8495 TYPE_LENGTH (type));
8496 }
14f9c5c9
AS
8497
8498 value_free_to_mark (mark);
d2e4a39e 8499 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8500 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8501 return rtype;
8502}
8503
4c4b4cd2
PH
8504/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8505 of 1. */
14f9c5c9 8506
d2e4a39e 8507static struct type *
fc1a4b47 8508template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8509 CORE_ADDR address, struct value *dval0)
8510{
8511 return ada_template_to_fixed_record_type_1 (type, valaddr,
8512 address, dval0, 1);
8513}
8514
8515/* An ordinary record type in which ___XVL-convention fields and
8516 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8517 static approximations, containing all possible fields. Uses
8518 no runtime values. Useless for use in values, but that's OK,
8519 since the results are used only for type determinations. Works on both
8520 structs and unions. Representation note: to save space, we memorize
8521 the result of this function in the TYPE_TARGET_TYPE of the
8522 template type. */
8523
8524static struct type *
8525template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8526{
8527 struct type *type;
8528 int nfields;
8529 int f;
8530
9e195661
PMR
8531 /* No need no do anything if the input type is already fixed. */
8532 if (TYPE_FIXED_INSTANCE (type0))
8533 return type0;
8534
8535 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8536 if (TYPE_TARGET_TYPE (type0) != NULL)
8537 return TYPE_TARGET_TYPE (type0);
8538
9e195661 8539 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8540 type = type0;
9e195661
PMR
8541 nfields = TYPE_NFIELDS (type0);
8542
8543 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8544 recompute all over next time. */
8545 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8546
8547 for (f = 0; f < nfields; f += 1)
8548 {
460efde1 8549 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8550 struct type *new_type;
14f9c5c9 8551
4c4b4cd2 8552 if (is_dynamic_field (type0, f))
460efde1
JB
8553 {
8554 field_type = ada_check_typedef (field_type);
8555 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8556 }
14f9c5c9 8557 else
f192137b 8558 new_type = static_unwrap_type (field_type);
9e195661
PMR
8559
8560 if (new_type != field_type)
8561 {
8562 /* Clone TYPE0 only the first time we get a new field type. */
8563 if (type == type0)
8564 {
8565 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8566 TYPE_CODE (type) = TYPE_CODE (type0);
8567 INIT_CPLUS_SPECIFIC (type);
8568 TYPE_NFIELDS (type) = nfields;
8569 TYPE_FIELDS (type) = (struct field *)
8570 TYPE_ALLOC (type, nfields * sizeof (struct field));
8571 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8572 sizeof (struct field) * nfields);
8573 TYPE_NAME (type) = ada_type_name (type0);
8574 TYPE_TAG_NAME (type) = NULL;
8575 TYPE_FIXED_INSTANCE (type) = 1;
8576 TYPE_LENGTH (type) = 0;
8577 }
8578 TYPE_FIELD_TYPE (type, f) = new_type;
8579 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8580 }
14f9c5c9 8581 }
9e195661 8582
14f9c5c9
AS
8583 return type;
8584}
8585
4c4b4cd2 8586/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8587 whose address in memory is ADDRESS, returns a revision of TYPE,
8588 which should be a non-dynamic-sized record, in which the variant
8589 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8590 for discriminant values in DVAL0, which can be NULL if the record
8591 contains the necessary discriminant values. */
8592
d2e4a39e 8593static struct type *
fc1a4b47 8594to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8595 CORE_ADDR address, struct value *dval0)
14f9c5c9 8596{
d2e4a39e 8597 struct value *mark = value_mark ();
4c4b4cd2 8598 struct value *dval;
d2e4a39e 8599 struct type *rtype;
14f9c5c9
AS
8600 struct type *branch_type;
8601 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8602 int variant_field = variant_field_index (type);
14f9c5c9 8603
4c4b4cd2 8604 if (variant_field == -1)
14f9c5c9
AS
8605 return type;
8606
4c4b4cd2 8607 if (dval0 == NULL)
9f1f738a
SA
8608 {
8609 dval = value_from_contents_and_address (type, valaddr, address);
8610 type = value_type (dval);
8611 }
4c4b4cd2
PH
8612 else
8613 dval = dval0;
8614
e9bb382b 8615 rtype = alloc_type_copy (type);
14f9c5c9 8616 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8617 INIT_CPLUS_SPECIFIC (rtype);
8618 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8619 TYPE_FIELDS (rtype) =
8620 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8621 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8622 sizeof (struct field) * nfields);
14f9c5c9
AS
8623 TYPE_NAME (rtype) = ada_type_name (type);
8624 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8625 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8626 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8627
4c4b4cd2
PH
8628 branch_type = to_fixed_variant_branch_type
8629 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8630 cond_offset_host (valaddr,
4c4b4cd2
PH
8631 TYPE_FIELD_BITPOS (type, variant_field)
8632 / TARGET_CHAR_BIT),
d2e4a39e 8633 cond_offset_target (address,
4c4b4cd2
PH
8634 TYPE_FIELD_BITPOS (type, variant_field)
8635 / TARGET_CHAR_BIT), dval);
d2e4a39e 8636 if (branch_type == NULL)
14f9c5c9 8637 {
4c4b4cd2 8638 int f;
5b4ee69b 8639
4c4b4cd2
PH
8640 for (f = variant_field + 1; f < nfields; f += 1)
8641 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8642 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8643 }
8644 else
8645 {
4c4b4cd2
PH
8646 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8647 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8648 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8649 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8650 }
4c4b4cd2 8651 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8652
4c4b4cd2 8653 value_free_to_mark (mark);
14f9c5c9
AS
8654 return rtype;
8655}
8656
8657/* An ordinary record type (with fixed-length fields) that describes
8658 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8659 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8660 should be in DVAL, a record value; it may be NULL if the object
8661 at ADDR itself contains any necessary discriminant values.
8662 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8663 values from the record are needed. Except in the case that DVAL,
8664 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8665 unchecked) is replaced by a particular branch of the variant.
8666
8667 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8668 is questionable and may be removed. It can arise during the
8669 processing of an unconstrained-array-of-record type where all the
8670 variant branches have exactly the same size. This is because in
8671 such cases, the compiler does not bother to use the XVS convention
8672 when encoding the record. I am currently dubious of this
8673 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8674
d2e4a39e 8675static struct type *
fc1a4b47 8676to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8677 CORE_ADDR address, struct value *dval)
14f9c5c9 8678{
d2e4a39e 8679 struct type *templ_type;
14f9c5c9 8680
876cecd0 8681 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8682 return type0;
8683
d2e4a39e 8684 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8685
8686 if (templ_type != NULL)
8687 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8688 else if (variant_field_index (type0) >= 0)
8689 {
8690 if (dval == NULL && valaddr == NULL && address == 0)
8691 return type0;
8692 return to_record_with_fixed_variant_part (type0, valaddr, address,
8693 dval);
8694 }
14f9c5c9
AS
8695 else
8696 {
876cecd0 8697 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8698 return type0;
8699 }
8700
8701}
8702
8703/* An ordinary record type (with fixed-length fields) that describes
8704 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8705 union type. Any necessary discriminants' values should be in DVAL,
8706 a record value. That is, this routine selects the appropriate
8707 branch of the union at ADDR according to the discriminant value
b1f33ddd 8708 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8709 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8710
d2e4a39e 8711static struct type *
fc1a4b47 8712to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8713 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8714{
8715 int which;
d2e4a39e
AS
8716 struct type *templ_type;
8717 struct type *var_type;
14f9c5c9
AS
8718
8719 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8720 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8721 else
14f9c5c9
AS
8722 var_type = var_type0;
8723
8724 templ_type = ada_find_parallel_type (var_type, "___XVU");
8725
8726 if (templ_type != NULL)
8727 var_type = templ_type;
8728
b1f33ddd
JB
8729 if (is_unchecked_variant (var_type, value_type (dval)))
8730 return var_type0;
d2e4a39e
AS
8731 which =
8732 ada_which_variant_applies (var_type,
0fd88904 8733 value_type (dval), value_contents (dval));
14f9c5c9
AS
8734
8735 if (which < 0)
e9bb382b 8736 return empty_record (var_type);
14f9c5c9 8737 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8738 return to_fixed_record_type
d2e4a39e
AS
8739 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8740 valaddr, address, dval);
4c4b4cd2 8741 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8742 return
8743 to_fixed_record_type
8744 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8745 else
8746 return TYPE_FIELD_TYPE (var_type, which);
8747}
8748
8908fca5
JB
8749/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8750 ENCODING_TYPE, a type following the GNAT conventions for discrete
8751 type encodings, only carries redundant information. */
8752
8753static int
8754ada_is_redundant_range_encoding (struct type *range_type,
8755 struct type *encoding_type)
8756{
8757 struct type *fixed_range_type;
108d56a4 8758 const char *bounds_str;
8908fca5
JB
8759 int n;
8760 LONGEST lo, hi;
8761
8762 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8763
005e2509
JB
8764 if (TYPE_CODE (get_base_type (range_type))
8765 != TYPE_CODE (get_base_type (encoding_type)))
8766 {
8767 /* The compiler probably used a simple base type to describe
8768 the range type instead of the range's actual base type,
8769 expecting us to get the real base type from the encoding
8770 anyway. In this situation, the encoding cannot be ignored
8771 as redundant. */
8772 return 0;
8773 }
8774
8908fca5
JB
8775 if (is_dynamic_type (range_type))
8776 return 0;
8777
8778 if (TYPE_NAME (encoding_type) == NULL)
8779 return 0;
8780
8781 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8782 if (bounds_str == NULL)
8783 return 0;
8784
8785 n = 8; /* Skip "___XDLU_". */
8786 if (!ada_scan_number (bounds_str, n, &lo, &n))
8787 return 0;
8788 if (TYPE_LOW_BOUND (range_type) != lo)
8789 return 0;
8790
8791 n += 2; /* Skip the "__" separator between the two bounds. */
8792 if (!ada_scan_number (bounds_str, n, &hi, &n))
8793 return 0;
8794 if (TYPE_HIGH_BOUND (range_type) != hi)
8795 return 0;
8796
8797 return 1;
8798}
8799
8800/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8801 a type following the GNAT encoding for describing array type
8802 indices, only carries redundant information. */
8803
8804static int
8805ada_is_redundant_index_type_desc (struct type *array_type,
8806 struct type *desc_type)
8807{
8808 struct type *this_layer = check_typedef (array_type);
8809 int i;
8810
8811 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8812 {
8813 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8814 TYPE_FIELD_TYPE (desc_type, i)))
8815 return 0;
8816 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8817 }
8818
8819 return 1;
8820}
8821
14f9c5c9
AS
8822/* Assuming that TYPE0 is an array type describing the type of a value
8823 at ADDR, and that DVAL describes a record containing any
8824 discriminants used in TYPE0, returns a type for the value that
8825 contains no dynamic components (that is, no components whose sizes
8826 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8827 true, gives an error message if the resulting type's size is over
4c4b4cd2 8828 varsize_limit. */
14f9c5c9 8829
d2e4a39e
AS
8830static struct type *
8831to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8832 int ignore_too_big)
14f9c5c9 8833{
d2e4a39e
AS
8834 struct type *index_type_desc;
8835 struct type *result;
ad82864c 8836 int constrained_packed_array_p;
931e5bc3 8837 static const char *xa_suffix = "___XA";
14f9c5c9 8838
b0dd7688 8839 type0 = ada_check_typedef (type0);
284614f0 8840 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8841 return type0;
14f9c5c9 8842
ad82864c
JB
8843 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8844 if (constrained_packed_array_p)
8845 type0 = decode_constrained_packed_array_type (type0);
284614f0 8846
931e5bc3
JG
8847 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8848
8849 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8850 encoding suffixed with 'P' may still be generated. If so,
8851 it should be used to find the XA type. */
8852
8853 if (index_type_desc == NULL)
8854 {
1da0522e 8855 const char *type_name = ada_type_name (type0);
931e5bc3 8856
1da0522e 8857 if (type_name != NULL)
931e5bc3 8858 {
1da0522e 8859 const int len = strlen (type_name);
931e5bc3
JG
8860 char *name = (char *) alloca (len + strlen (xa_suffix));
8861
1da0522e 8862 if (type_name[len - 1] == 'P')
931e5bc3 8863 {
1da0522e 8864 strcpy (name, type_name);
931e5bc3
JG
8865 strcpy (name + len - 1, xa_suffix);
8866 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8867 }
8868 }
8869 }
8870
28c85d6c 8871 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8872 if (index_type_desc != NULL
8873 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8874 {
8875 /* Ignore this ___XA parallel type, as it does not bring any
8876 useful information. This allows us to avoid creating fixed
8877 versions of the array's index types, which would be identical
8878 to the original ones. This, in turn, can also help avoid
8879 the creation of fixed versions of the array itself. */
8880 index_type_desc = NULL;
8881 }
8882
14f9c5c9
AS
8883 if (index_type_desc == NULL)
8884 {
61ee279c 8885 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8886
14f9c5c9 8887 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8888 depend on the contents of the array in properly constructed
8889 debugging data. */
529cad9c
PH
8890 /* Create a fixed version of the array element type.
8891 We're not providing the address of an element here,
e1d5a0d2 8892 and thus the actual object value cannot be inspected to do
529cad9c
PH
8893 the conversion. This should not be a problem, since arrays of
8894 unconstrained objects are not allowed. In particular, all
8895 the elements of an array of a tagged type should all be of
8896 the same type specified in the debugging info. No need to
8897 consult the object tag. */
1ed6ede0 8898 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8899
284614f0
JB
8900 /* Make sure we always create a new array type when dealing with
8901 packed array types, since we're going to fix-up the array
8902 type length and element bitsize a little further down. */
ad82864c 8903 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8904 result = type0;
14f9c5c9 8905 else
e9bb382b 8906 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8907 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8908 }
8909 else
8910 {
8911 int i;
8912 struct type *elt_type0;
8913
8914 elt_type0 = type0;
8915 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8916 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8917
8918 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8919 depend on the contents of the array in properly constructed
8920 debugging data. */
529cad9c
PH
8921 /* Create a fixed version of the array element type.
8922 We're not providing the address of an element here,
e1d5a0d2 8923 and thus the actual object value cannot be inspected to do
529cad9c
PH
8924 the conversion. This should not be a problem, since arrays of
8925 unconstrained objects are not allowed. In particular, all
8926 the elements of an array of a tagged type should all be of
8927 the same type specified in the debugging info. No need to
8928 consult the object tag. */
1ed6ede0
JB
8929 result =
8930 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8931
8932 elt_type0 = type0;
14f9c5c9 8933 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8934 {
8935 struct type *range_type =
28c85d6c 8936 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8937
e9bb382b 8938 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8939 result, range_type);
1ce677a4 8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8941 }
d2e4a39e 8942 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8943 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8944 }
8945
2e6fda7d
JB
8946 /* We want to preserve the type name. This can be useful when
8947 trying to get the type name of a value that has already been
8948 printed (for instance, if the user did "print VAR; whatis $". */
8949 TYPE_NAME (result) = TYPE_NAME (type0);
8950
ad82864c 8951 if (constrained_packed_array_p)
284614f0
JB
8952 {
8953 /* So far, the resulting type has been created as if the original
8954 type was a regular (non-packed) array type. As a result, the
8955 bitsize of the array elements needs to be set again, and the array
8956 length needs to be recomputed based on that bitsize. */
8957 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8958 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8959
8960 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8961 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8962 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8963 TYPE_LENGTH (result)++;
8964 }
8965
876cecd0 8966 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8967 return result;
d2e4a39e 8968}
14f9c5c9
AS
8969
8970
8971/* A standard type (containing no dynamically sized components)
8972 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8973 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8974 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8975 ADDRESS or in VALADDR contains these discriminants.
8976
1ed6ede0
JB
8977 If CHECK_TAG is not null, in the case of tagged types, this function
8978 attempts to locate the object's tag and use it to compute the actual
8979 type. However, when ADDRESS is null, we cannot use it to determine the
8980 location of the tag, and therefore compute the tagged type's actual type.
8981 So we return the tagged type without consulting the tag. */
529cad9c 8982
f192137b
JB
8983static struct type *
8984ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8985 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8986{
61ee279c 8987 type = ada_check_typedef (type);
d2e4a39e
AS
8988 switch (TYPE_CODE (type))
8989 {
8990 default:
14f9c5c9 8991 return type;
d2e4a39e 8992 case TYPE_CODE_STRUCT:
4c4b4cd2 8993 {
76a01679 8994 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8995 struct type *fixed_record_type =
8996 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8997
529cad9c
PH
8998 /* If STATIC_TYPE is a tagged type and we know the object's address,
8999 then we can determine its tag, and compute the object's actual
0963b4bd 9000 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9001 type (the parent part of the record may have dynamic fields
9002 and the way the location of _tag is expressed may depend on
9003 them). */
529cad9c 9004
1ed6ede0 9005 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9006 {
b50d69b5
JG
9007 struct value *tag =
9008 value_tag_from_contents_and_address
9009 (fixed_record_type,
9010 valaddr,
9011 address);
9012 struct type *real_type = type_from_tag (tag);
9013 struct value *obj =
9014 value_from_contents_and_address (fixed_record_type,
9015 valaddr,
9016 address);
9f1f738a 9017 fixed_record_type = value_type (obj);
76a01679 9018 if (real_type != NULL)
b50d69b5
JG
9019 return to_fixed_record_type
9020 (real_type, NULL,
9021 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9022 }
4af88198
JB
9023
9024 /* Check to see if there is a parallel ___XVZ variable.
9025 If there is, then it provides the actual size of our type. */
9026 else if (ada_type_name (fixed_record_type) != NULL)
9027 {
0d5cff50 9028 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9029 char *xvz_name
9030 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
9031 int xvz_found = 0;
9032 LONGEST size;
9033
88c15c34 9034 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
9035 size = get_int_var_value (xvz_name, &xvz_found);
9036 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9037 {
9038 fixed_record_type = copy_type (fixed_record_type);
9039 TYPE_LENGTH (fixed_record_type) = size;
9040
9041 /* The FIXED_RECORD_TYPE may have be a stub. We have
9042 observed this when the debugging info is STABS, and
9043 apparently it is something that is hard to fix.
9044
9045 In practice, we don't need the actual type definition
9046 at all, because the presence of the XVZ variable allows us
9047 to assume that there must be a XVS type as well, which we
9048 should be able to use later, when we need the actual type
9049 definition.
9050
9051 In the meantime, pretend that the "fixed" type we are
9052 returning is NOT a stub, because this can cause trouble
9053 when using this type to create new types targeting it.
9054 Indeed, the associated creation routines often check
9055 whether the target type is a stub and will try to replace
0963b4bd 9056 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9057 might cause the new type to have the wrong size too.
9058 Consider the case of an array, for instance, where the size
9059 of the array is computed from the number of elements in
9060 our array multiplied by the size of its element. */
9061 TYPE_STUB (fixed_record_type) = 0;
9062 }
9063 }
1ed6ede0 9064 return fixed_record_type;
4c4b4cd2 9065 }
d2e4a39e 9066 case TYPE_CODE_ARRAY:
4c4b4cd2 9067 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9068 case TYPE_CODE_UNION:
9069 if (dval == NULL)
4c4b4cd2 9070 return type;
d2e4a39e 9071 else
4c4b4cd2 9072 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9073 }
14f9c5c9
AS
9074}
9075
f192137b
JB
9076/* The same as ada_to_fixed_type_1, except that it preserves the type
9077 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9078
9079 The typedef layer needs be preserved in order to differentiate between
9080 arrays and array pointers when both types are implemented using the same
9081 fat pointer. In the array pointer case, the pointer is encoded as
9082 a typedef of the pointer type. For instance, considering:
9083
9084 type String_Access is access String;
9085 S1 : String_Access := null;
9086
9087 To the debugger, S1 is defined as a typedef of type String. But
9088 to the user, it is a pointer. So if the user tries to print S1,
9089 we should not dereference the array, but print the array address
9090 instead.
9091
9092 If we didn't preserve the typedef layer, we would lose the fact that
9093 the type is to be presented as a pointer (needs de-reference before
9094 being printed). And we would also use the source-level type name. */
f192137b
JB
9095
9096struct type *
9097ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9098 CORE_ADDR address, struct value *dval, int check_tag)
9099
9100{
9101 struct type *fixed_type =
9102 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9103
96dbd2c1
JB
9104 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9105 then preserve the typedef layer.
9106
9107 Implementation note: We can only check the main-type portion of
9108 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9109 from TYPE now returns a type that has the same instance flags
9110 as TYPE. For instance, if TYPE is a "typedef const", and its
9111 target type is a "struct", then the typedef elimination will return
9112 a "const" version of the target type. See check_typedef for more
9113 details about how the typedef layer elimination is done.
9114
9115 brobecker/2010-11-19: It seems to me that the only case where it is
9116 useful to preserve the typedef layer is when dealing with fat pointers.
9117 Perhaps, we could add a check for that and preserve the typedef layer
9118 only in that situation. But this seems unecessary so far, probably
9119 because we call check_typedef/ada_check_typedef pretty much everywhere.
9120 */
f192137b 9121 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9122 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9123 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9124 return type;
9125
9126 return fixed_type;
9127}
9128
14f9c5c9 9129/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9130 TYPE0, but based on no runtime data. */
14f9c5c9 9131
d2e4a39e
AS
9132static struct type *
9133to_static_fixed_type (struct type *type0)
14f9c5c9 9134{
d2e4a39e 9135 struct type *type;
14f9c5c9
AS
9136
9137 if (type0 == NULL)
9138 return NULL;
9139
876cecd0 9140 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9141 return type0;
9142
61ee279c 9143 type0 = ada_check_typedef (type0);
d2e4a39e 9144
14f9c5c9
AS
9145 switch (TYPE_CODE (type0))
9146 {
9147 default:
9148 return type0;
9149 case TYPE_CODE_STRUCT:
9150 type = dynamic_template_type (type0);
d2e4a39e 9151 if (type != NULL)
4c4b4cd2
PH
9152 return template_to_static_fixed_type (type);
9153 else
9154 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9155 case TYPE_CODE_UNION:
9156 type = ada_find_parallel_type (type0, "___XVU");
9157 if (type != NULL)
4c4b4cd2
PH
9158 return template_to_static_fixed_type (type);
9159 else
9160 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9161 }
9162}
9163
4c4b4cd2
PH
9164/* A static approximation of TYPE with all type wrappers removed. */
9165
d2e4a39e
AS
9166static struct type *
9167static_unwrap_type (struct type *type)
14f9c5c9
AS
9168{
9169 if (ada_is_aligner_type (type))
9170 {
61ee279c 9171 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9172 if (ada_type_name (type1) == NULL)
4c4b4cd2 9173 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9174
9175 return static_unwrap_type (type1);
9176 }
d2e4a39e 9177 else
14f9c5c9 9178 {
d2e4a39e 9179 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9180
d2e4a39e 9181 if (raw_real_type == type)
4c4b4cd2 9182 return type;
14f9c5c9 9183 else
4c4b4cd2 9184 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9185 }
9186}
9187
9188/* In some cases, incomplete and private types require
4c4b4cd2 9189 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9190 type Foo;
9191 type FooP is access Foo;
9192 V: FooP;
9193 type Foo is array ...;
4c4b4cd2 9194 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9195 cross-references to such types, we instead substitute for FooP a
9196 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9197 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9198
9199/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9200 exists, otherwise TYPE. */
9201
d2e4a39e 9202struct type *
61ee279c 9203ada_check_typedef (struct type *type)
14f9c5c9 9204{
727e3d2e
JB
9205 if (type == NULL)
9206 return NULL;
9207
720d1a40
JB
9208 /* If our type is a typedef type of a fat pointer, then we're done.
9209 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9210 what allows us to distinguish between fat pointers that represent
9211 array types, and fat pointers that represent array access types
9212 (in both cases, the compiler implements them as fat pointers). */
9213 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9214 && is_thick_pntr (ada_typedef_target_type (type)))
9215 return type;
9216
f168693b 9217 type = check_typedef (type);
14f9c5c9 9218 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9219 || !TYPE_STUB (type)
14f9c5c9
AS
9220 || TYPE_TAG_NAME (type) == NULL)
9221 return type;
d2e4a39e 9222 else
14f9c5c9 9223 {
0d5cff50 9224 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9225 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9226
05e522ef
JB
9227 if (type1 == NULL)
9228 return type;
9229
9230 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9231 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9232 types, only for the typedef-to-array types). If that's the case,
9233 strip the typedef layer. */
9234 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9235 type1 = ada_check_typedef (type1);
9236
9237 return type1;
14f9c5c9
AS
9238 }
9239}
9240
9241/* A value representing the data at VALADDR/ADDRESS as described by
9242 type TYPE0, but with a standard (static-sized) type that correctly
9243 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9244 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9245 creation of struct values]. */
14f9c5c9 9246
4c4b4cd2
PH
9247static struct value *
9248ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9249 struct value *val0)
14f9c5c9 9250{
1ed6ede0 9251 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9252
14f9c5c9
AS
9253 if (type == type0 && val0 != NULL)
9254 return val0;
d2e4a39e 9255 else
4c4b4cd2
PH
9256 return value_from_contents_and_address (type, 0, address);
9257}
9258
9259/* A value representing VAL, but with a standard (static-sized) type
9260 that correctly describes it. Does not necessarily create a new
9261 value. */
9262
0c3acc09 9263struct value *
4c4b4cd2
PH
9264ada_to_fixed_value (struct value *val)
9265{
c48db5ca
JB
9266 val = unwrap_value (val);
9267 val = ada_to_fixed_value_create (value_type (val),
9268 value_address (val),
9269 val);
9270 return val;
14f9c5c9 9271}
d2e4a39e 9272\f
14f9c5c9 9273
14f9c5c9
AS
9274/* Attributes */
9275
4c4b4cd2
PH
9276/* Table mapping attribute numbers to names.
9277 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9278
d2e4a39e 9279static const char *attribute_names[] = {
14f9c5c9
AS
9280 "<?>",
9281
d2e4a39e 9282 "first",
14f9c5c9
AS
9283 "last",
9284 "length",
9285 "image",
14f9c5c9
AS
9286 "max",
9287 "min",
4c4b4cd2
PH
9288 "modulus",
9289 "pos",
9290 "size",
9291 "tag",
14f9c5c9 9292 "val",
14f9c5c9
AS
9293 0
9294};
9295
d2e4a39e 9296const char *
4c4b4cd2 9297ada_attribute_name (enum exp_opcode n)
14f9c5c9 9298{
4c4b4cd2
PH
9299 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9300 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9301 else
9302 return attribute_names[0];
9303}
9304
4c4b4cd2 9305/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9306
4c4b4cd2
PH
9307static LONGEST
9308pos_atr (struct value *arg)
14f9c5c9 9309{
24209737
PH
9310 struct value *val = coerce_ref (arg);
9311 struct type *type = value_type (val);
aa715135 9312 LONGEST result;
14f9c5c9 9313
d2e4a39e 9314 if (!discrete_type_p (type))
323e0a4a 9315 error (_("'POS only defined on discrete types"));
14f9c5c9 9316
aa715135
JG
9317 if (!discrete_position (type, value_as_long (val), &result))
9318 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9319
aa715135 9320 return result;
4c4b4cd2
PH
9321}
9322
9323static struct value *
3cb382c9 9324value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9325{
3cb382c9 9326 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9327}
9328
4c4b4cd2 9329/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9330
d2e4a39e
AS
9331static struct value *
9332value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9333{
d2e4a39e 9334 if (!discrete_type_p (type))
323e0a4a 9335 error (_("'VAL only defined on discrete types"));
df407dfe 9336 if (!integer_type_p (value_type (arg)))
323e0a4a 9337 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9338
9339 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9340 {
9341 long pos = value_as_long (arg);
5b4ee69b 9342
14f9c5c9 9343 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9344 error (_("argument to 'VAL out of range"));
14e75d8e 9345 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9346 }
9347 else
9348 return value_from_longest (type, value_as_long (arg));
9349}
14f9c5c9 9350\f
d2e4a39e 9351
4c4b4cd2 9352 /* Evaluation */
14f9c5c9 9353
4c4b4cd2
PH
9354/* True if TYPE appears to be an Ada character type.
9355 [At the moment, this is true only for Character and Wide_Character;
9356 It is a heuristic test that could stand improvement]. */
14f9c5c9 9357
d2e4a39e
AS
9358int
9359ada_is_character_type (struct type *type)
14f9c5c9 9360{
7b9f71f2
JB
9361 const char *name;
9362
9363 /* If the type code says it's a character, then assume it really is,
9364 and don't check any further. */
9365 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9366 return 1;
9367
9368 /* Otherwise, assume it's a character type iff it is a discrete type
9369 with a known character type name. */
9370 name = ada_type_name (type);
9371 return (name != NULL
9372 && (TYPE_CODE (type) == TYPE_CODE_INT
9373 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9374 && (strcmp (name, "character") == 0
9375 || strcmp (name, "wide_character") == 0
5a517ebd 9376 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9377 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9378}
9379
4c4b4cd2 9380/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9381
9382int
ebf56fd3 9383ada_is_string_type (struct type *type)
14f9c5c9 9384{
61ee279c 9385 type = ada_check_typedef (type);
d2e4a39e 9386 if (type != NULL
14f9c5c9 9387 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9388 && (ada_is_simple_array_type (type)
9389 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9390 && ada_array_arity (type) == 1)
9391 {
9392 struct type *elttype = ada_array_element_type (type, 1);
9393
9394 return ada_is_character_type (elttype);
9395 }
d2e4a39e 9396 else
14f9c5c9
AS
9397 return 0;
9398}
9399
5bf03f13
JB
9400/* The compiler sometimes provides a parallel XVS type for a given
9401 PAD type. Normally, it is safe to follow the PAD type directly,
9402 but older versions of the compiler have a bug that causes the offset
9403 of its "F" field to be wrong. Following that field in that case
9404 would lead to incorrect results, but this can be worked around
9405 by ignoring the PAD type and using the associated XVS type instead.
9406
9407 Set to True if the debugger should trust the contents of PAD types.
9408 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9409static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9410
9411/* True if TYPE is a struct type introduced by the compiler to force the
9412 alignment of a value. Such types have a single field with a
4c4b4cd2 9413 distinctive name. */
14f9c5c9
AS
9414
9415int
ebf56fd3 9416ada_is_aligner_type (struct type *type)
14f9c5c9 9417{
61ee279c 9418 type = ada_check_typedef (type);
714e53ab 9419
5bf03f13 9420 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9421 return 0;
9422
14f9c5c9 9423 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9424 && TYPE_NFIELDS (type) == 1
9425 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9426}
9427
9428/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9429 the parallel type. */
14f9c5c9 9430
d2e4a39e
AS
9431struct type *
9432ada_get_base_type (struct type *raw_type)
14f9c5c9 9433{
d2e4a39e
AS
9434 struct type *real_type_namer;
9435 struct type *raw_real_type;
14f9c5c9
AS
9436
9437 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9438 return raw_type;
9439
284614f0
JB
9440 if (ada_is_aligner_type (raw_type))
9441 /* The encoding specifies that we should always use the aligner type.
9442 So, even if this aligner type has an associated XVS type, we should
9443 simply ignore it.
9444
9445 According to the compiler gurus, an XVS type parallel to an aligner
9446 type may exist because of a stabs limitation. In stabs, aligner
9447 types are empty because the field has a variable-sized type, and
9448 thus cannot actually be used as an aligner type. As a result,
9449 we need the associated parallel XVS type to decode the type.
9450 Since the policy in the compiler is to not change the internal
9451 representation based on the debugging info format, we sometimes
9452 end up having a redundant XVS type parallel to the aligner type. */
9453 return raw_type;
9454
14f9c5c9 9455 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9456 if (real_type_namer == NULL
14f9c5c9
AS
9457 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9458 || TYPE_NFIELDS (real_type_namer) != 1)
9459 return raw_type;
9460
f80d3ff2
JB
9461 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9462 {
9463 /* This is an older encoding form where the base type needs to be
9464 looked up by name. We prefer the newer enconding because it is
9465 more efficient. */
9466 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9467 if (raw_real_type == NULL)
9468 return raw_type;
9469 else
9470 return raw_real_type;
9471 }
9472
9473 /* The field in our XVS type is a reference to the base type. */
9474 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9475}
14f9c5c9 9476
4c4b4cd2 9477/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9478
d2e4a39e
AS
9479struct type *
9480ada_aligned_type (struct type *type)
14f9c5c9
AS
9481{
9482 if (ada_is_aligner_type (type))
9483 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9484 else
9485 return ada_get_base_type (type);
9486}
9487
9488
9489/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9490 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9491
fc1a4b47
AC
9492const gdb_byte *
9493ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9494{
d2e4a39e 9495 if (ada_is_aligner_type (type))
14f9c5c9 9496 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9497 valaddr +
9498 TYPE_FIELD_BITPOS (type,
9499 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9500 else
9501 return valaddr;
9502}
9503
4c4b4cd2
PH
9504
9505
14f9c5c9 9506/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9507 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9508const char *
9509ada_enum_name (const char *name)
14f9c5c9 9510{
4c4b4cd2
PH
9511 static char *result;
9512 static size_t result_len = 0;
e6a959d6 9513 const char *tmp;
14f9c5c9 9514
4c4b4cd2
PH
9515 /* First, unqualify the enumeration name:
9516 1. Search for the last '.' character. If we find one, then skip
177b42fe 9517 all the preceding characters, the unqualified name starts
76a01679 9518 right after that dot.
4c4b4cd2 9519 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9520 translates dots into "__". Search forward for double underscores,
9521 but stop searching when we hit an overloading suffix, which is
9522 of the form "__" followed by digits. */
4c4b4cd2 9523
c3e5cd34
PH
9524 tmp = strrchr (name, '.');
9525 if (tmp != NULL)
4c4b4cd2
PH
9526 name = tmp + 1;
9527 else
14f9c5c9 9528 {
4c4b4cd2
PH
9529 while ((tmp = strstr (name, "__")) != NULL)
9530 {
9531 if (isdigit (tmp[2]))
9532 break;
9533 else
9534 name = tmp + 2;
9535 }
14f9c5c9
AS
9536 }
9537
9538 if (name[0] == 'Q')
9539 {
14f9c5c9 9540 int v;
5b4ee69b 9541
14f9c5c9 9542 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9543 {
9544 if (sscanf (name + 2, "%x", &v) != 1)
9545 return name;
9546 }
14f9c5c9 9547 else
4c4b4cd2 9548 return name;
14f9c5c9 9549
4c4b4cd2 9550 GROW_VECT (result, result_len, 16);
14f9c5c9 9551 if (isascii (v) && isprint (v))
88c15c34 9552 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9553 else if (name[1] == 'U')
88c15c34 9554 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9555 else
88c15c34 9556 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9557
9558 return result;
9559 }
d2e4a39e 9560 else
4c4b4cd2 9561 {
c3e5cd34
PH
9562 tmp = strstr (name, "__");
9563 if (tmp == NULL)
9564 tmp = strstr (name, "$");
9565 if (tmp != NULL)
4c4b4cd2
PH
9566 {
9567 GROW_VECT (result, result_len, tmp - name + 1);
9568 strncpy (result, name, tmp - name);
9569 result[tmp - name] = '\0';
9570 return result;
9571 }
9572
9573 return name;
9574 }
14f9c5c9
AS
9575}
9576
14f9c5c9
AS
9577/* Evaluate the subexpression of EXP starting at *POS as for
9578 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9579 expression. */
14f9c5c9 9580
d2e4a39e
AS
9581static struct value *
9582evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9583{
4b27a620 9584 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9585}
9586
9587/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9588 value it wraps. */
14f9c5c9 9589
d2e4a39e
AS
9590static struct value *
9591unwrap_value (struct value *val)
14f9c5c9 9592{
df407dfe 9593 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9594
14f9c5c9
AS
9595 if (ada_is_aligner_type (type))
9596 {
de4d072f 9597 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9598 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9599
14f9c5c9 9600 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9601 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9602
9603 return unwrap_value (v);
9604 }
d2e4a39e 9605 else
14f9c5c9 9606 {
d2e4a39e 9607 struct type *raw_real_type =
61ee279c 9608 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9609
5bf03f13
JB
9610 /* If there is no parallel XVS or XVE type, then the value is
9611 already unwrapped. Return it without further modification. */
9612 if ((type == raw_real_type)
9613 && ada_find_parallel_type (type, "___XVE") == NULL)
9614 return val;
14f9c5c9 9615
d2e4a39e 9616 return
4c4b4cd2
PH
9617 coerce_unspec_val_to_type
9618 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9619 value_address (val),
1ed6ede0 9620 NULL, 1));
14f9c5c9
AS
9621 }
9622}
d2e4a39e
AS
9623
9624static struct value *
9625cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9626{
9627 LONGEST val;
9628
df407dfe 9629 if (type == value_type (arg))
14f9c5c9 9630 return arg;
df407dfe 9631 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9632 val = ada_float_to_fixed (type,
df407dfe 9633 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9634 value_as_long (arg)));
d2e4a39e 9635 else
14f9c5c9 9636 {
a53b7a21 9637 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9638
14f9c5c9
AS
9639 val = ada_float_to_fixed (type, argd);
9640 }
9641
9642 return value_from_longest (type, val);
9643}
9644
d2e4a39e 9645static struct value *
a53b7a21 9646cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9647{
df407dfe 9648 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9649 value_as_long (arg));
5b4ee69b 9650
a53b7a21 9651 return value_from_double (type, val);
14f9c5c9
AS
9652}
9653
d99dcf51
JB
9654/* Given two array types T1 and T2, return nonzero iff both arrays
9655 contain the same number of elements. */
9656
9657static int
9658ada_same_array_size_p (struct type *t1, struct type *t2)
9659{
9660 LONGEST lo1, hi1, lo2, hi2;
9661
9662 /* Get the array bounds in order to verify that the size of
9663 the two arrays match. */
9664 if (!get_array_bounds (t1, &lo1, &hi1)
9665 || !get_array_bounds (t2, &lo2, &hi2))
9666 error (_("unable to determine array bounds"));
9667
9668 /* To make things easier for size comparison, normalize a bit
9669 the case of empty arrays by making sure that the difference
9670 between upper bound and lower bound is always -1. */
9671 if (lo1 > hi1)
9672 hi1 = lo1 - 1;
9673 if (lo2 > hi2)
9674 hi2 = lo2 - 1;
9675
9676 return (hi1 - lo1 == hi2 - lo2);
9677}
9678
9679/* Assuming that VAL is an array of integrals, and TYPE represents
9680 an array with the same number of elements, but with wider integral
9681 elements, return an array "casted" to TYPE. In practice, this
9682 means that the returned array is built by casting each element
9683 of the original array into TYPE's (wider) element type. */
9684
9685static struct value *
9686ada_promote_array_of_integrals (struct type *type, struct value *val)
9687{
9688 struct type *elt_type = TYPE_TARGET_TYPE (type);
9689 LONGEST lo, hi;
9690 struct value *res;
9691 LONGEST i;
9692
9693 /* Verify that both val and type are arrays of scalars, and
9694 that the size of val's elements is smaller than the size
9695 of type's element. */
9696 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9697 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9698 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9699 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9700 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9701 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9702
9703 if (!get_array_bounds (type, &lo, &hi))
9704 error (_("unable to determine array bounds"));
9705
9706 res = allocate_value (type);
9707
9708 /* Promote each array element. */
9709 for (i = 0; i < hi - lo + 1; i++)
9710 {
9711 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9712
9713 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9714 value_contents_all (elt), TYPE_LENGTH (elt_type));
9715 }
9716
9717 return res;
9718}
9719
4c4b4cd2
PH
9720/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9721 return the converted value. */
9722
d2e4a39e
AS
9723static struct value *
9724coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9725{
df407dfe 9726 struct type *type2 = value_type (val);
5b4ee69b 9727
14f9c5c9
AS
9728 if (type == type2)
9729 return val;
9730
61ee279c
PH
9731 type2 = ada_check_typedef (type2);
9732 type = ada_check_typedef (type);
14f9c5c9 9733
d2e4a39e
AS
9734 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9735 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9736 {
9737 val = ada_value_ind (val);
df407dfe 9738 type2 = value_type (val);
14f9c5c9
AS
9739 }
9740
d2e4a39e 9741 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9742 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9743 {
d99dcf51
JB
9744 if (!ada_same_array_size_p (type, type2))
9745 error (_("cannot assign arrays of different length"));
9746
9747 if (is_integral_type (TYPE_TARGET_TYPE (type))
9748 && is_integral_type (TYPE_TARGET_TYPE (type2))
9749 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9750 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9751 {
9752 /* Allow implicit promotion of the array elements to
9753 a wider type. */
9754 return ada_promote_array_of_integrals (type, val);
9755 }
9756
9757 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9758 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9759 error (_("Incompatible types in assignment"));
04624583 9760 deprecated_set_value_type (val, type);
14f9c5c9 9761 }
d2e4a39e 9762 return val;
14f9c5c9
AS
9763}
9764
4c4b4cd2
PH
9765static struct value *
9766ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9767{
9768 struct value *val;
9769 struct type *type1, *type2;
9770 LONGEST v, v1, v2;
9771
994b9211
AC
9772 arg1 = coerce_ref (arg1);
9773 arg2 = coerce_ref (arg2);
18af8284
JB
9774 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9775 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9776
76a01679
JB
9777 if (TYPE_CODE (type1) != TYPE_CODE_INT
9778 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9779 return value_binop (arg1, arg2, op);
9780
76a01679 9781 switch (op)
4c4b4cd2
PH
9782 {
9783 case BINOP_MOD:
9784 case BINOP_DIV:
9785 case BINOP_REM:
9786 break;
9787 default:
9788 return value_binop (arg1, arg2, op);
9789 }
9790
9791 v2 = value_as_long (arg2);
9792 if (v2 == 0)
323e0a4a 9793 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9794
9795 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9796 return value_binop (arg1, arg2, op);
9797
9798 v1 = value_as_long (arg1);
9799 switch (op)
9800 {
9801 case BINOP_DIV:
9802 v = v1 / v2;
76a01679
JB
9803 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9804 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9805 break;
9806 case BINOP_REM:
9807 v = v1 % v2;
76a01679
JB
9808 if (v * v1 < 0)
9809 v -= v2;
4c4b4cd2
PH
9810 break;
9811 default:
9812 /* Should not reach this point. */
9813 v = 0;
9814 }
9815
9816 val = allocate_value (type1);
990a07ab 9817 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9818 TYPE_LENGTH (value_type (val)),
9819 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9820 return val;
9821}
9822
9823static int
9824ada_value_equal (struct value *arg1, struct value *arg2)
9825{
df407dfe
AC
9826 if (ada_is_direct_array_type (value_type (arg1))
9827 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9828 {
f58b38bf
JB
9829 /* Automatically dereference any array reference before
9830 we attempt to perform the comparison. */
9831 arg1 = ada_coerce_ref (arg1);
9832 arg2 = ada_coerce_ref (arg2);
9833
4c4b4cd2
PH
9834 arg1 = ada_coerce_to_simple_array (arg1);
9835 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9836 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9837 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9838 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9839 /* FIXME: The following works only for types whose
76a01679
JB
9840 representations use all bits (no padding or undefined bits)
9841 and do not have user-defined equality. */
9842 return
df407dfe 9843 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9844 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9845 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9846 }
9847 return value_equal (arg1, arg2);
9848}
9849
52ce6436
PH
9850/* Total number of component associations in the aggregate starting at
9851 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9852 OP_AGGREGATE. */
52ce6436
PH
9853
9854static int
9855num_component_specs (struct expression *exp, int pc)
9856{
9857 int n, m, i;
5b4ee69b 9858
52ce6436
PH
9859 m = exp->elts[pc + 1].longconst;
9860 pc += 3;
9861 n = 0;
9862 for (i = 0; i < m; i += 1)
9863 {
9864 switch (exp->elts[pc].opcode)
9865 {
9866 default:
9867 n += 1;
9868 break;
9869 case OP_CHOICES:
9870 n += exp->elts[pc + 1].longconst;
9871 break;
9872 }
9873 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9874 }
9875 return n;
9876}
9877
9878/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9879 component of LHS (a simple array or a record), updating *POS past
9880 the expression, assuming that LHS is contained in CONTAINER. Does
9881 not modify the inferior's memory, nor does it modify LHS (unless
9882 LHS == CONTAINER). */
9883
9884static void
9885assign_component (struct value *container, struct value *lhs, LONGEST index,
9886 struct expression *exp, int *pos)
9887{
9888 struct value *mark = value_mark ();
9889 struct value *elt;
5b4ee69b 9890
52ce6436
PH
9891 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9892 {
22601c15
UW
9893 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9894 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9895
52ce6436
PH
9896 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9897 }
9898 else
9899 {
9900 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9901 elt = ada_to_fixed_value (elt);
52ce6436
PH
9902 }
9903
9904 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9905 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9906 else
9907 value_assign_to_component (container, elt,
9908 ada_evaluate_subexp (NULL, exp, pos,
9909 EVAL_NORMAL));
9910
9911 value_free_to_mark (mark);
9912}
9913
9914/* Assuming that LHS represents an lvalue having a record or array
9915 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9916 of that aggregate's value to LHS, advancing *POS past the
9917 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9918 lvalue containing LHS (possibly LHS itself). Does not modify
9919 the inferior's memory, nor does it modify the contents of
0963b4bd 9920 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9921
9922static struct value *
9923assign_aggregate (struct value *container,
9924 struct value *lhs, struct expression *exp,
9925 int *pos, enum noside noside)
9926{
9927 struct type *lhs_type;
9928 int n = exp->elts[*pos+1].longconst;
9929 LONGEST low_index, high_index;
9930 int num_specs;
9931 LONGEST *indices;
9932 int max_indices, num_indices;
52ce6436 9933 int i;
52ce6436
PH
9934
9935 *pos += 3;
9936 if (noside != EVAL_NORMAL)
9937 {
52ce6436
PH
9938 for (i = 0; i < n; i += 1)
9939 ada_evaluate_subexp (NULL, exp, pos, noside);
9940 return container;
9941 }
9942
9943 container = ada_coerce_ref (container);
9944 if (ada_is_direct_array_type (value_type (container)))
9945 container = ada_coerce_to_simple_array (container);
9946 lhs = ada_coerce_ref (lhs);
9947 if (!deprecated_value_modifiable (lhs))
9948 error (_("Left operand of assignment is not a modifiable lvalue."));
9949
9950 lhs_type = value_type (lhs);
9951 if (ada_is_direct_array_type (lhs_type))
9952 {
9953 lhs = ada_coerce_to_simple_array (lhs);
9954 lhs_type = value_type (lhs);
9955 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9956 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9957 }
9958 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9959 {
9960 low_index = 0;
9961 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9962 }
9963 else
9964 error (_("Left-hand side must be array or record."));
9965
9966 num_specs = num_component_specs (exp, *pos - 3);
9967 max_indices = 4 * num_specs + 4;
8d749320 9968 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9969 indices[0] = indices[1] = low_index - 1;
9970 indices[2] = indices[3] = high_index + 1;
9971 num_indices = 4;
9972
9973 for (i = 0; i < n; i += 1)
9974 {
9975 switch (exp->elts[*pos].opcode)
9976 {
1fbf5ada
JB
9977 case OP_CHOICES:
9978 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9979 &num_indices, max_indices,
9980 low_index, high_index);
9981 break;
9982 case OP_POSITIONAL:
9983 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9984 &num_indices, max_indices,
9985 low_index, high_index);
1fbf5ada
JB
9986 break;
9987 case OP_OTHERS:
9988 if (i != n-1)
9989 error (_("Misplaced 'others' clause"));
9990 aggregate_assign_others (container, lhs, exp, pos, indices,
9991 num_indices, low_index, high_index);
9992 break;
9993 default:
9994 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9995 }
9996 }
9997
9998 return container;
9999}
10000
10001/* Assign into the component of LHS indexed by the OP_POSITIONAL
10002 construct at *POS, updating *POS past the construct, given that
10003 the positions are relative to lower bound LOW, where HIGH is the
10004 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10005 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10006 assign_aggregate. */
52ce6436
PH
10007static void
10008aggregate_assign_positional (struct value *container,
10009 struct value *lhs, struct expression *exp,
10010 int *pos, LONGEST *indices, int *num_indices,
10011 int max_indices, LONGEST low, LONGEST high)
10012{
10013 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10014
10015 if (ind - 1 == high)
e1d5a0d2 10016 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10017 if (ind <= high)
10018 {
10019 add_component_interval (ind, ind, indices, num_indices, max_indices);
10020 *pos += 3;
10021 assign_component (container, lhs, ind, exp, pos);
10022 }
10023 else
10024 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10025}
10026
10027/* Assign into the components of LHS indexed by the OP_CHOICES
10028 construct at *POS, updating *POS past the construct, given that
10029 the allowable indices are LOW..HIGH. Record the indices assigned
10030 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10031 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10032static void
10033aggregate_assign_from_choices (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, LONGEST *indices, int *num_indices,
10036 int max_indices, LONGEST low, LONGEST high)
10037{
10038 int j;
10039 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10040 int choice_pos, expr_pc;
10041 int is_array = ada_is_direct_array_type (value_type (lhs));
10042
10043 choice_pos = *pos += 3;
10044
10045 for (j = 0; j < n_choices; j += 1)
10046 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10047 expr_pc = *pos;
10048 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10049
10050 for (j = 0; j < n_choices; j += 1)
10051 {
10052 LONGEST lower, upper;
10053 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10054
52ce6436
PH
10055 if (op == OP_DISCRETE_RANGE)
10056 {
10057 choice_pos += 1;
10058 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10059 EVAL_NORMAL));
10060 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10061 EVAL_NORMAL));
10062 }
10063 else if (is_array)
10064 {
10065 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10066 EVAL_NORMAL));
10067 upper = lower;
10068 }
10069 else
10070 {
10071 int ind;
0d5cff50 10072 const char *name;
5b4ee69b 10073
52ce6436
PH
10074 switch (op)
10075 {
10076 case OP_NAME:
10077 name = &exp->elts[choice_pos + 2].string;
10078 break;
10079 case OP_VAR_VALUE:
10080 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10081 break;
10082 default:
10083 error (_("Invalid record component association."));
10084 }
10085 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10086 ind = 0;
10087 if (! find_struct_field (name, value_type (lhs), 0,
10088 NULL, NULL, NULL, NULL, &ind))
10089 error (_("Unknown component name: %s."), name);
10090 lower = upper = ind;
10091 }
10092
10093 if (lower <= upper && (lower < low || upper > high))
10094 error (_("Index in component association out of bounds."));
10095
10096 add_component_interval (lower, upper, indices, num_indices,
10097 max_indices);
10098 while (lower <= upper)
10099 {
10100 int pos1;
5b4ee69b 10101
52ce6436
PH
10102 pos1 = expr_pc;
10103 assign_component (container, lhs, lower, exp, &pos1);
10104 lower += 1;
10105 }
10106 }
10107}
10108
10109/* Assign the value of the expression in the OP_OTHERS construct in
10110 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10111 have not been previously assigned. The index intervals already assigned
10112 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10113 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10114static void
10115aggregate_assign_others (struct value *container,
10116 struct value *lhs, struct expression *exp,
10117 int *pos, LONGEST *indices, int num_indices,
10118 LONGEST low, LONGEST high)
10119{
10120 int i;
5ce64950 10121 int expr_pc = *pos + 1;
52ce6436
PH
10122
10123 for (i = 0; i < num_indices - 2; i += 2)
10124 {
10125 LONGEST ind;
5b4ee69b 10126
52ce6436
PH
10127 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10128 {
5ce64950 10129 int localpos;
5b4ee69b 10130
5ce64950
MS
10131 localpos = expr_pc;
10132 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10133 }
10134 }
10135 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10136}
10137
10138/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10139 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10140 modifying *SIZE as needed. It is an error if *SIZE exceeds
10141 MAX_SIZE. The resulting intervals do not overlap. */
10142static void
10143add_component_interval (LONGEST low, LONGEST high,
10144 LONGEST* indices, int *size, int max_size)
10145{
10146 int i, j;
5b4ee69b 10147
52ce6436
PH
10148 for (i = 0; i < *size; i += 2) {
10149 if (high >= indices[i] && low <= indices[i + 1])
10150 {
10151 int kh;
5b4ee69b 10152
52ce6436
PH
10153 for (kh = i + 2; kh < *size; kh += 2)
10154 if (high < indices[kh])
10155 break;
10156 if (low < indices[i])
10157 indices[i] = low;
10158 indices[i + 1] = indices[kh - 1];
10159 if (high > indices[i + 1])
10160 indices[i + 1] = high;
10161 memcpy (indices + i + 2, indices + kh, *size - kh);
10162 *size -= kh - i - 2;
10163 return;
10164 }
10165 else if (high < indices[i])
10166 break;
10167 }
10168
10169 if (*size == max_size)
10170 error (_("Internal error: miscounted aggregate components."));
10171 *size += 2;
10172 for (j = *size-1; j >= i+2; j -= 1)
10173 indices[j] = indices[j - 2];
10174 indices[i] = low;
10175 indices[i + 1] = high;
10176}
10177
6e48bd2c
JB
10178/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10179 is different. */
10180
10181static struct value *
10182ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10183{
10184 if (type == ada_check_typedef (value_type (arg2)))
10185 return arg2;
10186
10187 if (ada_is_fixed_point_type (type))
10188 return (cast_to_fixed (type, arg2));
10189
10190 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10191 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10192
10193 return value_cast (type, arg2);
10194}
10195
284614f0
JB
10196/* Evaluating Ada expressions, and printing their result.
10197 ------------------------------------------------------
10198
21649b50
JB
10199 1. Introduction:
10200 ----------------
10201
284614f0
JB
10202 We usually evaluate an Ada expression in order to print its value.
10203 We also evaluate an expression in order to print its type, which
10204 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10205 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10206 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10207 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10208 similar.
10209
10210 Evaluating expressions is a little more complicated for Ada entities
10211 than it is for entities in languages such as C. The main reason for
10212 this is that Ada provides types whose definition might be dynamic.
10213 One example of such types is variant records. Or another example
10214 would be an array whose bounds can only be known at run time.
10215
10216 The following description is a general guide as to what should be
10217 done (and what should NOT be done) in order to evaluate an expression
10218 involving such types, and when. This does not cover how the semantic
10219 information is encoded by GNAT as this is covered separatly. For the
10220 document used as the reference for the GNAT encoding, see exp_dbug.ads
10221 in the GNAT sources.
10222
10223 Ideally, we should embed each part of this description next to its
10224 associated code. Unfortunately, the amount of code is so vast right
10225 now that it's hard to see whether the code handling a particular
10226 situation might be duplicated or not. One day, when the code is
10227 cleaned up, this guide might become redundant with the comments
10228 inserted in the code, and we might want to remove it.
10229
21649b50
JB
10230 2. ``Fixing'' an Entity, the Simple Case:
10231 -----------------------------------------
10232
284614f0
JB
10233 When evaluating Ada expressions, the tricky issue is that they may
10234 reference entities whose type contents and size are not statically
10235 known. Consider for instance a variant record:
10236
10237 type Rec (Empty : Boolean := True) is record
10238 case Empty is
10239 when True => null;
10240 when False => Value : Integer;
10241 end case;
10242 end record;
10243 Yes : Rec := (Empty => False, Value => 1);
10244 No : Rec := (empty => True);
10245
10246 The size and contents of that record depends on the value of the
10247 descriminant (Rec.Empty). At this point, neither the debugging
10248 information nor the associated type structure in GDB are able to
10249 express such dynamic types. So what the debugger does is to create
10250 "fixed" versions of the type that applies to the specific object.
10251 We also informally refer to this opperation as "fixing" an object,
10252 which means creating its associated fixed type.
10253
10254 Example: when printing the value of variable "Yes" above, its fixed
10255 type would look like this:
10256
10257 type Rec is record
10258 Empty : Boolean;
10259 Value : Integer;
10260 end record;
10261
10262 On the other hand, if we printed the value of "No", its fixed type
10263 would become:
10264
10265 type Rec is record
10266 Empty : Boolean;
10267 end record;
10268
10269 Things become a little more complicated when trying to fix an entity
10270 with a dynamic type that directly contains another dynamic type,
10271 such as an array of variant records, for instance. There are
10272 two possible cases: Arrays, and records.
10273
21649b50
JB
10274 3. ``Fixing'' Arrays:
10275 ---------------------
10276
10277 The type structure in GDB describes an array in terms of its bounds,
10278 and the type of its elements. By design, all elements in the array
10279 have the same type and we cannot represent an array of variant elements
10280 using the current type structure in GDB. When fixing an array,
10281 we cannot fix the array element, as we would potentially need one
10282 fixed type per element of the array. As a result, the best we can do
10283 when fixing an array is to produce an array whose bounds and size
10284 are correct (allowing us to read it from memory), but without having
10285 touched its element type. Fixing each element will be done later,
10286 when (if) necessary.
10287
10288 Arrays are a little simpler to handle than records, because the same
10289 amount of memory is allocated for each element of the array, even if
1b536f04 10290 the amount of space actually used by each element differs from element
21649b50 10291 to element. Consider for instance the following array of type Rec:
284614f0
JB
10292
10293 type Rec_Array is array (1 .. 2) of Rec;
10294
1b536f04
JB
10295 The actual amount of memory occupied by each element might be different
10296 from element to element, depending on the value of their discriminant.
21649b50 10297 But the amount of space reserved for each element in the array remains
1b536f04 10298 fixed regardless. So we simply need to compute that size using
21649b50
JB
10299 the debugging information available, from which we can then determine
10300 the array size (we multiply the number of elements of the array by
10301 the size of each element).
10302
10303 The simplest case is when we have an array of a constrained element
10304 type. For instance, consider the following type declarations:
10305
10306 type Bounded_String (Max_Size : Integer) is
10307 Length : Integer;
10308 Buffer : String (1 .. Max_Size);
10309 end record;
10310 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10311
10312 In this case, the compiler describes the array as an array of
10313 variable-size elements (identified by its XVS suffix) for which
10314 the size can be read in the parallel XVZ variable.
10315
10316 In the case of an array of an unconstrained element type, the compiler
10317 wraps the array element inside a private PAD type. This type should not
10318 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10319 that we also use the adjective "aligner" in our code to designate
10320 these wrapper types.
10321
1b536f04 10322 In some cases, the size allocated for each element is statically
21649b50
JB
10323 known. In that case, the PAD type already has the correct size,
10324 and the array element should remain unfixed.
10325
10326 But there are cases when this size is not statically known.
10327 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10328
10329 type Dynamic is array (1 .. Five) of Integer;
10330 type Wrapper (Has_Length : Boolean := False) is record
10331 Data : Dynamic;
10332 case Has_Length is
10333 when True => Length : Integer;
10334 when False => null;
10335 end case;
10336 end record;
10337 type Wrapper_Array is array (1 .. 2) of Wrapper;
10338
10339 Hello : Wrapper_Array := (others => (Has_Length => True,
10340 Data => (others => 17),
10341 Length => 1));
10342
10343
10344 The debugging info would describe variable Hello as being an
10345 array of a PAD type. The size of that PAD type is not statically
10346 known, but can be determined using a parallel XVZ variable.
10347 In that case, a copy of the PAD type with the correct size should
10348 be used for the fixed array.
10349
21649b50
JB
10350 3. ``Fixing'' record type objects:
10351 ----------------------------------
10352
10353 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10354 record types. In this case, in order to compute the associated
10355 fixed type, we need to determine the size and offset of each of
10356 its components. This, in turn, requires us to compute the fixed
10357 type of each of these components.
10358
10359 Consider for instance the example:
10360
10361 type Bounded_String (Max_Size : Natural) is record
10362 Str : String (1 .. Max_Size);
10363 Length : Natural;
10364 end record;
10365 My_String : Bounded_String (Max_Size => 10);
10366
10367 In that case, the position of field "Length" depends on the size
10368 of field Str, which itself depends on the value of the Max_Size
21649b50 10369 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10370 we need to fix the type of field Str. Therefore, fixing a variant
10371 record requires us to fix each of its components.
10372
10373 However, if a component does not have a dynamic size, the component
10374 should not be fixed. In particular, fields that use a PAD type
10375 should not fixed. Here is an example where this might happen
10376 (assuming type Rec above):
10377
10378 type Container (Big : Boolean) is record
10379 First : Rec;
10380 After : Integer;
10381 case Big is
10382 when True => Another : Integer;
10383 when False => null;
10384 end case;
10385 end record;
10386 My_Container : Container := (Big => False,
10387 First => (Empty => True),
10388 After => 42);
10389
10390 In that example, the compiler creates a PAD type for component First,
10391 whose size is constant, and then positions the component After just
10392 right after it. The offset of component After is therefore constant
10393 in this case.
10394
10395 The debugger computes the position of each field based on an algorithm
10396 that uses, among other things, the actual position and size of the field
21649b50
JB
10397 preceding it. Let's now imagine that the user is trying to print
10398 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10399 end up computing the offset of field After based on the size of the
10400 fixed version of field First. And since in our example First has
10401 only one actual field, the size of the fixed type is actually smaller
10402 than the amount of space allocated to that field, and thus we would
10403 compute the wrong offset of field After.
10404
21649b50
JB
10405 To make things more complicated, we need to watch out for dynamic
10406 components of variant records (identified by the ___XVL suffix in
10407 the component name). Even if the target type is a PAD type, the size
10408 of that type might not be statically known. So the PAD type needs
10409 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10410 we might end up with the wrong size for our component. This can be
10411 observed with the following type declarations:
284614f0
JB
10412
10413 type Octal is new Integer range 0 .. 7;
10414 type Octal_Array is array (Positive range <>) of Octal;
10415 pragma Pack (Octal_Array);
10416
10417 type Octal_Buffer (Size : Positive) is record
10418 Buffer : Octal_Array (1 .. Size);
10419 Length : Integer;
10420 end record;
10421
10422 In that case, Buffer is a PAD type whose size is unset and needs
10423 to be computed by fixing the unwrapped type.
10424
21649b50
JB
10425 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10426 ----------------------------------------------------------
10427
10428 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10429 thus far, be actually fixed?
10430
10431 The answer is: Only when referencing that element. For instance
10432 when selecting one component of a record, this specific component
10433 should be fixed at that point in time. Or when printing the value
10434 of a record, each component should be fixed before its value gets
10435 printed. Similarly for arrays, the element of the array should be
10436 fixed when printing each element of the array, or when extracting
10437 one element out of that array. On the other hand, fixing should
10438 not be performed on the elements when taking a slice of an array!
10439
10440 Note that one of the side-effects of miscomputing the offset and
10441 size of each field is that we end up also miscomputing the size
10442 of the containing type. This can have adverse results when computing
10443 the value of an entity. GDB fetches the value of an entity based
10444 on the size of its type, and thus a wrong size causes GDB to fetch
10445 the wrong amount of memory. In the case where the computed size is
10446 too small, GDB fetches too little data to print the value of our
10447 entiry. Results in this case as unpredicatble, as we usually read
10448 past the buffer containing the data =:-o. */
10449
10450/* Implement the evaluate_exp routine in the exp_descriptor structure
10451 for the Ada language. */
10452
52ce6436 10453static struct value *
ebf56fd3 10454ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10455 int *pos, enum noside noside)
14f9c5c9
AS
10456{
10457 enum exp_opcode op;
b5385fc0 10458 int tem;
14f9c5c9 10459 int pc;
5ec18f2b 10460 int preeval_pos;
14f9c5c9
AS
10461 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10462 struct type *type;
52ce6436 10463 int nargs, oplen;
d2e4a39e 10464 struct value **argvec;
14f9c5c9 10465
d2e4a39e
AS
10466 pc = *pos;
10467 *pos += 1;
14f9c5c9
AS
10468 op = exp->elts[pc].opcode;
10469
d2e4a39e 10470 switch (op)
14f9c5c9
AS
10471 {
10472 default:
10473 *pos -= 1;
6e48bd2c 10474 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10475
10476 if (noside == EVAL_NORMAL)
10477 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10478
10479 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10480 then we need to perform the conversion manually, because
10481 evaluate_subexp_standard doesn't do it. This conversion is
10482 necessary in Ada because the different kinds of float/fixed
10483 types in Ada have different representations.
10484
10485 Similarly, we need to perform the conversion from OP_LONG
10486 ourselves. */
10487 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10488 arg1 = ada_value_cast (expect_type, arg1, noside);
10489
10490 return arg1;
4c4b4cd2
PH
10491
10492 case OP_STRING:
10493 {
76a01679 10494 struct value *result;
5b4ee69b 10495
76a01679
JB
10496 *pos -= 1;
10497 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10498 /* The result type will have code OP_STRING, bashed there from
10499 OP_ARRAY. Bash it back. */
df407dfe
AC
10500 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10501 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10502 return result;
4c4b4cd2 10503 }
14f9c5c9
AS
10504
10505 case UNOP_CAST:
10506 (*pos) += 2;
10507 type = exp->elts[pc + 1].type;
10508 arg1 = evaluate_subexp (type, exp, pos, noside);
10509 if (noside == EVAL_SKIP)
4c4b4cd2 10510 goto nosideret;
6e48bd2c 10511 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10512 return arg1;
10513
4c4b4cd2
PH
10514 case UNOP_QUAL:
10515 (*pos) += 2;
10516 type = exp->elts[pc + 1].type;
10517 return ada_evaluate_subexp (type, exp, pos, noside);
10518
14f9c5c9
AS
10519 case BINOP_ASSIGN:
10520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10521 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10522 {
10523 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10524 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10525 return arg1;
10526 return ada_value_assign (arg1, arg1);
10527 }
003f3813
JB
10528 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10529 except if the lhs of our assignment is a convenience variable.
10530 In the case of assigning to a convenience variable, the lhs
10531 should be exactly the result of the evaluation of the rhs. */
10532 type = value_type (arg1);
10533 if (VALUE_LVAL (arg1) == lval_internalvar)
10534 type = NULL;
10535 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10536 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10537 return arg1;
df407dfe
AC
10538 if (ada_is_fixed_point_type (value_type (arg1)))
10539 arg2 = cast_to_fixed (value_type (arg1), arg2);
10540 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10541 error
323e0a4a 10542 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10543 else
df407dfe 10544 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10545 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10546
10547 case BINOP_ADD:
10548 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10549 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10550 if (noside == EVAL_SKIP)
4c4b4cd2 10551 goto nosideret;
2ac8a782
JB
10552 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10553 return (value_from_longest
10554 (value_type (arg1),
10555 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10556 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10557 return (value_from_longest
10558 (value_type (arg2),
10559 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10560 if ((ada_is_fixed_point_type (value_type (arg1))
10561 || ada_is_fixed_point_type (value_type (arg2)))
10562 && value_type (arg1) != value_type (arg2))
323e0a4a 10563 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10564 /* Do the addition, and cast the result to the type of the first
10565 argument. We cannot cast the result to a reference type, so if
10566 ARG1 is a reference type, find its underlying type. */
10567 type = value_type (arg1);
10568 while (TYPE_CODE (type) == TYPE_CODE_REF)
10569 type = TYPE_TARGET_TYPE (type);
f44316fa 10570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10571 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10572
10573 case BINOP_SUB:
10574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10576 if (noside == EVAL_SKIP)
4c4b4cd2 10577 goto nosideret;
2ac8a782
JB
10578 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg1),
10581 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10582 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10583 return (value_from_longest
10584 (value_type (arg2),
10585 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10586 if ((ada_is_fixed_point_type (value_type (arg1))
10587 || ada_is_fixed_point_type (value_type (arg2)))
10588 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10589 error (_("Operands of fixed-point subtraction "
10590 "must have the same type"));
b7789565
JB
10591 /* Do the substraction, and cast the result to the type of the first
10592 argument. We cannot cast the result to a reference type, so if
10593 ARG1 is a reference type, find its underlying type. */
10594 type = value_type (arg1);
10595 while (TYPE_CODE (type) == TYPE_CODE_REF)
10596 type = TYPE_TARGET_TYPE (type);
f44316fa 10597 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10598 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10599
10600 case BINOP_MUL:
10601 case BINOP_DIV:
e1578042
JB
10602 case BINOP_REM:
10603 case BINOP_MOD:
14f9c5c9
AS
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10606 if (noside == EVAL_SKIP)
4c4b4cd2 10607 goto nosideret;
e1578042 10608 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10609 {
10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10611 return value_zero (value_type (arg1), not_lval);
10612 }
14f9c5c9 10613 else
4c4b4cd2 10614 {
a53b7a21 10615 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10616 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10617 arg1 = cast_from_fixed (type, arg1);
df407dfe 10618 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10619 arg2 = cast_from_fixed (type, arg2);
f44316fa 10620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10621 return ada_value_binop (arg1, arg2, op);
10622 }
10623
4c4b4cd2
PH
10624 case BINOP_EQUAL:
10625 case BINOP_NOTEQUAL:
14f9c5c9 10626 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10627 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10628 if (noside == EVAL_SKIP)
76a01679 10629 goto nosideret;
4c4b4cd2 10630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10631 tem = 0;
4c4b4cd2 10632 else
f44316fa
UW
10633 {
10634 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10635 tem = ada_value_equal (arg1, arg2);
10636 }
4c4b4cd2 10637 if (op == BINOP_NOTEQUAL)
76a01679 10638 tem = !tem;
fbb06eb1
UW
10639 type = language_bool_type (exp->language_defn, exp->gdbarch);
10640 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10641
10642 case UNOP_NEG:
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
df407dfe
AC
10646 else if (ada_is_fixed_point_type (value_type (arg1)))
10647 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10648 else
f44316fa
UW
10649 {
10650 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10651 return value_neg (arg1);
10652 }
4c4b4cd2 10653
2330c6c6
JB
10654 case BINOP_LOGICAL_AND:
10655 case BINOP_LOGICAL_OR:
10656 case UNOP_LOGICAL_NOT:
000d5124
JB
10657 {
10658 struct value *val;
10659
10660 *pos -= 1;
10661 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10662 type = language_bool_type (exp->language_defn, exp->gdbarch);
10663 return value_cast (type, val);
000d5124 10664 }
2330c6c6
JB
10665
10666 case BINOP_BITWISE_AND:
10667 case BINOP_BITWISE_IOR:
10668 case BINOP_BITWISE_XOR:
000d5124
JB
10669 {
10670 struct value *val;
10671
10672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10673 *pos = pc;
10674 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10675
10676 return value_cast (value_type (arg1), val);
10677 }
2330c6c6 10678
14f9c5c9
AS
10679 case OP_VAR_VALUE:
10680 *pos -= 1;
6799def4 10681
14f9c5c9 10682 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10683 {
10684 *pos += 4;
10685 goto nosideret;
10686 }
da5c522f
JB
10687
10688 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10689 /* Only encountered when an unresolved symbol occurs in a
10690 context other than a function call, in which case, it is
52ce6436 10691 invalid. */
323e0a4a 10692 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10693 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10694
10695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10696 {
0c1f74cf 10697 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10698 /* Check to see if this is a tagged type. We also need to handle
10699 the case where the type is a reference to a tagged type, but
10700 we have to be careful to exclude pointers to tagged types.
10701 The latter should be shown as usual (as a pointer), whereas
10702 a reference should mostly be transparent to the user. */
10703 if (ada_is_tagged_type (type, 0)
023db19c 10704 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10705 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10706 {
10707 /* Tagged types are a little special in the fact that the real
10708 type is dynamic and can only be determined by inspecting the
10709 object's tag. This means that we need to get the object's
10710 value first (EVAL_NORMAL) and then extract the actual object
10711 type from its tag.
10712
10713 Note that we cannot skip the final step where we extract
10714 the object type from its tag, because the EVAL_NORMAL phase
10715 results in dynamic components being resolved into fixed ones.
10716 This can cause problems when trying to print the type
10717 description of tagged types whose parent has a dynamic size:
10718 We use the type name of the "_parent" component in order
10719 to print the name of the ancestor type in the type description.
10720 If that component had a dynamic size, the resolution into
10721 a fixed type would result in the loss of that type name,
10722 thus preventing us from printing the name of the ancestor
10723 type in the type description. */
10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10725
10726 if (TYPE_CODE (type) != TYPE_CODE_REF)
10727 {
10728 struct type *actual_type;
10729
10730 actual_type = type_from_tag (ada_value_tag (arg1));
10731 if (actual_type == NULL)
10732 /* If, for some reason, we were unable to determine
10733 the actual type from the tag, then use the static
10734 approximation that we just computed as a fallback.
10735 This can happen if the debugging information is
10736 incomplete, for instance. */
10737 actual_type = type;
10738 return value_zero (actual_type, not_lval);
10739 }
10740 else
10741 {
10742 /* In the case of a ref, ada_coerce_ref takes care
10743 of determining the actual type. But the evaluation
10744 should return a ref as it should be valid to ask
10745 for its address; so rebuild a ref after coerce. */
10746 arg1 = ada_coerce_ref (arg1);
10747 return value_ref (arg1);
10748 }
10749 }
0c1f74cf 10750
84754697
JB
10751 /* Records and unions for which GNAT encodings have been
10752 generated need to be statically fixed as well.
10753 Otherwise, non-static fixing produces a type where
10754 all dynamic properties are removed, which prevents "ptype"
10755 from being able to completely describe the type.
10756 For instance, a case statement in a variant record would be
10757 replaced by the relevant components based on the actual
10758 value of the discriminants. */
10759 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10760 && dynamic_template_type (type) != NULL)
10761 || (TYPE_CODE (type) == TYPE_CODE_UNION
10762 && ada_find_parallel_type (type, "___XVU") != NULL))
10763 {
10764 *pos += 4;
10765 return value_zero (to_static_fixed_type (type), not_lval);
10766 }
4c4b4cd2 10767 }
da5c522f
JB
10768
10769 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10770 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10771
10772 case OP_FUNCALL:
10773 (*pos) += 2;
10774
10775 /* Allocate arg vector, including space for the function to be
10776 called in argvec[0] and a terminating NULL. */
10777 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10778 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10779
10780 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10781 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10782 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10783 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10784 else
10785 {
10786 for (tem = 0; tem <= nargs; tem += 1)
10787 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10788 argvec[tem] = 0;
10789
10790 if (noside == EVAL_SKIP)
10791 goto nosideret;
10792 }
10793
ad82864c
JB
10794 if (ada_is_constrained_packed_array_type
10795 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10796 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10797 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10798 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10799 /* This is a packed array that has already been fixed, and
10800 therefore already coerced to a simple array. Nothing further
10801 to do. */
10802 ;
e6c2c623
PMR
10803 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10804 {
10805 /* Make sure we dereference references so that all the code below
10806 feels like it's really handling the referenced value. Wrapping
10807 types (for alignment) may be there, so make sure we strip them as
10808 well. */
10809 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10810 }
10811 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10812 && VALUE_LVAL (argvec[0]) == lval_memory)
10813 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10814
df407dfe 10815 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10816
10817 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10818 them. So, if this is an array typedef (encoding use for array
10819 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10820 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10821 type = ada_typedef_target_type (type);
10822
4c4b4cd2
PH
10823 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10824 {
61ee279c 10825 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10826 {
10827 case TYPE_CODE_FUNC:
61ee279c 10828 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10829 break;
10830 case TYPE_CODE_ARRAY:
10831 break;
10832 case TYPE_CODE_STRUCT:
10833 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10834 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10835 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10836 break;
10837 default:
323e0a4a 10838 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10839 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10840 break;
10841 }
10842 }
10843
10844 switch (TYPE_CODE (type))
10845 {
10846 case TYPE_CODE_FUNC:
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10848 {
10849 struct type *rtype = TYPE_TARGET_TYPE (type);
10850
10851 if (TYPE_GNU_IFUNC (type))
10852 return allocate_value (TYPE_TARGET_TYPE (rtype));
10853 return allocate_value (rtype);
10854 }
4c4b4cd2 10855 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10856 case TYPE_CODE_INTERNAL_FUNCTION:
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 /* We don't know anything about what the internal
10859 function might return, but we have to return
10860 something. */
10861 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10862 not_lval);
10863 else
10864 return call_internal_function (exp->gdbarch, exp->language_defn,
10865 argvec[0], nargs, argvec + 1);
10866
4c4b4cd2
PH
10867 case TYPE_CODE_STRUCT:
10868 {
10869 int arity;
10870
4c4b4cd2
PH
10871 arity = ada_array_arity (type);
10872 type = ada_array_element_type (type, nargs);
10873 if (type == NULL)
323e0a4a 10874 error (_("cannot subscript or call a record"));
4c4b4cd2 10875 if (arity != nargs)
323e0a4a 10876 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10877 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10878 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10879 return
10880 unwrap_value (ada_value_subscript
10881 (argvec[0], nargs, argvec + 1));
10882 }
10883 case TYPE_CODE_ARRAY:
10884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10885 {
10886 type = ada_array_element_type (type, nargs);
10887 if (type == NULL)
323e0a4a 10888 error (_("element type of array unknown"));
4c4b4cd2 10889 else
0a07e705 10890 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10891 }
10892 return
10893 unwrap_value (ada_value_subscript
10894 (ada_coerce_to_simple_array (argvec[0]),
10895 nargs, argvec + 1));
10896 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10897 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 {
deede10c 10899 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10900 type = ada_array_element_type (type, nargs);
10901 if (type == NULL)
323e0a4a 10902 error (_("element type of array unknown"));
4c4b4cd2 10903 else
0a07e705 10904 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10905 }
10906 return
deede10c
JB
10907 unwrap_value (ada_value_ptr_subscript (argvec[0],
10908 nargs, argvec + 1));
4c4b4cd2
PH
10909
10910 default:
e1d5a0d2
PH
10911 error (_("Attempt to index or call something other than an "
10912 "array or function"));
4c4b4cd2
PH
10913 }
10914
10915 case TERNOP_SLICE:
10916 {
10917 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 struct value *low_bound_val =
10919 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10920 struct value *high_bound_val =
10921 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 LONGEST low_bound;
10923 LONGEST high_bound;
5b4ee69b 10924
994b9211
AC
10925 low_bound_val = coerce_ref (low_bound_val);
10926 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10927 low_bound = value_as_long (low_bound_val);
10928 high_bound = value_as_long (high_bound_val);
963a6417 10929
4c4b4cd2
PH
10930 if (noside == EVAL_SKIP)
10931 goto nosideret;
10932
4c4b4cd2
PH
10933 /* If this is a reference to an aligner type, then remove all
10934 the aligners. */
df407dfe
AC
10935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10936 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10937 TYPE_TARGET_TYPE (value_type (array)) =
10938 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10939
ad82864c 10940 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10941 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10942
10943 /* If this is a reference to an array or an array lvalue,
10944 convert to a pointer. */
df407dfe
AC
10945 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10946 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10947 && VALUE_LVAL (array) == lval_memory))
10948 array = value_addr (array);
10949
1265e4aa 10950 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10951 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10952 (value_type (array))))
0b5d8877 10953 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10954
10955 array = ada_coerce_to_simple_array_ptr (array);
10956
714e53ab
PH
10957 /* If we have more than one level of pointer indirection,
10958 dereference the value until we get only one level. */
df407dfe
AC
10959 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10960 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10961 == TYPE_CODE_PTR))
10962 array = value_ind (array);
10963
10964 /* Make sure we really do have an array type before going further,
10965 to avoid a SEGV when trying to get the index type or the target
10966 type later down the road if the debug info generated by
10967 the compiler is incorrect or incomplete. */
df407dfe 10968 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10969 error (_("cannot take slice of non-array"));
714e53ab 10970
828292f2
JB
10971 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10972 == TYPE_CODE_PTR)
4c4b4cd2 10973 {
828292f2
JB
10974 struct type *type0 = ada_check_typedef (value_type (array));
10975
0b5d8877 10976 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10977 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10978 else
10979 {
10980 struct type *arr_type0 =
828292f2 10981 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10982
f5938064
JG
10983 return ada_value_slice_from_ptr (array, arr_type0,
10984 longest_to_int (low_bound),
10985 longest_to_int (high_bound));
4c4b4cd2
PH
10986 }
10987 }
10988 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 return array;
10990 else if (high_bound < low_bound)
df407dfe 10991 return empty_array (value_type (array), low_bound);
4c4b4cd2 10992 else
529cad9c
PH
10993 return ada_value_slice (array, longest_to_int (low_bound),
10994 longest_to_int (high_bound));
4c4b4cd2 10995 }
14f9c5c9 10996
4c4b4cd2
PH
10997 case UNOP_IN_RANGE:
10998 (*pos) += 2;
10999 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11000 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11001
14f9c5c9 11002 if (noside == EVAL_SKIP)
4c4b4cd2 11003 goto nosideret;
14f9c5c9 11004
4c4b4cd2
PH
11005 switch (TYPE_CODE (type))
11006 {
11007 default:
e1d5a0d2
PH
11008 lim_warning (_("Membership test incompletely implemented; "
11009 "always returns true"));
fbb06eb1
UW
11010 type = language_bool_type (exp->language_defn, exp->gdbarch);
11011 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11012
11013 case TYPE_CODE_RANGE:
030b4912
UW
11014 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11015 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11016 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11017 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11018 type = language_bool_type (exp->language_defn, exp->gdbarch);
11019 return
11020 value_from_longest (type,
4c4b4cd2
PH
11021 (value_less (arg1, arg3)
11022 || value_equal (arg1, arg3))
11023 && (value_less (arg2, arg1)
11024 || value_equal (arg2, arg1)));
11025 }
11026
11027 case BINOP_IN_BOUNDS:
14f9c5c9 11028 (*pos) += 2;
4c4b4cd2
PH
11029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11031
4c4b4cd2
PH
11032 if (noside == EVAL_SKIP)
11033 goto nosideret;
14f9c5c9 11034
4c4b4cd2 11035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11036 {
11037 type = language_bool_type (exp->language_defn, exp->gdbarch);
11038 return value_zero (type, not_lval);
11039 }
14f9c5c9 11040
4c4b4cd2 11041 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11042
1eea4ebd
UW
11043 type = ada_index_type (value_type (arg2), tem, "range");
11044 if (!type)
11045 type = value_type (arg1);
14f9c5c9 11046
1eea4ebd
UW
11047 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11048 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11049
f44316fa
UW
11050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11052 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11053 return
fbb06eb1 11054 value_from_longest (type,
4c4b4cd2
PH
11055 (value_less (arg1, arg3)
11056 || value_equal (arg1, arg3))
11057 && (value_less (arg2, arg1)
11058 || value_equal (arg2, arg1)));
11059
11060 case TERNOP_IN_RANGE:
11061 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11062 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064
11065 if (noside == EVAL_SKIP)
11066 goto nosideret;
11067
f44316fa
UW
11068 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11070 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11071 return
fbb06eb1 11072 value_from_longest (type,
4c4b4cd2
PH
11073 (value_less (arg1, arg3)
11074 || value_equal (arg1, arg3))
11075 && (value_less (arg2, arg1)
11076 || value_equal (arg2, arg1)));
11077
11078 case OP_ATR_FIRST:
11079 case OP_ATR_LAST:
11080 case OP_ATR_LENGTH:
11081 {
76a01679 11082 struct type *type_arg;
5b4ee69b 11083
76a01679
JB
11084 if (exp->elts[*pos].opcode == OP_TYPE)
11085 {
11086 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11087 arg1 = NULL;
5bc23cb3 11088 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11089 }
11090 else
11091 {
11092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11093 type_arg = NULL;
11094 }
11095
11096 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11097 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11098 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11099 *pos += 4;
11100
11101 if (noside == EVAL_SKIP)
11102 goto nosideret;
11103
11104 if (type_arg == NULL)
11105 {
11106 arg1 = ada_coerce_ref (arg1);
11107
ad82864c 11108 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11109 arg1 = ada_coerce_to_simple_array (arg1);
11110
aa4fb036 11111 if (op == OP_ATR_LENGTH)
1eea4ebd 11112 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11113 else
11114 {
11115 type = ada_index_type (value_type (arg1), tem,
11116 ada_attribute_name (op));
11117 if (type == NULL)
11118 type = builtin_type (exp->gdbarch)->builtin_int;
11119 }
76a01679
JB
11120
11121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11122 return allocate_value (type);
76a01679
JB
11123
11124 switch (op)
11125 {
11126 default: /* Should never happen. */
323e0a4a 11127 error (_("unexpected attribute encountered"));
76a01679 11128 case OP_ATR_FIRST:
1eea4ebd
UW
11129 return value_from_longest
11130 (type, ada_array_bound (arg1, tem, 0));
76a01679 11131 case OP_ATR_LAST:
1eea4ebd
UW
11132 return value_from_longest
11133 (type, ada_array_bound (arg1, tem, 1));
76a01679 11134 case OP_ATR_LENGTH:
1eea4ebd
UW
11135 return value_from_longest
11136 (type, ada_array_length (arg1, tem));
76a01679
JB
11137 }
11138 }
11139 else if (discrete_type_p (type_arg))
11140 {
11141 struct type *range_type;
0d5cff50 11142 const char *name = ada_type_name (type_arg);
5b4ee69b 11143
76a01679
JB
11144 range_type = NULL;
11145 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11146 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11147 if (range_type == NULL)
11148 range_type = type_arg;
11149 switch (op)
11150 {
11151 default:
323e0a4a 11152 error (_("unexpected attribute encountered"));
76a01679 11153 case OP_ATR_FIRST:
690cc4eb 11154 return value_from_longest
43bbcdc2 11155 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11156 case OP_ATR_LAST:
690cc4eb 11157 return value_from_longest
43bbcdc2 11158 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11159 case OP_ATR_LENGTH:
323e0a4a 11160 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11161 }
11162 }
11163 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11164 error (_("unimplemented type attribute"));
76a01679
JB
11165 else
11166 {
11167 LONGEST low, high;
11168
ad82864c
JB
11169 if (ada_is_constrained_packed_array_type (type_arg))
11170 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11171
aa4fb036 11172 if (op == OP_ATR_LENGTH)
1eea4ebd 11173 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11174 else
11175 {
11176 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11177 if (type == NULL)
11178 type = builtin_type (exp->gdbarch)->builtin_int;
11179 }
1eea4ebd 11180
76a01679
JB
11181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11182 return allocate_value (type);
11183
11184 switch (op)
11185 {
11186 default:
323e0a4a 11187 error (_("unexpected attribute encountered"));
76a01679 11188 case OP_ATR_FIRST:
1eea4ebd 11189 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11190 return value_from_longest (type, low);
11191 case OP_ATR_LAST:
1eea4ebd 11192 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11193 return value_from_longest (type, high);
11194 case OP_ATR_LENGTH:
1eea4ebd
UW
11195 low = ada_array_bound_from_type (type_arg, tem, 0);
11196 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11197 return value_from_longest (type, high - low + 1);
11198 }
11199 }
14f9c5c9
AS
11200 }
11201
4c4b4cd2
PH
11202 case OP_ATR_TAG:
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 if (noside == EVAL_SKIP)
76a01679 11205 goto nosideret;
4c4b4cd2
PH
11206
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11208 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11209
11210 return ada_value_tag (arg1);
11211
11212 case OP_ATR_MIN:
11213 case OP_ATR_MAX:
11214 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 if (noside == EVAL_SKIP)
76a01679 11218 goto nosideret;
d2e4a39e 11219 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11220 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11221 else
f44316fa
UW
11222 {
11223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11224 return value_binop (arg1, arg2,
11225 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11226 }
14f9c5c9 11227
4c4b4cd2
PH
11228 case OP_ATR_MODULUS:
11229 {
31dedfee 11230 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11231
5b4ee69b 11232 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11233 if (noside == EVAL_SKIP)
11234 goto nosideret;
4c4b4cd2 11235
76a01679 11236 if (!ada_is_modular_type (type_arg))
323e0a4a 11237 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11238
76a01679
JB
11239 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11240 ada_modulus (type_arg));
4c4b4cd2
PH
11241 }
11242
11243
11244 case OP_ATR_POS:
11245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
76a01679 11248 goto nosideret;
3cb382c9
UW
11249 type = builtin_type (exp->gdbarch)->builtin_int;
11250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (type, not_lval);
14f9c5c9 11252 else
3cb382c9 11253 return value_pos_atr (type, arg1);
14f9c5c9 11254
4c4b4cd2
PH
11255 case OP_ATR_SIZE:
11256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11257 type = value_type (arg1);
11258
11259 /* If the argument is a reference, then dereference its type, since
11260 the user is really asking for the size of the actual object,
11261 not the size of the pointer. */
11262 if (TYPE_CODE (type) == TYPE_CODE_REF)
11263 type = TYPE_TARGET_TYPE (type);
11264
4c4b4cd2 11265 if (noside == EVAL_SKIP)
76a01679 11266 goto nosideret;
4c4b4cd2 11267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11268 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11269 else
22601c15 11270 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11271 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11272
11273 case OP_ATR_VAL:
11274 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11276 type = exp->elts[pc + 2].type;
14f9c5c9 11277 if (noside == EVAL_SKIP)
76a01679 11278 goto nosideret;
4c4b4cd2 11279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11280 return value_zero (type, not_lval);
4c4b4cd2 11281 else
76a01679 11282 return value_val_atr (type, arg1);
4c4b4cd2
PH
11283
11284 case BINOP_EXP:
11285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11286 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11290 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11291 else
f44316fa
UW
11292 {
11293 /* For integer exponentiation operations,
11294 only promote the first argument. */
11295 if (is_integral_type (value_type (arg2)))
11296 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11297 else
11298 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11299
11300 return value_binop (arg1, arg2, op);
11301 }
4c4b4cd2
PH
11302
11303 case UNOP_PLUS:
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
11306 goto nosideret;
11307 else
11308 return arg1;
11309
11310 case UNOP_ABS:
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 if (noside == EVAL_SKIP)
11313 goto nosideret;
f44316fa 11314 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11315 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11316 return value_neg (arg1);
14f9c5c9 11317 else
4c4b4cd2 11318 return arg1;
14f9c5c9
AS
11319
11320 case UNOP_IND:
5ec18f2b 11321 preeval_pos = *pos;
6b0d7253 11322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11323 if (noside == EVAL_SKIP)
4c4b4cd2 11324 goto nosideret;
df407dfe 11325 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11327 {
11328 if (ada_is_array_descriptor_type (type))
11329 /* GDB allows dereferencing GNAT array descriptors. */
11330 {
11331 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11332
4c4b4cd2 11333 if (arrType == NULL)
323e0a4a 11334 error (_("Attempt to dereference null array pointer."));
00a4c844 11335 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11336 }
11337 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11338 || TYPE_CODE (type) == TYPE_CODE_REF
11339 /* In C you can dereference an array to get the 1st elt. */
11340 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11341 {
5ec18f2b
JG
11342 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11343 only be determined by inspecting the object's tag.
11344 This means that we need to evaluate completely the
11345 expression in order to get its type. */
11346
023db19c
JB
11347 if ((TYPE_CODE (type) == TYPE_CODE_REF
11348 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11349 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11350 {
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11352 EVAL_NORMAL);
11353 type = value_type (ada_value_ind (arg1));
11354 }
11355 else
11356 {
11357 type = to_static_fixed_type
11358 (ada_aligned_type
11359 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11360 }
c1b5a1a6 11361 ada_ensure_varsize_limit (type);
714e53ab
PH
11362 return value_zero (type, lval_memory);
11363 }
4c4b4cd2 11364 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11365 {
11366 /* GDB allows dereferencing an int. */
11367 if (expect_type == NULL)
11368 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11369 lval_memory);
11370 else
11371 {
11372 expect_type =
11373 to_static_fixed_type (ada_aligned_type (expect_type));
11374 return value_zero (expect_type, lval_memory);
11375 }
11376 }
4c4b4cd2 11377 else
323e0a4a 11378 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11379 }
0963b4bd 11380 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11381 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11382
96967637
JB
11383 if (TYPE_CODE (type) == TYPE_CODE_INT)
11384 /* GDB allows dereferencing an int. If we were given
11385 the expect_type, then use that as the target type.
11386 Otherwise, assume that the target type is an int. */
11387 {
11388 if (expect_type != NULL)
11389 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11390 arg1));
11391 else
11392 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11393 (CORE_ADDR) value_as_address (arg1));
11394 }
6b0d7253 11395
4c4b4cd2
PH
11396 if (ada_is_array_descriptor_type (type))
11397 /* GDB allows dereferencing GNAT array descriptors. */
11398 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11399 else
4c4b4cd2 11400 return ada_value_ind (arg1);
14f9c5c9
AS
11401
11402 case STRUCTOP_STRUCT:
11403 tem = longest_to_int (exp->elts[pc + 1].longconst);
11404 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11405 preeval_pos = *pos;
14f9c5c9
AS
11406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
4c4b4cd2 11408 goto nosideret;
14f9c5c9 11409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11410 {
df407dfe 11411 struct type *type1 = value_type (arg1);
5b4ee69b 11412
76a01679
JB
11413 if (ada_is_tagged_type (type1, 1))
11414 {
11415 type = ada_lookup_struct_elt_type (type1,
11416 &exp->elts[pc + 2].string,
11417 1, 1, NULL);
5ec18f2b
JG
11418
11419 /* If the field is not found, check if it exists in the
11420 extension of this object's type. This means that we
11421 need to evaluate completely the expression. */
11422
76a01679 11423 if (type == NULL)
5ec18f2b
JG
11424 {
11425 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11426 EVAL_NORMAL);
11427 arg1 = ada_value_struct_elt (arg1,
11428 &exp->elts[pc + 2].string,
11429 0);
11430 arg1 = unwrap_value (arg1);
11431 type = value_type (ada_to_fixed_value (arg1));
11432 }
76a01679
JB
11433 }
11434 else
11435 type =
11436 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11437 0, NULL);
11438
11439 return value_zero (ada_aligned_type (type), lval_memory);
11440 }
14f9c5c9 11441 else
a579cd9a
MW
11442 {
11443 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11444 arg1 = unwrap_value (arg1);
11445 return ada_to_fixed_value (arg1);
11446 }
284614f0 11447
14f9c5c9 11448 case OP_TYPE:
4c4b4cd2
PH
11449 /* The value is not supposed to be used. This is here to make it
11450 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11451 (*pos) += 2;
11452 if (noside == EVAL_SKIP)
4c4b4cd2 11453 goto nosideret;
14f9c5c9 11454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11455 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11456 else
323e0a4a 11457 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11458
11459 case OP_AGGREGATE:
11460 case OP_CHOICES:
11461 case OP_OTHERS:
11462 case OP_DISCRETE_RANGE:
11463 case OP_POSITIONAL:
11464 case OP_NAME:
11465 if (noside == EVAL_NORMAL)
11466 switch (op)
11467 {
11468 case OP_NAME:
11469 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11470 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11471 case OP_AGGREGATE:
11472 error (_("Aggregates only allowed on the right of an assignment"));
11473 default:
0963b4bd
MS
11474 internal_error (__FILE__, __LINE__,
11475 _("aggregate apparently mangled"));
52ce6436
PH
11476 }
11477
11478 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11479 *pos += oplen - 1;
11480 for (tem = 0; tem < nargs; tem += 1)
11481 ada_evaluate_subexp (NULL, exp, pos, noside);
11482 goto nosideret;
14f9c5c9
AS
11483 }
11484
11485nosideret:
22601c15 11486 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11487}
14f9c5c9 11488\f
d2e4a39e 11489
4c4b4cd2 11490 /* Fixed point */
14f9c5c9
AS
11491
11492/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11493 type name that encodes the 'small and 'delta information.
4c4b4cd2 11494 Otherwise, return NULL. */
14f9c5c9 11495
d2e4a39e 11496static const char *
ebf56fd3 11497fixed_type_info (struct type *type)
14f9c5c9 11498{
d2e4a39e 11499 const char *name = ada_type_name (type);
14f9c5c9
AS
11500 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11501
d2e4a39e
AS
11502 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11503 {
14f9c5c9 11504 const char *tail = strstr (name, "___XF_");
5b4ee69b 11505
14f9c5c9 11506 if (tail == NULL)
4c4b4cd2 11507 return NULL;
d2e4a39e 11508 else
4c4b4cd2 11509 return tail + 5;
14f9c5c9
AS
11510 }
11511 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11512 return fixed_type_info (TYPE_TARGET_TYPE (type));
11513 else
11514 return NULL;
11515}
11516
4c4b4cd2 11517/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11518
11519int
ebf56fd3 11520ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11521{
11522 return fixed_type_info (type) != NULL;
11523}
11524
4c4b4cd2
PH
11525/* Return non-zero iff TYPE represents a System.Address type. */
11526
11527int
11528ada_is_system_address_type (struct type *type)
11529{
11530 return (TYPE_NAME (type)
11531 && strcmp (TYPE_NAME (type), "system__address") == 0);
11532}
11533
14f9c5c9
AS
11534/* Assuming that TYPE is the representation of an Ada fixed-point
11535 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11536 delta cannot be determined. */
14f9c5c9
AS
11537
11538DOUBLEST
ebf56fd3 11539ada_delta (struct type *type)
14f9c5c9
AS
11540{
11541 const char *encoding = fixed_type_info (type);
facc390f 11542 DOUBLEST num, den;
14f9c5c9 11543
facc390f
JB
11544 /* Strictly speaking, num and den are encoded as integer. However,
11545 they may not fit into a long, and they will have to be converted
11546 to DOUBLEST anyway. So scan them as DOUBLEST. */
11547 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11548 &num, &den) < 2)
14f9c5c9 11549 return -1.0;
d2e4a39e 11550 else
facc390f 11551 return num / den;
14f9c5c9
AS
11552}
11553
11554/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11555 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11556
11557static DOUBLEST
ebf56fd3 11558scaling_factor (struct type *type)
14f9c5c9
AS
11559{
11560 const char *encoding = fixed_type_info (type);
facc390f 11561 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11562 int n;
d2e4a39e 11563
facc390f
JB
11564 /* Strictly speaking, num's and den's are encoded as integer. However,
11565 they may not fit into a long, and they will have to be converted
11566 to DOUBLEST anyway. So scan them as DOUBLEST. */
11567 n = sscanf (encoding,
11568 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11569 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11570 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11571
11572 if (n < 2)
11573 return 1.0;
11574 else if (n == 4)
facc390f 11575 return num1 / den1;
d2e4a39e 11576 else
facc390f 11577 return num0 / den0;
14f9c5c9
AS
11578}
11579
11580
11581/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11582 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11583
11584DOUBLEST
ebf56fd3 11585ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11586{
d2e4a39e 11587 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11588}
11589
4c4b4cd2
PH
11590/* The representation of a fixed-point value of type TYPE
11591 corresponding to the value X. */
14f9c5c9
AS
11592
11593LONGEST
ebf56fd3 11594ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11595{
11596 return (LONGEST) (x / scaling_factor (type) + 0.5);
11597}
11598
14f9c5c9 11599\f
d2e4a39e 11600
4c4b4cd2 11601 /* Range types */
14f9c5c9
AS
11602
11603/* Scan STR beginning at position K for a discriminant name, and
11604 return the value of that discriminant field of DVAL in *PX. If
11605 PNEW_K is not null, put the position of the character beyond the
11606 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11607 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11608
11609static int
108d56a4 11610scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11611 int *pnew_k)
14f9c5c9
AS
11612{
11613 static char *bound_buffer = NULL;
11614 static size_t bound_buffer_len = 0;
5da1a4d3 11615 const char *pstart, *pend, *bound;
d2e4a39e 11616 struct value *bound_val;
14f9c5c9
AS
11617
11618 if (dval == NULL || str == NULL || str[k] == '\0')
11619 return 0;
11620
5da1a4d3
SM
11621 pstart = str + k;
11622 pend = strstr (pstart, "__");
14f9c5c9
AS
11623 if (pend == NULL)
11624 {
5da1a4d3 11625 bound = pstart;
14f9c5c9
AS
11626 k += strlen (bound);
11627 }
d2e4a39e 11628 else
14f9c5c9 11629 {
5da1a4d3
SM
11630 int len = pend - pstart;
11631
11632 /* Strip __ and beyond. */
11633 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11634 strncpy (bound_buffer, pstart, len);
11635 bound_buffer[len] = '\0';
11636
14f9c5c9 11637 bound = bound_buffer;
d2e4a39e 11638 k = pend - str;
14f9c5c9 11639 }
d2e4a39e 11640
df407dfe 11641 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11642 if (bound_val == NULL)
11643 return 0;
11644
11645 *px = value_as_long (bound_val);
11646 if (pnew_k != NULL)
11647 *pnew_k = k;
11648 return 1;
11649}
11650
11651/* Value of variable named NAME in the current environment. If
11652 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11653 otherwise causes an error with message ERR_MSG. */
11654
d2e4a39e
AS
11655static struct value *
11656get_var_value (char *name, char *err_msg)
14f9c5c9 11657{
d12307c1 11658 struct block_symbol *syms;
14f9c5c9
AS
11659 int nsyms;
11660
4c4b4cd2 11661 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11662 &syms);
14f9c5c9
AS
11663
11664 if (nsyms != 1)
11665 {
11666 if (err_msg == NULL)
4c4b4cd2 11667 return 0;
14f9c5c9 11668 else
8a3fe4f8 11669 error (("%s"), err_msg);
14f9c5c9
AS
11670 }
11671
d12307c1 11672 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11673}
d2e4a39e 11674
14f9c5c9 11675/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11676 no such variable found, returns 0, and sets *FLAG to 0. If
11677 successful, sets *FLAG to 1. */
11678
14f9c5c9 11679LONGEST
4c4b4cd2 11680get_int_var_value (char *name, int *flag)
14f9c5c9 11681{
4c4b4cd2 11682 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11683
14f9c5c9
AS
11684 if (var_val == 0)
11685 {
11686 if (flag != NULL)
4c4b4cd2 11687 *flag = 0;
14f9c5c9
AS
11688 return 0;
11689 }
11690 else
11691 {
11692 if (flag != NULL)
4c4b4cd2 11693 *flag = 1;
14f9c5c9
AS
11694 return value_as_long (var_val);
11695 }
11696}
d2e4a39e 11697
14f9c5c9
AS
11698
11699/* Return a range type whose base type is that of the range type named
11700 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11701 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11702 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11703 corresponding range type from debug information; fall back to using it
11704 if symbol lookup fails. If a new type must be created, allocate it
11705 like ORIG_TYPE was. The bounds information, in general, is encoded
11706 in NAME, the base type given in the named range type. */
14f9c5c9 11707
d2e4a39e 11708static struct type *
28c85d6c 11709to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11710{
0d5cff50 11711 const char *name;
14f9c5c9 11712 struct type *base_type;
108d56a4 11713 const char *subtype_info;
14f9c5c9 11714
28c85d6c
JB
11715 gdb_assert (raw_type != NULL);
11716 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11717
1ce677a4 11718 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11719 base_type = TYPE_TARGET_TYPE (raw_type);
11720 else
11721 base_type = raw_type;
11722
28c85d6c 11723 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11724 subtype_info = strstr (name, "___XD");
11725 if (subtype_info == NULL)
690cc4eb 11726 {
43bbcdc2
PH
11727 LONGEST L = ada_discrete_type_low_bound (raw_type);
11728 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11729
690cc4eb
PH
11730 if (L < INT_MIN || U > INT_MAX)
11731 return raw_type;
11732 else
0c9c3474
SA
11733 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11734 L, U);
690cc4eb 11735 }
14f9c5c9
AS
11736 else
11737 {
11738 static char *name_buf = NULL;
11739 static size_t name_len = 0;
11740 int prefix_len = subtype_info - name;
11741 LONGEST L, U;
11742 struct type *type;
108d56a4 11743 const char *bounds_str;
14f9c5c9
AS
11744 int n;
11745
11746 GROW_VECT (name_buf, name_len, prefix_len + 5);
11747 strncpy (name_buf, name, prefix_len);
11748 name_buf[prefix_len] = '\0';
11749
11750 subtype_info += 5;
11751 bounds_str = strchr (subtype_info, '_');
11752 n = 1;
11753
d2e4a39e 11754 if (*subtype_info == 'L')
4c4b4cd2
PH
11755 {
11756 if (!ada_scan_number (bounds_str, n, &L, &n)
11757 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11758 return raw_type;
11759 if (bounds_str[n] == '_')
11760 n += 2;
0963b4bd 11761 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11762 n += 1;
11763 subtype_info += 1;
11764 }
d2e4a39e 11765 else
4c4b4cd2
PH
11766 {
11767 int ok;
5b4ee69b 11768
4c4b4cd2
PH
11769 strcpy (name_buf + prefix_len, "___L");
11770 L = get_int_var_value (name_buf, &ok);
11771 if (!ok)
11772 {
323e0a4a 11773 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11774 L = 1;
11775 }
11776 }
14f9c5c9 11777
d2e4a39e 11778 if (*subtype_info == 'U')
4c4b4cd2
PH
11779 {
11780 if (!ada_scan_number (bounds_str, n, &U, &n)
11781 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11782 return raw_type;
11783 }
d2e4a39e 11784 else
4c4b4cd2
PH
11785 {
11786 int ok;
5b4ee69b 11787
4c4b4cd2
PH
11788 strcpy (name_buf + prefix_len, "___U");
11789 U = get_int_var_value (name_buf, &ok);
11790 if (!ok)
11791 {
323e0a4a 11792 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11793 U = L;
11794 }
11795 }
14f9c5c9 11796
0c9c3474
SA
11797 type = create_static_range_type (alloc_type_copy (raw_type),
11798 base_type, L, U);
d2e4a39e 11799 TYPE_NAME (type) = name;
14f9c5c9
AS
11800 return type;
11801 }
11802}
11803
4c4b4cd2
PH
11804/* True iff NAME is the name of a range type. */
11805
14f9c5c9 11806int
d2e4a39e 11807ada_is_range_type_name (const char *name)
14f9c5c9
AS
11808{
11809 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11810}
14f9c5c9 11811\f
d2e4a39e 11812
4c4b4cd2
PH
11813 /* Modular types */
11814
11815/* True iff TYPE is an Ada modular type. */
14f9c5c9 11816
14f9c5c9 11817int
d2e4a39e 11818ada_is_modular_type (struct type *type)
14f9c5c9 11819{
18af8284 11820 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11821
11822 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11823 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11824 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11825}
11826
4c4b4cd2
PH
11827/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11828
61ee279c 11829ULONGEST
0056e4d5 11830ada_modulus (struct type *type)
14f9c5c9 11831{
43bbcdc2 11832 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11833}
d2e4a39e 11834\f
f7f9143b
JB
11835
11836/* Ada exception catchpoint support:
11837 ---------------------------------
11838
11839 We support 3 kinds of exception catchpoints:
11840 . catchpoints on Ada exceptions
11841 . catchpoints on unhandled Ada exceptions
11842 . catchpoints on failed assertions
11843
11844 Exceptions raised during failed assertions, or unhandled exceptions
11845 could perfectly be caught with the general catchpoint on Ada exceptions.
11846 However, we can easily differentiate these two special cases, and having
11847 the option to distinguish these two cases from the rest can be useful
11848 to zero-in on certain situations.
11849
11850 Exception catchpoints are a specialized form of breakpoint,
11851 since they rely on inserting breakpoints inside known routines
11852 of the GNAT runtime. The implementation therefore uses a standard
11853 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11854 of breakpoint_ops.
11855
0259addd
JB
11856 Support in the runtime for exception catchpoints have been changed
11857 a few times already, and these changes affect the implementation
11858 of these catchpoints. In order to be able to support several
11859 variants of the runtime, we use a sniffer that will determine
28010a5d 11860 the runtime variant used by the program being debugged. */
f7f9143b 11861
82eacd52
JB
11862/* Ada's standard exceptions.
11863
11864 The Ada 83 standard also defined Numeric_Error. But there so many
11865 situations where it was unclear from the Ada 83 Reference Manual
11866 (RM) whether Constraint_Error or Numeric_Error should be raised,
11867 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11868 Interpretation saying that anytime the RM says that Numeric_Error
11869 should be raised, the implementation may raise Constraint_Error.
11870 Ada 95 went one step further and pretty much removed Numeric_Error
11871 from the list of standard exceptions (it made it a renaming of
11872 Constraint_Error, to help preserve compatibility when compiling
11873 an Ada83 compiler). As such, we do not include Numeric_Error from
11874 this list of standard exceptions. */
3d0b0fa3
JB
11875
11876static char *standard_exc[] = {
11877 "constraint_error",
11878 "program_error",
11879 "storage_error",
11880 "tasking_error"
11881};
11882
0259addd
JB
11883typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11884
11885/* A structure that describes how to support exception catchpoints
11886 for a given executable. */
11887
11888struct exception_support_info
11889{
11890 /* The name of the symbol to break on in order to insert
11891 a catchpoint on exceptions. */
11892 const char *catch_exception_sym;
11893
11894 /* The name of the symbol to break on in order to insert
11895 a catchpoint on unhandled exceptions. */
11896 const char *catch_exception_unhandled_sym;
11897
11898 /* The name of the symbol to break on in order to insert
11899 a catchpoint on failed assertions. */
11900 const char *catch_assert_sym;
11901
11902 /* Assuming that the inferior just triggered an unhandled exception
11903 catchpoint, this function is responsible for returning the address
11904 in inferior memory where the name of that exception is stored.
11905 Return zero if the address could not be computed. */
11906 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11907};
11908
11909static CORE_ADDR ada_unhandled_exception_name_addr (void);
11910static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11911
11912/* The following exception support info structure describes how to
11913 implement exception catchpoints with the latest version of the
11914 Ada runtime (as of 2007-03-06). */
11915
11916static const struct exception_support_info default_exception_support_info =
11917{
11918 "__gnat_debug_raise_exception", /* catch_exception_sym */
11919 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11920 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11921 ada_unhandled_exception_name_addr
11922};
11923
11924/* The following exception support info structure describes how to
11925 implement exception catchpoints with a slightly older version
11926 of the Ada runtime. */
11927
11928static const struct exception_support_info exception_support_info_fallback =
11929{
11930 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11931 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11932 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11933 ada_unhandled_exception_name_addr_from_raise
11934};
11935
f17011e0
JB
11936/* Return nonzero if we can detect the exception support routines
11937 described in EINFO.
11938
11939 This function errors out if an abnormal situation is detected
11940 (for instance, if we find the exception support routines, but
11941 that support is found to be incomplete). */
11942
11943static int
11944ada_has_this_exception_support (const struct exception_support_info *einfo)
11945{
11946 struct symbol *sym;
11947
11948 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11949 that should be compiled with debugging information. As a result, we
11950 expect to find that symbol in the symtabs. */
11951
11952 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11953 if (sym == NULL)
a6af7abe
JB
11954 {
11955 /* Perhaps we did not find our symbol because the Ada runtime was
11956 compiled without debugging info, or simply stripped of it.
11957 It happens on some GNU/Linux distributions for instance, where
11958 users have to install a separate debug package in order to get
11959 the runtime's debugging info. In that situation, let the user
11960 know why we cannot insert an Ada exception catchpoint.
11961
11962 Note: Just for the purpose of inserting our Ada exception
11963 catchpoint, we could rely purely on the associated minimal symbol.
11964 But we would be operating in degraded mode anyway, since we are
11965 still lacking the debugging info needed later on to extract
11966 the name of the exception being raised (this name is printed in
11967 the catchpoint message, and is also used when trying to catch
11968 a specific exception). We do not handle this case for now. */
3b7344d5 11969 struct bound_minimal_symbol msym
1c8e84b0
JB
11970 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11971
3b7344d5 11972 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11973 error (_("Your Ada runtime appears to be missing some debugging "
11974 "information.\nCannot insert Ada exception catchpoint "
11975 "in this configuration."));
11976
11977 return 0;
11978 }
f17011e0
JB
11979
11980 /* Make sure that the symbol we found corresponds to a function. */
11981
11982 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11983 error (_("Symbol \"%s\" is not a function (class = %d)"),
11984 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11985
11986 return 1;
11987}
11988
0259addd
JB
11989/* Inspect the Ada runtime and determine which exception info structure
11990 should be used to provide support for exception catchpoints.
11991
3eecfa55
JB
11992 This function will always set the per-inferior exception_info,
11993 or raise an error. */
0259addd
JB
11994
11995static void
11996ada_exception_support_info_sniffer (void)
11997{
3eecfa55 11998 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11999
12000 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12001 if (data->exception_info != NULL)
0259addd
JB
12002 return;
12003
12004 /* Check the latest (default) exception support info. */
f17011e0 12005 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12006 {
3eecfa55 12007 data->exception_info = &default_exception_support_info;
0259addd
JB
12008 return;
12009 }
12010
12011 /* Try our fallback exception suport info. */
f17011e0 12012 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12013 {
3eecfa55 12014 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12015 return;
12016 }
12017
12018 /* Sometimes, it is normal for us to not be able to find the routine
12019 we are looking for. This happens when the program is linked with
12020 the shared version of the GNAT runtime, and the program has not been
12021 started yet. Inform the user of these two possible causes if
12022 applicable. */
12023
ccefe4c4 12024 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12025 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12026
12027 /* If the symbol does not exist, then check that the program is
12028 already started, to make sure that shared libraries have been
12029 loaded. If it is not started, this may mean that the symbol is
12030 in a shared library. */
12031
12032 if (ptid_get_pid (inferior_ptid) == 0)
12033 error (_("Unable to insert catchpoint. Try to start the program first."));
12034
12035 /* At this point, we know that we are debugging an Ada program and
12036 that the inferior has been started, but we still are not able to
0963b4bd 12037 find the run-time symbols. That can mean that we are in
0259addd
JB
12038 configurable run time mode, or that a-except as been optimized
12039 out by the linker... In any case, at this point it is not worth
12040 supporting this feature. */
12041
7dda8cff 12042 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12043}
12044
f7f9143b
JB
12045/* True iff FRAME is very likely to be that of a function that is
12046 part of the runtime system. This is all very heuristic, but is
12047 intended to be used as advice as to what frames are uninteresting
12048 to most users. */
12049
12050static int
12051is_known_support_routine (struct frame_info *frame)
12052{
4ed6b5be 12053 struct symtab_and_line sal;
55b87a52 12054 char *func_name;
692465f1 12055 enum language func_lang;
f7f9143b 12056 int i;
f35a17b5 12057 const char *fullname;
f7f9143b 12058
4ed6b5be
JB
12059 /* If this code does not have any debugging information (no symtab),
12060 This cannot be any user code. */
f7f9143b 12061
4ed6b5be 12062 find_frame_sal (frame, &sal);
f7f9143b
JB
12063 if (sal.symtab == NULL)
12064 return 1;
12065
4ed6b5be
JB
12066 /* If there is a symtab, but the associated source file cannot be
12067 located, then assume this is not user code: Selecting a frame
12068 for which we cannot display the code would not be very helpful
12069 for the user. This should also take care of case such as VxWorks
12070 where the kernel has some debugging info provided for a few units. */
f7f9143b 12071
f35a17b5
JK
12072 fullname = symtab_to_fullname (sal.symtab);
12073 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12074 return 1;
12075
4ed6b5be
JB
12076 /* Check the unit filename againt the Ada runtime file naming.
12077 We also check the name of the objfile against the name of some
12078 known system libraries that sometimes come with debugging info
12079 too. */
12080
f7f9143b
JB
12081 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12082 {
12083 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12084 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12085 return 1;
eb822aa6
DE
12086 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12087 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12088 return 1;
f7f9143b
JB
12089 }
12090
4ed6b5be 12091 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12092
e9e07ba6 12093 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12094 if (func_name == NULL)
12095 return 1;
12096
12097 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12098 {
12099 re_comp (known_auxiliary_function_name_patterns[i]);
12100 if (re_exec (func_name))
55b87a52
KS
12101 {
12102 xfree (func_name);
12103 return 1;
12104 }
f7f9143b
JB
12105 }
12106
55b87a52 12107 xfree (func_name);
f7f9143b
JB
12108 return 0;
12109}
12110
12111/* Find the first frame that contains debugging information and that is not
12112 part of the Ada run-time, starting from FI and moving upward. */
12113
0ef643c8 12114void
f7f9143b
JB
12115ada_find_printable_frame (struct frame_info *fi)
12116{
12117 for (; fi != NULL; fi = get_prev_frame (fi))
12118 {
12119 if (!is_known_support_routine (fi))
12120 {
12121 select_frame (fi);
12122 break;
12123 }
12124 }
12125
12126}
12127
12128/* Assuming that the inferior just triggered an unhandled exception
12129 catchpoint, return the address in inferior memory where the name
12130 of the exception is stored.
12131
12132 Return zero if the address could not be computed. */
12133
12134static CORE_ADDR
12135ada_unhandled_exception_name_addr (void)
0259addd
JB
12136{
12137 return parse_and_eval_address ("e.full_name");
12138}
12139
12140/* Same as ada_unhandled_exception_name_addr, except that this function
12141 should be used when the inferior uses an older version of the runtime,
12142 where the exception name needs to be extracted from a specific frame
12143 several frames up in the callstack. */
12144
12145static CORE_ADDR
12146ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12147{
12148 int frame_level;
12149 struct frame_info *fi;
3eecfa55 12150 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12151 struct cleanup *old_chain;
f7f9143b
JB
12152
12153 /* To determine the name of this exception, we need to select
12154 the frame corresponding to RAISE_SYM_NAME. This frame is
12155 at least 3 levels up, so we simply skip the first 3 frames
12156 without checking the name of their associated function. */
12157 fi = get_current_frame ();
12158 for (frame_level = 0; frame_level < 3; frame_level += 1)
12159 if (fi != NULL)
12160 fi = get_prev_frame (fi);
12161
55b87a52 12162 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12163 while (fi != NULL)
12164 {
55b87a52 12165 char *func_name;
692465f1
JB
12166 enum language func_lang;
12167
e9e07ba6 12168 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12169 if (func_name != NULL)
12170 {
12171 make_cleanup (xfree, func_name);
12172
12173 if (strcmp (func_name,
12174 data->exception_info->catch_exception_sym) == 0)
12175 break; /* We found the frame we were looking for... */
12176 fi = get_prev_frame (fi);
12177 }
f7f9143b 12178 }
55b87a52 12179 do_cleanups (old_chain);
f7f9143b
JB
12180
12181 if (fi == NULL)
12182 return 0;
12183
12184 select_frame (fi);
12185 return parse_and_eval_address ("id.full_name");
12186}
12187
12188/* Assuming the inferior just triggered an Ada exception catchpoint
12189 (of any type), return the address in inferior memory where the name
12190 of the exception is stored, if applicable.
12191
45db7c09
PA
12192 Assumes the selected frame is the current frame.
12193
f7f9143b
JB
12194 Return zero if the address could not be computed, or if not relevant. */
12195
12196static CORE_ADDR
761269c8 12197ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12198 struct breakpoint *b)
12199{
3eecfa55
JB
12200 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12201
f7f9143b
JB
12202 switch (ex)
12203 {
761269c8 12204 case ada_catch_exception:
f7f9143b
JB
12205 return (parse_and_eval_address ("e.full_name"));
12206 break;
12207
761269c8 12208 case ada_catch_exception_unhandled:
3eecfa55 12209 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12210 break;
12211
761269c8 12212 case ada_catch_assert:
f7f9143b
JB
12213 return 0; /* Exception name is not relevant in this case. */
12214 break;
12215
12216 default:
12217 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12218 break;
12219 }
12220
12221 return 0; /* Should never be reached. */
12222}
12223
12224/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12225 any error that ada_exception_name_addr_1 might cause to be thrown.
12226 When an error is intercepted, a warning with the error message is printed,
12227 and zero is returned. */
12228
12229static CORE_ADDR
761269c8 12230ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12231 struct breakpoint *b)
12232{
f7f9143b
JB
12233 CORE_ADDR result = 0;
12234
492d29ea 12235 TRY
f7f9143b
JB
12236 {
12237 result = ada_exception_name_addr_1 (ex, b);
12238 }
12239
492d29ea 12240 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12241 {
12242 warning (_("failed to get exception name: %s"), e.message);
12243 return 0;
12244 }
492d29ea 12245 END_CATCH
f7f9143b
JB
12246
12247 return result;
12248}
12249
28010a5d
PA
12250static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12251
12252/* Ada catchpoints.
12253
12254 In the case of catchpoints on Ada exceptions, the catchpoint will
12255 stop the target on every exception the program throws. When a user
12256 specifies the name of a specific exception, we translate this
12257 request into a condition expression (in text form), and then parse
12258 it into an expression stored in each of the catchpoint's locations.
12259 We then use this condition to check whether the exception that was
12260 raised is the one the user is interested in. If not, then the
12261 target is resumed again. We store the name of the requested
12262 exception, in order to be able to re-set the condition expression
12263 when symbols change. */
12264
12265/* An instance of this type is used to represent an Ada catchpoint
12266 breakpoint location. It includes a "struct bp_location" as a kind
12267 of base class; users downcast to "struct bp_location *" when
12268 needed. */
12269
12270struct ada_catchpoint_location
12271{
12272 /* The base class. */
12273 struct bp_location base;
12274
12275 /* The condition that checks whether the exception that was raised
12276 is the specific exception the user specified on catchpoint
12277 creation. */
4d01a485 12278 expression_up excep_cond_expr;
28010a5d
PA
12279};
12280
12281/* Implement the DTOR method in the bp_location_ops structure for all
12282 Ada exception catchpoint kinds. */
12283
12284static void
12285ada_catchpoint_location_dtor (struct bp_location *bl)
12286{
12287 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12288
4d01a485 12289 al->excep_cond_expr.reset ();
28010a5d
PA
12290}
12291
12292/* The vtable to be used in Ada catchpoint locations. */
12293
12294static const struct bp_location_ops ada_catchpoint_location_ops =
12295{
12296 ada_catchpoint_location_dtor
12297};
12298
12299/* An instance of this type is used to represent an Ada catchpoint.
12300 It includes a "struct breakpoint" as a kind of base class; users
12301 downcast to "struct breakpoint *" when needed. */
12302
12303struct ada_catchpoint
12304{
12305 /* The base class. */
12306 struct breakpoint base;
12307
12308 /* The name of the specific exception the user specified. */
12309 char *excep_string;
12310};
12311
12312/* Parse the exception condition string in the context of each of the
12313 catchpoint's locations, and store them for later evaluation. */
12314
12315static void
12316create_excep_cond_exprs (struct ada_catchpoint *c)
12317{
12318 struct cleanup *old_chain;
12319 struct bp_location *bl;
12320 char *cond_string;
12321
12322 /* Nothing to do if there's no specific exception to catch. */
12323 if (c->excep_string == NULL)
12324 return;
12325
12326 /* Same if there are no locations... */
12327 if (c->base.loc == NULL)
12328 return;
12329
12330 /* Compute the condition expression in text form, from the specific
12331 expection we want to catch. */
12332 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12333 old_chain = make_cleanup (xfree, cond_string);
12334
12335 /* Iterate over all the catchpoint's locations, and parse an
12336 expression for each. */
12337 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12338 {
12339 struct ada_catchpoint_location *ada_loc
12340 = (struct ada_catchpoint_location *) bl;
4d01a485 12341 expression_up exp;
28010a5d
PA
12342
12343 if (!bl->shlib_disabled)
12344 {
bbc13ae3 12345 const char *s;
28010a5d
PA
12346
12347 s = cond_string;
492d29ea 12348 TRY
28010a5d 12349 {
4d01a485
PA
12350 exp = gdb::move (parse_exp_1 (&s, bl->address,
12351 block_for_pc (bl->address),
12352 0));
28010a5d 12353 }
492d29ea 12354 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12355 {
12356 warning (_("failed to reevaluate internal exception condition "
12357 "for catchpoint %d: %s"),
12358 c->base.number, e.message);
849f2b52 12359 }
492d29ea 12360 END_CATCH
28010a5d
PA
12361 }
12362
4d01a485 12363 ada_loc->excep_cond_expr = gdb::move (exp);
28010a5d
PA
12364 }
12365
12366 do_cleanups (old_chain);
12367}
12368
12369/* Implement the DTOR method in the breakpoint_ops structure for all
12370 exception catchpoint kinds. */
12371
12372static void
761269c8 12373dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12374{
12375 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12376
12377 xfree (c->excep_string);
348d480f 12378
2060206e 12379 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12380}
12381
12382/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12383 structure for all exception catchpoint kinds. */
12384
12385static struct bp_location *
761269c8 12386allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12387 struct breakpoint *self)
12388{
12389 struct ada_catchpoint_location *loc;
12390
4d01a485 12391 loc = new ada_catchpoint_location ();
28010a5d
PA
12392 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12393 loc->excep_cond_expr = NULL;
12394 return &loc->base;
12395}
12396
12397/* Implement the RE_SET method in the breakpoint_ops structure for all
12398 exception catchpoint kinds. */
12399
12400static void
761269c8 12401re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12402{
12403 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12404
12405 /* Call the base class's method. This updates the catchpoint's
12406 locations. */
2060206e 12407 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12408
12409 /* Reparse the exception conditional expressions. One for each
12410 location. */
12411 create_excep_cond_exprs (c);
12412}
12413
12414/* Returns true if we should stop for this breakpoint hit. If the
12415 user specified a specific exception, we only want to cause a stop
12416 if the program thrown that exception. */
12417
12418static int
12419should_stop_exception (const struct bp_location *bl)
12420{
12421 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12422 const struct ada_catchpoint_location *ada_loc
12423 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12424 int stop;
12425
12426 /* With no specific exception, should always stop. */
12427 if (c->excep_string == NULL)
12428 return 1;
12429
12430 if (ada_loc->excep_cond_expr == NULL)
12431 {
12432 /* We will have a NULL expression if back when we were creating
12433 the expressions, this location's had failed to parse. */
12434 return 1;
12435 }
12436
12437 stop = 1;
492d29ea 12438 TRY
28010a5d
PA
12439 {
12440 struct value *mark;
12441
12442 mark = value_mark ();
4d01a485 12443 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12444 value_free_to_mark (mark);
12445 }
492d29ea
PA
12446 CATCH (ex, RETURN_MASK_ALL)
12447 {
12448 exception_fprintf (gdb_stderr, ex,
12449 _("Error in testing exception condition:\n"));
12450 }
12451 END_CATCH
12452
28010a5d
PA
12453 return stop;
12454}
12455
12456/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12457 for all exception catchpoint kinds. */
12458
12459static void
761269c8 12460check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12461{
12462 bs->stop = should_stop_exception (bs->bp_location_at);
12463}
12464
f7f9143b
JB
12465/* Implement the PRINT_IT method in the breakpoint_ops structure
12466 for all exception catchpoint kinds. */
12467
12468static enum print_stop_action
761269c8 12469print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12470{
79a45e25 12471 struct ui_out *uiout = current_uiout;
348d480f
PA
12472 struct breakpoint *b = bs->breakpoint_at;
12473
956a9fb9 12474 annotate_catchpoint (b->number);
f7f9143b 12475
956a9fb9 12476 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12477 {
956a9fb9
JB
12478 ui_out_field_string (uiout, "reason",
12479 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12480 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12481 }
12482
00eb2c4a
JB
12483 ui_out_text (uiout,
12484 b->disposition == disp_del ? "\nTemporary catchpoint "
12485 : "\nCatchpoint ");
956a9fb9
JB
12486 ui_out_field_int (uiout, "bkptno", b->number);
12487 ui_out_text (uiout, ", ");
f7f9143b 12488
45db7c09
PA
12489 /* ada_exception_name_addr relies on the selected frame being the
12490 current frame. Need to do this here because this function may be
12491 called more than once when printing a stop, and below, we'll
12492 select the first frame past the Ada run-time (see
12493 ada_find_printable_frame). */
12494 select_frame (get_current_frame ());
12495
f7f9143b
JB
12496 switch (ex)
12497 {
761269c8
JB
12498 case ada_catch_exception:
12499 case ada_catch_exception_unhandled:
956a9fb9
JB
12500 {
12501 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12502 char exception_name[256];
12503
12504 if (addr != 0)
12505 {
c714b426
PA
12506 read_memory (addr, (gdb_byte *) exception_name,
12507 sizeof (exception_name) - 1);
956a9fb9
JB
12508 exception_name [sizeof (exception_name) - 1] = '\0';
12509 }
12510 else
12511 {
12512 /* For some reason, we were unable to read the exception
12513 name. This could happen if the Runtime was compiled
12514 without debugging info, for instance. In that case,
12515 just replace the exception name by the generic string
12516 "exception" - it will read as "an exception" in the
12517 notification we are about to print. */
967cff16 12518 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12519 }
12520 /* In the case of unhandled exception breakpoints, we print
12521 the exception name as "unhandled EXCEPTION_NAME", to make
12522 it clearer to the user which kind of catchpoint just got
12523 hit. We used ui_out_text to make sure that this extra
12524 info does not pollute the exception name in the MI case. */
761269c8 12525 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12526 ui_out_text (uiout, "unhandled ");
12527 ui_out_field_string (uiout, "exception-name", exception_name);
12528 }
12529 break;
761269c8 12530 case ada_catch_assert:
956a9fb9
JB
12531 /* In this case, the name of the exception is not really
12532 important. Just print "failed assertion" to make it clearer
12533 that his program just hit an assertion-failure catchpoint.
12534 We used ui_out_text because this info does not belong in
12535 the MI output. */
12536 ui_out_text (uiout, "failed assertion");
12537 break;
f7f9143b 12538 }
956a9fb9
JB
12539 ui_out_text (uiout, " at ");
12540 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12541
12542 return PRINT_SRC_AND_LOC;
12543}
12544
12545/* Implement the PRINT_ONE method in the breakpoint_ops structure
12546 for all exception catchpoint kinds. */
12547
12548static void
761269c8 12549print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12550 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12551{
79a45e25 12552 struct ui_out *uiout = current_uiout;
28010a5d 12553 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12554 struct value_print_options opts;
12555
12556 get_user_print_options (&opts);
12557 if (opts.addressprint)
f7f9143b
JB
12558 {
12559 annotate_field (4);
5af949e3 12560 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12561 }
12562
12563 annotate_field (5);
a6d9a66e 12564 *last_loc = b->loc;
f7f9143b
JB
12565 switch (ex)
12566 {
761269c8 12567 case ada_catch_exception:
28010a5d 12568 if (c->excep_string != NULL)
f7f9143b 12569 {
28010a5d
PA
12570 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12571
f7f9143b
JB
12572 ui_out_field_string (uiout, "what", msg);
12573 xfree (msg);
12574 }
12575 else
12576 ui_out_field_string (uiout, "what", "all Ada exceptions");
12577
12578 break;
12579
761269c8 12580 case ada_catch_exception_unhandled:
f7f9143b
JB
12581 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12582 break;
12583
761269c8 12584 case ada_catch_assert:
f7f9143b
JB
12585 ui_out_field_string (uiout, "what", "failed Ada assertions");
12586 break;
12587
12588 default:
12589 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12590 break;
12591 }
12592}
12593
12594/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12595 for all exception catchpoint kinds. */
12596
12597static void
761269c8 12598print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12599 struct breakpoint *b)
12600{
28010a5d 12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12602 struct ui_out *uiout = current_uiout;
28010a5d 12603
00eb2c4a
JB
12604 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12605 : _("Catchpoint "));
12606 ui_out_field_int (uiout, "bkptno", b->number);
12607 ui_out_text (uiout, ": ");
12608
f7f9143b
JB
12609 switch (ex)
12610 {
761269c8 12611 case ada_catch_exception:
28010a5d 12612 if (c->excep_string != NULL)
00eb2c4a
JB
12613 {
12614 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12615 struct cleanup *old_chain = make_cleanup (xfree, info);
12616
12617 ui_out_text (uiout, info);
12618 do_cleanups (old_chain);
12619 }
f7f9143b 12620 else
00eb2c4a 12621 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12622 break;
12623
761269c8 12624 case ada_catch_exception_unhandled:
00eb2c4a 12625 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12626 break;
12627
761269c8 12628 case ada_catch_assert:
00eb2c4a 12629 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12630 break;
12631
12632 default:
12633 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12634 break;
12635 }
12636}
12637
6149aea9
PA
12638/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12639 for all exception catchpoint kinds. */
12640
12641static void
761269c8 12642print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12643 struct breakpoint *b, struct ui_file *fp)
12644{
28010a5d
PA
12645 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12646
6149aea9
PA
12647 switch (ex)
12648 {
761269c8 12649 case ada_catch_exception:
6149aea9 12650 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12651 if (c->excep_string != NULL)
12652 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12653 break;
12654
761269c8 12655 case ada_catch_exception_unhandled:
78076abc 12656 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12657 break;
12658
761269c8 12659 case ada_catch_assert:
6149aea9
PA
12660 fprintf_filtered (fp, "catch assert");
12661 break;
12662
12663 default:
12664 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12665 }
d9b3f62e 12666 print_recreate_thread (b, fp);
6149aea9
PA
12667}
12668
f7f9143b
JB
12669/* Virtual table for "catch exception" breakpoints. */
12670
28010a5d
PA
12671static void
12672dtor_catch_exception (struct breakpoint *b)
12673{
761269c8 12674 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12675}
12676
12677static struct bp_location *
12678allocate_location_catch_exception (struct breakpoint *self)
12679{
761269c8 12680 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12681}
12682
12683static void
12684re_set_catch_exception (struct breakpoint *b)
12685{
761269c8 12686 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12687}
12688
12689static void
12690check_status_catch_exception (bpstat bs)
12691{
761269c8 12692 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12693}
12694
f7f9143b 12695static enum print_stop_action
348d480f 12696print_it_catch_exception (bpstat bs)
f7f9143b 12697{
761269c8 12698 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12699}
12700
12701static void
a6d9a66e 12702print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12703{
761269c8 12704 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12705}
12706
12707static void
12708print_mention_catch_exception (struct breakpoint *b)
12709{
761269c8 12710 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12711}
12712
6149aea9
PA
12713static void
12714print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12715{
761269c8 12716 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12717}
12718
2060206e 12719static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12720
12721/* Virtual table for "catch exception unhandled" breakpoints. */
12722
28010a5d
PA
12723static void
12724dtor_catch_exception_unhandled (struct breakpoint *b)
12725{
761269c8 12726 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12727}
12728
12729static struct bp_location *
12730allocate_location_catch_exception_unhandled (struct breakpoint *self)
12731{
761269c8 12732 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12733}
12734
12735static void
12736re_set_catch_exception_unhandled (struct breakpoint *b)
12737{
761269c8 12738 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12739}
12740
12741static void
12742check_status_catch_exception_unhandled (bpstat bs)
12743{
761269c8 12744 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12745}
12746
f7f9143b 12747static enum print_stop_action
348d480f 12748print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12749{
761269c8 12750 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12751}
12752
12753static void
a6d9a66e
UW
12754print_one_catch_exception_unhandled (struct breakpoint *b,
12755 struct bp_location **last_loc)
f7f9143b 12756{
761269c8 12757 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12758}
12759
12760static void
12761print_mention_catch_exception_unhandled (struct breakpoint *b)
12762{
761269c8 12763 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12764}
12765
6149aea9
PA
12766static void
12767print_recreate_catch_exception_unhandled (struct breakpoint *b,
12768 struct ui_file *fp)
12769{
761269c8 12770 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12771}
12772
2060206e 12773static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12774
12775/* Virtual table for "catch assert" breakpoints. */
12776
28010a5d
PA
12777static void
12778dtor_catch_assert (struct breakpoint *b)
12779{
761269c8 12780 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12781}
12782
12783static struct bp_location *
12784allocate_location_catch_assert (struct breakpoint *self)
12785{
761269c8 12786 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12787}
12788
12789static void
12790re_set_catch_assert (struct breakpoint *b)
12791{
761269c8 12792 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12793}
12794
12795static void
12796check_status_catch_assert (bpstat bs)
12797{
761269c8 12798 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12799}
12800
f7f9143b 12801static enum print_stop_action
348d480f 12802print_it_catch_assert (bpstat bs)
f7f9143b 12803{
761269c8 12804 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12805}
12806
12807static void
a6d9a66e 12808print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12809{
761269c8 12810 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12811}
12812
12813static void
12814print_mention_catch_assert (struct breakpoint *b)
12815{
761269c8 12816 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12817}
12818
6149aea9
PA
12819static void
12820print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12821{
761269c8 12822 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12823}
12824
2060206e 12825static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12826
f7f9143b
JB
12827/* Return a newly allocated copy of the first space-separated token
12828 in ARGSP, and then adjust ARGSP to point immediately after that
12829 token.
12830
12831 Return NULL if ARGPS does not contain any more tokens. */
12832
12833static char *
12834ada_get_next_arg (char **argsp)
12835{
12836 char *args = *argsp;
12837 char *end;
12838 char *result;
12839
0fcd72ba 12840 args = skip_spaces (args);
f7f9143b
JB
12841 if (args[0] == '\0')
12842 return NULL; /* No more arguments. */
12843
12844 /* Find the end of the current argument. */
12845
0fcd72ba 12846 end = skip_to_space (args);
f7f9143b
JB
12847
12848 /* Adjust ARGSP to point to the start of the next argument. */
12849
12850 *argsp = end;
12851
12852 /* Make a copy of the current argument and return it. */
12853
224c3ddb 12854 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12855 strncpy (result, args, end - args);
12856 result[end - args] = '\0';
12857
12858 return result;
12859}
12860
12861/* Split the arguments specified in a "catch exception" command.
12862 Set EX to the appropriate catchpoint type.
28010a5d 12863 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12864 specified by the user.
12865 If a condition is found at the end of the arguments, the condition
12866 expression is stored in COND_STRING (memory must be deallocated
12867 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12868
12869static void
12870catch_ada_exception_command_split (char *args,
761269c8 12871 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12872 char **excep_string,
12873 char **cond_string)
f7f9143b
JB
12874{
12875 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12876 char *exception_name;
5845583d 12877 char *cond = NULL;
f7f9143b
JB
12878
12879 exception_name = ada_get_next_arg (&args);
5845583d
JB
12880 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12881 {
12882 /* This is not an exception name; this is the start of a condition
12883 expression for a catchpoint on all exceptions. So, "un-get"
12884 this token, and set exception_name to NULL. */
12885 xfree (exception_name);
12886 exception_name = NULL;
12887 args -= 2;
12888 }
f7f9143b
JB
12889 make_cleanup (xfree, exception_name);
12890
5845583d 12891 /* Check to see if we have a condition. */
f7f9143b 12892
0fcd72ba 12893 args = skip_spaces (args);
61012eef 12894 if (startswith (args, "if")
5845583d
JB
12895 && (isspace (args[2]) || args[2] == '\0'))
12896 {
12897 args += 2;
12898 args = skip_spaces (args);
12899
12900 if (args[0] == '\0')
12901 error (_("Condition missing after `if' keyword"));
12902 cond = xstrdup (args);
12903 make_cleanup (xfree, cond);
12904
12905 args += strlen (args);
12906 }
12907
12908 /* Check that we do not have any more arguments. Anything else
12909 is unexpected. */
f7f9143b
JB
12910
12911 if (args[0] != '\0')
12912 error (_("Junk at end of expression"));
12913
12914 discard_cleanups (old_chain);
12915
12916 if (exception_name == NULL)
12917 {
12918 /* Catch all exceptions. */
761269c8 12919 *ex = ada_catch_exception;
28010a5d 12920 *excep_string = NULL;
f7f9143b
JB
12921 }
12922 else if (strcmp (exception_name, "unhandled") == 0)
12923 {
12924 /* Catch unhandled exceptions. */
761269c8 12925 *ex = ada_catch_exception_unhandled;
28010a5d 12926 *excep_string = NULL;
f7f9143b
JB
12927 }
12928 else
12929 {
12930 /* Catch a specific exception. */
761269c8 12931 *ex = ada_catch_exception;
28010a5d 12932 *excep_string = exception_name;
f7f9143b 12933 }
5845583d 12934 *cond_string = cond;
f7f9143b
JB
12935}
12936
12937/* Return the name of the symbol on which we should break in order to
12938 implement a catchpoint of the EX kind. */
12939
12940static const char *
761269c8 12941ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12942{
3eecfa55
JB
12943 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12944
12945 gdb_assert (data->exception_info != NULL);
0259addd 12946
f7f9143b
JB
12947 switch (ex)
12948 {
761269c8 12949 case ada_catch_exception:
3eecfa55 12950 return (data->exception_info->catch_exception_sym);
f7f9143b 12951 break;
761269c8 12952 case ada_catch_exception_unhandled:
3eecfa55 12953 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12954 break;
761269c8 12955 case ada_catch_assert:
3eecfa55 12956 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12957 break;
12958 default:
12959 internal_error (__FILE__, __LINE__,
12960 _("unexpected catchpoint kind (%d)"), ex);
12961 }
12962}
12963
12964/* Return the breakpoint ops "virtual table" used for catchpoints
12965 of the EX kind. */
12966
c0a91b2b 12967static const struct breakpoint_ops *
761269c8 12968ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12969{
12970 switch (ex)
12971 {
761269c8 12972 case ada_catch_exception:
f7f9143b
JB
12973 return (&catch_exception_breakpoint_ops);
12974 break;
761269c8 12975 case ada_catch_exception_unhandled:
f7f9143b
JB
12976 return (&catch_exception_unhandled_breakpoint_ops);
12977 break;
761269c8 12978 case ada_catch_assert:
f7f9143b
JB
12979 return (&catch_assert_breakpoint_ops);
12980 break;
12981 default:
12982 internal_error (__FILE__, __LINE__,
12983 _("unexpected catchpoint kind (%d)"), ex);
12984 }
12985}
12986
12987/* Return the condition that will be used to match the current exception
12988 being raised with the exception that the user wants to catch. This
12989 assumes that this condition is used when the inferior just triggered
12990 an exception catchpoint.
12991
12992 The string returned is a newly allocated string that needs to be
12993 deallocated later. */
12994
12995static char *
28010a5d 12996ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12997{
3d0b0fa3
JB
12998 int i;
12999
0963b4bd 13000 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13001 runtime units that have been compiled without debugging info; if
28010a5d 13002 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13003 exception (e.g. "constraint_error") then, during the evaluation
13004 of the condition expression, the symbol lookup on this name would
0963b4bd 13005 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13006 may then be set only on user-defined exceptions which have the
13007 same not-fully-qualified name (e.g. my_package.constraint_error).
13008
13009 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13010 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13011 exception constraint_error" is rewritten into "catch exception
13012 standard.constraint_error".
13013
13014 If an exception named contraint_error is defined in another package of
13015 the inferior program, then the only way to specify this exception as a
13016 breakpoint condition is to use its fully-qualified named:
13017 e.g. my_package.constraint_error. */
13018
13019 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13020 {
28010a5d 13021 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13022 {
13023 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13024 excep_string);
3d0b0fa3
JB
13025 }
13026 }
28010a5d 13027 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13028}
13029
13030/* Return the symtab_and_line that should be used to insert an exception
13031 catchpoint of the TYPE kind.
13032
28010a5d
PA
13033 EXCEP_STRING should contain the name of a specific exception that
13034 the catchpoint should catch, or NULL otherwise.
f7f9143b 13035
28010a5d
PA
13036 ADDR_STRING returns the name of the function where the real
13037 breakpoint that implements the catchpoints is set, depending on the
13038 type of catchpoint we need to create. */
f7f9143b
JB
13039
13040static struct symtab_and_line
761269c8 13041ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 13042 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13043{
13044 const char *sym_name;
13045 struct symbol *sym;
f7f9143b 13046
0259addd
JB
13047 /* First, find out which exception support info to use. */
13048 ada_exception_support_info_sniffer ();
13049
13050 /* Then lookup the function on which we will break in order to catch
f7f9143b 13051 the Ada exceptions requested by the user. */
f7f9143b
JB
13052 sym_name = ada_exception_sym_name (ex);
13053 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13054
f17011e0
JB
13055 /* We can assume that SYM is not NULL at this stage. If the symbol
13056 did not exist, ada_exception_support_info_sniffer would have
13057 raised an exception.
f7f9143b 13058
f17011e0
JB
13059 Also, ada_exception_support_info_sniffer should have already
13060 verified that SYM is a function symbol. */
13061 gdb_assert (sym != NULL);
13062 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13063
13064 /* Set ADDR_STRING. */
f7f9143b
JB
13065 *addr_string = xstrdup (sym_name);
13066
f7f9143b 13067 /* Set OPS. */
4b9eee8c 13068 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13069
f17011e0 13070 return find_function_start_sal (sym, 1);
f7f9143b
JB
13071}
13072
b4a5b78b 13073/* Create an Ada exception catchpoint.
f7f9143b 13074
b4a5b78b 13075 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13076
2df4d1d5
JB
13077 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13078 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13079 of the exception to which this catchpoint applies. When not NULL,
13080 the string must be allocated on the heap, and its deallocation
13081 is no longer the responsibility of the caller.
13082
13083 COND_STRING, if not NULL, is the catchpoint condition. This string
13084 must be allocated on the heap, and its deallocation is no longer
13085 the responsibility of the caller.
f7f9143b 13086
b4a5b78b
JB
13087 TEMPFLAG, if nonzero, means that the underlying breakpoint
13088 should be temporary.
28010a5d 13089
b4a5b78b 13090 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13091
349774ef 13092void
28010a5d 13093create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13094 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13095 char *excep_string,
5845583d 13096 char *cond_string,
28010a5d 13097 int tempflag,
349774ef 13098 int disabled,
28010a5d
PA
13099 int from_tty)
13100{
13101 struct ada_catchpoint *c;
b4a5b78b
JB
13102 char *addr_string = NULL;
13103 const struct breakpoint_ops *ops = NULL;
13104 struct symtab_and_line sal
13105 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13106
4d01a485 13107 c = new ada_catchpoint ();
28010a5d 13108 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13109 ops, tempflag, disabled, from_tty);
28010a5d
PA
13110 c->excep_string = excep_string;
13111 create_excep_cond_exprs (c);
5845583d
JB
13112 if (cond_string != NULL)
13113 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13114 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13115}
13116
9ac4176b
PA
13117/* Implement the "catch exception" command. */
13118
13119static void
13120catch_ada_exception_command (char *arg, int from_tty,
13121 struct cmd_list_element *command)
13122{
13123 struct gdbarch *gdbarch = get_current_arch ();
13124 int tempflag;
761269c8 13125 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13126 char *excep_string = NULL;
5845583d 13127 char *cond_string = NULL;
9ac4176b
PA
13128
13129 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13130
13131 if (!arg)
13132 arg = "";
b4a5b78b
JB
13133 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13134 &cond_string);
13135 create_ada_exception_catchpoint (gdbarch, ex_kind,
13136 excep_string, cond_string,
349774ef
JB
13137 tempflag, 1 /* enabled */,
13138 from_tty);
9ac4176b
PA
13139}
13140
b4a5b78b 13141/* Split the arguments specified in a "catch assert" command.
5845583d 13142
b4a5b78b
JB
13143 ARGS contains the command's arguments (or the empty string if
13144 no arguments were passed).
5845583d
JB
13145
13146 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13147 (the memory needs to be deallocated after use). */
5845583d 13148
b4a5b78b
JB
13149static void
13150catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13151{
5845583d 13152 args = skip_spaces (args);
f7f9143b 13153
5845583d 13154 /* Check whether a condition was provided. */
61012eef 13155 if (startswith (args, "if")
5845583d 13156 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13157 {
5845583d 13158 args += 2;
0fcd72ba 13159 args = skip_spaces (args);
5845583d
JB
13160 if (args[0] == '\0')
13161 error (_("condition missing after `if' keyword"));
13162 *cond_string = xstrdup (args);
f7f9143b
JB
13163 }
13164
5845583d
JB
13165 /* Otherwise, there should be no other argument at the end of
13166 the command. */
13167 else if (args[0] != '\0')
13168 error (_("Junk at end of arguments."));
f7f9143b
JB
13169}
13170
9ac4176b
PA
13171/* Implement the "catch assert" command. */
13172
13173static void
13174catch_assert_command (char *arg, int from_tty,
13175 struct cmd_list_element *command)
13176{
13177 struct gdbarch *gdbarch = get_current_arch ();
13178 int tempflag;
5845583d 13179 char *cond_string = NULL;
9ac4176b
PA
13180
13181 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13182
13183 if (!arg)
13184 arg = "";
b4a5b78b 13185 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13186 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13187 NULL, cond_string,
349774ef
JB
13188 tempflag, 1 /* enabled */,
13189 from_tty);
9ac4176b 13190}
778865d3
JB
13191
13192/* Return non-zero if the symbol SYM is an Ada exception object. */
13193
13194static int
13195ada_is_exception_sym (struct symbol *sym)
13196{
13197 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13198
13199 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13200 && SYMBOL_CLASS (sym) != LOC_BLOCK
13201 && SYMBOL_CLASS (sym) != LOC_CONST
13202 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13203 && type_name != NULL && strcmp (type_name, "exception") == 0);
13204}
13205
13206/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13207 Ada exception object. This matches all exceptions except the ones
13208 defined by the Ada language. */
13209
13210static int
13211ada_is_non_standard_exception_sym (struct symbol *sym)
13212{
13213 int i;
13214
13215 if (!ada_is_exception_sym (sym))
13216 return 0;
13217
13218 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13219 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13220 return 0; /* A standard exception. */
13221
13222 /* Numeric_Error is also a standard exception, so exclude it.
13223 See the STANDARD_EXC description for more details as to why
13224 this exception is not listed in that array. */
13225 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13226 return 0;
13227
13228 return 1;
13229}
13230
13231/* A helper function for qsort, comparing two struct ada_exc_info
13232 objects.
13233
13234 The comparison is determined first by exception name, and then
13235 by exception address. */
13236
13237static int
13238compare_ada_exception_info (const void *a, const void *b)
13239{
13240 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13241 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13242 int result;
13243
13244 result = strcmp (exc_a->name, exc_b->name);
13245 if (result != 0)
13246 return result;
13247
13248 if (exc_a->addr < exc_b->addr)
13249 return -1;
13250 if (exc_a->addr > exc_b->addr)
13251 return 1;
13252
13253 return 0;
13254}
13255
13256/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13257 routine, but keeping the first SKIP elements untouched.
13258
13259 All duplicates are also removed. */
13260
13261static void
13262sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13263 int skip)
13264{
13265 struct ada_exc_info *to_sort
13266 = VEC_address (ada_exc_info, *exceptions) + skip;
13267 int to_sort_len
13268 = VEC_length (ada_exc_info, *exceptions) - skip;
13269 int i, j;
13270
13271 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13272 compare_ada_exception_info);
13273
13274 for (i = 1, j = 1; i < to_sort_len; i++)
13275 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13276 to_sort[j++] = to_sort[i];
13277 to_sort_len = j;
13278 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13279}
13280
13281/* A function intended as the "name_matcher" callback in the struct
13282 quick_symbol_functions' expand_symtabs_matching method.
13283
13284 SEARCH_NAME is the symbol's search name.
13285
13286 If USER_DATA is not NULL, it is a pointer to a regext_t object
13287 used to match the symbol (by natural name). Otherwise, when USER_DATA
13288 is null, no filtering is performed, and all symbols are a positive
13289 match. */
13290
13291static int
13292ada_exc_search_name_matches (const char *search_name, void *user_data)
13293{
9a3c8263 13294 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13295
13296 if (preg == NULL)
13297 return 1;
13298
13299 /* In Ada, the symbol "search name" is a linkage name, whereas
13300 the regular expression used to do the matching refers to
13301 the natural name. So match against the decoded name. */
13302 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13303}
13304
13305/* Add all exceptions defined by the Ada standard whose name match
13306 a regular expression.
13307
13308 If PREG is not NULL, then this regexp_t object is used to
13309 perform the symbol name matching. Otherwise, no name-based
13310 filtering is performed.
13311
13312 EXCEPTIONS is a vector of exceptions to which matching exceptions
13313 gets pushed. */
13314
13315static void
13316ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13317{
13318 int i;
13319
13320 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13321 {
13322 if (preg == NULL
13323 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13324 {
13325 struct bound_minimal_symbol msymbol
13326 = ada_lookup_simple_minsym (standard_exc[i]);
13327
13328 if (msymbol.minsym != NULL)
13329 {
13330 struct ada_exc_info info
77e371c0 13331 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13332
13333 VEC_safe_push (ada_exc_info, *exceptions, &info);
13334 }
13335 }
13336 }
13337}
13338
13339/* Add all Ada exceptions defined locally and accessible from the given
13340 FRAME.
13341
13342 If PREG is not NULL, then this regexp_t object is used to
13343 perform the symbol name matching. Otherwise, no name-based
13344 filtering is performed.
13345
13346 EXCEPTIONS is a vector of exceptions to which matching exceptions
13347 gets pushed. */
13348
13349static void
13350ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13351 VEC(ada_exc_info) **exceptions)
13352{
3977b71f 13353 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13354
13355 while (block != 0)
13356 {
13357 struct block_iterator iter;
13358 struct symbol *sym;
13359
13360 ALL_BLOCK_SYMBOLS (block, iter, sym)
13361 {
13362 switch (SYMBOL_CLASS (sym))
13363 {
13364 case LOC_TYPEDEF:
13365 case LOC_BLOCK:
13366 case LOC_CONST:
13367 break;
13368 default:
13369 if (ada_is_exception_sym (sym))
13370 {
13371 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13372 SYMBOL_VALUE_ADDRESS (sym)};
13373
13374 VEC_safe_push (ada_exc_info, *exceptions, &info);
13375 }
13376 }
13377 }
13378 if (BLOCK_FUNCTION (block) != NULL)
13379 break;
13380 block = BLOCK_SUPERBLOCK (block);
13381 }
13382}
13383
13384/* Add all exceptions defined globally whose name name match
13385 a regular expression, excluding standard exceptions.
13386
13387 The reason we exclude standard exceptions is that they need
13388 to be handled separately: Standard exceptions are defined inside
13389 a runtime unit which is normally not compiled with debugging info,
13390 and thus usually do not show up in our symbol search. However,
13391 if the unit was in fact built with debugging info, we need to
13392 exclude them because they would duplicate the entry we found
13393 during the special loop that specifically searches for those
13394 standard exceptions.
13395
13396 If PREG is not NULL, then this regexp_t object is used to
13397 perform the symbol name matching. Otherwise, no name-based
13398 filtering is performed.
13399
13400 EXCEPTIONS is a vector of exceptions to which matching exceptions
13401 gets pushed. */
13402
13403static void
13404ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13405{
13406 struct objfile *objfile;
43f3e411 13407 struct compunit_symtab *s;
778865d3 13408
276d885b 13409 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13410 VARIABLES_DOMAIN, preg);
778865d3 13411
43f3e411 13412 ALL_COMPUNITS (objfile, s)
778865d3 13413 {
43f3e411 13414 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13415 int i;
13416
13417 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13418 {
13419 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13420 struct block_iterator iter;
13421 struct symbol *sym;
13422
13423 ALL_BLOCK_SYMBOLS (b, iter, sym)
13424 if (ada_is_non_standard_exception_sym (sym)
13425 && (preg == NULL
13426 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13427 0, NULL, 0) == 0))
13428 {
13429 struct ada_exc_info info
13430 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13431
13432 VEC_safe_push (ada_exc_info, *exceptions, &info);
13433 }
13434 }
13435 }
13436}
13437
13438/* Implements ada_exceptions_list with the regular expression passed
13439 as a regex_t, rather than a string.
13440
13441 If not NULL, PREG is used to filter out exceptions whose names
13442 do not match. Otherwise, all exceptions are listed. */
13443
13444static VEC(ada_exc_info) *
13445ada_exceptions_list_1 (regex_t *preg)
13446{
13447 VEC(ada_exc_info) *result = NULL;
13448 struct cleanup *old_chain
13449 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13450 int prev_len;
13451
13452 /* First, list the known standard exceptions. These exceptions
13453 need to be handled separately, as they are usually defined in
13454 runtime units that have been compiled without debugging info. */
13455
13456 ada_add_standard_exceptions (preg, &result);
13457
13458 /* Next, find all exceptions whose scope is local and accessible
13459 from the currently selected frame. */
13460
13461 if (has_stack_frames ())
13462 {
13463 prev_len = VEC_length (ada_exc_info, result);
13464 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13465 &result);
13466 if (VEC_length (ada_exc_info, result) > prev_len)
13467 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13468 }
13469
13470 /* Add all exceptions whose scope is global. */
13471
13472 prev_len = VEC_length (ada_exc_info, result);
13473 ada_add_global_exceptions (preg, &result);
13474 if (VEC_length (ada_exc_info, result) > prev_len)
13475 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13476
13477 discard_cleanups (old_chain);
13478 return result;
13479}
13480
13481/* Return a vector of ada_exc_info.
13482
13483 If REGEXP is NULL, all exceptions are included in the result.
13484 Otherwise, it should contain a valid regular expression,
13485 and only the exceptions whose names match that regular expression
13486 are included in the result.
13487
13488 The exceptions are sorted in the following order:
13489 - Standard exceptions (defined by the Ada language), in
13490 alphabetical order;
13491 - Exceptions only visible from the current frame, in
13492 alphabetical order;
13493 - Exceptions whose scope is global, in alphabetical order. */
13494
13495VEC(ada_exc_info) *
13496ada_exceptions_list (const char *regexp)
13497{
13498 VEC(ada_exc_info) *result = NULL;
13499 struct cleanup *old_chain = NULL;
13500 regex_t reg;
13501
13502 if (regexp != NULL)
13503 old_chain = compile_rx_or_error (&reg, regexp,
13504 _("invalid regular expression"));
13505
13506 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13507
13508 if (old_chain != NULL)
13509 do_cleanups (old_chain);
13510 return result;
13511}
13512
13513/* Implement the "info exceptions" command. */
13514
13515static void
13516info_exceptions_command (char *regexp, int from_tty)
13517{
13518 VEC(ada_exc_info) *exceptions;
13519 struct cleanup *cleanup;
13520 struct gdbarch *gdbarch = get_current_arch ();
13521 int ix;
13522 struct ada_exc_info *info;
13523
13524 exceptions = ada_exceptions_list (regexp);
13525 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13526
13527 if (regexp != NULL)
13528 printf_filtered
13529 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13530 else
13531 printf_filtered (_("All defined Ada exceptions:\n"));
13532
13533 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13534 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13535
13536 do_cleanups (cleanup);
13537}
13538
4c4b4cd2
PH
13539 /* Operators */
13540/* Information about operators given special treatment in functions
13541 below. */
13542/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13543
13544#define ADA_OPERATORS \
13545 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13546 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13547 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13548 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13549 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13550 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13551 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13552 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13553 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13554 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13555 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13556 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13557 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13558 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13559 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13560 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13561 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13562 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13563 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13564
13565static void
554794dc
SDJ
13566ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13567 int *argsp)
4c4b4cd2
PH
13568{
13569 switch (exp->elts[pc - 1].opcode)
13570 {
76a01679 13571 default:
4c4b4cd2
PH
13572 operator_length_standard (exp, pc, oplenp, argsp);
13573 break;
13574
13575#define OP_DEFN(op, len, args, binop) \
13576 case op: *oplenp = len; *argsp = args; break;
13577 ADA_OPERATORS;
13578#undef OP_DEFN
52ce6436
PH
13579
13580 case OP_AGGREGATE:
13581 *oplenp = 3;
13582 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13583 break;
13584
13585 case OP_CHOICES:
13586 *oplenp = 3;
13587 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13588 break;
4c4b4cd2
PH
13589 }
13590}
13591
c0201579
JK
13592/* Implementation of the exp_descriptor method operator_check. */
13593
13594static int
13595ada_operator_check (struct expression *exp, int pos,
13596 int (*objfile_func) (struct objfile *objfile, void *data),
13597 void *data)
13598{
13599 const union exp_element *const elts = exp->elts;
13600 struct type *type = NULL;
13601
13602 switch (elts[pos].opcode)
13603 {
13604 case UNOP_IN_RANGE:
13605 case UNOP_QUAL:
13606 type = elts[pos + 1].type;
13607 break;
13608
13609 default:
13610 return operator_check_standard (exp, pos, objfile_func, data);
13611 }
13612
13613 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13614
13615 if (type && TYPE_OBJFILE (type)
13616 && (*objfile_func) (TYPE_OBJFILE (type), data))
13617 return 1;
13618
13619 return 0;
13620}
13621
4c4b4cd2
PH
13622static char *
13623ada_op_name (enum exp_opcode opcode)
13624{
13625 switch (opcode)
13626 {
76a01679 13627 default:
4c4b4cd2 13628 return op_name_standard (opcode);
52ce6436 13629
4c4b4cd2
PH
13630#define OP_DEFN(op, len, args, binop) case op: return #op;
13631 ADA_OPERATORS;
13632#undef OP_DEFN
52ce6436
PH
13633
13634 case OP_AGGREGATE:
13635 return "OP_AGGREGATE";
13636 case OP_CHOICES:
13637 return "OP_CHOICES";
13638 case OP_NAME:
13639 return "OP_NAME";
4c4b4cd2
PH
13640 }
13641}
13642
13643/* As for operator_length, but assumes PC is pointing at the first
13644 element of the operator, and gives meaningful results only for the
52ce6436 13645 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13646
13647static void
76a01679
JB
13648ada_forward_operator_length (struct expression *exp, int pc,
13649 int *oplenp, int *argsp)
4c4b4cd2 13650{
76a01679 13651 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13652 {
13653 default:
13654 *oplenp = *argsp = 0;
13655 break;
52ce6436 13656
4c4b4cd2
PH
13657#define OP_DEFN(op, len, args, binop) \
13658 case op: *oplenp = len; *argsp = args; break;
13659 ADA_OPERATORS;
13660#undef OP_DEFN
52ce6436
PH
13661
13662 case OP_AGGREGATE:
13663 *oplenp = 3;
13664 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13665 break;
13666
13667 case OP_CHOICES:
13668 *oplenp = 3;
13669 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13670 break;
13671
13672 case OP_STRING:
13673 case OP_NAME:
13674 {
13675 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13676
52ce6436
PH
13677 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13678 *argsp = 0;
13679 break;
13680 }
4c4b4cd2
PH
13681 }
13682}
13683
13684static int
13685ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13686{
13687 enum exp_opcode op = exp->elts[elt].opcode;
13688 int oplen, nargs;
13689 int pc = elt;
13690 int i;
76a01679 13691
4c4b4cd2
PH
13692 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13693
76a01679 13694 switch (op)
4c4b4cd2 13695 {
76a01679 13696 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13697 case OP_ATR_FIRST:
13698 case OP_ATR_LAST:
13699 case OP_ATR_LENGTH:
13700 case OP_ATR_IMAGE:
13701 case OP_ATR_MAX:
13702 case OP_ATR_MIN:
13703 case OP_ATR_MODULUS:
13704 case OP_ATR_POS:
13705 case OP_ATR_SIZE:
13706 case OP_ATR_TAG:
13707 case OP_ATR_VAL:
13708 break;
13709
13710 case UNOP_IN_RANGE:
13711 case UNOP_QUAL:
323e0a4a
AC
13712 /* XXX: gdb_sprint_host_address, type_sprint */
13713 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13714 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13715 fprintf_filtered (stream, " (");
13716 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13717 fprintf_filtered (stream, ")");
13718 break;
13719 case BINOP_IN_BOUNDS:
52ce6436
PH
13720 fprintf_filtered (stream, " (%d)",
13721 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13722 break;
13723 case TERNOP_IN_RANGE:
13724 break;
13725
52ce6436
PH
13726 case OP_AGGREGATE:
13727 case OP_OTHERS:
13728 case OP_DISCRETE_RANGE:
13729 case OP_POSITIONAL:
13730 case OP_CHOICES:
13731 break;
13732
13733 case OP_NAME:
13734 case OP_STRING:
13735 {
13736 char *name = &exp->elts[elt + 2].string;
13737 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13738
52ce6436
PH
13739 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13740 break;
13741 }
13742
4c4b4cd2
PH
13743 default:
13744 return dump_subexp_body_standard (exp, stream, elt);
13745 }
13746
13747 elt += oplen;
13748 for (i = 0; i < nargs; i += 1)
13749 elt = dump_subexp (exp, stream, elt);
13750
13751 return elt;
13752}
13753
13754/* The Ada extension of print_subexp (q.v.). */
13755
76a01679
JB
13756static void
13757ada_print_subexp (struct expression *exp, int *pos,
13758 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13759{
52ce6436 13760 int oplen, nargs, i;
4c4b4cd2
PH
13761 int pc = *pos;
13762 enum exp_opcode op = exp->elts[pc].opcode;
13763
13764 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13765
52ce6436 13766 *pos += oplen;
4c4b4cd2
PH
13767 switch (op)
13768 {
13769 default:
52ce6436 13770 *pos -= oplen;
4c4b4cd2
PH
13771 print_subexp_standard (exp, pos, stream, prec);
13772 return;
13773
13774 case OP_VAR_VALUE:
4c4b4cd2
PH
13775 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13776 return;
13777
13778 case BINOP_IN_BOUNDS:
323e0a4a 13779 /* XXX: sprint_subexp */
4c4b4cd2 13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13781 fputs_filtered (" in ", stream);
4c4b4cd2 13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13783 fputs_filtered ("'range", stream);
4c4b4cd2 13784 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13785 fprintf_filtered (stream, "(%ld)",
13786 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13787 return;
13788
13789 case TERNOP_IN_RANGE:
4c4b4cd2 13790 if (prec >= PREC_EQUAL)
76a01679 13791 fputs_filtered ("(", stream);
323e0a4a 13792 /* XXX: sprint_subexp */
4c4b4cd2 13793 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13794 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13795 print_subexp (exp, pos, stream, PREC_EQUAL);
13796 fputs_filtered (" .. ", stream);
13797 print_subexp (exp, pos, stream, PREC_EQUAL);
13798 if (prec >= PREC_EQUAL)
76a01679
JB
13799 fputs_filtered (")", stream);
13800 return;
4c4b4cd2
PH
13801
13802 case OP_ATR_FIRST:
13803 case OP_ATR_LAST:
13804 case OP_ATR_LENGTH:
13805 case OP_ATR_IMAGE:
13806 case OP_ATR_MAX:
13807 case OP_ATR_MIN:
13808 case OP_ATR_MODULUS:
13809 case OP_ATR_POS:
13810 case OP_ATR_SIZE:
13811 case OP_ATR_TAG:
13812 case OP_ATR_VAL:
4c4b4cd2 13813 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13814 {
13815 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13816 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13817 &type_print_raw_options);
76a01679
JB
13818 *pos += 3;
13819 }
4c4b4cd2 13820 else
76a01679 13821 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13822 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13823 if (nargs > 1)
76a01679
JB
13824 {
13825 int tem;
5b4ee69b 13826
76a01679
JB
13827 for (tem = 1; tem < nargs; tem += 1)
13828 {
13829 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13830 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13831 }
13832 fputs_filtered (")", stream);
13833 }
4c4b4cd2 13834 return;
14f9c5c9 13835
4c4b4cd2 13836 case UNOP_QUAL:
4c4b4cd2
PH
13837 type_print (exp->elts[pc + 1].type, "", stream, 0);
13838 fputs_filtered ("'(", stream);
13839 print_subexp (exp, pos, stream, PREC_PREFIX);
13840 fputs_filtered (")", stream);
13841 return;
14f9c5c9 13842
4c4b4cd2 13843 case UNOP_IN_RANGE:
323e0a4a 13844 /* XXX: sprint_subexp */
4c4b4cd2 13845 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13846 fputs_filtered (" in ", stream);
79d43c61
TT
13847 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13848 &type_print_raw_options);
4c4b4cd2 13849 return;
52ce6436
PH
13850
13851 case OP_DISCRETE_RANGE:
13852 print_subexp (exp, pos, stream, PREC_SUFFIX);
13853 fputs_filtered ("..", stream);
13854 print_subexp (exp, pos, stream, PREC_SUFFIX);
13855 return;
13856
13857 case OP_OTHERS:
13858 fputs_filtered ("others => ", stream);
13859 print_subexp (exp, pos, stream, PREC_SUFFIX);
13860 return;
13861
13862 case OP_CHOICES:
13863 for (i = 0; i < nargs-1; i += 1)
13864 {
13865 if (i > 0)
13866 fputs_filtered ("|", stream);
13867 print_subexp (exp, pos, stream, PREC_SUFFIX);
13868 }
13869 fputs_filtered (" => ", stream);
13870 print_subexp (exp, pos, stream, PREC_SUFFIX);
13871 return;
13872
13873 case OP_POSITIONAL:
13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
13875 return;
13876
13877 case OP_AGGREGATE:
13878 fputs_filtered ("(", stream);
13879 for (i = 0; i < nargs; i += 1)
13880 {
13881 if (i > 0)
13882 fputs_filtered (", ", stream);
13883 print_subexp (exp, pos, stream, PREC_SUFFIX);
13884 }
13885 fputs_filtered (")", stream);
13886 return;
4c4b4cd2
PH
13887 }
13888}
14f9c5c9
AS
13889
13890/* Table mapping opcodes into strings for printing operators
13891 and precedences of the operators. */
13892
d2e4a39e
AS
13893static const struct op_print ada_op_print_tab[] = {
13894 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13895 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13896 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13897 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13898 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13899 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13900 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13901 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13902 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13903 {">=", BINOP_GEQ, PREC_ORDER, 0},
13904 {">", BINOP_GTR, PREC_ORDER, 0},
13905 {"<", BINOP_LESS, PREC_ORDER, 0},
13906 {">>", BINOP_RSH, PREC_SHIFT, 0},
13907 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13908 {"+", BINOP_ADD, PREC_ADD, 0},
13909 {"-", BINOP_SUB, PREC_ADD, 0},
13910 {"&", BINOP_CONCAT, PREC_ADD, 0},
13911 {"*", BINOP_MUL, PREC_MUL, 0},
13912 {"/", BINOP_DIV, PREC_MUL, 0},
13913 {"rem", BINOP_REM, PREC_MUL, 0},
13914 {"mod", BINOP_MOD, PREC_MUL, 0},
13915 {"**", BINOP_EXP, PREC_REPEAT, 0},
13916 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13917 {"-", UNOP_NEG, PREC_PREFIX, 0},
13918 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13919 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13920 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13921 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13922 {".all", UNOP_IND, PREC_SUFFIX, 1},
13923 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13924 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13925 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13926};
13927\f
72d5681a
PH
13928enum ada_primitive_types {
13929 ada_primitive_type_int,
13930 ada_primitive_type_long,
13931 ada_primitive_type_short,
13932 ada_primitive_type_char,
13933 ada_primitive_type_float,
13934 ada_primitive_type_double,
13935 ada_primitive_type_void,
13936 ada_primitive_type_long_long,
13937 ada_primitive_type_long_double,
13938 ada_primitive_type_natural,
13939 ada_primitive_type_positive,
13940 ada_primitive_type_system_address,
13941 nr_ada_primitive_types
13942};
6c038f32
PH
13943
13944static void
d4a9a881 13945ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13946 struct language_arch_info *lai)
13947{
d4a9a881 13948 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13949
72d5681a 13950 lai->primitive_type_vector
d4a9a881 13951 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13952 struct type *);
e9bb382b
UW
13953
13954 lai->primitive_type_vector [ada_primitive_type_int]
13955 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13956 0, "integer");
13957 lai->primitive_type_vector [ada_primitive_type_long]
13958 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13959 0, "long_integer");
13960 lai->primitive_type_vector [ada_primitive_type_short]
13961 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13962 0, "short_integer");
13963 lai->string_char_type
13964 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13965 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13966 lai->primitive_type_vector [ada_primitive_type_float]
13967 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13968 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13969 lai->primitive_type_vector [ada_primitive_type_double]
13970 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13971 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13972 lai->primitive_type_vector [ada_primitive_type_long_long]
13973 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13974 0, "long_long_integer");
13975 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13976 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13977 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13978 lai->primitive_type_vector [ada_primitive_type_natural]
13979 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13980 0, "natural");
13981 lai->primitive_type_vector [ada_primitive_type_positive]
13982 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13983 0, "positive");
13984 lai->primitive_type_vector [ada_primitive_type_void]
13985 = builtin->builtin_void;
13986
13987 lai->primitive_type_vector [ada_primitive_type_system_address]
13988 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13989 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13990 = "system__address";
fbb06eb1 13991
47e729a8 13992 lai->bool_type_symbol = NULL;
fbb06eb1 13993 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13994}
6c038f32
PH
13995\f
13996 /* Language vector */
13997
13998/* Not really used, but needed in the ada_language_defn. */
13999
14000static void
6c7a06a3 14001emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14002{
6c7a06a3 14003 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14004}
14005
14006static int
410a0ff2 14007parse (struct parser_state *ps)
6c038f32
PH
14008{
14009 warnings_issued = 0;
410a0ff2 14010 return ada_parse (ps);
6c038f32
PH
14011}
14012
14013static const struct exp_descriptor ada_exp_descriptor = {
14014 ada_print_subexp,
14015 ada_operator_length,
c0201579 14016 ada_operator_check,
6c038f32
PH
14017 ada_op_name,
14018 ada_dump_subexp_body,
14019 ada_evaluate_subexp
14020};
14021
1a119f36 14022/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
14023 for Ada. */
14024
1a119f36
JB
14025static symbol_name_cmp_ftype
14026ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
14027{
14028 if (should_use_wild_match (lookup_name))
14029 return wild_match;
14030 else
14031 return compare_names;
14032}
14033
a5ee536b
JB
14034/* Implement the "la_read_var_value" language_defn method for Ada. */
14035
14036static struct value *
63e43d3a
PMR
14037ada_read_var_value (struct symbol *var, const struct block *var_block,
14038 struct frame_info *frame)
a5ee536b 14039{
3977b71f 14040 const struct block *frame_block = NULL;
a5ee536b
JB
14041 struct symbol *renaming_sym = NULL;
14042
14043 /* The only case where default_read_var_value is not sufficient
14044 is when VAR is a renaming... */
14045 if (frame)
14046 frame_block = get_frame_block (frame, NULL);
14047 if (frame_block)
14048 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14049 if (renaming_sym != NULL)
14050 return ada_read_renaming_var_value (renaming_sym, frame_block);
14051
14052 /* This is a typical case where we expect the default_read_var_value
14053 function to work. */
63e43d3a 14054 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14055}
14056
56618e20
TT
14057static const char *ada_extensions[] =
14058{
14059 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14060};
14061
6c038f32
PH
14062const struct language_defn ada_language_defn = {
14063 "ada", /* Language name */
6abde28f 14064 "Ada",
6c038f32 14065 language_ada,
6c038f32 14066 range_check_off,
6c038f32
PH
14067 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14068 that's not quite what this means. */
6c038f32 14069 array_row_major,
9a044a89 14070 macro_expansion_no,
56618e20 14071 ada_extensions,
6c038f32
PH
14072 &ada_exp_descriptor,
14073 parse,
b3f11165 14074 ada_yyerror,
6c038f32
PH
14075 resolve,
14076 ada_printchar, /* Print a character constant */
14077 ada_printstr, /* Function to print string constant */
14078 emit_char, /* Function to print single char (not used) */
6c038f32 14079 ada_print_type, /* Print a type using appropriate syntax */
be942545 14080 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14081 ada_val_print, /* Print a value using appropriate syntax */
14082 ada_value_print, /* Print a top-level value */
a5ee536b 14083 ada_read_var_value, /* la_read_var_value */
6c038f32 14084 NULL, /* Language specific skip_trampoline */
2b2d9e11 14085 NULL, /* name_of_this */
6c038f32
PH
14086 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14087 basic_lookup_transparent_type, /* lookup_transparent_type */
14088 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14089 ada_sniff_from_mangled_name,
0963b4bd
MS
14090 NULL, /* Language specific
14091 class_name_from_physname */
6c038f32
PH
14092 ada_op_print_tab, /* expression operators for printing */
14093 0, /* c-style arrays */
14094 1, /* String lower bound */
6c038f32 14095 ada_get_gdb_completer_word_break_characters,
41d27058 14096 ada_make_symbol_completion_list,
72d5681a 14097 ada_language_arch_info,
e79af960 14098 ada_print_array_index,
41f1b697 14099 default_pass_by_reference,
ae6a3a4c 14100 c_get_string,
1a119f36 14101 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14102 ada_iterate_over_symbols,
a53b64ea 14103 &ada_varobj_ops,
bb2ec1b3
TT
14104 NULL,
14105 NULL,
6c038f32
PH
14106 LANG_MAGIC
14107};
14108
2c0b251b
PA
14109/* Provide a prototype to silence -Wmissing-prototypes. */
14110extern initialize_file_ftype _initialize_ada_language;
14111
5bf03f13
JB
14112/* Command-list for the "set/show ada" prefix command. */
14113static struct cmd_list_element *set_ada_list;
14114static struct cmd_list_element *show_ada_list;
14115
14116/* Implement the "set ada" prefix command. */
14117
14118static void
14119set_ada_command (char *arg, int from_tty)
14120{
14121 printf_unfiltered (_(\
14122"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14123 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14124}
14125
14126/* Implement the "show ada" prefix command. */
14127
14128static void
14129show_ada_command (char *args, int from_tty)
14130{
14131 cmd_show_list (show_ada_list, from_tty, "");
14132}
14133
2060206e
PA
14134static void
14135initialize_ada_catchpoint_ops (void)
14136{
14137 struct breakpoint_ops *ops;
14138
14139 initialize_breakpoint_ops ();
14140
14141 ops = &catch_exception_breakpoint_ops;
14142 *ops = bkpt_breakpoint_ops;
14143 ops->dtor = dtor_catch_exception;
14144 ops->allocate_location = allocate_location_catch_exception;
14145 ops->re_set = re_set_catch_exception;
14146 ops->check_status = check_status_catch_exception;
14147 ops->print_it = print_it_catch_exception;
14148 ops->print_one = print_one_catch_exception;
14149 ops->print_mention = print_mention_catch_exception;
14150 ops->print_recreate = print_recreate_catch_exception;
14151
14152 ops = &catch_exception_unhandled_breakpoint_ops;
14153 *ops = bkpt_breakpoint_ops;
14154 ops->dtor = dtor_catch_exception_unhandled;
14155 ops->allocate_location = allocate_location_catch_exception_unhandled;
14156 ops->re_set = re_set_catch_exception_unhandled;
14157 ops->check_status = check_status_catch_exception_unhandled;
14158 ops->print_it = print_it_catch_exception_unhandled;
14159 ops->print_one = print_one_catch_exception_unhandled;
14160 ops->print_mention = print_mention_catch_exception_unhandled;
14161 ops->print_recreate = print_recreate_catch_exception_unhandled;
14162
14163 ops = &catch_assert_breakpoint_ops;
14164 *ops = bkpt_breakpoint_ops;
14165 ops->dtor = dtor_catch_assert;
14166 ops->allocate_location = allocate_location_catch_assert;
14167 ops->re_set = re_set_catch_assert;
14168 ops->check_status = check_status_catch_assert;
14169 ops->print_it = print_it_catch_assert;
14170 ops->print_one = print_one_catch_assert;
14171 ops->print_mention = print_mention_catch_assert;
14172 ops->print_recreate = print_recreate_catch_assert;
14173}
14174
3d9434b5
JB
14175/* This module's 'new_objfile' observer. */
14176
14177static void
14178ada_new_objfile_observer (struct objfile *objfile)
14179{
14180 ada_clear_symbol_cache ();
14181}
14182
14183/* This module's 'free_objfile' observer. */
14184
14185static void
14186ada_free_objfile_observer (struct objfile *objfile)
14187{
14188 ada_clear_symbol_cache ();
14189}
14190
d2e4a39e 14191void
6c038f32 14192_initialize_ada_language (void)
14f9c5c9 14193{
6c038f32
PH
14194 add_language (&ada_language_defn);
14195
2060206e
PA
14196 initialize_ada_catchpoint_ops ();
14197
5bf03f13
JB
14198 add_prefix_cmd ("ada", no_class, set_ada_command,
14199 _("Prefix command for changing Ada-specfic settings"),
14200 &set_ada_list, "set ada ", 0, &setlist);
14201
14202 add_prefix_cmd ("ada", no_class, show_ada_command,
14203 _("Generic command for showing Ada-specific settings."),
14204 &show_ada_list, "show ada ", 0, &showlist);
14205
14206 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14207 &trust_pad_over_xvs, _("\
14208Enable or disable an optimization trusting PAD types over XVS types"), _("\
14209Show whether an optimization trusting PAD types over XVS types is activated"),
14210 _("\
14211This is related to the encoding used by the GNAT compiler. The debugger\n\
14212should normally trust the contents of PAD types, but certain older versions\n\
14213of GNAT have a bug that sometimes causes the information in the PAD type\n\
14214to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14215work around this bug. It is always safe to turn this option \"off\", but\n\
14216this incurs a slight performance penalty, so it is recommended to NOT change\n\
14217this option to \"off\" unless necessary."),
14218 NULL, NULL, &set_ada_list, &show_ada_list);
14219
d72413e6
PMR
14220 add_setshow_boolean_cmd ("print-signatures", class_vars,
14221 &print_signatures, _("\
14222Enable or disable the output of formal and return types for functions in the \
14223overloads selection menu"), _("\
14224Show whether the output of formal and return types for functions in the \
14225overloads selection menu is activated"),
14226 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14227
9ac4176b
PA
14228 add_catch_command ("exception", _("\
14229Catch Ada exceptions, when raised.\n\
14230With an argument, catch only exceptions with the given name."),
14231 catch_ada_exception_command,
14232 NULL,
14233 CATCH_PERMANENT,
14234 CATCH_TEMPORARY);
14235 add_catch_command ("assert", _("\
14236Catch failed Ada assertions, when raised.\n\
14237With an argument, catch only exceptions with the given name."),
14238 catch_assert_command,
14239 NULL,
14240 CATCH_PERMANENT,
14241 CATCH_TEMPORARY);
14242
6c038f32 14243 varsize_limit = 65536;
6c038f32 14244
778865d3
JB
14245 add_info ("exceptions", info_exceptions_command,
14246 _("\
14247List all Ada exception names.\n\
14248If a regular expression is passed as an argument, only those matching\n\
14249the regular expression are listed."));
14250
c6044dd1
JB
14251 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14252 _("Set Ada maintenance-related variables."),
14253 &maint_set_ada_cmdlist, "maintenance set ada ",
14254 0/*allow-unknown*/, &maintenance_set_cmdlist);
14255
14256 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14257 _("Show Ada maintenance-related variables"),
14258 &maint_show_ada_cmdlist, "maintenance show ada ",
14259 0/*allow-unknown*/, &maintenance_show_cmdlist);
14260
14261 add_setshow_boolean_cmd
14262 ("ignore-descriptive-types", class_maintenance,
14263 &ada_ignore_descriptive_types_p,
14264 _("Set whether descriptive types generated by GNAT should be ignored."),
14265 _("Show whether descriptive types generated by GNAT should be ignored."),
14266 _("\
14267When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14268DWARF attribute."),
14269 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14270
6c038f32
PH
14271 obstack_init (&symbol_list_obstack);
14272
14273 decoded_names_store = htab_create_alloc
14274 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14275 NULL, xcalloc, xfree);
6b69afc4 14276
3d9434b5
JB
14277 /* The ada-lang observers. */
14278 observer_attach_new_objfile (ada_new_objfile_observer);
14279 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14280 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14281
14282 /* Setup various context-specific data. */
e802dbe0 14283 ada_inferior_data
8e260fc0 14284 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14285 ada_pspace_data_handle
14286 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14287}