]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix internal error from command line with unbalanced --start-lib/--end-lib.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
348/* Space for allocating results of ada_lookup_symbol_list. */
349static struct obstack symbol_list_obstack;
350
c6044dd1
JB
351/* Maintenance-related settings for this module. */
352
353static struct cmd_list_element *maint_set_ada_cmdlist;
354static struct cmd_list_element *maint_show_ada_cmdlist;
355
356/* Implement the "maintenance set ada" (prefix) command. */
357
358static void
981a3fb3 359maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 360{
635c7e8a
TT
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
c6044dd1
JB
363}
364
365/* Implement the "maintenance show ada" (prefix) command. */
366
367static void
981a3fb3 368maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
369{
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371}
372
373/* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375static int ada_ignore_descriptive_types_p = 0;
376
e802dbe0
JB
377 /* Inferior-specific data. */
378
379/* Per-inferior data for this module. */
380
381struct ada_inferior_data
382{
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
3eecfa55
JB
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
e802dbe0
JB
393};
394
395/* Our key to this module's inferior data. */
396static const struct inferior_data *ada_inferior_data;
397
398/* A cleanup routine for our inferior data. */
399static void
400ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401{
402 struct ada_inferior_data *data;
403
9a3c8263 404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
405 if (data != NULL)
406 xfree (data);
407}
408
409/* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417static struct ada_inferior_data *
418get_ada_inferior_data (struct inferior *inf)
419{
420 struct ada_inferior_data *data;
421
9a3c8263 422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
423 if (data == NULL)
424 {
41bf6aca 425 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430}
431
432/* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435static void
436ada_inferior_exit (struct inferior *inf)
437{
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440}
441
ee01b665
JB
442
443 /* program-space-specific data. */
444
445/* This module's per-program-space data. */
446struct ada_pspace_data
447{
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450};
451
452/* Key to our per-program-space data. */
453static const struct program_space_data *ada_pspace_data_handle;
454
455/* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460static struct ada_pspace_data *
461get_ada_pspace_data (struct program_space *pspace)
462{
463 struct ada_pspace_data *data;
464
9a3c8263
SM
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474}
475
476/* The cleanup callback for this module's per-program-space data. */
477
478static void
479ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480{
9a3c8263 481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486}
487
4c4b4cd2
PH
488 /* Utilities */
489
720d1a40 490/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 491 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517static struct type *
518ada_typedef_target_type (struct type *type)
519{
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523}
524
41d27058
JB
525/* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529static const char *
530ada_unqualified_name (const char *decoded_name)
531{
2b0f535a
JB
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
41d27058
JB
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548}
549
550/* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553static char *
554add_angle_brackets (const char *str)
555{
556 static char *result = NULL;
557
558 xfree (result);
88c15c34 559 result = xstrprintf ("<%s>", str);
41d27058
JB
560 return result;
561}
96d887e8 562
67cb5b2d 563static const char *
4c4b4cd2
PH
564ada_get_gdb_completer_word_break_characters (void)
565{
566 return ada_completer_word_break_characters;
567}
568
e79af960
JB
569/* Print an array element index using the Ada syntax. */
570
571static void
572ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 573 const struct value_print_options *options)
e79af960 574{
79a45b7d 575 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
576 fprintf_filtered (stream, " => ");
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
f9bc20b9 922 static char *main_program_name = NULL;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
96d887e8
PH
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951}
14f9c5c9 952\f
4c4b4cd2 953 /* Symbols */
d2e4a39e 954
4c4b4cd2
PH
955/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
14f9c5c9 957
d2e4a39e
AS
958const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
14f9c5c9
AS
981};
982
b5ec771e
PA
983/* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
4c4b4cd2 987
b5ec771e
PA
988static char *
989ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 990{
4c4b4cd2
PH
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
d2e4a39e 993 const char *p;
14f9c5c9 994 int k;
d2e4a39e 995
4c4b4cd2 996 if (decoded == NULL)
14f9c5c9
AS
997 return NULL;
998
4c4b4cd2
PH
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
14f9c5c9
AS
1001
1002 k = 0;
4c4b4cd2 1003 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1004 {
cdc7bb92 1005 if (*p == '.')
4c4b4cd2
PH
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
14f9c5c9 1010 else if (*p == '"')
4c4b4cd2
PH
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1265e4aa 1015 mapping->encoded != NULL
61012eef 1016 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1017 ;
1018 if (mapping->encoded == NULL)
b5ec771e
PA
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
4c4b4cd2
PH
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
d2e4a39e 1029 else
4c4b4cd2
PH
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
14f9c5c9
AS
1034 }
1035
4c4b4cd2
PH
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
14f9c5c9
AS
1038}
1039
b5ec771e
PA
1040/* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043char *
1044ada_encode (const char *decoded)
1045{
1046 return ada_encode_1 (decoded, true);
1047}
1048
14f9c5c9 1049/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
d2e4a39e
AS
1053char *
1054ada_fold_name (const char *name)
14f9c5c9 1055{
d2e4a39e 1056 static char *fold_buffer = NULL;
14f9c5c9
AS
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
d2e4a39e 1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1061
1062 if (name[0] == '\'')
1063 {
d2e4a39e
AS
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1066 }
1067 else
1068 {
1069 int i;
5b4ee69b 1070
14f9c5c9 1071 for (i = 0; i <= len; i += 1)
4c4b4cd2 1072 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1073 }
1074
1075 return fold_buffer;
1076}
1077
529cad9c
PH
1078/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080static int
1081is_lower_alphanum (const char c)
1082{
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084}
1085
c90092fe
JB
1086/* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
29480c32
JB
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
c90092fe 1093
29480c32
JB
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098static void
1099ada_remove_trailing_digits (const char *encoded, int *len)
1100{
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
5b4ee69b 1104
29480c32
JB
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
61012eef 1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1112 *len = i - 2;
61012eef 1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1114 *len = i - 1;
1115 }
1116}
1117
1118/* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121static void
1122ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123{
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
0963b4bd 1129 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138}
1139
69fadcdf
JB
1140/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142static void
1143ada_remove_Xbn_suffix (const char *encoded, int *len)
1144{
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158}
1159
29480c32
JB
1160/* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
14f9c5c9 1163
4c4b4cd2 1164 The resulting string is valid until the next call of ada_decode.
29480c32 1165 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1166 is returned. */
1167
1168const char *
1169ada_decode (const char *encoded)
14f9c5c9
AS
1170{
1171 int i, j;
1172 int len0;
d2e4a39e 1173 const char *p;
4c4b4cd2 1174 char *decoded;
14f9c5c9 1175 int at_start_name;
4c4b4cd2
PH
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
d2e4a39e 1178
29480c32
JB
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
61012eef 1182 if (startswith (encoded, "_ada_"))
4c4b4cd2 1183 encoded += 5;
14f9c5c9 1184
29480c32
JB
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
4c4b4cd2 1188 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1189 goto Suppress;
1190
4c4b4cd2 1191 len0 = strlen (encoded);
4c4b4cd2 1192
29480c32
JB
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1195
4c4b4cd2
PH
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1202 {
1203 if (p[3] == 'X')
4c4b4cd2 1204 len0 = p - encoded;
14f9c5c9 1205 else
4c4b4cd2 1206 goto Suppress;
14f9c5c9 1207 }
4c4b4cd2 1208
29480c32
JB
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
61012eef 1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1214 len0 -= 3;
76a01679 1215
a10967fa
JB
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
61012eef 1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1221 len0 -= 2;
1222
29480c32
JB
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
61012eef 1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1227 len0 -= 1;
1228
4c4b4cd2 1229 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1230
4c4b4cd2
PH
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
14f9c5c9 1233
29480c32
JB
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
4c4b4cd2 1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1237 {
4c4b4cd2
PH
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
d2e4a39e 1246 }
14f9c5c9 1247
29480c32
JB
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
4c4b4cd2
PH
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
14f9c5c9
AS
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
29480c32 1257 /* Is this a symbol function? */
4c4b4cd2
PH
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
5b4ee69b 1261
4c4b4cd2
PH
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
14f9c5c9
AS
1279 at_start_name = 0;
1280
529cad9c
PH
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
61012eef 1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1285 i += 2;
529cad9c 1286
29480c32
JB
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
529cad9c
PH
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1309 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
4c4b4cd2
PH
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
29480c32
JB
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
4c4b4cd2
PH
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
cdc7bb92 1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1374 {
29480c32 1375 /* Replace '__' by '.'. */
4c4b4cd2
PH
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
14f9c5c9 1381 else
4c4b4cd2 1382 {
29480c32
JB
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
4c4b4cd2
PH
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
14f9c5c9 1389 }
4c4b4cd2 1390 decoded[j] = '\000';
14f9c5c9 1391
29480c32
JB
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
4c4b4cd2
PH
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1397 goto Suppress;
1398
4c4b4cd2
PH
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
14f9c5c9
AS
1403
1404Suppress:
4c4b4cd2
PH
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
14f9c5c9 1409 else
88c15c34 1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1411 return decoded;
1412
1413}
1414
1415/* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420static struct htab *decoded_names_store;
1421
1422/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1427 GSYMBOL).
4c4b4cd2
PH
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1430 when a decoded name is cached in it. */
4c4b4cd2 1431
45e6c716 1432const char *
f85f34ed 1433ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1434{
f85f34ed
TT
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
615b3f62 1437 &gsymbol->language_specific.demangled_name;
5b4ee69b 1438
f85f34ed 1439 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1442 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1443
f85f34ed 1444 gsymbol->ada_mangled = 1;
5b4ee69b 1445
f85f34ed 1446 if (obstack != NULL)
224c3ddb
SM
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1449 else
76a01679 1450 {
f85f34ed
TT
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
76a01679
JB
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
5b4ee69b 1458
76a01679
JB
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
4c4b4cd2 1463 }
14f9c5c9 1464
4c4b4cd2
PH
1465 return *resultp;
1466}
76a01679 1467
2c0b251b 1468static char *
76a01679 1469ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1470{
1471 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1472}
1473
8b302db8
TT
1474/* Implement la_sniff_from_mangled_name for Ada. */
1475
1476static int
1477ada_sniff_from_mangled_name (const char *mangled, char **out)
1478{
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
14f9c5c9 1513\f
d2e4a39e 1514
4c4b4cd2 1515 /* Arrays */
14f9c5c9 1516
28c85d6c
JB
1517/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540void
1541ada_fixup_array_indexes_type (struct type *index_desc_type)
1542{
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
0d5cff50 1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570}
1571
4c4b4cd2 1572/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1573
a121b7c1 1574static const char *bound_name[] = {
d2e4a39e 1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577};
1578
1579/* Maximum number of array dimensions we are prepared to handle. */
1580
4c4b4cd2 1581#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1582
14f9c5c9 1583
4c4b4cd2
PH
1584/* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
14f9c5c9
AS
1586
1587/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1588 level of indirection, if needed. */
1589
d2e4a39e
AS
1590static struct type *
1591desc_base_type (struct type *type)
14f9c5c9
AS
1592{
1593 if (type == NULL)
1594 return NULL;
61ee279c 1595 type = ada_check_typedef (type);
720d1a40
JB
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1265e4aa
JB
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1603 else
1604 return type;
1605}
1606
4c4b4cd2
PH
1607/* True iff TYPE indicates a "thin" array pointer type. */
1608
14f9c5c9 1609static int
d2e4a39e 1610is_thin_pntr (struct type *type)
14f9c5c9 1611{
d2e4a39e 1612 return
14f9c5c9
AS
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615}
1616
4c4b4cd2
PH
1617/* The descriptor type for thin pointer type TYPE. */
1618
d2e4a39e
AS
1619static struct type *
1620thin_descriptor_type (struct type *type)
14f9c5c9 1621{
d2e4a39e 1622 struct type *base_type = desc_base_type (type);
5b4ee69b 1623
14f9c5c9
AS
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
d2e4a39e 1628 else
14f9c5c9 1629 {
d2e4a39e 1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1631
14f9c5c9 1632 if (alt_type == NULL)
4c4b4cd2 1633 return base_type;
14f9c5c9 1634 else
4c4b4cd2 1635 return alt_type;
14f9c5c9
AS
1636 }
1637}
1638
4c4b4cd2
PH
1639/* A pointer to the array data for thin-pointer value VAL. */
1640
d2e4a39e
AS
1641static struct value *
1642thin_data_pntr (struct value *val)
14f9c5c9 1643{
828292f2 1644 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1646
556bdfd4
UW
1647 data_type = lookup_pointer_type (data_type);
1648
14f9c5c9 1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1650 return value_cast (data_type, value_copy (val));
d2e4a39e 1651 else
42ae5230 1652 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1653}
1654
4c4b4cd2
PH
1655/* True iff TYPE indicates a "thick" array pointer type. */
1656
14f9c5c9 1657static int
d2e4a39e 1658is_thick_pntr (struct type *type)
14f9c5c9
AS
1659{
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1663}
1664
4c4b4cd2
PH
1665/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1667
d2e4a39e
AS
1668static struct type *
1669desc_bounds_type (struct type *type)
14f9c5c9 1670{
d2e4a39e 1671 struct type *r;
14f9c5c9
AS
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
4c4b4cd2 1681 return NULL;
14f9c5c9
AS
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
61ee279c 1684 return ada_check_typedef (r);
14f9c5c9
AS
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1691 }
1692 return NULL;
1693}
1694
1695/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_bounds (struct value *arr)
14f9c5c9 1700{
df407dfe 1701 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1702
d2e4a39e 1703 if (is_thin_pntr (type))
14f9c5c9 1704 {
d2e4a39e 1705 struct type *bounds_type =
4c4b4cd2 1706 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1707 LONGEST addr;
1708
4cdfadb1 1709 if (bounds_type == NULL)
323e0a4a 1710 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1711
1712 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1713 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1714 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1716 addr = value_as_long (arr);
d2e4a39e 1717 else
42ae5230 1718 addr = value_address (arr);
14f9c5c9 1719
d2e4a39e 1720 return
4c4b4cd2
PH
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1723 }
1724
1725 else if (is_thick_pntr (type))
05e522ef
JB
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
14f9c5c9
AS
1746 else
1747 return NULL;
1748}
1749
4c4b4cd2
PH
1750/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
14f9c5c9 1753static int
d2e4a39e 1754fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1755{
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757}
1758
1759/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1760 size of the field containing the address of the bounds data. */
1761
14f9c5c9 1762static int
d2e4a39e 1763fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1764{
1765 type = desc_base_type (type);
1766
d2e4a39e 1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
61ee279c 1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1771}
1772
4c4b4cd2 1773/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
4c4b4cd2 1777
d2e4a39e 1778static struct type *
556bdfd4 1779desc_data_target_type (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
4c4b4cd2 1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1784 if (is_thin_pntr (type))
556bdfd4 1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1786 else if (is_thick_pntr (type))
556bdfd4
UW
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1793 }
1794
1795 return NULL;
14f9c5c9
AS
1796}
1797
1798/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
4c4b4cd2 1800
d2e4a39e
AS
1801static struct value *
1802desc_data (struct value *arr)
14f9c5c9 1803{
df407dfe 1804 struct type *type = value_type (arr);
5b4ee69b 1805
14f9c5c9
AS
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
d2e4a39e 1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1810 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1811 else
1812 return NULL;
1813}
1814
1815
1816/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1817 position of the field containing the address of the data. */
1818
14f9c5c9 1819static int
d2e4a39e 1820fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1821{
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823}
1824
1825/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1826 size of the field containing the address of the data. */
1827
14f9c5c9 1828static int
d2e4a39e 1829fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1835 else
14f9c5c9
AS
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837}
1838
4c4b4cd2 1839/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
d2e4a39e
AS
1843static struct value *
1844desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1845{
d2e4a39e 1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1847 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1848}
1849
1850/* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1856{
d2e4a39e 1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1858}
1859
1860/* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
76a01679 1864static int
d2e4a39e 1865desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1866{
1867 type = desc_base_type (type);
1868
d2e4a39e
AS
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1873}
1874
1875/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
d2e4a39e
AS
1878static struct type *
1879desc_index_type (struct type *type, int i)
14f9c5c9
AS
1880{
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
14f9c5c9
AS
1886 return NULL;
1887}
1888
4c4b4cd2
PH
1889/* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
14f9c5c9 1892static int
d2e4a39e 1893desc_arity (struct type *type)
14f9c5c9
AS
1894{
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
76a01679
JB
1906static int
1907ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1908{
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
4c4b4cd2 1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1913 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1914}
1915
52ce6436 1916/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1917 * to one. */
52ce6436 1918
2c0b251b 1919static int
52ce6436
PH
1920ada_is_array_type (struct type *type)
1921{
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927}
1928
4c4b4cd2 1929/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1930
14f9c5c9 1931int
4c4b4cd2 1932ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1933{
1934 if (type == NULL)
1935 return 0;
61ee279c 1936 type = ada_check_typedef (type);
14f9c5c9 1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1941}
1942
4c4b4cd2
PH
1943/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
14f9c5c9 1945int
4c4b4cd2 1946ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1947{
556bdfd4 1948 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1949
1950 if (type == NULL)
1951 return 0;
61ee279c 1952 type = ada_check_typedef (type);
556bdfd4
UW
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1956}
1957
1958/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1959 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1960 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1961 is still needed. */
1962
14f9c5c9 1963int
ebf56fd3 1964ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1965{
d2e4a39e 1966 return
14f9c5c9
AS
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1972}
1973
1974
4c4b4cd2 1975/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1976 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1978 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1981 a descriptor. */
d2e4a39e
AS
1982struct type *
1983ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1984{
ad82864c
JB
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1987
df407dfe
AC
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
d2e4a39e
AS
1990
1991 if (!bounds)
ad82864c
JB
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
14f9c5c9
AS
2002 else
2003 {
d2e4a39e 2004 struct type *elt_type;
14f9c5c9 2005 int arity;
d2e4a39e 2006 struct value *descriptor;
14f9c5c9 2007
df407dfe
AC
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
14f9c5c9 2010
d2e4a39e 2011 if (elt_type == NULL || arity == 0)
df407dfe 2012 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2013
2014 descriptor = desc_bounds (arr);
d2e4a39e 2015 if (value_as_long (descriptor) == 0)
4c4b4cd2 2016 return NULL;
d2e4a39e 2017 while (arity > 0)
4c4b4cd2 2018 {
e9bb382b
UW
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2023
5b4ee69b 2024 arity -= 1;
0c9c3474
SA
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
4c4b4cd2 2028 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
4c4b4cd2 2050 }
14f9c5c9
AS
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054}
2055
2056/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
d2e4a39e
AS
2061struct value *
2062ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2063{
df407dfe 2064 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2065 {
d2e4a39e 2066 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2067
14f9c5c9 2068 if (arrType == NULL)
4c4b4cd2 2069 return NULL;
14f9c5c9
AS
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
ad82864c
JB
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2074 else
2075 return arr;
2076}
2077
2078/* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2080 be ARR itself if it already is in the proper form). */
2081
720d1a40 2082struct value *
d2e4a39e 2083ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2084{
df407dfe 2085 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2086 {
d2e4a39e 2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2088
14f9c5c9 2089 if (arrVal == NULL)
323e0a4a 2090 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2092 return value_ind (arrVal);
2093 }
ad82864c
JB
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
d2e4a39e 2096 else
14f9c5c9
AS
2097 return arr;
2098}
2099
2100/* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2102 packing). For other types, is the identity. */
2103
d2e4a39e
AS
2104struct type *
2105ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2106{
ad82864c
JB
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
17280b9f
UW
2109
2110 if (ada_is_array_descriptor_type (type))
556bdfd4 2111 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2112
2113 return type;
14f9c5c9
AS
2114}
2115
4c4b4cd2
PH
2116/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
ad82864c
JB
2118static int
2119ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2120{
2121 if (type == NULL)
2122 return 0;
4c4b4cd2 2123 type = desc_base_type (type);
61ee279c 2124 type = ada_check_typedef (type);
d2e4a39e 2125 return
14f9c5c9
AS
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128}
2129
ad82864c
JB
2130/* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133int
2134ada_is_constrained_packed_array_type (struct type *type)
2135{
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138}
2139
2140/* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143static int
2144ada_is_unconstrained_packed_array_type (struct type *type)
2145{
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148}
2149
2150/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153static long
2154decode_packed_array_bitsize (struct type *type)
2155{
0d5cff50
DE
2156 const char *raw_name;
2157 const char *tail;
ad82864c
JB
2158 long bits;
2159
720d1a40
JB
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
720d1a40 2174 gdb_assert (tail != NULL);
ad82864c
JB
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184}
2185
14f9c5c9
AS
2186/* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
4c4b4cd2 2202
d2e4a39e 2203static struct type *
ad82864c 2204constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2205{
d2e4a39e
AS
2206 struct type *new_elt_type;
2207 struct type *new_type;
99b1c762
JB
2208 struct type *index_type_desc;
2209 struct type *index_type;
14f9c5c9
AS
2210 LONGEST low_bound, high_bound;
2211
61ee279c 2212 type = ada_check_typedef (type);
14f9c5c9
AS
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
99b1c762
JB
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
e9bb382b 2223 new_type = alloc_type_copy (type);
ad82864c
JB
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
99b1c762 2227 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
4a46959e
JB
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2237 else
14f9c5c9
AS
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2240 TYPE_LENGTH (new_type) =
4c4b4cd2 2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2242 }
2243
876cecd0 2244 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2245 return new_type;
2246}
2247
ad82864c
JB
2248/* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2250
d2e4a39e 2251static struct type *
ad82864c 2252decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2253{
0d5cff50 2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2255 char *name;
0d5cff50 2256 const char *tail;
d2e4a39e 2257 struct type *shadow_type;
14f9c5c9 2258 long bits;
14f9c5c9 2259
727e3d2e
JB
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2268 type = desc_base_type (type);
2269
14f9c5c9
AS
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
b4ba55a1
JB
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
14f9c5c9 2276 {
323e0a4a 2277 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2278 return NULL;
2279 }
f168693b 2280 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
0963b4bd
MS
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
14f9c5c9
AS
2286 return NULL;
2287 }
d2e4a39e 2288
ad82864c
JB
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2291}
2292
ad82864c
JB
2293/* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
4c4b4cd2 2297 type length is set appropriately. */
14f9c5c9 2298
d2e4a39e 2299static struct value *
ad82864c 2300decode_constrained_packed_array (struct value *arr)
14f9c5c9 2301{
4c4b4cd2 2302 struct type *type;
14f9c5c9 2303
11aa919a
PMR
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
828292f2 2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2313 arr = value_ind (arr);
4c4b4cd2 2314
ad82864c 2315 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2316 if (type == NULL)
2317 {
323e0a4a 2318 error (_("can't unpack array"));
14f9c5c9
AS
2319 return NULL;
2320 }
61ee279c 2321
50810684 2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2323 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
df407dfe 2332 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
df407dfe 2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
4c4b4cd2 2347 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2348}
2349
2350
2351/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2352 given in IND. ARR must be a simple array. */
14f9c5c9 2353
d2e4a39e
AS
2354static struct value *
2355value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2356{
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
d2e4a39e
AS
2360 struct type *elt_type;
2361 struct value *v;
14f9c5c9
AS
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
df407dfe 2365 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2366 for (i = 0; i < arity; i += 1)
14f9c5c9 2367 {
d2e4a39e 2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
0963b4bd
MS
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
14f9c5c9 2373 else
4c4b4cd2
PH
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
323e0a4a 2381 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2382 lowerbound = upperbound = 0;
2383 }
2384
3cb382c9 2385 idx = pos_atr (ind[i]);
4c4b4cd2 2386 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
4c4b4cd2
PH
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2392 }
14f9c5c9
AS
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2398 bits, elt_type);
14f9c5c9
AS
2399 return v;
2400}
2401
4c4b4cd2 2402/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2403
2404static int
d2e4a39e 2405has_negatives (struct type *type)
14f9c5c9 2406{
d2e4a39e
AS
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
14f9c5c9 2416}
d2e4a39e 2417
f93fca70 2418/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2420 the unpacked buffer.
14f9c5c9 2421
5b639dea
JB
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
f93fca70
JB
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
14f9c5c9 2427
f93fca70 2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2429
f93fca70
JB
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432static void
2433ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437{
a1c95e6b
JB
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
a1c95e6b
JB
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
4c4b4cd2 2448 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2449 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2450 unsigned char sign;
a1c95e6b 2451
4c4b4cd2
PH
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
f93fca70 2454 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2455
5b639dea
JB
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
14f9c5c9 2462 srcBitsLeft = bit_size;
086ca51f 2463 src_bytes_left = src_len;
f93fca70 2464 unpacked_bytes_left = unpacked_len;
14f9c5c9 2465 sign = 0;
f93fca70
JB
2466
2467 if (is_big_endian)
14f9c5c9 2468 {
086ca51f 2469 src_idx = src_len - 1;
f93fca70
JB
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2472 sign = ~0;
d2e4a39e
AS
2473
2474 unusedLS =
4c4b4cd2
PH
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
14f9c5c9 2477
f93fca70
JB
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
4c4b4cd2
PH
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
086ca51f
JB
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2492 }
14f9c5c9 2493 }
d2e4a39e 2494 else
14f9c5c9
AS
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
086ca51f 2498 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
f93fca70 2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2503 sign = ~0;
14f9c5c9 2504 }
d2e4a39e 2505
14f9c5c9 2506 accum = 0;
086ca51f 2507 while (src_bytes_left > 0)
14f9c5c9
AS
2508 {
2509 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2510 part of the value. */
d2e4a39e 2511 unsigned int unusedMSMask =
4c4b4cd2
PH
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
14f9c5c9 2515 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2516
d2e4a39e 2517 accum |=
086ca51f 2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2519 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2520 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2521 {
db297a65 2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
4c4b4cd2 2527 }
14f9c5c9
AS
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
086ca51f
JB
2530 src_bytes_left -= 1;
2531 src_idx += delta;
14f9c5c9 2532 }
086ca51f 2533 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2534 {
2535 accum |= sign << accumSize;
db297a65 2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2537 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2538 if (accumSize < 0)
2539 accumSize = 0;
14f9c5c9 2540 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
14f9c5c9 2543 }
f93fca70
JB
2544}
2545
2546/* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555struct value *
2556ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559{
2560 struct value *v;
bfb1c796 2561 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2562 gdb_byte *unpacked;
220475ed 2563 const int is_scalar = is_scalar_type (type);
d0a9e810 2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2565 gdb::byte_vector staging;
f93fca70
JB
2566
2567 type = ada_check_typedef (type);
2568
d0a9e810 2569 if (obj == NULL)
bfb1c796 2570 src = valaddr + offset;
d0a9e810 2571 else
bfb1c796 2572 src = value_contents (obj) + offset;
d0a9e810
JB
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
d0a9e810
JB
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2587 staging.data (), staging.size (),
d0a9e810
JB
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
d5722aa2 2590 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
d0a9e810
JB
2602 }
2603
f93fca70
JB
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
bfb1c796 2607 src = valaddr + offset;
f93fca70
JB
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
0cafa88c 2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2612 gdb_byte *buf;
0cafa88c 2613
f93fca70 2614 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
f93fca70
JB
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
bfb1c796 2622 src = value_contents (obj) + offset;
f93fca70
JB
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
bfb1c796 2645 unpacked = value_contents_writeable (v);
f93fca70
JB
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
d5722aa2 2653 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2654 {
d0a9e810
JB
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
d5722aa2 2658 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2659 }
d0a9e810
JB
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2664
14f9c5c9
AS
2665 return v;
2666}
d2e4a39e 2667
14f9c5c9
AS
2668/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2670 not overlap. */
14f9c5c9 2671static void
fc1a4b47 2672move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2673 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2674{
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
50810684 2682 if (bits_big_endian_p)
14f9c5c9
AS
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
d2e4a39e 2688 while (n > 0)
4c4b4cd2
PH
2689 {
2690 int unused_right;
5b4ee69b 2691
4c4b4cd2
PH
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
14f9c5c9
AS
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
d2e4a39e 2715 while (n > 0)
4c4b4cd2
PH
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
14f9c5c9
AS
2731 }
2732}
2733
14f9c5c9
AS
2734/* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2737 floating-point or non-scalar types. */
14f9c5c9 2738
d2e4a39e
AS
2739static struct value *
2740ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2741{
df407dfe
AC
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
14f9c5c9 2744
52ce6436
PH
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
88e3b34b 2753 if (!deprecated_value_modifiable (toval))
323e0a4a 2754 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2755
d2e4a39e 2756 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2757 && bits > 0
d2e4a39e 2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2760 {
df407dfe
AC
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2763 int from_size;
224c3ddb 2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2765 struct value *val;
42ae5230 2766 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2769 fromval = value_cast (type, fromval);
14f9c5c9 2770
52ce6436 2771 read_memory (to_addr, buffer, len);
aced2898
PH
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2776 move_bits (buffer, value_bitpos (toval),
50810684 2777 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2778 else
50810684
UW
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
972daa01 2781 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2782
14f9c5c9 2783 val = value_copy (toval);
0fd88904 2784 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2785 TYPE_LENGTH (type));
04624583 2786 deprecated_set_value_type (val, type);
d2e4a39e 2787
14f9c5c9
AS
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792}
2793
2794
7c512744
JB
2795/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
52ce6436
PH
2806static void
2807value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809{
2810 LONGEST offset_in_container =
42ae5230 2811 (LONGEST) (value_address (component) - value_address (container));
7c512744 2812 int bit_offset_in_container =
52ce6436
PH
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
7c512744 2815
52ce6436
PH
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
50810684 2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2824 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2828 bits, 1);
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
4c4b4cd2
PH
2835/* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2837 thereto. */
2838
d2e4a39e
AS
2839struct value *
2840ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2841{
2842 int k;
d2e4a39e
AS
2843 struct value *elt;
2844 struct type *elt_type;
14f9c5c9
AS
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
df407dfe 2848 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2856 error (_("too many subscripts (%d expected)"), k);
2497b498 2857 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2858 }
2859 return elt;
2860}
2861
deede10c
JB
2862/* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
14f9c5c9 2873
2c0b251b 2874static struct value *
deede10c 2875ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2876{
2877 int k;
919e6dbe 2878 struct value *array_ind = ada_value_ind (arr);
deede10c 2879 struct type *type
919e6dbe
PMR
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
aa715135 2889 struct value *lwb_value;
14f9c5c9
AS
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2892 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2894 value_copy (arr));
14f9c5c9 2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902}
2903
0b5d8877 2904/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
0b5d8877 2908static struct value *
f5938064
JG
2909ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
0b5d8877 2911{
b0dd7688 2912 struct type *type0 = ada_check_typedef (type);
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2914 struct type *index_type
aa715135 2915 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2916 struct type *slice_type =
b0dd7688 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
5b4ee69b 2929
aa715135
JG
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2933 return value_at_lazy (slice_type, base);
0b5d8877
PH
2934}
2935
2936
2937static struct value *
2938ada_value_slice (struct value *array, int low, int high)
2939{
b0dd7688 2940 struct type *type = ada_check_typedef (value_type (array));
aa715135 2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2944 struct type *slice_type =
0b5d8877 2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2946 LONGEST low_pos, high_pos;
5b4ee69b 2947
aa715135
JG
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2958}
2959
14f9c5c9
AS
2960/* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2963 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2964
2965int
d2e4a39e 2966ada_array_arity (struct type *type)
14f9c5c9
AS
2967{
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
d2e4a39e 2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2977 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2980 {
4c4b4cd2 2981 arity += 1;
61ee279c 2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2983 }
d2e4a39e 2984
14f9c5c9
AS
2985 return arity;
2986}
2987
2988/* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2991 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2992
d2e4a39e
AS
2993struct type *
2994ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2995{
2996 type = desc_base_type (type);
2997
d2e4a39e 2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2999 {
3000 int k;
d2e4a39e 3001 struct type *p_array_type;
14f9c5c9 3002
556bdfd4 3003 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
4c4b4cd2 3007 return NULL;
d2e4a39e 3008
4c4b4cd2 3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3010 if (nindices >= 0 && k > nindices)
4c4b4cd2 3011 k = nindices;
d2e4a39e 3012 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3013 {
61ee279c 3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3015 k -= 1;
3016 }
14f9c5c9
AS
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
14f9c5c9
AS
3026 return type;
3027 }
3028
3029 return NULL;
3030}
3031
4c4b4cd2 3032/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
14f9c5c9 3037
1eea4ebd
UW
3038static struct type *
3039ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3040{
4c4b4cd2
PH
3041 struct type *result_type;
3042
14f9c5c9
AS
3043 type = desc_base_type (type);
3044
1eea4ebd
UW
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3047
4c4b4cd2 3048 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
4c4b4cd2 3053 type = TYPE_TARGET_TYPE (type);
262452ec 3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3057 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
14f9c5c9 3060 }
d2e4a39e 3061 else
1eea4ebd
UW
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
14f9c5c9
AS
3069}
3070
3071/* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
14f9c5c9 3076
abb68b3e 3077static LONGEST
fb5e3d5c 3078ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3079{
8a48ac95 3080 struct type *type, *index_type_desc, *index_type;
1ce677a4 3081 int i;
262452ec
JK
3082
3083 gdb_assert (which == 0 || which == 1);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3087
4c4b4cd2 3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3089 return (LONGEST) - which;
14f9c5c9
AS
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
bafffb51
JB
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
262452ec 3109 if (index_type_desc != NULL)
28c85d6c
JB
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
262452ec 3112 else
8a48ac95
JB
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
262452ec 3121
43bbcdc2
PH
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3126}
3127
3128/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3131 supplied by run-time quantities other than discriminants. */
14f9c5c9 3132
1eea4ebd 3133static LONGEST
4dc81987 3134ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3135{
eb479039
JB
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
14f9c5c9 3141
ad82864c
JB
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3144 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3145 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3146 else
1eea4ebd 3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3148}
3149
3150/* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
14f9c5c9 3155
1eea4ebd 3156static LONGEST
d2e4a39e 3157ada_array_length (struct value *arr, int n)
14f9c5c9 3158{
aa715135
JG
3159 struct type *arr_type, *index_type;
3160 int low, high;
eb479039
JB
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
14f9c5c9 3165
ad82864c
JB
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3168
4c4b4cd2 3169 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
14f9c5c9 3174 else
aa715135
JG
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
f168693b 3180 arr_type = check_typedef (arr_type);
aa715135
JG
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
4c4b4cd2
PH
3194}
3195
3196/* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199static struct value *
3200empty_array (struct type *arr_type, int low)
3201{
b0dd7688 3202 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3207
0b5d8877 3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3209}
14f9c5c9 3210\f
d2e4a39e 3211
4c4b4cd2 3212 /* Name resolution */
14f9c5c9 3213
4c4b4cd2
PH
3214/* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
14f9c5c9 3216
d2e4a39e 3217static const char *
4c4b4cd2 3218ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3219{
3220 int i;
3221
4c4b4cd2 3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3223 {
3224 if (ada_opname_table[i].op == op)
4c4b4cd2 3225 return ada_opname_table[i].decoded;
14f9c5c9 3226 }
323e0a4a 3227 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3228}
3229
3230
4c4b4cd2
PH
3231/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3238 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3239
4c4b4cd2
PH
3240static void
3241resolve (struct expression **expp, int void_context_p)
14f9c5c9 3242{
30b15541
UW
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3250}
3251
4c4b4cd2
PH
3252/* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
14f9c5c9 3260
d2e4a39e 3261static struct value *
4c4b4cd2 3262resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3263 struct type *context_type)
14f9c5c9
AS
3264{
3265 int pc = *pos;
3266 int i;
4c4b4cd2 3267 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
52ce6436 3271 int oplen;
14f9c5c9
AS
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
52ce6436
PH
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
14f9c5c9
AS
3279 switch (op)
3280 {
4c4b4cd2
PH
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
4c4b4cd2
PH
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3291 break;
3292
14f9c5c9 3293 case UNOP_ADDR:
4c4b4cd2
PH
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
52ce6436
PH
3298 case UNOP_QUAL:
3299 *pos += 3;
17466c1a 3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3301 break;
3302
52ce6436 3303 case OP_ATR_MODULUS:
4c4b4cd2
PH
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
4c4b4cd2
PH
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
4c4b4cd2
PH
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
52ce6436
PH
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
14f9c5c9
AS
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
4c4b4cd2
PH
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
df407dfe 3335 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3336 break;
14f9c5c9
AS
3337 }
3338
4c4b4cd2 3339 case UNOP_CAST:
4c4b4cd2
PH
3340 *pos += 3;
3341 nargs = 1;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
14f9c5c9 3357
4c4b4cd2
PH
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
40c8aaa9
JB
3368 *pos += 1;
3369 nargs = 2;
3370 break;
14f9c5c9 3371
4c4b4cd2
PH
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2 3381 case OP_LONG:
edd079d9 3382 case OP_FLOAT:
4c4b4cd2 3383 case OP_VAR_VALUE:
74ea4be4 3384 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3385 *pos += 4;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
4c4b4cd2
PH
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
14f9c5c9 3394
4c4b4cd2
PH
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
67f3407f
DJ
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
4c4b4cd2
PH
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
4c4b4cd2 3409 case TERNOP_SLICE:
4c4b4cd2
PH
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
52ce6436 3414 case OP_STRING:
14f9c5c9 3415 break;
4c4b4cd2
PH
3416
3417 default:
323e0a4a 3418 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3419 }
3420
8d749320 3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
14f9c5c9 3433 case OP_VAR_VALUE:
4c4b4cd2 3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3435 {
d12307c1 3436 struct block_symbol *candidates;
76a01679
JB
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3443 &candidates);
76a01679
JB
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
d12307c1 3452 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
76a01679
JB
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
76a01679 3459 case LOC_COMPUTED:
76a01679
JB
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
d12307c1 3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
323e0a4a 3482 error (_("No definition found for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
06d5cf63
JB
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
76a01679 3493 if (i < 0)
323e0a4a 3494 error (_("Could not find a match for %s"),
76a01679
JB
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
323e0a4a 3499 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
14f9c5c9
AS
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
4c4b4cd2 3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3527 {
d12307c1 3528 struct block_symbol *candidates;
4c4b4cd2
PH
3529 int n_candidates;
3530
3531 n_candidates =
76a01679
JB
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3535 &candidates);
4c4b4cd2
PH
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
06d5cf63
JB
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
4c4b4cd2 3545 if (i < 0)
323e0a4a 3546 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3554 innermost_block = candidates[i].block;
3555 }
14f9c5c9
AS
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3580 {
d12307c1 3581 struct block_symbol *candidates;
4c4b4cd2
PH
3582 int n_candidates;
3583
3584 n_candidates =
b5ec771e 3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3586 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3587 &candidates);
4c4b4cd2 3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3589 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3590 if (i < 0)
3591 break;
3592
d12307c1
PMR
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
4c4b4cd2
PH
3596 exp = *expp;
3597 }
14f9c5c9 3598 break;
4c4b4cd2
PH
3599
3600 case OP_TYPE:
b3dbf008 3601 case OP_REGISTER:
4c4b4cd2 3602 return NULL;
14f9c5c9
AS
3603 }
3604
3605 *pos = pc;
ced9779b
JB
3606 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3607 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3608 exp->elts[pc + 1].objfile,
3609 exp->elts[pc + 2].msymbol);
3610 else
3611 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3612}
3613
3614/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3616 a non-pointer. */
14f9c5c9 3617/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3618 liberal. */
14f9c5c9
AS
3619
3620static int
4dc81987 3621ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3622{
61ee279c
PH
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
14f9c5c9
AS
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
d2e4a39e 3631 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3632 {
3633 default:
5b3d5b7d 3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3639 else
1265e4aa
JB
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
14f9c5c9
AS
3654
3655 case TYPE_CODE_ARRAY:
d2e4a39e 3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3657 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3658
3659 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
14f9c5c9 3663 else
4c4b4cd2
PH
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671}
3672
3673/* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3676 argument function. */
14f9c5c9
AS
3677
3678static int
d2e4a39e 3679ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3680{
3681 int i;
d2e4a39e 3682 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3683
1265e4aa
JB
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
4c4b4cd2 3695 if (actuals[i] == NULL)
76a01679
JB
3696 return 0;
3697 else
3698 {
5b4ee69b
MS
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
df407dfe 3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3702
76a01679
JB
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
14f9c5c9
AS
3706 }
3707 return 1;
3708}
3709
3710/* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715static int
d2e4a39e 3716return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3717{
d2e4a39e 3718 struct type *return_type;
14f9c5c9
AS
3719
3720 if (func_type == NULL)
3721 return 1;
3722
4c4b4cd2 3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3725 else
18af8284 3726 return_type = get_base_type (func_type);
14f9c5c9
AS
3727 if (return_type == NULL)
3728 return 1;
3729
18af8284 3730 context_type = get_base_type (context_type);
14f9c5c9
AS
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738}
3739
3740
4c4b4cd2 3741/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3742 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
14f9c5c9
AS
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
14f9c5c9 3752
4c4b4cd2 3753static int
d12307c1 3754ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
14f9c5c9 3757{
30b15541 3758 int fallback;
14f9c5c9 3759 int k;
4c4b4cd2 3760 int m; /* Number of hits */
14f9c5c9 3761
d2e4a39e 3762 m = 0;
30b15541
UW
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3767 {
3768 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3769 {
d12307c1 3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3771
d12307c1 3772 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3773 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
14f9c5c9
AS
3779 }
3780
dc5c8746
PMR
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3785 if (m == 0)
3786 return -1;
dc5c8746 3787 else if (m > 1 && !parse_completion)
14f9c5c9 3788 {
323e0a4a 3789 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3790 user_select_syms (syms, m, 1);
14f9c5c9
AS
3791 return 0;
3792 }
3793 return 0;
3794}
3795
4c4b4cd2
PH
3796/* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
14f9c5c9 3802static int
0d5cff50 3803encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3804{
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
5b4ee69b 3812
d2e4a39e 3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3814 ;
d2e4a39e 3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3816 ;
d2e4a39e 3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
5b4ee69b 3821
4c4b4cd2
PH
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
14f9c5c9
AS
3831 return (strcmp (N0, N1) < 0);
3832 }
3833}
d2e4a39e 3834
4c4b4cd2
PH
3835/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
d2e4a39e 3838static void
d12307c1 3839sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3840{
4c4b4cd2 3841 int i;
5b4ee69b 3842
d2e4a39e 3843 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3844 {
d12307c1 3845 struct block_symbol sym = syms[i];
14f9c5c9
AS
3846 int j;
3847
d2e4a39e 3848 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3849 {
d12307c1
PMR
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
d2e4a39e 3855 syms[j + 1] = sym;
14f9c5c9
AS
3856 }
3857}
3858
d72413e6
PMR
3859/* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861static int print_signatures = 1;
3862
3863/* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868static void
3869ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871{
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900}
3901
4c4b4cd2
PH
3902/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
14f9c5c9
AS
3906
3907/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3908 to be re-integrated one of these days. */
14f9c5c9
AS
3909
3910int
d12307c1 3911user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3912{
3913 int i;
8d749320 3914 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3917 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3918
3919 if (max_results < 1)
323e0a4a 3920 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3921 if (nsyms <= 1)
3922 return nsyms;
3923
717d2f5a
JB
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926canceled because the command is ambiguous\n\
3927See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
323e0a4a 3935 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3936 if (max_results > 1)
323e0a4a 3937 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3938
4c4b4cd2 3939 sort_choices (syms, nsyms);
14f9c5c9
AS
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
d12307c1 3943 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3944 continue;
3945
d12307c1 3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3947 {
76a01679 3948 struct symtab_and_line sal =
d12307c1 3949 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3950
d72413e6
PMR
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
323e0a4a 3954 if (sal.symtab == NULL)
d72413e6 3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3956 sal.line);
3957 else
d72413e6 3958 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
4c4b4cd2
PH
3961 continue;
3962 }
d2e4a39e 3963 else
4c4b4cd2
PH
3964 {
3965 int is_enumeral =
d12307c1
PMR
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3969 struct symtab *symtab = NULL;
3970
d12307c1
PMR
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3973
d12307c1 3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
76a01679 3983 else if (is_enumeral
d12307c1 3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3985 {
a3f17187 3986 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3988 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3990 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3991 }
d72413e6
PMR
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4c4b4cd2 4008 }
14f9c5c9 4009 }
d2e4a39e 4010
14f9c5c9 4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4012 "overload-choice");
14f9c5c9
AS
4013
4014 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4015 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4016
4017 return n_chosen;
4018}
4019
4020/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4021 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4c4b4cd2 4027 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4c4b4cd2 4031 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4034 prompts (for use with the -f switch). */
14f9c5c9
AS
4035
4036int
d2e4a39e 4037get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4038 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4039{
d2e4a39e 4040 char *args;
a121b7c1 4041 const char *prompt;
14f9c5c9
AS
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4044
14f9c5c9
AS
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
0bcd0149 4047 prompt = "> ";
14f9c5c9 4048
0bcd0149 4049 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4050
14f9c5c9 4051 if (args == NULL)
323e0a4a 4052 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4053
4054 n_chosen = 0;
76a01679 4055
4c4b4cd2
PH
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
14f9c5c9
AS
4058 while (1)
4059 {
d2e4a39e 4060 char *args2;
14f9c5c9
AS
4061 int choice, j;
4062
0fcd72ba 4063 args = skip_spaces (args);
14f9c5c9 4064 if (*args == '\0' && n_chosen == 0)
323e0a4a 4065 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4066 else if (*args == '\0')
4c4b4cd2 4067 break;
14f9c5c9
AS
4068
4069 choice = strtol (args, &args2, 10);
d2e4a39e 4070 if (args == args2 || choice < 0
4c4b4cd2 4071 || choice > n_choices + first_choice - 1)
323e0a4a 4072 error (_("Argument must be choice number"));
14f9c5c9
AS
4073 args = args2;
4074
d2e4a39e 4075 if (choice == 0)
323e0a4a 4076 error (_("cancelled"));
14f9c5c9
AS
4077
4078 if (choice < first_choice)
4c4b4cd2
PH
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
14f9c5c9
AS
4085 choice -= first_choice;
4086
d2e4a39e 4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4088 {
4089 }
14f9c5c9
AS
4090
4091 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4092 {
4093 int k;
5b4ee69b 4094
4c4b4cd2
PH
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
14f9c5c9
AS
4100 }
4101
4102 if (n_chosen > max_results)
323e0a4a 4103 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4104
14f9c5c9
AS
4105 return n_chosen;
4106}
4107
4c4b4cd2
PH
4108/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4111
4112static void
d2e4a39e 4113replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4114 int oplen, struct symbol *sym,
270140bd 4115 const struct block *block)
14f9c5c9
AS
4116{
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4118 symbol, -oplen for operator being replaced). */
d2e4a39e 4119 struct expression *newexp = (struct expression *)
8c1a34e7 4120 xzalloc (sizeof (struct expression)
4c4b4cd2 4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4122 struct expression *exp = *expp;
14f9c5c9
AS
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
3489610d 4126 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
aacb1f0a 4139 xfree (exp);
d2e4a39e 4140}
14f9c5c9
AS
4141
4142/* Type-class predicates */
4143
4c4b4cd2
PH
4144/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148numeric_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
d2e4a39e 4165 }
14f9c5c9
AS
4166}
4167
4c4b4cd2 4168/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4169
4170static int
d2e4a39e 4171integer_type_p (struct type *type)
14f9c5c9
AS
4172{
4173 if (type == NULL)
4174 return 0;
d2e4a39e
AS
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4c4b4cd2
PH
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
d2e4a39e 4187 }
14f9c5c9
AS
4188}
4189
4c4b4cd2 4190/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4191
4192static int
d2e4a39e 4193scalar_type_p (struct type *type)
14f9c5c9
AS
4194{
4195 if (type == NULL)
4196 return 0;
d2e4a39e
AS
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4c4b4cd2
PH
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
d2e4a39e 4209 }
14f9c5c9
AS
4210}
4211
4c4b4cd2 4212/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215discrete_type_p (struct type *type)
14f9c5c9
AS
4216{
4217 if (type == NULL)
4218 return 0;
d2e4a39e
AS
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4c4b4cd2
PH
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
872f0337 4226 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4227 return 1;
4228 default:
4229 return 0;
4230 }
d2e4a39e 4231 }
14f9c5c9
AS
4232}
4233
4c4b4cd2
PH
4234/* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
14f9c5c9
AS
4237
4238static int
d2e4a39e 4239possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4240{
76a01679 4241 struct type *type0 =
df407dfe 4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4243 struct type *type1 =
df407dfe 4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4245
4c4b4cd2
PH
4246 if (type0 == NULL)
4247 return 0;
4248
14f9c5c9
AS
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
d2e4a39e 4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
d2e4a39e 4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
d2e4a39e 4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_CONCAT:
ee90b9ab 4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4277
4278 case BINOP_EXP:
d2e4a39e 4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
14f9c5c9
AS
4286
4287 }
4288}
4289\f
4c4b4cd2 4290 /* Renaming */
14f9c5c9 4291
aeb5907d
JB
4292/* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304/* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
0963b4bd 4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323enum ada_renaming_category
4324ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327{
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
14f9c5c9 4335 {
aeb5907d
JB
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
14f9c5c9 4369 }
4c4b4cd2 4370
aeb5907d
JB
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382}
4383
4384/* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388static enum ada_renaming_category
4389parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392{
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
14f9c5c9 4397
aeb5907d
JB
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
14f9c5c9 4401
aeb5907d
JB
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
14f9c5c9 4427
aeb5907d
JB
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
a5ee536b
JB
4441}
4442
4443/* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
52ce6436 4446
a5ee536b
JB
4447static struct value *
4448ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4449 const struct block *block)
a5ee536b 4450{
bbc13ae3 4451 const char *sym_name;
a5ee536b 4452
bbc13ae3 4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
a5ee536b 4456}
14f9c5c9 4457\f
d2e4a39e 4458
4c4b4cd2 4459 /* Evaluation: Function Calls */
14f9c5c9 4460
4c4b4cd2 4461/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4464
d2e4a39e 4465static struct value *
40bc484c 4466ensure_lval (struct value *val)
14f9c5c9 4467{
40bc484c
JB
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4470 {
df407dfe 4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4474
a84a8a0d 4475 VALUE_LVAL (val) = lval_memory;
1a088441 4476 set_value_address (val, addr);
40bc484c 4477 write_memory (addr, value_contents (val), len);
c3e5cd34 4478 }
14f9c5c9
AS
4479
4480 return val;
4481}
4482
4483/* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4486 values not residing in memory, updating it as needed. */
14f9c5c9 4487
a93c0eb6 4488struct value *
40bc484c 4489ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4490{
df407dfe 4491 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4492 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4499
4c4b4cd2 4500 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4502 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4505 {
a84a8a0d 4506 struct value *result;
5b4ee69b 4507
14f9c5c9 4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4509 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4510 result = desc_data (actual);
14f9c5c9 4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
5b4ee69b 4516
df407dfe 4517 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4518 val = allocate_value (actual_type);
990a07ab 4519 memcpy ((char *) value_contents_raw (val),
0fd88904 4520 (char *) value_contents (actual),
4c4b4cd2 4521 TYPE_LENGTH (actual_type));
40bc484c 4522 actual = ensure_lval (val);
4c4b4cd2 4523 }
a84a8a0d 4524 result = value_addr (actual);
4c4b4cd2 4525 }
a84a8a0d
JB
4526 else
4527 return actual;
b1af9e97 4528 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
8344af1e
JB
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
14f9c5c9
AS
4542
4543 return actual;
4544}
4545
438c98a1
JB
4546/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551static CORE_ADDR
4552value_pointer (struct value *value, struct type *type)
4553{
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
224c3ddb 4556 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563}
4564
14f9c5c9 4565
4c4b4cd2
PH
4566/* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
14f9c5c9 4571
d2e4a39e 4572static struct value *
40bc484c 4573make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4574{
d2e4a39e
AS
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4579 int i;
d2e4a39e 4580
0963b4bd
MS
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
14f9c5c9 4583 {
19f220c3
JK
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4592 }
d2e4a39e 4593
40bc484c 4594 bounds = ensure_lval (bounds);
d2e4a39e 4595
19f220c3
JK
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4609
40bc484c 4610 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616}
14f9c5c9 4617\f
3d9434b5
JB
4618 /* Symbol Cache Module */
4619
3d9434b5 4620/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4621 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
ee01b665 4630/* Initialize the contents of SYM_CACHE. */
3d9434b5 4631
ee01b665
JB
4632static void
4633ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634{
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637}
3d9434b5 4638
ee01b665
JB
4639/* Free the memory used by SYM_CACHE. */
4640
4641static void
4642ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4643{
ee01b665
JB
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646}
3d9434b5 4647
ee01b665
JB
4648/* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4650
ee01b665
JB
4651static struct ada_symbol_cache *
4652ada_get_symbol_cache (struct program_space *pspace)
4653{
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4655
66c168ae 4656 if (pspace_data->sym_cache == NULL)
ee01b665 4657 {
66c168ae
JB
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4660 }
4661
66c168ae 4662 return pspace_data->sym_cache;
ee01b665 4663}
3d9434b5
JB
4664
4665/* Clear all entries from the symbol cache. */
4666
4667static void
4668ada_clear_symbol_cache (void)
4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4675}
4676
fe978cb0 4677/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4678 Return it if found, or NULL otherwise. */
4679
4680static struct cache_entry **
fe978cb0 4681find_entry (const char *name, domain_enum domain)
3d9434b5 4682{
ee01b665
JB
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
ee01b665 4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4689 {
fe978cb0 4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4691 return e;
4692 }
4693 return NULL;
4694}
4695
fe978cb0 4696/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4701
96d887e8 4702static int
fe978cb0 4703lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4704 struct symbol **sym, const struct block **block)
96d887e8 4705{
fe978cb0 4706 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
96d887e8
PH
4715}
4716
3d9434b5 4717/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4718 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4719
96d887e8 4720static void
fe978cb0 4721cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4722 const struct block *block)
96d887e8 4723{
ee01b665
JB
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
1994afbf
DE
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
3d9434b5
JB
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
08be3fe3 4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4741 GLOBAL_BLOCK) != block
08be3fe3 4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4743 STATIC_BLOCK) != block)
3d9434b5
JB
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
224c3ddb
SM
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4753 strcpy (copy, name);
4754 e->sym = sym;
fe978cb0 4755 e->domain = domain;
3d9434b5 4756 e->block = block;
96d887e8 4757}
4c4b4cd2
PH
4758\f
4759 /* Symbol Lookup */
4760
b5ec771e
PA
4761/* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
b5ec771e
PA
4767static symbol_name_match_type
4768name_match_type_from_name (const char *lookup_name)
c0431670 4769{
b5ec771e
PA
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
c0431670
JB
4773}
4774
4c4b4cd2
PH
4775/* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778static struct symbol *
4779standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781{
acbd605d 4782 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4783 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4784
d12307c1
PMR
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
2570f2b7 4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4c4b4cd2
PH
4790}
4791
4792
4793/* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796static int
d12307c1 4797is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4798{
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
d12307c1
PMR
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4805 return 1;
4806
4807 return 0;
4808}
4809
4810/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4811 struct types. Otherwise, they may not. */
14f9c5c9
AS
4812
4813static int
d2e4a39e 4814equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4815{
d2e4a39e 4816 if (type0 == type1)
14f9c5c9 4817 return 1;
d2e4a39e 4818 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
d2e4a39e 4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4825 return 1;
d2e4a39e 4826
14f9c5c9
AS
4827 return 0;
4828}
4829
4830/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4831 no more defined than that of SYM1. */
14f9c5c9
AS
4832
4833static int
d2e4a39e 4834lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4835{
4836 if (sym0 == sym1)
4837 return 1;
176620f1 4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
d2e4a39e 4842 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4c4b4cd2
PH
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4852 int len0 = strlen (name0);
5b4ee69b 4853
4c4b4cd2
PH
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4858 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4863 default:
4864 return 0;
14f9c5c9
AS
4865 }
4866}
4867
d12307c1 4868/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4870
4871static void
76a01679
JB
4872add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
f0c5f9b2 4874 const struct block *block)
14f9c5c9
AS
4875{
4876 int i;
d12307c1 4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4878
529cad9c
PH
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4c4b4cd2
PH
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
d12307c1 4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4891 return;
d12307c1 4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4893 {
d12307c1 4894 prevDefns[i].symbol = sym;
4c4b4cd2 4895 prevDefns[i].block = block;
4c4b4cd2 4896 return;
76a01679 4897 }
4c4b4cd2
PH
4898 }
4899
4900 {
d12307c1 4901 struct block_symbol info;
4c4b4cd2 4902
d12307c1 4903 info.symbol = sym;
4c4b4cd2 4904 info.block = block;
d12307c1 4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4906 }
4907}
4908
d12307c1
PMR
4909/* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4c4b4cd2 4911
76a01679
JB
4912static int
4913num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4914{
d12307c1 4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4916}
4917
d12307c1
PMR
4918/* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4920
d12307c1 4921static struct block_symbol *
4c4b4cd2
PH
4922defns_collected (struct obstack *obstackp, int finish)
4923{
4924 if (finish)
224c3ddb 4925 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4926 else
d12307c1 4927 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4928}
4929
7c7b6655
TT
4930/* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4c4b4cd2 4935
7c7b6655 4936struct bound_minimal_symbol
96d887e8 4937ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4938{
7c7b6655 4939 struct bound_minimal_symbol result;
4c4b4cd2 4940 struct objfile *objfile;
96d887e8 4941 struct minimal_symbol *msymbol;
4c4b4cd2 4942
7c7b6655
TT
4943 memset (&result, 0, sizeof (result));
4944
b5ec771e
PA
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4950
96d887e8
PH
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
b5ec771e 4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
96d887e8 4960 }
4c4b4cd2 4961
7c7b6655 4962 return result;
96d887e8 4963}
4c4b4cd2 4964
96d887e8
PH
4965/* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4c4b4cd2 4970
96d887e8
PH
4971static void
4972add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
96d887e8 4975{
96d887e8 4976}
14f9c5c9 4977
96d887e8
PH
4978/* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
14f9c5c9 4980
96d887e8
PH
4981static int
4982is_nondebugging_type (struct type *type)
4983{
0d5cff50 4984 const char *name = ada_type_name (type);
5b4ee69b 4985
96d887e8
PH
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987}
4c4b4cd2 4988
8f17729f
JB
4989/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996static int
4997ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998{
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
0d5cff50
DE
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030}
5031
5032/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052static int
d12307c1 5053symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5054{
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
d12307c1 5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
d12307c1 5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 return 1;
5089}
5090
96d887e8
PH
5091/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
4c4b4cd2 5097
96d887e8 5098static int
d12307c1 5099remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5100{
5101 int i, j;
4c4b4cd2 5102
8f17729f
JB
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
96d887e8
PH
5109 i = 0;
5110 while (i < nsyms)
5111 {
a35ddb44 5112 int remove_p = 0;
339c13b6
JB
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
d12307c1
PMR
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
d12307c1
PMR
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5127 remove_p = 1;
339c13b6
JB
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
d12307c1
PMR
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
d12307c1
PMR
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5148 remove_p = 1;
4c4b4cd2 5149 }
4c4b4cd2 5150 }
339c13b6 5151
a35ddb44 5152 if (remove_p)
339c13b6
JB
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
96d887e8 5159 i += 1;
14f9c5c9 5160 }
8f17729f
JB
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
96d887e8 5177 return nsyms;
14f9c5c9
AS
5178}
5179
96d887e8
PH
5180/* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5184
96d887e8
PH
5185static char *
5186xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5187{
96d887e8 5188 /* The renaming types adhere to the following convention:
0963b4bd 5189 <scope>__<rename>___<XR extension>.
96d887e8
PH
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
76a01679 5192
96d887e8 5193 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
96d887e8
PH
5196 int scope_len;
5197 char *scope;
14f9c5c9 5198
96d887e8
PH
5199 /* Now, backtrack a bit until we find the first "__". Start looking
5200 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5201
96d887e8
PH
5202 for (last = suffix - 3; last > name; last--)
5203 if (last[0] == '_' && last[1] == '_')
5204 break;
76a01679 5205
96d887e8 5206 /* Make a copy of scope and return it. */
14f9c5c9 5207
96d887e8
PH
5208 scope_len = last - name;
5209 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5210
96d887e8
PH
5211 strncpy (scope, name, scope_len);
5212 scope[scope_len] = '\0';
4c4b4cd2 5213
96d887e8 5214 return scope;
4c4b4cd2
PH
5215}
5216
96d887e8 5217/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5218
96d887e8
PH
5219static int
5220is_package_name (const char *name)
4c4b4cd2 5221{
96d887e8
PH
5222 /* Here, We take advantage of the fact that no symbols are generated
5223 for packages, while symbols are generated for each function.
5224 So the condition for NAME represent a package becomes equivalent
5225 to NAME not existing in our list of symbols. There is only one
5226 small complication with library-level functions (see below). */
4c4b4cd2 5227
96d887e8 5228 char *fun_name;
76a01679 5229
96d887e8
PH
5230 /* If it is a function that has not been defined at library level,
5231 then we should be able to look it up in the symbols. */
5232 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5233 return 0;
14f9c5c9 5234
96d887e8
PH
5235 /* Library-level function names start with "_ada_". See if function
5236 "_ada_" followed by NAME can be found. */
14f9c5c9 5237
96d887e8 5238 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5239 functions names cannot contain "__" in them. */
96d887e8
PH
5240 if (strstr (name, "__") != NULL)
5241 return 0;
4c4b4cd2 5242
b435e160 5243 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5244
96d887e8
PH
5245 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5246}
14f9c5c9 5247
96d887e8 5248/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5249 not visible from FUNCTION_NAME. */
14f9c5c9 5250
96d887e8 5251static int
0d5cff50 5252old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5253{
aeb5907d 5254 char *scope;
1509e573 5255 struct cleanup *old_chain;
aeb5907d
JB
5256
5257 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5258 return 0;
5259
5260 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5261 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5262
96d887e8
PH
5263 /* If the rename has been defined in a package, then it is visible. */
5264 if (is_package_name (scope))
1509e573
JB
5265 {
5266 do_cleanups (old_chain);
5267 return 0;
5268 }
14f9c5c9 5269
96d887e8
PH
5270 /* Check that the rename is in the current function scope by checking
5271 that its name starts with SCOPE. */
76a01679 5272
96d887e8
PH
5273 /* If the function name starts with "_ada_", it means that it is
5274 a library-level function. Strip this prefix before doing the
5275 comparison, as the encoding for the renaming does not contain
5276 this prefix. */
61012eef 5277 if (startswith (function_name, "_ada_"))
96d887e8 5278 function_name += 5;
f26caa11 5279
1509e573 5280 {
61012eef 5281 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5282
5283 do_cleanups (old_chain);
5284 return is_invisible;
5285 }
f26caa11
PH
5286}
5287
aeb5907d
JB
5288/* Remove entries from SYMS that corresponds to a renaming entity that
5289 is not visible from the function associated with CURRENT_BLOCK or
5290 that is superfluous due to the presence of more specific renaming
5291 information. Places surviving symbols in the initial entries of
5292 SYMS and returns the number of surviving symbols.
96d887e8
PH
5293
5294 Rationale:
aeb5907d
JB
5295 First, in cases where an object renaming is implemented as a
5296 reference variable, GNAT may produce both the actual reference
5297 variable and the renaming encoding. In this case, we discard the
5298 latter.
5299
5300 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5301 entity. Unfortunately, STABS currently does not support the definition
5302 of types that are local to a given lexical block, so all renamings types
5303 are emitted at library level. As a consequence, if an application
5304 contains two renaming entities using the same name, and a user tries to
5305 print the value of one of these entities, the result of the ada symbol
5306 lookup will also contain the wrong renaming type.
f26caa11 5307
96d887e8
PH
5308 This function partially covers for this limitation by attempting to
5309 remove from the SYMS list renaming symbols that should be visible
5310 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5311 method with the current information available. The implementation
5312 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5313
5314 - When the user tries to print a rename in a function while there
5315 is another rename entity defined in a package: Normally, the
5316 rename in the function has precedence over the rename in the
5317 package, so the latter should be removed from the list. This is
5318 currently not the case.
5319
5320 - This function will incorrectly remove valid renames if
5321 the CURRENT_BLOCK corresponds to a function which symbol name
5322 has been changed by an "Export" pragma. As a consequence,
5323 the user will be unable to print such rename entities. */
4c4b4cd2 5324
14f9c5c9 5325static int
d12307c1 5326remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5327 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5328{
5329 struct symbol *current_function;
0d5cff50 5330 const char *current_function_name;
4c4b4cd2 5331 int i;
aeb5907d
JB
5332 int is_new_style_renaming;
5333
5334 /* If there is both a renaming foo___XR... encoded as a variable and
5335 a simple variable foo in the same block, discard the latter.
0963b4bd 5336 First, zero out such symbols, then compress. */
aeb5907d
JB
5337 is_new_style_renaming = 0;
5338 for (i = 0; i < nsyms; i += 1)
5339 {
d12307c1 5340 struct symbol *sym = syms[i].symbol;
270140bd 5341 const struct block *block = syms[i].block;
aeb5907d
JB
5342 const char *name;
5343 const char *suffix;
5344
5345 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5346 continue;
5347 name = SYMBOL_LINKAGE_NAME (sym);
5348 suffix = strstr (name, "___XR");
5349
5350 if (suffix != NULL)
5351 {
5352 int name_len = suffix - name;
5353 int j;
5b4ee69b 5354
aeb5907d
JB
5355 is_new_style_renaming = 1;
5356 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5357 if (i != j && syms[j].symbol != NULL
5358 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5359 name_len) == 0
5360 && block == syms[j].block)
d12307c1 5361 syms[j].symbol = NULL;
aeb5907d
JB
5362 }
5363 }
5364 if (is_new_style_renaming)
5365 {
5366 int j, k;
5367
5368 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5369 if (syms[j].symbol != NULL)
aeb5907d
JB
5370 {
5371 syms[k] = syms[j];
5372 k += 1;
5373 }
5374 return k;
5375 }
4c4b4cd2
PH
5376
5377 /* Extract the function name associated to CURRENT_BLOCK.
5378 Abort if unable to do so. */
76a01679 5379
4c4b4cd2
PH
5380 if (current_block == NULL)
5381 return nsyms;
76a01679 5382
7f0df278 5383 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5384 if (current_function == NULL)
5385 return nsyms;
5386
5387 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5388 if (current_function_name == NULL)
5389 return nsyms;
5390
5391 /* Check each of the symbols, and remove it from the list if it is
5392 a type corresponding to a renaming that is out of the scope of
5393 the current block. */
5394
5395 i = 0;
5396 while (i < nsyms)
5397 {
d12307c1 5398 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5399 == ADA_OBJECT_RENAMING
d12307c1 5400 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5401 {
5402 int j;
5b4ee69b 5403
aeb5907d 5404 for (j = i + 1; j < nsyms; j += 1)
76a01679 5405 syms[j - 1] = syms[j];
4c4b4cd2
PH
5406 nsyms -= 1;
5407 }
5408 else
5409 i += 1;
5410 }
5411
5412 return nsyms;
5413}
5414
339c13b6
JB
5415/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5416 whose name and domain match NAME and DOMAIN respectively.
5417 If no match was found, then extend the search to "enclosing"
5418 routines (in other words, if we're inside a nested function,
5419 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5420 If WILD_MATCH_P is nonzero, perform the naming matching in
5421 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5422
5423 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5424
5425static void
b5ec771e
PA
5426ada_add_local_symbols (struct obstack *obstackp,
5427 const lookup_name_info &lookup_name,
5428 const struct block *block, domain_enum domain)
339c13b6
JB
5429{
5430 int block_depth = 0;
5431
5432 while (block != NULL)
5433 {
5434 block_depth += 1;
b5ec771e 5435 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5436
5437 /* If we found a non-function match, assume that's the one. */
5438 if (is_nonfunction (defns_collected (obstackp, 0),
5439 num_defns_collected (obstackp)))
5440 return;
5441
5442 block = BLOCK_SUPERBLOCK (block);
5443 }
5444
5445 /* If no luck so far, try to find NAME as a local symbol in some lexically
5446 enclosing subprogram. */
5447 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5448 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5449}
5450
ccefe4c4 5451/* An object of this type is used as the user_data argument when
40658b94 5452 calling the map_matching_symbols method. */
ccefe4c4 5453
40658b94 5454struct match_data
ccefe4c4 5455{
40658b94 5456 struct objfile *objfile;
ccefe4c4 5457 struct obstack *obstackp;
40658b94
PH
5458 struct symbol *arg_sym;
5459 int found_sym;
ccefe4c4
TT
5460};
5461
22cee43f 5462/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5463 to a list of symbols. DATA0 is a pointer to a struct match_data *
5464 containing the obstack that collects the symbol list, the file that SYM
5465 must come from, a flag indicating whether a non-argument symbol has
5466 been found in the current block, and the last argument symbol
5467 passed in SYM within the current block (if any). When SYM is null,
5468 marking the end of a block, the argument symbol is added if no
5469 other has been found. */
ccefe4c4 5470
40658b94
PH
5471static int
5472aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5473{
40658b94
PH
5474 struct match_data *data = (struct match_data *) data0;
5475
5476 if (sym == NULL)
5477 {
5478 if (!data->found_sym && data->arg_sym != NULL)
5479 add_defn_to_vec (data->obstackp,
5480 fixup_symbol_section (data->arg_sym, data->objfile),
5481 block);
5482 data->found_sym = 0;
5483 data->arg_sym = NULL;
5484 }
5485 else
5486 {
5487 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5488 return 0;
5489 else if (SYMBOL_IS_ARGUMENT (sym))
5490 data->arg_sym = sym;
5491 else
5492 {
5493 data->found_sym = 1;
5494 add_defn_to_vec (data->obstackp,
5495 fixup_symbol_section (sym, data->objfile),
5496 block);
5497 }
5498 }
5499 return 0;
5500}
5501
b5ec771e
PA
5502/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5503 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5504 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5505
5506static int
5507ada_add_block_renamings (struct obstack *obstackp,
5508 const struct block *block,
b5ec771e
PA
5509 const lookup_name_info &lookup_name,
5510 domain_enum domain)
22cee43f
PMR
5511{
5512 struct using_direct *renaming;
5513 int defns_mark = num_defns_collected (obstackp);
5514
b5ec771e
PA
5515 symbol_name_matcher_ftype *name_match
5516 = ada_get_symbol_name_matcher (lookup_name);
5517
22cee43f
PMR
5518 for (renaming = block_using (block);
5519 renaming != NULL;
5520 renaming = renaming->next)
5521 {
5522 const char *r_name;
22cee43f
PMR
5523
5524 /* Avoid infinite recursions: skip this renaming if we are actually
5525 already traversing it.
5526
5527 Currently, symbol lookup in Ada don't use the namespace machinery from
5528 C++/Fortran support: skip namespace imports that use them. */
5529 if (renaming->searched
5530 || (renaming->import_src != NULL
5531 && renaming->import_src[0] != '\0')
5532 || (renaming->import_dest != NULL
5533 && renaming->import_dest[0] != '\0'))
5534 continue;
5535 renaming->searched = 1;
5536
5537 /* TODO: here, we perform another name-based symbol lookup, which can
5538 pull its own multiple overloads. In theory, we should be able to do
5539 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5540 not a simple name. But in order to do this, we would need to enhance
5541 the DWARF reader to associate a symbol to this renaming, instead of a
5542 name. So, for now, we do something simpler: re-use the C++/Fortran
5543 namespace machinery. */
5544 r_name = (renaming->alias != NULL
5545 ? renaming->alias
5546 : renaming->declaration);
b5ec771e
PA
5547 if (name_match (r_name, lookup_name, NULL))
5548 {
5549 lookup_name_info decl_lookup_name (renaming->declaration,
5550 lookup_name.match_type ());
5551 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5552 1, NULL);
5553 }
22cee43f
PMR
5554 renaming->searched = 0;
5555 }
5556 return num_defns_collected (obstackp) != defns_mark;
5557}
5558
db230ce3
JB
5559/* Implements compare_names, but only applying the comparision using
5560 the given CASING. */
5b4ee69b 5561
40658b94 5562static int
db230ce3
JB
5563compare_names_with_case (const char *string1, const char *string2,
5564 enum case_sensitivity casing)
40658b94
PH
5565{
5566 while (*string1 != '\0' && *string2 != '\0')
5567 {
db230ce3
JB
5568 char c1, c2;
5569
40658b94
PH
5570 if (isspace (*string1) || isspace (*string2))
5571 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5572
5573 if (casing == case_sensitive_off)
5574 {
5575 c1 = tolower (*string1);
5576 c2 = tolower (*string2);
5577 }
5578 else
5579 {
5580 c1 = *string1;
5581 c2 = *string2;
5582 }
5583 if (c1 != c2)
40658b94 5584 break;
db230ce3 5585
40658b94
PH
5586 string1 += 1;
5587 string2 += 1;
5588 }
db230ce3 5589
40658b94
PH
5590 switch (*string1)
5591 {
5592 case '(':
5593 return strcmp_iw_ordered (string1, string2);
5594 case '_':
5595 if (*string2 == '\0')
5596 {
052874e8 5597 if (is_name_suffix (string1))
40658b94
PH
5598 return 0;
5599 else
1a1d5513 5600 return 1;
40658b94 5601 }
dbb8534f 5602 /* FALLTHROUGH */
40658b94
PH
5603 default:
5604 if (*string2 == '(')
5605 return strcmp_iw_ordered (string1, string2);
5606 else
db230ce3
JB
5607 {
5608 if (casing == case_sensitive_off)
5609 return tolower (*string1) - tolower (*string2);
5610 else
5611 return *string1 - *string2;
5612 }
40658b94 5613 }
ccefe4c4
TT
5614}
5615
db230ce3
JB
5616/* Compare STRING1 to STRING2, with results as for strcmp.
5617 Compatible with strcmp_iw_ordered in that...
5618
5619 strcmp_iw_ordered (STRING1, STRING2) <= 0
5620
5621 ... implies...
5622
5623 compare_names (STRING1, STRING2) <= 0
5624
5625 (they may differ as to what symbols compare equal). */
5626
5627static int
5628compare_names (const char *string1, const char *string2)
5629{
5630 int result;
5631
5632 /* Similar to what strcmp_iw_ordered does, we need to perform
5633 a case-insensitive comparison first, and only resort to
5634 a second, case-sensitive, comparison if the first one was
5635 not sufficient to differentiate the two strings. */
5636
5637 result = compare_names_with_case (string1, string2, case_sensitive_off);
5638 if (result == 0)
5639 result = compare_names_with_case (string1, string2, case_sensitive_on);
5640
5641 return result;
5642}
5643
b5ec771e
PA
5644/* Convenience function to get at the Ada encoded lookup name for
5645 LOOKUP_NAME, as a C string. */
5646
5647static const char *
5648ada_lookup_name (const lookup_name_info &lookup_name)
5649{
5650 return lookup_name.ada ().lookup_name ().c_str ();
5651}
5652
339c13b6 5653/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5654 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5655 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5656 symbols otherwise. */
339c13b6
JB
5657
5658static void
b5ec771e
PA
5659add_nonlocal_symbols (struct obstack *obstackp,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, int global)
339c13b6
JB
5662{
5663 struct objfile *objfile;
22cee43f 5664 struct compunit_symtab *cu;
40658b94 5665 struct match_data data;
339c13b6 5666
6475f2fe 5667 memset (&data, 0, sizeof data);
ccefe4c4 5668 data.obstackp = obstackp;
339c13b6 5669
b5ec771e
PA
5670 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5671
ccefe4c4 5672 ALL_OBJFILES (objfile)
40658b94
PH
5673 {
5674 data.objfile = objfile;
5675
5676 if (is_wild_match)
b5ec771e
PA
5677 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5678 domain, global,
4186eb54 5679 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5680 symbol_name_match_type::WILD,
5681 NULL);
40658b94 5682 else
b5ec771e
PA
5683 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 domain, global,
4186eb54 5685 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5686 symbol_name_match_type::FULL,
5687 compare_names);
22cee43f
PMR
5688
5689 ALL_OBJFILE_COMPUNITS (objfile, cu)
5690 {
5691 const struct block *global_block
5692 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5693
b5ec771e
PA
5694 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5695 domain))
22cee43f
PMR
5696 data.found_sym = 1;
5697 }
40658b94
PH
5698 }
5699
5700 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5701 {
b5ec771e
PA
5702 const char *name = ada_lookup_name (lookup_name);
5703 std::string name1 = std::string ("<_ada_") + name + '>';
5704
40658b94
PH
5705 ALL_OBJFILES (objfile)
5706 {
40658b94 5707 data.objfile = objfile;
b5ec771e
PA
5708 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5709 domain, global,
0963b4bd
MS
5710 aux_add_nonlocal_symbols,
5711 &data,
b5ec771e
PA
5712 symbol_name_match_type::FULL,
5713 compare_names);
40658b94
PH
5714 }
5715 }
339c13b6
JB
5716}
5717
b5ec771e
PA
5718/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5719 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5720 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5721
22cee43f
PMR
5722 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5724 is the one match returned (no other matches in that or
d9680e73 5725 enclosing blocks is returned). If there are any matches in or
22cee43f 5726 surrounding BLOCK, then these alone are returned.
4eeaa230 5727
b5ec771e
PA
5728 Names prefixed with "standard__" are handled specially:
5729 "standard__" is first stripped off (by the lookup_name
5730 constructor), and only static and global symbols are searched.
14f9c5c9 5731
22cee43f
PMR
5732 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5733 to lookup global symbols. */
5734
5735static void
5736ada_add_all_symbols (struct obstack *obstackp,
5737 const struct block *block,
b5ec771e 5738 const lookup_name_info &lookup_name,
22cee43f
PMR
5739 domain_enum domain,
5740 int full_search,
5741 int *made_global_lookup_p)
14f9c5c9
AS
5742{
5743 struct symbol *sym;
14f9c5c9 5744
22cee43f
PMR
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 0;
339c13b6
JB
5747
5748 /* Special case: If the user specifies a symbol name inside package
5749 Standard, do a non-wild matching of the symbol name without
5750 the "standard__" prefix. This was primarily introduced in order
5751 to allow the user to specifically access the standard exceptions
5752 using, for instance, Standard.Constraint_Error when Constraint_Error
5753 is ambiguous (due to the user defining its own Constraint_Error
5754 entity inside its program). */
b5ec771e
PA
5755 if (lookup_name.ada ().standard_p ())
5756 block = NULL;
4c4b4cd2 5757
339c13b6 5758 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5759
4eeaa230
DE
5760 if (block != NULL)
5761 {
5762 if (full_search)
b5ec771e 5763 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5764 else
5765 {
5766 /* In the !full_search case we're are being called by
5767 ada_iterate_over_symbols, and we don't want to search
5768 superblocks. */
b5ec771e 5769 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5770 }
22cee43f
PMR
5771 if (num_defns_collected (obstackp) > 0 || !full_search)
5772 return;
4eeaa230 5773 }
d2e4a39e 5774
339c13b6
JB
5775 /* No non-global symbols found. Check our cache to see if we have
5776 already performed this search before. If we have, then return
5777 the same result. */
5778
b5ec771e
PA
5779 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5780 domain, &sym, &block))
4c4b4cd2
PH
5781 {
5782 if (sym != NULL)
b5ec771e 5783 add_defn_to_vec (obstackp, sym, block);
22cee43f 5784 return;
4c4b4cd2 5785 }
14f9c5c9 5786
22cee43f
PMR
5787 if (made_global_lookup_p)
5788 *made_global_lookup_p = 1;
b1eedac9 5789
339c13b6
JB
5790 /* Search symbols from all global blocks. */
5791
b5ec771e 5792 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5793
4c4b4cd2 5794 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5795 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5796
22cee43f 5797 if (num_defns_collected (obstackp) == 0)
b5ec771e 5798 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5799}
5800
b5ec771e
PA
5801/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5802 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f
PMR
5803 matches.
5804 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5805 indicating the symbols found and the blocks and symbol tables (if
5806 any) in which they were found. This vector is transient---good only to
5807 the next call of ada_lookup_symbol_list.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818static int
b5ec771e
PA
5819ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
22cee43f
PMR
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824{
22cee43f
PMR
5825 int syms_from_global_search;
5826 int ndefns;
5827
5828 obstack_free (&symbol_list_obstack, NULL);
5829 obstack_init (&symbol_list_obstack);
b5ec771e
PA
5830 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5831 domain, full_search, &syms_from_global_search);
14f9c5c9 5832
4c4b4cd2
PH
5833 ndefns = num_defns_collected (&symbol_list_obstack);
5834 *results = defns_collected (&symbol_list_obstack, 1);
5835
5836 ndefns = remove_extra_symbols (*results, ndefns);
5837
b1eedac9 5838 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5839 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5840
b1eedac9 5841 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5842 cache_symbol (ada_lookup_name (lookup_name), domain,
5843 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5844
22cee43f 5845 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5846 return ndefns;
5847}
5848
b5ec771e 5849/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230
DE
5850 in global scopes, returning the number of matches, and setting *RESULTS
5851 to a vector of (SYM,BLOCK) tuples.
5852 See ada_lookup_symbol_list_worker for further details. */
5853
5854int
b5ec771e 5855ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5856 domain_enum domain, struct block_symbol **results)
4eeaa230 5857{
b5ec771e
PA
5858 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5859 lookup_name_info lookup_name (name, name_match_type);
5860
5861 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5862}
5863
5864/* Implementation of the la_iterate_over_symbols method. */
5865
5866static void
14bc53a8 5867ada_iterate_over_symbols
b5ec771e
PA
5868 (const struct block *block, const lookup_name_info &name,
5869 domain_enum domain,
14bc53a8 5870 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5871{
5872 int ndefs, i;
d12307c1 5873 struct block_symbol *results;
4eeaa230
DE
5874
5875 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5876 for (i = 0; i < ndefs; ++i)
5877 {
14bc53a8 5878 if (!callback (results[i].symbol))
4eeaa230
DE
5879 break;
5880 }
5881}
5882
4e5c77fe
JB
5883/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5884 to 1, but choosing the first symbol found if there are multiple
5885 choices.
5886
5e2336be
JB
5887 The result is stored in *INFO, which must be non-NULL.
5888 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5889
5890void
5891ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5892 domain_enum domain,
d12307c1 5893 struct block_symbol *info)
14f9c5c9 5894{
d12307c1 5895 struct block_symbol *candidates;
14f9c5c9
AS
5896 int n_candidates;
5897
b5ec771e
PA
5898 /* Since we already have an encoded name, wrap it in '<>' to force a
5899 verbatim match. Otherwise, if the name happens to not look like
5900 an encoded name (because it doesn't include a "__"),
5901 ada_lookup_name_info would re-encode/fold it again, and that
5902 would e.g., incorrectly lowercase object renaming names like
5903 "R28b" -> "r28b". */
5904 std::string verbatim = std::string ("<") + name + '>';
5905
5e2336be 5906 gdb_assert (info != NULL);
d12307c1 5907 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5908
b5ec771e
PA
5909 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5910 domain, &candidates);
14f9c5c9 5911 if (n_candidates == 0)
4e5c77fe 5912 return;
4c4b4cd2 5913
5e2336be 5914 *info = candidates[0];
d12307c1 5915 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5916}
aeb5907d
JB
5917
5918/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5919 scope and in global scopes, or NULL if none. NAME is folded and
5920 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5921 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5922 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5923
d12307c1 5924struct block_symbol
aeb5907d 5925ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5926 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5927{
d12307c1 5928 struct block_symbol info;
4e5c77fe 5929
aeb5907d
JB
5930 if (is_a_field_of_this != NULL)
5931 *is_a_field_of_this = 0;
5932
4e5c77fe 5933 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5934 block0, domain, &info);
d12307c1 5935 return info;
4c4b4cd2 5936}
14f9c5c9 5937
d12307c1 5938static struct block_symbol
f606139a
DE
5939ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5940 const char *name,
76a01679 5941 const struct block *block,
21b556f4 5942 const domain_enum domain)
4c4b4cd2 5943{
d12307c1 5944 struct block_symbol sym;
04dccad0
JB
5945
5946 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5947 if (sym.symbol != NULL)
04dccad0
JB
5948 return sym;
5949
5950 /* If we haven't found a match at this point, try the primitive
5951 types. In other languages, this search is performed before
5952 searching for global symbols in order to short-circuit that
5953 global-symbol search if it happens that the name corresponds
5954 to a primitive type. But we cannot do the same in Ada, because
5955 it is perfectly legitimate for a program to declare a type which
5956 has the same name as a standard type. If looking up a type in
5957 that situation, we have traditionally ignored the primitive type
5958 in favor of user-defined types. This is why, unlike most other
5959 languages, we search the primitive types this late and only after
5960 having searched the global symbols without success. */
5961
5962 if (domain == VAR_DOMAIN)
5963 {
5964 struct gdbarch *gdbarch;
5965
5966 if (block == NULL)
5967 gdbarch = target_gdbarch ();
5968 else
5969 gdbarch = block_gdbarch (block);
d12307c1
PMR
5970 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5971 if (sym.symbol != NULL)
04dccad0
JB
5972 return sym;
5973 }
5974
d12307c1 5975 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5976}
5977
5978
4c4b4cd2
PH
5979/* True iff STR is a possible encoded suffix of a normal Ada name
5980 that is to be ignored for matching purposes. Suffixes of parallel
5981 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5982 are given by any of the regular expressions:
4c4b4cd2 5983
babe1480
JB
5984 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5985 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5986 TKB [subprogram suffix for task bodies]
babe1480 5987 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5988 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5989
5990 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5991 match is performed. This sequence is used to differentiate homonyms,
5992 is an optional part of a valid name suffix. */
4c4b4cd2 5993
14f9c5c9 5994static int
d2e4a39e 5995is_name_suffix (const char *str)
14f9c5c9
AS
5996{
5997 int k;
4c4b4cd2
PH
5998 const char *matching;
5999 const int len = strlen (str);
6000
babe1480
JB
6001 /* Skip optional leading __[0-9]+. */
6002
4c4b4cd2
PH
6003 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6004 {
babe1480
JB
6005 str += 3;
6006 while (isdigit (str[0]))
6007 str += 1;
4c4b4cd2 6008 }
babe1480
JB
6009
6010 /* [.$][0-9]+ */
4c4b4cd2 6011
babe1480 6012 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6013 {
babe1480 6014 matching = str + 1;
4c4b4cd2
PH
6015 while (isdigit (matching[0]))
6016 matching += 1;
6017 if (matching[0] == '\0')
6018 return 1;
6019 }
6020
6021 /* ___[0-9]+ */
babe1480 6022
4c4b4cd2
PH
6023 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if (matching[0] == '\0')
6029 return 1;
6030 }
6031
9ac7f98e
JB
6032 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6033
6034 if (strcmp (str, "TKB") == 0)
6035 return 1;
6036
529cad9c
PH
6037#if 0
6038 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6039 with a N at the end. Unfortunately, the compiler uses the same
6040 convention for other internal types it creates. So treating
529cad9c 6041 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6042 some regressions. For instance, consider the case of an enumerated
6043 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6044 name ends with N.
6045 Having a single character like this as a suffix carrying some
0963b4bd 6046 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6047 to be something like "_N" instead. In the meantime, do not do
6048 the following check. */
6049 /* Protected Object Subprograms */
6050 if (len == 1 && str [0] == 'N')
6051 return 1;
6052#endif
6053
6054 /* _E[0-9]+[bs]$ */
6055 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6056 {
6057 matching = str + 3;
6058 while (isdigit (matching[0]))
6059 matching += 1;
6060 if ((matching[0] == 'b' || matching[0] == 's')
6061 && matching [1] == '\0')
6062 return 1;
6063 }
6064
4c4b4cd2
PH
6065 /* ??? We should not modify STR directly, as we are doing below. This
6066 is fine in this case, but may become problematic later if we find
6067 that this alternative did not work, and want to try matching
6068 another one from the begining of STR. Since we modified it, we
6069 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6070 if (str[0] == 'X')
6071 {
6072 str += 1;
d2e4a39e 6073 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6074 {
6075 if (str[0] != 'n' && str[0] != 'b')
6076 return 0;
6077 str += 1;
6078 }
14f9c5c9 6079 }
babe1480 6080
14f9c5c9
AS
6081 if (str[0] == '\000')
6082 return 1;
babe1480 6083
d2e4a39e 6084 if (str[0] == '_')
14f9c5c9
AS
6085 {
6086 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6087 return 0;
d2e4a39e 6088 if (str[2] == '_')
4c4b4cd2 6089 {
61ee279c
PH
6090 if (strcmp (str + 3, "JM") == 0)
6091 return 1;
6092 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6093 the LJM suffix in favor of the JM one. But we will
6094 still accept LJM as a valid suffix for a reasonable
6095 amount of time, just to allow ourselves to debug programs
6096 compiled using an older version of GNAT. */
4c4b4cd2
PH
6097 if (strcmp (str + 3, "LJM") == 0)
6098 return 1;
6099 if (str[3] != 'X')
6100 return 0;
1265e4aa
JB
6101 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6102 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6103 return 1;
6104 if (str[4] == 'R' && str[5] != 'T')
6105 return 1;
6106 return 0;
6107 }
6108 if (!isdigit (str[2]))
6109 return 0;
6110 for (k = 3; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
14f9c5c9
AS
6113 return 1;
6114 }
4c4b4cd2 6115 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6116 {
4c4b4cd2
PH
6117 for (k = 2; str[k] != '\0'; k += 1)
6118 if (!isdigit (str[k]) && str[k] != '_')
6119 return 0;
14f9c5c9
AS
6120 return 1;
6121 }
6122 return 0;
6123}
d2e4a39e 6124
aeb5907d
JB
6125/* Return non-zero if the string starting at NAME and ending before
6126 NAME_END contains no capital letters. */
529cad9c
PH
6127
6128static int
6129is_valid_name_for_wild_match (const char *name0)
6130{
6131 const char *decoded_name = ada_decode (name0);
6132 int i;
6133
5823c3ef
JB
6134 /* If the decoded name starts with an angle bracket, it means that
6135 NAME0 does not follow the GNAT encoding format. It should then
6136 not be allowed as a possible wild match. */
6137 if (decoded_name[0] == '<')
6138 return 0;
6139
529cad9c
PH
6140 for (i=0; decoded_name[i] != '\0'; i++)
6141 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6142 return 0;
6143
6144 return 1;
6145}
6146
73589123
PH
6147/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6148 that could start a simple name. Assumes that *NAMEP points into
6149 the string beginning at NAME0. */
4c4b4cd2 6150
14f9c5c9 6151static int
73589123 6152advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6153{
73589123 6154 const char *name = *namep;
5b4ee69b 6155
5823c3ef 6156 while (1)
14f9c5c9 6157 {
aa27d0b3 6158 int t0, t1;
73589123
PH
6159
6160 t0 = *name;
6161 if (t0 == '_')
6162 {
6163 t1 = name[1];
6164 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6165 {
6166 name += 1;
61012eef 6167 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6168 break;
6169 else
6170 name += 1;
6171 }
aa27d0b3
JB
6172 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6173 || name[2] == target0))
73589123
PH
6174 {
6175 name += 2;
6176 break;
6177 }
6178 else
6179 return 0;
6180 }
6181 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6182 name += 1;
6183 else
5823c3ef 6184 return 0;
73589123
PH
6185 }
6186
6187 *namep = name;
6188 return 1;
6189}
6190
b5ec771e
PA
6191/* Return true iff NAME encodes a name of the form prefix.PATN.
6192 Ignores any informational suffixes of NAME (i.e., for which
6193 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6194 simple name. */
73589123 6195
b5ec771e 6196static bool
73589123
PH
6197wild_match (const char *name, const char *patn)
6198{
22e048c9 6199 const char *p;
73589123
PH
6200 const char *name0 = name;
6201
6202 while (1)
6203 {
6204 const char *match = name;
6205
6206 if (*name == *patn)
6207 {
6208 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6209 if (*p != *name)
6210 break;
6211 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6212 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6213
6214 if (name[-1] == '_')
6215 name -= 1;
6216 }
6217 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6218 return false;
96d887e8 6219 }
96d887e8
PH
6220}
6221
b5ec771e
PA
6222/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6223 any trailing suffixes that encode debugging information or leading
6224 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6225 information that is ignored). */
40658b94 6226
b5ec771e 6227static bool
c4d840bd
PH
6228full_match (const char *sym_name, const char *search_name)
6229{
b5ec771e
PA
6230 size_t search_name_len = strlen (search_name);
6231
6232 if (strncmp (sym_name, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len))
6234 return true;
6235
6236 if (startswith (sym_name, "_ada_")
6237 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6238 && is_name_suffix (sym_name + search_name_len + 5))
6239 return true;
c4d840bd 6240
b5ec771e
PA
6241 return false;
6242}
c4d840bd 6243
b5ec771e
PA
6244/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6245 *defn_symbols, updating the list of symbols in OBSTACKP (if
6246 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6247
6248static void
6249ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6250 const struct block *block,
6251 const lookup_name_info &lookup_name,
6252 domain_enum domain, struct objfile *objfile)
96d887e8 6253{
8157b174 6254 struct block_iterator iter;
96d887e8
PH
6255 /* A matching argument symbol, if any. */
6256 struct symbol *arg_sym;
6257 /* Set true when we find a matching non-argument symbol. */
6258 int found_sym;
6259 struct symbol *sym;
6260
6261 arg_sym = NULL;
6262 found_sym = 0;
b5ec771e
PA
6263 for (sym = block_iter_match_first (block, lookup_name, &iter);
6264 sym != NULL;
6265 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6266 {
b5ec771e
PA
6267 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6268 SYMBOL_DOMAIN (sym), domain))
6269 {
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
6282 }
96d887e8
PH
6283 }
6284
22cee43f
PMR
6285 /* Handle renamings. */
6286
b5ec771e 6287 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6288 found_sym = 1;
6289
96d887e8
PH
6290 if (!found_sym && arg_sym != NULL)
6291 {
76a01679
JB
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6294 block);
96d887e8
PH
6295 }
6296
b5ec771e 6297 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6298 {
6299 arg_sym = NULL;
6300 found_sym = 0;
b5ec771e
PA
6301 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6302 const char *name = ada_lookup_name.c_str ();
6303 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6304
6305 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6306 {
4186eb54
KS
6307 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6308 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6309 {
6310 int cmp;
6311
6312 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6313 if (cmp == 0)
6314 {
61012eef 6315 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6316 if (cmp == 0)
6317 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6318 name_len);
6319 }
6320
6321 if (cmp == 0
6322 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6323 {
2a2d4dc3
AS
6324 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6325 {
6326 if (SYMBOL_IS_ARGUMENT (sym))
6327 arg_sym = sym;
6328 else
6329 {
6330 found_sym = 1;
6331 add_defn_to_vec (obstackp,
6332 fixup_symbol_section (sym, objfile),
6333 block);
6334 }
6335 }
76a01679
JB
6336 }
6337 }
76a01679 6338 }
96d887e8
PH
6339
6340 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6341 They aren't parameters, right? */
6342 if (!found_sym && arg_sym != NULL)
6343 {
6344 add_defn_to_vec (obstackp,
76a01679 6345 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6346 block);
96d887e8
PH
6347 }
6348 }
6349}
6350\f
41d27058
JB
6351
6352 /* Symbol Completion */
6353
b5ec771e 6354/* See symtab.h. */
41d27058 6355
b5ec771e
PA
6356bool
6357ada_lookup_name_info::matches
6358 (const char *sym_name,
6359 symbol_name_match_type match_type,
a207cff2 6360 completion_match_result *comp_match_res) const
41d27058 6361{
b5ec771e
PA
6362 bool match = false;
6363 const char *text = m_encoded_name.c_str ();
6364 size_t text_len = m_encoded_name.size ();
41d27058
JB
6365
6366 /* First, test against the fully qualified name of the symbol. */
6367
6368 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6369 match = true;
41d27058 6370
b5ec771e 6371 if (match && !m_encoded_p)
41d27058
JB
6372 {
6373 /* One needed check before declaring a positive match is to verify
6374 that iff we are doing a verbatim match, the decoded version
6375 of the symbol name starts with '<'. Otherwise, this symbol name
6376 is not a suitable completion. */
6377 const char *sym_name_copy = sym_name;
b5ec771e 6378 bool has_angle_bracket;
41d27058
JB
6379
6380 sym_name = ada_decode (sym_name);
6381 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6382 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6383 sym_name = sym_name_copy;
6384 }
6385
b5ec771e 6386 if (match && !m_verbatim_p)
41d27058
JB
6387 {
6388 /* When doing non-verbatim match, another check that needs to
6389 be done is to verify that the potentially matching symbol name
6390 does not include capital letters, because the ada-mode would
6391 not be able to understand these symbol names without the
6392 angle bracket notation. */
6393 const char *tmp;
6394
6395 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6396 if (*tmp != '\0')
b5ec771e 6397 match = false;
41d27058
JB
6398 }
6399
6400 /* Second: Try wild matching... */
6401
b5ec771e 6402 if (!match && m_wild_match_p)
41d27058
JB
6403 {
6404 /* Since we are doing wild matching, this means that TEXT
6405 may represent an unqualified symbol name. We therefore must
6406 also compare TEXT against the unqualified name of the symbol. */
6407 sym_name = ada_unqualified_name (ada_decode (sym_name));
6408
6409 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6410 match = true;
41d27058
JB
6411 }
6412
b5ec771e 6413 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6414
6415 if (!match)
b5ec771e 6416 return false;
41d27058 6417
a207cff2 6418 if (comp_match_res != NULL)
b5ec771e 6419 {
a207cff2 6420 std::string &match_str = comp_match_res->match.storage ();
41d27058 6421
b5ec771e 6422 if (!m_encoded_p)
a207cff2 6423 match_str = ada_decode (sym_name);
b5ec771e
PA
6424 else
6425 {
6426 if (m_verbatim_p)
6427 match_str = add_angle_brackets (sym_name);
6428 else
6429 match_str = sym_name;
41d27058 6430
b5ec771e 6431 }
a207cff2
PA
6432
6433 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6434 }
6435
b5ec771e 6436 return true;
41d27058
JB
6437}
6438
b5ec771e 6439/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6440 WORD is the entire command on which completion is made. */
41d27058 6441
eb3ff9a5
PA
6442static void
6443ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6444 complete_symbol_mode mode,
b5ec771e
PA
6445 symbol_name_match_type name_match_type,
6446 const char *text, const char *word,
eb3ff9a5 6447 enum type_code code)
41d27058 6448{
41d27058 6449 struct symbol *sym;
43f3e411 6450 struct compunit_symtab *s;
41d27058
JB
6451 struct minimal_symbol *msymbol;
6452 struct objfile *objfile;
3977b71f 6453 const struct block *b, *surrounding_static_block = 0;
41d27058 6454 int i;
8157b174 6455 struct block_iterator iter;
b8fea896 6456 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6457
2f68a895
TT
6458 gdb_assert (code == TYPE_CODE_UNDEF);
6459
1b026119 6460 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6461
6462 /* First, look at the partial symtab symbols. */
14bc53a8 6463 expand_symtabs_matching (NULL,
b5ec771e
PA
6464 lookup_name,
6465 NULL,
14bc53a8
PA
6466 NULL,
6467 ALL_DOMAIN);
41d27058
JB
6468
6469 /* At this point scan through the misc symbol vectors and add each
6470 symbol you find to the list. Eventually we want to ignore
6471 anything that isn't a text symbol (everything else will be
6472 handled by the psymtab code above). */
6473
6474 ALL_MSYMBOLS (objfile, msymbol)
6475 {
6476 QUIT;
b5ec771e 6477
f9d67a22
PA
6478 if (completion_skip_symbol (mode, msymbol))
6479 continue;
6480
b5ec771e
PA
6481 completion_list_add_name (tracker,
6482 MSYMBOL_LANGUAGE (msymbol),
6483 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6484 lookup_name, text, word);
41d27058
JB
6485 }
6486
6487 /* Search upwards from currently selected frame (so that we can
6488 complete on local vars. */
6489
6490 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6491 {
6492 if (!BLOCK_SUPERBLOCK (b))
6493 surrounding_static_block = b; /* For elmin of dups */
6494
6495 ALL_BLOCK_SYMBOLS (b, iter, sym)
6496 {
f9d67a22
PA
6497 if (completion_skip_symbol (mode, sym))
6498 continue;
6499
b5ec771e
PA
6500 completion_list_add_name (tracker,
6501 SYMBOL_LANGUAGE (sym),
6502 SYMBOL_LINKAGE_NAME (sym),
1b026119 6503 lookup_name, text, word);
41d27058
JB
6504 }
6505 }
6506
6507 /* Go through the symtabs and check the externs and statics for
43f3e411 6508 symbols which match. */
41d27058 6509
43f3e411 6510 ALL_COMPUNITS (objfile, s)
41d27058
JB
6511 {
6512 QUIT;
43f3e411 6513 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6514 ALL_BLOCK_SYMBOLS (b, iter, sym)
6515 {
f9d67a22
PA
6516 if (completion_skip_symbol (mode, sym))
6517 continue;
6518
b5ec771e
PA
6519 completion_list_add_name (tracker,
6520 SYMBOL_LANGUAGE (sym),
6521 SYMBOL_LINKAGE_NAME (sym),
1b026119 6522 lookup_name, text, word);
41d27058
JB
6523 }
6524 }
6525
43f3e411 6526 ALL_COMPUNITS (objfile, s)
41d27058
JB
6527 {
6528 QUIT;
43f3e411 6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6530 /* Don't do this block twice. */
6531 if (b == surrounding_static_block)
6532 continue;
6533 ALL_BLOCK_SYMBOLS (b, iter, sym)
6534 {
f9d67a22
PA
6535 if (completion_skip_symbol (mode, sym))
6536 continue;
6537
b5ec771e
PA
6538 completion_list_add_name (tracker,
6539 SYMBOL_LANGUAGE (sym),
6540 SYMBOL_LINKAGE_NAME (sym),
1b026119 6541 lookup_name, text, word);
41d27058
JB
6542 }
6543 }
6544
b8fea896 6545 do_cleanups (old_chain);
41d27058
JB
6546}
6547
963a6417 6548 /* Field Access */
96d887e8 6549
73fb9985
JB
6550/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6551 for tagged types. */
6552
6553static int
6554ada_is_dispatch_table_ptr_type (struct type *type)
6555{
0d5cff50 6556 const char *name;
73fb9985
JB
6557
6558 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6559 return 0;
6560
6561 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6562 if (name == NULL)
6563 return 0;
6564
6565 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6566}
6567
ac4a2da4
JG
6568/* Return non-zero if TYPE is an interface tag. */
6569
6570static int
6571ada_is_interface_tag (struct type *type)
6572{
6573 const char *name = TYPE_NAME (type);
6574
6575 if (name == NULL)
6576 return 0;
6577
6578 return (strcmp (name, "ada__tags__interface_tag") == 0);
6579}
6580
963a6417
PH
6581/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6582 to be invisible to users. */
96d887e8 6583
963a6417
PH
6584int
6585ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6586{
963a6417
PH
6587 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6588 return 1;
ffde82bf 6589
73fb9985
JB
6590 /* Check the name of that field. */
6591 {
6592 const char *name = TYPE_FIELD_NAME (type, field_num);
6593
6594 /* Anonymous field names should not be printed.
6595 brobecker/2007-02-20: I don't think this can actually happen
6596 but we don't want to print the value of annonymous fields anyway. */
6597 if (name == NULL)
6598 return 1;
6599
ffde82bf
JB
6600 /* Normally, fields whose name start with an underscore ("_")
6601 are fields that have been internally generated by the compiler,
6602 and thus should not be printed. The "_parent" field is special,
6603 however: This is a field internally generated by the compiler
6604 for tagged types, and it contains the components inherited from
6605 the parent type. This field should not be printed as is, but
6606 should not be ignored either. */
61012eef 6607 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6608 return 1;
6609 }
6610
ac4a2da4
JG
6611 /* If this is the dispatch table of a tagged type or an interface tag,
6612 then ignore. */
73fb9985 6613 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6614 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6615 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6616 return 1;
6617
6618 /* Not a special field, so it should not be ignored. */
6619 return 0;
963a6417 6620}
96d887e8 6621
963a6417 6622/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6623 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6624
963a6417
PH
6625int
6626ada_is_tagged_type (struct type *type, int refok)
6627{
988f6b3d 6628 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6629}
96d887e8 6630
963a6417 6631/* True iff TYPE represents the type of X'Tag */
96d887e8 6632
963a6417
PH
6633int
6634ada_is_tag_type (struct type *type)
6635{
460efde1
JB
6636 type = ada_check_typedef (type);
6637
963a6417
PH
6638 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6639 return 0;
6640 else
96d887e8 6641 {
963a6417 6642 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6643
963a6417
PH
6644 return (name != NULL
6645 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6646 }
96d887e8
PH
6647}
6648
963a6417 6649/* The type of the tag on VAL. */
76a01679 6650
963a6417
PH
6651struct type *
6652ada_tag_type (struct value *val)
96d887e8 6653{
988f6b3d 6654 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6655}
96d887e8 6656
b50d69b5
JG
6657/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6658 retired at Ada 05). */
6659
6660static int
6661is_ada95_tag (struct value *tag)
6662{
6663 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6664}
6665
963a6417 6666/* The value of the tag on VAL. */
96d887e8 6667
963a6417
PH
6668struct value *
6669ada_value_tag (struct value *val)
6670{
03ee6b2e 6671 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6672}
6673
963a6417
PH
6674/* The value of the tag on the object of type TYPE whose contents are
6675 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6676 ADDRESS. */
96d887e8 6677
963a6417 6678static struct value *
10a2c479 6679value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6680 const gdb_byte *valaddr,
963a6417 6681 CORE_ADDR address)
96d887e8 6682{
b5385fc0 6683 int tag_byte_offset;
963a6417 6684 struct type *tag_type;
5b4ee69b 6685
963a6417 6686 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6687 NULL, NULL, NULL))
96d887e8 6688 {
fc1a4b47 6689 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6690 ? NULL
6691 : valaddr + tag_byte_offset);
963a6417 6692 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6693
963a6417 6694 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6695 }
963a6417
PH
6696 return NULL;
6697}
96d887e8 6698
963a6417
PH
6699static struct type *
6700type_from_tag (struct value *tag)
6701{
6702 const char *type_name = ada_tag_name (tag);
5b4ee69b 6703
963a6417
PH
6704 if (type_name != NULL)
6705 return ada_find_any_type (ada_encode (type_name));
6706 return NULL;
6707}
96d887e8 6708
b50d69b5
JG
6709/* Given a value OBJ of a tagged type, return a value of this
6710 type at the base address of the object. The base address, as
6711 defined in Ada.Tags, it is the address of the primary tag of
6712 the object, and therefore where the field values of its full
6713 view can be fetched. */
6714
6715struct value *
6716ada_tag_value_at_base_address (struct value *obj)
6717{
b50d69b5
JG
6718 struct value *val;
6719 LONGEST offset_to_top = 0;
6720 struct type *ptr_type, *obj_type;
6721 struct value *tag;
6722 CORE_ADDR base_address;
6723
6724 obj_type = value_type (obj);
6725
6726 /* It is the responsability of the caller to deref pointers. */
6727
6728 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6729 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6730 return obj;
6731
6732 tag = ada_value_tag (obj);
6733 if (!tag)
6734 return obj;
6735
6736 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6737
6738 if (is_ada95_tag (tag))
6739 return obj;
6740
6741 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6742 ptr_type = lookup_pointer_type (ptr_type);
6743 val = value_cast (ptr_type, tag);
6744 if (!val)
6745 return obj;
6746
6747 /* It is perfectly possible that an exception be raised while
6748 trying to determine the base address, just like for the tag;
6749 see ada_tag_name for more details. We do not print the error
6750 message for the same reason. */
6751
492d29ea 6752 TRY
b50d69b5
JG
6753 {
6754 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6755 }
6756
492d29ea
PA
6757 CATCH (e, RETURN_MASK_ERROR)
6758 {
6759 return obj;
6760 }
6761 END_CATCH
b50d69b5
JG
6762
6763 /* If offset is null, nothing to do. */
6764
6765 if (offset_to_top == 0)
6766 return obj;
6767
6768 /* -1 is a special case in Ada.Tags; however, what should be done
6769 is not quite clear from the documentation. So do nothing for
6770 now. */
6771
6772 if (offset_to_top == -1)
6773 return obj;
6774
6775 base_address = value_address (obj) - offset_to_top;
6776 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6777
6778 /* Make sure that we have a proper tag at the new address.
6779 Otherwise, offset_to_top is bogus (which can happen when
6780 the object is not initialized yet). */
6781
6782 if (!tag)
6783 return obj;
6784
6785 obj_type = type_from_tag (tag);
6786
6787 if (!obj_type)
6788 return obj;
6789
6790 return value_from_contents_and_address (obj_type, NULL, base_address);
6791}
6792
1b611343
JB
6793/* Return the "ada__tags__type_specific_data" type. */
6794
6795static struct type *
6796ada_get_tsd_type (struct inferior *inf)
963a6417 6797{
1b611343 6798 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6799
1b611343
JB
6800 if (data->tsd_type == 0)
6801 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6802 return data->tsd_type;
6803}
529cad9c 6804
1b611343
JB
6805/* Return the TSD (type-specific data) associated to the given TAG.
6806 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6807
1b611343 6808 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6809
1b611343
JB
6810static struct value *
6811ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6812{
4c4b4cd2 6813 struct value *val;
1b611343 6814 struct type *type;
5b4ee69b 6815
1b611343
JB
6816 /* First option: The TSD is simply stored as a field of our TAG.
6817 Only older versions of GNAT would use this format, but we have
6818 to test it first, because there are no visible markers for
6819 the current approach except the absence of that field. */
529cad9c 6820
1b611343
JB
6821 val = ada_value_struct_elt (tag, "tsd", 1);
6822 if (val)
6823 return val;
e802dbe0 6824
1b611343
JB
6825 /* Try the second representation for the dispatch table (in which
6826 there is no explicit 'tsd' field in the referent of the tag pointer,
6827 and instead the tsd pointer is stored just before the dispatch
6828 table. */
e802dbe0 6829
1b611343
JB
6830 type = ada_get_tsd_type (current_inferior());
6831 if (type == NULL)
6832 return NULL;
6833 type = lookup_pointer_type (lookup_pointer_type (type));
6834 val = value_cast (type, tag);
6835 if (val == NULL)
6836 return NULL;
6837 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6838}
6839
1b611343
JB
6840/* Given the TSD of a tag (type-specific data), return a string
6841 containing the name of the associated type.
6842
6843 The returned value is good until the next call. May return NULL
6844 if we are unable to determine the tag name. */
6845
6846static char *
6847ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6848{
529cad9c
PH
6849 static char name[1024];
6850 char *p;
1b611343 6851 struct value *val;
529cad9c 6852
1b611343 6853 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6854 if (val == NULL)
1b611343 6855 return NULL;
4c4b4cd2
PH
6856 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6857 for (p = name; *p != '\0'; p += 1)
6858 if (isalpha (*p))
6859 *p = tolower (*p);
1b611343 6860 return name;
4c4b4cd2
PH
6861}
6862
6863/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6864 a C string.
6865
6866 Return NULL if the TAG is not an Ada tag, or if we were unable to
6867 determine the name of that tag. The result is good until the next
6868 call. */
4c4b4cd2
PH
6869
6870const char *
6871ada_tag_name (struct value *tag)
6872{
1b611343 6873 char *name = NULL;
5b4ee69b 6874
df407dfe 6875 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6876 return NULL;
1b611343
JB
6877
6878 /* It is perfectly possible that an exception be raised while trying
6879 to determine the TAG's name, even under normal circumstances:
6880 The associated variable may be uninitialized or corrupted, for
6881 instance. We do not let any exception propagate past this point.
6882 instead we return NULL.
6883
6884 We also do not print the error message either (which often is very
6885 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6886 the caller print a more meaningful message if necessary. */
492d29ea 6887 TRY
1b611343
JB
6888 {
6889 struct value *tsd = ada_get_tsd_from_tag (tag);
6890
6891 if (tsd != NULL)
6892 name = ada_tag_name_from_tsd (tsd);
6893 }
492d29ea
PA
6894 CATCH (e, RETURN_MASK_ERROR)
6895 {
6896 }
6897 END_CATCH
1b611343
JB
6898
6899 return name;
4c4b4cd2
PH
6900}
6901
6902/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6903
d2e4a39e 6904struct type *
ebf56fd3 6905ada_parent_type (struct type *type)
14f9c5c9
AS
6906{
6907 int i;
6908
61ee279c 6909 type = ada_check_typedef (type);
14f9c5c9
AS
6910
6911 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6912 return NULL;
6913
6914 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6915 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6916 {
6917 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6918
6919 /* If the _parent field is a pointer, then dereference it. */
6920 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6921 parent_type = TYPE_TARGET_TYPE (parent_type);
6922 /* If there is a parallel XVS type, get the actual base type. */
6923 parent_type = ada_get_base_type (parent_type);
6924
6925 return ada_check_typedef (parent_type);
6926 }
14f9c5c9
AS
6927
6928 return NULL;
6929}
6930
4c4b4cd2
PH
6931/* True iff field number FIELD_NUM of structure type TYPE contains the
6932 parent-type (inherited) fields of a derived type. Assumes TYPE is
6933 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6934
6935int
ebf56fd3 6936ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6937{
61ee279c 6938 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6939
4c4b4cd2 6940 return (name != NULL
61012eef
GB
6941 && (startswith (name, "PARENT")
6942 || startswith (name, "_parent")));
14f9c5c9
AS
6943}
6944
4c4b4cd2 6945/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6946 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6947 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6948 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6949 structures. */
14f9c5c9
AS
6950
6951int
ebf56fd3 6952ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6953{
d2e4a39e 6954 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6955
dddc0e16
JB
6956 if (name != NULL && strcmp (name, "RETVAL") == 0)
6957 {
6958 /* This happens in functions with "out" or "in out" parameters
6959 which are passed by copy. For such functions, GNAT describes
6960 the function's return type as being a struct where the return
6961 value is in a field called RETVAL, and where the other "out"
6962 or "in out" parameters are fields of that struct. This is not
6963 a wrapper. */
6964 return 0;
6965 }
6966
d2e4a39e 6967 return (name != NULL
61012eef 6968 && (startswith (name, "PARENT")
4c4b4cd2 6969 || strcmp (name, "REP") == 0
61012eef 6970 || startswith (name, "_parent")
4c4b4cd2 6971 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6972}
6973
4c4b4cd2
PH
6974/* True iff field number FIELD_NUM of structure or union type TYPE
6975 is a variant wrapper. Assumes TYPE is a structure type with at least
6976 FIELD_NUM+1 fields. */
14f9c5c9
AS
6977
6978int
ebf56fd3 6979ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6980{
d2e4a39e 6981 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6982
14f9c5c9 6983 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6984 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6985 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6986 == TYPE_CODE_UNION)));
14f9c5c9
AS
6987}
6988
6989/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6990 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6991 returns the type of the controlling discriminant for the variant.
6992 May return NULL if the type could not be found. */
14f9c5c9 6993
d2e4a39e 6994struct type *
ebf56fd3 6995ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6996{
a121b7c1 6997 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6998
988f6b3d 6999 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7000}
7001
4c4b4cd2 7002/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7003 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7004 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7005
7006int
ebf56fd3 7007ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7008{
d2e4a39e 7009 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7010
14f9c5c9
AS
7011 return (name != NULL && name[0] == 'O');
7012}
7013
7014/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7015 returns the name of the discriminant controlling the variant.
7016 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7017
a121b7c1 7018const char *
ebf56fd3 7019ada_variant_discrim_name (struct type *type0)
14f9c5c9 7020{
d2e4a39e 7021 static char *result = NULL;
14f9c5c9 7022 static size_t result_len = 0;
d2e4a39e
AS
7023 struct type *type;
7024 const char *name;
7025 const char *discrim_end;
7026 const char *discrim_start;
14f9c5c9
AS
7027
7028 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7029 type = TYPE_TARGET_TYPE (type0);
7030 else
7031 type = type0;
7032
7033 name = ada_type_name (type);
7034
7035 if (name == NULL || name[0] == '\000')
7036 return "";
7037
7038 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7039 discrim_end -= 1)
7040 {
61012eef 7041 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7042 break;
14f9c5c9
AS
7043 }
7044 if (discrim_end == name)
7045 return "";
7046
d2e4a39e 7047 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7048 discrim_start -= 1)
7049 {
d2e4a39e 7050 if (discrim_start == name + 1)
4c4b4cd2 7051 return "";
76a01679 7052 if ((discrim_start > name + 3
61012eef 7053 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7054 || discrim_start[-1] == '.')
7055 break;
14f9c5c9
AS
7056 }
7057
7058 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7059 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7060 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7061 return result;
7062}
7063
4c4b4cd2
PH
7064/* Scan STR for a subtype-encoded number, beginning at position K.
7065 Put the position of the character just past the number scanned in
7066 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7067 Return 1 if there was a valid number at the given position, and 0
7068 otherwise. A "subtype-encoded" number consists of the absolute value
7069 in decimal, followed by the letter 'm' to indicate a negative number.
7070 Assumes 0m does not occur. */
14f9c5c9
AS
7071
7072int
d2e4a39e 7073ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7074{
7075 ULONGEST RU;
7076
d2e4a39e 7077 if (!isdigit (str[k]))
14f9c5c9
AS
7078 return 0;
7079
4c4b4cd2 7080 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7081 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7082 LONGEST. */
14f9c5c9
AS
7083 RU = 0;
7084 while (isdigit (str[k]))
7085 {
d2e4a39e 7086 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7087 k += 1;
7088 }
7089
d2e4a39e 7090 if (str[k] == 'm')
14f9c5c9
AS
7091 {
7092 if (R != NULL)
4c4b4cd2 7093 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7094 k += 1;
7095 }
7096 else if (R != NULL)
7097 *R = (LONGEST) RU;
7098
4c4b4cd2 7099 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7100 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7101 number representable as a LONGEST (although either would probably work
7102 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7103 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7104
7105 if (new_k != NULL)
7106 *new_k = k;
7107 return 1;
7108}
7109
4c4b4cd2
PH
7110/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7111 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7112 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7113
d2e4a39e 7114int
ebf56fd3 7115ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7116{
d2e4a39e 7117 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7118 int p;
7119
7120 p = 0;
7121 while (1)
7122 {
d2e4a39e 7123 switch (name[p])
4c4b4cd2
PH
7124 {
7125 case '\0':
7126 return 0;
7127 case 'S':
7128 {
7129 LONGEST W;
5b4ee69b 7130
4c4b4cd2
PH
7131 if (!ada_scan_number (name, p + 1, &W, &p))
7132 return 0;
7133 if (val == W)
7134 return 1;
7135 break;
7136 }
7137 case 'R':
7138 {
7139 LONGEST L, U;
5b4ee69b 7140
4c4b4cd2
PH
7141 if (!ada_scan_number (name, p + 1, &L, &p)
7142 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7143 return 0;
7144 if (val >= L && val <= U)
7145 return 1;
7146 break;
7147 }
7148 case 'O':
7149 return 1;
7150 default:
7151 return 0;
7152 }
7153 }
7154}
7155
0963b4bd 7156/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7157
7158/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7159 ARG_TYPE, extract and return the value of one of its (non-static)
7160 fields. FIELDNO says which field. Differs from value_primitive_field
7161 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7162
4c4b4cd2 7163static struct value *
d2e4a39e 7164ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7165 struct type *arg_type)
14f9c5c9 7166{
14f9c5c9
AS
7167 struct type *type;
7168
61ee279c 7169 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7170 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7171
4c4b4cd2 7172 /* Handle packed fields. */
14f9c5c9
AS
7173
7174 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7175 {
7176 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7177 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7178
0fd88904 7179 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7180 offset + bit_pos / 8,
7181 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7182 }
7183 else
7184 return value_primitive_field (arg1, offset, fieldno, arg_type);
7185}
7186
52ce6436
PH
7187/* Find field with name NAME in object of type TYPE. If found,
7188 set the following for each argument that is non-null:
7189 - *FIELD_TYPE_P to the field's type;
7190 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7191 an object of that type;
7192 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7193 - *BIT_SIZE_P to its size in bits if the field is packed, and
7194 0 otherwise;
7195 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7196 fields up to but not including the desired field, or by the total
7197 number of fields if not found. A NULL value of NAME never
7198 matches; the function just counts visible fields in this case.
7199
0963b4bd 7200 Returns 1 if found, 0 otherwise. */
52ce6436 7201
4c4b4cd2 7202static int
0d5cff50 7203find_struct_field (const char *name, struct type *type, int offset,
76a01679 7204 struct type **field_type_p,
52ce6436
PH
7205 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7206 int *index_p)
4c4b4cd2
PH
7207{
7208 int i;
7209
61ee279c 7210 type = ada_check_typedef (type);
76a01679 7211
52ce6436
PH
7212 if (field_type_p != NULL)
7213 *field_type_p = NULL;
7214 if (byte_offset_p != NULL)
d5d6fca5 7215 *byte_offset_p = 0;
52ce6436
PH
7216 if (bit_offset_p != NULL)
7217 *bit_offset_p = 0;
7218 if (bit_size_p != NULL)
7219 *bit_size_p = 0;
7220
7221 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7222 {
7223 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7224 int fld_offset = offset + bit_pos / 8;
0d5cff50 7225 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7226
4c4b4cd2
PH
7227 if (t_field_name == NULL)
7228 continue;
7229
52ce6436 7230 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7231 {
7232 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7233
52ce6436
PH
7234 if (field_type_p != NULL)
7235 *field_type_p = TYPE_FIELD_TYPE (type, i);
7236 if (byte_offset_p != NULL)
7237 *byte_offset_p = fld_offset;
7238 if (bit_offset_p != NULL)
7239 *bit_offset_p = bit_pos % 8;
7240 if (bit_size_p != NULL)
7241 *bit_size_p = bit_size;
76a01679
JB
7242 return 1;
7243 }
4c4b4cd2
PH
7244 else if (ada_is_wrapper_field (type, i))
7245 {
52ce6436
PH
7246 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7247 field_type_p, byte_offset_p, bit_offset_p,
7248 bit_size_p, index_p))
76a01679
JB
7249 return 1;
7250 }
4c4b4cd2
PH
7251 else if (ada_is_variant_part (type, i))
7252 {
52ce6436
PH
7253 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7254 fixed type?? */
4c4b4cd2 7255 int j;
52ce6436
PH
7256 struct type *field_type
7257 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7258
52ce6436 7259 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7260 {
76a01679
JB
7261 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7262 fld_offset
7263 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7264 field_type_p, byte_offset_p,
52ce6436 7265 bit_offset_p, bit_size_p, index_p))
76a01679 7266 return 1;
4c4b4cd2
PH
7267 }
7268 }
52ce6436
PH
7269 else if (index_p != NULL)
7270 *index_p += 1;
4c4b4cd2
PH
7271 }
7272 return 0;
7273}
7274
0963b4bd 7275/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7276
52ce6436
PH
7277static int
7278num_visible_fields (struct type *type)
7279{
7280 int n;
5b4ee69b 7281
52ce6436
PH
7282 n = 0;
7283 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7284 return n;
7285}
14f9c5c9 7286
4c4b4cd2 7287/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7288 and search in it assuming it has (class) type TYPE.
7289 If found, return value, else return NULL.
7290
4c4b4cd2 7291 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7292
4c4b4cd2 7293static struct value *
108d56a4 7294ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7295 struct type *type)
14f9c5c9
AS
7296{
7297 int i;
14f9c5c9 7298
5b4ee69b 7299 type = ada_check_typedef (type);
52ce6436 7300 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7301 {
0d5cff50 7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7303
7304 if (t_field_name == NULL)
4c4b4cd2 7305 continue;
14f9c5c9
AS
7306
7307 else if (field_name_match (t_field_name, name))
4c4b4cd2 7308 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7309
7310 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7311 {
0963b4bd 7312 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7313 ada_search_struct_field (name, arg,
7314 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7315 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7316
4c4b4cd2
PH
7317 if (v != NULL)
7318 return v;
7319 }
14f9c5c9
AS
7320
7321 else if (ada_is_variant_part (type, i))
4c4b4cd2 7322 {
0963b4bd 7323 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7324 int j;
5b4ee69b
MS
7325 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7326 i));
4c4b4cd2
PH
7327 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7328
52ce6436 7329 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7330 {
0963b4bd
MS
7331 struct value *v = ada_search_struct_field /* Force line
7332 break. */
06d5cf63
JB
7333 (name, arg,
7334 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7336
4c4b4cd2
PH
7337 if (v != NULL)
7338 return v;
7339 }
7340 }
14f9c5c9
AS
7341 }
7342 return NULL;
7343}
d2e4a39e 7344
52ce6436
PH
7345static struct value *ada_index_struct_field_1 (int *, struct value *,
7346 int, struct type *);
7347
7348
7349/* Return field #INDEX in ARG, where the index is that returned by
7350 * find_struct_field through its INDEX_P argument. Adjust the address
7351 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7352 * If found, return value, else return NULL. */
52ce6436
PH
7353
7354static struct value *
7355ada_index_struct_field (int index, struct value *arg, int offset,
7356 struct type *type)
7357{
7358 return ada_index_struct_field_1 (&index, arg, offset, type);
7359}
7360
7361
7362/* Auxiliary function for ada_index_struct_field. Like
7363 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7364 * *INDEX_P. */
52ce6436
PH
7365
7366static struct value *
7367ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7368 struct type *type)
7369{
7370 int i;
7371 type = ada_check_typedef (type);
7372
7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7374 {
7375 if (TYPE_FIELD_NAME (type, i) == NULL)
7376 continue;
7377 else if (ada_is_wrapper_field (type, i))
7378 {
0963b4bd 7379 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7380 ada_index_struct_field_1 (index_p, arg,
7381 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7382 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7383
52ce6436
PH
7384 if (v != NULL)
7385 return v;
7386 }
7387
7388 else if (ada_is_variant_part (type, i))
7389 {
7390 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7391 find_struct_field. */
52ce6436
PH
7392 error (_("Cannot assign this kind of variant record"));
7393 }
7394 else if (*index_p == 0)
7395 return ada_value_primitive_field (arg, offset, i, type);
7396 else
7397 *index_p -= 1;
7398 }
7399 return NULL;
7400}
7401
4c4b4cd2
PH
7402/* Given ARG, a value of type (pointer or reference to a)*
7403 structure/union, extract the component named NAME from the ultimate
7404 target structure/union and return it as a value with its
f5938064 7405 appropriate type.
14f9c5c9 7406
4c4b4cd2
PH
7407 The routine searches for NAME among all members of the structure itself
7408 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7409 (e.g., '_parent').
7410
03ee6b2e
PH
7411 If NO_ERR, then simply return NULL in case of error, rather than
7412 calling error. */
14f9c5c9 7413
d2e4a39e 7414struct value *
a121b7c1 7415ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7416{
4c4b4cd2 7417 struct type *t, *t1;
d2e4a39e 7418 struct value *v;
14f9c5c9 7419
4c4b4cd2 7420 v = NULL;
df407dfe 7421 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7422 if (TYPE_CODE (t) == TYPE_CODE_REF)
7423 {
7424 t1 = TYPE_TARGET_TYPE (t);
7425 if (t1 == NULL)
03ee6b2e 7426 goto BadValue;
61ee279c 7427 t1 = ada_check_typedef (t1);
4c4b4cd2 7428 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7429 {
994b9211 7430 arg = coerce_ref (arg);
76a01679
JB
7431 t = t1;
7432 }
4c4b4cd2 7433 }
14f9c5c9 7434
4c4b4cd2
PH
7435 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7436 {
7437 t1 = TYPE_TARGET_TYPE (t);
7438 if (t1 == NULL)
03ee6b2e 7439 goto BadValue;
61ee279c 7440 t1 = ada_check_typedef (t1);
4c4b4cd2 7441 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7442 {
7443 arg = value_ind (arg);
7444 t = t1;
7445 }
4c4b4cd2 7446 else
76a01679 7447 break;
4c4b4cd2 7448 }
14f9c5c9 7449
4c4b4cd2 7450 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7451 goto BadValue;
14f9c5c9 7452
4c4b4cd2
PH
7453 if (t1 == t)
7454 v = ada_search_struct_field (name, arg, 0, t);
7455 else
7456 {
7457 int bit_offset, bit_size, byte_offset;
7458 struct type *field_type;
7459 CORE_ADDR address;
7460
76a01679 7461 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7462 address = value_address (ada_value_ind (arg));
4c4b4cd2 7463 else
b50d69b5 7464 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7465
1ed6ede0 7466 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7467 if (find_struct_field (name, t1, 0,
7468 &field_type, &byte_offset, &bit_offset,
52ce6436 7469 &bit_size, NULL))
76a01679
JB
7470 {
7471 if (bit_size != 0)
7472 {
714e53ab
PH
7473 if (TYPE_CODE (t) == TYPE_CODE_REF)
7474 arg = ada_coerce_ref (arg);
7475 else
7476 arg = ada_value_ind (arg);
76a01679
JB
7477 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7478 bit_offset, bit_size,
7479 field_type);
7480 }
7481 else
f5938064 7482 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7483 }
7484 }
7485
03ee6b2e
PH
7486 if (v != NULL || no_err)
7487 return v;
7488 else
323e0a4a 7489 error (_("There is no member named %s."), name);
14f9c5c9 7490
03ee6b2e
PH
7491 BadValue:
7492 if (no_err)
7493 return NULL;
7494 else
0963b4bd
MS
7495 error (_("Attempt to extract a component of "
7496 "a value that is not a record."));
14f9c5c9
AS
7497}
7498
3b4de39c 7499/* Return a string representation of type TYPE. */
99bbb428 7500
3b4de39c 7501static std::string
99bbb428
PA
7502type_as_string (struct type *type)
7503{
d7e74731 7504 string_file tmp_stream;
99bbb428 7505
d7e74731 7506 type_print (type, "", &tmp_stream, -1);
99bbb428 7507
d7e74731 7508 return std::move (tmp_stream.string ());
99bbb428
PA
7509}
7510
14f9c5c9 7511/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7512 If DISPP is non-null, add its byte displacement from the beginning of a
7513 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7514 work for packed fields).
7515
7516 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7517 followed by "___".
14f9c5c9 7518
0963b4bd 7519 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7520 be a (pointer or reference)+ to a struct or union, and the
7521 ultimate target type will be searched.
14f9c5c9
AS
7522
7523 Looks recursively into variant clauses and parent types.
7524
4c4b4cd2
PH
7525 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7526 TYPE is not a type of the right kind. */
14f9c5c9 7527
4c4b4cd2 7528static struct type *
a121b7c1 7529ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7530 int noerr)
14f9c5c9
AS
7531{
7532 int i;
7533
7534 if (name == NULL)
7535 goto BadName;
7536
76a01679 7537 if (refok && type != NULL)
4c4b4cd2
PH
7538 while (1)
7539 {
61ee279c 7540 type = ada_check_typedef (type);
76a01679
JB
7541 if (TYPE_CODE (type) != TYPE_CODE_PTR
7542 && TYPE_CODE (type) != TYPE_CODE_REF)
7543 break;
7544 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7545 }
14f9c5c9 7546
76a01679 7547 if (type == NULL
1265e4aa
JB
7548 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7549 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7550 {
4c4b4cd2 7551 if (noerr)
76a01679 7552 return NULL;
99bbb428 7553
3b4de39c
PA
7554 error (_("Type %s is not a structure or union type"),
7555 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7556 }
7557
7558 type = to_static_fixed_type (type);
7559
7560 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7561 {
0d5cff50 7562 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7563 struct type *t;
d2e4a39e 7564
14f9c5c9 7565 if (t_field_name == NULL)
4c4b4cd2 7566 continue;
14f9c5c9
AS
7567
7568 else if (field_name_match (t_field_name, name))
988f6b3d 7569 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7570
7571 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7572 {
4c4b4cd2 7573 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7574 0, 1);
4c4b4cd2 7575 if (t != NULL)
988f6b3d 7576 return t;
4c4b4cd2 7577 }
14f9c5c9
AS
7578
7579 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7580 {
7581 int j;
5b4ee69b
MS
7582 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7583 i));
4c4b4cd2
PH
7584
7585 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7586 {
b1f33ddd
JB
7587 /* FIXME pnh 2008/01/26: We check for a field that is
7588 NOT wrapped in a struct, since the compiler sometimes
7589 generates these for unchecked variant types. Revisit
0963b4bd 7590 if the compiler changes this practice. */
0d5cff50 7591 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7592
b1f33ddd
JB
7593 if (v_field_name != NULL
7594 && field_name_match (v_field_name, name))
460efde1 7595 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7596 else
0963b4bd
MS
7597 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7598 j),
988f6b3d 7599 name, 0, 1);
b1f33ddd 7600
4c4b4cd2 7601 if (t != NULL)
988f6b3d 7602 return t;
4c4b4cd2
PH
7603 }
7604 }
14f9c5c9
AS
7605
7606 }
7607
7608BadName:
d2e4a39e 7609 if (!noerr)
14f9c5c9 7610 {
2b2798cc 7611 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7612
7613 error (_("Type %s has no component named %s"),
3b4de39c 7614 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7615 }
7616
7617 return NULL;
7618}
7619
b1f33ddd
JB
7620/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7621 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7622 represents an unchecked union (that is, the variant part of a
0963b4bd 7623 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7624
7625static int
7626is_unchecked_variant (struct type *var_type, struct type *outer_type)
7627{
a121b7c1 7628 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7629
988f6b3d 7630 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7631}
7632
7633
14f9c5c9
AS
7634/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7635 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7636 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7637 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7638
d2e4a39e 7639int
ebf56fd3 7640ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7641 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7642{
7643 int others_clause;
7644 int i;
a121b7c1 7645 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7646 struct value *outer;
7647 struct value *discrim;
14f9c5c9
AS
7648 LONGEST discrim_val;
7649
012370f6
TT
7650 /* Using plain value_from_contents_and_address here causes problems
7651 because we will end up trying to resolve a type that is currently
7652 being constructed. */
7653 outer = value_from_contents_and_address_unresolved (outer_type,
7654 outer_valaddr, 0);
0c281816
JB
7655 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7656 if (discrim == NULL)
14f9c5c9 7657 return -1;
0c281816 7658 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7659
7660 others_clause = -1;
7661 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7662 {
7663 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7664 others_clause = i;
14f9c5c9 7665 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7666 return i;
14f9c5c9
AS
7667 }
7668
7669 return others_clause;
7670}
d2e4a39e 7671\f
14f9c5c9
AS
7672
7673
4c4b4cd2 7674 /* Dynamic-Sized Records */
14f9c5c9
AS
7675
7676/* Strategy: The type ostensibly attached to a value with dynamic size
7677 (i.e., a size that is not statically recorded in the debugging
7678 data) does not accurately reflect the size or layout of the value.
7679 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7680 conventional types that are constructed on the fly. */
14f9c5c9
AS
7681
7682/* There is a subtle and tricky problem here. In general, we cannot
7683 determine the size of dynamic records without its data. However,
7684 the 'struct value' data structure, which GDB uses to represent
7685 quantities in the inferior process (the target), requires the size
7686 of the type at the time of its allocation in order to reserve space
7687 for GDB's internal copy of the data. That's why the
7688 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7689 rather than struct value*s.
14f9c5c9
AS
7690
7691 However, GDB's internal history variables ($1, $2, etc.) are
7692 struct value*s containing internal copies of the data that are not, in
7693 general, the same as the data at their corresponding addresses in
7694 the target. Fortunately, the types we give to these values are all
7695 conventional, fixed-size types (as per the strategy described
7696 above), so that we don't usually have to perform the
7697 'to_fixed_xxx_type' conversions to look at their values.
7698 Unfortunately, there is one exception: if one of the internal
7699 history variables is an array whose elements are unconstrained
7700 records, then we will need to create distinct fixed types for each
7701 element selected. */
7702
7703/* The upshot of all of this is that many routines take a (type, host
7704 address, target address) triple as arguments to represent a value.
7705 The host address, if non-null, is supposed to contain an internal
7706 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7707 target at the target address. */
14f9c5c9
AS
7708
7709/* Assuming that VAL0 represents a pointer value, the result of
7710 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7711 dynamic-sized types. */
14f9c5c9 7712
d2e4a39e
AS
7713struct value *
7714ada_value_ind (struct value *val0)
14f9c5c9 7715{
c48db5ca 7716 struct value *val = value_ind (val0);
5b4ee69b 7717
b50d69b5
JG
7718 if (ada_is_tagged_type (value_type (val), 0))
7719 val = ada_tag_value_at_base_address (val);
7720
4c4b4cd2 7721 return ada_to_fixed_value (val);
14f9c5c9
AS
7722}
7723
7724/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7725 qualifiers on VAL0. */
7726
d2e4a39e
AS
7727static struct value *
7728ada_coerce_ref (struct value *val0)
7729{
df407dfe 7730 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7731 {
7732 struct value *val = val0;
5b4ee69b 7733
994b9211 7734 val = coerce_ref (val);
b50d69b5
JG
7735
7736 if (ada_is_tagged_type (value_type (val), 0))
7737 val = ada_tag_value_at_base_address (val);
7738
4c4b4cd2 7739 return ada_to_fixed_value (val);
d2e4a39e
AS
7740 }
7741 else
14f9c5c9
AS
7742 return val0;
7743}
7744
7745/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7746 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7747
7748static unsigned int
ebf56fd3 7749align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7750{
7751 return (off + alignment - 1) & ~(alignment - 1);
7752}
7753
4c4b4cd2 7754/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7755
7756static unsigned int
ebf56fd3 7757field_alignment (struct type *type, int f)
14f9c5c9 7758{
d2e4a39e 7759 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7760 int len;
14f9c5c9
AS
7761 int align_offset;
7762
64a1bf19
JB
7763 /* The field name should never be null, unless the debugging information
7764 is somehow malformed. In this case, we assume the field does not
7765 require any alignment. */
7766 if (name == NULL)
7767 return 1;
7768
7769 len = strlen (name);
7770
4c4b4cd2
PH
7771 if (!isdigit (name[len - 1]))
7772 return 1;
14f9c5c9 7773
d2e4a39e 7774 if (isdigit (name[len - 2]))
14f9c5c9
AS
7775 align_offset = len - 2;
7776 else
7777 align_offset = len - 1;
7778
61012eef 7779 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7780 return TARGET_CHAR_BIT;
7781
4c4b4cd2
PH
7782 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7783}
7784
852dff6c 7785/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7786
852dff6c
JB
7787static struct symbol *
7788ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7789{
7790 struct symbol *sym;
7791
7792 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7793 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7794 return sym;
7795
4186eb54
KS
7796 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7797 return sym;
14f9c5c9
AS
7798}
7799
dddfab26
UW
7800/* Find a type named NAME. Ignores ambiguity. This routine will look
7801 solely for types defined by debug info, it will not search the GDB
7802 primitive types. */
4c4b4cd2 7803
852dff6c 7804static struct type *
ebf56fd3 7805ada_find_any_type (const char *name)
14f9c5c9 7806{
852dff6c 7807 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7808
14f9c5c9 7809 if (sym != NULL)
dddfab26 7810 return SYMBOL_TYPE (sym);
14f9c5c9 7811
dddfab26 7812 return NULL;
14f9c5c9
AS
7813}
7814
739593e0
JB
7815/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7816 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7817 symbol, in which case it is returned. Otherwise, this looks for
7818 symbols whose name is that of NAME_SYM suffixed with "___XR".
7819 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7820
7821struct symbol *
270140bd 7822ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7823{
739593e0 7824 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7825 struct symbol *sym;
7826
739593e0
JB
7827 if (strstr (name, "___XR") != NULL)
7828 return name_sym;
7829
aeb5907d
JB
7830 sym = find_old_style_renaming_symbol (name, block);
7831
7832 if (sym != NULL)
7833 return sym;
7834
0963b4bd 7835 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7836 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7837 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7838 return sym;
7839 else
7840 return NULL;
7841}
7842
7843static struct symbol *
270140bd 7844find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7845{
7f0df278 7846 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7847 char *rename;
7848
7849 if (function_sym != NULL)
7850 {
7851 /* If the symbol is defined inside a function, NAME is not fully
7852 qualified. This means we need to prepend the function name
7853 as well as adding the ``___XR'' suffix to build the name of
7854 the associated renaming symbol. */
0d5cff50 7855 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7856 /* Function names sometimes contain suffixes used
7857 for instance to qualify nested subprograms. When building
7858 the XR type name, we need to make sure that this suffix is
7859 not included. So do not include any suffix in the function
7860 name length below. */
69fadcdf 7861 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7862 const int rename_len = function_name_len + 2 /* "__" */
7863 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7864
529cad9c 7865 /* Strip the suffix if necessary. */
69fadcdf
JB
7866 ada_remove_trailing_digits (function_name, &function_name_len);
7867 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7868 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7869
4c4b4cd2
PH
7870 /* Library-level functions are a special case, as GNAT adds
7871 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7872 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7873 have this prefix, so we need to skip this prefix if present. */
7874 if (function_name_len > 5 /* "_ada_" */
7875 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7876 {
7877 function_name += 5;
7878 function_name_len -= 5;
7879 }
4c4b4cd2
PH
7880
7881 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7882 strncpy (rename, function_name, function_name_len);
7883 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7884 "__%s___XR", name);
4c4b4cd2
PH
7885 }
7886 else
7887 {
7888 const int rename_len = strlen (name) + 6;
5b4ee69b 7889
4c4b4cd2 7890 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7891 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7892 }
7893
852dff6c 7894 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7895}
7896
14f9c5c9 7897/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7898 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7899 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7900 otherwise return 0. */
7901
14f9c5c9 7902int
d2e4a39e 7903ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7904{
7905 if (type1 == NULL)
7906 return 1;
7907 else if (type0 == NULL)
7908 return 0;
7909 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7910 return 1;
7911 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7912 return 0;
4c4b4cd2
PH
7913 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7914 return 1;
ad82864c 7915 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7916 return 1;
4c4b4cd2
PH
7917 else if (ada_is_array_descriptor_type (type0)
7918 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7919 return 1;
aeb5907d
JB
7920 else
7921 {
7922 const char *type0_name = type_name_no_tag (type0);
7923 const char *type1_name = type_name_no_tag (type1);
7924
7925 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7926 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7927 return 1;
7928 }
14f9c5c9
AS
7929 return 0;
7930}
7931
7932/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7933 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7934
0d5cff50 7935const char *
d2e4a39e 7936ada_type_name (struct type *type)
14f9c5c9 7937{
d2e4a39e 7938 if (type == NULL)
14f9c5c9
AS
7939 return NULL;
7940 else if (TYPE_NAME (type) != NULL)
7941 return TYPE_NAME (type);
7942 else
7943 return TYPE_TAG_NAME (type);
7944}
7945
b4ba55a1
JB
7946/* Search the list of "descriptive" types associated to TYPE for a type
7947 whose name is NAME. */
7948
7949static struct type *
7950find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7951{
931e5bc3 7952 struct type *result, *tmp;
b4ba55a1 7953
c6044dd1
JB
7954 if (ada_ignore_descriptive_types_p)
7955 return NULL;
7956
b4ba55a1
JB
7957 /* If there no descriptive-type info, then there is no parallel type
7958 to be found. */
7959 if (!HAVE_GNAT_AUX_INFO (type))
7960 return NULL;
7961
7962 result = TYPE_DESCRIPTIVE_TYPE (type);
7963 while (result != NULL)
7964 {
0d5cff50 7965 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7966
7967 if (result_name == NULL)
7968 {
7969 warning (_("unexpected null name on descriptive type"));
7970 return NULL;
7971 }
7972
7973 /* If the names match, stop. */
7974 if (strcmp (result_name, name) == 0)
7975 break;
7976
7977 /* Otherwise, look at the next item on the list, if any. */
7978 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7979 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7980 else
7981 tmp = NULL;
7982
7983 /* If not found either, try after having resolved the typedef. */
7984 if (tmp != NULL)
7985 result = tmp;
b4ba55a1 7986 else
931e5bc3 7987 {
f168693b 7988 result = check_typedef (result);
931e5bc3
JG
7989 if (HAVE_GNAT_AUX_INFO (result))
7990 result = TYPE_DESCRIPTIVE_TYPE (result);
7991 else
7992 result = NULL;
7993 }
b4ba55a1
JB
7994 }
7995
7996 /* If we didn't find a match, see whether this is a packed array. With
7997 older compilers, the descriptive type information is either absent or
7998 irrelevant when it comes to packed arrays so the above lookup fails.
7999 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8000 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8001 return ada_find_any_type (name);
8002
8003 return result;
8004}
8005
8006/* Find a parallel type to TYPE with the specified NAME, using the
8007 descriptive type taken from the debugging information, if available,
8008 and otherwise using the (slower) name-based method. */
8009
8010static struct type *
8011ada_find_parallel_type_with_name (struct type *type, const char *name)
8012{
8013 struct type *result = NULL;
8014
8015 if (HAVE_GNAT_AUX_INFO (type))
8016 result = find_parallel_type_by_descriptive_type (type, name);
8017 else
8018 result = ada_find_any_type (name);
8019
8020 return result;
8021}
8022
8023/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8024 SUFFIX to the name of TYPE. */
14f9c5c9 8025
d2e4a39e 8026struct type *
ebf56fd3 8027ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8028{
0d5cff50 8029 char *name;
fe978cb0 8030 const char *type_name = ada_type_name (type);
14f9c5c9 8031 int len;
d2e4a39e 8032
fe978cb0 8033 if (type_name == NULL)
14f9c5c9
AS
8034 return NULL;
8035
fe978cb0 8036 len = strlen (type_name);
14f9c5c9 8037
b4ba55a1 8038 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8039
fe978cb0 8040 strcpy (name, type_name);
14f9c5c9
AS
8041 strcpy (name + len, suffix);
8042
b4ba55a1 8043 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8044}
8045
14f9c5c9 8046/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8047 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8048
d2e4a39e
AS
8049static struct type *
8050dynamic_template_type (struct type *type)
14f9c5c9 8051{
61ee279c 8052 type = ada_check_typedef (type);
14f9c5c9
AS
8053
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8055 || ada_type_name (type) == NULL)
14f9c5c9 8056 return NULL;
d2e4a39e 8057 else
14f9c5c9
AS
8058 {
8059 int len = strlen (ada_type_name (type));
5b4ee69b 8060
4c4b4cd2
PH
8061 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8062 return type;
14f9c5c9 8063 else
4c4b4cd2 8064 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8065 }
8066}
8067
8068/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8069 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8070
d2e4a39e
AS
8071static int
8072is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8073{
8074 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8075
d2e4a39e 8076 return name != NULL
14f9c5c9
AS
8077 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8078 && strstr (name, "___XVL") != NULL;
8079}
8080
4c4b4cd2
PH
8081/* The index of the variant field of TYPE, or -1 if TYPE does not
8082 represent a variant record type. */
14f9c5c9 8083
d2e4a39e 8084static int
4c4b4cd2 8085variant_field_index (struct type *type)
14f9c5c9
AS
8086{
8087 int f;
8088
4c4b4cd2
PH
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8090 return -1;
8091
8092 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8093 {
8094 if (ada_is_variant_part (type, f))
8095 return f;
8096 }
8097 return -1;
14f9c5c9
AS
8098}
8099
4c4b4cd2
PH
8100/* A record type with no fields. */
8101
d2e4a39e 8102static struct type *
fe978cb0 8103empty_record (struct type *templ)
14f9c5c9 8104{
fe978cb0 8105 struct type *type = alloc_type_copy (templ);
5b4ee69b 8106
14f9c5c9
AS
8107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8108 TYPE_NFIELDS (type) = 0;
8109 TYPE_FIELDS (type) = NULL;
b1f33ddd 8110 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8111 TYPE_NAME (type) = "<empty>";
8112 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8113 TYPE_LENGTH (type) = 0;
8114 return type;
8115}
8116
8117/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8118 the value of type TYPE at VALADDR or ADDRESS (see comments at
8119 the beginning of this section) VAL according to GNAT conventions.
8120 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8121 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8122 an outer-level type (i.e., as opposed to a branch of a variant.) A
8123 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8124 of the variant.
14f9c5c9 8125
4c4b4cd2
PH
8126 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8127 length are not statically known are discarded. As a consequence,
8128 VALADDR, ADDRESS and DVAL0 are ignored.
8129
8130 NOTE: Limitations: For now, we assume that dynamic fields and
8131 variants occupy whole numbers of bytes. However, they need not be
8132 byte-aligned. */
8133
8134struct type *
10a2c479 8135ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8136 const gdb_byte *valaddr,
4c4b4cd2
PH
8137 CORE_ADDR address, struct value *dval0,
8138 int keep_dynamic_fields)
14f9c5c9 8139{
d2e4a39e
AS
8140 struct value *mark = value_mark ();
8141 struct value *dval;
8142 struct type *rtype;
14f9c5c9 8143 int nfields, bit_len;
4c4b4cd2 8144 int variant_field;
14f9c5c9 8145 long off;
d94e4f4f 8146 int fld_bit_len;
14f9c5c9
AS
8147 int f;
8148
4c4b4cd2
PH
8149 /* Compute the number of fields in this record type that are going
8150 to be processed: unless keep_dynamic_fields, this includes only
8151 fields whose position and length are static will be processed. */
8152 if (keep_dynamic_fields)
8153 nfields = TYPE_NFIELDS (type);
8154 else
8155 {
8156 nfields = 0;
76a01679 8157 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8158 && !ada_is_variant_part (type, nfields)
8159 && !is_dynamic_field (type, nfields))
8160 nfields++;
8161 }
8162
e9bb382b 8163 rtype = alloc_type_copy (type);
14f9c5c9
AS
8164 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8165 INIT_CPLUS_SPECIFIC (rtype);
8166 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8167 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8168 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8169 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8170 TYPE_NAME (rtype) = ada_type_name (type);
8171 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8172 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8173
d2e4a39e
AS
8174 off = 0;
8175 bit_len = 0;
4c4b4cd2
PH
8176 variant_field = -1;
8177
14f9c5c9
AS
8178 for (f = 0; f < nfields; f += 1)
8179 {
6c038f32
PH
8180 off = align_value (off, field_alignment (type, f))
8181 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8182 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8183 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8184
d2e4a39e 8185 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8186 {
8187 variant_field = f;
d94e4f4f 8188 fld_bit_len = 0;
4c4b4cd2 8189 }
14f9c5c9 8190 else if (is_dynamic_field (type, f))
4c4b4cd2 8191 {
284614f0
JB
8192 const gdb_byte *field_valaddr = valaddr;
8193 CORE_ADDR field_address = address;
8194 struct type *field_type =
8195 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8196
4c4b4cd2 8197 if (dval0 == NULL)
b5304971
JG
8198 {
8199 /* rtype's length is computed based on the run-time
8200 value of discriminants. If the discriminants are not
8201 initialized, the type size may be completely bogus and
0963b4bd 8202 GDB may fail to allocate a value for it. So check the
b5304971 8203 size first before creating the value. */
c1b5a1a6 8204 ada_ensure_varsize_limit (rtype);
012370f6
TT
8205 /* Using plain value_from_contents_and_address here
8206 causes problems because we will end up trying to
8207 resolve a type that is currently being
8208 constructed. */
8209 dval = value_from_contents_and_address_unresolved (rtype,
8210 valaddr,
8211 address);
9f1f738a 8212 rtype = value_type (dval);
b5304971 8213 }
4c4b4cd2
PH
8214 else
8215 dval = dval0;
8216
284614f0
JB
8217 /* If the type referenced by this field is an aligner type, we need
8218 to unwrap that aligner type, because its size might not be set.
8219 Keeping the aligner type would cause us to compute the wrong
8220 size for this field, impacting the offset of the all the fields
8221 that follow this one. */
8222 if (ada_is_aligner_type (field_type))
8223 {
8224 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8225
8226 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8227 field_address = cond_offset_target (field_address, field_offset);
8228 field_type = ada_aligned_type (field_type);
8229 }
8230
8231 field_valaddr = cond_offset_host (field_valaddr,
8232 off / TARGET_CHAR_BIT);
8233 field_address = cond_offset_target (field_address,
8234 off / TARGET_CHAR_BIT);
8235
8236 /* Get the fixed type of the field. Note that, in this case,
8237 we do not want to get the real type out of the tag: if
8238 the current field is the parent part of a tagged record,
8239 we will get the tag of the object. Clearly wrong: the real
8240 type of the parent is not the real type of the child. We
8241 would end up in an infinite loop. */
8242 field_type = ada_get_base_type (field_type);
8243 field_type = ada_to_fixed_type (field_type, field_valaddr,
8244 field_address, dval, 0);
27f2a97b
JB
8245 /* If the field size is already larger than the maximum
8246 object size, then the record itself will necessarily
8247 be larger than the maximum object size. We need to make
8248 this check now, because the size might be so ridiculously
8249 large (due to an uninitialized variable in the inferior)
8250 that it would cause an overflow when adding it to the
8251 record size. */
c1b5a1a6 8252 ada_ensure_varsize_limit (field_type);
284614f0
JB
8253
8254 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8255 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8256 /* The multiplication can potentially overflow. But because
8257 the field length has been size-checked just above, and
8258 assuming that the maximum size is a reasonable value,
8259 an overflow should not happen in practice. So rather than
8260 adding overflow recovery code to this already complex code,
8261 we just assume that it's not going to happen. */
d94e4f4f 8262 fld_bit_len =
4c4b4cd2
PH
8263 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8264 }
14f9c5c9 8265 else
4c4b4cd2 8266 {
5ded5331
JB
8267 /* Note: If this field's type is a typedef, it is important
8268 to preserve the typedef layer.
8269
8270 Otherwise, we might be transforming a typedef to a fat
8271 pointer (encoding a pointer to an unconstrained array),
8272 into a basic fat pointer (encoding an unconstrained
8273 array). As both types are implemented using the same
8274 structure, the typedef is the only clue which allows us
8275 to distinguish between the two options. Stripping it
8276 would prevent us from printing this field appropriately. */
8277 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8278 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8279 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8280 fld_bit_len =
4c4b4cd2
PH
8281 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8282 else
5ded5331
JB
8283 {
8284 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8285
8286 /* We need to be careful of typedefs when computing
8287 the length of our field. If this is a typedef,
8288 get the length of the target type, not the length
8289 of the typedef. */
8290 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8291 field_type = ada_typedef_target_type (field_type);
8292
8293 fld_bit_len =
8294 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8295 }
4c4b4cd2 8296 }
14f9c5c9 8297 if (off + fld_bit_len > bit_len)
4c4b4cd2 8298 bit_len = off + fld_bit_len;
d94e4f4f 8299 off += fld_bit_len;
4c4b4cd2
PH
8300 TYPE_LENGTH (rtype) =
8301 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8302 }
4c4b4cd2
PH
8303
8304 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8305 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8306 the record. This can happen in the presence of representation
8307 clauses. */
8308 if (variant_field >= 0)
8309 {
8310 struct type *branch_type;
8311
8312 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8313
8314 if (dval0 == NULL)
9f1f738a 8315 {
012370f6
TT
8316 /* Using plain value_from_contents_and_address here causes
8317 problems because we will end up trying to resolve a type
8318 that is currently being constructed. */
8319 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8320 address);
9f1f738a
SA
8321 rtype = value_type (dval);
8322 }
4c4b4cd2
PH
8323 else
8324 dval = dval0;
8325
8326 branch_type =
8327 to_fixed_variant_branch_type
8328 (TYPE_FIELD_TYPE (type, variant_field),
8329 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8330 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8331 if (branch_type == NULL)
8332 {
8333 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8334 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8335 TYPE_NFIELDS (rtype) -= 1;
8336 }
8337 else
8338 {
8339 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8340 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8341 fld_bit_len =
8342 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8343 TARGET_CHAR_BIT;
8344 if (off + fld_bit_len > bit_len)
8345 bit_len = off + fld_bit_len;
8346 TYPE_LENGTH (rtype) =
8347 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8348 }
8349 }
8350
714e53ab
PH
8351 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8352 should contain the alignment of that record, which should be a strictly
8353 positive value. If null or negative, then something is wrong, most
8354 probably in the debug info. In that case, we don't round up the size
0963b4bd 8355 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8356 the current RTYPE length might be good enough for our purposes. */
8357 if (TYPE_LENGTH (type) <= 0)
8358 {
323e0a4a
AC
8359 if (TYPE_NAME (rtype))
8360 warning (_("Invalid type size for `%s' detected: %d."),
8361 TYPE_NAME (rtype), TYPE_LENGTH (type));
8362 else
8363 warning (_("Invalid type size for <unnamed> detected: %d."),
8364 TYPE_LENGTH (type));
714e53ab
PH
8365 }
8366 else
8367 {
8368 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8369 TYPE_LENGTH (type));
8370 }
14f9c5c9
AS
8371
8372 value_free_to_mark (mark);
d2e4a39e 8373 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8374 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8375 return rtype;
8376}
8377
4c4b4cd2
PH
8378/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8379 of 1. */
14f9c5c9 8380
d2e4a39e 8381static struct type *
fc1a4b47 8382template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8383 CORE_ADDR address, struct value *dval0)
8384{
8385 return ada_template_to_fixed_record_type_1 (type, valaddr,
8386 address, dval0, 1);
8387}
8388
8389/* An ordinary record type in which ___XVL-convention fields and
8390 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8391 static approximations, containing all possible fields. Uses
8392 no runtime values. Useless for use in values, but that's OK,
8393 since the results are used only for type determinations. Works on both
8394 structs and unions. Representation note: to save space, we memorize
8395 the result of this function in the TYPE_TARGET_TYPE of the
8396 template type. */
8397
8398static struct type *
8399template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8400{
8401 struct type *type;
8402 int nfields;
8403 int f;
8404
9e195661
PMR
8405 /* No need no do anything if the input type is already fixed. */
8406 if (TYPE_FIXED_INSTANCE (type0))
8407 return type0;
8408
8409 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8410 if (TYPE_TARGET_TYPE (type0) != NULL)
8411 return TYPE_TARGET_TYPE (type0);
8412
9e195661 8413 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8414 type = type0;
9e195661
PMR
8415 nfields = TYPE_NFIELDS (type0);
8416
8417 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8418 recompute all over next time. */
8419 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8420
8421 for (f = 0; f < nfields; f += 1)
8422 {
460efde1 8423 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8424 struct type *new_type;
14f9c5c9 8425
4c4b4cd2 8426 if (is_dynamic_field (type0, f))
460efde1
JB
8427 {
8428 field_type = ada_check_typedef (field_type);
8429 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8430 }
14f9c5c9 8431 else
f192137b 8432 new_type = static_unwrap_type (field_type);
9e195661
PMR
8433
8434 if (new_type != field_type)
8435 {
8436 /* Clone TYPE0 only the first time we get a new field type. */
8437 if (type == type0)
8438 {
8439 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8440 TYPE_CODE (type) = TYPE_CODE (type0);
8441 INIT_CPLUS_SPECIFIC (type);
8442 TYPE_NFIELDS (type) = nfields;
8443 TYPE_FIELDS (type) = (struct field *)
8444 TYPE_ALLOC (type, nfields * sizeof (struct field));
8445 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8446 sizeof (struct field) * nfields);
8447 TYPE_NAME (type) = ada_type_name (type0);
8448 TYPE_TAG_NAME (type) = NULL;
8449 TYPE_FIXED_INSTANCE (type) = 1;
8450 TYPE_LENGTH (type) = 0;
8451 }
8452 TYPE_FIELD_TYPE (type, f) = new_type;
8453 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8454 }
14f9c5c9 8455 }
9e195661 8456
14f9c5c9
AS
8457 return type;
8458}
8459
4c4b4cd2 8460/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8461 whose address in memory is ADDRESS, returns a revision of TYPE,
8462 which should be a non-dynamic-sized record, in which the variant
8463 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8464 for discriminant values in DVAL0, which can be NULL if the record
8465 contains the necessary discriminant values. */
8466
d2e4a39e 8467static struct type *
fc1a4b47 8468to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8469 CORE_ADDR address, struct value *dval0)
14f9c5c9 8470{
d2e4a39e 8471 struct value *mark = value_mark ();
4c4b4cd2 8472 struct value *dval;
d2e4a39e 8473 struct type *rtype;
14f9c5c9
AS
8474 struct type *branch_type;
8475 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8476 int variant_field = variant_field_index (type);
14f9c5c9 8477
4c4b4cd2 8478 if (variant_field == -1)
14f9c5c9
AS
8479 return type;
8480
4c4b4cd2 8481 if (dval0 == NULL)
9f1f738a
SA
8482 {
8483 dval = value_from_contents_and_address (type, valaddr, address);
8484 type = value_type (dval);
8485 }
4c4b4cd2
PH
8486 else
8487 dval = dval0;
8488
e9bb382b 8489 rtype = alloc_type_copy (type);
14f9c5c9 8490 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8491 INIT_CPLUS_SPECIFIC (rtype);
8492 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8493 TYPE_FIELDS (rtype) =
8494 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8495 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8496 sizeof (struct field) * nfields);
14f9c5c9
AS
8497 TYPE_NAME (rtype) = ada_type_name (type);
8498 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8499 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8500 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8501
4c4b4cd2
PH
8502 branch_type = to_fixed_variant_branch_type
8503 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8504 cond_offset_host (valaddr,
4c4b4cd2
PH
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT),
d2e4a39e 8507 cond_offset_target (address,
4c4b4cd2
PH
8508 TYPE_FIELD_BITPOS (type, variant_field)
8509 / TARGET_CHAR_BIT), dval);
d2e4a39e 8510 if (branch_type == NULL)
14f9c5c9 8511 {
4c4b4cd2 8512 int f;
5b4ee69b 8513
4c4b4cd2
PH
8514 for (f = variant_field + 1; f < nfields; f += 1)
8515 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8516 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8517 }
8518 else
8519 {
4c4b4cd2
PH
8520 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8521 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8522 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8523 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8524 }
4c4b4cd2 8525 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8526
4c4b4cd2 8527 value_free_to_mark (mark);
14f9c5c9
AS
8528 return rtype;
8529}
8530
8531/* An ordinary record type (with fixed-length fields) that describes
8532 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8533 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8534 should be in DVAL, a record value; it may be NULL if the object
8535 at ADDR itself contains any necessary discriminant values.
8536 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8537 values from the record are needed. Except in the case that DVAL,
8538 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8539 unchecked) is replaced by a particular branch of the variant.
8540
8541 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8542 is questionable and may be removed. It can arise during the
8543 processing of an unconstrained-array-of-record type where all the
8544 variant branches have exactly the same size. This is because in
8545 such cases, the compiler does not bother to use the XVS convention
8546 when encoding the record. I am currently dubious of this
8547 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8548
d2e4a39e 8549static struct type *
fc1a4b47 8550to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8551 CORE_ADDR address, struct value *dval)
14f9c5c9 8552{
d2e4a39e 8553 struct type *templ_type;
14f9c5c9 8554
876cecd0 8555 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8556 return type0;
8557
d2e4a39e 8558 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8559
8560 if (templ_type != NULL)
8561 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8562 else if (variant_field_index (type0) >= 0)
8563 {
8564 if (dval == NULL && valaddr == NULL && address == 0)
8565 return type0;
8566 return to_record_with_fixed_variant_part (type0, valaddr, address,
8567 dval);
8568 }
14f9c5c9
AS
8569 else
8570 {
876cecd0 8571 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8572 return type0;
8573 }
8574
8575}
8576
8577/* An ordinary record type (with fixed-length fields) that describes
8578 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8579 union type. Any necessary discriminants' values should be in DVAL,
8580 a record value. That is, this routine selects the appropriate
8581 branch of the union at ADDR according to the discriminant value
b1f33ddd 8582 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8583 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8584
d2e4a39e 8585static struct type *
fc1a4b47 8586to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8587 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8588{
8589 int which;
d2e4a39e
AS
8590 struct type *templ_type;
8591 struct type *var_type;
14f9c5c9
AS
8592
8593 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8594 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8595 else
14f9c5c9
AS
8596 var_type = var_type0;
8597
8598 templ_type = ada_find_parallel_type (var_type, "___XVU");
8599
8600 if (templ_type != NULL)
8601 var_type = templ_type;
8602
b1f33ddd
JB
8603 if (is_unchecked_variant (var_type, value_type (dval)))
8604 return var_type0;
d2e4a39e
AS
8605 which =
8606 ada_which_variant_applies (var_type,
0fd88904 8607 value_type (dval), value_contents (dval));
14f9c5c9
AS
8608
8609 if (which < 0)
e9bb382b 8610 return empty_record (var_type);
14f9c5c9 8611 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8612 return to_fixed_record_type
d2e4a39e
AS
8613 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8614 valaddr, address, dval);
4c4b4cd2 8615 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8616 return
8617 to_fixed_record_type
8618 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8619 else
8620 return TYPE_FIELD_TYPE (var_type, which);
8621}
8622
8908fca5
JB
8623/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8624 ENCODING_TYPE, a type following the GNAT conventions for discrete
8625 type encodings, only carries redundant information. */
8626
8627static int
8628ada_is_redundant_range_encoding (struct type *range_type,
8629 struct type *encoding_type)
8630{
8631 struct type *fixed_range_type;
108d56a4 8632 const char *bounds_str;
8908fca5
JB
8633 int n;
8634 LONGEST lo, hi;
8635
8636 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8637
005e2509
JB
8638 if (TYPE_CODE (get_base_type (range_type))
8639 != TYPE_CODE (get_base_type (encoding_type)))
8640 {
8641 /* The compiler probably used a simple base type to describe
8642 the range type instead of the range's actual base type,
8643 expecting us to get the real base type from the encoding
8644 anyway. In this situation, the encoding cannot be ignored
8645 as redundant. */
8646 return 0;
8647 }
8648
8908fca5
JB
8649 if (is_dynamic_type (range_type))
8650 return 0;
8651
8652 if (TYPE_NAME (encoding_type) == NULL)
8653 return 0;
8654
8655 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8656 if (bounds_str == NULL)
8657 return 0;
8658
8659 n = 8; /* Skip "___XDLU_". */
8660 if (!ada_scan_number (bounds_str, n, &lo, &n))
8661 return 0;
8662 if (TYPE_LOW_BOUND (range_type) != lo)
8663 return 0;
8664
8665 n += 2; /* Skip the "__" separator between the two bounds. */
8666 if (!ada_scan_number (bounds_str, n, &hi, &n))
8667 return 0;
8668 if (TYPE_HIGH_BOUND (range_type) != hi)
8669 return 0;
8670
8671 return 1;
8672}
8673
8674/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8675 a type following the GNAT encoding for describing array type
8676 indices, only carries redundant information. */
8677
8678static int
8679ada_is_redundant_index_type_desc (struct type *array_type,
8680 struct type *desc_type)
8681{
8682 struct type *this_layer = check_typedef (array_type);
8683 int i;
8684
8685 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8686 {
8687 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8688 TYPE_FIELD_TYPE (desc_type, i)))
8689 return 0;
8690 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8691 }
8692
8693 return 1;
8694}
8695
14f9c5c9
AS
8696/* Assuming that TYPE0 is an array type describing the type of a value
8697 at ADDR, and that DVAL describes a record containing any
8698 discriminants used in TYPE0, returns a type for the value that
8699 contains no dynamic components (that is, no components whose sizes
8700 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8701 true, gives an error message if the resulting type's size is over
4c4b4cd2 8702 varsize_limit. */
14f9c5c9 8703
d2e4a39e
AS
8704static struct type *
8705to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8706 int ignore_too_big)
14f9c5c9 8707{
d2e4a39e
AS
8708 struct type *index_type_desc;
8709 struct type *result;
ad82864c 8710 int constrained_packed_array_p;
931e5bc3 8711 static const char *xa_suffix = "___XA";
14f9c5c9 8712
b0dd7688 8713 type0 = ada_check_typedef (type0);
284614f0 8714 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8715 return type0;
14f9c5c9 8716
ad82864c
JB
8717 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8718 if (constrained_packed_array_p)
8719 type0 = decode_constrained_packed_array_type (type0);
284614f0 8720
931e5bc3
JG
8721 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8722
8723 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8724 encoding suffixed with 'P' may still be generated. If so,
8725 it should be used to find the XA type. */
8726
8727 if (index_type_desc == NULL)
8728 {
1da0522e 8729 const char *type_name = ada_type_name (type0);
931e5bc3 8730
1da0522e 8731 if (type_name != NULL)
931e5bc3 8732 {
1da0522e 8733 const int len = strlen (type_name);
931e5bc3
JG
8734 char *name = (char *) alloca (len + strlen (xa_suffix));
8735
1da0522e 8736 if (type_name[len - 1] == 'P')
931e5bc3 8737 {
1da0522e 8738 strcpy (name, type_name);
931e5bc3
JG
8739 strcpy (name + len - 1, xa_suffix);
8740 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8741 }
8742 }
8743 }
8744
28c85d6c 8745 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8746 if (index_type_desc != NULL
8747 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8748 {
8749 /* Ignore this ___XA parallel type, as it does not bring any
8750 useful information. This allows us to avoid creating fixed
8751 versions of the array's index types, which would be identical
8752 to the original ones. This, in turn, can also help avoid
8753 the creation of fixed versions of the array itself. */
8754 index_type_desc = NULL;
8755 }
8756
14f9c5c9
AS
8757 if (index_type_desc == NULL)
8758 {
61ee279c 8759 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8760
14f9c5c9 8761 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8762 depend on the contents of the array in properly constructed
8763 debugging data. */
529cad9c
PH
8764 /* Create a fixed version of the array element type.
8765 We're not providing the address of an element here,
e1d5a0d2 8766 and thus the actual object value cannot be inspected to do
529cad9c
PH
8767 the conversion. This should not be a problem, since arrays of
8768 unconstrained objects are not allowed. In particular, all
8769 the elements of an array of a tagged type should all be of
8770 the same type specified in the debugging info. No need to
8771 consult the object tag. */
1ed6ede0 8772 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8773
284614f0
JB
8774 /* Make sure we always create a new array type when dealing with
8775 packed array types, since we're going to fix-up the array
8776 type length and element bitsize a little further down. */
ad82864c 8777 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8778 result = type0;
14f9c5c9 8779 else
e9bb382b 8780 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8781 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8782 }
8783 else
8784 {
8785 int i;
8786 struct type *elt_type0;
8787
8788 elt_type0 = type0;
8789 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8790 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8791
8792 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8793 depend on the contents of the array in properly constructed
8794 debugging data. */
529cad9c
PH
8795 /* Create a fixed version of the array element type.
8796 We're not providing the address of an element here,
e1d5a0d2 8797 and thus the actual object value cannot be inspected to do
529cad9c
PH
8798 the conversion. This should not be a problem, since arrays of
8799 unconstrained objects are not allowed. In particular, all
8800 the elements of an array of a tagged type should all be of
8801 the same type specified in the debugging info. No need to
8802 consult the object tag. */
1ed6ede0
JB
8803 result =
8804 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8805
8806 elt_type0 = type0;
14f9c5c9 8807 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8808 {
8809 struct type *range_type =
28c85d6c 8810 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8811
e9bb382b 8812 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8813 result, range_type);
1ce677a4 8814 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8815 }
d2e4a39e 8816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8817 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8818 }
8819
2e6fda7d
JB
8820 /* We want to preserve the type name. This can be useful when
8821 trying to get the type name of a value that has already been
8822 printed (for instance, if the user did "print VAR; whatis $". */
8823 TYPE_NAME (result) = TYPE_NAME (type0);
8824
ad82864c 8825 if (constrained_packed_array_p)
284614f0
JB
8826 {
8827 /* So far, the resulting type has been created as if the original
8828 type was a regular (non-packed) array type. As a result, the
8829 bitsize of the array elements needs to be set again, and the array
8830 length needs to be recomputed based on that bitsize. */
8831 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8832 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8833
8834 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8835 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8836 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8837 TYPE_LENGTH (result)++;
8838 }
8839
876cecd0 8840 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8841 return result;
d2e4a39e 8842}
14f9c5c9
AS
8843
8844
8845/* A standard type (containing no dynamically sized components)
8846 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8847 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8848 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8849 ADDRESS or in VALADDR contains these discriminants.
8850
1ed6ede0
JB
8851 If CHECK_TAG is not null, in the case of tagged types, this function
8852 attempts to locate the object's tag and use it to compute the actual
8853 type. However, when ADDRESS is null, we cannot use it to determine the
8854 location of the tag, and therefore compute the tagged type's actual type.
8855 So we return the tagged type without consulting the tag. */
529cad9c 8856
f192137b
JB
8857static struct type *
8858ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8859 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8860{
61ee279c 8861 type = ada_check_typedef (type);
d2e4a39e
AS
8862 switch (TYPE_CODE (type))
8863 {
8864 default:
14f9c5c9 8865 return type;
d2e4a39e 8866 case TYPE_CODE_STRUCT:
4c4b4cd2 8867 {
76a01679 8868 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8869 struct type *fixed_record_type =
8870 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8871
529cad9c
PH
8872 /* If STATIC_TYPE is a tagged type and we know the object's address,
8873 then we can determine its tag, and compute the object's actual
0963b4bd 8874 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8875 type (the parent part of the record may have dynamic fields
8876 and the way the location of _tag is expressed may depend on
8877 them). */
529cad9c 8878
1ed6ede0 8879 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8880 {
b50d69b5
JG
8881 struct value *tag =
8882 value_tag_from_contents_and_address
8883 (fixed_record_type,
8884 valaddr,
8885 address);
8886 struct type *real_type = type_from_tag (tag);
8887 struct value *obj =
8888 value_from_contents_and_address (fixed_record_type,
8889 valaddr,
8890 address);
9f1f738a 8891 fixed_record_type = value_type (obj);
76a01679 8892 if (real_type != NULL)
b50d69b5
JG
8893 return to_fixed_record_type
8894 (real_type, NULL,
8895 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8896 }
4af88198
JB
8897
8898 /* Check to see if there is a parallel ___XVZ variable.
8899 If there is, then it provides the actual size of our type. */
8900 else if (ada_type_name (fixed_record_type) != NULL)
8901 {
0d5cff50 8902 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8903 char *xvz_name
8904 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8905 LONGEST size;
8906
88c15c34 8907 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8908 if (get_int_var_value (xvz_name, size)
8909 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8910 {
8911 fixed_record_type = copy_type (fixed_record_type);
8912 TYPE_LENGTH (fixed_record_type) = size;
8913
8914 /* The FIXED_RECORD_TYPE may have be a stub. We have
8915 observed this when the debugging info is STABS, and
8916 apparently it is something that is hard to fix.
8917
8918 In practice, we don't need the actual type definition
8919 at all, because the presence of the XVZ variable allows us
8920 to assume that there must be a XVS type as well, which we
8921 should be able to use later, when we need the actual type
8922 definition.
8923
8924 In the meantime, pretend that the "fixed" type we are
8925 returning is NOT a stub, because this can cause trouble
8926 when using this type to create new types targeting it.
8927 Indeed, the associated creation routines often check
8928 whether the target type is a stub and will try to replace
0963b4bd 8929 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8930 might cause the new type to have the wrong size too.
8931 Consider the case of an array, for instance, where the size
8932 of the array is computed from the number of elements in
8933 our array multiplied by the size of its element. */
8934 TYPE_STUB (fixed_record_type) = 0;
8935 }
8936 }
1ed6ede0 8937 return fixed_record_type;
4c4b4cd2 8938 }
d2e4a39e 8939 case TYPE_CODE_ARRAY:
4c4b4cd2 8940 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8941 case TYPE_CODE_UNION:
8942 if (dval == NULL)
4c4b4cd2 8943 return type;
d2e4a39e 8944 else
4c4b4cd2 8945 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8946 }
14f9c5c9
AS
8947}
8948
f192137b
JB
8949/* The same as ada_to_fixed_type_1, except that it preserves the type
8950 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8951
8952 The typedef layer needs be preserved in order to differentiate between
8953 arrays and array pointers when both types are implemented using the same
8954 fat pointer. In the array pointer case, the pointer is encoded as
8955 a typedef of the pointer type. For instance, considering:
8956
8957 type String_Access is access String;
8958 S1 : String_Access := null;
8959
8960 To the debugger, S1 is defined as a typedef of type String. But
8961 to the user, it is a pointer. So if the user tries to print S1,
8962 we should not dereference the array, but print the array address
8963 instead.
8964
8965 If we didn't preserve the typedef layer, we would lose the fact that
8966 the type is to be presented as a pointer (needs de-reference before
8967 being printed). And we would also use the source-level type name. */
f192137b
JB
8968
8969struct type *
8970ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8971 CORE_ADDR address, struct value *dval, int check_tag)
8972
8973{
8974 struct type *fixed_type =
8975 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8976
96dbd2c1
JB
8977 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8978 then preserve the typedef layer.
8979
8980 Implementation note: We can only check the main-type portion of
8981 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8982 from TYPE now returns a type that has the same instance flags
8983 as TYPE. For instance, if TYPE is a "typedef const", and its
8984 target type is a "struct", then the typedef elimination will return
8985 a "const" version of the target type. See check_typedef for more
8986 details about how the typedef layer elimination is done.
8987
8988 brobecker/2010-11-19: It seems to me that the only case where it is
8989 useful to preserve the typedef layer is when dealing with fat pointers.
8990 Perhaps, we could add a check for that and preserve the typedef layer
8991 only in that situation. But this seems unecessary so far, probably
8992 because we call check_typedef/ada_check_typedef pretty much everywhere.
8993 */
f192137b 8994 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8995 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8996 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8997 return type;
8998
8999 return fixed_type;
9000}
9001
14f9c5c9 9002/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9003 TYPE0, but based on no runtime data. */
14f9c5c9 9004
d2e4a39e
AS
9005static struct type *
9006to_static_fixed_type (struct type *type0)
14f9c5c9 9007{
d2e4a39e 9008 struct type *type;
14f9c5c9
AS
9009
9010 if (type0 == NULL)
9011 return NULL;
9012
876cecd0 9013 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9014 return type0;
9015
61ee279c 9016 type0 = ada_check_typedef (type0);
d2e4a39e 9017
14f9c5c9
AS
9018 switch (TYPE_CODE (type0))
9019 {
9020 default:
9021 return type0;
9022 case TYPE_CODE_STRUCT:
9023 type = dynamic_template_type (type0);
d2e4a39e 9024 if (type != NULL)
4c4b4cd2
PH
9025 return template_to_static_fixed_type (type);
9026 else
9027 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9028 case TYPE_CODE_UNION:
9029 type = ada_find_parallel_type (type0, "___XVU");
9030 if (type != NULL)
4c4b4cd2
PH
9031 return template_to_static_fixed_type (type);
9032 else
9033 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9034 }
9035}
9036
4c4b4cd2
PH
9037/* A static approximation of TYPE with all type wrappers removed. */
9038
d2e4a39e
AS
9039static struct type *
9040static_unwrap_type (struct type *type)
14f9c5c9
AS
9041{
9042 if (ada_is_aligner_type (type))
9043 {
61ee279c 9044 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9045 if (ada_type_name (type1) == NULL)
4c4b4cd2 9046 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9047
9048 return static_unwrap_type (type1);
9049 }
d2e4a39e 9050 else
14f9c5c9 9051 {
d2e4a39e 9052 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9053
d2e4a39e 9054 if (raw_real_type == type)
4c4b4cd2 9055 return type;
14f9c5c9 9056 else
4c4b4cd2 9057 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9058 }
9059}
9060
9061/* In some cases, incomplete and private types require
4c4b4cd2 9062 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9063 type Foo;
9064 type FooP is access Foo;
9065 V: FooP;
9066 type Foo is array ...;
4c4b4cd2 9067 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9068 cross-references to such types, we instead substitute for FooP a
9069 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9070 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9071
9072/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9073 exists, otherwise TYPE. */
9074
d2e4a39e 9075struct type *
61ee279c 9076ada_check_typedef (struct type *type)
14f9c5c9 9077{
727e3d2e
JB
9078 if (type == NULL)
9079 return NULL;
9080
720d1a40
JB
9081 /* If our type is a typedef type of a fat pointer, then we're done.
9082 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9083 what allows us to distinguish between fat pointers that represent
9084 array types, and fat pointers that represent array access types
9085 (in both cases, the compiler implements them as fat pointers). */
9086 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9087 && is_thick_pntr (ada_typedef_target_type (type)))
9088 return type;
9089
f168693b 9090 type = check_typedef (type);
14f9c5c9 9091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9092 || !TYPE_STUB (type)
14f9c5c9
AS
9093 || TYPE_TAG_NAME (type) == NULL)
9094 return type;
d2e4a39e 9095 else
14f9c5c9 9096 {
0d5cff50 9097 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9098 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9099
05e522ef
JB
9100 if (type1 == NULL)
9101 return type;
9102
9103 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9104 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9105 types, only for the typedef-to-array types). If that's the case,
9106 strip the typedef layer. */
9107 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9108 type1 = ada_check_typedef (type1);
9109
9110 return type1;
14f9c5c9
AS
9111 }
9112}
9113
9114/* A value representing the data at VALADDR/ADDRESS as described by
9115 type TYPE0, but with a standard (static-sized) type that correctly
9116 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9117 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9118 creation of struct values]. */
14f9c5c9 9119
4c4b4cd2
PH
9120static struct value *
9121ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9122 struct value *val0)
14f9c5c9 9123{
1ed6ede0 9124 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9125
14f9c5c9
AS
9126 if (type == type0 && val0 != NULL)
9127 return val0;
d2e4a39e 9128 else
4c4b4cd2
PH
9129 return value_from_contents_and_address (type, 0, address);
9130}
9131
9132/* A value representing VAL, but with a standard (static-sized) type
9133 that correctly describes it. Does not necessarily create a new
9134 value. */
9135
0c3acc09 9136struct value *
4c4b4cd2
PH
9137ada_to_fixed_value (struct value *val)
9138{
c48db5ca
JB
9139 val = unwrap_value (val);
9140 val = ada_to_fixed_value_create (value_type (val),
9141 value_address (val),
9142 val);
9143 return val;
14f9c5c9 9144}
d2e4a39e 9145\f
14f9c5c9 9146
14f9c5c9
AS
9147/* Attributes */
9148
4c4b4cd2
PH
9149/* Table mapping attribute numbers to names.
9150 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9151
d2e4a39e 9152static const char *attribute_names[] = {
14f9c5c9
AS
9153 "<?>",
9154
d2e4a39e 9155 "first",
14f9c5c9
AS
9156 "last",
9157 "length",
9158 "image",
14f9c5c9
AS
9159 "max",
9160 "min",
4c4b4cd2
PH
9161 "modulus",
9162 "pos",
9163 "size",
9164 "tag",
14f9c5c9 9165 "val",
14f9c5c9
AS
9166 0
9167};
9168
d2e4a39e 9169const char *
4c4b4cd2 9170ada_attribute_name (enum exp_opcode n)
14f9c5c9 9171{
4c4b4cd2
PH
9172 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9173 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9174 else
9175 return attribute_names[0];
9176}
9177
4c4b4cd2 9178/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9179
4c4b4cd2
PH
9180static LONGEST
9181pos_atr (struct value *arg)
14f9c5c9 9182{
24209737
PH
9183 struct value *val = coerce_ref (arg);
9184 struct type *type = value_type (val);
aa715135 9185 LONGEST result;
14f9c5c9 9186
d2e4a39e 9187 if (!discrete_type_p (type))
323e0a4a 9188 error (_("'POS only defined on discrete types"));
14f9c5c9 9189
aa715135
JG
9190 if (!discrete_position (type, value_as_long (val), &result))
9191 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9192
aa715135 9193 return result;
4c4b4cd2
PH
9194}
9195
9196static struct value *
3cb382c9 9197value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9198{
3cb382c9 9199 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9200}
9201
4c4b4cd2 9202/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9203
d2e4a39e
AS
9204static struct value *
9205value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9206{
d2e4a39e 9207 if (!discrete_type_p (type))
323e0a4a 9208 error (_("'VAL only defined on discrete types"));
df407dfe 9209 if (!integer_type_p (value_type (arg)))
323e0a4a 9210 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9211
9212 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9213 {
9214 long pos = value_as_long (arg);
5b4ee69b 9215
14f9c5c9 9216 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9217 error (_("argument to 'VAL out of range"));
14e75d8e 9218 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9219 }
9220 else
9221 return value_from_longest (type, value_as_long (arg));
9222}
14f9c5c9 9223\f
d2e4a39e 9224
4c4b4cd2 9225 /* Evaluation */
14f9c5c9 9226
4c4b4cd2
PH
9227/* True if TYPE appears to be an Ada character type.
9228 [At the moment, this is true only for Character and Wide_Character;
9229 It is a heuristic test that could stand improvement]. */
14f9c5c9 9230
d2e4a39e
AS
9231int
9232ada_is_character_type (struct type *type)
14f9c5c9 9233{
7b9f71f2
JB
9234 const char *name;
9235
9236 /* If the type code says it's a character, then assume it really is,
9237 and don't check any further. */
9238 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9239 return 1;
9240
9241 /* Otherwise, assume it's a character type iff it is a discrete type
9242 with a known character type name. */
9243 name = ada_type_name (type);
9244 return (name != NULL
9245 && (TYPE_CODE (type) == TYPE_CODE_INT
9246 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9247 && (strcmp (name, "character") == 0
9248 || strcmp (name, "wide_character") == 0
5a517ebd 9249 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9250 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9251}
9252
4c4b4cd2 9253/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9254
9255int
ebf56fd3 9256ada_is_string_type (struct type *type)
14f9c5c9 9257{
61ee279c 9258 type = ada_check_typedef (type);
d2e4a39e 9259 if (type != NULL
14f9c5c9 9260 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9261 && (ada_is_simple_array_type (type)
9262 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9263 && ada_array_arity (type) == 1)
9264 {
9265 struct type *elttype = ada_array_element_type (type, 1);
9266
9267 return ada_is_character_type (elttype);
9268 }
d2e4a39e 9269 else
14f9c5c9
AS
9270 return 0;
9271}
9272
5bf03f13
JB
9273/* The compiler sometimes provides a parallel XVS type for a given
9274 PAD type. Normally, it is safe to follow the PAD type directly,
9275 but older versions of the compiler have a bug that causes the offset
9276 of its "F" field to be wrong. Following that field in that case
9277 would lead to incorrect results, but this can be worked around
9278 by ignoring the PAD type and using the associated XVS type instead.
9279
9280 Set to True if the debugger should trust the contents of PAD types.
9281 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9282static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9283
9284/* True if TYPE is a struct type introduced by the compiler to force the
9285 alignment of a value. Such types have a single field with a
4c4b4cd2 9286 distinctive name. */
14f9c5c9
AS
9287
9288int
ebf56fd3 9289ada_is_aligner_type (struct type *type)
14f9c5c9 9290{
61ee279c 9291 type = ada_check_typedef (type);
714e53ab 9292
5bf03f13 9293 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9294 return 0;
9295
14f9c5c9 9296 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9297 && TYPE_NFIELDS (type) == 1
9298 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9299}
9300
9301/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9302 the parallel type. */
14f9c5c9 9303
d2e4a39e
AS
9304struct type *
9305ada_get_base_type (struct type *raw_type)
14f9c5c9 9306{
d2e4a39e
AS
9307 struct type *real_type_namer;
9308 struct type *raw_real_type;
14f9c5c9
AS
9309
9310 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9311 return raw_type;
9312
284614f0
JB
9313 if (ada_is_aligner_type (raw_type))
9314 /* The encoding specifies that we should always use the aligner type.
9315 So, even if this aligner type has an associated XVS type, we should
9316 simply ignore it.
9317
9318 According to the compiler gurus, an XVS type parallel to an aligner
9319 type may exist because of a stabs limitation. In stabs, aligner
9320 types are empty because the field has a variable-sized type, and
9321 thus cannot actually be used as an aligner type. As a result,
9322 we need the associated parallel XVS type to decode the type.
9323 Since the policy in the compiler is to not change the internal
9324 representation based on the debugging info format, we sometimes
9325 end up having a redundant XVS type parallel to the aligner type. */
9326 return raw_type;
9327
14f9c5c9 9328 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9329 if (real_type_namer == NULL
14f9c5c9
AS
9330 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9331 || TYPE_NFIELDS (real_type_namer) != 1)
9332 return raw_type;
9333
f80d3ff2
JB
9334 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9335 {
9336 /* This is an older encoding form where the base type needs to be
9337 looked up by name. We prefer the newer enconding because it is
9338 more efficient. */
9339 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9340 if (raw_real_type == NULL)
9341 return raw_type;
9342 else
9343 return raw_real_type;
9344 }
9345
9346 /* The field in our XVS type is a reference to the base type. */
9347 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9348}
14f9c5c9 9349
4c4b4cd2 9350/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9351
d2e4a39e
AS
9352struct type *
9353ada_aligned_type (struct type *type)
14f9c5c9
AS
9354{
9355 if (ada_is_aligner_type (type))
9356 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9357 else
9358 return ada_get_base_type (type);
9359}
9360
9361
9362/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9363 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9364
fc1a4b47
AC
9365const gdb_byte *
9366ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9367{
d2e4a39e 9368 if (ada_is_aligner_type (type))
14f9c5c9 9369 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9370 valaddr +
9371 TYPE_FIELD_BITPOS (type,
9372 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9373 else
9374 return valaddr;
9375}
9376
4c4b4cd2
PH
9377
9378
14f9c5c9 9379/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9380 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9381const char *
9382ada_enum_name (const char *name)
14f9c5c9 9383{
4c4b4cd2
PH
9384 static char *result;
9385 static size_t result_len = 0;
e6a959d6 9386 const char *tmp;
14f9c5c9 9387
4c4b4cd2
PH
9388 /* First, unqualify the enumeration name:
9389 1. Search for the last '.' character. If we find one, then skip
177b42fe 9390 all the preceding characters, the unqualified name starts
76a01679 9391 right after that dot.
4c4b4cd2 9392 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9393 translates dots into "__". Search forward for double underscores,
9394 but stop searching when we hit an overloading suffix, which is
9395 of the form "__" followed by digits. */
4c4b4cd2 9396
c3e5cd34
PH
9397 tmp = strrchr (name, '.');
9398 if (tmp != NULL)
4c4b4cd2
PH
9399 name = tmp + 1;
9400 else
14f9c5c9 9401 {
4c4b4cd2
PH
9402 while ((tmp = strstr (name, "__")) != NULL)
9403 {
9404 if (isdigit (tmp[2]))
9405 break;
9406 else
9407 name = tmp + 2;
9408 }
14f9c5c9
AS
9409 }
9410
9411 if (name[0] == 'Q')
9412 {
14f9c5c9 9413 int v;
5b4ee69b 9414
14f9c5c9 9415 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9416 {
9417 if (sscanf (name + 2, "%x", &v) != 1)
9418 return name;
9419 }
14f9c5c9 9420 else
4c4b4cd2 9421 return name;
14f9c5c9 9422
4c4b4cd2 9423 GROW_VECT (result, result_len, 16);
14f9c5c9 9424 if (isascii (v) && isprint (v))
88c15c34 9425 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9426 else if (name[1] == 'U')
88c15c34 9427 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9428 else
88c15c34 9429 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9430
9431 return result;
9432 }
d2e4a39e 9433 else
4c4b4cd2 9434 {
c3e5cd34
PH
9435 tmp = strstr (name, "__");
9436 if (tmp == NULL)
9437 tmp = strstr (name, "$");
9438 if (tmp != NULL)
4c4b4cd2
PH
9439 {
9440 GROW_VECT (result, result_len, tmp - name + 1);
9441 strncpy (result, name, tmp - name);
9442 result[tmp - name] = '\0';
9443 return result;
9444 }
9445
9446 return name;
9447 }
14f9c5c9
AS
9448}
9449
14f9c5c9
AS
9450/* Evaluate the subexpression of EXP starting at *POS as for
9451 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9452 expression. */
14f9c5c9 9453
d2e4a39e
AS
9454static struct value *
9455evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9456{
4b27a620 9457 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9458}
9459
9460/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9461 value it wraps. */
14f9c5c9 9462
d2e4a39e
AS
9463static struct value *
9464unwrap_value (struct value *val)
14f9c5c9 9465{
df407dfe 9466 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9467
14f9c5c9
AS
9468 if (ada_is_aligner_type (type))
9469 {
de4d072f 9470 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9471 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9472
14f9c5c9 9473 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9474 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9475
9476 return unwrap_value (v);
9477 }
d2e4a39e 9478 else
14f9c5c9 9479 {
d2e4a39e 9480 struct type *raw_real_type =
61ee279c 9481 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9482
5bf03f13
JB
9483 /* If there is no parallel XVS or XVE type, then the value is
9484 already unwrapped. Return it without further modification. */
9485 if ((type == raw_real_type)
9486 && ada_find_parallel_type (type, "___XVE") == NULL)
9487 return val;
14f9c5c9 9488
d2e4a39e 9489 return
4c4b4cd2
PH
9490 coerce_unspec_val_to_type
9491 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9492 value_address (val),
1ed6ede0 9493 NULL, 1));
14f9c5c9
AS
9494 }
9495}
d2e4a39e
AS
9496
9497static struct value *
50eff16b 9498cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9499{
50eff16b
UW
9500 struct value *scale = ada_scaling_factor (value_type (arg));
9501 arg = value_cast (value_type (scale), arg);
14f9c5c9 9502
50eff16b
UW
9503 arg = value_binop (arg, scale, BINOP_MUL);
9504 return value_cast (type, arg);
14f9c5c9
AS
9505}
9506
d2e4a39e 9507static struct value *
50eff16b 9508cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9509{
50eff16b
UW
9510 if (type == value_type (arg))
9511 return arg;
5b4ee69b 9512
50eff16b
UW
9513 struct value *scale = ada_scaling_factor (type);
9514 if (ada_is_fixed_point_type (value_type (arg)))
9515 arg = cast_from_fixed (value_type (scale), arg);
9516 else
9517 arg = value_cast (value_type (scale), arg);
9518
9519 arg = value_binop (arg, scale, BINOP_DIV);
9520 return value_cast (type, arg);
14f9c5c9
AS
9521}
9522
d99dcf51
JB
9523/* Given two array types T1 and T2, return nonzero iff both arrays
9524 contain the same number of elements. */
9525
9526static int
9527ada_same_array_size_p (struct type *t1, struct type *t2)
9528{
9529 LONGEST lo1, hi1, lo2, hi2;
9530
9531 /* Get the array bounds in order to verify that the size of
9532 the two arrays match. */
9533 if (!get_array_bounds (t1, &lo1, &hi1)
9534 || !get_array_bounds (t2, &lo2, &hi2))
9535 error (_("unable to determine array bounds"));
9536
9537 /* To make things easier for size comparison, normalize a bit
9538 the case of empty arrays by making sure that the difference
9539 between upper bound and lower bound is always -1. */
9540 if (lo1 > hi1)
9541 hi1 = lo1 - 1;
9542 if (lo2 > hi2)
9543 hi2 = lo2 - 1;
9544
9545 return (hi1 - lo1 == hi2 - lo2);
9546}
9547
9548/* Assuming that VAL is an array of integrals, and TYPE represents
9549 an array with the same number of elements, but with wider integral
9550 elements, return an array "casted" to TYPE. In practice, this
9551 means that the returned array is built by casting each element
9552 of the original array into TYPE's (wider) element type. */
9553
9554static struct value *
9555ada_promote_array_of_integrals (struct type *type, struct value *val)
9556{
9557 struct type *elt_type = TYPE_TARGET_TYPE (type);
9558 LONGEST lo, hi;
9559 struct value *res;
9560 LONGEST i;
9561
9562 /* Verify that both val and type are arrays of scalars, and
9563 that the size of val's elements is smaller than the size
9564 of type's element. */
9565 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9566 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9567 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9568 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9569 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9570 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9571
9572 if (!get_array_bounds (type, &lo, &hi))
9573 error (_("unable to determine array bounds"));
9574
9575 res = allocate_value (type);
9576
9577 /* Promote each array element. */
9578 for (i = 0; i < hi - lo + 1; i++)
9579 {
9580 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9581
9582 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9583 value_contents_all (elt), TYPE_LENGTH (elt_type));
9584 }
9585
9586 return res;
9587}
9588
4c4b4cd2
PH
9589/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9590 return the converted value. */
9591
d2e4a39e
AS
9592static struct value *
9593coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9594{
df407dfe 9595 struct type *type2 = value_type (val);
5b4ee69b 9596
14f9c5c9
AS
9597 if (type == type2)
9598 return val;
9599
61ee279c
PH
9600 type2 = ada_check_typedef (type2);
9601 type = ada_check_typedef (type);
14f9c5c9 9602
d2e4a39e
AS
9603 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9604 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9605 {
9606 val = ada_value_ind (val);
df407dfe 9607 type2 = value_type (val);
14f9c5c9
AS
9608 }
9609
d2e4a39e 9610 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9611 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9612 {
d99dcf51
JB
9613 if (!ada_same_array_size_p (type, type2))
9614 error (_("cannot assign arrays of different length"));
9615
9616 if (is_integral_type (TYPE_TARGET_TYPE (type))
9617 && is_integral_type (TYPE_TARGET_TYPE (type2))
9618 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9619 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9620 {
9621 /* Allow implicit promotion of the array elements to
9622 a wider type. */
9623 return ada_promote_array_of_integrals (type, val);
9624 }
9625
9626 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9627 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9628 error (_("Incompatible types in assignment"));
04624583 9629 deprecated_set_value_type (val, type);
14f9c5c9 9630 }
d2e4a39e 9631 return val;
14f9c5c9
AS
9632}
9633
4c4b4cd2
PH
9634static struct value *
9635ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9636{
9637 struct value *val;
9638 struct type *type1, *type2;
9639 LONGEST v, v1, v2;
9640
994b9211
AC
9641 arg1 = coerce_ref (arg1);
9642 arg2 = coerce_ref (arg2);
18af8284
JB
9643 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9644 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9645
76a01679
JB
9646 if (TYPE_CODE (type1) != TYPE_CODE_INT
9647 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9648 return value_binop (arg1, arg2, op);
9649
76a01679 9650 switch (op)
4c4b4cd2
PH
9651 {
9652 case BINOP_MOD:
9653 case BINOP_DIV:
9654 case BINOP_REM:
9655 break;
9656 default:
9657 return value_binop (arg1, arg2, op);
9658 }
9659
9660 v2 = value_as_long (arg2);
9661 if (v2 == 0)
323e0a4a 9662 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9663
9664 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9665 return value_binop (arg1, arg2, op);
9666
9667 v1 = value_as_long (arg1);
9668 switch (op)
9669 {
9670 case BINOP_DIV:
9671 v = v1 / v2;
76a01679
JB
9672 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9673 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9674 break;
9675 case BINOP_REM:
9676 v = v1 % v2;
76a01679
JB
9677 if (v * v1 < 0)
9678 v -= v2;
4c4b4cd2
PH
9679 break;
9680 default:
9681 /* Should not reach this point. */
9682 v = 0;
9683 }
9684
9685 val = allocate_value (type1);
990a07ab 9686 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9687 TYPE_LENGTH (value_type (val)),
9688 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9689 return val;
9690}
9691
9692static int
9693ada_value_equal (struct value *arg1, struct value *arg2)
9694{
df407dfe
AC
9695 if (ada_is_direct_array_type (value_type (arg1))
9696 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9697 {
f58b38bf
JB
9698 /* Automatically dereference any array reference before
9699 we attempt to perform the comparison. */
9700 arg1 = ada_coerce_ref (arg1);
9701 arg2 = ada_coerce_ref (arg2);
9702
4c4b4cd2
PH
9703 arg1 = ada_coerce_to_simple_array (arg1);
9704 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9705 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9706 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9707 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9708 /* FIXME: The following works only for types whose
76a01679
JB
9709 representations use all bits (no padding or undefined bits)
9710 and do not have user-defined equality. */
9711 return
df407dfe 9712 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9713 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9714 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9715 }
9716 return value_equal (arg1, arg2);
9717}
9718
52ce6436
PH
9719/* Total number of component associations in the aggregate starting at
9720 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9721 OP_AGGREGATE. */
52ce6436
PH
9722
9723static int
9724num_component_specs (struct expression *exp, int pc)
9725{
9726 int n, m, i;
5b4ee69b 9727
52ce6436
PH
9728 m = exp->elts[pc + 1].longconst;
9729 pc += 3;
9730 n = 0;
9731 for (i = 0; i < m; i += 1)
9732 {
9733 switch (exp->elts[pc].opcode)
9734 {
9735 default:
9736 n += 1;
9737 break;
9738 case OP_CHOICES:
9739 n += exp->elts[pc + 1].longconst;
9740 break;
9741 }
9742 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9743 }
9744 return n;
9745}
9746
9747/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9748 component of LHS (a simple array or a record), updating *POS past
9749 the expression, assuming that LHS is contained in CONTAINER. Does
9750 not modify the inferior's memory, nor does it modify LHS (unless
9751 LHS == CONTAINER). */
9752
9753static void
9754assign_component (struct value *container, struct value *lhs, LONGEST index,
9755 struct expression *exp, int *pos)
9756{
9757 struct value *mark = value_mark ();
9758 struct value *elt;
5b4ee69b 9759
52ce6436
PH
9760 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9761 {
22601c15
UW
9762 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9763 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9764
52ce6436
PH
9765 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9766 }
9767 else
9768 {
9769 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9770 elt = ada_to_fixed_value (elt);
52ce6436
PH
9771 }
9772
9773 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9774 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9775 else
9776 value_assign_to_component (container, elt,
9777 ada_evaluate_subexp (NULL, exp, pos,
9778 EVAL_NORMAL));
9779
9780 value_free_to_mark (mark);
9781}
9782
9783/* Assuming that LHS represents an lvalue having a record or array
9784 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9785 of that aggregate's value to LHS, advancing *POS past the
9786 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9787 lvalue containing LHS (possibly LHS itself). Does not modify
9788 the inferior's memory, nor does it modify the contents of
0963b4bd 9789 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9790
9791static struct value *
9792assign_aggregate (struct value *container,
9793 struct value *lhs, struct expression *exp,
9794 int *pos, enum noside noside)
9795{
9796 struct type *lhs_type;
9797 int n = exp->elts[*pos+1].longconst;
9798 LONGEST low_index, high_index;
9799 int num_specs;
9800 LONGEST *indices;
9801 int max_indices, num_indices;
52ce6436 9802 int i;
52ce6436
PH
9803
9804 *pos += 3;
9805 if (noside != EVAL_NORMAL)
9806 {
52ce6436
PH
9807 for (i = 0; i < n; i += 1)
9808 ada_evaluate_subexp (NULL, exp, pos, noside);
9809 return container;
9810 }
9811
9812 container = ada_coerce_ref (container);
9813 if (ada_is_direct_array_type (value_type (container)))
9814 container = ada_coerce_to_simple_array (container);
9815 lhs = ada_coerce_ref (lhs);
9816 if (!deprecated_value_modifiable (lhs))
9817 error (_("Left operand of assignment is not a modifiable lvalue."));
9818
9819 lhs_type = value_type (lhs);
9820 if (ada_is_direct_array_type (lhs_type))
9821 {
9822 lhs = ada_coerce_to_simple_array (lhs);
9823 lhs_type = value_type (lhs);
9824 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9825 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9826 }
9827 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9828 {
9829 low_index = 0;
9830 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9831 }
9832 else
9833 error (_("Left-hand side must be array or record."));
9834
9835 num_specs = num_component_specs (exp, *pos - 3);
9836 max_indices = 4 * num_specs + 4;
8d749320 9837 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9838 indices[0] = indices[1] = low_index - 1;
9839 indices[2] = indices[3] = high_index + 1;
9840 num_indices = 4;
9841
9842 for (i = 0; i < n; i += 1)
9843 {
9844 switch (exp->elts[*pos].opcode)
9845 {
1fbf5ada
JB
9846 case OP_CHOICES:
9847 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9848 &num_indices, max_indices,
9849 low_index, high_index);
9850 break;
9851 case OP_POSITIONAL:
9852 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9853 &num_indices, max_indices,
9854 low_index, high_index);
1fbf5ada
JB
9855 break;
9856 case OP_OTHERS:
9857 if (i != n-1)
9858 error (_("Misplaced 'others' clause"));
9859 aggregate_assign_others (container, lhs, exp, pos, indices,
9860 num_indices, low_index, high_index);
9861 break;
9862 default:
9863 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9864 }
9865 }
9866
9867 return container;
9868}
9869
9870/* Assign into the component of LHS indexed by the OP_POSITIONAL
9871 construct at *POS, updating *POS past the construct, given that
9872 the positions are relative to lower bound LOW, where HIGH is the
9873 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9874 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9875 assign_aggregate. */
52ce6436
PH
9876static void
9877aggregate_assign_positional (struct value *container,
9878 struct value *lhs, struct expression *exp,
9879 int *pos, LONGEST *indices, int *num_indices,
9880 int max_indices, LONGEST low, LONGEST high)
9881{
9882 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9883
9884 if (ind - 1 == high)
e1d5a0d2 9885 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9886 if (ind <= high)
9887 {
9888 add_component_interval (ind, ind, indices, num_indices, max_indices);
9889 *pos += 3;
9890 assign_component (container, lhs, ind, exp, pos);
9891 }
9892 else
9893 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9894}
9895
9896/* Assign into the components of LHS indexed by the OP_CHOICES
9897 construct at *POS, updating *POS past the construct, given that
9898 the allowable indices are LOW..HIGH. Record the indices assigned
9899 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9900 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9901static void
9902aggregate_assign_from_choices (struct value *container,
9903 struct value *lhs, struct expression *exp,
9904 int *pos, LONGEST *indices, int *num_indices,
9905 int max_indices, LONGEST low, LONGEST high)
9906{
9907 int j;
9908 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9909 int choice_pos, expr_pc;
9910 int is_array = ada_is_direct_array_type (value_type (lhs));
9911
9912 choice_pos = *pos += 3;
9913
9914 for (j = 0; j < n_choices; j += 1)
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916 expr_pc = *pos;
9917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9918
9919 for (j = 0; j < n_choices; j += 1)
9920 {
9921 LONGEST lower, upper;
9922 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9923
52ce6436
PH
9924 if (op == OP_DISCRETE_RANGE)
9925 {
9926 choice_pos += 1;
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9928 EVAL_NORMAL));
9929 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9930 EVAL_NORMAL));
9931 }
9932 else if (is_array)
9933 {
9934 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9935 EVAL_NORMAL));
9936 upper = lower;
9937 }
9938 else
9939 {
9940 int ind;
0d5cff50 9941 const char *name;
5b4ee69b 9942
52ce6436
PH
9943 switch (op)
9944 {
9945 case OP_NAME:
9946 name = &exp->elts[choice_pos + 2].string;
9947 break;
9948 case OP_VAR_VALUE:
9949 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9950 break;
9951 default:
9952 error (_("Invalid record component association."));
9953 }
9954 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9955 ind = 0;
9956 if (! find_struct_field (name, value_type (lhs), 0,
9957 NULL, NULL, NULL, NULL, &ind))
9958 error (_("Unknown component name: %s."), name);
9959 lower = upper = ind;
9960 }
9961
9962 if (lower <= upper && (lower < low || upper > high))
9963 error (_("Index in component association out of bounds."));
9964
9965 add_component_interval (lower, upper, indices, num_indices,
9966 max_indices);
9967 while (lower <= upper)
9968 {
9969 int pos1;
5b4ee69b 9970
52ce6436
PH
9971 pos1 = expr_pc;
9972 assign_component (container, lhs, lower, exp, &pos1);
9973 lower += 1;
9974 }
9975 }
9976}
9977
9978/* Assign the value of the expression in the OP_OTHERS construct in
9979 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9980 have not been previously assigned. The index intervals already assigned
9981 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9982 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9983static void
9984aggregate_assign_others (struct value *container,
9985 struct value *lhs, struct expression *exp,
9986 int *pos, LONGEST *indices, int num_indices,
9987 LONGEST low, LONGEST high)
9988{
9989 int i;
5ce64950 9990 int expr_pc = *pos + 1;
52ce6436
PH
9991
9992 for (i = 0; i < num_indices - 2; i += 2)
9993 {
9994 LONGEST ind;
5b4ee69b 9995
52ce6436
PH
9996 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9997 {
5ce64950 9998 int localpos;
5b4ee69b 9999
5ce64950
MS
10000 localpos = expr_pc;
10001 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10002 }
10003 }
10004 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10005}
10006
10007/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10008 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10009 modifying *SIZE as needed. It is an error if *SIZE exceeds
10010 MAX_SIZE. The resulting intervals do not overlap. */
10011static void
10012add_component_interval (LONGEST low, LONGEST high,
10013 LONGEST* indices, int *size, int max_size)
10014{
10015 int i, j;
5b4ee69b 10016
52ce6436
PH
10017 for (i = 0; i < *size; i += 2) {
10018 if (high >= indices[i] && low <= indices[i + 1])
10019 {
10020 int kh;
5b4ee69b 10021
52ce6436
PH
10022 for (kh = i + 2; kh < *size; kh += 2)
10023 if (high < indices[kh])
10024 break;
10025 if (low < indices[i])
10026 indices[i] = low;
10027 indices[i + 1] = indices[kh - 1];
10028 if (high > indices[i + 1])
10029 indices[i + 1] = high;
10030 memcpy (indices + i + 2, indices + kh, *size - kh);
10031 *size -= kh - i - 2;
10032 return;
10033 }
10034 else if (high < indices[i])
10035 break;
10036 }
10037
10038 if (*size == max_size)
10039 error (_("Internal error: miscounted aggregate components."));
10040 *size += 2;
10041 for (j = *size-1; j >= i+2; j -= 1)
10042 indices[j] = indices[j - 2];
10043 indices[i] = low;
10044 indices[i + 1] = high;
10045}
10046
6e48bd2c
JB
10047/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10048 is different. */
10049
10050static struct value *
b7e22850 10051ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10052{
10053 if (type == ada_check_typedef (value_type (arg2)))
10054 return arg2;
10055
10056 if (ada_is_fixed_point_type (type))
10057 return (cast_to_fixed (type, arg2));
10058
10059 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10060 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10061
10062 return value_cast (type, arg2);
10063}
10064
284614f0
JB
10065/* Evaluating Ada expressions, and printing their result.
10066 ------------------------------------------------------
10067
21649b50
JB
10068 1. Introduction:
10069 ----------------
10070
284614f0
JB
10071 We usually evaluate an Ada expression in order to print its value.
10072 We also evaluate an expression in order to print its type, which
10073 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10074 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10075 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10076 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10077 similar.
10078
10079 Evaluating expressions is a little more complicated for Ada entities
10080 than it is for entities in languages such as C. The main reason for
10081 this is that Ada provides types whose definition might be dynamic.
10082 One example of such types is variant records. Or another example
10083 would be an array whose bounds can only be known at run time.
10084
10085 The following description is a general guide as to what should be
10086 done (and what should NOT be done) in order to evaluate an expression
10087 involving such types, and when. This does not cover how the semantic
10088 information is encoded by GNAT as this is covered separatly. For the
10089 document used as the reference for the GNAT encoding, see exp_dbug.ads
10090 in the GNAT sources.
10091
10092 Ideally, we should embed each part of this description next to its
10093 associated code. Unfortunately, the amount of code is so vast right
10094 now that it's hard to see whether the code handling a particular
10095 situation might be duplicated or not. One day, when the code is
10096 cleaned up, this guide might become redundant with the comments
10097 inserted in the code, and we might want to remove it.
10098
21649b50
JB
10099 2. ``Fixing'' an Entity, the Simple Case:
10100 -----------------------------------------
10101
284614f0
JB
10102 When evaluating Ada expressions, the tricky issue is that they may
10103 reference entities whose type contents and size are not statically
10104 known. Consider for instance a variant record:
10105
10106 type Rec (Empty : Boolean := True) is record
10107 case Empty is
10108 when True => null;
10109 when False => Value : Integer;
10110 end case;
10111 end record;
10112 Yes : Rec := (Empty => False, Value => 1);
10113 No : Rec := (empty => True);
10114
10115 The size and contents of that record depends on the value of the
10116 descriminant (Rec.Empty). At this point, neither the debugging
10117 information nor the associated type structure in GDB are able to
10118 express such dynamic types. So what the debugger does is to create
10119 "fixed" versions of the type that applies to the specific object.
10120 We also informally refer to this opperation as "fixing" an object,
10121 which means creating its associated fixed type.
10122
10123 Example: when printing the value of variable "Yes" above, its fixed
10124 type would look like this:
10125
10126 type Rec is record
10127 Empty : Boolean;
10128 Value : Integer;
10129 end record;
10130
10131 On the other hand, if we printed the value of "No", its fixed type
10132 would become:
10133
10134 type Rec is record
10135 Empty : Boolean;
10136 end record;
10137
10138 Things become a little more complicated when trying to fix an entity
10139 with a dynamic type that directly contains another dynamic type,
10140 such as an array of variant records, for instance. There are
10141 two possible cases: Arrays, and records.
10142
21649b50
JB
10143 3. ``Fixing'' Arrays:
10144 ---------------------
10145
10146 The type structure in GDB describes an array in terms of its bounds,
10147 and the type of its elements. By design, all elements in the array
10148 have the same type and we cannot represent an array of variant elements
10149 using the current type structure in GDB. When fixing an array,
10150 we cannot fix the array element, as we would potentially need one
10151 fixed type per element of the array. As a result, the best we can do
10152 when fixing an array is to produce an array whose bounds and size
10153 are correct (allowing us to read it from memory), but without having
10154 touched its element type. Fixing each element will be done later,
10155 when (if) necessary.
10156
10157 Arrays are a little simpler to handle than records, because the same
10158 amount of memory is allocated for each element of the array, even if
1b536f04 10159 the amount of space actually used by each element differs from element
21649b50 10160 to element. Consider for instance the following array of type Rec:
284614f0
JB
10161
10162 type Rec_Array is array (1 .. 2) of Rec;
10163
1b536f04
JB
10164 The actual amount of memory occupied by each element might be different
10165 from element to element, depending on the value of their discriminant.
21649b50 10166 But the amount of space reserved for each element in the array remains
1b536f04 10167 fixed regardless. So we simply need to compute that size using
21649b50
JB
10168 the debugging information available, from which we can then determine
10169 the array size (we multiply the number of elements of the array by
10170 the size of each element).
10171
10172 The simplest case is when we have an array of a constrained element
10173 type. For instance, consider the following type declarations:
10174
10175 type Bounded_String (Max_Size : Integer) is
10176 Length : Integer;
10177 Buffer : String (1 .. Max_Size);
10178 end record;
10179 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10180
10181 In this case, the compiler describes the array as an array of
10182 variable-size elements (identified by its XVS suffix) for which
10183 the size can be read in the parallel XVZ variable.
10184
10185 In the case of an array of an unconstrained element type, the compiler
10186 wraps the array element inside a private PAD type. This type should not
10187 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10188 that we also use the adjective "aligner" in our code to designate
10189 these wrapper types.
10190
1b536f04 10191 In some cases, the size allocated for each element is statically
21649b50
JB
10192 known. In that case, the PAD type already has the correct size,
10193 and the array element should remain unfixed.
10194
10195 But there are cases when this size is not statically known.
10196 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10197
10198 type Dynamic is array (1 .. Five) of Integer;
10199 type Wrapper (Has_Length : Boolean := False) is record
10200 Data : Dynamic;
10201 case Has_Length is
10202 when True => Length : Integer;
10203 when False => null;
10204 end case;
10205 end record;
10206 type Wrapper_Array is array (1 .. 2) of Wrapper;
10207
10208 Hello : Wrapper_Array := (others => (Has_Length => True,
10209 Data => (others => 17),
10210 Length => 1));
10211
10212
10213 The debugging info would describe variable Hello as being an
10214 array of a PAD type. The size of that PAD type is not statically
10215 known, but can be determined using a parallel XVZ variable.
10216 In that case, a copy of the PAD type with the correct size should
10217 be used for the fixed array.
10218
21649b50
JB
10219 3. ``Fixing'' record type objects:
10220 ----------------------------------
10221
10222 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10223 record types. In this case, in order to compute the associated
10224 fixed type, we need to determine the size and offset of each of
10225 its components. This, in turn, requires us to compute the fixed
10226 type of each of these components.
10227
10228 Consider for instance the example:
10229
10230 type Bounded_String (Max_Size : Natural) is record
10231 Str : String (1 .. Max_Size);
10232 Length : Natural;
10233 end record;
10234 My_String : Bounded_String (Max_Size => 10);
10235
10236 In that case, the position of field "Length" depends on the size
10237 of field Str, which itself depends on the value of the Max_Size
21649b50 10238 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10239 we need to fix the type of field Str. Therefore, fixing a variant
10240 record requires us to fix each of its components.
10241
10242 However, if a component does not have a dynamic size, the component
10243 should not be fixed. In particular, fields that use a PAD type
10244 should not fixed. Here is an example where this might happen
10245 (assuming type Rec above):
10246
10247 type Container (Big : Boolean) is record
10248 First : Rec;
10249 After : Integer;
10250 case Big is
10251 when True => Another : Integer;
10252 when False => null;
10253 end case;
10254 end record;
10255 My_Container : Container := (Big => False,
10256 First => (Empty => True),
10257 After => 42);
10258
10259 In that example, the compiler creates a PAD type for component First,
10260 whose size is constant, and then positions the component After just
10261 right after it. The offset of component After is therefore constant
10262 in this case.
10263
10264 The debugger computes the position of each field based on an algorithm
10265 that uses, among other things, the actual position and size of the field
21649b50
JB
10266 preceding it. Let's now imagine that the user is trying to print
10267 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10268 end up computing the offset of field After based on the size of the
10269 fixed version of field First. And since in our example First has
10270 only one actual field, the size of the fixed type is actually smaller
10271 than the amount of space allocated to that field, and thus we would
10272 compute the wrong offset of field After.
10273
21649b50
JB
10274 To make things more complicated, we need to watch out for dynamic
10275 components of variant records (identified by the ___XVL suffix in
10276 the component name). Even if the target type is a PAD type, the size
10277 of that type might not be statically known. So the PAD type needs
10278 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10279 we might end up with the wrong size for our component. This can be
10280 observed with the following type declarations:
284614f0
JB
10281
10282 type Octal is new Integer range 0 .. 7;
10283 type Octal_Array is array (Positive range <>) of Octal;
10284 pragma Pack (Octal_Array);
10285
10286 type Octal_Buffer (Size : Positive) is record
10287 Buffer : Octal_Array (1 .. Size);
10288 Length : Integer;
10289 end record;
10290
10291 In that case, Buffer is a PAD type whose size is unset and needs
10292 to be computed by fixing the unwrapped type.
10293
21649b50
JB
10294 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10295 ----------------------------------------------------------
10296
10297 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10298 thus far, be actually fixed?
10299
10300 The answer is: Only when referencing that element. For instance
10301 when selecting one component of a record, this specific component
10302 should be fixed at that point in time. Or when printing the value
10303 of a record, each component should be fixed before its value gets
10304 printed. Similarly for arrays, the element of the array should be
10305 fixed when printing each element of the array, or when extracting
10306 one element out of that array. On the other hand, fixing should
10307 not be performed on the elements when taking a slice of an array!
10308
31432a67 10309 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10310 size of each field is that we end up also miscomputing the size
10311 of the containing type. This can have adverse results when computing
10312 the value of an entity. GDB fetches the value of an entity based
10313 on the size of its type, and thus a wrong size causes GDB to fetch
10314 the wrong amount of memory. In the case where the computed size is
10315 too small, GDB fetches too little data to print the value of our
31432a67 10316 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10317 past the buffer containing the data =:-o. */
10318
ced9779b
JB
10319/* Evaluate a subexpression of EXP, at index *POS, and return a value
10320 for that subexpression cast to TO_TYPE. Advance *POS over the
10321 subexpression. */
10322
10323static value *
10324ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10325 enum noside noside, struct type *to_type)
10326{
10327 int pc = *pos;
10328
10329 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10330 || exp->elts[pc].opcode == OP_VAR_VALUE)
10331 {
10332 (*pos) += 4;
10333
10334 value *val;
10335 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10336 {
10337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10338 return value_zero (to_type, not_lval);
10339
10340 val = evaluate_var_msym_value (noside,
10341 exp->elts[pc + 1].objfile,
10342 exp->elts[pc + 2].msymbol);
10343 }
10344 else
10345 val = evaluate_var_value (noside,
10346 exp->elts[pc + 1].block,
10347 exp->elts[pc + 2].symbol);
10348
10349 if (noside == EVAL_SKIP)
10350 return eval_skip_value (exp);
10351
10352 val = ada_value_cast (to_type, val);
10353
10354 /* Follow the Ada language semantics that do not allow taking
10355 an address of the result of a cast (view conversion in Ada). */
10356 if (VALUE_LVAL (val) == lval_memory)
10357 {
10358 if (value_lazy (val))
10359 value_fetch_lazy (val);
10360 VALUE_LVAL (val) = not_lval;
10361 }
10362 return val;
10363 }
10364
10365 value *val = evaluate_subexp (to_type, exp, pos, noside);
10366 if (noside == EVAL_SKIP)
10367 return eval_skip_value (exp);
10368 return ada_value_cast (to_type, val);
10369}
10370
284614f0
JB
10371/* Implement the evaluate_exp routine in the exp_descriptor structure
10372 for the Ada language. */
10373
52ce6436 10374static struct value *
ebf56fd3 10375ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10376 int *pos, enum noside noside)
14f9c5c9
AS
10377{
10378 enum exp_opcode op;
b5385fc0 10379 int tem;
14f9c5c9 10380 int pc;
5ec18f2b 10381 int preeval_pos;
14f9c5c9
AS
10382 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10383 struct type *type;
52ce6436 10384 int nargs, oplen;
d2e4a39e 10385 struct value **argvec;
14f9c5c9 10386
d2e4a39e
AS
10387 pc = *pos;
10388 *pos += 1;
14f9c5c9
AS
10389 op = exp->elts[pc].opcode;
10390
d2e4a39e 10391 switch (op)
14f9c5c9
AS
10392 {
10393 default:
10394 *pos -= 1;
6e48bd2c 10395 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10396
10397 if (noside == EVAL_NORMAL)
10398 arg1 = unwrap_value (arg1);
6e48bd2c 10399
edd079d9 10400 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10401 then we need to perform the conversion manually, because
10402 evaluate_subexp_standard doesn't do it. This conversion is
10403 necessary in Ada because the different kinds of float/fixed
10404 types in Ada have different representations.
10405
10406 Similarly, we need to perform the conversion from OP_LONG
10407 ourselves. */
edd079d9 10408 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10409 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10410
10411 return arg1;
4c4b4cd2
PH
10412
10413 case OP_STRING:
10414 {
76a01679 10415 struct value *result;
5b4ee69b 10416
76a01679
JB
10417 *pos -= 1;
10418 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10419 /* The result type will have code OP_STRING, bashed there from
10420 OP_ARRAY. Bash it back. */
df407dfe
AC
10421 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10422 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10423 return result;
4c4b4cd2 10424 }
14f9c5c9
AS
10425
10426 case UNOP_CAST:
10427 (*pos) += 2;
10428 type = exp->elts[pc + 1].type;
ced9779b 10429 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10430
4c4b4cd2
PH
10431 case UNOP_QUAL:
10432 (*pos) += 2;
10433 type = exp->elts[pc + 1].type;
10434 return ada_evaluate_subexp (type, exp, pos, noside);
10435
14f9c5c9
AS
10436 case BINOP_ASSIGN:
10437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10438 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10439 {
10440 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10441 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10442 return arg1;
10443 return ada_value_assign (arg1, arg1);
10444 }
003f3813
JB
10445 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10446 except if the lhs of our assignment is a convenience variable.
10447 In the case of assigning to a convenience variable, the lhs
10448 should be exactly the result of the evaluation of the rhs. */
10449 type = value_type (arg1);
10450 if (VALUE_LVAL (arg1) == lval_internalvar)
10451 type = NULL;
10452 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10453 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10454 return arg1;
df407dfe
AC
10455 if (ada_is_fixed_point_type (value_type (arg1)))
10456 arg2 = cast_to_fixed (value_type (arg1), arg2);
10457 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10458 error
323e0a4a 10459 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10460 else
df407dfe 10461 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10462 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10463
10464 case BINOP_ADD:
10465 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10466 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 if (noside == EVAL_SKIP)
4c4b4cd2 10468 goto nosideret;
2ac8a782
JB
10469 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10470 return (value_from_longest
10471 (value_type (arg1),
10472 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10473 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10474 return (value_from_longest
10475 (value_type (arg2),
10476 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10477 if ((ada_is_fixed_point_type (value_type (arg1))
10478 || ada_is_fixed_point_type (value_type (arg2)))
10479 && value_type (arg1) != value_type (arg2))
323e0a4a 10480 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10481 /* Do the addition, and cast the result to the type of the first
10482 argument. We cannot cast the result to a reference type, so if
10483 ARG1 is a reference type, find its underlying type. */
10484 type = value_type (arg1);
10485 while (TYPE_CODE (type) == TYPE_CODE_REF)
10486 type = TYPE_TARGET_TYPE (type);
f44316fa 10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10488 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10489
10490 case BINOP_SUB:
10491 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10492 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 if (noside == EVAL_SKIP)
4c4b4cd2 10494 goto nosideret;
2ac8a782
JB
10495 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg1),
10498 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10499 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg2),
10502 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10503 if ((ada_is_fixed_point_type (value_type (arg1))
10504 || ada_is_fixed_point_type (value_type (arg2)))
10505 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10506 error (_("Operands of fixed-point subtraction "
10507 "must have the same type"));
b7789565
JB
10508 /* Do the substraction, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type = value_type (arg1);
10512 while (TYPE_CODE (type) == TYPE_CODE_REF)
10513 type = TYPE_TARGET_TYPE (type);
f44316fa 10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10515 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10516
10517 case BINOP_MUL:
10518 case BINOP_DIV:
e1578042
JB
10519 case BINOP_REM:
10520 case BINOP_MOD:
14f9c5c9
AS
10521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 if (noside == EVAL_SKIP)
4c4b4cd2 10524 goto nosideret;
e1578042 10525 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10526 {
10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10528 return value_zero (value_type (arg1), not_lval);
10529 }
14f9c5c9 10530 else
4c4b4cd2 10531 {
a53b7a21 10532 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10533 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10534 arg1 = cast_from_fixed (type, arg1);
df407dfe 10535 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10536 arg2 = cast_from_fixed (type, arg2);
f44316fa 10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10538 return ada_value_binop (arg1, arg2, op);
10539 }
10540
4c4b4cd2
PH
10541 case BINOP_EQUAL:
10542 case BINOP_NOTEQUAL:
14f9c5c9 10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10544 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10545 if (noside == EVAL_SKIP)
76a01679 10546 goto nosideret;
4c4b4cd2 10547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10548 tem = 0;
4c4b4cd2 10549 else
f44316fa
UW
10550 {
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 tem = ada_value_equal (arg1, arg2);
10553 }
4c4b4cd2 10554 if (op == BINOP_NOTEQUAL)
76a01679 10555 tem = !tem;
fbb06eb1
UW
10556 type = language_bool_type (exp->language_defn, exp->gdbarch);
10557 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10558
10559 case UNOP_NEG:
10560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 if (noside == EVAL_SKIP)
10562 goto nosideret;
df407dfe
AC
10563 else if (ada_is_fixed_point_type (value_type (arg1)))
10564 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10565 else
f44316fa
UW
10566 {
10567 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10568 return value_neg (arg1);
10569 }
4c4b4cd2 10570
2330c6c6
JB
10571 case BINOP_LOGICAL_AND:
10572 case BINOP_LOGICAL_OR:
10573 case UNOP_LOGICAL_NOT:
000d5124
JB
10574 {
10575 struct value *val;
10576
10577 *pos -= 1;
10578 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10579 type = language_bool_type (exp->language_defn, exp->gdbarch);
10580 return value_cast (type, val);
000d5124 10581 }
2330c6c6
JB
10582
10583 case BINOP_BITWISE_AND:
10584 case BINOP_BITWISE_IOR:
10585 case BINOP_BITWISE_XOR:
000d5124
JB
10586 {
10587 struct value *val;
10588
10589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10590 *pos = pc;
10591 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10592
10593 return value_cast (value_type (arg1), val);
10594 }
2330c6c6 10595
14f9c5c9
AS
10596 case OP_VAR_VALUE:
10597 *pos -= 1;
6799def4 10598
14f9c5c9 10599 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10600 {
10601 *pos += 4;
10602 goto nosideret;
10603 }
da5c522f
JB
10604
10605 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10606 /* Only encountered when an unresolved symbol occurs in a
10607 context other than a function call, in which case, it is
52ce6436 10608 invalid. */
323e0a4a 10609 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10610 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10611
10612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10613 {
0c1f74cf 10614 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10615 /* Check to see if this is a tagged type. We also need to handle
10616 the case where the type is a reference to a tagged type, but
10617 we have to be careful to exclude pointers to tagged types.
10618 The latter should be shown as usual (as a pointer), whereas
10619 a reference should mostly be transparent to the user. */
10620 if (ada_is_tagged_type (type, 0)
023db19c 10621 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10622 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10623 {
10624 /* Tagged types are a little special in the fact that the real
10625 type is dynamic and can only be determined by inspecting the
10626 object's tag. This means that we need to get the object's
10627 value first (EVAL_NORMAL) and then extract the actual object
10628 type from its tag.
10629
10630 Note that we cannot skip the final step where we extract
10631 the object type from its tag, because the EVAL_NORMAL phase
10632 results in dynamic components being resolved into fixed ones.
10633 This can cause problems when trying to print the type
10634 description of tagged types whose parent has a dynamic size:
10635 We use the type name of the "_parent" component in order
10636 to print the name of the ancestor type in the type description.
10637 If that component had a dynamic size, the resolution into
10638 a fixed type would result in the loss of that type name,
10639 thus preventing us from printing the name of the ancestor
10640 type in the type description. */
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10642
10643 if (TYPE_CODE (type) != TYPE_CODE_REF)
10644 {
10645 struct type *actual_type;
10646
10647 actual_type = type_from_tag (ada_value_tag (arg1));
10648 if (actual_type == NULL)
10649 /* If, for some reason, we were unable to determine
10650 the actual type from the tag, then use the static
10651 approximation that we just computed as a fallback.
10652 This can happen if the debugging information is
10653 incomplete, for instance. */
10654 actual_type = type;
10655 return value_zero (actual_type, not_lval);
10656 }
10657 else
10658 {
10659 /* In the case of a ref, ada_coerce_ref takes care
10660 of determining the actual type. But the evaluation
10661 should return a ref as it should be valid to ask
10662 for its address; so rebuild a ref after coerce. */
10663 arg1 = ada_coerce_ref (arg1);
a65cfae5 10664 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10665 }
10666 }
0c1f74cf 10667
84754697
JB
10668 /* Records and unions for which GNAT encodings have been
10669 generated need to be statically fixed as well.
10670 Otherwise, non-static fixing produces a type where
10671 all dynamic properties are removed, which prevents "ptype"
10672 from being able to completely describe the type.
10673 For instance, a case statement in a variant record would be
10674 replaced by the relevant components based on the actual
10675 value of the discriminants. */
10676 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10677 && dynamic_template_type (type) != NULL)
10678 || (TYPE_CODE (type) == TYPE_CODE_UNION
10679 && ada_find_parallel_type (type, "___XVU") != NULL))
10680 {
10681 *pos += 4;
10682 return value_zero (to_static_fixed_type (type), not_lval);
10683 }
4c4b4cd2 10684 }
da5c522f
JB
10685
10686 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10687 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10688
10689 case OP_FUNCALL:
10690 (*pos) += 2;
10691
10692 /* Allocate arg vector, including space for the function to be
10693 called in argvec[0] and a terminating NULL. */
10694 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10695 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10696
10697 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10698 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10700 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10701 else
10702 {
10703 for (tem = 0; tem <= nargs; tem += 1)
10704 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 argvec[tem] = 0;
10706
10707 if (noside == EVAL_SKIP)
10708 goto nosideret;
10709 }
10710
ad82864c
JB
10711 if (ada_is_constrained_packed_array_type
10712 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10713 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10714 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10715 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10716 /* This is a packed array that has already been fixed, and
10717 therefore already coerced to a simple array. Nothing further
10718 to do. */
10719 ;
e6c2c623
PMR
10720 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10721 {
10722 /* Make sure we dereference references so that all the code below
10723 feels like it's really handling the referenced value. Wrapping
10724 types (for alignment) may be there, so make sure we strip them as
10725 well. */
10726 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10727 }
10728 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10729 && VALUE_LVAL (argvec[0]) == lval_memory)
10730 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10731
df407dfe 10732 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10733
10734 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10735 them. So, if this is an array typedef (encoding use for array
10736 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10737 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10738 type = ada_typedef_target_type (type);
10739
4c4b4cd2
PH
10740 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10741 {
61ee279c 10742 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10743 {
10744 case TYPE_CODE_FUNC:
61ee279c 10745 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10746 break;
10747 case TYPE_CODE_ARRAY:
10748 break;
10749 case TYPE_CODE_STRUCT:
10750 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10751 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10752 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10753 break;
10754 default:
323e0a4a 10755 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10756 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10757 break;
10758 }
10759 }
10760
10761 switch (TYPE_CODE (type))
10762 {
10763 case TYPE_CODE_FUNC:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10765 {
7022349d
PA
10766 if (TYPE_TARGET_TYPE (type) == NULL)
10767 error_call_unknown_return_type (NULL);
10768 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10769 }
7022349d 10770 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10771 case TYPE_CODE_INTERNAL_FUNCTION:
10772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10773 /* We don't know anything about what the internal
10774 function might return, but we have to return
10775 something. */
10776 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10777 not_lval);
10778 else
10779 return call_internal_function (exp->gdbarch, exp->language_defn,
10780 argvec[0], nargs, argvec + 1);
10781
4c4b4cd2
PH
10782 case TYPE_CODE_STRUCT:
10783 {
10784 int arity;
10785
4c4b4cd2
PH
10786 arity = ada_array_arity (type);
10787 type = ada_array_element_type (type, nargs);
10788 if (type == NULL)
323e0a4a 10789 error (_("cannot subscript or call a record"));
4c4b4cd2 10790 if (arity != nargs)
323e0a4a 10791 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10793 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10794 return
10795 unwrap_value (ada_value_subscript
10796 (argvec[0], nargs, argvec + 1));
10797 }
10798 case TYPE_CODE_ARRAY:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 {
10801 type = ada_array_element_type (type, nargs);
10802 if (type == NULL)
323e0a4a 10803 error (_("element type of array unknown"));
4c4b4cd2 10804 else
0a07e705 10805 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10806 }
10807 return
10808 unwrap_value (ada_value_subscript
10809 (ada_coerce_to_simple_array (argvec[0]),
10810 nargs, argvec + 1));
10811 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10813 {
deede10c 10814 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10815 type = ada_array_element_type (type, nargs);
10816 if (type == NULL)
323e0a4a 10817 error (_("element type of array unknown"));
4c4b4cd2 10818 else
0a07e705 10819 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10820 }
10821 return
deede10c
JB
10822 unwrap_value (ada_value_ptr_subscript (argvec[0],
10823 nargs, argvec + 1));
4c4b4cd2
PH
10824
10825 default:
e1d5a0d2
PH
10826 error (_("Attempt to index or call something other than an "
10827 "array or function"));
4c4b4cd2
PH
10828 }
10829
10830 case TERNOP_SLICE:
10831 {
10832 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10833 struct value *low_bound_val =
10834 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10835 struct value *high_bound_val =
10836 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 LONGEST low_bound;
10838 LONGEST high_bound;
5b4ee69b 10839
994b9211
AC
10840 low_bound_val = coerce_ref (low_bound_val);
10841 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10842 low_bound = value_as_long (low_bound_val);
10843 high_bound = value_as_long (high_bound_val);
963a6417 10844
4c4b4cd2
PH
10845 if (noside == EVAL_SKIP)
10846 goto nosideret;
10847
4c4b4cd2
PH
10848 /* If this is a reference to an aligner type, then remove all
10849 the aligners. */
df407dfe
AC
10850 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10851 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10852 TYPE_TARGET_TYPE (value_type (array)) =
10853 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10854
ad82864c 10855 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10856 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10857
10858 /* If this is a reference to an array or an array lvalue,
10859 convert to a pointer. */
df407dfe
AC
10860 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10861 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10862 && VALUE_LVAL (array) == lval_memory))
10863 array = value_addr (array);
10864
1265e4aa 10865 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10866 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10867 (value_type (array))))
0b5d8877 10868 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10869
10870 array = ada_coerce_to_simple_array_ptr (array);
10871
714e53ab
PH
10872 /* If we have more than one level of pointer indirection,
10873 dereference the value until we get only one level. */
df407dfe
AC
10874 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10875 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10876 == TYPE_CODE_PTR))
10877 array = value_ind (array);
10878
10879 /* Make sure we really do have an array type before going further,
10880 to avoid a SEGV when trying to get the index type or the target
10881 type later down the road if the debug info generated by
10882 the compiler is incorrect or incomplete. */
df407dfe 10883 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10884 error (_("cannot take slice of non-array"));
714e53ab 10885
828292f2
JB
10886 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10887 == TYPE_CODE_PTR)
4c4b4cd2 10888 {
828292f2
JB
10889 struct type *type0 = ada_check_typedef (value_type (array));
10890
0b5d8877 10891 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10892 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10893 else
10894 {
10895 struct type *arr_type0 =
828292f2 10896 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10897
f5938064
JG
10898 return ada_value_slice_from_ptr (array, arr_type0,
10899 longest_to_int (low_bound),
10900 longest_to_int (high_bound));
4c4b4cd2
PH
10901 }
10902 }
10903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return array;
10905 else if (high_bound < low_bound)
df407dfe 10906 return empty_array (value_type (array), low_bound);
4c4b4cd2 10907 else
529cad9c
PH
10908 return ada_value_slice (array, longest_to_int (low_bound),
10909 longest_to_int (high_bound));
4c4b4cd2 10910 }
14f9c5c9 10911
4c4b4cd2
PH
10912 case UNOP_IN_RANGE:
10913 (*pos) += 2;
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10915 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10916
14f9c5c9 10917 if (noside == EVAL_SKIP)
4c4b4cd2 10918 goto nosideret;
14f9c5c9 10919
4c4b4cd2
PH
10920 switch (TYPE_CODE (type))
10921 {
10922 default:
e1d5a0d2
PH
10923 lim_warning (_("Membership test incompletely implemented; "
10924 "always returns true"));
fbb06eb1
UW
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10927
10928 case TYPE_CODE_RANGE:
030b4912
UW
10929 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10930 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10931 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return
10935 value_from_longest (type,
4c4b4cd2
PH
10936 (value_less (arg1, arg3)
10937 || value_equal (arg1, arg3))
10938 && (value_less (arg2, arg1)
10939 || value_equal (arg2, arg1)));
10940 }
10941
10942 case BINOP_IN_BOUNDS:
14f9c5c9 10943 (*pos) += 2;
4c4b4cd2
PH
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10946
4c4b4cd2
PH
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
14f9c5c9 10949
4c4b4cd2 10950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10951 {
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_zero (type, not_lval);
10954 }
14f9c5c9 10955
4c4b4cd2 10956 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10957
1eea4ebd
UW
10958 type = ada_index_type (value_type (arg2), tem, "range");
10959 if (!type)
10960 type = value_type (arg1);
14f9c5c9 10961
1eea4ebd
UW
10962 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10963 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10964
f44316fa
UW
10965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10967 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10968 return
fbb06eb1 10969 value_from_longest (type,
4c4b4cd2
PH
10970 (value_less (arg1, arg3)
10971 || value_equal (arg1, arg3))
10972 && (value_less (arg2, arg1)
10973 || value_equal (arg2, arg1)));
10974
10975 case TERNOP_IN_RANGE:
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10977 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10978 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982
f44316fa
UW
10983 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10985 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10986 return
fbb06eb1 10987 value_from_longest (type,
4c4b4cd2
PH
10988 (value_less (arg1, arg3)
10989 || value_equal (arg1, arg3))
10990 && (value_less (arg2, arg1)
10991 || value_equal (arg2, arg1)));
10992
10993 case OP_ATR_FIRST:
10994 case OP_ATR_LAST:
10995 case OP_ATR_LENGTH:
10996 {
76a01679 10997 struct type *type_arg;
5b4ee69b 10998
76a01679
JB
10999 if (exp->elts[*pos].opcode == OP_TYPE)
11000 {
11001 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11002 arg1 = NULL;
5bc23cb3 11003 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11004 }
11005 else
11006 {
11007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 type_arg = NULL;
11009 }
11010
11011 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11012 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11013 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11014 *pos += 4;
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018
11019 if (type_arg == NULL)
11020 {
11021 arg1 = ada_coerce_ref (arg1);
11022
ad82864c 11023 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11024 arg1 = ada_coerce_to_simple_array (arg1);
11025
aa4fb036 11026 if (op == OP_ATR_LENGTH)
1eea4ebd 11027 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11028 else
11029 {
11030 type = ada_index_type (value_type (arg1), tem,
11031 ada_attribute_name (op));
11032 if (type == NULL)
11033 type = builtin_type (exp->gdbarch)->builtin_int;
11034 }
76a01679
JB
11035
11036 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11037 return allocate_value (type);
76a01679
JB
11038
11039 switch (op)
11040 {
11041 default: /* Should never happen. */
323e0a4a 11042 error (_("unexpected attribute encountered"));
76a01679 11043 case OP_ATR_FIRST:
1eea4ebd
UW
11044 return value_from_longest
11045 (type, ada_array_bound (arg1, tem, 0));
76a01679 11046 case OP_ATR_LAST:
1eea4ebd
UW
11047 return value_from_longest
11048 (type, ada_array_bound (arg1, tem, 1));
76a01679 11049 case OP_ATR_LENGTH:
1eea4ebd
UW
11050 return value_from_longest
11051 (type, ada_array_length (arg1, tem));
76a01679
JB
11052 }
11053 }
11054 else if (discrete_type_p (type_arg))
11055 {
11056 struct type *range_type;
0d5cff50 11057 const char *name = ada_type_name (type_arg);
5b4ee69b 11058
76a01679
JB
11059 range_type = NULL;
11060 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11061 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11062 if (range_type == NULL)
11063 range_type = type_arg;
11064 switch (op)
11065 {
11066 default:
323e0a4a 11067 error (_("unexpected attribute encountered"));
76a01679 11068 case OP_ATR_FIRST:
690cc4eb 11069 return value_from_longest
43bbcdc2 11070 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11071 case OP_ATR_LAST:
690cc4eb 11072 return value_from_longest
43bbcdc2 11073 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11074 case OP_ATR_LENGTH:
323e0a4a 11075 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11076 }
11077 }
11078 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11079 error (_("unimplemented type attribute"));
76a01679
JB
11080 else
11081 {
11082 LONGEST low, high;
11083
ad82864c
JB
11084 if (ada_is_constrained_packed_array_type (type_arg))
11085 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11086
aa4fb036 11087 if (op == OP_ATR_LENGTH)
1eea4ebd 11088 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11089 else
11090 {
11091 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11092 if (type == NULL)
11093 type = builtin_type (exp->gdbarch)->builtin_int;
11094 }
1eea4ebd 11095
76a01679
JB
11096 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11097 return allocate_value (type);
11098
11099 switch (op)
11100 {
11101 default:
323e0a4a 11102 error (_("unexpected attribute encountered"));
76a01679 11103 case OP_ATR_FIRST:
1eea4ebd 11104 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11105 return value_from_longest (type, low);
11106 case OP_ATR_LAST:
1eea4ebd 11107 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11108 return value_from_longest (type, high);
11109 case OP_ATR_LENGTH:
1eea4ebd
UW
11110 low = ada_array_bound_from_type (type_arg, tem, 0);
11111 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11112 return value_from_longest (type, high - low + 1);
11113 }
11114 }
14f9c5c9
AS
11115 }
11116
4c4b4cd2
PH
11117 case OP_ATR_TAG:
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 if (noside == EVAL_SKIP)
76a01679 11120 goto nosideret;
4c4b4cd2
PH
11121
11122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11123 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11124
11125 return ada_value_tag (arg1);
11126
11127 case OP_ATR_MIN:
11128 case OP_ATR_MAX:
11129 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 if (noside == EVAL_SKIP)
76a01679 11133 goto nosideret;
d2e4a39e 11134 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11135 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11136 else
f44316fa
UW
11137 {
11138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11139 return value_binop (arg1, arg2,
11140 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11141 }
14f9c5c9 11142
4c4b4cd2
PH
11143 case OP_ATR_MODULUS:
11144 {
31dedfee 11145 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11146
5b4ee69b 11147 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11148 if (noside == EVAL_SKIP)
11149 goto nosideret;
4c4b4cd2 11150
76a01679 11151 if (!ada_is_modular_type (type_arg))
323e0a4a 11152 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11153
76a01679
JB
11154 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11155 ada_modulus (type_arg));
4c4b4cd2
PH
11156 }
11157
11158
11159 case OP_ATR_POS:
11160 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11162 if (noside == EVAL_SKIP)
76a01679 11163 goto nosideret;
3cb382c9
UW
11164 type = builtin_type (exp->gdbarch)->builtin_int;
11165 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11166 return value_zero (type, not_lval);
14f9c5c9 11167 else
3cb382c9 11168 return value_pos_atr (type, arg1);
14f9c5c9 11169
4c4b4cd2
PH
11170 case OP_ATR_SIZE:
11171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11172 type = value_type (arg1);
11173
11174 /* If the argument is a reference, then dereference its type, since
11175 the user is really asking for the size of the actual object,
11176 not the size of the pointer. */
11177 if (TYPE_CODE (type) == TYPE_CODE_REF)
11178 type = TYPE_TARGET_TYPE (type);
11179
4c4b4cd2 11180 if (noside == EVAL_SKIP)
76a01679 11181 goto nosideret;
4c4b4cd2 11182 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11183 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11184 else
22601c15 11185 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11186 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11187
11188 case OP_ATR_VAL:
11189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11191 type = exp->elts[pc + 2].type;
14f9c5c9 11192 if (noside == EVAL_SKIP)
76a01679 11193 goto nosideret;
4c4b4cd2 11194 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11195 return value_zero (type, not_lval);
4c4b4cd2 11196 else
76a01679 11197 return value_val_atr (type, arg1);
4c4b4cd2
PH
11198
11199 case BINOP_EXP:
11200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11205 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11206 else
f44316fa
UW
11207 {
11208 /* For integer exponentiation operations,
11209 only promote the first argument. */
11210 if (is_integral_type (value_type (arg2)))
11211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11212 else
11213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11214
11215 return value_binop (arg1, arg2, op);
11216 }
4c4b4cd2
PH
11217
11218 case UNOP_PLUS:
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 else
11223 return arg1;
11224
11225 case UNOP_ABS:
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
f44316fa 11229 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11230 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11231 return value_neg (arg1);
14f9c5c9 11232 else
4c4b4cd2 11233 return arg1;
14f9c5c9
AS
11234
11235 case UNOP_IND:
5ec18f2b 11236 preeval_pos = *pos;
6b0d7253 11237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11238 if (noside == EVAL_SKIP)
4c4b4cd2 11239 goto nosideret;
df407dfe 11240 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11242 {
11243 if (ada_is_array_descriptor_type (type))
11244 /* GDB allows dereferencing GNAT array descriptors. */
11245 {
11246 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11247
4c4b4cd2 11248 if (arrType == NULL)
323e0a4a 11249 error (_("Attempt to dereference null array pointer."));
00a4c844 11250 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11251 }
11252 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11253 || TYPE_CODE (type) == TYPE_CODE_REF
11254 /* In C you can dereference an array to get the 1st elt. */
11255 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11256 {
5ec18f2b
JG
11257 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11258 only be determined by inspecting the object's tag.
11259 This means that we need to evaluate completely the
11260 expression in order to get its type. */
11261
023db19c
JB
11262 if ((TYPE_CODE (type) == TYPE_CODE_REF
11263 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11264 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11265 {
11266 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11267 EVAL_NORMAL);
11268 type = value_type (ada_value_ind (arg1));
11269 }
11270 else
11271 {
11272 type = to_static_fixed_type
11273 (ada_aligned_type
11274 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11275 }
c1b5a1a6 11276 ada_ensure_varsize_limit (type);
714e53ab
PH
11277 return value_zero (type, lval_memory);
11278 }
4c4b4cd2 11279 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11280 {
11281 /* GDB allows dereferencing an int. */
11282 if (expect_type == NULL)
11283 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11284 lval_memory);
11285 else
11286 {
11287 expect_type =
11288 to_static_fixed_type (ada_aligned_type (expect_type));
11289 return value_zero (expect_type, lval_memory);
11290 }
11291 }
4c4b4cd2 11292 else
323e0a4a 11293 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11294 }
0963b4bd 11295 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11296 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11297
96967637
JB
11298 if (TYPE_CODE (type) == TYPE_CODE_INT)
11299 /* GDB allows dereferencing an int. If we were given
11300 the expect_type, then use that as the target type.
11301 Otherwise, assume that the target type is an int. */
11302 {
11303 if (expect_type != NULL)
11304 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11305 arg1));
11306 else
11307 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11308 (CORE_ADDR) value_as_address (arg1));
11309 }
6b0d7253 11310
4c4b4cd2
PH
11311 if (ada_is_array_descriptor_type (type))
11312 /* GDB allows dereferencing GNAT array descriptors. */
11313 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11314 else
4c4b4cd2 11315 return ada_value_ind (arg1);
14f9c5c9
AS
11316
11317 case STRUCTOP_STRUCT:
11318 tem = longest_to_int (exp->elts[pc + 1].longconst);
11319 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11320 preeval_pos = *pos;
14f9c5c9
AS
11321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11322 if (noside == EVAL_SKIP)
4c4b4cd2 11323 goto nosideret;
14f9c5c9 11324 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11325 {
df407dfe 11326 struct type *type1 = value_type (arg1);
5b4ee69b 11327
76a01679
JB
11328 if (ada_is_tagged_type (type1, 1))
11329 {
11330 type = ada_lookup_struct_elt_type (type1,
11331 &exp->elts[pc + 2].string,
988f6b3d 11332 1, 1);
5ec18f2b
JG
11333
11334 /* If the field is not found, check if it exists in the
11335 extension of this object's type. This means that we
11336 need to evaluate completely the expression. */
11337
76a01679 11338 if (type == NULL)
5ec18f2b
JG
11339 {
11340 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11341 EVAL_NORMAL);
11342 arg1 = ada_value_struct_elt (arg1,
11343 &exp->elts[pc + 2].string,
11344 0);
11345 arg1 = unwrap_value (arg1);
11346 type = value_type (ada_to_fixed_value (arg1));
11347 }
76a01679
JB
11348 }
11349 else
11350 type =
11351 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11352 0);
76a01679
JB
11353
11354 return value_zero (ada_aligned_type (type), lval_memory);
11355 }
14f9c5c9 11356 else
a579cd9a
MW
11357 {
11358 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11359 arg1 = unwrap_value (arg1);
11360 return ada_to_fixed_value (arg1);
11361 }
284614f0 11362
14f9c5c9 11363 case OP_TYPE:
4c4b4cd2
PH
11364 /* The value is not supposed to be used. This is here to make it
11365 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11366 (*pos) += 2;
11367 if (noside == EVAL_SKIP)
4c4b4cd2 11368 goto nosideret;
14f9c5c9 11369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11370 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11371 else
323e0a4a 11372 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11373
11374 case OP_AGGREGATE:
11375 case OP_CHOICES:
11376 case OP_OTHERS:
11377 case OP_DISCRETE_RANGE:
11378 case OP_POSITIONAL:
11379 case OP_NAME:
11380 if (noside == EVAL_NORMAL)
11381 switch (op)
11382 {
11383 case OP_NAME:
11384 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11385 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11386 case OP_AGGREGATE:
11387 error (_("Aggregates only allowed on the right of an assignment"));
11388 default:
0963b4bd
MS
11389 internal_error (__FILE__, __LINE__,
11390 _("aggregate apparently mangled"));
52ce6436
PH
11391 }
11392
11393 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11394 *pos += oplen - 1;
11395 for (tem = 0; tem < nargs; tem += 1)
11396 ada_evaluate_subexp (NULL, exp, pos, noside);
11397 goto nosideret;
14f9c5c9
AS
11398 }
11399
11400nosideret:
ced9779b 11401 return eval_skip_value (exp);
14f9c5c9 11402}
14f9c5c9 11403\f
d2e4a39e 11404
4c4b4cd2 11405 /* Fixed point */
14f9c5c9
AS
11406
11407/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11408 type name that encodes the 'small and 'delta information.
4c4b4cd2 11409 Otherwise, return NULL. */
14f9c5c9 11410
d2e4a39e 11411static const char *
ebf56fd3 11412fixed_type_info (struct type *type)
14f9c5c9 11413{
d2e4a39e 11414 const char *name = ada_type_name (type);
14f9c5c9
AS
11415 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11416
d2e4a39e
AS
11417 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11418 {
14f9c5c9 11419 const char *tail = strstr (name, "___XF_");
5b4ee69b 11420
14f9c5c9 11421 if (tail == NULL)
4c4b4cd2 11422 return NULL;
d2e4a39e 11423 else
4c4b4cd2 11424 return tail + 5;
14f9c5c9
AS
11425 }
11426 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11427 return fixed_type_info (TYPE_TARGET_TYPE (type));
11428 else
11429 return NULL;
11430}
11431
4c4b4cd2 11432/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11433
11434int
ebf56fd3 11435ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11436{
11437 return fixed_type_info (type) != NULL;
11438}
11439
4c4b4cd2
PH
11440/* Return non-zero iff TYPE represents a System.Address type. */
11441
11442int
11443ada_is_system_address_type (struct type *type)
11444{
11445 return (TYPE_NAME (type)
11446 && strcmp (TYPE_NAME (type), "system__address") == 0);
11447}
11448
14f9c5c9 11449/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11450 type, return the target floating-point type to be used to represent
11451 of this type during internal computation. */
11452
11453static struct type *
11454ada_scaling_type (struct type *type)
11455{
11456 return builtin_type (get_type_arch (type))->builtin_long_double;
11457}
11458
11459/* Assuming that TYPE is the representation of an Ada fixed-point
11460 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11461 delta cannot be determined. */
14f9c5c9 11462
50eff16b 11463struct value *
ebf56fd3 11464ada_delta (struct type *type)
14f9c5c9
AS
11465{
11466 const char *encoding = fixed_type_info (type);
50eff16b
UW
11467 struct type *scale_type = ada_scaling_type (type);
11468
11469 long long num, den;
11470
11471 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11472 return nullptr;
d2e4a39e 11473 else
50eff16b
UW
11474 return value_binop (value_from_longest (scale_type, num),
11475 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11476}
11477
11478/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11479 factor ('SMALL value) associated with the type. */
14f9c5c9 11480
50eff16b
UW
11481struct value *
11482ada_scaling_factor (struct type *type)
14f9c5c9
AS
11483{
11484 const char *encoding = fixed_type_info (type);
50eff16b
UW
11485 struct type *scale_type = ada_scaling_type (type);
11486
11487 long long num0, den0, num1, den1;
14f9c5c9 11488 int n;
d2e4a39e 11489
50eff16b 11490 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11491 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11492
11493 if (n < 2)
50eff16b 11494 return value_from_longest (scale_type, 1);
14f9c5c9 11495 else if (n == 4)
50eff16b
UW
11496 return value_binop (value_from_longest (scale_type, num1),
11497 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11498 else
50eff16b
UW
11499 return value_binop (value_from_longest (scale_type, num0),
11500 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11501}
11502
14f9c5c9 11503\f
d2e4a39e 11504
4c4b4cd2 11505 /* Range types */
14f9c5c9
AS
11506
11507/* Scan STR beginning at position K for a discriminant name, and
11508 return the value of that discriminant field of DVAL in *PX. If
11509 PNEW_K is not null, put the position of the character beyond the
11510 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11511 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11512
11513static int
108d56a4 11514scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11515 int *pnew_k)
14f9c5c9
AS
11516{
11517 static char *bound_buffer = NULL;
11518 static size_t bound_buffer_len = 0;
5da1a4d3 11519 const char *pstart, *pend, *bound;
d2e4a39e 11520 struct value *bound_val;
14f9c5c9
AS
11521
11522 if (dval == NULL || str == NULL || str[k] == '\0')
11523 return 0;
11524
5da1a4d3
SM
11525 pstart = str + k;
11526 pend = strstr (pstart, "__");
14f9c5c9
AS
11527 if (pend == NULL)
11528 {
5da1a4d3 11529 bound = pstart;
14f9c5c9
AS
11530 k += strlen (bound);
11531 }
d2e4a39e 11532 else
14f9c5c9 11533 {
5da1a4d3
SM
11534 int len = pend - pstart;
11535
11536 /* Strip __ and beyond. */
11537 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11538 strncpy (bound_buffer, pstart, len);
11539 bound_buffer[len] = '\0';
11540
14f9c5c9 11541 bound = bound_buffer;
d2e4a39e 11542 k = pend - str;
14f9c5c9 11543 }
d2e4a39e 11544
df407dfe 11545 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11546 if (bound_val == NULL)
11547 return 0;
11548
11549 *px = value_as_long (bound_val);
11550 if (pnew_k != NULL)
11551 *pnew_k = k;
11552 return 1;
11553}
11554
11555/* Value of variable named NAME in the current environment. If
11556 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11557 otherwise causes an error with message ERR_MSG. */
11558
d2e4a39e 11559static struct value *
edb0c9cb 11560get_var_value (const char *name, const char *err_msg)
14f9c5c9 11561{
b5ec771e 11562 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11563
b5ec771e
PA
11564 struct block_symbol *syms;
11565 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11566 get_selected_block (0),
11567 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11568
11569 if (nsyms != 1)
11570 {
11571 if (err_msg == NULL)
4c4b4cd2 11572 return 0;
14f9c5c9 11573 else
8a3fe4f8 11574 error (("%s"), err_msg);
14f9c5c9
AS
11575 }
11576
d12307c1 11577 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11578}
d2e4a39e 11579
edb0c9cb
PA
11580/* Value of integer variable named NAME in the current environment.
11581 If no such variable is found, returns false. Otherwise, sets VALUE
11582 to the variable's value and returns true. */
4c4b4cd2 11583
edb0c9cb
PA
11584bool
11585get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11586{
4c4b4cd2 11587 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11588
14f9c5c9 11589 if (var_val == 0)
edb0c9cb
PA
11590 return false;
11591
11592 value = value_as_long (var_val);
11593 return true;
14f9c5c9 11594}
d2e4a39e 11595
14f9c5c9
AS
11596
11597/* Return a range type whose base type is that of the range type named
11598 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11599 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11600 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11601 corresponding range type from debug information; fall back to using it
11602 if symbol lookup fails. If a new type must be created, allocate it
11603 like ORIG_TYPE was. The bounds information, in general, is encoded
11604 in NAME, the base type given in the named range type. */
14f9c5c9 11605
d2e4a39e 11606static struct type *
28c85d6c 11607to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11608{
0d5cff50 11609 const char *name;
14f9c5c9 11610 struct type *base_type;
108d56a4 11611 const char *subtype_info;
14f9c5c9 11612
28c85d6c
JB
11613 gdb_assert (raw_type != NULL);
11614 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11615
1ce677a4 11616 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11617 base_type = TYPE_TARGET_TYPE (raw_type);
11618 else
11619 base_type = raw_type;
11620
28c85d6c 11621 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11622 subtype_info = strstr (name, "___XD");
11623 if (subtype_info == NULL)
690cc4eb 11624 {
43bbcdc2
PH
11625 LONGEST L = ada_discrete_type_low_bound (raw_type);
11626 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11627
690cc4eb
PH
11628 if (L < INT_MIN || U > INT_MAX)
11629 return raw_type;
11630 else
0c9c3474
SA
11631 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11632 L, U);
690cc4eb 11633 }
14f9c5c9
AS
11634 else
11635 {
11636 static char *name_buf = NULL;
11637 static size_t name_len = 0;
11638 int prefix_len = subtype_info - name;
11639 LONGEST L, U;
11640 struct type *type;
108d56a4 11641 const char *bounds_str;
14f9c5c9
AS
11642 int n;
11643
11644 GROW_VECT (name_buf, name_len, prefix_len + 5);
11645 strncpy (name_buf, name, prefix_len);
11646 name_buf[prefix_len] = '\0';
11647
11648 subtype_info += 5;
11649 bounds_str = strchr (subtype_info, '_');
11650 n = 1;
11651
d2e4a39e 11652 if (*subtype_info == 'L')
4c4b4cd2
PH
11653 {
11654 if (!ada_scan_number (bounds_str, n, &L, &n)
11655 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11656 return raw_type;
11657 if (bounds_str[n] == '_')
11658 n += 2;
0963b4bd 11659 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11660 n += 1;
11661 subtype_info += 1;
11662 }
d2e4a39e 11663 else
4c4b4cd2 11664 {
4c4b4cd2 11665 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11666 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11667 {
323e0a4a 11668 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11669 L = 1;
11670 }
11671 }
14f9c5c9 11672
d2e4a39e 11673 if (*subtype_info == 'U')
4c4b4cd2
PH
11674 {
11675 if (!ada_scan_number (bounds_str, n, &U, &n)
11676 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11677 return raw_type;
11678 }
d2e4a39e 11679 else
4c4b4cd2 11680 {
4c4b4cd2 11681 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11682 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11683 {
323e0a4a 11684 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11685 U = L;
11686 }
11687 }
14f9c5c9 11688
0c9c3474
SA
11689 type = create_static_range_type (alloc_type_copy (raw_type),
11690 base_type, L, U);
f5a91472
JB
11691 /* create_static_range_type alters the resulting type's length
11692 to match the size of the base_type, which is not what we want.
11693 Set it back to the original range type's length. */
11694 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11695 TYPE_NAME (type) = name;
14f9c5c9
AS
11696 return type;
11697 }
11698}
11699
4c4b4cd2
PH
11700/* True iff NAME is the name of a range type. */
11701
14f9c5c9 11702int
d2e4a39e 11703ada_is_range_type_name (const char *name)
14f9c5c9
AS
11704{
11705 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11706}
14f9c5c9 11707\f
d2e4a39e 11708
4c4b4cd2
PH
11709 /* Modular types */
11710
11711/* True iff TYPE is an Ada modular type. */
14f9c5c9 11712
14f9c5c9 11713int
d2e4a39e 11714ada_is_modular_type (struct type *type)
14f9c5c9 11715{
18af8284 11716 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11717
11718 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11719 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11720 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11721}
11722
4c4b4cd2
PH
11723/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11724
61ee279c 11725ULONGEST
0056e4d5 11726ada_modulus (struct type *type)
14f9c5c9 11727{
43bbcdc2 11728 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11729}
d2e4a39e 11730\f
f7f9143b
JB
11731
11732/* Ada exception catchpoint support:
11733 ---------------------------------
11734
11735 We support 3 kinds of exception catchpoints:
11736 . catchpoints on Ada exceptions
11737 . catchpoints on unhandled Ada exceptions
11738 . catchpoints on failed assertions
11739
11740 Exceptions raised during failed assertions, or unhandled exceptions
11741 could perfectly be caught with the general catchpoint on Ada exceptions.
11742 However, we can easily differentiate these two special cases, and having
11743 the option to distinguish these two cases from the rest can be useful
11744 to zero-in on certain situations.
11745
11746 Exception catchpoints are a specialized form of breakpoint,
11747 since they rely on inserting breakpoints inside known routines
11748 of the GNAT runtime. The implementation therefore uses a standard
11749 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11750 of breakpoint_ops.
11751
0259addd
JB
11752 Support in the runtime for exception catchpoints have been changed
11753 a few times already, and these changes affect the implementation
11754 of these catchpoints. In order to be able to support several
11755 variants of the runtime, we use a sniffer that will determine
28010a5d 11756 the runtime variant used by the program being debugged. */
f7f9143b 11757
82eacd52
JB
11758/* Ada's standard exceptions.
11759
11760 The Ada 83 standard also defined Numeric_Error. But there so many
11761 situations where it was unclear from the Ada 83 Reference Manual
11762 (RM) whether Constraint_Error or Numeric_Error should be raised,
11763 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11764 Interpretation saying that anytime the RM says that Numeric_Error
11765 should be raised, the implementation may raise Constraint_Error.
11766 Ada 95 went one step further and pretty much removed Numeric_Error
11767 from the list of standard exceptions (it made it a renaming of
11768 Constraint_Error, to help preserve compatibility when compiling
11769 an Ada83 compiler). As such, we do not include Numeric_Error from
11770 this list of standard exceptions. */
3d0b0fa3 11771
a121b7c1 11772static const char *standard_exc[] = {
3d0b0fa3
JB
11773 "constraint_error",
11774 "program_error",
11775 "storage_error",
11776 "tasking_error"
11777};
11778
0259addd
JB
11779typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11780
11781/* A structure that describes how to support exception catchpoints
11782 for a given executable. */
11783
11784struct exception_support_info
11785{
11786 /* The name of the symbol to break on in order to insert
11787 a catchpoint on exceptions. */
11788 const char *catch_exception_sym;
11789
11790 /* The name of the symbol to break on in order to insert
11791 a catchpoint on unhandled exceptions. */
11792 const char *catch_exception_unhandled_sym;
11793
11794 /* The name of the symbol to break on in order to insert
11795 a catchpoint on failed assertions. */
11796 const char *catch_assert_sym;
11797
11798 /* Assuming that the inferior just triggered an unhandled exception
11799 catchpoint, this function is responsible for returning the address
11800 in inferior memory where the name of that exception is stored.
11801 Return zero if the address could not be computed. */
11802 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11803};
11804
11805static CORE_ADDR ada_unhandled_exception_name_addr (void);
11806static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11807
11808/* The following exception support info structure describes how to
11809 implement exception catchpoints with the latest version of the
11810 Ada runtime (as of 2007-03-06). */
11811
11812static const struct exception_support_info default_exception_support_info =
11813{
11814 "__gnat_debug_raise_exception", /* catch_exception_sym */
11815 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11816 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11817 ada_unhandled_exception_name_addr
11818};
11819
11820/* The following exception support info structure describes how to
11821 implement exception catchpoints with a slightly older version
11822 of the Ada runtime. */
11823
11824static const struct exception_support_info exception_support_info_fallback =
11825{
11826 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11827 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11828 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11829 ada_unhandled_exception_name_addr_from_raise
11830};
11831
f17011e0
JB
11832/* Return nonzero if we can detect the exception support routines
11833 described in EINFO.
11834
11835 This function errors out if an abnormal situation is detected
11836 (for instance, if we find the exception support routines, but
11837 that support is found to be incomplete). */
11838
11839static int
11840ada_has_this_exception_support (const struct exception_support_info *einfo)
11841{
11842 struct symbol *sym;
11843
11844 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11845 that should be compiled with debugging information. As a result, we
11846 expect to find that symbol in the symtabs. */
11847
11848 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11849 if (sym == NULL)
a6af7abe
JB
11850 {
11851 /* Perhaps we did not find our symbol because the Ada runtime was
11852 compiled without debugging info, or simply stripped of it.
11853 It happens on some GNU/Linux distributions for instance, where
11854 users have to install a separate debug package in order to get
11855 the runtime's debugging info. In that situation, let the user
11856 know why we cannot insert an Ada exception catchpoint.
11857
11858 Note: Just for the purpose of inserting our Ada exception
11859 catchpoint, we could rely purely on the associated minimal symbol.
11860 But we would be operating in degraded mode anyway, since we are
11861 still lacking the debugging info needed later on to extract
11862 the name of the exception being raised (this name is printed in
11863 the catchpoint message, and is also used when trying to catch
11864 a specific exception). We do not handle this case for now. */
3b7344d5 11865 struct bound_minimal_symbol msym
1c8e84b0
JB
11866 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11867
3b7344d5 11868 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11869 error (_("Your Ada runtime appears to be missing some debugging "
11870 "information.\nCannot insert Ada exception catchpoint "
11871 "in this configuration."));
11872
11873 return 0;
11874 }
f17011e0
JB
11875
11876 /* Make sure that the symbol we found corresponds to a function. */
11877
11878 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11879 error (_("Symbol \"%s\" is not a function (class = %d)"),
11880 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11881
11882 return 1;
11883}
11884
0259addd
JB
11885/* Inspect the Ada runtime and determine which exception info structure
11886 should be used to provide support for exception catchpoints.
11887
3eecfa55
JB
11888 This function will always set the per-inferior exception_info,
11889 or raise an error. */
0259addd
JB
11890
11891static void
11892ada_exception_support_info_sniffer (void)
11893{
3eecfa55 11894 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11895
11896 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11897 if (data->exception_info != NULL)
0259addd
JB
11898 return;
11899
11900 /* Check the latest (default) exception support info. */
f17011e0 11901 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11902 {
3eecfa55 11903 data->exception_info = &default_exception_support_info;
0259addd
JB
11904 return;
11905 }
11906
11907 /* Try our fallback exception suport info. */
f17011e0 11908 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11909 {
3eecfa55 11910 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11911 return;
11912 }
11913
11914 /* Sometimes, it is normal for us to not be able to find the routine
11915 we are looking for. This happens when the program is linked with
11916 the shared version of the GNAT runtime, and the program has not been
11917 started yet. Inform the user of these two possible causes if
11918 applicable. */
11919
ccefe4c4 11920 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11921 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11922
11923 /* If the symbol does not exist, then check that the program is
11924 already started, to make sure that shared libraries have been
11925 loaded. If it is not started, this may mean that the symbol is
11926 in a shared library. */
11927
11928 if (ptid_get_pid (inferior_ptid) == 0)
11929 error (_("Unable to insert catchpoint. Try to start the program first."));
11930
11931 /* At this point, we know that we are debugging an Ada program and
11932 that the inferior has been started, but we still are not able to
0963b4bd 11933 find the run-time symbols. That can mean that we are in
0259addd
JB
11934 configurable run time mode, or that a-except as been optimized
11935 out by the linker... In any case, at this point it is not worth
11936 supporting this feature. */
11937
7dda8cff 11938 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11939}
11940
f7f9143b
JB
11941/* True iff FRAME is very likely to be that of a function that is
11942 part of the runtime system. This is all very heuristic, but is
11943 intended to be used as advice as to what frames are uninteresting
11944 to most users. */
11945
11946static int
11947is_known_support_routine (struct frame_info *frame)
11948{
692465f1 11949 enum language func_lang;
f7f9143b 11950 int i;
f35a17b5 11951 const char *fullname;
f7f9143b 11952
4ed6b5be
JB
11953 /* If this code does not have any debugging information (no symtab),
11954 This cannot be any user code. */
f7f9143b 11955
51abb421 11956 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11957 if (sal.symtab == NULL)
11958 return 1;
11959
4ed6b5be
JB
11960 /* If there is a symtab, but the associated source file cannot be
11961 located, then assume this is not user code: Selecting a frame
11962 for which we cannot display the code would not be very helpful
11963 for the user. This should also take care of case such as VxWorks
11964 where the kernel has some debugging info provided for a few units. */
f7f9143b 11965
f35a17b5
JK
11966 fullname = symtab_to_fullname (sal.symtab);
11967 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11968 return 1;
11969
4ed6b5be
JB
11970 /* Check the unit filename againt the Ada runtime file naming.
11971 We also check the name of the objfile against the name of some
11972 known system libraries that sometimes come with debugging info
11973 too. */
11974
f7f9143b
JB
11975 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11976 {
11977 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11978 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11979 return 1;
eb822aa6
DE
11980 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11981 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11982 return 1;
f7f9143b
JB
11983 }
11984
4ed6b5be 11985 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11986
c6dc63a1
TT
11987 gdb::unique_xmalloc_ptr<char> func_name
11988 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11989 if (func_name == NULL)
11990 return 1;
11991
11992 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11993 {
11994 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11995 if (re_exec (func_name.get ()))
11996 return 1;
f7f9143b
JB
11997 }
11998
11999 return 0;
12000}
12001
12002/* Find the first frame that contains debugging information and that is not
12003 part of the Ada run-time, starting from FI and moving upward. */
12004
0ef643c8 12005void
f7f9143b
JB
12006ada_find_printable_frame (struct frame_info *fi)
12007{
12008 for (; fi != NULL; fi = get_prev_frame (fi))
12009 {
12010 if (!is_known_support_routine (fi))
12011 {
12012 select_frame (fi);
12013 break;
12014 }
12015 }
12016
12017}
12018
12019/* Assuming that the inferior just triggered an unhandled exception
12020 catchpoint, return the address in inferior memory where the name
12021 of the exception is stored.
12022
12023 Return zero if the address could not be computed. */
12024
12025static CORE_ADDR
12026ada_unhandled_exception_name_addr (void)
0259addd
JB
12027{
12028 return parse_and_eval_address ("e.full_name");
12029}
12030
12031/* Same as ada_unhandled_exception_name_addr, except that this function
12032 should be used when the inferior uses an older version of the runtime,
12033 where the exception name needs to be extracted from a specific frame
12034 several frames up in the callstack. */
12035
12036static CORE_ADDR
12037ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12038{
12039 int frame_level;
12040 struct frame_info *fi;
3eecfa55 12041 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12042
12043 /* To determine the name of this exception, we need to select
12044 the frame corresponding to RAISE_SYM_NAME. This frame is
12045 at least 3 levels up, so we simply skip the first 3 frames
12046 without checking the name of their associated function. */
12047 fi = get_current_frame ();
12048 for (frame_level = 0; frame_level < 3; frame_level += 1)
12049 if (fi != NULL)
12050 fi = get_prev_frame (fi);
12051
12052 while (fi != NULL)
12053 {
692465f1
JB
12054 enum language func_lang;
12055
c6dc63a1
TT
12056 gdb::unique_xmalloc_ptr<char> func_name
12057 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12058 if (func_name != NULL)
12059 {
c6dc63a1 12060 if (strcmp (func_name.get (),
55b87a52
KS
12061 data->exception_info->catch_exception_sym) == 0)
12062 break; /* We found the frame we were looking for... */
12063 fi = get_prev_frame (fi);
12064 }
f7f9143b
JB
12065 }
12066
12067 if (fi == NULL)
12068 return 0;
12069
12070 select_frame (fi);
12071 return parse_and_eval_address ("id.full_name");
12072}
12073
12074/* Assuming the inferior just triggered an Ada exception catchpoint
12075 (of any type), return the address in inferior memory where the name
12076 of the exception is stored, if applicable.
12077
45db7c09
PA
12078 Assumes the selected frame is the current frame.
12079
f7f9143b
JB
12080 Return zero if the address could not be computed, or if not relevant. */
12081
12082static CORE_ADDR
761269c8 12083ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12084 struct breakpoint *b)
12085{
3eecfa55
JB
12086 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12087
f7f9143b
JB
12088 switch (ex)
12089 {
761269c8 12090 case ada_catch_exception:
f7f9143b
JB
12091 return (parse_and_eval_address ("e.full_name"));
12092 break;
12093
761269c8 12094 case ada_catch_exception_unhandled:
3eecfa55 12095 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12096 break;
12097
761269c8 12098 case ada_catch_assert:
f7f9143b
JB
12099 return 0; /* Exception name is not relevant in this case. */
12100 break;
12101
12102 default:
12103 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12104 break;
12105 }
12106
12107 return 0; /* Should never be reached. */
12108}
12109
e547c119
JB
12110/* Assuming the inferior is stopped at an exception catchpoint,
12111 return the message which was associated to the exception, if
12112 available. Return NULL if the message could not be retrieved.
12113
12114 The caller must xfree the string after use.
12115
12116 Note: The exception message can be associated to an exception
12117 either through the use of the Raise_Exception function, or
12118 more simply (Ada 2005 and later), via:
12119
12120 raise Exception_Name with "exception message";
12121
12122 */
12123
12124static char *
12125ada_exception_message_1 (void)
12126{
12127 struct value *e_msg_val;
12128 char *e_msg = NULL;
12129 int e_msg_len;
12130 struct cleanup *cleanups;
12131
12132 /* For runtimes that support this feature, the exception message
12133 is passed as an unbounded string argument called "message". */
12134 e_msg_val = parse_and_eval ("message");
12135 if (e_msg_val == NULL)
12136 return NULL; /* Exception message not supported. */
12137
12138 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12139 gdb_assert (e_msg_val != NULL);
12140 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12141
12142 /* If the message string is empty, then treat it as if there was
12143 no exception message. */
12144 if (e_msg_len <= 0)
12145 return NULL;
12146
12147 e_msg = (char *) xmalloc (e_msg_len + 1);
12148 cleanups = make_cleanup (xfree, e_msg);
12149 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12150 e_msg[e_msg_len] = '\0';
12151
12152 discard_cleanups (cleanups);
12153 return e_msg;
12154}
12155
12156/* Same as ada_exception_message_1, except that all exceptions are
12157 contained here (returning NULL instead). */
12158
12159static char *
12160ada_exception_message (void)
12161{
12162 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12163
12164 TRY
12165 {
12166 e_msg = ada_exception_message_1 ();
12167 }
12168 CATCH (e, RETURN_MASK_ERROR)
12169 {
12170 e_msg = NULL;
12171 }
12172 END_CATCH
12173
12174 return e_msg;
12175}
12176
f7f9143b
JB
12177/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12178 any error that ada_exception_name_addr_1 might cause to be thrown.
12179 When an error is intercepted, a warning with the error message is printed,
12180 and zero is returned. */
12181
12182static CORE_ADDR
761269c8 12183ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12184 struct breakpoint *b)
12185{
f7f9143b
JB
12186 CORE_ADDR result = 0;
12187
492d29ea 12188 TRY
f7f9143b
JB
12189 {
12190 result = ada_exception_name_addr_1 (ex, b);
12191 }
12192
492d29ea 12193 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12194 {
12195 warning (_("failed to get exception name: %s"), e.message);
12196 return 0;
12197 }
492d29ea 12198 END_CATCH
f7f9143b
JB
12199
12200 return result;
12201}
12202
28010a5d
PA
12203static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12204
12205/* Ada catchpoints.
12206
12207 In the case of catchpoints on Ada exceptions, the catchpoint will
12208 stop the target on every exception the program throws. When a user
12209 specifies the name of a specific exception, we translate this
12210 request into a condition expression (in text form), and then parse
12211 it into an expression stored in each of the catchpoint's locations.
12212 We then use this condition to check whether the exception that was
12213 raised is the one the user is interested in. If not, then the
12214 target is resumed again. We store the name of the requested
12215 exception, in order to be able to re-set the condition expression
12216 when symbols change. */
12217
12218/* An instance of this type is used to represent an Ada catchpoint
5625a286 12219 breakpoint location. */
28010a5d 12220
5625a286 12221class ada_catchpoint_location : public bp_location
28010a5d 12222{
5625a286
PA
12223public:
12224 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12225 : bp_location (ops, owner)
12226 {}
28010a5d
PA
12227
12228 /* The condition that checks whether the exception that was raised
12229 is the specific exception the user specified on catchpoint
12230 creation. */
4d01a485 12231 expression_up excep_cond_expr;
28010a5d
PA
12232};
12233
12234/* Implement the DTOR method in the bp_location_ops structure for all
12235 Ada exception catchpoint kinds. */
12236
12237static void
12238ada_catchpoint_location_dtor (struct bp_location *bl)
12239{
12240 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12241
4d01a485 12242 al->excep_cond_expr.reset ();
28010a5d
PA
12243}
12244
12245/* The vtable to be used in Ada catchpoint locations. */
12246
12247static const struct bp_location_ops ada_catchpoint_location_ops =
12248{
12249 ada_catchpoint_location_dtor
12250};
12251
c1fc2657 12252/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12253
c1fc2657 12254struct ada_catchpoint : public breakpoint
28010a5d 12255{
c1fc2657 12256 ~ada_catchpoint () override;
28010a5d
PA
12257
12258 /* The name of the specific exception the user specified. */
12259 char *excep_string;
12260};
12261
12262/* Parse the exception condition string in the context of each of the
12263 catchpoint's locations, and store them for later evaluation. */
12264
12265static void
12266create_excep_cond_exprs (struct ada_catchpoint *c)
12267{
12268 struct cleanup *old_chain;
12269 struct bp_location *bl;
12270 char *cond_string;
12271
12272 /* Nothing to do if there's no specific exception to catch. */
12273 if (c->excep_string == NULL)
12274 return;
12275
12276 /* Same if there are no locations... */
c1fc2657 12277 if (c->loc == NULL)
28010a5d
PA
12278 return;
12279
12280 /* Compute the condition expression in text form, from the specific
12281 expection we want to catch. */
12282 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12283 old_chain = make_cleanup (xfree, cond_string);
12284
12285 /* Iterate over all the catchpoint's locations, and parse an
12286 expression for each. */
c1fc2657 12287 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12288 {
12289 struct ada_catchpoint_location *ada_loc
12290 = (struct ada_catchpoint_location *) bl;
4d01a485 12291 expression_up exp;
28010a5d
PA
12292
12293 if (!bl->shlib_disabled)
12294 {
bbc13ae3 12295 const char *s;
28010a5d
PA
12296
12297 s = cond_string;
492d29ea 12298 TRY
28010a5d 12299 {
036e657b
JB
12300 exp = parse_exp_1 (&s, bl->address,
12301 block_for_pc (bl->address),
12302 0);
28010a5d 12303 }
492d29ea 12304 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12305 {
12306 warning (_("failed to reevaluate internal exception condition "
12307 "for catchpoint %d: %s"),
c1fc2657 12308 c->number, e.message);
849f2b52 12309 }
492d29ea 12310 END_CATCH
28010a5d
PA
12311 }
12312
b22e99fd 12313 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12314 }
12315
12316 do_cleanups (old_chain);
12317}
12318
c1fc2657 12319/* ada_catchpoint destructor. */
28010a5d 12320
c1fc2657 12321ada_catchpoint::~ada_catchpoint ()
28010a5d 12322{
c1fc2657 12323 xfree (this->excep_string);
28010a5d
PA
12324}
12325
12326/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12327 structure for all exception catchpoint kinds. */
12328
12329static struct bp_location *
761269c8 12330allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12331 struct breakpoint *self)
12332{
5625a286 12333 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12334}
12335
12336/* Implement the RE_SET method in the breakpoint_ops structure for all
12337 exception catchpoint kinds. */
12338
12339static void
761269c8 12340re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12341{
12342 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12343
12344 /* Call the base class's method. This updates the catchpoint's
12345 locations. */
2060206e 12346 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12347
12348 /* Reparse the exception conditional expressions. One for each
12349 location. */
12350 create_excep_cond_exprs (c);
12351}
12352
12353/* Returns true if we should stop for this breakpoint hit. If the
12354 user specified a specific exception, we only want to cause a stop
12355 if the program thrown that exception. */
12356
12357static int
12358should_stop_exception (const struct bp_location *bl)
12359{
12360 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12361 const struct ada_catchpoint_location *ada_loc
12362 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12363 int stop;
12364
12365 /* With no specific exception, should always stop. */
12366 if (c->excep_string == NULL)
12367 return 1;
12368
12369 if (ada_loc->excep_cond_expr == NULL)
12370 {
12371 /* We will have a NULL expression if back when we were creating
12372 the expressions, this location's had failed to parse. */
12373 return 1;
12374 }
12375
12376 stop = 1;
492d29ea 12377 TRY
28010a5d
PA
12378 {
12379 struct value *mark;
12380
12381 mark = value_mark ();
4d01a485 12382 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12383 value_free_to_mark (mark);
12384 }
492d29ea
PA
12385 CATCH (ex, RETURN_MASK_ALL)
12386 {
12387 exception_fprintf (gdb_stderr, ex,
12388 _("Error in testing exception condition:\n"));
12389 }
12390 END_CATCH
12391
28010a5d
PA
12392 return stop;
12393}
12394
12395/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12396 for all exception catchpoint kinds. */
12397
12398static void
761269c8 12399check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12400{
12401 bs->stop = should_stop_exception (bs->bp_location_at);
12402}
12403
f7f9143b
JB
12404/* Implement the PRINT_IT method in the breakpoint_ops structure
12405 for all exception catchpoint kinds. */
12406
12407static enum print_stop_action
761269c8 12408print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12409{
79a45e25 12410 struct ui_out *uiout = current_uiout;
348d480f 12411 struct breakpoint *b = bs->breakpoint_at;
e547c119 12412 char *exception_message;
348d480f 12413
956a9fb9 12414 annotate_catchpoint (b->number);
f7f9143b 12415
112e8700 12416 if (uiout->is_mi_like_p ())
f7f9143b 12417 {
112e8700 12418 uiout->field_string ("reason",
956a9fb9 12419 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12420 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12421 }
12422
112e8700
SM
12423 uiout->text (b->disposition == disp_del
12424 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12425 uiout->field_int ("bkptno", b->number);
12426 uiout->text (", ");
f7f9143b 12427
45db7c09
PA
12428 /* ada_exception_name_addr relies on the selected frame being the
12429 current frame. Need to do this here because this function may be
12430 called more than once when printing a stop, and below, we'll
12431 select the first frame past the Ada run-time (see
12432 ada_find_printable_frame). */
12433 select_frame (get_current_frame ());
12434
f7f9143b
JB
12435 switch (ex)
12436 {
761269c8
JB
12437 case ada_catch_exception:
12438 case ada_catch_exception_unhandled:
956a9fb9
JB
12439 {
12440 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12441 char exception_name[256];
12442
12443 if (addr != 0)
12444 {
c714b426
PA
12445 read_memory (addr, (gdb_byte *) exception_name,
12446 sizeof (exception_name) - 1);
956a9fb9
JB
12447 exception_name [sizeof (exception_name) - 1] = '\0';
12448 }
12449 else
12450 {
12451 /* For some reason, we were unable to read the exception
12452 name. This could happen if the Runtime was compiled
12453 without debugging info, for instance. In that case,
12454 just replace the exception name by the generic string
12455 "exception" - it will read as "an exception" in the
12456 notification we are about to print. */
967cff16 12457 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12458 }
12459 /* In the case of unhandled exception breakpoints, we print
12460 the exception name as "unhandled EXCEPTION_NAME", to make
12461 it clearer to the user which kind of catchpoint just got
12462 hit. We used ui_out_text to make sure that this extra
12463 info does not pollute the exception name in the MI case. */
761269c8 12464 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12465 uiout->text ("unhandled ");
12466 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12467 }
12468 break;
761269c8 12469 case ada_catch_assert:
956a9fb9
JB
12470 /* In this case, the name of the exception is not really
12471 important. Just print "failed assertion" to make it clearer
12472 that his program just hit an assertion-failure catchpoint.
12473 We used ui_out_text because this info does not belong in
12474 the MI output. */
112e8700 12475 uiout->text ("failed assertion");
956a9fb9 12476 break;
f7f9143b 12477 }
e547c119
JB
12478
12479 exception_message = ada_exception_message ();
12480 if (exception_message != NULL)
12481 {
12482 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12483
12484 uiout->text (" (");
12485 uiout->field_string ("exception-message", exception_message);
12486 uiout->text (")");
12487
12488 do_cleanups (cleanups);
12489 }
12490
112e8700 12491 uiout->text (" at ");
956a9fb9 12492 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12493
12494 return PRINT_SRC_AND_LOC;
12495}
12496
12497/* Implement the PRINT_ONE method in the breakpoint_ops structure
12498 for all exception catchpoint kinds. */
12499
12500static void
761269c8 12501print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12502 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12503{
79a45e25 12504 struct ui_out *uiout = current_uiout;
28010a5d 12505 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12506 struct value_print_options opts;
12507
12508 get_user_print_options (&opts);
12509 if (opts.addressprint)
f7f9143b
JB
12510 {
12511 annotate_field (4);
112e8700 12512 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12513 }
12514
12515 annotate_field (5);
a6d9a66e 12516 *last_loc = b->loc;
f7f9143b
JB
12517 switch (ex)
12518 {
761269c8 12519 case ada_catch_exception:
28010a5d 12520 if (c->excep_string != NULL)
f7f9143b 12521 {
28010a5d
PA
12522 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12523
112e8700 12524 uiout->field_string ("what", msg);
f7f9143b
JB
12525 xfree (msg);
12526 }
12527 else
112e8700 12528 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12529
12530 break;
12531
761269c8 12532 case ada_catch_exception_unhandled:
112e8700 12533 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12534 break;
12535
761269c8 12536 case ada_catch_assert:
112e8700 12537 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12538 break;
12539
12540 default:
12541 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12542 break;
12543 }
12544}
12545
12546/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12547 for all exception catchpoint kinds. */
12548
12549static void
761269c8 12550print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12551 struct breakpoint *b)
12552{
28010a5d 12553 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12554 struct ui_out *uiout = current_uiout;
28010a5d 12555
112e8700 12556 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12557 : _("Catchpoint "));
112e8700
SM
12558 uiout->field_int ("bkptno", b->number);
12559 uiout->text (": ");
00eb2c4a 12560
f7f9143b
JB
12561 switch (ex)
12562 {
761269c8 12563 case ada_catch_exception:
28010a5d 12564 if (c->excep_string != NULL)
00eb2c4a
JB
12565 {
12566 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12567 struct cleanup *old_chain = make_cleanup (xfree, info);
12568
112e8700 12569 uiout->text (info);
00eb2c4a
JB
12570 do_cleanups (old_chain);
12571 }
f7f9143b 12572 else
112e8700 12573 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12574 break;
12575
761269c8 12576 case ada_catch_exception_unhandled:
112e8700 12577 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12578 break;
12579
761269c8 12580 case ada_catch_assert:
112e8700 12581 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12582 break;
12583
12584 default:
12585 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12586 break;
12587 }
12588}
12589
6149aea9
PA
12590/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12591 for all exception catchpoint kinds. */
12592
12593static void
761269c8 12594print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12595 struct breakpoint *b, struct ui_file *fp)
12596{
28010a5d
PA
12597 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12598
6149aea9
PA
12599 switch (ex)
12600 {
761269c8 12601 case ada_catch_exception:
6149aea9 12602 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12603 if (c->excep_string != NULL)
12604 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12605 break;
12606
761269c8 12607 case ada_catch_exception_unhandled:
78076abc 12608 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12609 break;
12610
761269c8 12611 case ada_catch_assert:
6149aea9
PA
12612 fprintf_filtered (fp, "catch assert");
12613 break;
12614
12615 default:
12616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12617 }
d9b3f62e 12618 print_recreate_thread (b, fp);
6149aea9
PA
12619}
12620
f7f9143b
JB
12621/* Virtual table for "catch exception" breakpoints. */
12622
28010a5d
PA
12623static struct bp_location *
12624allocate_location_catch_exception (struct breakpoint *self)
12625{
761269c8 12626 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12627}
12628
12629static void
12630re_set_catch_exception (struct breakpoint *b)
12631{
761269c8 12632 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12633}
12634
12635static void
12636check_status_catch_exception (bpstat bs)
12637{
761269c8 12638 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12639}
12640
f7f9143b 12641static enum print_stop_action
348d480f 12642print_it_catch_exception (bpstat bs)
f7f9143b 12643{
761269c8 12644 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12645}
12646
12647static void
a6d9a66e 12648print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12649{
761269c8 12650 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12651}
12652
12653static void
12654print_mention_catch_exception (struct breakpoint *b)
12655{
761269c8 12656 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12657}
12658
6149aea9
PA
12659static void
12660print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12661{
761269c8 12662 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12663}
12664
2060206e 12665static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12666
12667/* Virtual table for "catch exception unhandled" breakpoints. */
12668
28010a5d
PA
12669static struct bp_location *
12670allocate_location_catch_exception_unhandled (struct breakpoint *self)
12671{
761269c8 12672 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12673}
12674
12675static void
12676re_set_catch_exception_unhandled (struct breakpoint *b)
12677{
761269c8 12678 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12679}
12680
12681static void
12682check_status_catch_exception_unhandled (bpstat bs)
12683{
761269c8 12684 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12685}
12686
f7f9143b 12687static enum print_stop_action
348d480f 12688print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12689{
761269c8 12690 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12691}
12692
12693static void
a6d9a66e
UW
12694print_one_catch_exception_unhandled (struct breakpoint *b,
12695 struct bp_location **last_loc)
f7f9143b 12696{
761269c8 12697 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12698}
12699
12700static void
12701print_mention_catch_exception_unhandled (struct breakpoint *b)
12702{
761269c8 12703 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12704}
12705
6149aea9
PA
12706static void
12707print_recreate_catch_exception_unhandled (struct breakpoint *b,
12708 struct ui_file *fp)
12709{
761269c8 12710 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12711}
12712
2060206e 12713static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12714
12715/* Virtual table for "catch assert" breakpoints. */
12716
28010a5d
PA
12717static struct bp_location *
12718allocate_location_catch_assert (struct breakpoint *self)
12719{
761269c8 12720 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12721}
12722
12723static void
12724re_set_catch_assert (struct breakpoint *b)
12725{
761269c8 12726 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12727}
12728
12729static void
12730check_status_catch_assert (bpstat bs)
12731{
761269c8 12732 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12733}
12734
f7f9143b 12735static enum print_stop_action
348d480f 12736print_it_catch_assert (bpstat bs)
f7f9143b 12737{
761269c8 12738 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12739}
12740
12741static void
a6d9a66e 12742print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12743{
761269c8 12744 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12745}
12746
12747static void
12748print_mention_catch_assert (struct breakpoint *b)
12749{
761269c8 12750 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12751}
12752
6149aea9
PA
12753static void
12754print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12755{
761269c8 12756 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12757}
12758
2060206e 12759static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12760
f7f9143b
JB
12761/* Return a newly allocated copy of the first space-separated token
12762 in ARGSP, and then adjust ARGSP to point immediately after that
12763 token.
12764
12765 Return NULL if ARGPS does not contain any more tokens. */
12766
12767static char *
a121b7c1 12768ada_get_next_arg (const char **argsp)
f7f9143b 12769{
a121b7c1
PA
12770 const char *args = *argsp;
12771 const char *end;
f7f9143b
JB
12772 char *result;
12773
f1735a53 12774 args = skip_spaces (args);
f7f9143b
JB
12775 if (args[0] == '\0')
12776 return NULL; /* No more arguments. */
12777
12778 /* Find the end of the current argument. */
12779
f1735a53 12780 end = skip_to_space (args);
f7f9143b
JB
12781
12782 /* Adjust ARGSP to point to the start of the next argument. */
12783
12784 *argsp = end;
12785
12786 /* Make a copy of the current argument and return it. */
12787
224c3ddb 12788 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12789 strncpy (result, args, end - args);
12790 result[end - args] = '\0';
12791
12792 return result;
12793}
12794
12795/* Split the arguments specified in a "catch exception" command.
12796 Set EX to the appropriate catchpoint type.
28010a5d 12797 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12798 specified by the user.
12799 If a condition is found at the end of the arguments, the condition
12800 expression is stored in COND_STRING (memory must be deallocated
12801 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12802
12803static void
a121b7c1 12804catch_ada_exception_command_split (const char *args,
761269c8 12805 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12806 char **excep_string,
12807 char **cond_string)
f7f9143b
JB
12808{
12809 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12810 char *exception_name;
5845583d 12811 char *cond = NULL;
f7f9143b
JB
12812
12813 exception_name = ada_get_next_arg (&args);
5845583d
JB
12814 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12815 {
12816 /* This is not an exception name; this is the start of a condition
12817 expression for a catchpoint on all exceptions. So, "un-get"
12818 this token, and set exception_name to NULL. */
12819 xfree (exception_name);
12820 exception_name = NULL;
12821 args -= 2;
12822 }
f7f9143b
JB
12823 make_cleanup (xfree, exception_name);
12824
5845583d 12825 /* Check to see if we have a condition. */
f7f9143b 12826
f1735a53 12827 args = skip_spaces (args);
61012eef 12828 if (startswith (args, "if")
5845583d
JB
12829 && (isspace (args[2]) || args[2] == '\0'))
12830 {
12831 args += 2;
f1735a53 12832 args = skip_spaces (args);
5845583d
JB
12833
12834 if (args[0] == '\0')
12835 error (_("Condition missing after `if' keyword"));
12836 cond = xstrdup (args);
12837 make_cleanup (xfree, cond);
12838
12839 args += strlen (args);
12840 }
12841
12842 /* Check that we do not have any more arguments. Anything else
12843 is unexpected. */
f7f9143b
JB
12844
12845 if (args[0] != '\0')
12846 error (_("Junk at end of expression"));
12847
12848 discard_cleanups (old_chain);
12849
12850 if (exception_name == NULL)
12851 {
12852 /* Catch all exceptions. */
761269c8 12853 *ex = ada_catch_exception;
28010a5d 12854 *excep_string = NULL;
f7f9143b
JB
12855 }
12856 else if (strcmp (exception_name, "unhandled") == 0)
12857 {
12858 /* Catch unhandled exceptions. */
761269c8 12859 *ex = ada_catch_exception_unhandled;
28010a5d 12860 *excep_string = NULL;
f7f9143b
JB
12861 }
12862 else
12863 {
12864 /* Catch a specific exception. */
761269c8 12865 *ex = ada_catch_exception;
28010a5d 12866 *excep_string = exception_name;
f7f9143b 12867 }
5845583d 12868 *cond_string = cond;
f7f9143b
JB
12869}
12870
12871/* Return the name of the symbol on which we should break in order to
12872 implement a catchpoint of the EX kind. */
12873
12874static const char *
761269c8 12875ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12876{
3eecfa55
JB
12877 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12878
12879 gdb_assert (data->exception_info != NULL);
0259addd 12880
f7f9143b
JB
12881 switch (ex)
12882 {
761269c8 12883 case ada_catch_exception:
3eecfa55 12884 return (data->exception_info->catch_exception_sym);
f7f9143b 12885 break;
761269c8 12886 case ada_catch_exception_unhandled:
3eecfa55 12887 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12888 break;
761269c8 12889 case ada_catch_assert:
3eecfa55 12890 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12891 break;
12892 default:
12893 internal_error (__FILE__, __LINE__,
12894 _("unexpected catchpoint kind (%d)"), ex);
12895 }
12896}
12897
12898/* Return the breakpoint ops "virtual table" used for catchpoints
12899 of the EX kind. */
12900
c0a91b2b 12901static const struct breakpoint_ops *
761269c8 12902ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12903{
12904 switch (ex)
12905 {
761269c8 12906 case ada_catch_exception:
f7f9143b
JB
12907 return (&catch_exception_breakpoint_ops);
12908 break;
761269c8 12909 case ada_catch_exception_unhandled:
f7f9143b
JB
12910 return (&catch_exception_unhandled_breakpoint_ops);
12911 break;
761269c8 12912 case ada_catch_assert:
f7f9143b
JB
12913 return (&catch_assert_breakpoint_ops);
12914 break;
12915 default:
12916 internal_error (__FILE__, __LINE__,
12917 _("unexpected catchpoint kind (%d)"), ex);
12918 }
12919}
12920
12921/* Return the condition that will be used to match the current exception
12922 being raised with the exception that the user wants to catch. This
12923 assumes that this condition is used when the inferior just triggered
12924 an exception catchpoint.
12925
12926 The string returned is a newly allocated string that needs to be
12927 deallocated later. */
12928
12929static char *
28010a5d 12930ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12931{
3d0b0fa3
JB
12932 int i;
12933
0963b4bd 12934 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12935 runtime units that have been compiled without debugging info; if
28010a5d 12936 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12937 exception (e.g. "constraint_error") then, during the evaluation
12938 of the condition expression, the symbol lookup on this name would
0963b4bd 12939 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12940 may then be set only on user-defined exceptions which have the
12941 same not-fully-qualified name (e.g. my_package.constraint_error).
12942
12943 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12944 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12945 exception constraint_error" is rewritten into "catch exception
12946 standard.constraint_error".
12947
12948 If an exception named contraint_error is defined in another package of
12949 the inferior program, then the only way to specify this exception as a
12950 breakpoint condition is to use its fully-qualified named:
12951 e.g. my_package.constraint_error. */
12952
12953 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12954 {
28010a5d 12955 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12956 {
12957 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12958 excep_string);
3d0b0fa3
JB
12959 }
12960 }
28010a5d 12961 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12962}
12963
12964/* Return the symtab_and_line that should be used to insert an exception
12965 catchpoint of the TYPE kind.
12966
28010a5d
PA
12967 EXCEP_STRING should contain the name of a specific exception that
12968 the catchpoint should catch, or NULL otherwise.
f7f9143b 12969
28010a5d
PA
12970 ADDR_STRING returns the name of the function where the real
12971 breakpoint that implements the catchpoints is set, depending on the
12972 type of catchpoint we need to create. */
f7f9143b
JB
12973
12974static struct symtab_and_line
761269c8 12975ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 12976 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12977{
12978 const char *sym_name;
12979 struct symbol *sym;
f7f9143b 12980
0259addd
JB
12981 /* First, find out which exception support info to use. */
12982 ada_exception_support_info_sniffer ();
12983
12984 /* Then lookup the function on which we will break in order to catch
f7f9143b 12985 the Ada exceptions requested by the user. */
f7f9143b
JB
12986 sym_name = ada_exception_sym_name (ex);
12987 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12988
f17011e0
JB
12989 /* We can assume that SYM is not NULL at this stage. If the symbol
12990 did not exist, ada_exception_support_info_sniffer would have
12991 raised an exception.
f7f9143b 12992
f17011e0
JB
12993 Also, ada_exception_support_info_sniffer should have already
12994 verified that SYM is a function symbol. */
12995 gdb_assert (sym != NULL);
12996 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12997
12998 /* Set ADDR_STRING. */
f7f9143b
JB
12999 *addr_string = xstrdup (sym_name);
13000
f7f9143b 13001 /* Set OPS. */
4b9eee8c 13002 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13003
f17011e0 13004 return find_function_start_sal (sym, 1);
f7f9143b
JB
13005}
13006
b4a5b78b 13007/* Create an Ada exception catchpoint.
f7f9143b 13008
b4a5b78b 13009 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13010
2df4d1d5
JB
13011 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13012 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13013 of the exception to which this catchpoint applies. When not NULL,
13014 the string must be allocated on the heap, and its deallocation
13015 is no longer the responsibility of the caller.
13016
13017 COND_STRING, if not NULL, is the catchpoint condition. This string
13018 must be allocated on the heap, and its deallocation is no longer
13019 the responsibility of the caller.
f7f9143b 13020
b4a5b78b
JB
13021 TEMPFLAG, if nonzero, means that the underlying breakpoint
13022 should be temporary.
28010a5d 13023
b4a5b78b 13024 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13025
349774ef 13026void
28010a5d 13027create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13028 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13029 char *excep_string,
5845583d 13030 char *cond_string,
28010a5d 13031 int tempflag,
349774ef 13032 int disabled,
28010a5d
PA
13033 int from_tty)
13034{
f2fc3015 13035 const char *addr_string = NULL;
b4a5b78b
JB
13036 const struct breakpoint_ops *ops = NULL;
13037 struct symtab_and_line sal
13038 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13039
b270e6f9
TT
13040 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13041 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13042 ops, tempflag, disabled, from_tty);
28010a5d 13043 c->excep_string = excep_string;
b270e6f9 13044 create_excep_cond_exprs (c.get ());
5845583d 13045 if (cond_string != NULL)
b270e6f9
TT
13046 set_breakpoint_condition (c.get (), cond_string, from_tty);
13047 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13048}
13049
9ac4176b
PA
13050/* Implement the "catch exception" command. */
13051
13052static void
eb4c3f4a 13053catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13054 struct cmd_list_element *command)
13055{
a121b7c1 13056 const char *arg = arg_entry;
9ac4176b
PA
13057 struct gdbarch *gdbarch = get_current_arch ();
13058 int tempflag;
761269c8 13059 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13060 char *excep_string = NULL;
5845583d 13061 char *cond_string = NULL;
9ac4176b
PA
13062
13063 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13064
13065 if (!arg)
13066 arg = "";
b4a5b78b
JB
13067 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13068 &cond_string);
13069 create_ada_exception_catchpoint (gdbarch, ex_kind,
13070 excep_string, cond_string,
349774ef
JB
13071 tempflag, 1 /* enabled */,
13072 from_tty);
9ac4176b
PA
13073}
13074
b4a5b78b 13075/* Split the arguments specified in a "catch assert" command.
5845583d 13076
b4a5b78b
JB
13077 ARGS contains the command's arguments (or the empty string if
13078 no arguments were passed).
5845583d
JB
13079
13080 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13081 (the memory needs to be deallocated after use). */
5845583d 13082
b4a5b78b 13083static void
a121b7c1 13084catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13085{
f1735a53 13086 args = skip_spaces (args);
f7f9143b 13087
5845583d 13088 /* Check whether a condition was provided. */
61012eef 13089 if (startswith (args, "if")
5845583d 13090 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13091 {
5845583d 13092 args += 2;
f1735a53 13093 args = skip_spaces (args);
5845583d
JB
13094 if (args[0] == '\0')
13095 error (_("condition missing after `if' keyword"));
13096 *cond_string = xstrdup (args);
f7f9143b
JB
13097 }
13098
5845583d
JB
13099 /* Otherwise, there should be no other argument at the end of
13100 the command. */
13101 else if (args[0] != '\0')
13102 error (_("Junk at end of arguments."));
f7f9143b
JB
13103}
13104
9ac4176b
PA
13105/* Implement the "catch assert" command. */
13106
13107static void
eb4c3f4a 13108catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13109 struct cmd_list_element *command)
13110{
a121b7c1 13111 const char *arg = arg_entry;
9ac4176b
PA
13112 struct gdbarch *gdbarch = get_current_arch ();
13113 int tempflag;
5845583d 13114 char *cond_string = NULL;
9ac4176b
PA
13115
13116 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13117
13118 if (!arg)
13119 arg = "";
b4a5b78b 13120 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13121 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13122 NULL, cond_string,
349774ef
JB
13123 tempflag, 1 /* enabled */,
13124 from_tty);
9ac4176b 13125}
778865d3
JB
13126
13127/* Return non-zero if the symbol SYM is an Ada exception object. */
13128
13129static int
13130ada_is_exception_sym (struct symbol *sym)
13131{
13132 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13133
13134 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13135 && SYMBOL_CLASS (sym) != LOC_BLOCK
13136 && SYMBOL_CLASS (sym) != LOC_CONST
13137 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13138 && type_name != NULL && strcmp (type_name, "exception") == 0);
13139}
13140
13141/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13142 Ada exception object. This matches all exceptions except the ones
13143 defined by the Ada language. */
13144
13145static int
13146ada_is_non_standard_exception_sym (struct symbol *sym)
13147{
13148 int i;
13149
13150 if (!ada_is_exception_sym (sym))
13151 return 0;
13152
13153 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13154 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13155 return 0; /* A standard exception. */
13156
13157 /* Numeric_Error is also a standard exception, so exclude it.
13158 See the STANDARD_EXC description for more details as to why
13159 this exception is not listed in that array. */
13160 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13161 return 0;
13162
13163 return 1;
13164}
13165
ab816a27 13166/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13167 objects.
13168
13169 The comparison is determined first by exception name, and then
13170 by exception address. */
13171
ab816a27 13172bool
cc536b21 13173ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13174{
778865d3
JB
13175 int result;
13176
ab816a27
TT
13177 result = strcmp (name, other.name);
13178 if (result < 0)
13179 return true;
13180 if (result == 0 && addr < other.addr)
13181 return true;
13182 return false;
13183}
778865d3 13184
ab816a27 13185bool
cc536b21 13186ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13187{
13188 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13189}
13190
13191/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13192 routine, but keeping the first SKIP elements untouched.
13193
13194 All duplicates are also removed. */
13195
13196static void
ab816a27 13197sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13198 int skip)
13199{
ab816a27
TT
13200 std::sort (exceptions->begin () + skip, exceptions->end ());
13201 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13202 exceptions->end ());
778865d3
JB
13203}
13204
778865d3
JB
13205/* Add all exceptions defined by the Ada standard whose name match
13206 a regular expression.
13207
13208 If PREG is not NULL, then this regexp_t object is used to
13209 perform the symbol name matching. Otherwise, no name-based
13210 filtering is performed.
13211
13212 EXCEPTIONS is a vector of exceptions to which matching exceptions
13213 gets pushed. */
13214
13215static void
2d7cc5c7 13216ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13217 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13218{
13219 int i;
13220
13221 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13222 {
13223 if (preg == NULL
2d7cc5c7 13224 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13225 {
13226 struct bound_minimal_symbol msymbol
13227 = ada_lookup_simple_minsym (standard_exc[i]);
13228
13229 if (msymbol.minsym != NULL)
13230 {
13231 struct ada_exc_info info
77e371c0 13232 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13233
ab816a27 13234 exceptions->push_back (info);
778865d3
JB
13235 }
13236 }
13237 }
13238}
13239
13240/* Add all Ada exceptions defined locally and accessible from the given
13241 FRAME.
13242
13243 If PREG is not NULL, then this regexp_t object is used to
13244 perform the symbol name matching. Otherwise, no name-based
13245 filtering is performed.
13246
13247 EXCEPTIONS is a vector of exceptions to which matching exceptions
13248 gets pushed. */
13249
13250static void
2d7cc5c7
PA
13251ada_add_exceptions_from_frame (compiled_regex *preg,
13252 struct frame_info *frame,
ab816a27 13253 std::vector<ada_exc_info> *exceptions)
778865d3 13254{
3977b71f 13255 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13256
13257 while (block != 0)
13258 {
13259 struct block_iterator iter;
13260 struct symbol *sym;
13261
13262 ALL_BLOCK_SYMBOLS (block, iter, sym)
13263 {
13264 switch (SYMBOL_CLASS (sym))
13265 {
13266 case LOC_TYPEDEF:
13267 case LOC_BLOCK:
13268 case LOC_CONST:
13269 break;
13270 default:
13271 if (ada_is_exception_sym (sym))
13272 {
13273 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13274 SYMBOL_VALUE_ADDRESS (sym)};
13275
ab816a27 13276 exceptions->push_back (info);
778865d3
JB
13277 }
13278 }
13279 }
13280 if (BLOCK_FUNCTION (block) != NULL)
13281 break;
13282 block = BLOCK_SUPERBLOCK (block);
13283 }
13284}
13285
14bc53a8
PA
13286/* Return true if NAME matches PREG or if PREG is NULL. */
13287
13288static bool
2d7cc5c7 13289name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13290{
13291 return (preg == NULL
2d7cc5c7 13292 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13293}
13294
778865d3
JB
13295/* Add all exceptions defined globally whose name name match
13296 a regular expression, excluding standard exceptions.
13297
13298 The reason we exclude standard exceptions is that they need
13299 to be handled separately: Standard exceptions are defined inside
13300 a runtime unit which is normally not compiled with debugging info,
13301 and thus usually do not show up in our symbol search. However,
13302 if the unit was in fact built with debugging info, we need to
13303 exclude them because they would duplicate the entry we found
13304 during the special loop that specifically searches for those
13305 standard exceptions.
13306
13307 If PREG is not NULL, then this regexp_t object is used to
13308 perform the symbol name matching. Otherwise, no name-based
13309 filtering is performed.
13310
13311 EXCEPTIONS is a vector of exceptions to which matching exceptions
13312 gets pushed. */
13313
13314static void
2d7cc5c7 13315ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13316 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13317{
13318 struct objfile *objfile;
43f3e411 13319 struct compunit_symtab *s;
778865d3 13320
14bc53a8
PA
13321 /* In Ada, the symbol "search name" is a linkage name, whereas the
13322 regular expression used to do the matching refers to the natural
13323 name. So match against the decoded name. */
13324 expand_symtabs_matching (NULL,
b5ec771e 13325 lookup_name_info::match_any (),
14bc53a8
PA
13326 [&] (const char *search_name)
13327 {
13328 const char *decoded = ada_decode (search_name);
13329 return name_matches_regex (decoded, preg);
13330 },
13331 NULL,
13332 VARIABLES_DOMAIN);
778865d3 13333
43f3e411 13334 ALL_COMPUNITS (objfile, s)
778865d3 13335 {
43f3e411 13336 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13337 int i;
13338
13339 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13340 {
13341 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13342 struct block_iterator iter;
13343 struct symbol *sym;
13344
13345 ALL_BLOCK_SYMBOLS (b, iter, sym)
13346 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13347 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13348 {
13349 struct ada_exc_info info
13350 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13351
ab816a27 13352 exceptions->push_back (info);
778865d3
JB
13353 }
13354 }
13355 }
13356}
13357
13358/* Implements ada_exceptions_list with the regular expression passed
13359 as a regex_t, rather than a string.
13360
13361 If not NULL, PREG is used to filter out exceptions whose names
13362 do not match. Otherwise, all exceptions are listed. */
13363
ab816a27 13364static std::vector<ada_exc_info>
2d7cc5c7 13365ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13366{
ab816a27 13367 std::vector<ada_exc_info> result;
778865d3
JB
13368 int prev_len;
13369
13370 /* First, list the known standard exceptions. These exceptions
13371 need to be handled separately, as they are usually defined in
13372 runtime units that have been compiled without debugging info. */
13373
13374 ada_add_standard_exceptions (preg, &result);
13375
13376 /* Next, find all exceptions whose scope is local and accessible
13377 from the currently selected frame. */
13378
13379 if (has_stack_frames ())
13380 {
ab816a27 13381 prev_len = result.size ();
778865d3
JB
13382 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13383 &result);
ab816a27 13384 if (result.size () > prev_len)
778865d3
JB
13385 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13386 }
13387
13388 /* Add all exceptions whose scope is global. */
13389
ab816a27 13390 prev_len = result.size ();
778865d3 13391 ada_add_global_exceptions (preg, &result);
ab816a27 13392 if (result.size () > prev_len)
778865d3
JB
13393 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13394
778865d3
JB
13395 return result;
13396}
13397
13398/* Return a vector of ada_exc_info.
13399
13400 If REGEXP is NULL, all exceptions are included in the result.
13401 Otherwise, it should contain a valid regular expression,
13402 and only the exceptions whose names match that regular expression
13403 are included in the result.
13404
13405 The exceptions are sorted in the following order:
13406 - Standard exceptions (defined by the Ada language), in
13407 alphabetical order;
13408 - Exceptions only visible from the current frame, in
13409 alphabetical order;
13410 - Exceptions whose scope is global, in alphabetical order. */
13411
ab816a27 13412std::vector<ada_exc_info>
778865d3
JB
13413ada_exceptions_list (const char *regexp)
13414{
2d7cc5c7
PA
13415 if (regexp == NULL)
13416 return ada_exceptions_list_1 (NULL);
778865d3 13417
2d7cc5c7
PA
13418 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13419 return ada_exceptions_list_1 (&reg);
778865d3
JB
13420}
13421
13422/* Implement the "info exceptions" command. */
13423
13424static void
1d12d88f 13425info_exceptions_command (const char *regexp, int from_tty)
778865d3 13426{
778865d3 13427 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13428
ab816a27 13429 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13430
13431 if (regexp != NULL)
13432 printf_filtered
13433 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13434 else
13435 printf_filtered (_("All defined Ada exceptions:\n"));
13436
ab816a27
TT
13437 for (const ada_exc_info &info : exceptions)
13438 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13439}
13440
4c4b4cd2
PH
13441 /* Operators */
13442/* Information about operators given special treatment in functions
13443 below. */
13444/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13445
13446#define ADA_OPERATORS \
13447 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13448 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13449 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13450 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13451 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13452 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13453 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13454 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13455 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13456 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13457 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13458 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13459 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13460 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13461 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13462 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13463 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13464 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13465 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13466
13467static void
554794dc
SDJ
13468ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13469 int *argsp)
4c4b4cd2
PH
13470{
13471 switch (exp->elts[pc - 1].opcode)
13472 {
76a01679 13473 default:
4c4b4cd2
PH
13474 operator_length_standard (exp, pc, oplenp, argsp);
13475 break;
13476
13477#define OP_DEFN(op, len, args, binop) \
13478 case op: *oplenp = len; *argsp = args; break;
13479 ADA_OPERATORS;
13480#undef OP_DEFN
52ce6436
PH
13481
13482 case OP_AGGREGATE:
13483 *oplenp = 3;
13484 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13485 break;
13486
13487 case OP_CHOICES:
13488 *oplenp = 3;
13489 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13490 break;
4c4b4cd2
PH
13491 }
13492}
13493
c0201579
JK
13494/* Implementation of the exp_descriptor method operator_check. */
13495
13496static int
13497ada_operator_check (struct expression *exp, int pos,
13498 int (*objfile_func) (struct objfile *objfile, void *data),
13499 void *data)
13500{
13501 const union exp_element *const elts = exp->elts;
13502 struct type *type = NULL;
13503
13504 switch (elts[pos].opcode)
13505 {
13506 case UNOP_IN_RANGE:
13507 case UNOP_QUAL:
13508 type = elts[pos + 1].type;
13509 break;
13510
13511 default:
13512 return operator_check_standard (exp, pos, objfile_func, data);
13513 }
13514
13515 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13516
13517 if (type && TYPE_OBJFILE (type)
13518 && (*objfile_func) (TYPE_OBJFILE (type), data))
13519 return 1;
13520
13521 return 0;
13522}
13523
a121b7c1 13524static const char *
4c4b4cd2
PH
13525ada_op_name (enum exp_opcode opcode)
13526{
13527 switch (opcode)
13528 {
76a01679 13529 default:
4c4b4cd2 13530 return op_name_standard (opcode);
52ce6436 13531
4c4b4cd2
PH
13532#define OP_DEFN(op, len, args, binop) case op: return #op;
13533 ADA_OPERATORS;
13534#undef OP_DEFN
52ce6436
PH
13535
13536 case OP_AGGREGATE:
13537 return "OP_AGGREGATE";
13538 case OP_CHOICES:
13539 return "OP_CHOICES";
13540 case OP_NAME:
13541 return "OP_NAME";
4c4b4cd2
PH
13542 }
13543}
13544
13545/* As for operator_length, but assumes PC is pointing at the first
13546 element of the operator, and gives meaningful results only for the
52ce6436 13547 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13548
13549static void
76a01679
JB
13550ada_forward_operator_length (struct expression *exp, int pc,
13551 int *oplenp, int *argsp)
4c4b4cd2 13552{
76a01679 13553 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13554 {
13555 default:
13556 *oplenp = *argsp = 0;
13557 break;
52ce6436 13558
4c4b4cd2
PH
13559#define OP_DEFN(op, len, args, binop) \
13560 case op: *oplenp = len; *argsp = args; break;
13561 ADA_OPERATORS;
13562#undef OP_DEFN
52ce6436
PH
13563
13564 case OP_AGGREGATE:
13565 *oplenp = 3;
13566 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13567 break;
13568
13569 case OP_CHOICES:
13570 *oplenp = 3;
13571 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13572 break;
13573
13574 case OP_STRING:
13575 case OP_NAME:
13576 {
13577 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13578
52ce6436
PH
13579 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13580 *argsp = 0;
13581 break;
13582 }
4c4b4cd2
PH
13583 }
13584}
13585
13586static int
13587ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13588{
13589 enum exp_opcode op = exp->elts[elt].opcode;
13590 int oplen, nargs;
13591 int pc = elt;
13592 int i;
76a01679 13593
4c4b4cd2
PH
13594 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13595
76a01679 13596 switch (op)
4c4b4cd2 13597 {
76a01679 13598 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13599 case OP_ATR_FIRST:
13600 case OP_ATR_LAST:
13601 case OP_ATR_LENGTH:
13602 case OP_ATR_IMAGE:
13603 case OP_ATR_MAX:
13604 case OP_ATR_MIN:
13605 case OP_ATR_MODULUS:
13606 case OP_ATR_POS:
13607 case OP_ATR_SIZE:
13608 case OP_ATR_TAG:
13609 case OP_ATR_VAL:
13610 break;
13611
13612 case UNOP_IN_RANGE:
13613 case UNOP_QUAL:
323e0a4a
AC
13614 /* XXX: gdb_sprint_host_address, type_sprint */
13615 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13616 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13617 fprintf_filtered (stream, " (");
13618 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13619 fprintf_filtered (stream, ")");
13620 break;
13621 case BINOP_IN_BOUNDS:
52ce6436
PH
13622 fprintf_filtered (stream, " (%d)",
13623 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13624 break;
13625 case TERNOP_IN_RANGE:
13626 break;
13627
52ce6436
PH
13628 case OP_AGGREGATE:
13629 case OP_OTHERS:
13630 case OP_DISCRETE_RANGE:
13631 case OP_POSITIONAL:
13632 case OP_CHOICES:
13633 break;
13634
13635 case OP_NAME:
13636 case OP_STRING:
13637 {
13638 char *name = &exp->elts[elt + 2].string;
13639 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13640
52ce6436
PH
13641 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13642 break;
13643 }
13644
4c4b4cd2
PH
13645 default:
13646 return dump_subexp_body_standard (exp, stream, elt);
13647 }
13648
13649 elt += oplen;
13650 for (i = 0; i < nargs; i += 1)
13651 elt = dump_subexp (exp, stream, elt);
13652
13653 return elt;
13654}
13655
13656/* The Ada extension of print_subexp (q.v.). */
13657
76a01679
JB
13658static void
13659ada_print_subexp (struct expression *exp, int *pos,
13660 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13661{
52ce6436 13662 int oplen, nargs, i;
4c4b4cd2
PH
13663 int pc = *pos;
13664 enum exp_opcode op = exp->elts[pc].opcode;
13665
13666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13667
52ce6436 13668 *pos += oplen;
4c4b4cd2
PH
13669 switch (op)
13670 {
13671 default:
52ce6436 13672 *pos -= oplen;
4c4b4cd2
PH
13673 print_subexp_standard (exp, pos, stream, prec);
13674 return;
13675
13676 case OP_VAR_VALUE:
4c4b4cd2
PH
13677 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13678 return;
13679
13680 case BINOP_IN_BOUNDS:
323e0a4a 13681 /* XXX: sprint_subexp */
4c4b4cd2 13682 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13683 fputs_filtered (" in ", stream);
4c4b4cd2 13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13685 fputs_filtered ("'range", stream);
4c4b4cd2 13686 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13687 fprintf_filtered (stream, "(%ld)",
13688 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13689 return;
13690
13691 case TERNOP_IN_RANGE:
4c4b4cd2 13692 if (prec >= PREC_EQUAL)
76a01679 13693 fputs_filtered ("(", stream);
323e0a4a 13694 /* XXX: sprint_subexp */
4c4b4cd2 13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13696 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13697 print_subexp (exp, pos, stream, PREC_EQUAL);
13698 fputs_filtered (" .. ", stream);
13699 print_subexp (exp, pos, stream, PREC_EQUAL);
13700 if (prec >= PREC_EQUAL)
76a01679
JB
13701 fputs_filtered (")", stream);
13702 return;
4c4b4cd2
PH
13703
13704 case OP_ATR_FIRST:
13705 case OP_ATR_LAST:
13706 case OP_ATR_LENGTH:
13707 case OP_ATR_IMAGE:
13708 case OP_ATR_MAX:
13709 case OP_ATR_MIN:
13710 case OP_ATR_MODULUS:
13711 case OP_ATR_POS:
13712 case OP_ATR_SIZE:
13713 case OP_ATR_TAG:
13714 case OP_ATR_VAL:
4c4b4cd2 13715 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13716 {
13717 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13718 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13719 &type_print_raw_options);
76a01679
JB
13720 *pos += 3;
13721 }
4c4b4cd2 13722 else
76a01679 13723 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13724 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13725 if (nargs > 1)
76a01679
JB
13726 {
13727 int tem;
5b4ee69b 13728
76a01679
JB
13729 for (tem = 1; tem < nargs; tem += 1)
13730 {
13731 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13732 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13733 }
13734 fputs_filtered (")", stream);
13735 }
4c4b4cd2 13736 return;
14f9c5c9 13737
4c4b4cd2 13738 case UNOP_QUAL:
4c4b4cd2
PH
13739 type_print (exp->elts[pc + 1].type, "", stream, 0);
13740 fputs_filtered ("'(", stream);
13741 print_subexp (exp, pos, stream, PREC_PREFIX);
13742 fputs_filtered (")", stream);
13743 return;
14f9c5c9 13744
4c4b4cd2 13745 case UNOP_IN_RANGE:
323e0a4a 13746 /* XXX: sprint_subexp */
4c4b4cd2 13747 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13748 fputs_filtered (" in ", stream);
79d43c61
TT
13749 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13750 &type_print_raw_options);
4c4b4cd2 13751 return;
52ce6436
PH
13752
13753 case OP_DISCRETE_RANGE:
13754 print_subexp (exp, pos, stream, PREC_SUFFIX);
13755 fputs_filtered ("..", stream);
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 return;
13758
13759 case OP_OTHERS:
13760 fputs_filtered ("others => ", stream);
13761 print_subexp (exp, pos, stream, PREC_SUFFIX);
13762 return;
13763
13764 case OP_CHOICES:
13765 for (i = 0; i < nargs-1; i += 1)
13766 {
13767 if (i > 0)
13768 fputs_filtered ("|", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 }
13771 fputs_filtered (" => ", stream);
13772 print_subexp (exp, pos, stream, PREC_SUFFIX);
13773 return;
13774
13775 case OP_POSITIONAL:
13776 print_subexp (exp, pos, stream, PREC_SUFFIX);
13777 return;
13778
13779 case OP_AGGREGATE:
13780 fputs_filtered ("(", stream);
13781 for (i = 0; i < nargs; i += 1)
13782 {
13783 if (i > 0)
13784 fputs_filtered (", ", stream);
13785 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 }
13787 fputs_filtered (")", stream);
13788 return;
4c4b4cd2
PH
13789 }
13790}
14f9c5c9
AS
13791
13792/* Table mapping opcodes into strings for printing operators
13793 and precedences of the operators. */
13794
d2e4a39e
AS
13795static const struct op_print ada_op_print_tab[] = {
13796 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13797 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13798 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13799 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13800 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13801 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13802 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13803 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13804 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13805 {">=", BINOP_GEQ, PREC_ORDER, 0},
13806 {">", BINOP_GTR, PREC_ORDER, 0},
13807 {"<", BINOP_LESS, PREC_ORDER, 0},
13808 {">>", BINOP_RSH, PREC_SHIFT, 0},
13809 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13810 {"+", BINOP_ADD, PREC_ADD, 0},
13811 {"-", BINOP_SUB, PREC_ADD, 0},
13812 {"&", BINOP_CONCAT, PREC_ADD, 0},
13813 {"*", BINOP_MUL, PREC_MUL, 0},
13814 {"/", BINOP_DIV, PREC_MUL, 0},
13815 {"rem", BINOP_REM, PREC_MUL, 0},
13816 {"mod", BINOP_MOD, PREC_MUL, 0},
13817 {"**", BINOP_EXP, PREC_REPEAT, 0},
13818 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13819 {"-", UNOP_NEG, PREC_PREFIX, 0},
13820 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13821 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13822 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13823 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13824 {".all", UNOP_IND, PREC_SUFFIX, 1},
13825 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13826 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13827 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13828};
13829\f
72d5681a
PH
13830enum ada_primitive_types {
13831 ada_primitive_type_int,
13832 ada_primitive_type_long,
13833 ada_primitive_type_short,
13834 ada_primitive_type_char,
13835 ada_primitive_type_float,
13836 ada_primitive_type_double,
13837 ada_primitive_type_void,
13838 ada_primitive_type_long_long,
13839 ada_primitive_type_long_double,
13840 ada_primitive_type_natural,
13841 ada_primitive_type_positive,
13842 ada_primitive_type_system_address,
13843 nr_ada_primitive_types
13844};
6c038f32
PH
13845
13846static void
d4a9a881 13847ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13848 struct language_arch_info *lai)
13849{
d4a9a881 13850 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13851
72d5681a 13852 lai->primitive_type_vector
d4a9a881 13853 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13854 struct type *);
e9bb382b
UW
13855
13856 lai->primitive_type_vector [ada_primitive_type_int]
13857 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13858 0, "integer");
13859 lai->primitive_type_vector [ada_primitive_type_long]
13860 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13861 0, "long_integer");
13862 lai->primitive_type_vector [ada_primitive_type_short]
13863 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13864 0, "short_integer");
13865 lai->string_char_type
13866 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13867 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13868 lai->primitive_type_vector [ada_primitive_type_float]
13869 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13870 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13871 lai->primitive_type_vector [ada_primitive_type_double]
13872 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13873 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13874 lai->primitive_type_vector [ada_primitive_type_long_long]
13875 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13876 0, "long_long_integer");
13877 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13878 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13879 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13880 lai->primitive_type_vector [ada_primitive_type_natural]
13881 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13882 0, "natural");
13883 lai->primitive_type_vector [ada_primitive_type_positive]
13884 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13885 0, "positive");
13886 lai->primitive_type_vector [ada_primitive_type_void]
13887 = builtin->builtin_void;
13888
13889 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13890 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13891 "void"));
72d5681a
PH
13892 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13893 = "system__address";
fbb06eb1 13894
47e729a8 13895 lai->bool_type_symbol = NULL;
fbb06eb1 13896 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13897}
6c038f32
PH
13898\f
13899 /* Language vector */
13900
13901/* Not really used, but needed in the ada_language_defn. */
13902
13903static void
6c7a06a3 13904emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13905{
6c7a06a3 13906 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13907}
13908
13909static int
410a0ff2 13910parse (struct parser_state *ps)
6c038f32
PH
13911{
13912 warnings_issued = 0;
410a0ff2 13913 return ada_parse (ps);
6c038f32
PH
13914}
13915
13916static const struct exp_descriptor ada_exp_descriptor = {
13917 ada_print_subexp,
13918 ada_operator_length,
c0201579 13919 ada_operator_check,
6c038f32
PH
13920 ada_op_name,
13921 ada_dump_subexp_body,
13922 ada_evaluate_subexp
13923};
13924
b5ec771e
PA
13925/* symbol_name_matcher_ftype adapter for wild_match. */
13926
13927static bool
13928do_wild_match (const char *symbol_search_name,
13929 const lookup_name_info &lookup_name,
a207cff2 13930 completion_match_result *comp_match_res)
b5ec771e
PA
13931{
13932 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13933}
13934
13935/* symbol_name_matcher_ftype adapter for full_match. */
13936
13937static bool
13938do_full_match (const char *symbol_search_name,
13939 const lookup_name_info &lookup_name,
a207cff2 13940 completion_match_result *comp_match_res)
b5ec771e
PA
13941{
13942 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13943}
13944
13945/* Build the Ada lookup name for LOOKUP_NAME. */
13946
13947ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13948{
13949 const std::string &user_name = lookup_name.name ();
13950
13951 if (user_name[0] == '<')
13952 {
13953 if (user_name.back () == '>')
13954 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13955 else
13956 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13957 m_encoded_p = true;
13958 m_verbatim_p = true;
13959 m_wild_match_p = false;
13960 m_standard_p = false;
13961 }
13962 else
13963 {
13964 m_verbatim_p = false;
13965
13966 m_encoded_p = user_name.find ("__") != std::string::npos;
13967
13968 if (!m_encoded_p)
13969 {
13970 const char *folded = ada_fold_name (user_name.c_str ());
13971 const char *encoded = ada_encode_1 (folded, false);
13972 if (encoded != NULL)
13973 m_encoded_name = encoded;
13974 else
13975 m_encoded_name = user_name;
13976 }
13977 else
13978 m_encoded_name = user_name;
13979
13980 /* Handle the 'package Standard' special case. See description
13981 of m_standard_p. */
13982 if (startswith (m_encoded_name.c_str (), "standard__"))
13983 {
13984 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13985 m_standard_p = true;
13986 }
13987 else
13988 m_standard_p = false;
74ccd7f5 13989
b5ec771e
PA
13990 /* If the name contains a ".", then the user is entering a fully
13991 qualified entity name, and the match must not be done in wild
13992 mode. Similarly, if the user wants to complete what looks
13993 like an encoded name, the match must not be done in wild
13994 mode. Also, in the standard__ special case always do
13995 non-wild matching. */
13996 m_wild_match_p
13997 = (lookup_name.match_type () != symbol_name_match_type::FULL
13998 && !m_encoded_p
13999 && !m_standard_p
14000 && user_name.find ('.') == std::string::npos);
14001 }
14002}
14003
14004/* symbol_name_matcher_ftype method for Ada. This only handles
14005 completion mode. */
14006
14007static bool
14008ada_symbol_name_matches (const char *symbol_search_name,
14009 const lookup_name_info &lookup_name,
a207cff2 14010 completion_match_result *comp_match_res)
74ccd7f5 14011{
b5ec771e
PA
14012 return lookup_name.ada ().matches (symbol_search_name,
14013 lookup_name.match_type (),
a207cff2 14014 comp_match_res);
b5ec771e
PA
14015}
14016
14017/* Implement the "la_get_symbol_name_matcher" language_defn method for
14018 Ada. */
14019
14020static symbol_name_matcher_ftype *
14021ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14022{
14023 if (lookup_name.completion_mode ())
14024 return ada_symbol_name_matches;
74ccd7f5 14025 else
b5ec771e
PA
14026 {
14027 if (lookup_name.ada ().wild_match_p ())
14028 return do_wild_match;
14029 else
14030 return do_full_match;
14031 }
74ccd7f5
JB
14032}
14033
a5ee536b
JB
14034/* Implement the "la_read_var_value" language_defn method for Ada. */
14035
14036static struct value *
63e43d3a
PMR
14037ada_read_var_value (struct symbol *var, const struct block *var_block,
14038 struct frame_info *frame)
a5ee536b 14039{
3977b71f 14040 const struct block *frame_block = NULL;
a5ee536b
JB
14041 struct symbol *renaming_sym = NULL;
14042
14043 /* The only case where default_read_var_value is not sufficient
14044 is when VAR is a renaming... */
14045 if (frame)
14046 frame_block = get_frame_block (frame, NULL);
14047 if (frame_block)
14048 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14049 if (renaming_sym != NULL)
14050 return ada_read_renaming_var_value (renaming_sym, frame_block);
14051
14052 /* This is a typical case where we expect the default_read_var_value
14053 function to work. */
63e43d3a 14054 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14055}
14056
56618e20
TT
14057static const char *ada_extensions[] =
14058{
14059 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14060};
14061
47e77640 14062extern const struct language_defn ada_language_defn = {
6c038f32 14063 "ada", /* Language name */
6abde28f 14064 "Ada",
6c038f32 14065 language_ada,
6c038f32 14066 range_check_off,
6c038f32
PH
14067 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14068 that's not quite what this means. */
6c038f32 14069 array_row_major,
9a044a89 14070 macro_expansion_no,
56618e20 14071 ada_extensions,
6c038f32
PH
14072 &ada_exp_descriptor,
14073 parse,
b3f11165 14074 ada_yyerror,
6c038f32
PH
14075 resolve,
14076 ada_printchar, /* Print a character constant */
14077 ada_printstr, /* Function to print string constant */
14078 emit_char, /* Function to print single char (not used) */
6c038f32 14079 ada_print_type, /* Print a type using appropriate syntax */
be942545 14080 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14081 ada_val_print, /* Print a value using appropriate syntax */
14082 ada_value_print, /* Print a top-level value */
a5ee536b 14083 ada_read_var_value, /* la_read_var_value */
6c038f32 14084 NULL, /* Language specific skip_trampoline */
2b2d9e11 14085 NULL, /* name_of_this */
6c038f32
PH
14086 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14087 basic_lookup_transparent_type, /* lookup_transparent_type */
14088 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14089 ada_sniff_from_mangled_name,
0963b4bd
MS
14090 NULL, /* Language specific
14091 class_name_from_physname */
6c038f32
PH
14092 ada_op_print_tab, /* expression operators for printing */
14093 0, /* c-style arrays */
14094 1, /* String lower bound */
6c038f32 14095 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14096 ada_collect_symbol_completion_matches,
72d5681a 14097 ada_language_arch_info,
e79af960 14098 ada_print_array_index,
41f1b697 14099 default_pass_by_reference,
ae6a3a4c 14100 c_get_string,
43cc5389 14101 c_watch_location_expression,
b5ec771e 14102 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14103 ada_iterate_over_symbols,
5ffa0793 14104 default_search_name_hash,
a53b64ea 14105 &ada_varobj_ops,
bb2ec1b3
TT
14106 NULL,
14107 NULL,
6c038f32
PH
14108 LANG_MAGIC
14109};
14110
5bf03f13
JB
14111/* Command-list for the "set/show ada" prefix command. */
14112static struct cmd_list_element *set_ada_list;
14113static struct cmd_list_element *show_ada_list;
14114
14115/* Implement the "set ada" prefix command. */
14116
14117static void
981a3fb3 14118set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14119{
14120 printf_unfiltered (_(\
14121"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14122 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14123}
14124
14125/* Implement the "show ada" prefix command. */
14126
14127static void
981a3fb3 14128show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14129{
14130 cmd_show_list (show_ada_list, from_tty, "");
14131}
14132
2060206e
PA
14133static void
14134initialize_ada_catchpoint_ops (void)
14135{
14136 struct breakpoint_ops *ops;
14137
14138 initialize_breakpoint_ops ();
14139
14140 ops = &catch_exception_breakpoint_ops;
14141 *ops = bkpt_breakpoint_ops;
2060206e
PA
14142 ops->allocate_location = allocate_location_catch_exception;
14143 ops->re_set = re_set_catch_exception;
14144 ops->check_status = check_status_catch_exception;
14145 ops->print_it = print_it_catch_exception;
14146 ops->print_one = print_one_catch_exception;
14147 ops->print_mention = print_mention_catch_exception;
14148 ops->print_recreate = print_recreate_catch_exception;
14149
14150 ops = &catch_exception_unhandled_breakpoint_ops;
14151 *ops = bkpt_breakpoint_ops;
2060206e
PA
14152 ops->allocate_location = allocate_location_catch_exception_unhandled;
14153 ops->re_set = re_set_catch_exception_unhandled;
14154 ops->check_status = check_status_catch_exception_unhandled;
14155 ops->print_it = print_it_catch_exception_unhandled;
14156 ops->print_one = print_one_catch_exception_unhandled;
14157 ops->print_mention = print_mention_catch_exception_unhandled;
14158 ops->print_recreate = print_recreate_catch_exception_unhandled;
14159
14160 ops = &catch_assert_breakpoint_ops;
14161 *ops = bkpt_breakpoint_ops;
2060206e
PA
14162 ops->allocate_location = allocate_location_catch_assert;
14163 ops->re_set = re_set_catch_assert;
14164 ops->check_status = check_status_catch_assert;
14165 ops->print_it = print_it_catch_assert;
14166 ops->print_one = print_one_catch_assert;
14167 ops->print_mention = print_mention_catch_assert;
14168 ops->print_recreate = print_recreate_catch_assert;
14169}
14170
3d9434b5
JB
14171/* This module's 'new_objfile' observer. */
14172
14173static void
14174ada_new_objfile_observer (struct objfile *objfile)
14175{
14176 ada_clear_symbol_cache ();
14177}
14178
14179/* This module's 'free_objfile' observer. */
14180
14181static void
14182ada_free_objfile_observer (struct objfile *objfile)
14183{
14184 ada_clear_symbol_cache ();
14185}
14186
d2e4a39e 14187void
6c038f32 14188_initialize_ada_language (void)
14f9c5c9 14189{
2060206e
PA
14190 initialize_ada_catchpoint_ops ();
14191
5bf03f13
JB
14192 add_prefix_cmd ("ada", no_class, set_ada_command,
14193 _("Prefix command for changing Ada-specfic settings"),
14194 &set_ada_list, "set ada ", 0, &setlist);
14195
14196 add_prefix_cmd ("ada", no_class, show_ada_command,
14197 _("Generic command for showing Ada-specific settings."),
14198 &show_ada_list, "show ada ", 0, &showlist);
14199
14200 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14201 &trust_pad_over_xvs, _("\
14202Enable or disable an optimization trusting PAD types over XVS types"), _("\
14203Show whether an optimization trusting PAD types over XVS types is activated"),
14204 _("\
14205This is related to the encoding used by the GNAT compiler. The debugger\n\
14206should normally trust the contents of PAD types, but certain older versions\n\
14207of GNAT have a bug that sometimes causes the information in the PAD type\n\
14208to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14209work around this bug. It is always safe to turn this option \"off\", but\n\
14210this incurs a slight performance penalty, so it is recommended to NOT change\n\
14211this option to \"off\" unless necessary."),
14212 NULL, NULL, &set_ada_list, &show_ada_list);
14213
d72413e6
PMR
14214 add_setshow_boolean_cmd ("print-signatures", class_vars,
14215 &print_signatures, _("\
14216Enable or disable the output of formal and return types for functions in the \
14217overloads selection menu"), _("\
14218Show whether the output of formal and return types for functions in the \
14219overloads selection menu is activated"),
14220 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14221
9ac4176b
PA
14222 add_catch_command ("exception", _("\
14223Catch Ada exceptions, when raised.\n\
14224With an argument, catch only exceptions with the given name."),
14225 catch_ada_exception_command,
14226 NULL,
14227 CATCH_PERMANENT,
14228 CATCH_TEMPORARY);
14229 add_catch_command ("assert", _("\
14230Catch failed Ada assertions, when raised.\n\
14231With an argument, catch only exceptions with the given name."),
14232 catch_assert_command,
14233 NULL,
14234 CATCH_PERMANENT,
14235 CATCH_TEMPORARY);
14236
6c038f32 14237 varsize_limit = 65536;
6c038f32 14238
778865d3
JB
14239 add_info ("exceptions", info_exceptions_command,
14240 _("\
14241List all Ada exception names.\n\
14242If a regular expression is passed as an argument, only those matching\n\
14243the regular expression are listed."));
14244
c6044dd1
JB
14245 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14246 _("Set Ada maintenance-related variables."),
14247 &maint_set_ada_cmdlist, "maintenance set ada ",
14248 0/*allow-unknown*/, &maintenance_set_cmdlist);
14249
14250 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14251 _("Show Ada maintenance-related variables"),
14252 &maint_show_ada_cmdlist, "maintenance show ada ",
14253 0/*allow-unknown*/, &maintenance_show_cmdlist);
14254
14255 add_setshow_boolean_cmd
14256 ("ignore-descriptive-types", class_maintenance,
14257 &ada_ignore_descriptive_types_p,
14258 _("Set whether descriptive types generated by GNAT should be ignored."),
14259 _("Show whether descriptive types generated by GNAT should be ignored."),
14260 _("\
14261When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14262DWARF attribute."),
14263 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14264
6c038f32
PH
14265 obstack_init (&symbol_list_obstack);
14266
14267 decoded_names_store = htab_create_alloc
14268 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14269 NULL, xcalloc, xfree);
6b69afc4 14270
3d9434b5
JB
14271 /* The ada-lang observers. */
14272 observer_attach_new_objfile (ada_new_objfile_observer);
14273 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14274 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14275
14276 /* Setup various context-specific data. */
e802dbe0 14277 ada_inferior_data
8e260fc0 14278 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14279 ada_pspace_data_handle
14280 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14281}