]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
79d43c61 61#include "typeprint.h"
14f9c5c9 62
ccefe4c4 63#include "psymtab.h"
40bc484c 64#include "value.h"
956a9fb9 65#include "mi/mi-common.h"
9ac4176b 66#include "arch-utils.h"
28010a5d 67#include "exceptions.h"
0fcd72ba 68#include "cli/cli-utils.h"
ccefe4c4 69
4c4b4cd2 70/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 71 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
72 Copied from valarith.c. */
73
74#ifndef TRUNCATION_TOWARDS_ZERO
75#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76#endif
77
d2e4a39e 78static struct type *desc_base_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct type *desc_bounds_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_bounds (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 87
556bdfd4 88static struct type *desc_data_target_type (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_data (struct value *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 93
d2e4a39e 94static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 95
d2e4a39e 96static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 101
d2e4a39e 102static struct type *desc_index_type (struct type *, int);
14f9c5c9 103
d2e4a39e 104static int desc_arity (struct type *);
14f9c5c9 105
d2e4a39e 106static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 107
d2e4a39e 108static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 109
40658b94
PH
110static int full_match (const char *, const char *);
111
40bc484c 112static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 113
4c4b4cd2 114static void ada_add_block_symbols (struct obstack *,
76a01679 115 struct block *, const char *,
2570f2b7 116 domain_enum, struct objfile *, int);
14f9c5c9 117
4c4b4cd2 118static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 121 struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
125static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static struct value *get_var_value (char *, char *);
14f9c5c9 199
d2e4a39e 200static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 201
d2e4a39e 202static int equiv_types (struct type *, struct type *);
14f9c5c9 203
d2e4a39e 204static int is_name_suffix (const char *);
14f9c5c9 205
73589123
PH
206static int advance_wild_match (const char **, const char *, int);
207
208static int wild_match (const char *, const char *);
14f9c5c9 209
d2e4a39e 210static struct value *ada_coerce_ref (struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static LONGEST pos_atr (struct value *);
213
3cb382c9 214static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 215
d2e4a39e 216static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 217
4c4b4cd2
PH
218static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
14f9c5c9 220
4c4b4cd2
PH
221static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
0d5cff50 227static int find_struct_field (const char *, struct type *, int,
52ce6436 228 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
229
230static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
4c4b4cd2
PH
233static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
4c4b4cd2
PH
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
248 struct expression *,
249 int *, enum noside);
52ce6436
PH
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
852dff6c
JB
275
276static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
277\f
278
76a01679 279
4c4b4cd2 280/* Maximum-sized dynamic type. */
14f9c5c9
AS
281static unsigned int varsize_limit;
282
4c4b4cd2
PH
283/* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285static char *ada_completer_word_break_characters =
286#ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288#else
14f9c5c9 289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 290#endif
14f9c5c9 291
4c4b4cd2 292/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 293static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 294 = "__gnat_ada_main_program_name";
14f9c5c9 295
4c4b4cd2
PH
296/* Limit on the number of warnings to raise per expression evaluation. */
297static int warning_limit = 2;
298
299/* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301static int warnings_issued = 0;
302
303static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305};
306
307static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309};
310
311/* Space for allocating results of ada_lookup_symbol_list. */
312static struct obstack symbol_list_obstack;
313
e802dbe0
JB
314 /* Inferior-specific data. */
315
316/* Per-inferior data for this module. */
317
318struct ada_inferior_data
319{
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
3eecfa55
JB
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
e802dbe0
JB
330};
331
332/* Our key to this module's inferior data. */
333static const struct inferior_data *ada_inferior_data;
334
335/* A cleanup routine for our inferior data. */
336static void
337ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338{
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344}
345
346/* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354static struct ada_inferior_data *
355get_ada_inferior_data (struct inferior *inf)
356{
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367}
368
369/* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372static void
373ada_inferior_exit (struct inferior *inf)
374{
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377}
378
4c4b4cd2
PH
379 /* Utilities */
380
720d1a40 381/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 382 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408static struct type *
409ada_typedef_target_type (struct type *type)
410{
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414}
415
41d27058
JB
416/* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420static const char *
421ada_unqualified_name (const char *decoded_name)
422{
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431}
432
433/* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436static char *
437add_angle_brackets (const char *str)
438{
439 static char *result = NULL;
440
441 xfree (result);
88c15c34 442 result = xstrprintf ("<%s>", str);
41d27058
JB
443 return result;
444}
96d887e8 445
4c4b4cd2
PH
446static char *
447ada_get_gdb_completer_word_break_characters (void)
448{
449 return ada_completer_word_break_characters;
450}
451
e79af960
JB
452/* Print an array element index using the Ada syntax. */
453
454static void
455ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 456 const struct value_print_options *options)
e79af960 457{
79a45b7d 458 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
459 fprintf_filtered (stream, " => ");
460}
461
f27cf670 462/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 464 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 465
f27cf670
AS
466void *
467grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 468{
d2e4a39e
AS
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
4c4b4cd2 473 *size = min_size;
f27cf670 474 vect = xrealloc (vect, *size * element_size);
d2e4a39e 475 }
f27cf670 476 return vect;
14f9c5c9
AS
477}
478
479/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 480 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
481
482static int
ebf56fd3 483field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
484{
485 int len = strlen (target);
5b4ee69b 486
d2e4a39e 487 return
4c4b4cd2
PH
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
14f9c5c9
AS
493}
494
495
872c8b51
JB
496/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
503
504int
505ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507{
508 int fieldno;
872c8b51
JB
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
513 return fieldno;
514
515 if (!maybe_missing)
323e0a4a 516 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 517 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
518
519 return -1;
520}
521
522/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
523
524int
d2e4a39e 525ada_name_prefix_len (const char *name)
14f9c5c9
AS
526{
527 if (name == NULL)
528 return 0;
d2e4a39e 529 else
14f9c5c9 530 {
d2e4a39e 531 const char *p = strstr (name, "___");
5b4ee69b 532
14f9c5c9 533 if (p == NULL)
4c4b4cd2 534 return strlen (name);
14f9c5c9 535 else
4c4b4cd2 536 return p - name;
14f9c5c9
AS
537 }
538}
539
4c4b4cd2
PH
540/* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
14f9c5c9 543static int
d2e4a39e 544is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
545{
546 int len1, len2;
5b4ee69b 547
14f9c5c9
AS
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
4c4b4cd2 552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
553}
554
4c4b4cd2
PH
555/* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
14f9c5c9 557
d2e4a39e 558static struct value *
4c4b4cd2 559coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 560{
61ee279c 561 type = ada_check_typedef (type);
df407dfe 562 if (value_type (val) == type)
4c4b4cd2 563 return val;
d2e4a39e 564 else
14f9c5c9 565 {
4c4b4cd2
PH
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
714e53ab 570 check_size (type);
4c4b4cd2 571
41e8491f
JK
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
74bcbdf3 581 set_value_component_location (result, val);
9bbda503
AC
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
42ae5230 584 set_value_address (result, value_address (val));
2fa15f23 585 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
586 return result;
587 }
588}
589
fc1a4b47
AC
590static const gdb_byte *
591cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
592{
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597}
598
599static CORE_ADDR
ebf56fd3 600cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
601{
602 if (address == 0)
603 return 0;
d2e4a39e 604 else
14f9c5c9
AS
605 return address + offset;
606}
607
4c4b4cd2
PH
608/* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
a2249542 612
77109804
AC
613/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
a0b31db1 615static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 616
14f9c5c9 617static void
a2249542 618lim_warning (const char *format, ...)
14f9c5c9 619{
a2249542 620 va_list args;
a2249542 621
5b4ee69b 622 va_start (args, format);
4c4b4cd2
PH
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
a2249542
MK
625 vwarning (format, args);
626
627 va_end (args);
4c4b4cd2
PH
628}
629
714e53ab
PH
630/* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634static void
635check_size (const struct type *type)
636{
637 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 638 error (_("object size is larger than varsize-limit"));
714e53ab
PH
639}
640
0963b4bd 641/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 642static LONGEST
c3e5cd34 643max_of_size (int size)
4c4b4cd2 644{
76a01679 645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 646
76a01679 647 return top_bit | (top_bit - 1);
4c4b4cd2
PH
648}
649
0963b4bd 650/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 651static LONGEST
c3e5cd34 652min_of_size (int size)
4c4b4cd2 653{
c3e5cd34 654 return -max_of_size (size) - 1;
4c4b4cd2
PH
655}
656
0963b4bd 657/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 658static ULONGEST
c3e5cd34 659umax_of_size (int size)
4c4b4cd2 660{
76a01679 661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 662
76a01679 663 return top_bit | (top_bit - 1);
4c4b4cd2
PH
664}
665
0963b4bd 666/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
667static LONGEST
668max_of_type (struct type *t)
4c4b4cd2 669{
c3e5cd34
PH
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674}
675
0963b4bd 676/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
677static LONGEST
678min_of_type (struct type *t)
679{
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
684}
685
686/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
687LONGEST
688ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 689{
76a01679 690 switch (TYPE_CODE (type))
4c4b4cd2
PH
691 {
692 case TYPE_CODE_RANGE:
690cc4eb 693 return TYPE_HIGH_BOUND (type);
4c4b4cd2 694 case TYPE_CODE_ENUM:
14e75d8e 695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
76a01679 699 case TYPE_CODE_INT:
690cc4eb 700 return max_of_type (type);
4c4b4cd2 701 default:
43bbcdc2 702 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
703 }
704}
705
14e75d8e 706/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
707LONGEST
708ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 709{
76a01679 710 switch (TYPE_CODE (type))
4c4b4cd2
PH
711 {
712 case TYPE_CODE_RANGE:
690cc4eb 713 return TYPE_LOW_BOUND (type);
4c4b4cd2 714 case TYPE_CODE_ENUM:
14e75d8e 715 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
76a01679 719 case TYPE_CODE_INT:
690cc4eb 720 return min_of_type (type);
4c4b4cd2 721 default:
43bbcdc2 722 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
723 }
724}
725
726/* The identity on non-range types. For range types, the underlying
76a01679 727 non-range scalar type. */
4c4b4cd2
PH
728
729static struct type *
18af8284 730get_base_type (struct type *type)
4c4b4cd2
PH
731{
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
76a01679
JB
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
4c4b4cd2
PH
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
14f9c5c9 739}
41246937
JB
740
741/* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746struct value *
747ada_get_decoded_value (struct value *value)
748{
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764}
765
766/* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771struct type *
772ada_get_decoded_type (struct type *type)
773{
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778}
779
4c4b4cd2 780\f
76a01679 781
4c4b4cd2 782 /* Language Selection */
14f9c5c9
AS
783
784/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 785 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 786
14f9c5c9 787enum language
ccefe4c4 788ada_update_initial_language (enum language lang)
14f9c5c9 789{
d2e4a39e 790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
14f9c5c9
AS
793
794 return lang;
795}
96d887e8
PH
796
797/* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801char *
802ada_main_name (void)
803{
804 struct minimal_symbol *msym;
f9bc20b9 805 static char *main_program_name = NULL;
6c038f32 806
96d887e8
PH
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
f9bc20b9
JB
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
96d887e8
PH
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
323e0a4a 821 error (_("Invalid address for Ada main program name."));
96d887e8 822
f9bc20b9
JB
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
96d887e8
PH
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834}
14f9c5c9 835\f
4c4b4cd2 836 /* Symbols */
d2e4a39e 837
4c4b4cd2
PH
838/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
14f9c5c9 840
d2e4a39e
AS
841const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
14f9c5c9
AS
864};
865
4c4b4cd2
PH
866/* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
14f9c5c9 869char *
4c4b4cd2 870ada_encode (const char *decoded)
14f9c5c9 871{
4c4b4cd2
PH
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
d2e4a39e 874 const char *p;
14f9c5c9 875 int k;
d2e4a39e 876
4c4b4cd2 877 if (decoded == NULL)
14f9c5c9
AS
878 return NULL;
879
4c4b4cd2
PH
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
14f9c5c9
AS
882
883 k = 0;
4c4b4cd2 884 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 885 {
cdc7bb92 886 if (*p == '.')
4c4b4cd2
PH
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
14f9c5c9 891 else if (*p == '"')
4c4b4cd2
PH
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
1265e4aa
JB
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
899 ;
900 if (mapping->encoded == NULL)
323e0a4a 901 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
d2e4a39e 906 else
4c4b4cd2
PH
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
14f9c5c9
AS
911 }
912
4c4b4cd2
PH
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
14f9c5c9
AS
915}
916
917/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
d2e4a39e
AS
921char *
922ada_fold_name (const char *name)
14f9c5c9 923{
d2e4a39e 924 static char *fold_buffer = NULL;
14f9c5c9
AS
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
d2e4a39e 928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
929
930 if (name[0] == '\'')
931 {
d2e4a39e
AS
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
934 }
935 else
936 {
937 int i;
5b4ee69b 938
14f9c5c9 939 for (i = 0; i <= len; i += 1)
4c4b4cd2 940 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
941 }
942
943 return fold_buffer;
944}
945
529cad9c
PH
946/* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948static int
949is_lower_alphanum (const char c)
950{
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952}
953
c90092fe
JB
954/* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
29480c32
JB
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
c90092fe 961
29480c32
JB
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966static void
967ada_remove_trailing_digits (const char *encoded, int *len)
968{
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
5b4ee69b 972
29480c32
JB
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984}
985
986/* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989static void
990ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991{
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
0963b4bd 997 the 'P' suffix. The second calls the first one after handling
29480c32
JB
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006}
1007
69fadcdf
JB
1008/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010static void
1011ada_remove_Xbn_suffix (const char *encoded, int *len)
1012{
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026}
1027
29480c32
JB
1028/* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
14f9c5c9 1031
4c4b4cd2 1032 The resulting string is valid until the next call of ada_decode.
29480c32 1033 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1034 is returned. */
1035
1036const char *
1037ada_decode (const char *encoded)
14f9c5c9
AS
1038{
1039 int i, j;
1040 int len0;
d2e4a39e 1041 const char *p;
4c4b4cd2 1042 char *decoded;
14f9c5c9 1043 int at_start_name;
4c4b4cd2
PH
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
d2e4a39e 1046
29480c32
JB
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
4c4b4cd2
PH
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
14f9c5c9 1052
29480c32
JB
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
4c4b4cd2 1056 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1057 goto Suppress;
1058
4c4b4cd2 1059 len0 = strlen (encoded);
4c4b4cd2 1060
29480c32
JB
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1063
4c4b4cd2
PH
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1070 {
1071 if (p[3] == 'X')
4c4b4cd2 1072 len0 = p - encoded;
14f9c5c9 1073 else
4c4b4cd2 1074 goto Suppress;
14f9c5c9 1075 }
4c4b4cd2 1076
29480c32
JB
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
4c4b4cd2 1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1082 len0 -= 3;
76a01679 1083
a10967fa
JB
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
29480c32
JB
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
4c4b4cd2 1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1095 len0 -= 1;
1096
4c4b4cd2 1097 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1098
4c4b4cd2
PH
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
14f9c5c9 1101
29480c32
JB
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
4c4b4cd2 1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1105 {
4c4b4cd2
PH
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
d2e4a39e 1114 }
14f9c5c9 1115
29480c32
JB
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
4c4b4cd2
PH
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
14f9c5c9
AS
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
29480c32 1125 /* Is this a symbol function? */
4c4b4cd2
PH
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
5b4ee69b 1129
4c4b4cd2
PH
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
14f9c5c9
AS
1147 at_start_name = 0;
1148
529cad9c
PH
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
4c4b4cd2
PH
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
529cad9c 1154
29480c32
JB
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
529cad9c
PH
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1177 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
4c4b4cd2
PH
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
29480c32
JB
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
4c4b4cd2
PH
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
cdc7bb92 1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1242 {
29480c32 1243 /* Replace '__' by '.'. */
4c4b4cd2
PH
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
14f9c5c9 1249 else
4c4b4cd2 1250 {
29480c32
JB
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
4c4b4cd2
PH
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
14f9c5c9 1257 }
4c4b4cd2 1258 decoded[j] = '\000';
14f9c5c9 1259
29480c32
JB
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
4c4b4cd2
PH
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1265 goto Suppress;
1266
4c4b4cd2
PH
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
14f9c5c9
AS
1271
1272Suppress:
4c4b4cd2
PH
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
14f9c5c9 1277 else
88c15c34 1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1279 return decoded;
1280
1281}
1282
1283/* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288static struct htab *decoded_names_store;
1289
1290/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1295 GSYMBOL).
4c4b4cd2
PH
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1298 when a decoded name is cached in it. */
4c4b4cd2 1299
76a01679
JB
1300char *
1301ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1302{
76a01679 1303 char **resultp =
afa16725 1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1305
4c4b4cd2
PH
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1309
714835d5 1310 if (gsymbol->obj_section != NULL)
76a01679 1311 {
714835d5 1312 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1313
714835d5
UW
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
76a01679 1316 }
4c4b4cd2 1317 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
4c4b4cd2 1321 if (*resultp == NULL)
76a01679
JB
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
5b4ee69b 1325
76a01679
JB
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
4c4b4cd2 1330 }
14f9c5c9 1331
4c4b4cd2
PH
1332 return *resultp;
1333}
76a01679 1334
2c0b251b 1335static char *
76a01679 1336ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1337{
1338 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1339}
1340
1341/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
14f9c5c9 1347
2c0b251b 1348static int
40658b94 1349match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1350{
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
73589123 1354 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1355 else
1356 {
1357 int len_name = strlen (name);
5b4ee69b 1358
4c4b4cd2
PH
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1364 }
14f9c5c9 1365}
14f9c5c9 1366\f
d2e4a39e 1367
4c4b4cd2 1368 /* Arrays */
14f9c5c9 1369
28c85d6c
JB
1370/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393void
1394ada_fixup_array_indexes_type (struct type *index_desc_type)
1395{
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
0d5cff50 1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423}
1424
4c4b4cd2 1425/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1426
d2e4a39e
AS
1427static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430};
1431
1432/* Maximum number of array dimensions we are prepared to handle. */
1433
4c4b4cd2 1434#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1435
14f9c5c9 1436
4c4b4cd2
PH
1437/* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
14f9c5c9
AS
1439
1440/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1441 level of indirection, if needed. */
1442
d2e4a39e
AS
1443static struct type *
1444desc_base_type (struct type *type)
14f9c5c9
AS
1445{
1446 if (type == NULL)
1447 return NULL;
61ee279c 1448 type = ada_check_typedef (type);
720d1a40
JB
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1265e4aa
JB
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1456 else
1457 return type;
1458}
1459
4c4b4cd2
PH
1460/* True iff TYPE indicates a "thin" array pointer type. */
1461
14f9c5c9 1462static int
d2e4a39e 1463is_thin_pntr (struct type *type)
14f9c5c9 1464{
d2e4a39e 1465 return
14f9c5c9
AS
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468}
1469
4c4b4cd2
PH
1470/* The descriptor type for thin pointer type TYPE. */
1471
d2e4a39e
AS
1472static struct type *
1473thin_descriptor_type (struct type *type)
14f9c5c9 1474{
d2e4a39e 1475 struct type *base_type = desc_base_type (type);
5b4ee69b 1476
14f9c5c9
AS
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
d2e4a39e 1481 else
14f9c5c9 1482 {
d2e4a39e 1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1484
14f9c5c9 1485 if (alt_type == NULL)
4c4b4cd2 1486 return base_type;
14f9c5c9 1487 else
4c4b4cd2 1488 return alt_type;
14f9c5c9
AS
1489 }
1490}
1491
4c4b4cd2
PH
1492/* A pointer to the array data for thin-pointer value VAL. */
1493
d2e4a39e
AS
1494static struct value *
1495thin_data_pntr (struct value *val)
14f9c5c9 1496{
828292f2 1497 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1499
556bdfd4
UW
1500 data_type = lookup_pointer_type (data_type);
1501
14f9c5c9 1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1503 return value_cast (data_type, value_copy (val));
d2e4a39e 1504 else
42ae5230 1505 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1506}
1507
4c4b4cd2
PH
1508/* True iff TYPE indicates a "thick" array pointer type. */
1509
14f9c5c9 1510static int
d2e4a39e 1511is_thick_pntr (struct type *type)
14f9c5c9
AS
1512{
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1516}
1517
4c4b4cd2
PH
1518/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1520
d2e4a39e
AS
1521static struct type *
1522desc_bounds_type (struct type *type)
14f9c5c9 1523{
d2e4a39e 1524 struct type *r;
14f9c5c9
AS
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
4c4b4cd2 1534 return NULL;
14f9c5c9
AS
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
61ee279c 1537 return ada_check_typedef (r);
14f9c5c9
AS
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
61ee279c 1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1544 }
1545 return NULL;
1546}
1547
1548/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
d2e4a39e
AS
1551static struct value *
1552desc_bounds (struct value *arr)
14f9c5c9 1553{
df407dfe 1554 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1555
d2e4a39e 1556 if (is_thin_pntr (type))
14f9c5c9 1557 {
d2e4a39e 1558 struct type *bounds_type =
4c4b4cd2 1559 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1560 LONGEST addr;
1561
4cdfadb1 1562 if (bounds_type == NULL)
323e0a4a 1563 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1564
1565 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1566 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1567 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1569 addr = value_as_long (arr);
d2e4a39e 1570 else
42ae5230 1571 addr = value_address (arr);
14f9c5c9 1572
d2e4a39e 1573 return
4c4b4cd2
PH
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1576 }
1577
1578 else if (is_thick_pntr (type))
05e522ef
JB
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
14f9c5c9
AS
1599 else
1600 return NULL;
1601}
1602
4c4b4cd2
PH
1603/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
14f9c5c9 1606static int
d2e4a39e 1607fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1608{
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610}
1611
1612/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1613 size of the field containing the address of the bounds data. */
1614
14f9c5c9 1615static int
d2e4a39e 1616fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1617{
1618 type = desc_base_type (type);
1619
d2e4a39e 1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
61ee279c 1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1624}
1625
4c4b4cd2 1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
4c4b4cd2 1630
d2e4a39e 1631static struct type *
556bdfd4 1632desc_data_target_type (struct type *type)
14f9c5c9
AS
1633{
1634 type = desc_base_type (type);
1635
4c4b4cd2 1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1637 if (is_thin_pntr (type))
556bdfd4 1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1639 else if (is_thick_pntr (type))
556bdfd4
UW
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1646 }
1647
1648 return NULL;
14f9c5c9
AS
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
4c4b4cd2 1653
d2e4a39e
AS
1654static struct value *
1655desc_data (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = value_type (arr);
5b4ee69b 1658
14f9c5c9
AS
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
d2e4a39e 1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1663 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1664 else
1665 return NULL;
1666}
1667
1668
1669/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1670 position of the field containing the address of the data. */
1671
14f9c5c9 1672static int
d2e4a39e 1673fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1674{
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676}
1677
1678/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1679 size of the field containing the address of the data. */
1680
14f9c5c9 1681static int
d2e4a39e 1682fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1683{
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1688 else
14f9c5c9
AS
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690}
1691
4c4b4cd2 1692/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
d2e4a39e
AS
1696static struct value *
1697desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1700 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1701}
1702
1703/* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
14f9c5c9 1707static int
d2e4a39e 1708desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1709{
d2e4a39e 1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1711}
1712
1713/* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
76a01679 1717static int
d2e4a39e 1718desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
d2e4a39e
AS
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1726}
1727
1728/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
d2e4a39e
AS
1731static struct type *
1732desc_index_type (struct type *type, int i)
14f9c5c9
AS
1733{
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
14f9c5c9
AS
1739 return NULL;
1740}
1741
4c4b4cd2
PH
1742/* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
14f9c5c9 1745static int
d2e4a39e 1746desc_arity (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753}
1754
4c4b4cd2
PH
1755/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
76a01679
JB
1759static int
1760ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1761{
1762 if (type == NULL)
1763 return 0;
61ee279c 1764 type = ada_check_typedef (type);
4c4b4cd2 1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1766 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1767}
1768
52ce6436 1769/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1770 * to one. */
52ce6436 1771
2c0b251b 1772static int
52ce6436
PH
1773ada_is_array_type (struct type *type)
1774{
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780}
1781
4c4b4cd2 1782/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1783
14f9c5c9 1784int
4c4b4cd2 1785ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1786{
1787 if (type == NULL)
1788 return 0;
61ee279c 1789 type = ada_check_typedef (type);
14f9c5c9 1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1794}
1795
4c4b4cd2
PH
1796/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
14f9c5c9 1798int
4c4b4cd2 1799ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1800{
556bdfd4 1801 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1802
1803 if (type == NULL)
1804 return 0;
61ee279c 1805 type = ada_check_typedef (type);
556bdfd4
UW
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1809}
1810
1811/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1812 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1813 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1814 is still needed. */
1815
14f9c5c9 1816int
ebf56fd3 1817ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1818{
d2e4a39e 1819 return
14f9c5c9
AS
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1825}
1826
1827
4c4b4cd2 1828/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1829 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1831 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1834 a descriptor. */
d2e4a39e
AS
1835struct type *
1836ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1837{
ad82864c
JB
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1840
df407dfe
AC
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
d2e4a39e
AS
1843
1844 if (!bounds)
ad82864c
JB
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
14f9c5c9
AS
1855 else
1856 {
d2e4a39e 1857 struct type *elt_type;
14f9c5c9 1858 int arity;
d2e4a39e 1859 struct value *descriptor;
14f9c5c9 1860
df407dfe
AC
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
14f9c5c9 1863
d2e4a39e 1864 if (elt_type == NULL || arity == 0)
df407dfe 1865 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1866
1867 descriptor = desc_bounds (arr);
d2e4a39e 1868 if (value_as_long (descriptor) == 0)
4c4b4cd2 1869 return NULL;
d2e4a39e 1870 while (arity > 0)
4c4b4cd2 1871 {
e9bb382b
UW
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1876
5b4ee69b 1877 arity -= 1;
df407dfe 1878 create_range_type (range_type, value_type (low),
529cad9c
PH
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
4c4b4cd2 1881 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
4c4b4cd2 1903 }
14f9c5c9
AS
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907}
1908
1909/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
d2e4a39e
AS
1914struct value *
1915ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1916{
df407dfe 1917 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1918 {
d2e4a39e 1919 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1920
14f9c5c9 1921 if (arrType == NULL)
4c4b4cd2 1922 return NULL;
14f9c5c9
AS
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
ad82864c
JB
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1927 else
1928 return arr;
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1933 be ARR itself if it already is in the proper form). */
1934
720d1a40 1935struct value *
d2e4a39e 1936ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1937{
df407dfe 1938 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1939 {
d2e4a39e 1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1941
14f9c5c9 1942 if (arrVal == NULL)
323e0a4a 1943 error (_("Bounds unavailable for null array pointer."));
529cad9c 1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1945 return value_ind (arrVal);
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
d2e4a39e 1949 else
14f9c5c9
AS
1950 return arr;
1951}
1952
1953/* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1955 packing). For other types, is the identity. */
1956
d2e4a39e
AS
1957struct type *
1958ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1959{
ad82864c
JB
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
17280b9f
UW
1962
1963 if (ada_is_array_descriptor_type (type))
556bdfd4 1964 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1965
1966 return type;
14f9c5c9
AS
1967}
1968
4c4b4cd2
PH
1969/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
ad82864c
JB
1971static int
1972ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1973{
1974 if (type == NULL)
1975 return 0;
4c4b4cd2 1976 type = desc_base_type (type);
61ee279c 1977 type = ada_check_typedef (type);
d2e4a39e 1978 return
14f9c5c9
AS
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981}
1982
ad82864c
JB
1983/* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986int
1987ada_is_constrained_packed_array_type (struct type *type)
1988{
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991}
1992
1993/* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996static int
1997ada_is_unconstrained_packed_array_type (struct type *type)
1998{
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001}
2002
2003/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006static long
2007decode_packed_array_bitsize (struct type *type)
2008{
0d5cff50
DE
2009 const char *raw_name;
2010 const char *tail;
ad82864c
JB
2011 long bits;
2012
720d1a40
JB
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
720d1a40 2027 gdb_assert (tail != NULL);
ad82864c
JB
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037}
2038
14f9c5c9
AS
2039/* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
d2e4a39e 2048static struct type *
ad82864c 2049constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2050{
d2e4a39e
AS
2051 struct type *new_elt_type;
2052 struct type *new_type;
99b1c762
JB
2053 struct type *index_type_desc;
2054 struct type *index_type;
14f9c5c9
AS
2055 LONGEST low_bound, high_bound;
2056
61ee279c 2057 type = ada_check_typedef (type);
14f9c5c9
AS
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
99b1c762
JB
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
e9bb382b 2068 new_type = alloc_type_copy (type);
ad82864c
JB
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
99b1c762 2072 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
99b1c762 2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2080 else
14f9c5c9
AS
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2083 TYPE_LENGTH (new_type) =
4c4b4cd2 2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2085 }
2086
876cecd0 2087 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2088 return new_type;
2089}
2090
ad82864c
JB
2091/* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2093
d2e4a39e 2094static struct type *
ad82864c 2095decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2096{
0d5cff50 2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2098 char *name;
0d5cff50 2099 const char *tail;
d2e4a39e 2100 struct type *shadow_type;
14f9c5c9 2101 long bits;
14f9c5c9 2102
727e3d2e
JB
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2111 type = desc_base_type (type);
2112
14f9c5c9
AS
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
b4ba55a1
JB
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
14f9c5c9 2119 {
323e0a4a 2120 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2121 return NULL;
2122 }
cb249c71 2123 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
0963b4bd
MS
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
14f9c5c9
AS
2129 return NULL;
2130 }
d2e4a39e 2131
ad82864c
JB
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2134}
2135
ad82864c
JB
2136/* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
4c4b4cd2 2140 type length is set appropriately. */
14f9c5c9 2141
d2e4a39e 2142static struct value *
ad82864c 2143decode_constrained_packed_array (struct value *arr)
14f9c5c9 2144{
4c4b4cd2 2145 struct type *type;
14f9c5c9 2146
4c4b4cd2 2147 arr = ada_coerce_ref (arr);
284614f0
JB
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
828292f2 2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2156 arr = value_ind (arr);
4c4b4cd2 2157
ad82864c 2158 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2159 if (type == NULL)
2160 {
323e0a4a 2161 error (_("can't unpack array"));
14f9c5c9
AS
2162 return NULL;
2163 }
61ee279c 2164
50810684 2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2166 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
df407dfe 2175 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
df407dfe 2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
4c4b4cd2 2190 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2191}
2192
2193
2194/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2195 given in IND. ARR must be a simple array. */
14f9c5c9 2196
d2e4a39e
AS
2197static struct value *
2198value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2199{
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
d2e4a39e
AS
2203 struct type *elt_type;
2204 struct value *v;
14f9c5c9
AS
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
df407dfe 2208 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2209 for (i = 0; i < arity; i += 1)
14f9c5c9 2210 {
d2e4a39e 2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
0963b4bd
MS
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
14f9c5c9 2216 else
4c4b4cd2
PH
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
323e0a4a 2224 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2225 lowerbound = upperbound = 0;
2226 }
2227
3cb382c9 2228 idx = pos_atr (ind[i]);
4c4b4cd2 2229 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
4c4b4cd2
PH
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2235 }
14f9c5c9
AS
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2241 bits, elt_type);
14f9c5c9
AS
2242 return v;
2243}
2244
4c4b4cd2 2245/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2246
2247static int
d2e4a39e 2248has_negatives (struct type *type)
14f9c5c9 2249{
d2e4a39e
AS
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
14f9c5c9 2259}
d2e4a39e 2260
14f9c5c9
AS
2261
2262/* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2265 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2270
d2e4a39e 2271struct value *
fc1a4b47 2272ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2273 long offset, int bit_offset, int bit_size,
4c4b4cd2 2274 struct type *type)
14f9c5c9 2275{
d2e4a39e 2276 struct value *v;
4c4b4cd2
PH
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2285 unsigned char *unpacked;
4c4b4cd2 2286 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
50810684 2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2292
61ee279c 2293 type = ada_check_typedef (type);
14f9c5c9
AS
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
d2e4a39e 2298 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2299 }
9214ee5f 2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2301 {
53ba8333 2302 v = value_at (type, value_address (obj));
d2e4a39e 2303 bytes = (unsigned char *) alloca (len);
53ba8333 2304 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2305 }
d2e4a39e 2306 else
14f9c5c9
AS
2307 {
2308 v = allocate_value (type);
0fd88904 2309 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2310 }
d2e4a39e
AS
2311
2312 if (obj != NULL)
14f9c5c9 2313 {
53ba8333 2314 long new_offset = offset;
5b4ee69b 2315
74bcbdf3 2316 set_value_component_location (v, obj);
9bbda503
AC
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
df407dfe 2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2320 {
53ba8333 2321 ++new_offset;
9bbda503 2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2323 }
53ba8333
JB
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
14f9c5c9
AS
2330 }
2331 else
9bbda503 2332 set_value_bitsize (v, bit_size);
0fd88904 2333 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
50810684 2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2345 {
d2e4a39e 2346 src = len - 1;
1265e4aa
JB
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2349 sign = ~0;
d2e4a39e
AS
2350
2351 unusedLS =
4c4b4cd2
PH
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
14f9c5c9
AS
2354
2355 switch (TYPE_CODE (type))
4c4b4cd2
PH
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
529cad9c 2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2366 ntarg = targ + 1;
4c4b4cd2
PH
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
14f9c5c9 2373 }
d2e4a39e 2374 else
14f9c5c9
AS
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
d2e4a39e 2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2383 sign = ~0;
14f9c5c9 2384 }
d2e4a39e 2385
14f9c5c9
AS
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2390 part of the value. */
d2e4a39e 2391 unsigned int unusedMSMask =
4c4b4cd2
PH
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
14f9c5c9 2395 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2396
d2e4a39e 2397 accum |=
4c4b4cd2 2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2399 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2400 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
14f9c5c9
AS
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424}
d2e4a39e 2425
14f9c5c9
AS
2426/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2428 not overlap. */
14f9c5c9 2429static void
fc1a4b47 2430move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2431 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2432{
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
50810684 2440 if (bits_big_endian_p)
14f9c5c9
AS
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
d2e4a39e 2446 while (n > 0)
4c4b4cd2
PH
2447 {
2448 int unused_right;
5b4ee69b 2449
4c4b4cd2
PH
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
14f9c5c9
AS
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
d2e4a39e 2473 while (n > 0)
4c4b4cd2
PH
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
14f9c5c9
AS
2489 }
2490}
2491
14f9c5c9
AS
2492/* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2495 floating-point or non-scalar types. */
14f9c5c9 2496
d2e4a39e
AS
2497static struct value *
2498ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2499{
df407dfe
AC
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
14f9c5c9 2502
52ce6436
PH
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
88e3b34b 2511 if (!deprecated_value_modifiable (toval))
323e0a4a 2512 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2513
d2e4a39e 2514 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2515 && bits > 0
d2e4a39e 2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2518 {
df407dfe
AC
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2521 int from_size;
d2e4a39e
AS
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
42ae5230 2524 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2527 fromval = value_cast (type, fromval);
14f9c5c9 2528
52ce6436 2529 read_memory (to_addr, buffer, len);
aced2898
PH
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2534 move_bits (buffer, value_bitpos (toval),
50810684 2535 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2536 else
50810684
UW
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
972daa01 2539 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2540
14f9c5c9 2541 val = value_copy (toval);
0fd88904 2542 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2543 TYPE_LENGTH (type));
04624583 2544 deprecated_set_value_type (val, type);
d2e4a39e 2545
14f9c5c9
AS
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550}
2551
2552
52ce6436
PH
2553/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558static void
2559value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561{
2562 LONGEST offset_in_container =
42ae5230 2563 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
50810684 2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2580 bits, 1);
52ce6436
PH
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
50810684 2584 value_contents (val), 0, bits, 0);
52ce6436
PH
2585}
2586
4c4b4cd2
PH
2587/* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2589 thereto. */
2590
d2e4a39e
AS
2591struct value *
2592ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2593{
2594 int k;
d2e4a39e
AS
2595 struct value *elt;
2596 struct type *elt_type;
14f9c5c9
AS
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
df407dfe 2600 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2608 error (_("too many subscripts (%d expected)"), k);
2497b498 2609 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2610 }
2611 return elt;
2612}
2613
2614/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2616 IND. Does not read the entire array into memory. */
14f9c5c9 2617
2c0b251b 2618static struct value *
d2e4a39e 2619ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2620 struct value **ind)
14f9c5c9
AS
2621{
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
14f9c5c9
AS
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2631 value_copy (arr));
14f9c5c9 2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638}
2639
0b5d8877 2640/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2643 per Ada rules. */
0b5d8877 2644static struct value *
f5938064
JG
2645ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
0b5d8877 2647{
b0dd7688 2648 struct type *type0 = ada_check_typedef (type);
6c038f32 2649 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2652 struct type *index_type =
b0dd7688 2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2654 low, high);
6c038f32 2655 struct type *slice_type =
b0dd7688 2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2657
f5938064 2658 return value_at_lazy (slice_type, base);
0b5d8877
PH
2659}
2660
2661
2662static struct value *
2663ada_value_slice (struct value *array, int low, int high)
2664{
b0dd7688 2665 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2666 struct type *index_type =
0b5d8877 2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2668 struct type *slice_type =
0b5d8877 2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2670
6c038f32 2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2672}
2673
14f9c5c9
AS
2674/* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2677 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2678
2679int
d2e4a39e 2680ada_array_arity (struct type *type)
14f9c5c9
AS
2681{
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
d2e4a39e 2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2691 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2694 {
4c4b4cd2 2695 arity += 1;
61ee279c 2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2697 }
d2e4a39e 2698
14f9c5c9
AS
2699 return arity;
2700}
2701
2702/* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2705 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2706
d2e4a39e
AS
2707struct type *
2708ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2709{
2710 type = desc_base_type (type);
2711
d2e4a39e 2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2713 {
2714 int k;
d2e4a39e 2715 struct type *p_array_type;
14f9c5c9 2716
556bdfd4 2717 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
4c4b4cd2 2721 return NULL;
d2e4a39e 2722
4c4b4cd2 2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2724 if (nindices >= 0 && k > nindices)
4c4b4cd2 2725 k = nindices;
d2e4a39e 2726 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2727 {
61ee279c 2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2729 k -= 1;
2730 }
14f9c5c9
AS
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
14f9c5c9
AS
2740 return type;
2741 }
2742
2743 return NULL;
2744}
2745
4c4b4cd2 2746/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
14f9c5c9 2751
1eea4ebd
UW
2752static struct type *
2753ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2754{
4c4b4cd2
PH
2755 struct type *result_type;
2756
14f9c5c9
AS
2757 type = desc_base_type (type);
2758
1eea4ebd
UW
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2761
4c4b4cd2 2762 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
4c4b4cd2 2767 type = TYPE_TARGET_TYPE (type);
262452ec 2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2771 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
14f9c5c9 2774 }
d2e4a39e 2775 else
1eea4ebd
UW
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
14f9c5c9
AS
2783}
2784
2785/* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
14f9c5c9 2790
abb68b3e 2791static LONGEST
1eea4ebd 2792ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2793{
1ce677a4 2794 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2795 int i;
262452ec
JK
2796
2797 gdb_assert (which == 0 || which == 1);
14f9c5c9 2798
ad82864c
JB
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2801
4c4b4cd2 2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2803 return (LONGEST) - which;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
1ce677a4
UW
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
14f9c5c9 2814 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2815 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2816 if (index_type_desc != NULL)
28c85d6c
JB
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
262452ec 2819 else
1ce677a4 2820 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2821
43bbcdc2
PH
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2826}
2827
2828/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2831 supplied by run-time quantities other than discriminants. */
14f9c5c9 2832
1eea4ebd 2833static LONGEST
4dc81987 2834ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2835{
df407dfe 2836 struct type *arr_type = value_type (arr);
14f9c5c9 2837
ad82864c
JB
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2840 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2841 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2842 else
1eea4ebd 2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2844}
2845
2846/* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
14f9c5c9 2851
1eea4ebd 2852static LONGEST
d2e4a39e 2853ada_array_length (struct value *arr, int n)
14f9c5c9 2854{
df407dfe 2855 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2856
ad82864c
JB
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2859
4c4b4cd2 2860 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2863 else
1eea4ebd
UW
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2866}
2867
2868/* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871static struct value *
2872empty_array (struct type *arr_type, int low)
2873{
b0dd7688 2874 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2875 struct type *index_type =
b0dd7688 2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2877 low, low - 1);
b0dd7688 2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2879
0b5d8877 2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2881}
14f9c5c9 2882\f
d2e4a39e 2883
4c4b4cd2 2884 /* Name resolution */
14f9c5c9 2885
4c4b4cd2
PH
2886/* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
14f9c5c9 2888
d2e4a39e 2889static const char *
4c4b4cd2 2890ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2891{
2892 int i;
2893
4c4b4cd2 2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2895 {
2896 if (ada_opname_table[i].op == op)
4c4b4cd2 2897 return ada_opname_table[i].decoded;
14f9c5c9 2898 }
323e0a4a 2899 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2900}
2901
2902
4c4b4cd2
PH
2903/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2910 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2911
4c4b4cd2
PH
2912static void
2913resolve (struct expression **expp, int void_context_p)
14f9c5c9 2914{
30b15541
UW
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2922}
2923
4c4b4cd2
PH
2924/* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
14f9c5c9 2932
d2e4a39e 2933static struct value *
4c4b4cd2 2934resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2935 struct type *context_type)
14f9c5c9
AS
2936{
2937 int pc = *pos;
2938 int i;
4c4b4cd2 2939 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
52ce6436 2943 int oplen;
14f9c5c9
AS
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
52ce6436
PH
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
14f9c5c9
AS
2951 switch (op)
2952 {
4c4b4cd2
PH
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
4c4b4cd2
PH
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2963 break;
2964
14f9c5c9 2965 case UNOP_ADDR:
4c4b4cd2
PH
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
52ce6436
PH
2970 case UNOP_QUAL:
2971 *pos += 3;
17466c1a 2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2973 break;
2974
52ce6436 2975 case OP_ATR_MODULUS:
4c4b4cd2
PH
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
4c4b4cd2
PH
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
4c4b4cd2
PH
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
52ce6436
PH
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
14f9c5c9
AS
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
4c4b4cd2
PH
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
df407dfe 3007 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3008 break;
14f9c5c9
AS
3009 }
3010
4c4b4cd2 3011 case UNOP_CAST:
4c4b4cd2
PH
3012 *pos += 3;
3013 nargs = 1;
3014 break;
14f9c5c9 3015
4c4b4cd2
PH
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
14f9c5c9 3029
4c4b4cd2
PH
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
14f9c5c9 3036
4c4b4cd2
PH
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
40c8aaa9
JB
3040 *pos += 1;
3041 nargs = 2;
3042 break;
14f9c5c9 3043
4c4b4cd2
PH
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
14f9c5c9 3052
4c4b4cd2
PH
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
14f9c5c9 3058
4c4b4cd2
PH
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
4c4b4cd2
PH
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
14f9c5c9 3065
4c4b4cd2
PH
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
67f3407f
DJ
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
4c4b4cd2
PH
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
4c4b4cd2 3080 case TERNOP_SLICE:
4c4b4cd2
PH
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
52ce6436 3085 case OP_STRING:
14f9c5c9 3086 break;
4c4b4cd2
PH
3087
3088 default:
323e0a4a 3089 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3090 }
3091
76a01679 3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
14f9c5c9 3104 case OP_VAR_VALUE:
4c4b4cd2 3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3114 &candidates, 1);
76a01679
JB
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
76a01679
JB
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
76a01679 3130 case LOC_COMPUTED:
76a01679
JB
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
323e0a4a 3153 error (_("No definition found for %s"),
76a01679
JB
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
06d5cf63
JB
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
76a01679 3164 if (i < 0)
323e0a4a 3165 error (_("Could not find a match for %s"),
76a01679
JB
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
323e0a4a 3170 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
14f9c5c9
AS
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
4c4b4cd2 3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
76a01679
JB
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3206 &candidates, 1);
4c4b4cd2
PH
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
06d5cf63
JB
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
4c4b4cd2 3216 if (i < 0)
323e0a4a 3217 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3225 innermost_block = candidates[i].block;
3226 }
14f9c5c9
AS
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3258 &candidates, 1);
4c4b4cd2 3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3260 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3261 if (i < 0)
3262 break;
3263
76a01679
JB
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3266 exp = *expp;
3267 }
14f9c5c9 3268 break;
4c4b4cd2
PH
3269
3270 case OP_TYPE:
b3dbf008 3271 case OP_REGISTER:
4c4b4cd2 3272 return NULL;
14f9c5c9
AS
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277}
3278
3279/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3281 a non-pointer. */
14f9c5c9 3282/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3283 liberal. */
14f9c5c9
AS
3284
3285static int
4dc81987 3286ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3287{
61ee279c
PH
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
14f9c5c9
AS
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
d2e4a39e 3296 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3297 {
3298 default:
5b3d5b7d 3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3304 else
1265e4aa
JB
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
14f9c5c9
AS
3319
3320 case TYPE_CODE_ARRAY:
d2e4a39e 3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3322 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3323
3324 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
14f9c5c9 3328 else
4c4b4cd2
PH
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336}
3337
3338/* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3341 argument function. */
14f9c5c9
AS
3342
3343static int
d2e4a39e 3344ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3345{
3346 int i;
d2e4a39e 3347 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3348
1265e4aa
JB
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
4c4b4cd2 3360 if (actuals[i] == NULL)
76a01679
JB
3361 return 0;
3362 else
3363 {
5b4ee69b
MS
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
df407dfe 3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3367
76a01679
JB
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
14f9c5c9
AS
3371 }
3372 return 1;
3373}
3374
3375/* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380static int
d2e4a39e 3381return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3382{
d2e4a39e 3383 struct type *return_type;
14f9c5c9
AS
3384
3385 if (func_type == NULL)
3386 return 1;
3387
4c4b4cd2 3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3390 else
18af8284 3391 return_type = get_base_type (func_type);
14f9c5c9
AS
3392 if (return_type == NULL)
3393 return 1;
3394
18af8284 3395 context_type = get_base_type (context_type);
14f9c5c9
AS
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403}
3404
3405
4c4b4cd2 3406/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3407 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
14f9c5c9
AS
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
14f9c5c9 3417
4c4b4cd2
PH
3418static int
3419ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
14f9c5c9 3422{
30b15541 3423 int fallback;
14f9c5c9 3424 int k;
4c4b4cd2 3425 int m; /* Number of hits */
14f9c5c9 3426
d2e4a39e 3427 m = 0;
30b15541
UW
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3432 {
3433 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3434 {
61ee279c 3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3438 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
14f9c5c9
AS
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
323e0a4a 3450 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3451 user_select_syms (syms, m, 1);
14f9c5c9
AS
3452 return 0;
3453 }
3454 return 0;
3455}
3456
4c4b4cd2
PH
3457/* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
14f9c5c9 3463static int
0d5cff50 3464encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3465{
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
5b4ee69b 3473
d2e4a39e 3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3477 ;
d2e4a39e 3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
5b4ee69b 3482
4c4b4cd2
PH
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
14f9c5c9
AS
3492 return (strcmp (N0, N1) < 0);
3493 }
3494}
d2e4a39e 3495
4c4b4cd2
PH
3496/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
d2e4a39e 3499static void
4c4b4cd2 3500sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3501{
4c4b4cd2 3502 int i;
5b4ee69b 3503
d2e4a39e 3504 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3505 {
4c4b4cd2 3506 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3507 int j;
3508
d2e4a39e 3509 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
d2e4a39e 3516 syms[j + 1] = sym;
14f9c5c9
AS
3517 }
3518}
3519
4c4b4cd2
PH
3520/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
14f9c5c9
AS
3524
3525/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3526 to be re-integrated one of these days. */
14f9c5c9
AS
3527
3528int
4c4b4cd2 3529user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3530{
3531 int i;
d2e4a39e 3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3535 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3536
3537 if (max_results < 1)
323e0a4a 3538 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3539 if (nsyms <= 1)
3540 return nsyms;
3541
717d2f5a
JB
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544canceled because the command is ambiguous\n\
3545See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
323e0a4a 3553 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3554 if (max_results > 1)
323e0a4a 3555 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3556
4c4b4cd2 3557 sort_choices (syms, nsyms);
14f9c5c9
AS
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
4c4b4cd2
PH
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
76a01679
JB
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3568
323e0a4a
AC
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3578 continue;
3579 }
d2e4a39e 3580 else
4c4b4cd2
PH
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3595 {
a3f17187 3596 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3598 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
323e0a4a
AC
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
323e0a4a
AC
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
14f9c5c9 3616 }
d2e4a39e 3617
14f9c5c9 3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3619 "overload-choice");
14f9c5c9
AS
3620
3621 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3622 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3623
3624 return n_chosen;
3625}
3626
3627/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3628 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
4c4b4cd2 3634 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
4c4b4cd2 3638 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3641 prompts (for use with the -f switch). */
14f9c5c9
AS
3642
3643int
d2e4a39e 3644get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3645 int is_all_choice, char *annotation_suffix)
14f9c5c9 3646{
d2e4a39e 3647 char *args;
0bcd0149 3648 char *prompt;
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3651
14f9c5c9
AS
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
0bcd0149 3654 prompt = "> ";
14f9c5c9 3655
0bcd0149 3656 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3657
14f9c5c9 3658 if (args == NULL)
323e0a4a 3659 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3660
3661 n_chosen = 0;
76a01679 3662
4c4b4cd2
PH
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
14f9c5c9
AS
3665 while (1)
3666 {
d2e4a39e 3667 char *args2;
14f9c5c9
AS
3668 int choice, j;
3669
0fcd72ba 3670 args = skip_spaces (args);
14f9c5c9 3671 if (*args == '\0' && n_chosen == 0)
323e0a4a 3672 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3673 else if (*args == '\0')
4c4b4cd2 3674 break;
14f9c5c9
AS
3675
3676 choice = strtol (args, &args2, 10);
d2e4a39e 3677 if (args == args2 || choice < 0
4c4b4cd2 3678 || choice > n_choices + first_choice - 1)
323e0a4a 3679 error (_("Argument must be choice number"));
14f9c5c9
AS
3680 args = args2;
3681
d2e4a39e 3682 if (choice == 0)
323e0a4a 3683 error (_("cancelled"));
14f9c5c9
AS
3684
3685 if (choice < first_choice)
4c4b4cd2
PH
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
14f9c5c9
AS
3692 choice -= first_choice;
3693
d2e4a39e 3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3695 {
3696 }
14f9c5c9
AS
3697
3698 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3699 {
3700 int k;
5b4ee69b 3701
4c4b4cd2
PH
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
14f9c5c9
AS
3707 }
3708
3709 if (n_chosen > max_results)
323e0a4a 3710 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3711
14f9c5c9
AS
3712 return n_chosen;
3713}
3714
4c4b4cd2
PH
3715/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3718
3719static void
d2e4a39e 3720replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3721 int oplen, struct symbol *sym,
270140bd 3722 const struct block *block)
14f9c5c9
AS
3723{
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3725 symbol, -oplen for operator being replaced). */
d2e4a39e 3726 struct expression *newexp = (struct expression *)
8c1a34e7 3727 xzalloc (sizeof (struct expression)
4c4b4cd2 3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3729 struct expression *exp = *expp;
14f9c5c9
AS
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3489610d 3733 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
aacb1f0a 3746 xfree (exp);
d2e4a39e 3747}
14f9c5c9
AS
3748
3749/* Type-class predicates */
3750
4c4b4cd2
PH
3751/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
14f9c5c9
AS
3753
3754static int
d2e4a39e 3755numeric_type_p (struct type *type)
14f9c5c9
AS
3756{
3757 if (type == NULL)
3758 return 0;
d2e4a39e
AS
3759 else
3760 {
3761 switch (TYPE_CODE (type))
4c4b4cd2
PH
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
d2e4a39e 3772 }
14f9c5c9
AS
3773}
3774
4c4b4cd2 3775/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3776
3777static int
d2e4a39e 3778integer_type_p (struct type *type)
14f9c5c9
AS
3779{
3780 if (type == NULL)
3781 return 0;
d2e4a39e
AS
3782 else
3783 {
3784 switch (TYPE_CODE (type))
4c4b4cd2
PH
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
d2e4a39e 3794 }
14f9c5c9
AS
3795}
3796
4c4b4cd2 3797/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3798
3799static int
d2e4a39e 3800scalar_type_p (struct type *type)
14f9c5c9
AS
3801{
3802 if (type == NULL)
3803 return 0;
d2e4a39e
AS
3804 else
3805 {
3806 switch (TYPE_CODE (type))
4c4b4cd2
PH
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
d2e4a39e 3816 }
14f9c5c9
AS
3817}
3818
4c4b4cd2 3819/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3820
3821static int
d2e4a39e 3822discrete_type_p (struct type *type)
14f9c5c9
AS
3823{
3824 if (type == NULL)
3825 return 0;
d2e4a39e
AS
3826 else
3827 {
3828 switch (TYPE_CODE (type))
4c4b4cd2
PH
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
872f0337 3833 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3834 return 1;
3835 default:
3836 return 0;
3837 }
d2e4a39e 3838 }
14f9c5c9
AS
3839}
3840
4c4b4cd2
PH
3841/* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
14f9c5c9
AS
3844
3845static int
d2e4a39e 3846possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3847{
76a01679 3848 struct type *type0 =
df407dfe 3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3850 struct type *type1 =
df407dfe 3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3852
4c4b4cd2
PH
3853 if (type0 == NULL)
3854 return 0;
3855
14f9c5c9
AS
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
d2e4a39e 3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
d2e4a39e 3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
d2e4a39e 3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3881
3882 case BINOP_CONCAT:
ee90b9ab 3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3884
3885 case BINOP_EXP:
d2e4a39e 3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
14f9c5c9
AS
3893
3894 }
3895}
3896\f
4c4b4cd2 3897 /* Renaming */
14f9c5c9 3898
aeb5907d
JB
3899/* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911/* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
0963b4bd 3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930enum ada_renaming_category
3931ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
14f9c5c9 3942 {
aeb5907d
JB
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
14f9c5c9 3976 }
4c4b4cd2 3977
aeb5907d
JB
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989}
3990
3991/* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995static enum ada_renaming_category
3996parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999{
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
14f9c5c9 4004
aeb5907d
JB
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
14f9c5c9 4008
aeb5907d
JB
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
14f9c5c9 4034
aeb5907d
JB
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
a5ee536b
JB
4048}
4049
4050/* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
52ce6436 4053
a5ee536b
JB
4054static struct value *
4055ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057{
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071}
14f9c5c9 4072\f
d2e4a39e 4073
4c4b4cd2 4074 /* Evaluation: Function Calls */
14f9c5c9 4075
4c4b4cd2 4076/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4079
d2e4a39e 4080static struct value *
40bc484c 4081ensure_lval (struct value *val)
14f9c5c9 4082{
40bc484c
JB
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4085 {
df407dfe 4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4089
40bc484c 4090 set_value_address (val, addr);
a84a8a0d 4091 VALUE_LVAL (val) = lval_memory;
40bc484c 4092 write_memory (addr, value_contents (val), len);
c3e5cd34 4093 }
14f9c5c9
AS
4094
4095 return val;
4096}
4097
4098/* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4101 values not residing in memory, updating it as needed. */
14f9c5c9 4102
a93c0eb6 4103struct value *
40bc484c 4104ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4105{
df407dfe 4106 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4107 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4114
4c4b4cd2 4115 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4117 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4120 {
a84a8a0d 4121 struct value *result;
5b4ee69b 4122
14f9c5c9 4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4124 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4125 result = desc_data (actual);
14f9c5c9 4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
5b4ee69b 4131
df407dfe 4132 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4133 val = allocate_value (actual_type);
990a07ab 4134 memcpy ((char *) value_contents_raw (val),
0fd88904 4135 (char *) value_contents (actual),
4c4b4cd2 4136 TYPE_LENGTH (actual_type));
40bc484c 4137 actual = ensure_lval (val);
4c4b4cd2 4138 }
a84a8a0d 4139 result = value_addr (actual);
4c4b4cd2 4140 }
a84a8a0d
JB
4141 else
4142 return actual;
b1af9e97 4143 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149}
4150
438c98a1
JB
4151/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156static CORE_ADDR
4157value_pointer (struct value *value, struct type *type)
4158{
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168}
4169
14f9c5c9 4170
4c4b4cd2
PH
4171/* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
14f9c5c9 4176
d2e4a39e 4177static struct value *
40bc484c 4178make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4179{
d2e4a39e
AS
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4184 int i;
d2e4a39e 4185
0963b4bd
MS
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
14f9c5c9 4188 {
19f220c3
JK
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4197 }
d2e4a39e 4198
40bc484c 4199 bounds = ensure_lval (bounds);
d2e4a39e 4200
19f220c3
JK
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4214
40bc484c 4215 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221}
14f9c5c9 4222\f
963a6417 4223/* Dummy definitions for an experimental caching module that is not
0963b4bd 4224 * used in the public sources. */
96d887e8 4225
96d887e8
PH
4226static int
4227lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4228 struct symbol **sym, struct block **block)
96d887e8
PH
4229{
4230 return 0;
4231}
4232
4233static void
4234cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4235 const struct block *block)
96d887e8
PH
4236{
4237}
4c4b4cd2
PH
4238\f
4239 /* Symbol Lookup */
4240
c0431670
JB
4241/* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247static int
4248should_use_wild_match (const char *lookup_name)
4249{
4250 return (strstr (lookup_name, "__") == NULL);
4251}
4252
4c4b4cd2
PH
4253/* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256static struct symbol *
4257standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259{
acbd605d
MGD
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4c4b4cd2 4262
2570f2b7 4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4264 return sym;
2570f2b7
UW
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4267 return sym;
4268}
4269
4270
4271/* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274static int
4275is_nonfunction (struct ada_symbol_info syms[], int n)
4276{
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4283 return 1;
4284
4285 return 0;
4286}
4287
4288/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4289 struct types. Otherwise, they may not. */
14f9c5c9
AS
4290
4291static int
d2e4a39e 4292equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4293{
d2e4a39e 4294 if (type0 == type1)
14f9c5c9 4295 return 1;
d2e4a39e 4296 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
d2e4a39e 4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4303 return 1;
d2e4a39e 4304
14f9c5c9
AS
4305 return 0;
4306}
4307
4308/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4309 no more defined than that of SYM1. */
14f9c5c9
AS
4310
4311static int
d2e4a39e 4312lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4313{
4314 if (sym0 == sym1)
4315 return 1;
176620f1 4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
d2e4a39e 4320 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4c4b4cd2
PH
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4330 int len0 = strlen (name0);
5b4ee69b 4331
4c4b4cd2
PH
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4341 default:
4342 return 0;
14f9c5c9
AS
4343 }
4344}
4345
4c4b4cd2
PH
4346/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4348
4349static void
76a01679
JB
4350add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
2570f2b7 4352 struct block *block)
14f9c5c9
AS
4353{
4354 int i;
4c4b4cd2 4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4356
529cad9c
PH
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4c4b4cd2
PH
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4c4b4cd2 4374 return;
76a01679 4375 }
4c4b4cd2
PH
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4c4b4cd2
PH
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385}
4386
4387/* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
76a01679
JB
4390static int
4391num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4392{
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394}
4395
4396/* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
76a01679 4400static struct ada_symbol_info *
4c4b4cd2
PH
4401defns_collected (struct obstack *obstackp, int finish)
4402{
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407}
4408
96d887e8 4409/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4412 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4413
96d887e8
PH
4414struct minimal_symbol *
4415ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4416{
4c4b4cd2 4417 struct objfile *objfile;
96d887e8 4418 struct minimal_symbol *msymbol;
dc4024cd 4419 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4420
c0431670
JB
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
96d887e8 4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4429 name += sizeof ("standard__") - 1;
4c4b4cd2 4430
96d887e8
PH
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
dc4024cd 4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4c4b4cd2 4437
96d887e8
PH
4438 return NULL;
4439}
4c4b4cd2 4440
96d887e8
PH
4441/* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4c4b4cd2 4446
96d887e8
PH
4447static void
4448add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4449 const char *name, domain_enum namespace,
48b78332 4450 int wild_match_p)
96d887e8 4451{
96d887e8 4452}
14f9c5c9 4453
96d887e8
PH
4454/* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
14f9c5c9 4456
96d887e8
PH
4457static int
4458is_nondebugging_type (struct type *type)
4459{
0d5cff50 4460 const char *name = ada_type_name (type);
5b4ee69b 4461
96d887e8
PH
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463}
4c4b4cd2 4464
8f17729f
JB
4465/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472static int
4473ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474{
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
0d5cff50
DE
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506}
4507
4508/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528static int
4529symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530{
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565}
4566
96d887e8
PH
4567/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4c4b4cd2 4573
96d887e8
PH
4574static int
4575remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576{
4577 int i, j;
4c4b4cd2 4578
8f17729f
JB
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
96d887e8
PH
4585 i = 0;
4586 while (i < nsyms)
4587 {
a35ddb44 4588 int remove_p = 0;
339c13b6
JB
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4603 remove_p = 1;
339c13b6
JB
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4623 remove_p = 1;
4c4b4cd2 4624 }
4c4b4cd2 4625 }
339c13b6 4626
a35ddb44 4627 if (remove_p)
339c13b6
JB
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
96d887e8 4634 i += 1;
14f9c5c9 4635 }
8f17729f
JB
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
96d887e8 4652 return nsyms;
14f9c5c9
AS
4653}
4654
96d887e8
PH
4655/* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4659
96d887e8
PH
4660static char *
4661xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4662{
96d887e8 4663 /* The renaming types adhere to the following convention:
0963b4bd 4664 <scope>__<rename>___<XR extension>.
96d887e8
PH
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
76a01679 4667
96d887e8
PH
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
14f9c5c9 4673
96d887e8
PH
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4676
96d887e8
PH
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
76a01679 4680
96d887e8 4681 /* Make a copy of scope and return it. */
14f9c5c9 4682
96d887e8
PH
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4685
96d887e8
PH
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4c4b4cd2 4688
96d887e8 4689 return scope;
4c4b4cd2
PH
4690}
4691
96d887e8 4692/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4693
96d887e8
PH
4694static int
4695is_package_name (const char *name)
4c4b4cd2 4696{
96d887e8
PH
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4c4b4cd2 4702
96d887e8 4703 char *fun_name;
76a01679 4704
96d887e8
PH
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
14f9c5c9 4709
96d887e8
PH
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
14f9c5c9 4712
96d887e8 4713 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4714 functions names cannot contain "__" in them. */
96d887e8
PH
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4c4b4cd2 4717
b435e160 4718 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4719
96d887e8
PH
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721}
14f9c5c9 4722
96d887e8 4723/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4724 not visible from FUNCTION_NAME. */
14f9c5c9 4725
96d887e8 4726static int
0d5cff50 4727old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4728{
aeb5907d
JB
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4735
96d887e8 4736 make_cleanup (xfree, scope);
14f9c5c9 4737
96d887e8
PH
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
aeb5907d 4740 return 0;
14f9c5c9 4741
96d887e8
PH
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
76a01679 4744
96d887e8
PH
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
f26caa11 4751
aeb5907d 4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4753}
4754
aeb5907d
JB
4755/* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
96d887e8
PH
4760
4761 Rationale:
aeb5907d
JB
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
f26caa11 4774
96d887e8
PH
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4c4b4cd2 4791
14f9c5c9 4792static int
aeb5907d
JB
4793remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4795{
4796 struct symbol *current_function;
0d5cff50 4797 const char *current_function_name;
4c4b4cd2 4798 int i;
aeb5907d
JB
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
0963b4bd 4803 First, zero out such symbols, then compress. */
aeb5907d
JB
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
270140bd 4808 const struct block *block = syms[i].block;
aeb5907d
JB
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
5b4ee69b 4821
aeb5907d
JB
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4c4b4cd2
PH
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
76a01679 4846
4c4b4cd2
PH
4847 if (current_block == NULL)
4848 return nsyms;
76a01679 4849
7f0df278 4850 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
aeb5907d
JB
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4868 {
4869 int j;
5b4ee69b 4870
aeb5907d 4871 for (j = i + 1; j < nsyms; j += 1)
76a01679 4872 syms[j - 1] = syms[j];
4c4b4cd2
PH
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880}
4881
339c13b6
JB
4882/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892static void
4893ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
d0a8ab18 4895 int wild_match_p)
339c13b6
JB
4896{
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
d0a8ab18
JB
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
339c13b6
JB
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4917}
4918
ccefe4c4 4919/* An object of this type is used as the user_data argument when
40658b94 4920 calling the map_matching_symbols method. */
ccefe4c4 4921
40658b94 4922struct match_data
ccefe4c4 4923{
40658b94 4924 struct objfile *objfile;
ccefe4c4 4925 struct obstack *obstackp;
40658b94
PH
4926 struct symbol *arg_sym;
4927 int found_sym;
ccefe4c4
TT
4928};
4929
40658b94
PH
4930/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
ccefe4c4 4938
40658b94
PH
4939static int
4940aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4941{
40658b94
PH
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968}
4969
4970/* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
5b4ee69b 4974
40658b94
PH
4975static int
4976compare_names (const char *string1, const char *string2)
4977{
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
052874e8 4994 if (is_name_suffix (string1))
40658b94
PH
4995 return 0;
4996 else
1a1d5513 4997 return 1;
40658b94 4998 }
dbb8534f 4999 /* FALLTHROUGH */
40658b94
PH
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
ccefe4c4
TT
5006}
5007
339c13b6
JB
5008/* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012static void
40658b94
PH
5013add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
339c13b6
JB
5016{
5017 struct objfile *objfile;
40658b94 5018 struct match_data data;
339c13b6 5019
6475f2fe 5020 memset (&data, 0, sizeof data);
ccefe4c4 5021 data.obstackp = obstackp;
339c13b6 5022
ccefe4c4 5023 ALL_OBJFILES (objfile)
40658b94
PH
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
0963b4bd
MS
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
40658b94
PH
5049 full_match, compare_names);
5050 }
5051 }
339c13b6
JB
5052}
5053
4c4b4cd2 5054/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5057 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
d9680e73
TT
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
9f88c959 5066 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5067 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5068
5069int
4c4b4cd2 5070ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
14f9c5c9
AS
5074{
5075 struct symbol *sym;
14f9c5c9 5076 struct block *block;
4c4b4cd2 5077 const char *name;
82ccd55e 5078 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5079 int cacheIfUnique;
4c4b4cd2 5080 int ndefns;
14f9c5c9 5081
4c4b4cd2
PH
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
14f9c5c9 5084
14f9c5c9
AS
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
4c4b4cd2 5089 name = name0;
76a01679
JB
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
339c13b6
JB
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
4c4b4cd2
PH
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
4c4b4cd2
PH
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
339c13b6 5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5108
339c13b6 5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5110 wild_match_p);
d9680e73 5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5112 goto done;
d2e4a39e 5113
339c13b6
JB
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
14f9c5c9 5118 cacheIfUnique = 1;
2570f2b7 5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5120 {
5121 if (sym != NULL)
2570f2b7 5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5123 goto done;
5124 }
14f9c5c9 5125
339c13b6
JB
5126 /* Search symbols from all global blocks. */
5127
40658b94 5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5129 wild_match_p);
d2e4a39e 5130
4c4b4cd2 5131 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5132 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5133
4c4b4cd2 5134 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5136 wild_match_p);
14f9c5c9 5137
4c4b4cd2
PH
5138done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
2ad01556 5144 if (ndefns == 0 && full_search)
2570f2b7 5145 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5146
2ad01556 5147 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5149
aeb5907d 5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5151
14f9c5c9
AS
5152 return ndefns;
5153}
5154
f8eba3c6
TT
5155/* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163char *
5164ada_name_for_lookup (const char *name)
5165{
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178}
5179
5180/* Implementation of the la_iterate_over_symbols method. */
5181
5182static void
5183ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
8e704927 5185 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5186 void *data)
5187{
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
d9680e73 5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197}
5198
4e5c77fe
JB
5199/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5e2336be
JB
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5205
5206void
5207ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5e2336be 5209 struct ada_symbol_info *info)
14f9c5c9 5210{
4c4b4cd2 5211 struct ada_symbol_info *candidates;
14f9c5c9
AS
5212 int n_candidates;
5213
5e2336be
JB
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5218 1);
14f9c5c9
AS
5219
5220 if (n_candidates == 0)
4e5c77fe 5221 return;
4c4b4cd2 5222
5e2336be
JB
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5225}
aeb5907d
JB
5226
5227/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5230 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
aeb5907d
JB
5233struct symbol *
5234ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5235 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5236{
5e2336be 5237 struct ada_symbol_info info;
4e5c77fe 5238
aeb5907d
JB
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
4e5c77fe 5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5243 block0, namespace, &info);
5244 return info.sym;
4c4b4cd2 5245}
14f9c5c9 5246
4c4b4cd2
PH
5247static struct symbol *
5248ada_lookup_symbol_nonlocal (const char *name,
76a01679 5249 const struct block *block,
21b556f4 5250 const domain_enum domain)
4c4b4cd2 5251{
94af9270 5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5253}
5254
5255
4c4b4cd2
PH
5256/* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5259 are given by any of the regular expressions:
4c4b4cd2 5260
babe1480
JB
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5263 TKB [subprogram suffix for task bodies]
babe1480 5264 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
4c4b4cd2 5270
14f9c5c9 5271static int
d2e4a39e 5272is_name_suffix (const char *str)
14f9c5c9
AS
5273{
5274 int k;
4c4b4cd2
PH
5275 const char *matching;
5276 const int len = strlen (str);
5277
babe1480
JB
5278 /* Skip optional leading __[0-9]+. */
5279
4c4b4cd2
PH
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
babe1480
JB
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
4c4b4cd2 5285 }
babe1480
JB
5286
5287 /* [.$][0-9]+ */
4c4b4cd2 5288
babe1480 5289 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5290 {
babe1480 5291 matching = str + 1;
4c4b4cd2
PH
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
babe1480 5299
4c4b4cd2
PH
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
9ac7f98e
JB
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
529cad9c
PH
5314#if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
529cad9c 5318 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
0963b4bd 5323 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329#endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
4c4b4cd2
PH
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
d2e4a39e 5350 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
14f9c5c9 5356 }
babe1480 5357
14f9c5c9
AS
5358 if (str[0] == '\000')
5359 return 1;
babe1480 5360
d2e4a39e 5361 if (str[0] == '_')
14f9c5c9
AS
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5364 return 0;
d2e4a39e 5365 if (str[2] == '_')
4c4b4cd2 5366 {
61ee279c
PH
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
4c4b4cd2
PH
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
1265e4aa
JB
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
14f9c5c9
AS
5390 return 1;
5391 }
4c4b4cd2 5392 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5393 {
4c4b4cd2
PH
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
14f9c5c9
AS
5397 return 1;
5398 }
5399 return 0;
5400}
d2e4a39e 5401
aeb5907d
JB
5402/* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
529cad9c
PH
5404
5405static int
5406is_valid_name_for_wild_match (const char *name0)
5407{
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5823c3ef
JB
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
529cad9c
PH
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422}
5423
73589123
PH
5424/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
4c4b4cd2 5427
14f9c5c9 5428static int
73589123 5429advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5430{
73589123 5431 const char *name = *namep;
5b4ee69b 5432
5823c3ef 5433 while (1)
14f9c5c9 5434 {
aa27d0b3 5435 int t0, t1;
73589123
PH
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
aa27d0b3
JB
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
73589123
PH
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5823c3ef 5461 return 0;
73589123
PH
5462 }
5463
5464 *namep = name;
5465 return 1;
5466}
5467
5468/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472static int
5473wild_match (const char *name, const char *patn)
5474{
22e048c9 5475 const char *p;
73589123
PH
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
96d887e8 5495 }
96d887e8
PH
5496}
5497
40658b94
PH
5498/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
c4d840bd
PH
5501static int
5502full_match (const char *sym_name, const char *search_name)
5503{
40658b94 5504 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5505}
5506
5507
96d887e8
PH
5508/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514static void
5515ada_add_block_symbols (struct obstack *obstackp,
76a01679 5516 struct block *block, const char *name,
96d887e8 5517 domain_enum domain, struct objfile *objfile,
2570f2b7 5518 int wild)
96d887e8 5519{
8157b174 5520 struct block_iterator iter;
96d887e8
PH
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
8157b174
TT
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5534 {
5eeb2539
AR
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
73589123 5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5538 {
2a2d4dc3
AS
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
76a01679
JB
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
2570f2b7 5548 block);
76a01679
JB
5549 }
5550 }
5551 }
96d887e8
PH
5552 }
5553 else
5554 {
8157b174
TT
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5557 {
5eeb2539
AR
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
76a01679 5560 {
c4d840bd
PH
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
2a2d4dc3 5566 {
c4d840bd
PH
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
2a2d4dc3 5571 }
c4d840bd 5572 }
76a01679
JB
5573 }
5574 }
96d887e8
PH
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
76a01679
JB
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5581 block);
96d887e8
PH
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5590 {
5eeb2539
AR
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
2a2d4dc3
AS
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
76a01679
JB
5620 }
5621 }
76a01679 5622 }
96d887e8
PH
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
76a01679 5629 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5630 block);
96d887e8
PH
5631 }
5632 }
5633}
5634\f
41d27058
JB
5635
5636 /* Symbol Completion */
5637
5638/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5643 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5644 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5645 in its encoded form. */
5646
5647static const char *
5648symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
6ea35997 5650 int wild_match_p, int encoded_p)
41d27058 5651{
41d27058
JB
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
6ea35997 5667 if (match && !encoded_p)
41d27058
JB
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
e701b3c0 5698 if (!match && wild_match_p)
41d27058
JB
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
6ea35997 5717 if (!encoded_p)
41d27058
JB
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721}
5722
5723/* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
c0af1706 5733 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5734 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738static void
d6565258 5739symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
cb8e9b97 5743 int wild_match_p, int encoded_p)
41d27058
JB
5744{
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5746 wild_match_p, encoded_p);
41d27058
JB
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
d6565258 5775 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5776}
5777
ccefe4c4 5778/* An object of this type is passed as the user_data argument to the
7b08b9eb 5779 expand_partial_symbol_names method. */
ccefe4c4
TT
5780struct add_partial_datum
5781{
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789};
5790
7b08b9eb
JK
5791/* A callback for expand_partial_symbol_names. */
5792static int
e078317b 5793ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5794{
5795 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5799}
5800
49c4e619
TT
5801/* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
41d27058 5803
49c4e619 5804static VEC (char_ptr) *
2f68a895 5805ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
41d27058
JB
5806{
5807 char *text;
5808 int text_len;
b1ed564a
JB
5809 int wild_match_p;
5810 int encoded_p;
2ba95b9b 5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5812 struct symbol *sym;
5813 struct symtab *s;
41d27058
JB
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
8157b174 5818 struct block_iterator iter;
41d27058 5819
2f68a895
TT
5820 gdb_assert (code == TYPE_CODE_UNDEF);
5821
41d27058
JB
5822 if (text0[0] == '<')
5823 {
5824 text = xstrdup (text0);
5825 make_cleanup (xfree, text);
5826 text_len = strlen (text);
b1ed564a
JB
5827 wild_match_p = 0;
5828 encoded_p = 1;
41d27058
JB
5829 }
5830 else
5831 {
5832 text = xstrdup (ada_encode (text0));
5833 make_cleanup (xfree, text);
5834 text_len = strlen (text);
5835 for (i = 0; i < text_len; i++)
5836 text[i] = tolower (text[i]);
5837
b1ed564a 5838 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5839 /* If the name contains a ".", then the user is entering a fully
5840 qualified entity name, and the match must not be done in wild
5841 mode. Similarly, if the user wants to complete what looks like
5842 an encoded name, the match must not be done in wild mode. */
b1ed564a 5843 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5844 }
5845
5846 /* First, look at the partial symtab symbols. */
41d27058 5847 {
ccefe4c4
TT
5848 struct add_partial_datum data;
5849
5850 data.completions = &completions;
5851 data.text = text;
5852 data.text_len = text_len;
5853 data.text0 = text0;
5854 data.word = word;
b1ed564a
JB
5855 data.wild_match = wild_match_p;
5856 data.encoded = encoded_p;
7b08b9eb 5857 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5858 }
5859
5860 /* At this point scan through the misc symbol vectors and add each
5861 symbol you find to the list. Eventually we want to ignore
5862 anything that isn't a text symbol (everything else will be
5863 handled by the psymtab code above). */
5864
5865 ALL_MSYMBOLS (objfile, msymbol)
5866 {
5867 QUIT;
d6565258 5868 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5869 text, text_len, text0, word, wild_match_p,
5870 encoded_p);
41d27058
JB
5871 }
5872
5873 /* Search upwards from currently selected frame (so that we can
5874 complete on local vars. */
5875
5876 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5877 {
5878 if (!BLOCK_SUPERBLOCK (b))
5879 surrounding_static_block = b; /* For elmin of dups */
5880
5881 ALL_BLOCK_SYMBOLS (b, iter, sym)
5882 {
d6565258 5883 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5884 text, text_len, text0, word,
b1ed564a 5885 wild_match_p, encoded_p);
41d27058
JB
5886 }
5887 }
5888
5889 /* Go through the symtabs and check the externs and statics for
5890 symbols which match. */
5891
5892 ALL_SYMTABS (objfile, s)
5893 {
5894 QUIT;
5895 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5896 ALL_BLOCK_SYMBOLS (b, iter, sym)
5897 {
d6565258 5898 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5899 text, text_len, text0, word,
b1ed564a 5900 wild_match_p, encoded_p);
41d27058
JB
5901 }
5902 }
5903
5904 ALL_SYMTABS (objfile, s)
5905 {
5906 QUIT;
5907 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5908 /* Don't do this block twice. */
5909 if (b == surrounding_static_block)
5910 continue;
5911 ALL_BLOCK_SYMBOLS (b, iter, sym)
5912 {
d6565258 5913 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5914 text, text_len, text0, word,
b1ed564a 5915 wild_match_p, encoded_p);
41d27058
JB
5916 }
5917 }
5918
49c4e619 5919 return completions;
41d27058
JB
5920}
5921
963a6417 5922 /* Field Access */
96d887e8 5923
73fb9985
JB
5924/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5925 for tagged types. */
5926
5927static int
5928ada_is_dispatch_table_ptr_type (struct type *type)
5929{
0d5cff50 5930 const char *name;
73fb9985
JB
5931
5932 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5933 return 0;
5934
5935 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5936 if (name == NULL)
5937 return 0;
5938
5939 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5940}
5941
ac4a2da4
JG
5942/* Return non-zero if TYPE is an interface tag. */
5943
5944static int
5945ada_is_interface_tag (struct type *type)
5946{
5947 const char *name = TYPE_NAME (type);
5948
5949 if (name == NULL)
5950 return 0;
5951
5952 return (strcmp (name, "ada__tags__interface_tag") == 0);
5953}
5954
963a6417
PH
5955/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5956 to be invisible to users. */
96d887e8 5957
963a6417
PH
5958int
5959ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5960{
963a6417
PH
5961 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5962 return 1;
ffde82bf 5963
73fb9985
JB
5964 /* Check the name of that field. */
5965 {
5966 const char *name = TYPE_FIELD_NAME (type, field_num);
5967
5968 /* Anonymous field names should not be printed.
5969 brobecker/2007-02-20: I don't think this can actually happen
5970 but we don't want to print the value of annonymous fields anyway. */
5971 if (name == NULL)
5972 return 1;
5973
ffde82bf
JB
5974 /* Normally, fields whose name start with an underscore ("_")
5975 are fields that have been internally generated by the compiler,
5976 and thus should not be printed. The "_parent" field is special,
5977 however: This is a field internally generated by the compiler
5978 for tagged types, and it contains the components inherited from
5979 the parent type. This field should not be printed as is, but
5980 should not be ignored either. */
73fb9985
JB
5981 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5982 return 1;
5983 }
5984
ac4a2da4
JG
5985 /* If this is the dispatch table of a tagged type or an interface tag,
5986 then ignore. */
73fb9985 5987 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
5988 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5989 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
5990 return 1;
5991
5992 /* Not a special field, so it should not be ignored. */
5993 return 0;
963a6417 5994}
96d887e8 5995
963a6417 5996/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5997 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5998
963a6417
PH
5999int
6000ada_is_tagged_type (struct type *type, int refok)
6001{
6002 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6003}
96d887e8 6004
963a6417 6005/* True iff TYPE represents the type of X'Tag */
96d887e8 6006
963a6417
PH
6007int
6008ada_is_tag_type (struct type *type)
6009{
6010 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6011 return 0;
6012 else
96d887e8 6013 {
963a6417 6014 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6015
963a6417
PH
6016 return (name != NULL
6017 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6018 }
96d887e8
PH
6019}
6020
963a6417 6021/* The type of the tag on VAL. */
76a01679 6022
963a6417
PH
6023struct type *
6024ada_tag_type (struct value *val)
96d887e8 6025{
df407dfe 6026 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6027}
96d887e8 6028
b50d69b5
JG
6029/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6030 retired at Ada 05). */
6031
6032static int
6033is_ada95_tag (struct value *tag)
6034{
6035 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6036}
6037
963a6417 6038/* The value of the tag on VAL. */
96d887e8 6039
963a6417
PH
6040struct value *
6041ada_value_tag (struct value *val)
6042{
03ee6b2e 6043 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6044}
6045
963a6417
PH
6046/* The value of the tag on the object of type TYPE whose contents are
6047 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6048 ADDRESS. */
96d887e8 6049
963a6417 6050static struct value *
10a2c479 6051value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6052 const gdb_byte *valaddr,
963a6417 6053 CORE_ADDR address)
96d887e8 6054{
b5385fc0 6055 int tag_byte_offset;
963a6417 6056 struct type *tag_type;
5b4ee69b 6057
963a6417 6058 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6059 NULL, NULL, NULL))
96d887e8 6060 {
fc1a4b47 6061 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6062 ? NULL
6063 : valaddr + tag_byte_offset);
963a6417 6064 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6065
963a6417 6066 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6067 }
963a6417
PH
6068 return NULL;
6069}
96d887e8 6070
963a6417
PH
6071static struct type *
6072type_from_tag (struct value *tag)
6073{
6074 const char *type_name = ada_tag_name (tag);
5b4ee69b 6075
963a6417
PH
6076 if (type_name != NULL)
6077 return ada_find_any_type (ada_encode (type_name));
6078 return NULL;
6079}
96d887e8 6080
b50d69b5
JG
6081/* Given a value OBJ of a tagged type, return a value of this
6082 type at the base address of the object. The base address, as
6083 defined in Ada.Tags, it is the address of the primary tag of
6084 the object, and therefore where the field values of its full
6085 view can be fetched. */
6086
6087struct value *
6088ada_tag_value_at_base_address (struct value *obj)
6089{
6090 volatile struct gdb_exception e;
6091 struct value *val;
6092 LONGEST offset_to_top = 0;
6093 struct type *ptr_type, *obj_type;
6094 struct value *tag;
6095 CORE_ADDR base_address;
6096
6097 obj_type = value_type (obj);
6098
6099 /* It is the responsability of the caller to deref pointers. */
6100
6101 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6102 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6103 return obj;
6104
6105 tag = ada_value_tag (obj);
6106 if (!tag)
6107 return obj;
6108
6109 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6110
6111 if (is_ada95_tag (tag))
6112 return obj;
6113
6114 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6115 ptr_type = lookup_pointer_type (ptr_type);
6116 val = value_cast (ptr_type, tag);
6117 if (!val)
6118 return obj;
6119
6120 /* It is perfectly possible that an exception be raised while
6121 trying to determine the base address, just like for the tag;
6122 see ada_tag_name for more details. We do not print the error
6123 message for the same reason. */
6124
6125 TRY_CATCH (e, RETURN_MASK_ERROR)
6126 {
6127 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6128 }
6129
6130 if (e.reason < 0)
6131 return obj;
6132
6133 /* If offset is null, nothing to do. */
6134
6135 if (offset_to_top == 0)
6136 return obj;
6137
6138 /* -1 is a special case in Ada.Tags; however, what should be done
6139 is not quite clear from the documentation. So do nothing for
6140 now. */
6141
6142 if (offset_to_top == -1)
6143 return obj;
6144
6145 base_address = value_address (obj) - offset_to_top;
6146 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6147
6148 /* Make sure that we have a proper tag at the new address.
6149 Otherwise, offset_to_top is bogus (which can happen when
6150 the object is not initialized yet). */
6151
6152 if (!tag)
6153 return obj;
6154
6155 obj_type = type_from_tag (tag);
6156
6157 if (!obj_type)
6158 return obj;
6159
6160 return value_from_contents_and_address (obj_type, NULL, base_address);
6161}
6162
1b611343
JB
6163/* Return the "ada__tags__type_specific_data" type. */
6164
6165static struct type *
6166ada_get_tsd_type (struct inferior *inf)
963a6417 6167{
1b611343 6168 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6169
1b611343
JB
6170 if (data->tsd_type == 0)
6171 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6172 return data->tsd_type;
6173}
529cad9c 6174
1b611343
JB
6175/* Return the TSD (type-specific data) associated to the given TAG.
6176 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6177
1b611343 6178 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6179
1b611343
JB
6180static struct value *
6181ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6182{
4c4b4cd2 6183 struct value *val;
1b611343 6184 struct type *type;
5b4ee69b 6185
1b611343
JB
6186 /* First option: The TSD is simply stored as a field of our TAG.
6187 Only older versions of GNAT would use this format, but we have
6188 to test it first, because there are no visible markers for
6189 the current approach except the absence of that field. */
529cad9c 6190
1b611343
JB
6191 val = ada_value_struct_elt (tag, "tsd", 1);
6192 if (val)
6193 return val;
e802dbe0 6194
1b611343
JB
6195 /* Try the second representation for the dispatch table (in which
6196 there is no explicit 'tsd' field in the referent of the tag pointer,
6197 and instead the tsd pointer is stored just before the dispatch
6198 table. */
e802dbe0 6199
1b611343
JB
6200 type = ada_get_tsd_type (current_inferior());
6201 if (type == NULL)
6202 return NULL;
6203 type = lookup_pointer_type (lookup_pointer_type (type));
6204 val = value_cast (type, tag);
6205 if (val == NULL)
6206 return NULL;
6207 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6208}
6209
1b611343
JB
6210/* Given the TSD of a tag (type-specific data), return a string
6211 containing the name of the associated type.
6212
6213 The returned value is good until the next call. May return NULL
6214 if we are unable to determine the tag name. */
6215
6216static char *
6217ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6218{
529cad9c
PH
6219 static char name[1024];
6220 char *p;
1b611343 6221 struct value *val;
529cad9c 6222
1b611343 6223 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6224 if (val == NULL)
1b611343 6225 return NULL;
4c4b4cd2
PH
6226 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6227 for (p = name; *p != '\0'; p += 1)
6228 if (isalpha (*p))
6229 *p = tolower (*p);
1b611343 6230 return name;
4c4b4cd2
PH
6231}
6232
6233/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6234 a C string.
6235
6236 Return NULL if the TAG is not an Ada tag, or if we were unable to
6237 determine the name of that tag. The result is good until the next
6238 call. */
4c4b4cd2
PH
6239
6240const char *
6241ada_tag_name (struct value *tag)
6242{
1b611343
JB
6243 volatile struct gdb_exception e;
6244 char *name = NULL;
5b4ee69b 6245
df407dfe 6246 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6247 return NULL;
1b611343
JB
6248
6249 /* It is perfectly possible that an exception be raised while trying
6250 to determine the TAG's name, even under normal circumstances:
6251 The associated variable may be uninitialized or corrupted, for
6252 instance. We do not let any exception propagate past this point.
6253 instead we return NULL.
6254
6255 We also do not print the error message either (which often is very
6256 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6257 the caller print a more meaningful message if necessary. */
6258 TRY_CATCH (e, RETURN_MASK_ERROR)
6259 {
6260 struct value *tsd = ada_get_tsd_from_tag (tag);
6261
6262 if (tsd != NULL)
6263 name = ada_tag_name_from_tsd (tsd);
6264 }
6265
6266 return name;
4c4b4cd2
PH
6267}
6268
6269/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6270
d2e4a39e 6271struct type *
ebf56fd3 6272ada_parent_type (struct type *type)
14f9c5c9
AS
6273{
6274 int i;
6275
61ee279c 6276 type = ada_check_typedef (type);
14f9c5c9
AS
6277
6278 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6279 return NULL;
6280
6281 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6282 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6283 {
6284 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6285
6286 /* If the _parent field is a pointer, then dereference it. */
6287 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6288 parent_type = TYPE_TARGET_TYPE (parent_type);
6289 /* If there is a parallel XVS type, get the actual base type. */
6290 parent_type = ada_get_base_type (parent_type);
6291
6292 return ada_check_typedef (parent_type);
6293 }
14f9c5c9
AS
6294
6295 return NULL;
6296}
6297
4c4b4cd2
PH
6298/* True iff field number FIELD_NUM of structure type TYPE contains the
6299 parent-type (inherited) fields of a derived type. Assumes TYPE is
6300 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6301
6302int
ebf56fd3 6303ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6304{
61ee279c 6305 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6306
4c4b4cd2
PH
6307 return (name != NULL
6308 && (strncmp (name, "PARENT", 6) == 0
6309 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6310}
6311
4c4b4cd2 6312/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6313 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6314 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6315 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6316 structures. */
14f9c5c9
AS
6317
6318int
ebf56fd3 6319ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6320{
d2e4a39e 6321 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6322
d2e4a39e 6323 return (name != NULL
4c4b4cd2
PH
6324 && (strncmp (name, "PARENT", 6) == 0
6325 || strcmp (name, "REP") == 0
6326 || strncmp (name, "_parent", 7) == 0
6327 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6328}
6329
4c4b4cd2
PH
6330/* True iff field number FIELD_NUM of structure or union type TYPE
6331 is a variant wrapper. Assumes TYPE is a structure type with at least
6332 FIELD_NUM+1 fields. */
14f9c5c9
AS
6333
6334int
ebf56fd3 6335ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6336{
d2e4a39e 6337 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6338
14f9c5c9 6339 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6340 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6341 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6342 == TYPE_CODE_UNION)));
14f9c5c9
AS
6343}
6344
6345/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6346 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6347 returns the type of the controlling discriminant for the variant.
6348 May return NULL if the type could not be found. */
14f9c5c9 6349
d2e4a39e 6350struct type *
ebf56fd3 6351ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6352{
d2e4a39e 6353 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6354
7c964f07 6355 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6356}
6357
4c4b4cd2 6358/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6359 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6360 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6361
6362int
ebf56fd3 6363ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6364{
d2e4a39e 6365 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6366
14f9c5c9
AS
6367 return (name != NULL && name[0] == 'O');
6368}
6369
6370/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6371 returns the name of the discriminant controlling the variant.
6372 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6373
d2e4a39e 6374char *
ebf56fd3 6375ada_variant_discrim_name (struct type *type0)
14f9c5c9 6376{
d2e4a39e 6377 static char *result = NULL;
14f9c5c9 6378 static size_t result_len = 0;
d2e4a39e
AS
6379 struct type *type;
6380 const char *name;
6381 const char *discrim_end;
6382 const char *discrim_start;
14f9c5c9
AS
6383
6384 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6385 type = TYPE_TARGET_TYPE (type0);
6386 else
6387 type = type0;
6388
6389 name = ada_type_name (type);
6390
6391 if (name == NULL || name[0] == '\000')
6392 return "";
6393
6394 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6395 discrim_end -= 1)
6396 {
4c4b4cd2
PH
6397 if (strncmp (discrim_end, "___XVN", 6) == 0)
6398 break;
14f9c5c9
AS
6399 }
6400 if (discrim_end == name)
6401 return "";
6402
d2e4a39e 6403 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6404 discrim_start -= 1)
6405 {
d2e4a39e 6406 if (discrim_start == name + 1)
4c4b4cd2 6407 return "";
76a01679 6408 if ((discrim_start > name + 3
4c4b4cd2
PH
6409 && strncmp (discrim_start - 3, "___", 3) == 0)
6410 || discrim_start[-1] == '.')
6411 break;
14f9c5c9
AS
6412 }
6413
6414 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6415 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6416 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6417 return result;
6418}
6419
4c4b4cd2
PH
6420/* Scan STR for a subtype-encoded number, beginning at position K.
6421 Put the position of the character just past the number scanned in
6422 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6423 Return 1 if there was a valid number at the given position, and 0
6424 otherwise. A "subtype-encoded" number consists of the absolute value
6425 in decimal, followed by the letter 'm' to indicate a negative number.
6426 Assumes 0m does not occur. */
14f9c5c9
AS
6427
6428int
d2e4a39e 6429ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6430{
6431 ULONGEST RU;
6432
d2e4a39e 6433 if (!isdigit (str[k]))
14f9c5c9
AS
6434 return 0;
6435
4c4b4cd2 6436 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6437 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6438 LONGEST. */
14f9c5c9
AS
6439 RU = 0;
6440 while (isdigit (str[k]))
6441 {
d2e4a39e 6442 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6443 k += 1;
6444 }
6445
d2e4a39e 6446 if (str[k] == 'm')
14f9c5c9
AS
6447 {
6448 if (R != NULL)
4c4b4cd2 6449 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6450 k += 1;
6451 }
6452 else if (R != NULL)
6453 *R = (LONGEST) RU;
6454
4c4b4cd2 6455 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6456 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6457 number representable as a LONGEST (although either would probably work
6458 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6459 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6460
6461 if (new_k != NULL)
6462 *new_k = k;
6463 return 1;
6464}
6465
4c4b4cd2
PH
6466/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6467 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6468 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6469
d2e4a39e 6470int
ebf56fd3 6471ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6472{
d2e4a39e 6473 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6474 int p;
6475
6476 p = 0;
6477 while (1)
6478 {
d2e4a39e 6479 switch (name[p])
4c4b4cd2
PH
6480 {
6481 case '\0':
6482 return 0;
6483 case 'S':
6484 {
6485 LONGEST W;
5b4ee69b 6486
4c4b4cd2
PH
6487 if (!ada_scan_number (name, p + 1, &W, &p))
6488 return 0;
6489 if (val == W)
6490 return 1;
6491 break;
6492 }
6493 case 'R':
6494 {
6495 LONGEST L, U;
5b4ee69b 6496
4c4b4cd2
PH
6497 if (!ada_scan_number (name, p + 1, &L, &p)
6498 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6499 return 0;
6500 if (val >= L && val <= U)
6501 return 1;
6502 break;
6503 }
6504 case 'O':
6505 return 1;
6506 default:
6507 return 0;
6508 }
6509 }
6510}
6511
0963b4bd 6512/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6513
6514/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6515 ARG_TYPE, extract and return the value of one of its (non-static)
6516 fields. FIELDNO says which field. Differs from value_primitive_field
6517 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6518
4c4b4cd2 6519static struct value *
d2e4a39e 6520ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6521 struct type *arg_type)
14f9c5c9 6522{
14f9c5c9
AS
6523 struct type *type;
6524
61ee279c 6525 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6526 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6527
4c4b4cd2 6528 /* Handle packed fields. */
14f9c5c9
AS
6529
6530 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6531 {
6532 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6533 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6534
0fd88904 6535 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6536 offset + bit_pos / 8,
6537 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6538 }
6539 else
6540 return value_primitive_field (arg1, offset, fieldno, arg_type);
6541}
6542
52ce6436
PH
6543/* Find field with name NAME in object of type TYPE. If found,
6544 set the following for each argument that is non-null:
6545 - *FIELD_TYPE_P to the field's type;
6546 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6547 an object of that type;
6548 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6549 - *BIT_SIZE_P to its size in bits if the field is packed, and
6550 0 otherwise;
6551 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6552 fields up to but not including the desired field, or by the total
6553 number of fields if not found. A NULL value of NAME never
6554 matches; the function just counts visible fields in this case.
6555
0963b4bd 6556 Returns 1 if found, 0 otherwise. */
52ce6436 6557
4c4b4cd2 6558static int
0d5cff50 6559find_struct_field (const char *name, struct type *type, int offset,
76a01679 6560 struct type **field_type_p,
52ce6436
PH
6561 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6562 int *index_p)
4c4b4cd2
PH
6563{
6564 int i;
6565
61ee279c 6566 type = ada_check_typedef (type);
76a01679 6567
52ce6436
PH
6568 if (field_type_p != NULL)
6569 *field_type_p = NULL;
6570 if (byte_offset_p != NULL)
d5d6fca5 6571 *byte_offset_p = 0;
52ce6436
PH
6572 if (bit_offset_p != NULL)
6573 *bit_offset_p = 0;
6574 if (bit_size_p != NULL)
6575 *bit_size_p = 0;
6576
6577 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6578 {
6579 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6580 int fld_offset = offset + bit_pos / 8;
0d5cff50 6581 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6582
4c4b4cd2
PH
6583 if (t_field_name == NULL)
6584 continue;
6585
52ce6436 6586 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6587 {
6588 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6589
52ce6436
PH
6590 if (field_type_p != NULL)
6591 *field_type_p = TYPE_FIELD_TYPE (type, i);
6592 if (byte_offset_p != NULL)
6593 *byte_offset_p = fld_offset;
6594 if (bit_offset_p != NULL)
6595 *bit_offset_p = bit_pos % 8;
6596 if (bit_size_p != NULL)
6597 *bit_size_p = bit_size;
76a01679
JB
6598 return 1;
6599 }
4c4b4cd2
PH
6600 else if (ada_is_wrapper_field (type, i))
6601 {
52ce6436
PH
6602 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6603 field_type_p, byte_offset_p, bit_offset_p,
6604 bit_size_p, index_p))
76a01679
JB
6605 return 1;
6606 }
4c4b4cd2
PH
6607 else if (ada_is_variant_part (type, i))
6608 {
52ce6436
PH
6609 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6610 fixed type?? */
4c4b4cd2 6611 int j;
52ce6436
PH
6612 struct type *field_type
6613 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6614
52ce6436 6615 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6616 {
76a01679
JB
6617 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6618 fld_offset
6619 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6620 field_type_p, byte_offset_p,
52ce6436 6621 bit_offset_p, bit_size_p, index_p))
76a01679 6622 return 1;
4c4b4cd2
PH
6623 }
6624 }
52ce6436
PH
6625 else if (index_p != NULL)
6626 *index_p += 1;
4c4b4cd2
PH
6627 }
6628 return 0;
6629}
6630
0963b4bd 6631/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6632
52ce6436
PH
6633static int
6634num_visible_fields (struct type *type)
6635{
6636 int n;
5b4ee69b 6637
52ce6436
PH
6638 n = 0;
6639 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6640 return n;
6641}
14f9c5c9 6642
4c4b4cd2 6643/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6644 and search in it assuming it has (class) type TYPE.
6645 If found, return value, else return NULL.
6646
4c4b4cd2 6647 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6648
4c4b4cd2 6649static struct value *
d2e4a39e 6650ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6651 struct type *type)
14f9c5c9
AS
6652{
6653 int i;
14f9c5c9 6654
5b4ee69b 6655 type = ada_check_typedef (type);
52ce6436 6656 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6657 {
0d5cff50 6658 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6659
6660 if (t_field_name == NULL)
4c4b4cd2 6661 continue;
14f9c5c9
AS
6662
6663 else if (field_name_match (t_field_name, name))
4c4b4cd2 6664 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6665
6666 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6667 {
0963b4bd 6668 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6669 ada_search_struct_field (name, arg,
6670 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6671 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6672
4c4b4cd2
PH
6673 if (v != NULL)
6674 return v;
6675 }
14f9c5c9
AS
6676
6677 else if (ada_is_variant_part (type, i))
4c4b4cd2 6678 {
0963b4bd 6679 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6680 int j;
5b4ee69b
MS
6681 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6682 i));
4c4b4cd2
PH
6683 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6684
52ce6436 6685 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6686 {
0963b4bd
MS
6687 struct value *v = ada_search_struct_field /* Force line
6688 break. */
06d5cf63
JB
6689 (name, arg,
6690 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6691 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6692
4c4b4cd2
PH
6693 if (v != NULL)
6694 return v;
6695 }
6696 }
14f9c5c9
AS
6697 }
6698 return NULL;
6699}
d2e4a39e 6700
52ce6436
PH
6701static struct value *ada_index_struct_field_1 (int *, struct value *,
6702 int, struct type *);
6703
6704
6705/* Return field #INDEX in ARG, where the index is that returned by
6706 * find_struct_field through its INDEX_P argument. Adjust the address
6707 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6708 * If found, return value, else return NULL. */
52ce6436
PH
6709
6710static struct value *
6711ada_index_struct_field (int index, struct value *arg, int offset,
6712 struct type *type)
6713{
6714 return ada_index_struct_field_1 (&index, arg, offset, type);
6715}
6716
6717
6718/* Auxiliary function for ada_index_struct_field. Like
6719 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6720 * *INDEX_P. */
52ce6436
PH
6721
6722static struct value *
6723ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6724 struct type *type)
6725{
6726 int i;
6727 type = ada_check_typedef (type);
6728
6729 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6730 {
6731 if (TYPE_FIELD_NAME (type, i) == NULL)
6732 continue;
6733 else if (ada_is_wrapper_field (type, i))
6734 {
0963b4bd 6735 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6736 ada_index_struct_field_1 (index_p, arg,
6737 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6738 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6739
52ce6436
PH
6740 if (v != NULL)
6741 return v;
6742 }
6743
6744 else if (ada_is_variant_part (type, i))
6745 {
6746 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6747 find_struct_field. */
52ce6436
PH
6748 error (_("Cannot assign this kind of variant record"));
6749 }
6750 else if (*index_p == 0)
6751 return ada_value_primitive_field (arg, offset, i, type);
6752 else
6753 *index_p -= 1;
6754 }
6755 return NULL;
6756}
6757
4c4b4cd2
PH
6758/* Given ARG, a value of type (pointer or reference to a)*
6759 structure/union, extract the component named NAME from the ultimate
6760 target structure/union and return it as a value with its
f5938064 6761 appropriate type.
14f9c5c9 6762
4c4b4cd2
PH
6763 The routine searches for NAME among all members of the structure itself
6764 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6765 (e.g., '_parent').
6766
03ee6b2e
PH
6767 If NO_ERR, then simply return NULL in case of error, rather than
6768 calling error. */
14f9c5c9 6769
d2e4a39e 6770struct value *
03ee6b2e 6771ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6772{
4c4b4cd2 6773 struct type *t, *t1;
d2e4a39e 6774 struct value *v;
14f9c5c9 6775
4c4b4cd2 6776 v = NULL;
df407dfe 6777 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6778 if (TYPE_CODE (t) == TYPE_CODE_REF)
6779 {
6780 t1 = TYPE_TARGET_TYPE (t);
6781 if (t1 == NULL)
03ee6b2e 6782 goto BadValue;
61ee279c 6783 t1 = ada_check_typedef (t1);
4c4b4cd2 6784 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6785 {
994b9211 6786 arg = coerce_ref (arg);
76a01679
JB
6787 t = t1;
6788 }
4c4b4cd2 6789 }
14f9c5c9 6790
4c4b4cd2
PH
6791 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6792 {
6793 t1 = TYPE_TARGET_TYPE (t);
6794 if (t1 == NULL)
03ee6b2e 6795 goto BadValue;
61ee279c 6796 t1 = ada_check_typedef (t1);
4c4b4cd2 6797 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6798 {
6799 arg = value_ind (arg);
6800 t = t1;
6801 }
4c4b4cd2 6802 else
76a01679 6803 break;
4c4b4cd2 6804 }
14f9c5c9 6805
4c4b4cd2 6806 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6807 goto BadValue;
14f9c5c9 6808
4c4b4cd2
PH
6809 if (t1 == t)
6810 v = ada_search_struct_field (name, arg, 0, t);
6811 else
6812 {
6813 int bit_offset, bit_size, byte_offset;
6814 struct type *field_type;
6815 CORE_ADDR address;
6816
76a01679 6817 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6818 address = value_address (ada_value_ind (arg));
4c4b4cd2 6819 else
b50d69b5 6820 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6821
1ed6ede0 6822 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6823 if (find_struct_field (name, t1, 0,
6824 &field_type, &byte_offset, &bit_offset,
52ce6436 6825 &bit_size, NULL))
76a01679
JB
6826 {
6827 if (bit_size != 0)
6828 {
714e53ab
PH
6829 if (TYPE_CODE (t) == TYPE_CODE_REF)
6830 arg = ada_coerce_ref (arg);
6831 else
6832 arg = ada_value_ind (arg);
76a01679
JB
6833 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6834 bit_offset, bit_size,
6835 field_type);
6836 }
6837 else
f5938064 6838 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6839 }
6840 }
6841
03ee6b2e
PH
6842 if (v != NULL || no_err)
6843 return v;
6844 else
323e0a4a 6845 error (_("There is no member named %s."), name);
14f9c5c9 6846
03ee6b2e
PH
6847 BadValue:
6848 if (no_err)
6849 return NULL;
6850 else
0963b4bd
MS
6851 error (_("Attempt to extract a component of "
6852 "a value that is not a record."));
14f9c5c9
AS
6853}
6854
6855/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6856 If DISPP is non-null, add its byte displacement from the beginning of a
6857 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6858 work for packed fields).
6859
6860 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6861 followed by "___".
14f9c5c9 6862
0963b4bd 6863 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6864 be a (pointer or reference)+ to a struct or union, and the
6865 ultimate target type will be searched.
14f9c5c9
AS
6866
6867 Looks recursively into variant clauses and parent types.
6868
4c4b4cd2
PH
6869 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6870 TYPE is not a type of the right kind. */
14f9c5c9 6871
4c4b4cd2 6872static struct type *
76a01679
JB
6873ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6874 int noerr, int *dispp)
14f9c5c9
AS
6875{
6876 int i;
6877
6878 if (name == NULL)
6879 goto BadName;
6880
76a01679 6881 if (refok && type != NULL)
4c4b4cd2
PH
6882 while (1)
6883 {
61ee279c 6884 type = ada_check_typedef (type);
76a01679
JB
6885 if (TYPE_CODE (type) != TYPE_CODE_PTR
6886 && TYPE_CODE (type) != TYPE_CODE_REF)
6887 break;
6888 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6889 }
14f9c5c9 6890
76a01679 6891 if (type == NULL
1265e4aa
JB
6892 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6893 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6894 {
4c4b4cd2 6895 if (noerr)
76a01679 6896 return NULL;
4c4b4cd2 6897 else
76a01679
JB
6898 {
6899 target_terminal_ours ();
6900 gdb_flush (gdb_stdout);
323e0a4a
AC
6901 if (type == NULL)
6902 error (_("Type (null) is not a structure or union type"));
6903 else
6904 {
6905 /* XXX: type_sprint */
6906 fprintf_unfiltered (gdb_stderr, _("Type "));
6907 type_print (type, "", gdb_stderr, -1);
6908 error (_(" is not a structure or union type"));
6909 }
76a01679 6910 }
14f9c5c9
AS
6911 }
6912
6913 type = to_static_fixed_type (type);
6914
6915 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6916 {
0d5cff50 6917 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6918 struct type *t;
6919 int disp;
d2e4a39e 6920
14f9c5c9 6921 if (t_field_name == NULL)
4c4b4cd2 6922 continue;
14f9c5c9
AS
6923
6924 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6925 {
6926 if (dispp != NULL)
6927 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6928 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6929 }
14f9c5c9
AS
6930
6931 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6932 {
6933 disp = 0;
6934 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6935 0, 1, &disp);
6936 if (t != NULL)
6937 {
6938 if (dispp != NULL)
6939 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6940 return t;
6941 }
6942 }
14f9c5c9
AS
6943
6944 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6945 {
6946 int j;
5b4ee69b
MS
6947 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6948 i));
4c4b4cd2
PH
6949
6950 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6951 {
b1f33ddd
JB
6952 /* FIXME pnh 2008/01/26: We check for a field that is
6953 NOT wrapped in a struct, since the compiler sometimes
6954 generates these for unchecked variant types. Revisit
0963b4bd 6955 if the compiler changes this practice. */
0d5cff50 6956 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6957 disp = 0;
b1f33ddd
JB
6958 if (v_field_name != NULL
6959 && field_name_match (v_field_name, name))
6960 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6961 else
0963b4bd
MS
6962 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6963 j),
b1f33ddd
JB
6964 name, 0, 1, &disp);
6965
4c4b4cd2
PH
6966 if (t != NULL)
6967 {
6968 if (dispp != NULL)
6969 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6970 return t;
6971 }
6972 }
6973 }
14f9c5c9
AS
6974
6975 }
6976
6977BadName:
d2e4a39e 6978 if (!noerr)
14f9c5c9
AS
6979 {
6980 target_terminal_ours ();
6981 gdb_flush (gdb_stdout);
323e0a4a
AC
6982 if (name == NULL)
6983 {
6984 /* XXX: type_sprint */
6985 fprintf_unfiltered (gdb_stderr, _("Type "));
6986 type_print (type, "", gdb_stderr, -1);
6987 error (_(" has no component named <null>"));
6988 }
6989 else
6990 {
6991 /* XXX: type_sprint */
6992 fprintf_unfiltered (gdb_stderr, _("Type "));
6993 type_print (type, "", gdb_stderr, -1);
6994 error (_(" has no component named %s"), name);
6995 }
14f9c5c9
AS
6996 }
6997
6998 return NULL;
6999}
7000
b1f33ddd
JB
7001/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7002 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7003 represents an unchecked union (that is, the variant part of a
0963b4bd 7004 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7005
7006static int
7007is_unchecked_variant (struct type *var_type, struct type *outer_type)
7008{
7009 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7010
b1f33ddd
JB
7011 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7012 == NULL);
7013}
7014
7015
14f9c5c9
AS
7016/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7017 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7018 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7019 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7020
d2e4a39e 7021int
ebf56fd3 7022ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7023 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7024{
7025 int others_clause;
7026 int i;
d2e4a39e 7027 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7028 struct value *outer;
7029 struct value *discrim;
14f9c5c9
AS
7030 LONGEST discrim_val;
7031
0c281816
JB
7032 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7033 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7034 if (discrim == NULL)
14f9c5c9 7035 return -1;
0c281816 7036 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7037
7038 others_clause = -1;
7039 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7040 {
7041 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7042 others_clause = i;
14f9c5c9 7043 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7044 return i;
14f9c5c9
AS
7045 }
7046
7047 return others_clause;
7048}
d2e4a39e 7049\f
14f9c5c9
AS
7050
7051
4c4b4cd2 7052 /* Dynamic-Sized Records */
14f9c5c9
AS
7053
7054/* Strategy: The type ostensibly attached to a value with dynamic size
7055 (i.e., a size that is not statically recorded in the debugging
7056 data) does not accurately reflect the size or layout of the value.
7057 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7058 conventional types that are constructed on the fly. */
14f9c5c9
AS
7059
7060/* There is a subtle and tricky problem here. In general, we cannot
7061 determine the size of dynamic records without its data. However,
7062 the 'struct value' data structure, which GDB uses to represent
7063 quantities in the inferior process (the target), requires the size
7064 of the type at the time of its allocation in order to reserve space
7065 for GDB's internal copy of the data. That's why the
7066 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7067 rather than struct value*s.
14f9c5c9
AS
7068
7069 However, GDB's internal history variables ($1, $2, etc.) are
7070 struct value*s containing internal copies of the data that are not, in
7071 general, the same as the data at their corresponding addresses in
7072 the target. Fortunately, the types we give to these values are all
7073 conventional, fixed-size types (as per the strategy described
7074 above), so that we don't usually have to perform the
7075 'to_fixed_xxx_type' conversions to look at their values.
7076 Unfortunately, there is one exception: if one of the internal
7077 history variables is an array whose elements are unconstrained
7078 records, then we will need to create distinct fixed types for each
7079 element selected. */
7080
7081/* The upshot of all of this is that many routines take a (type, host
7082 address, target address) triple as arguments to represent a value.
7083 The host address, if non-null, is supposed to contain an internal
7084 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7085 target at the target address. */
14f9c5c9
AS
7086
7087/* Assuming that VAL0 represents a pointer value, the result of
7088 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7089 dynamic-sized types. */
14f9c5c9 7090
d2e4a39e
AS
7091struct value *
7092ada_value_ind (struct value *val0)
14f9c5c9 7093{
c48db5ca 7094 struct value *val = value_ind (val0);
5b4ee69b 7095
b50d69b5
JG
7096 if (ada_is_tagged_type (value_type (val), 0))
7097 val = ada_tag_value_at_base_address (val);
7098
4c4b4cd2 7099 return ada_to_fixed_value (val);
14f9c5c9
AS
7100}
7101
7102/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7103 qualifiers on VAL0. */
7104
d2e4a39e
AS
7105static struct value *
7106ada_coerce_ref (struct value *val0)
7107{
df407dfe 7108 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7109 {
7110 struct value *val = val0;
5b4ee69b 7111
994b9211 7112 val = coerce_ref (val);
b50d69b5
JG
7113
7114 if (ada_is_tagged_type (value_type (val), 0))
7115 val = ada_tag_value_at_base_address (val);
7116
4c4b4cd2 7117 return ada_to_fixed_value (val);
d2e4a39e
AS
7118 }
7119 else
14f9c5c9
AS
7120 return val0;
7121}
7122
7123/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7124 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7125
7126static unsigned int
ebf56fd3 7127align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7128{
7129 return (off + alignment - 1) & ~(alignment - 1);
7130}
7131
4c4b4cd2 7132/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7133
7134static unsigned int
ebf56fd3 7135field_alignment (struct type *type, int f)
14f9c5c9 7136{
d2e4a39e 7137 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7138 int len;
14f9c5c9
AS
7139 int align_offset;
7140
64a1bf19
JB
7141 /* The field name should never be null, unless the debugging information
7142 is somehow malformed. In this case, we assume the field does not
7143 require any alignment. */
7144 if (name == NULL)
7145 return 1;
7146
7147 len = strlen (name);
7148
4c4b4cd2
PH
7149 if (!isdigit (name[len - 1]))
7150 return 1;
14f9c5c9 7151
d2e4a39e 7152 if (isdigit (name[len - 2]))
14f9c5c9
AS
7153 align_offset = len - 2;
7154 else
7155 align_offset = len - 1;
7156
4c4b4cd2 7157 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7158 return TARGET_CHAR_BIT;
7159
4c4b4cd2
PH
7160 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7161}
7162
852dff6c 7163/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7164
852dff6c
JB
7165static struct symbol *
7166ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7167{
7168 struct symbol *sym;
7169
7170 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7171 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7172 return sym;
7173
7174 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7175 return sym;
14f9c5c9
AS
7176}
7177
dddfab26
UW
7178/* Find a type named NAME. Ignores ambiguity. This routine will look
7179 solely for types defined by debug info, it will not search the GDB
7180 primitive types. */
4c4b4cd2 7181
852dff6c 7182static struct type *
ebf56fd3 7183ada_find_any_type (const char *name)
14f9c5c9 7184{
852dff6c 7185 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7186
14f9c5c9 7187 if (sym != NULL)
dddfab26 7188 return SYMBOL_TYPE (sym);
14f9c5c9 7189
dddfab26 7190 return NULL;
14f9c5c9
AS
7191}
7192
739593e0
JB
7193/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7194 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7195 symbol, in which case it is returned. Otherwise, this looks for
7196 symbols whose name is that of NAME_SYM suffixed with "___XR".
7197 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7198
7199struct symbol *
270140bd 7200ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7201{
739593e0 7202 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7203 struct symbol *sym;
7204
739593e0
JB
7205 if (strstr (name, "___XR") != NULL)
7206 return name_sym;
7207
aeb5907d
JB
7208 sym = find_old_style_renaming_symbol (name, block);
7209
7210 if (sym != NULL)
7211 return sym;
7212
0963b4bd 7213 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7214 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7215 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7216 return sym;
7217 else
7218 return NULL;
7219}
7220
7221static struct symbol *
270140bd 7222find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7223{
7f0df278 7224 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7225 char *rename;
7226
7227 if (function_sym != NULL)
7228 {
7229 /* If the symbol is defined inside a function, NAME is not fully
7230 qualified. This means we need to prepend the function name
7231 as well as adding the ``___XR'' suffix to build the name of
7232 the associated renaming symbol. */
0d5cff50 7233 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7234 /* Function names sometimes contain suffixes used
7235 for instance to qualify nested subprograms. When building
7236 the XR type name, we need to make sure that this suffix is
7237 not included. So do not include any suffix in the function
7238 name length below. */
69fadcdf 7239 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7240 const int rename_len = function_name_len + 2 /* "__" */
7241 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7242
529cad9c 7243 /* Strip the suffix if necessary. */
69fadcdf
JB
7244 ada_remove_trailing_digits (function_name, &function_name_len);
7245 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7246 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7247
4c4b4cd2
PH
7248 /* Library-level functions are a special case, as GNAT adds
7249 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7250 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7251 have this prefix, so we need to skip this prefix if present. */
7252 if (function_name_len > 5 /* "_ada_" */
7253 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7254 {
7255 function_name += 5;
7256 function_name_len -= 5;
7257 }
4c4b4cd2
PH
7258
7259 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7260 strncpy (rename, function_name, function_name_len);
7261 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7262 "__%s___XR", name);
4c4b4cd2
PH
7263 }
7264 else
7265 {
7266 const int rename_len = strlen (name) + 6;
5b4ee69b 7267
4c4b4cd2 7268 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7269 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7270 }
7271
852dff6c 7272 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7273}
7274
14f9c5c9 7275/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7276 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7277 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7278 otherwise return 0. */
7279
14f9c5c9 7280int
d2e4a39e 7281ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7282{
7283 if (type1 == NULL)
7284 return 1;
7285 else if (type0 == NULL)
7286 return 0;
7287 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7288 return 1;
7289 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7290 return 0;
4c4b4cd2
PH
7291 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7292 return 1;
ad82864c 7293 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7294 return 1;
4c4b4cd2
PH
7295 else if (ada_is_array_descriptor_type (type0)
7296 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7297 return 1;
aeb5907d
JB
7298 else
7299 {
7300 const char *type0_name = type_name_no_tag (type0);
7301 const char *type1_name = type_name_no_tag (type1);
7302
7303 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7304 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7305 return 1;
7306 }
14f9c5c9
AS
7307 return 0;
7308}
7309
7310/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7311 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7312
0d5cff50 7313const char *
d2e4a39e 7314ada_type_name (struct type *type)
14f9c5c9 7315{
d2e4a39e 7316 if (type == NULL)
14f9c5c9
AS
7317 return NULL;
7318 else if (TYPE_NAME (type) != NULL)
7319 return TYPE_NAME (type);
7320 else
7321 return TYPE_TAG_NAME (type);
7322}
7323
b4ba55a1
JB
7324/* Search the list of "descriptive" types associated to TYPE for a type
7325 whose name is NAME. */
7326
7327static struct type *
7328find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7329{
7330 struct type *result;
7331
7332 /* If there no descriptive-type info, then there is no parallel type
7333 to be found. */
7334 if (!HAVE_GNAT_AUX_INFO (type))
7335 return NULL;
7336
7337 result = TYPE_DESCRIPTIVE_TYPE (type);
7338 while (result != NULL)
7339 {
0d5cff50 7340 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7341
7342 if (result_name == NULL)
7343 {
7344 warning (_("unexpected null name on descriptive type"));
7345 return NULL;
7346 }
7347
7348 /* If the names match, stop. */
7349 if (strcmp (result_name, name) == 0)
7350 break;
7351
7352 /* Otherwise, look at the next item on the list, if any. */
7353 if (HAVE_GNAT_AUX_INFO (result))
7354 result = TYPE_DESCRIPTIVE_TYPE (result);
7355 else
7356 result = NULL;
7357 }
7358
7359 /* If we didn't find a match, see whether this is a packed array. With
7360 older compilers, the descriptive type information is either absent or
7361 irrelevant when it comes to packed arrays so the above lookup fails.
7362 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7363 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7364 return ada_find_any_type (name);
7365
7366 return result;
7367}
7368
7369/* Find a parallel type to TYPE with the specified NAME, using the
7370 descriptive type taken from the debugging information, if available,
7371 and otherwise using the (slower) name-based method. */
7372
7373static struct type *
7374ada_find_parallel_type_with_name (struct type *type, const char *name)
7375{
7376 struct type *result = NULL;
7377
7378 if (HAVE_GNAT_AUX_INFO (type))
7379 result = find_parallel_type_by_descriptive_type (type, name);
7380 else
7381 result = ada_find_any_type (name);
7382
7383 return result;
7384}
7385
7386/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7387 SUFFIX to the name of TYPE. */
14f9c5c9 7388
d2e4a39e 7389struct type *
ebf56fd3 7390ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7391{
0d5cff50
DE
7392 char *name;
7393 const char *typename = ada_type_name (type);
14f9c5c9 7394 int len;
d2e4a39e 7395
14f9c5c9
AS
7396 if (typename == NULL)
7397 return NULL;
7398
7399 len = strlen (typename);
7400
b4ba55a1 7401 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7402
7403 strcpy (name, typename);
7404 strcpy (name + len, suffix);
7405
b4ba55a1 7406 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7407}
7408
14f9c5c9 7409/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7410 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7411
d2e4a39e
AS
7412static struct type *
7413dynamic_template_type (struct type *type)
14f9c5c9 7414{
61ee279c 7415 type = ada_check_typedef (type);
14f9c5c9
AS
7416
7417 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7418 || ada_type_name (type) == NULL)
14f9c5c9 7419 return NULL;
d2e4a39e 7420 else
14f9c5c9
AS
7421 {
7422 int len = strlen (ada_type_name (type));
5b4ee69b 7423
4c4b4cd2
PH
7424 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7425 return type;
14f9c5c9 7426 else
4c4b4cd2 7427 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7428 }
7429}
7430
7431/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7432 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7433
d2e4a39e
AS
7434static int
7435is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7436{
7437 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7438
d2e4a39e 7439 return name != NULL
14f9c5c9
AS
7440 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7441 && strstr (name, "___XVL") != NULL;
7442}
7443
4c4b4cd2
PH
7444/* The index of the variant field of TYPE, or -1 if TYPE does not
7445 represent a variant record type. */
14f9c5c9 7446
d2e4a39e 7447static int
4c4b4cd2 7448variant_field_index (struct type *type)
14f9c5c9
AS
7449{
7450 int f;
7451
4c4b4cd2
PH
7452 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7453 return -1;
7454
7455 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7456 {
7457 if (ada_is_variant_part (type, f))
7458 return f;
7459 }
7460 return -1;
14f9c5c9
AS
7461}
7462
4c4b4cd2
PH
7463/* A record type with no fields. */
7464
d2e4a39e 7465static struct type *
e9bb382b 7466empty_record (struct type *template)
14f9c5c9 7467{
e9bb382b 7468 struct type *type = alloc_type_copy (template);
5b4ee69b 7469
14f9c5c9
AS
7470 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7471 TYPE_NFIELDS (type) = 0;
7472 TYPE_FIELDS (type) = NULL;
b1f33ddd 7473 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7474 TYPE_NAME (type) = "<empty>";
7475 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7476 TYPE_LENGTH (type) = 0;
7477 return type;
7478}
7479
7480/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7481 the value of type TYPE at VALADDR or ADDRESS (see comments at
7482 the beginning of this section) VAL according to GNAT conventions.
7483 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7484 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7485 an outer-level type (i.e., as opposed to a branch of a variant.) A
7486 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7487 of the variant.
14f9c5c9 7488
4c4b4cd2
PH
7489 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7490 length are not statically known are discarded. As a consequence,
7491 VALADDR, ADDRESS and DVAL0 are ignored.
7492
7493 NOTE: Limitations: For now, we assume that dynamic fields and
7494 variants occupy whole numbers of bytes. However, they need not be
7495 byte-aligned. */
7496
7497struct type *
10a2c479 7498ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7499 const gdb_byte *valaddr,
4c4b4cd2
PH
7500 CORE_ADDR address, struct value *dval0,
7501 int keep_dynamic_fields)
14f9c5c9 7502{
d2e4a39e
AS
7503 struct value *mark = value_mark ();
7504 struct value *dval;
7505 struct type *rtype;
14f9c5c9 7506 int nfields, bit_len;
4c4b4cd2 7507 int variant_field;
14f9c5c9 7508 long off;
d94e4f4f 7509 int fld_bit_len;
14f9c5c9
AS
7510 int f;
7511
4c4b4cd2
PH
7512 /* Compute the number of fields in this record type that are going
7513 to be processed: unless keep_dynamic_fields, this includes only
7514 fields whose position and length are static will be processed. */
7515 if (keep_dynamic_fields)
7516 nfields = TYPE_NFIELDS (type);
7517 else
7518 {
7519 nfields = 0;
76a01679 7520 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7521 && !ada_is_variant_part (type, nfields)
7522 && !is_dynamic_field (type, nfields))
7523 nfields++;
7524 }
7525
e9bb382b 7526 rtype = alloc_type_copy (type);
14f9c5c9
AS
7527 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7528 INIT_CPLUS_SPECIFIC (rtype);
7529 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7530 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7531 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7532 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7533 TYPE_NAME (rtype) = ada_type_name (type);
7534 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7535 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7536
d2e4a39e
AS
7537 off = 0;
7538 bit_len = 0;
4c4b4cd2
PH
7539 variant_field = -1;
7540
14f9c5c9
AS
7541 for (f = 0; f < nfields; f += 1)
7542 {
6c038f32
PH
7543 off = align_value (off, field_alignment (type, f))
7544 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7545 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7546 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7547
d2e4a39e 7548 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7549 {
7550 variant_field = f;
d94e4f4f 7551 fld_bit_len = 0;
4c4b4cd2 7552 }
14f9c5c9 7553 else if (is_dynamic_field (type, f))
4c4b4cd2 7554 {
284614f0
JB
7555 const gdb_byte *field_valaddr = valaddr;
7556 CORE_ADDR field_address = address;
7557 struct type *field_type =
7558 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7559
4c4b4cd2 7560 if (dval0 == NULL)
b5304971
JG
7561 {
7562 /* rtype's length is computed based on the run-time
7563 value of discriminants. If the discriminants are not
7564 initialized, the type size may be completely bogus and
0963b4bd 7565 GDB may fail to allocate a value for it. So check the
b5304971
JG
7566 size first before creating the value. */
7567 check_size (rtype);
7568 dval = value_from_contents_and_address (rtype, valaddr, address);
7569 }
4c4b4cd2
PH
7570 else
7571 dval = dval0;
7572
284614f0
JB
7573 /* If the type referenced by this field is an aligner type, we need
7574 to unwrap that aligner type, because its size might not be set.
7575 Keeping the aligner type would cause us to compute the wrong
7576 size for this field, impacting the offset of the all the fields
7577 that follow this one. */
7578 if (ada_is_aligner_type (field_type))
7579 {
7580 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7581
7582 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7583 field_address = cond_offset_target (field_address, field_offset);
7584 field_type = ada_aligned_type (field_type);
7585 }
7586
7587 field_valaddr = cond_offset_host (field_valaddr,
7588 off / TARGET_CHAR_BIT);
7589 field_address = cond_offset_target (field_address,
7590 off / TARGET_CHAR_BIT);
7591
7592 /* Get the fixed type of the field. Note that, in this case,
7593 we do not want to get the real type out of the tag: if
7594 the current field is the parent part of a tagged record,
7595 we will get the tag of the object. Clearly wrong: the real
7596 type of the parent is not the real type of the child. We
7597 would end up in an infinite loop. */
7598 field_type = ada_get_base_type (field_type);
7599 field_type = ada_to_fixed_type (field_type, field_valaddr,
7600 field_address, dval, 0);
27f2a97b
JB
7601 /* If the field size is already larger than the maximum
7602 object size, then the record itself will necessarily
7603 be larger than the maximum object size. We need to make
7604 this check now, because the size might be so ridiculously
7605 large (due to an uninitialized variable in the inferior)
7606 that it would cause an overflow when adding it to the
7607 record size. */
7608 check_size (field_type);
284614f0
JB
7609
7610 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7611 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7612 /* The multiplication can potentially overflow. But because
7613 the field length has been size-checked just above, and
7614 assuming that the maximum size is a reasonable value,
7615 an overflow should not happen in practice. So rather than
7616 adding overflow recovery code to this already complex code,
7617 we just assume that it's not going to happen. */
d94e4f4f 7618 fld_bit_len =
4c4b4cd2
PH
7619 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7620 }
14f9c5c9 7621 else
4c4b4cd2 7622 {
5ded5331
JB
7623 /* Note: If this field's type is a typedef, it is important
7624 to preserve the typedef layer.
7625
7626 Otherwise, we might be transforming a typedef to a fat
7627 pointer (encoding a pointer to an unconstrained array),
7628 into a basic fat pointer (encoding an unconstrained
7629 array). As both types are implemented using the same
7630 structure, the typedef is the only clue which allows us
7631 to distinguish between the two options. Stripping it
7632 would prevent us from printing this field appropriately. */
7633 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7634 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7635 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7636 fld_bit_len =
4c4b4cd2
PH
7637 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7638 else
5ded5331
JB
7639 {
7640 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7641
7642 /* We need to be careful of typedefs when computing
7643 the length of our field. If this is a typedef,
7644 get the length of the target type, not the length
7645 of the typedef. */
7646 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7647 field_type = ada_typedef_target_type (field_type);
7648
7649 fld_bit_len =
7650 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7651 }
4c4b4cd2 7652 }
14f9c5c9 7653 if (off + fld_bit_len > bit_len)
4c4b4cd2 7654 bit_len = off + fld_bit_len;
d94e4f4f 7655 off += fld_bit_len;
4c4b4cd2
PH
7656 TYPE_LENGTH (rtype) =
7657 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7658 }
4c4b4cd2
PH
7659
7660 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7661 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7662 the record. This can happen in the presence of representation
7663 clauses. */
7664 if (variant_field >= 0)
7665 {
7666 struct type *branch_type;
7667
7668 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7669
7670 if (dval0 == NULL)
7671 dval = value_from_contents_and_address (rtype, valaddr, address);
7672 else
7673 dval = dval0;
7674
7675 branch_type =
7676 to_fixed_variant_branch_type
7677 (TYPE_FIELD_TYPE (type, variant_field),
7678 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7679 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7680 if (branch_type == NULL)
7681 {
7682 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7683 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7684 TYPE_NFIELDS (rtype) -= 1;
7685 }
7686 else
7687 {
7688 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7689 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7690 fld_bit_len =
7691 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7692 TARGET_CHAR_BIT;
7693 if (off + fld_bit_len > bit_len)
7694 bit_len = off + fld_bit_len;
7695 TYPE_LENGTH (rtype) =
7696 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7697 }
7698 }
7699
714e53ab
PH
7700 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7701 should contain the alignment of that record, which should be a strictly
7702 positive value. If null or negative, then something is wrong, most
7703 probably in the debug info. In that case, we don't round up the size
0963b4bd 7704 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7705 the current RTYPE length might be good enough for our purposes. */
7706 if (TYPE_LENGTH (type) <= 0)
7707 {
323e0a4a
AC
7708 if (TYPE_NAME (rtype))
7709 warning (_("Invalid type size for `%s' detected: %d."),
7710 TYPE_NAME (rtype), TYPE_LENGTH (type));
7711 else
7712 warning (_("Invalid type size for <unnamed> detected: %d."),
7713 TYPE_LENGTH (type));
714e53ab
PH
7714 }
7715 else
7716 {
7717 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7718 TYPE_LENGTH (type));
7719 }
14f9c5c9
AS
7720
7721 value_free_to_mark (mark);
d2e4a39e 7722 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7723 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7724 return rtype;
7725}
7726
4c4b4cd2
PH
7727/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7728 of 1. */
14f9c5c9 7729
d2e4a39e 7730static struct type *
fc1a4b47 7731template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7732 CORE_ADDR address, struct value *dval0)
7733{
7734 return ada_template_to_fixed_record_type_1 (type, valaddr,
7735 address, dval0, 1);
7736}
7737
7738/* An ordinary record type in which ___XVL-convention fields and
7739 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7740 static approximations, containing all possible fields. Uses
7741 no runtime values. Useless for use in values, but that's OK,
7742 since the results are used only for type determinations. Works on both
7743 structs and unions. Representation note: to save space, we memorize
7744 the result of this function in the TYPE_TARGET_TYPE of the
7745 template type. */
7746
7747static struct type *
7748template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7749{
7750 struct type *type;
7751 int nfields;
7752 int f;
7753
4c4b4cd2
PH
7754 if (TYPE_TARGET_TYPE (type0) != NULL)
7755 return TYPE_TARGET_TYPE (type0);
7756
7757 nfields = TYPE_NFIELDS (type0);
7758 type = type0;
14f9c5c9
AS
7759
7760 for (f = 0; f < nfields; f += 1)
7761 {
61ee279c 7762 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7763 struct type *new_type;
14f9c5c9 7764
4c4b4cd2
PH
7765 if (is_dynamic_field (type0, f))
7766 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7767 else
f192137b 7768 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7769 if (type == type0 && new_type != field_type)
7770 {
e9bb382b 7771 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7772 TYPE_CODE (type) = TYPE_CODE (type0);
7773 INIT_CPLUS_SPECIFIC (type);
7774 TYPE_NFIELDS (type) = nfields;
7775 TYPE_FIELDS (type) = (struct field *)
7776 TYPE_ALLOC (type, nfields * sizeof (struct field));
7777 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7778 sizeof (struct field) * nfields);
7779 TYPE_NAME (type) = ada_type_name (type0);
7780 TYPE_TAG_NAME (type) = NULL;
876cecd0 7781 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7782 TYPE_LENGTH (type) = 0;
7783 }
7784 TYPE_FIELD_TYPE (type, f) = new_type;
7785 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7786 }
14f9c5c9
AS
7787 return type;
7788}
7789
4c4b4cd2 7790/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7791 whose address in memory is ADDRESS, returns a revision of TYPE,
7792 which should be a non-dynamic-sized record, in which the variant
7793 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7794 for discriminant values in DVAL0, which can be NULL if the record
7795 contains the necessary discriminant values. */
7796
d2e4a39e 7797static struct type *
fc1a4b47 7798to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7799 CORE_ADDR address, struct value *dval0)
14f9c5c9 7800{
d2e4a39e 7801 struct value *mark = value_mark ();
4c4b4cd2 7802 struct value *dval;
d2e4a39e 7803 struct type *rtype;
14f9c5c9
AS
7804 struct type *branch_type;
7805 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7806 int variant_field = variant_field_index (type);
14f9c5c9 7807
4c4b4cd2 7808 if (variant_field == -1)
14f9c5c9
AS
7809 return type;
7810
4c4b4cd2
PH
7811 if (dval0 == NULL)
7812 dval = value_from_contents_and_address (type, valaddr, address);
7813 else
7814 dval = dval0;
7815
e9bb382b 7816 rtype = alloc_type_copy (type);
14f9c5c9 7817 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7818 INIT_CPLUS_SPECIFIC (rtype);
7819 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7820 TYPE_FIELDS (rtype) =
7821 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7822 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7823 sizeof (struct field) * nfields);
14f9c5c9
AS
7824 TYPE_NAME (rtype) = ada_type_name (type);
7825 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7826 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7827 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7828
4c4b4cd2
PH
7829 branch_type = to_fixed_variant_branch_type
7830 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7831 cond_offset_host (valaddr,
4c4b4cd2
PH
7832 TYPE_FIELD_BITPOS (type, variant_field)
7833 / TARGET_CHAR_BIT),
d2e4a39e 7834 cond_offset_target (address,
4c4b4cd2
PH
7835 TYPE_FIELD_BITPOS (type, variant_field)
7836 / TARGET_CHAR_BIT), dval);
d2e4a39e 7837 if (branch_type == NULL)
14f9c5c9 7838 {
4c4b4cd2 7839 int f;
5b4ee69b 7840
4c4b4cd2
PH
7841 for (f = variant_field + 1; f < nfields; f += 1)
7842 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7843 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7844 }
7845 else
7846 {
4c4b4cd2
PH
7847 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7848 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7849 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7850 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7851 }
4c4b4cd2 7852 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7853
4c4b4cd2 7854 value_free_to_mark (mark);
14f9c5c9
AS
7855 return rtype;
7856}
7857
7858/* An ordinary record type (with fixed-length fields) that describes
7859 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7860 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7861 should be in DVAL, a record value; it may be NULL if the object
7862 at ADDR itself contains any necessary discriminant values.
7863 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7864 values from the record are needed. Except in the case that DVAL,
7865 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7866 unchecked) is replaced by a particular branch of the variant.
7867
7868 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7869 is questionable and may be removed. It can arise during the
7870 processing of an unconstrained-array-of-record type where all the
7871 variant branches have exactly the same size. This is because in
7872 such cases, the compiler does not bother to use the XVS convention
7873 when encoding the record. I am currently dubious of this
7874 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7875
d2e4a39e 7876static struct type *
fc1a4b47 7877to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7878 CORE_ADDR address, struct value *dval)
14f9c5c9 7879{
d2e4a39e 7880 struct type *templ_type;
14f9c5c9 7881
876cecd0 7882 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7883 return type0;
7884
d2e4a39e 7885 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7886
7887 if (templ_type != NULL)
7888 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7889 else if (variant_field_index (type0) >= 0)
7890 {
7891 if (dval == NULL && valaddr == NULL && address == 0)
7892 return type0;
7893 return to_record_with_fixed_variant_part (type0, valaddr, address,
7894 dval);
7895 }
14f9c5c9
AS
7896 else
7897 {
876cecd0 7898 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7899 return type0;
7900 }
7901
7902}
7903
7904/* An ordinary record type (with fixed-length fields) that describes
7905 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7906 union type. Any necessary discriminants' values should be in DVAL,
7907 a record value. That is, this routine selects the appropriate
7908 branch of the union at ADDR according to the discriminant value
b1f33ddd 7909 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7910 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7911
d2e4a39e 7912static struct type *
fc1a4b47 7913to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7914 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7915{
7916 int which;
d2e4a39e
AS
7917 struct type *templ_type;
7918 struct type *var_type;
14f9c5c9
AS
7919
7920 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7921 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7922 else
14f9c5c9
AS
7923 var_type = var_type0;
7924
7925 templ_type = ada_find_parallel_type (var_type, "___XVU");
7926
7927 if (templ_type != NULL)
7928 var_type = templ_type;
7929
b1f33ddd
JB
7930 if (is_unchecked_variant (var_type, value_type (dval)))
7931 return var_type0;
d2e4a39e
AS
7932 which =
7933 ada_which_variant_applies (var_type,
0fd88904 7934 value_type (dval), value_contents (dval));
14f9c5c9
AS
7935
7936 if (which < 0)
e9bb382b 7937 return empty_record (var_type);
14f9c5c9 7938 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7939 return to_fixed_record_type
d2e4a39e
AS
7940 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7941 valaddr, address, dval);
4c4b4cd2 7942 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7943 return
7944 to_fixed_record_type
7945 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7946 else
7947 return TYPE_FIELD_TYPE (var_type, which);
7948}
7949
7950/* Assuming that TYPE0 is an array type describing the type of a value
7951 at ADDR, and that DVAL describes a record containing any
7952 discriminants used in TYPE0, returns a type for the value that
7953 contains no dynamic components (that is, no components whose sizes
7954 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7955 true, gives an error message if the resulting type's size is over
4c4b4cd2 7956 varsize_limit. */
14f9c5c9 7957
d2e4a39e
AS
7958static struct type *
7959to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7960 int ignore_too_big)
14f9c5c9 7961{
d2e4a39e
AS
7962 struct type *index_type_desc;
7963 struct type *result;
ad82864c 7964 int constrained_packed_array_p;
14f9c5c9 7965
b0dd7688 7966 type0 = ada_check_typedef (type0);
284614f0 7967 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7968 return type0;
14f9c5c9 7969
ad82864c
JB
7970 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7971 if (constrained_packed_array_p)
7972 type0 = decode_constrained_packed_array_type (type0);
284614f0 7973
14f9c5c9 7974 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7975 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7976 if (index_type_desc == NULL)
7977 {
61ee279c 7978 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7979
14f9c5c9 7980 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7981 depend on the contents of the array in properly constructed
7982 debugging data. */
529cad9c
PH
7983 /* Create a fixed version of the array element type.
7984 We're not providing the address of an element here,
e1d5a0d2 7985 and thus the actual object value cannot be inspected to do
529cad9c
PH
7986 the conversion. This should not be a problem, since arrays of
7987 unconstrained objects are not allowed. In particular, all
7988 the elements of an array of a tagged type should all be of
7989 the same type specified in the debugging info. No need to
7990 consult the object tag. */
1ed6ede0 7991 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7992
284614f0
JB
7993 /* Make sure we always create a new array type when dealing with
7994 packed array types, since we're going to fix-up the array
7995 type length and element bitsize a little further down. */
ad82864c 7996 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7997 result = type0;
14f9c5c9 7998 else
e9bb382b 7999 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8000 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8001 }
8002 else
8003 {
8004 int i;
8005 struct type *elt_type0;
8006
8007 elt_type0 = type0;
8008 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8009 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8010
8011 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8012 depend on the contents of the array in properly constructed
8013 debugging data. */
529cad9c
PH
8014 /* Create a fixed version of the array element type.
8015 We're not providing the address of an element here,
e1d5a0d2 8016 and thus the actual object value cannot be inspected to do
529cad9c
PH
8017 the conversion. This should not be a problem, since arrays of
8018 unconstrained objects are not allowed. In particular, all
8019 the elements of an array of a tagged type should all be of
8020 the same type specified in the debugging info. No need to
8021 consult the object tag. */
1ed6ede0
JB
8022 result =
8023 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8024
8025 elt_type0 = type0;
14f9c5c9 8026 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8027 {
8028 struct type *range_type =
28c85d6c 8029 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8030
e9bb382b 8031 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8032 result, range_type);
1ce677a4 8033 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8034 }
d2e4a39e 8035 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8036 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8037 }
8038
2e6fda7d
JB
8039 /* We want to preserve the type name. This can be useful when
8040 trying to get the type name of a value that has already been
8041 printed (for instance, if the user did "print VAR; whatis $". */
8042 TYPE_NAME (result) = TYPE_NAME (type0);
8043
ad82864c 8044 if (constrained_packed_array_p)
284614f0
JB
8045 {
8046 /* So far, the resulting type has been created as if the original
8047 type was a regular (non-packed) array type. As a result, the
8048 bitsize of the array elements needs to be set again, and the array
8049 length needs to be recomputed based on that bitsize. */
8050 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8051 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8052
8053 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8054 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8055 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8056 TYPE_LENGTH (result)++;
8057 }
8058
876cecd0 8059 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8060 return result;
d2e4a39e 8061}
14f9c5c9
AS
8062
8063
8064/* A standard type (containing no dynamically sized components)
8065 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8066 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8067 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8068 ADDRESS or in VALADDR contains these discriminants.
8069
1ed6ede0
JB
8070 If CHECK_TAG is not null, in the case of tagged types, this function
8071 attempts to locate the object's tag and use it to compute the actual
8072 type. However, when ADDRESS is null, we cannot use it to determine the
8073 location of the tag, and therefore compute the tagged type's actual type.
8074 So we return the tagged type without consulting the tag. */
529cad9c 8075
f192137b
JB
8076static struct type *
8077ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8078 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8079{
61ee279c 8080 type = ada_check_typedef (type);
d2e4a39e
AS
8081 switch (TYPE_CODE (type))
8082 {
8083 default:
14f9c5c9 8084 return type;
d2e4a39e 8085 case TYPE_CODE_STRUCT:
4c4b4cd2 8086 {
76a01679 8087 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8088 struct type *fixed_record_type =
8089 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8090
529cad9c
PH
8091 /* If STATIC_TYPE is a tagged type and we know the object's address,
8092 then we can determine its tag, and compute the object's actual
0963b4bd 8093 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8094 type (the parent part of the record may have dynamic fields
8095 and the way the location of _tag is expressed may depend on
8096 them). */
529cad9c 8097
1ed6ede0 8098 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8099 {
b50d69b5
JG
8100 struct value *tag =
8101 value_tag_from_contents_and_address
8102 (fixed_record_type,
8103 valaddr,
8104 address);
8105 struct type *real_type = type_from_tag (tag);
8106 struct value *obj =
8107 value_from_contents_and_address (fixed_record_type,
8108 valaddr,
8109 address);
76a01679 8110 if (real_type != NULL)
b50d69b5
JG
8111 return to_fixed_record_type
8112 (real_type, NULL,
8113 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8114 }
4af88198
JB
8115
8116 /* Check to see if there is a parallel ___XVZ variable.
8117 If there is, then it provides the actual size of our type. */
8118 else if (ada_type_name (fixed_record_type) != NULL)
8119 {
0d5cff50 8120 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8121 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8122 int xvz_found = 0;
8123 LONGEST size;
8124
88c15c34 8125 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8126 size = get_int_var_value (xvz_name, &xvz_found);
8127 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8128 {
8129 fixed_record_type = copy_type (fixed_record_type);
8130 TYPE_LENGTH (fixed_record_type) = size;
8131
8132 /* The FIXED_RECORD_TYPE may have be a stub. We have
8133 observed this when the debugging info is STABS, and
8134 apparently it is something that is hard to fix.
8135
8136 In practice, we don't need the actual type definition
8137 at all, because the presence of the XVZ variable allows us
8138 to assume that there must be a XVS type as well, which we
8139 should be able to use later, when we need the actual type
8140 definition.
8141
8142 In the meantime, pretend that the "fixed" type we are
8143 returning is NOT a stub, because this can cause trouble
8144 when using this type to create new types targeting it.
8145 Indeed, the associated creation routines often check
8146 whether the target type is a stub and will try to replace
0963b4bd 8147 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8148 might cause the new type to have the wrong size too.
8149 Consider the case of an array, for instance, where the size
8150 of the array is computed from the number of elements in
8151 our array multiplied by the size of its element. */
8152 TYPE_STUB (fixed_record_type) = 0;
8153 }
8154 }
1ed6ede0 8155 return fixed_record_type;
4c4b4cd2 8156 }
d2e4a39e 8157 case TYPE_CODE_ARRAY:
4c4b4cd2 8158 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8159 case TYPE_CODE_UNION:
8160 if (dval == NULL)
4c4b4cd2 8161 return type;
d2e4a39e 8162 else
4c4b4cd2 8163 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8164 }
14f9c5c9
AS
8165}
8166
f192137b
JB
8167/* The same as ada_to_fixed_type_1, except that it preserves the type
8168 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8169
8170 The typedef layer needs be preserved in order to differentiate between
8171 arrays and array pointers when both types are implemented using the same
8172 fat pointer. In the array pointer case, the pointer is encoded as
8173 a typedef of the pointer type. For instance, considering:
8174
8175 type String_Access is access String;
8176 S1 : String_Access := null;
8177
8178 To the debugger, S1 is defined as a typedef of type String. But
8179 to the user, it is a pointer. So if the user tries to print S1,
8180 we should not dereference the array, but print the array address
8181 instead.
8182
8183 If we didn't preserve the typedef layer, we would lose the fact that
8184 the type is to be presented as a pointer (needs de-reference before
8185 being printed). And we would also use the source-level type name. */
f192137b
JB
8186
8187struct type *
8188ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8189 CORE_ADDR address, struct value *dval, int check_tag)
8190
8191{
8192 struct type *fixed_type =
8193 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8194
96dbd2c1
JB
8195 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8196 then preserve the typedef layer.
8197
8198 Implementation note: We can only check the main-type portion of
8199 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8200 from TYPE now returns a type that has the same instance flags
8201 as TYPE. For instance, if TYPE is a "typedef const", and its
8202 target type is a "struct", then the typedef elimination will return
8203 a "const" version of the target type. See check_typedef for more
8204 details about how the typedef layer elimination is done.
8205
8206 brobecker/2010-11-19: It seems to me that the only case where it is
8207 useful to preserve the typedef layer is when dealing with fat pointers.
8208 Perhaps, we could add a check for that and preserve the typedef layer
8209 only in that situation. But this seems unecessary so far, probably
8210 because we call check_typedef/ada_check_typedef pretty much everywhere.
8211 */
f192137b 8212 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8213 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8214 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8215 return type;
8216
8217 return fixed_type;
8218}
8219
14f9c5c9 8220/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8221 TYPE0, but based on no runtime data. */
14f9c5c9 8222
d2e4a39e
AS
8223static struct type *
8224to_static_fixed_type (struct type *type0)
14f9c5c9 8225{
d2e4a39e 8226 struct type *type;
14f9c5c9
AS
8227
8228 if (type0 == NULL)
8229 return NULL;
8230
876cecd0 8231 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8232 return type0;
8233
61ee279c 8234 type0 = ada_check_typedef (type0);
d2e4a39e 8235
14f9c5c9
AS
8236 switch (TYPE_CODE (type0))
8237 {
8238 default:
8239 return type0;
8240 case TYPE_CODE_STRUCT:
8241 type = dynamic_template_type (type0);
d2e4a39e 8242 if (type != NULL)
4c4b4cd2
PH
8243 return template_to_static_fixed_type (type);
8244 else
8245 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8246 case TYPE_CODE_UNION:
8247 type = ada_find_parallel_type (type0, "___XVU");
8248 if (type != NULL)
4c4b4cd2
PH
8249 return template_to_static_fixed_type (type);
8250 else
8251 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8252 }
8253}
8254
4c4b4cd2
PH
8255/* A static approximation of TYPE with all type wrappers removed. */
8256
d2e4a39e
AS
8257static struct type *
8258static_unwrap_type (struct type *type)
14f9c5c9
AS
8259{
8260 if (ada_is_aligner_type (type))
8261 {
61ee279c 8262 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8263 if (ada_type_name (type1) == NULL)
4c4b4cd2 8264 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8265
8266 return static_unwrap_type (type1);
8267 }
d2e4a39e 8268 else
14f9c5c9 8269 {
d2e4a39e 8270 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8271
d2e4a39e 8272 if (raw_real_type == type)
4c4b4cd2 8273 return type;
14f9c5c9 8274 else
4c4b4cd2 8275 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8276 }
8277}
8278
8279/* In some cases, incomplete and private types require
4c4b4cd2 8280 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8281 type Foo;
8282 type FooP is access Foo;
8283 V: FooP;
8284 type Foo is array ...;
4c4b4cd2 8285 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8286 cross-references to such types, we instead substitute for FooP a
8287 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8288 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8289
8290/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8291 exists, otherwise TYPE. */
8292
d2e4a39e 8293struct type *
61ee279c 8294ada_check_typedef (struct type *type)
14f9c5c9 8295{
727e3d2e
JB
8296 if (type == NULL)
8297 return NULL;
8298
720d1a40
JB
8299 /* If our type is a typedef type of a fat pointer, then we're done.
8300 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8301 what allows us to distinguish between fat pointers that represent
8302 array types, and fat pointers that represent array access types
8303 (in both cases, the compiler implements them as fat pointers). */
8304 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8305 && is_thick_pntr (ada_typedef_target_type (type)))
8306 return type;
8307
14f9c5c9
AS
8308 CHECK_TYPEDEF (type);
8309 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8310 || !TYPE_STUB (type)
14f9c5c9
AS
8311 || TYPE_TAG_NAME (type) == NULL)
8312 return type;
d2e4a39e 8313 else
14f9c5c9 8314 {
0d5cff50 8315 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8316 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8317
05e522ef
JB
8318 if (type1 == NULL)
8319 return type;
8320
8321 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8322 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8323 types, only for the typedef-to-array types). If that's the case,
8324 strip the typedef layer. */
8325 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8326 type1 = ada_check_typedef (type1);
8327
8328 return type1;
14f9c5c9
AS
8329 }
8330}
8331
8332/* A value representing the data at VALADDR/ADDRESS as described by
8333 type TYPE0, but with a standard (static-sized) type that correctly
8334 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8335 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8336 creation of struct values]. */
14f9c5c9 8337
4c4b4cd2
PH
8338static struct value *
8339ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8340 struct value *val0)
14f9c5c9 8341{
1ed6ede0 8342 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8343
14f9c5c9
AS
8344 if (type == type0 && val0 != NULL)
8345 return val0;
d2e4a39e 8346 else
4c4b4cd2
PH
8347 return value_from_contents_and_address (type, 0, address);
8348}
8349
8350/* A value representing VAL, but with a standard (static-sized) type
8351 that correctly describes it. Does not necessarily create a new
8352 value. */
8353
0c3acc09 8354struct value *
4c4b4cd2
PH
8355ada_to_fixed_value (struct value *val)
8356{
c48db5ca
JB
8357 val = unwrap_value (val);
8358 val = ada_to_fixed_value_create (value_type (val),
8359 value_address (val),
8360 val);
8361 return val;
14f9c5c9 8362}
d2e4a39e 8363\f
14f9c5c9 8364
14f9c5c9
AS
8365/* Attributes */
8366
4c4b4cd2
PH
8367/* Table mapping attribute numbers to names.
8368 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8369
d2e4a39e 8370static const char *attribute_names[] = {
14f9c5c9
AS
8371 "<?>",
8372
d2e4a39e 8373 "first",
14f9c5c9
AS
8374 "last",
8375 "length",
8376 "image",
14f9c5c9
AS
8377 "max",
8378 "min",
4c4b4cd2
PH
8379 "modulus",
8380 "pos",
8381 "size",
8382 "tag",
14f9c5c9 8383 "val",
14f9c5c9
AS
8384 0
8385};
8386
d2e4a39e 8387const char *
4c4b4cd2 8388ada_attribute_name (enum exp_opcode n)
14f9c5c9 8389{
4c4b4cd2
PH
8390 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8391 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8392 else
8393 return attribute_names[0];
8394}
8395
4c4b4cd2 8396/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8397
4c4b4cd2
PH
8398static LONGEST
8399pos_atr (struct value *arg)
14f9c5c9 8400{
24209737
PH
8401 struct value *val = coerce_ref (arg);
8402 struct type *type = value_type (val);
14f9c5c9 8403
d2e4a39e 8404 if (!discrete_type_p (type))
323e0a4a 8405 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8406
8407 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8408 {
8409 int i;
24209737 8410 LONGEST v = value_as_long (val);
14f9c5c9 8411
d2e4a39e 8412 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8413 {
14e75d8e 8414 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8415 return i;
8416 }
323e0a4a 8417 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8418 }
8419 else
24209737 8420 return value_as_long (val);
4c4b4cd2
PH
8421}
8422
8423static struct value *
3cb382c9 8424value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8425{
3cb382c9 8426 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8427}
8428
4c4b4cd2 8429/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8430
d2e4a39e
AS
8431static struct value *
8432value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8433{
d2e4a39e 8434 if (!discrete_type_p (type))
323e0a4a 8435 error (_("'VAL only defined on discrete types"));
df407dfe 8436 if (!integer_type_p (value_type (arg)))
323e0a4a 8437 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8438
8439 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8440 {
8441 long pos = value_as_long (arg);
5b4ee69b 8442
14f9c5c9 8443 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8444 error (_("argument to 'VAL out of range"));
14e75d8e 8445 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8446 }
8447 else
8448 return value_from_longest (type, value_as_long (arg));
8449}
14f9c5c9 8450\f
d2e4a39e 8451
4c4b4cd2 8452 /* Evaluation */
14f9c5c9 8453
4c4b4cd2
PH
8454/* True if TYPE appears to be an Ada character type.
8455 [At the moment, this is true only for Character and Wide_Character;
8456 It is a heuristic test that could stand improvement]. */
14f9c5c9 8457
d2e4a39e
AS
8458int
8459ada_is_character_type (struct type *type)
14f9c5c9 8460{
7b9f71f2
JB
8461 const char *name;
8462
8463 /* If the type code says it's a character, then assume it really is,
8464 and don't check any further. */
8465 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8466 return 1;
8467
8468 /* Otherwise, assume it's a character type iff it is a discrete type
8469 with a known character type name. */
8470 name = ada_type_name (type);
8471 return (name != NULL
8472 && (TYPE_CODE (type) == TYPE_CODE_INT
8473 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8474 && (strcmp (name, "character") == 0
8475 || strcmp (name, "wide_character") == 0
5a517ebd 8476 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8477 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8478}
8479
4c4b4cd2 8480/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8481
8482int
ebf56fd3 8483ada_is_string_type (struct type *type)
14f9c5c9 8484{
61ee279c 8485 type = ada_check_typedef (type);
d2e4a39e 8486 if (type != NULL
14f9c5c9 8487 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8488 && (ada_is_simple_array_type (type)
8489 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8490 && ada_array_arity (type) == 1)
8491 {
8492 struct type *elttype = ada_array_element_type (type, 1);
8493
8494 return ada_is_character_type (elttype);
8495 }
d2e4a39e 8496 else
14f9c5c9
AS
8497 return 0;
8498}
8499
5bf03f13
JB
8500/* The compiler sometimes provides a parallel XVS type for a given
8501 PAD type. Normally, it is safe to follow the PAD type directly,
8502 but older versions of the compiler have a bug that causes the offset
8503 of its "F" field to be wrong. Following that field in that case
8504 would lead to incorrect results, but this can be worked around
8505 by ignoring the PAD type and using the associated XVS type instead.
8506
8507 Set to True if the debugger should trust the contents of PAD types.
8508 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8509static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8510
8511/* True if TYPE is a struct type introduced by the compiler to force the
8512 alignment of a value. Such types have a single field with a
4c4b4cd2 8513 distinctive name. */
14f9c5c9
AS
8514
8515int
ebf56fd3 8516ada_is_aligner_type (struct type *type)
14f9c5c9 8517{
61ee279c 8518 type = ada_check_typedef (type);
714e53ab 8519
5bf03f13 8520 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8521 return 0;
8522
14f9c5c9 8523 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8524 && TYPE_NFIELDS (type) == 1
8525 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8526}
8527
8528/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8529 the parallel type. */
14f9c5c9 8530
d2e4a39e
AS
8531struct type *
8532ada_get_base_type (struct type *raw_type)
14f9c5c9 8533{
d2e4a39e
AS
8534 struct type *real_type_namer;
8535 struct type *raw_real_type;
14f9c5c9
AS
8536
8537 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8538 return raw_type;
8539
284614f0
JB
8540 if (ada_is_aligner_type (raw_type))
8541 /* The encoding specifies that we should always use the aligner type.
8542 So, even if this aligner type has an associated XVS type, we should
8543 simply ignore it.
8544
8545 According to the compiler gurus, an XVS type parallel to an aligner
8546 type may exist because of a stabs limitation. In stabs, aligner
8547 types are empty because the field has a variable-sized type, and
8548 thus cannot actually be used as an aligner type. As a result,
8549 we need the associated parallel XVS type to decode the type.
8550 Since the policy in the compiler is to not change the internal
8551 representation based on the debugging info format, we sometimes
8552 end up having a redundant XVS type parallel to the aligner type. */
8553 return raw_type;
8554
14f9c5c9 8555 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8556 if (real_type_namer == NULL
14f9c5c9
AS
8557 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8558 || TYPE_NFIELDS (real_type_namer) != 1)
8559 return raw_type;
8560
f80d3ff2
JB
8561 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8562 {
8563 /* This is an older encoding form where the base type needs to be
8564 looked up by name. We prefer the newer enconding because it is
8565 more efficient. */
8566 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8567 if (raw_real_type == NULL)
8568 return raw_type;
8569 else
8570 return raw_real_type;
8571 }
8572
8573 /* The field in our XVS type is a reference to the base type. */
8574 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8575}
14f9c5c9 8576
4c4b4cd2 8577/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8578
d2e4a39e
AS
8579struct type *
8580ada_aligned_type (struct type *type)
14f9c5c9
AS
8581{
8582 if (ada_is_aligner_type (type))
8583 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8584 else
8585 return ada_get_base_type (type);
8586}
8587
8588
8589/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8590 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8591
fc1a4b47
AC
8592const gdb_byte *
8593ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8594{
d2e4a39e 8595 if (ada_is_aligner_type (type))
14f9c5c9 8596 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8597 valaddr +
8598 TYPE_FIELD_BITPOS (type,
8599 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8600 else
8601 return valaddr;
8602}
8603
4c4b4cd2
PH
8604
8605
14f9c5c9 8606/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8607 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8608const char *
8609ada_enum_name (const char *name)
14f9c5c9 8610{
4c4b4cd2
PH
8611 static char *result;
8612 static size_t result_len = 0;
d2e4a39e 8613 char *tmp;
14f9c5c9 8614
4c4b4cd2
PH
8615 /* First, unqualify the enumeration name:
8616 1. Search for the last '.' character. If we find one, then skip
177b42fe 8617 all the preceding characters, the unqualified name starts
76a01679 8618 right after that dot.
4c4b4cd2 8619 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8620 translates dots into "__". Search forward for double underscores,
8621 but stop searching when we hit an overloading suffix, which is
8622 of the form "__" followed by digits. */
4c4b4cd2 8623
c3e5cd34
PH
8624 tmp = strrchr (name, '.');
8625 if (tmp != NULL)
4c4b4cd2
PH
8626 name = tmp + 1;
8627 else
14f9c5c9 8628 {
4c4b4cd2
PH
8629 while ((tmp = strstr (name, "__")) != NULL)
8630 {
8631 if (isdigit (tmp[2]))
8632 break;
8633 else
8634 name = tmp + 2;
8635 }
14f9c5c9
AS
8636 }
8637
8638 if (name[0] == 'Q')
8639 {
14f9c5c9 8640 int v;
5b4ee69b 8641
14f9c5c9 8642 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8643 {
8644 if (sscanf (name + 2, "%x", &v) != 1)
8645 return name;
8646 }
14f9c5c9 8647 else
4c4b4cd2 8648 return name;
14f9c5c9 8649
4c4b4cd2 8650 GROW_VECT (result, result_len, 16);
14f9c5c9 8651 if (isascii (v) && isprint (v))
88c15c34 8652 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8653 else if (name[1] == 'U')
88c15c34 8654 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8655 else
88c15c34 8656 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8657
8658 return result;
8659 }
d2e4a39e 8660 else
4c4b4cd2 8661 {
c3e5cd34
PH
8662 tmp = strstr (name, "__");
8663 if (tmp == NULL)
8664 tmp = strstr (name, "$");
8665 if (tmp != NULL)
4c4b4cd2
PH
8666 {
8667 GROW_VECT (result, result_len, tmp - name + 1);
8668 strncpy (result, name, tmp - name);
8669 result[tmp - name] = '\0';
8670 return result;
8671 }
8672
8673 return name;
8674 }
14f9c5c9
AS
8675}
8676
14f9c5c9
AS
8677/* Evaluate the subexpression of EXP starting at *POS as for
8678 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8679 expression. */
14f9c5c9 8680
d2e4a39e
AS
8681static struct value *
8682evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8683{
4b27a620 8684 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8685}
8686
8687/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8688 value it wraps. */
14f9c5c9 8689
d2e4a39e
AS
8690static struct value *
8691unwrap_value (struct value *val)
14f9c5c9 8692{
df407dfe 8693 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8694
14f9c5c9
AS
8695 if (ada_is_aligner_type (type))
8696 {
de4d072f 8697 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8698 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8699
14f9c5c9 8700 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8701 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8702
8703 return unwrap_value (v);
8704 }
d2e4a39e 8705 else
14f9c5c9 8706 {
d2e4a39e 8707 struct type *raw_real_type =
61ee279c 8708 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8709
5bf03f13
JB
8710 /* If there is no parallel XVS or XVE type, then the value is
8711 already unwrapped. Return it without further modification. */
8712 if ((type == raw_real_type)
8713 && ada_find_parallel_type (type, "___XVE") == NULL)
8714 return val;
14f9c5c9 8715
d2e4a39e 8716 return
4c4b4cd2
PH
8717 coerce_unspec_val_to_type
8718 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8719 value_address (val),
1ed6ede0 8720 NULL, 1));
14f9c5c9
AS
8721 }
8722}
d2e4a39e
AS
8723
8724static struct value *
8725cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8726{
8727 LONGEST val;
8728
df407dfe 8729 if (type == value_type (arg))
14f9c5c9 8730 return arg;
df407dfe 8731 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8732 val = ada_float_to_fixed (type,
df407dfe 8733 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8734 value_as_long (arg)));
d2e4a39e 8735 else
14f9c5c9 8736 {
a53b7a21 8737 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8738
14f9c5c9
AS
8739 val = ada_float_to_fixed (type, argd);
8740 }
8741
8742 return value_from_longest (type, val);
8743}
8744
d2e4a39e 8745static struct value *
a53b7a21 8746cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8747{
df407dfe 8748 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8749 value_as_long (arg));
5b4ee69b 8750
a53b7a21 8751 return value_from_double (type, val);
14f9c5c9
AS
8752}
8753
d99dcf51
JB
8754/* Given two array types T1 and T2, return nonzero iff both arrays
8755 contain the same number of elements. */
8756
8757static int
8758ada_same_array_size_p (struct type *t1, struct type *t2)
8759{
8760 LONGEST lo1, hi1, lo2, hi2;
8761
8762 /* Get the array bounds in order to verify that the size of
8763 the two arrays match. */
8764 if (!get_array_bounds (t1, &lo1, &hi1)
8765 || !get_array_bounds (t2, &lo2, &hi2))
8766 error (_("unable to determine array bounds"));
8767
8768 /* To make things easier for size comparison, normalize a bit
8769 the case of empty arrays by making sure that the difference
8770 between upper bound and lower bound is always -1. */
8771 if (lo1 > hi1)
8772 hi1 = lo1 - 1;
8773 if (lo2 > hi2)
8774 hi2 = lo2 - 1;
8775
8776 return (hi1 - lo1 == hi2 - lo2);
8777}
8778
8779/* Assuming that VAL is an array of integrals, and TYPE represents
8780 an array with the same number of elements, but with wider integral
8781 elements, return an array "casted" to TYPE. In practice, this
8782 means that the returned array is built by casting each element
8783 of the original array into TYPE's (wider) element type. */
8784
8785static struct value *
8786ada_promote_array_of_integrals (struct type *type, struct value *val)
8787{
8788 struct type *elt_type = TYPE_TARGET_TYPE (type);
8789 LONGEST lo, hi;
8790 struct value *res;
8791 LONGEST i;
8792
8793 /* Verify that both val and type are arrays of scalars, and
8794 that the size of val's elements is smaller than the size
8795 of type's element. */
8796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8797 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8798 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8799 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8800 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8801 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8802
8803 if (!get_array_bounds (type, &lo, &hi))
8804 error (_("unable to determine array bounds"));
8805
8806 res = allocate_value (type);
8807
8808 /* Promote each array element. */
8809 for (i = 0; i < hi - lo + 1; i++)
8810 {
8811 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8812
8813 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8814 value_contents_all (elt), TYPE_LENGTH (elt_type));
8815 }
8816
8817 return res;
8818}
8819
4c4b4cd2
PH
8820/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8821 return the converted value. */
8822
d2e4a39e
AS
8823static struct value *
8824coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8825{
df407dfe 8826 struct type *type2 = value_type (val);
5b4ee69b 8827
14f9c5c9
AS
8828 if (type == type2)
8829 return val;
8830
61ee279c
PH
8831 type2 = ada_check_typedef (type2);
8832 type = ada_check_typedef (type);
14f9c5c9 8833
d2e4a39e
AS
8834 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8835 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8836 {
8837 val = ada_value_ind (val);
df407dfe 8838 type2 = value_type (val);
14f9c5c9
AS
8839 }
8840
d2e4a39e 8841 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8842 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8843 {
d99dcf51
JB
8844 if (!ada_same_array_size_p (type, type2))
8845 error (_("cannot assign arrays of different length"));
8846
8847 if (is_integral_type (TYPE_TARGET_TYPE (type))
8848 && is_integral_type (TYPE_TARGET_TYPE (type2))
8849 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8850 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8851 {
8852 /* Allow implicit promotion of the array elements to
8853 a wider type. */
8854 return ada_promote_array_of_integrals (type, val);
8855 }
8856
8857 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8858 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8859 error (_("Incompatible types in assignment"));
04624583 8860 deprecated_set_value_type (val, type);
14f9c5c9 8861 }
d2e4a39e 8862 return val;
14f9c5c9
AS
8863}
8864
4c4b4cd2
PH
8865static struct value *
8866ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8867{
8868 struct value *val;
8869 struct type *type1, *type2;
8870 LONGEST v, v1, v2;
8871
994b9211
AC
8872 arg1 = coerce_ref (arg1);
8873 arg2 = coerce_ref (arg2);
18af8284
JB
8874 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8875 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8876
76a01679
JB
8877 if (TYPE_CODE (type1) != TYPE_CODE_INT
8878 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8879 return value_binop (arg1, arg2, op);
8880
76a01679 8881 switch (op)
4c4b4cd2
PH
8882 {
8883 case BINOP_MOD:
8884 case BINOP_DIV:
8885 case BINOP_REM:
8886 break;
8887 default:
8888 return value_binop (arg1, arg2, op);
8889 }
8890
8891 v2 = value_as_long (arg2);
8892 if (v2 == 0)
323e0a4a 8893 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8894
8895 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8896 return value_binop (arg1, arg2, op);
8897
8898 v1 = value_as_long (arg1);
8899 switch (op)
8900 {
8901 case BINOP_DIV:
8902 v = v1 / v2;
76a01679
JB
8903 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8904 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8905 break;
8906 case BINOP_REM:
8907 v = v1 % v2;
76a01679
JB
8908 if (v * v1 < 0)
8909 v -= v2;
4c4b4cd2
PH
8910 break;
8911 default:
8912 /* Should not reach this point. */
8913 v = 0;
8914 }
8915
8916 val = allocate_value (type1);
990a07ab 8917 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8918 TYPE_LENGTH (value_type (val)),
8919 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8920 return val;
8921}
8922
8923static int
8924ada_value_equal (struct value *arg1, struct value *arg2)
8925{
df407dfe
AC
8926 if (ada_is_direct_array_type (value_type (arg1))
8927 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8928 {
f58b38bf
JB
8929 /* Automatically dereference any array reference before
8930 we attempt to perform the comparison. */
8931 arg1 = ada_coerce_ref (arg1);
8932 arg2 = ada_coerce_ref (arg2);
8933
4c4b4cd2
PH
8934 arg1 = ada_coerce_to_simple_array (arg1);
8935 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8936 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8937 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8938 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8939 /* FIXME: The following works only for types whose
76a01679
JB
8940 representations use all bits (no padding or undefined bits)
8941 and do not have user-defined equality. */
8942 return
df407dfe 8943 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8944 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8945 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8946 }
8947 return value_equal (arg1, arg2);
8948}
8949
52ce6436
PH
8950/* Total number of component associations in the aggregate starting at
8951 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8952 OP_AGGREGATE. */
52ce6436
PH
8953
8954static int
8955num_component_specs (struct expression *exp, int pc)
8956{
8957 int n, m, i;
5b4ee69b 8958
52ce6436
PH
8959 m = exp->elts[pc + 1].longconst;
8960 pc += 3;
8961 n = 0;
8962 for (i = 0; i < m; i += 1)
8963 {
8964 switch (exp->elts[pc].opcode)
8965 {
8966 default:
8967 n += 1;
8968 break;
8969 case OP_CHOICES:
8970 n += exp->elts[pc + 1].longconst;
8971 break;
8972 }
8973 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8974 }
8975 return n;
8976}
8977
8978/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8979 component of LHS (a simple array or a record), updating *POS past
8980 the expression, assuming that LHS is contained in CONTAINER. Does
8981 not modify the inferior's memory, nor does it modify LHS (unless
8982 LHS == CONTAINER). */
8983
8984static void
8985assign_component (struct value *container, struct value *lhs, LONGEST index,
8986 struct expression *exp, int *pos)
8987{
8988 struct value *mark = value_mark ();
8989 struct value *elt;
5b4ee69b 8990
52ce6436
PH
8991 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8992 {
22601c15
UW
8993 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8994 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8995
52ce6436
PH
8996 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8997 }
8998 else
8999 {
9000 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9001 elt = ada_to_fixed_value (elt);
52ce6436
PH
9002 }
9003
9004 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9005 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9006 else
9007 value_assign_to_component (container, elt,
9008 ada_evaluate_subexp (NULL, exp, pos,
9009 EVAL_NORMAL));
9010
9011 value_free_to_mark (mark);
9012}
9013
9014/* Assuming that LHS represents an lvalue having a record or array
9015 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9016 of that aggregate's value to LHS, advancing *POS past the
9017 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9018 lvalue containing LHS (possibly LHS itself). Does not modify
9019 the inferior's memory, nor does it modify the contents of
0963b4bd 9020 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9021
9022static struct value *
9023assign_aggregate (struct value *container,
9024 struct value *lhs, struct expression *exp,
9025 int *pos, enum noside noside)
9026{
9027 struct type *lhs_type;
9028 int n = exp->elts[*pos+1].longconst;
9029 LONGEST low_index, high_index;
9030 int num_specs;
9031 LONGEST *indices;
9032 int max_indices, num_indices;
9033 int is_array_aggregate;
9034 int i;
52ce6436
PH
9035
9036 *pos += 3;
9037 if (noside != EVAL_NORMAL)
9038 {
52ce6436
PH
9039 for (i = 0; i < n; i += 1)
9040 ada_evaluate_subexp (NULL, exp, pos, noside);
9041 return container;
9042 }
9043
9044 container = ada_coerce_ref (container);
9045 if (ada_is_direct_array_type (value_type (container)))
9046 container = ada_coerce_to_simple_array (container);
9047 lhs = ada_coerce_ref (lhs);
9048 if (!deprecated_value_modifiable (lhs))
9049 error (_("Left operand of assignment is not a modifiable lvalue."));
9050
9051 lhs_type = value_type (lhs);
9052 if (ada_is_direct_array_type (lhs_type))
9053 {
9054 lhs = ada_coerce_to_simple_array (lhs);
9055 lhs_type = value_type (lhs);
9056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9058 is_array_aggregate = 1;
9059 }
9060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9061 {
9062 low_index = 0;
9063 high_index = num_visible_fields (lhs_type) - 1;
9064 is_array_aggregate = 0;
9065 }
9066 else
9067 error (_("Left-hand side must be array or record."));
9068
9069 num_specs = num_component_specs (exp, *pos - 3);
9070 max_indices = 4 * num_specs + 4;
9071 indices = alloca (max_indices * sizeof (indices[0]));
9072 indices[0] = indices[1] = low_index - 1;
9073 indices[2] = indices[3] = high_index + 1;
9074 num_indices = 4;
9075
9076 for (i = 0; i < n; i += 1)
9077 {
9078 switch (exp->elts[*pos].opcode)
9079 {
1fbf5ada
JB
9080 case OP_CHOICES:
9081 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9082 &num_indices, max_indices,
9083 low_index, high_index);
9084 break;
9085 case OP_POSITIONAL:
9086 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9087 &num_indices, max_indices,
9088 low_index, high_index);
1fbf5ada
JB
9089 break;
9090 case OP_OTHERS:
9091 if (i != n-1)
9092 error (_("Misplaced 'others' clause"));
9093 aggregate_assign_others (container, lhs, exp, pos, indices,
9094 num_indices, low_index, high_index);
9095 break;
9096 default:
9097 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9098 }
9099 }
9100
9101 return container;
9102}
9103
9104/* Assign into the component of LHS indexed by the OP_POSITIONAL
9105 construct at *POS, updating *POS past the construct, given that
9106 the positions are relative to lower bound LOW, where HIGH is the
9107 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9108 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9109 assign_aggregate. */
52ce6436
PH
9110static void
9111aggregate_assign_positional (struct value *container,
9112 struct value *lhs, struct expression *exp,
9113 int *pos, LONGEST *indices, int *num_indices,
9114 int max_indices, LONGEST low, LONGEST high)
9115{
9116 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9117
9118 if (ind - 1 == high)
e1d5a0d2 9119 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9120 if (ind <= high)
9121 {
9122 add_component_interval (ind, ind, indices, num_indices, max_indices);
9123 *pos += 3;
9124 assign_component (container, lhs, ind, exp, pos);
9125 }
9126 else
9127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9128}
9129
9130/* Assign into the components of LHS indexed by the OP_CHOICES
9131 construct at *POS, updating *POS past the construct, given that
9132 the allowable indices are LOW..HIGH. Record the indices assigned
9133 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9134 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9135static void
9136aggregate_assign_from_choices (struct value *container,
9137 struct value *lhs, struct expression *exp,
9138 int *pos, LONGEST *indices, int *num_indices,
9139 int max_indices, LONGEST low, LONGEST high)
9140{
9141 int j;
9142 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9143 int choice_pos, expr_pc;
9144 int is_array = ada_is_direct_array_type (value_type (lhs));
9145
9146 choice_pos = *pos += 3;
9147
9148 for (j = 0; j < n_choices; j += 1)
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150 expr_pc = *pos;
9151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9152
9153 for (j = 0; j < n_choices; j += 1)
9154 {
9155 LONGEST lower, upper;
9156 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9157
52ce6436
PH
9158 if (op == OP_DISCRETE_RANGE)
9159 {
9160 choice_pos += 1;
9161 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9162 EVAL_NORMAL));
9163 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9164 EVAL_NORMAL));
9165 }
9166 else if (is_array)
9167 {
9168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9169 EVAL_NORMAL));
9170 upper = lower;
9171 }
9172 else
9173 {
9174 int ind;
0d5cff50 9175 const char *name;
5b4ee69b 9176
52ce6436
PH
9177 switch (op)
9178 {
9179 case OP_NAME:
9180 name = &exp->elts[choice_pos + 2].string;
9181 break;
9182 case OP_VAR_VALUE:
9183 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9184 break;
9185 default:
9186 error (_("Invalid record component association."));
9187 }
9188 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9189 ind = 0;
9190 if (! find_struct_field (name, value_type (lhs), 0,
9191 NULL, NULL, NULL, NULL, &ind))
9192 error (_("Unknown component name: %s."), name);
9193 lower = upper = ind;
9194 }
9195
9196 if (lower <= upper && (lower < low || upper > high))
9197 error (_("Index in component association out of bounds."));
9198
9199 add_component_interval (lower, upper, indices, num_indices,
9200 max_indices);
9201 while (lower <= upper)
9202 {
9203 int pos1;
5b4ee69b 9204
52ce6436
PH
9205 pos1 = expr_pc;
9206 assign_component (container, lhs, lower, exp, &pos1);
9207 lower += 1;
9208 }
9209 }
9210}
9211
9212/* Assign the value of the expression in the OP_OTHERS construct in
9213 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9214 have not been previously assigned. The index intervals already assigned
9215 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9216 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9217static void
9218aggregate_assign_others (struct value *container,
9219 struct value *lhs, struct expression *exp,
9220 int *pos, LONGEST *indices, int num_indices,
9221 LONGEST low, LONGEST high)
9222{
9223 int i;
5ce64950 9224 int expr_pc = *pos + 1;
52ce6436
PH
9225
9226 for (i = 0; i < num_indices - 2; i += 2)
9227 {
9228 LONGEST ind;
5b4ee69b 9229
52ce6436
PH
9230 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9231 {
5ce64950 9232 int localpos;
5b4ee69b 9233
5ce64950
MS
9234 localpos = expr_pc;
9235 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9236 }
9237 }
9238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9239}
9240
9241/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9242 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9243 modifying *SIZE as needed. It is an error if *SIZE exceeds
9244 MAX_SIZE. The resulting intervals do not overlap. */
9245static void
9246add_component_interval (LONGEST low, LONGEST high,
9247 LONGEST* indices, int *size, int max_size)
9248{
9249 int i, j;
5b4ee69b 9250
52ce6436
PH
9251 for (i = 0; i < *size; i += 2) {
9252 if (high >= indices[i] && low <= indices[i + 1])
9253 {
9254 int kh;
5b4ee69b 9255
52ce6436
PH
9256 for (kh = i + 2; kh < *size; kh += 2)
9257 if (high < indices[kh])
9258 break;
9259 if (low < indices[i])
9260 indices[i] = low;
9261 indices[i + 1] = indices[kh - 1];
9262 if (high > indices[i + 1])
9263 indices[i + 1] = high;
9264 memcpy (indices + i + 2, indices + kh, *size - kh);
9265 *size -= kh - i - 2;
9266 return;
9267 }
9268 else if (high < indices[i])
9269 break;
9270 }
9271
9272 if (*size == max_size)
9273 error (_("Internal error: miscounted aggregate components."));
9274 *size += 2;
9275 for (j = *size-1; j >= i+2; j -= 1)
9276 indices[j] = indices[j - 2];
9277 indices[i] = low;
9278 indices[i + 1] = high;
9279}
9280
6e48bd2c
JB
9281/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9282 is different. */
9283
9284static struct value *
9285ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9286{
9287 if (type == ada_check_typedef (value_type (arg2)))
9288 return arg2;
9289
9290 if (ada_is_fixed_point_type (type))
9291 return (cast_to_fixed (type, arg2));
9292
9293 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9294 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9295
9296 return value_cast (type, arg2);
9297}
9298
284614f0
JB
9299/* Evaluating Ada expressions, and printing their result.
9300 ------------------------------------------------------
9301
21649b50
JB
9302 1. Introduction:
9303 ----------------
9304
284614f0
JB
9305 We usually evaluate an Ada expression in order to print its value.
9306 We also evaluate an expression in order to print its type, which
9307 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9308 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9309 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9310 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9311 similar.
9312
9313 Evaluating expressions is a little more complicated for Ada entities
9314 than it is for entities in languages such as C. The main reason for
9315 this is that Ada provides types whose definition might be dynamic.
9316 One example of such types is variant records. Or another example
9317 would be an array whose bounds can only be known at run time.
9318
9319 The following description is a general guide as to what should be
9320 done (and what should NOT be done) in order to evaluate an expression
9321 involving such types, and when. This does not cover how the semantic
9322 information is encoded by GNAT as this is covered separatly. For the
9323 document used as the reference for the GNAT encoding, see exp_dbug.ads
9324 in the GNAT sources.
9325
9326 Ideally, we should embed each part of this description next to its
9327 associated code. Unfortunately, the amount of code is so vast right
9328 now that it's hard to see whether the code handling a particular
9329 situation might be duplicated or not. One day, when the code is
9330 cleaned up, this guide might become redundant with the comments
9331 inserted in the code, and we might want to remove it.
9332
21649b50
JB
9333 2. ``Fixing'' an Entity, the Simple Case:
9334 -----------------------------------------
9335
284614f0
JB
9336 When evaluating Ada expressions, the tricky issue is that they may
9337 reference entities whose type contents and size are not statically
9338 known. Consider for instance a variant record:
9339
9340 type Rec (Empty : Boolean := True) is record
9341 case Empty is
9342 when True => null;
9343 when False => Value : Integer;
9344 end case;
9345 end record;
9346 Yes : Rec := (Empty => False, Value => 1);
9347 No : Rec := (empty => True);
9348
9349 The size and contents of that record depends on the value of the
9350 descriminant (Rec.Empty). At this point, neither the debugging
9351 information nor the associated type structure in GDB are able to
9352 express such dynamic types. So what the debugger does is to create
9353 "fixed" versions of the type that applies to the specific object.
9354 We also informally refer to this opperation as "fixing" an object,
9355 which means creating its associated fixed type.
9356
9357 Example: when printing the value of variable "Yes" above, its fixed
9358 type would look like this:
9359
9360 type Rec is record
9361 Empty : Boolean;
9362 Value : Integer;
9363 end record;
9364
9365 On the other hand, if we printed the value of "No", its fixed type
9366 would become:
9367
9368 type Rec is record
9369 Empty : Boolean;
9370 end record;
9371
9372 Things become a little more complicated when trying to fix an entity
9373 with a dynamic type that directly contains another dynamic type,
9374 such as an array of variant records, for instance. There are
9375 two possible cases: Arrays, and records.
9376
21649b50
JB
9377 3. ``Fixing'' Arrays:
9378 ---------------------
9379
9380 The type structure in GDB describes an array in terms of its bounds,
9381 and the type of its elements. By design, all elements in the array
9382 have the same type and we cannot represent an array of variant elements
9383 using the current type structure in GDB. When fixing an array,
9384 we cannot fix the array element, as we would potentially need one
9385 fixed type per element of the array. As a result, the best we can do
9386 when fixing an array is to produce an array whose bounds and size
9387 are correct (allowing us to read it from memory), but without having
9388 touched its element type. Fixing each element will be done later,
9389 when (if) necessary.
9390
9391 Arrays are a little simpler to handle than records, because the same
9392 amount of memory is allocated for each element of the array, even if
1b536f04 9393 the amount of space actually used by each element differs from element
21649b50 9394 to element. Consider for instance the following array of type Rec:
284614f0
JB
9395
9396 type Rec_Array is array (1 .. 2) of Rec;
9397
1b536f04
JB
9398 The actual amount of memory occupied by each element might be different
9399 from element to element, depending on the value of their discriminant.
21649b50 9400 But the amount of space reserved for each element in the array remains
1b536f04 9401 fixed regardless. So we simply need to compute that size using
21649b50
JB
9402 the debugging information available, from which we can then determine
9403 the array size (we multiply the number of elements of the array by
9404 the size of each element).
9405
9406 The simplest case is when we have an array of a constrained element
9407 type. For instance, consider the following type declarations:
9408
9409 type Bounded_String (Max_Size : Integer) is
9410 Length : Integer;
9411 Buffer : String (1 .. Max_Size);
9412 end record;
9413 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9414
9415 In this case, the compiler describes the array as an array of
9416 variable-size elements (identified by its XVS suffix) for which
9417 the size can be read in the parallel XVZ variable.
9418
9419 In the case of an array of an unconstrained element type, the compiler
9420 wraps the array element inside a private PAD type. This type should not
9421 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9422 that we also use the adjective "aligner" in our code to designate
9423 these wrapper types.
9424
1b536f04 9425 In some cases, the size allocated for each element is statically
21649b50
JB
9426 known. In that case, the PAD type already has the correct size,
9427 and the array element should remain unfixed.
9428
9429 But there are cases when this size is not statically known.
9430 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9431
9432 type Dynamic is array (1 .. Five) of Integer;
9433 type Wrapper (Has_Length : Boolean := False) is record
9434 Data : Dynamic;
9435 case Has_Length is
9436 when True => Length : Integer;
9437 when False => null;
9438 end case;
9439 end record;
9440 type Wrapper_Array is array (1 .. 2) of Wrapper;
9441
9442 Hello : Wrapper_Array := (others => (Has_Length => True,
9443 Data => (others => 17),
9444 Length => 1));
9445
9446
9447 The debugging info would describe variable Hello as being an
9448 array of a PAD type. The size of that PAD type is not statically
9449 known, but can be determined using a parallel XVZ variable.
9450 In that case, a copy of the PAD type with the correct size should
9451 be used for the fixed array.
9452
21649b50
JB
9453 3. ``Fixing'' record type objects:
9454 ----------------------------------
9455
9456 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9457 record types. In this case, in order to compute the associated
9458 fixed type, we need to determine the size and offset of each of
9459 its components. This, in turn, requires us to compute the fixed
9460 type of each of these components.
9461
9462 Consider for instance the example:
9463
9464 type Bounded_String (Max_Size : Natural) is record
9465 Str : String (1 .. Max_Size);
9466 Length : Natural;
9467 end record;
9468 My_String : Bounded_String (Max_Size => 10);
9469
9470 In that case, the position of field "Length" depends on the size
9471 of field Str, which itself depends on the value of the Max_Size
21649b50 9472 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9473 we need to fix the type of field Str. Therefore, fixing a variant
9474 record requires us to fix each of its components.
9475
9476 However, if a component does not have a dynamic size, the component
9477 should not be fixed. In particular, fields that use a PAD type
9478 should not fixed. Here is an example where this might happen
9479 (assuming type Rec above):
9480
9481 type Container (Big : Boolean) is record
9482 First : Rec;
9483 After : Integer;
9484 case Big is
9485 when True => Another : Integer;
9486 when False => null;
9487 end case;
9488 end record;
9489 My_Container : Container := (Big => False,
9490 First => (Empty => True),
9491 After => 42);
9492
9493 In that example, the compiler creates a PAD type for component First,
9494 whose size is constant, and then positions the component After just
9495 right after it. The offset of component After is therefore constant
9496 in this case.
9497
9498 The debugger computes the position of each field based on an algorithm
9499 that uses, among other things, the actual position and size of the field
21649b50
JB
9500 preceding it. Let's now imagine that the user is trying to print
9501 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9502 end up computing the offset of field After based on the size of the
9503 fixed version of field First. And since in our example First has
9504 only one actual field, the size of the fixed type is actually smaller
9505 than the amount of space allocated to that field, and thus we would
9506 compute the wrong offset of field After.
9507
21649b50
JB
9508 To make things more complicated, we need to watch out for dynamic
9509 components of variant records (identified by the ___XVL suffix in
9510 the component name). Even if the target type is a PAD type, the size
9511 of that type might not be statically known. So the PAD type needs
9512 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9513 we might end up with the wrong size for our component. This can be
9514 observed with the following type declarations:
284614f0
JB
9515
9516 type Octal is new Integer range 0 .. 7;
9517 type Octal_Array is array (Positive range <>) of Octal;
9518 pragma Pack (Octal_Array);
9519
9520 type Octal_Buffer (Size : Positive) is record
9521 Buffer : Octal_Array (1 .. Size);
9522 Length : Integer;
9523 end record;
9524
9525 In that case, Buffer is a PAD type whose size is unset and needs
9526 to be computed by fixing the unwrapped type.
9527
21649b50
JB
9528 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9529 ----------------------------------------------------------
9530
9531 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9532 thus far, be actually fixed?
9533
9534 The answer is: Only when referencing that element. For instance
9535 when selecting one component of a record, this specific component
9536 should be fixed at that point in time. Or when printing the value
9537 of a record, each component should be fixed before its value gets
9538 printed. Similarly for arrays, the element of the array should be
9539 fixed when printing each element of the array, or when extracting
9540 one element out of that array. On the other hand, fixing should
9541 not be performed on the elements when taking a slice of an array!
9542
9543 Note that one of the side-effects of miscomputing the offset and
9544 size of each field is that we end up also miscomputing the size
9545 of the containing type. This can have adverse results when computing
9546 the value of an entity. GDB fetches the value of an entity based
9547 on the size of its type, and thus a wrong size causes GDB to fetch
9548 the wrong amount of memory. In the case where the computed size is
9549 too small, GDB fetches too little data to print the value of our
9550 entiry. Results in this case as unpredicatble, as we usually read
9551 past the buffer containing the data =:-o. */
9552
9553/* Implement the evaluate_exp routine in the exp_descriptor structure
9554 for the Ada language. */
9555
52ce6436 9556static struct value *
ebf56fd3 9557ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9558 int *pos, enum noside noside)
14f9c5c9
AS
9559{
9560 enum exp_opcode op;
b5385fc0 9561 int tem;
14f9c5c9
AS
9562 int pc;
9563 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9564 struct type *type;
52ce6436 9565 int nargs, oplen;
d2e4a39e 9566 struct value **argvec;
14f9c5c9 9567
d2e4a39e
AS
9568 pc = *pos;
9569 *pos += 1;
14f9c5c9
AS
9570 op = exp->elts[pc].opcode;
9571
d2e4a39e 9572 switch (op)
14f9c5c9
AS
9573 {
9574 default:
9575 *pos -= 1;
6e48bd2c 9576 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9577
9578 if (noside == EVAL_NORMAL)
9579 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9580
9581 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9582 then we need to perform the conversion manually, because
9583 evaluate_subexp_standard doesn't do it. This conversion is
9584 necessary in Ada because the different kinds of float/fixed
9585 types in Ada have different representations.
9586
9587 Similarly, we need to perform the conversion from OP_LONG
9588 ourselves. */
9589 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9590 arg1 = ada_value_cast (expect_type, arg1, noside);
9591
9592 return arg1;
4c4b4cd2
PH
9593
9594 case OP_STRING:
9595 {
76a01679 9596 struct value *result;
5b4ee69b 9597
76a01679
JB
9598 *pos -= 1;
9599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9600 /* The result type will have code OP_STRING, bashed there from
9601 OP_ARRAY. Bash it back. */
df407dfe
AC
9602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9604 return result;
4c4b4cd2 9605 }
14f9c5c9
AS
9606
9607 case UNOP_CAST:
9608 (*pos) += 2;
9609 type = exp->elts[pc + 1].type;
9610 arg1 = evaluate_subexp (type, exp, pos, noside);
9611 if (noside == EVAL_SKIP)
4c4b4cd2 9612 goto nosideret;
6e48bd2c 9613 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9614 return arg1;
9615
4c4b4cd2
PH
9616 case UNOP_QUAL:
9617 (*pos) += 2;
9618 type = exp->elts[pc + 1].type;
9619 return ada_evaluate_subexp (type, exp, pos, noside);
9620
14f9c5c9
AS
9621 case BINOP_ASSIGN:
9622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9623 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9624 {
9625 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9626 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9627 return arg1;
9628 return ada_value_assign (arg1, arg1);
9629 }
003f3813
JB
9630 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9631 except if the lhs of our assignment is a convenience variable.
9632 In the case of assigning to a convenience variable, the lhs
9633 should be exactly the result of the evaluation of the rhs. */
9634 type = value_type (arg1);
9635 if (VALUE_LVAL (arg1) == lval_internalvar)
9636 type = NULL;
9637 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9638 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9639 return arg1;
df407dfe
AC
9640 if (ada_is_fixed_point_type (value_type (arg1)))
9641 arg2 = cast_to_fixed (value_type (arg1), arg2);
9642 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9643 error
323e0a4a 9644 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9645 else
df407dfe 9646 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9647 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9648
9649 case BINOP_ADD:
9650 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9651 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9652 if (noside == EVAL_SKIP)
4c4b4cd2 9653 goto nosideret;
2ac8a782
JB
9654 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9655 return (value_from_longest
9656 (value_type (arg1),
9657 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9658 if ((ada_is_fixed_point_type (value_type (arg1))
9659 || ada_is_fixed_point_type (value_type (arg2)))
9660 && value_type (arg1) != value_type (arg2))
323e0a4a 9661 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9662 /* Do the addition, and cast the result to the type of the first
9663 argument. We cannot cast the result to a reference type, so if
9664 ARG1 is a reference type, find its underlying type. */
9665 type = value_type (arg1);
9666 while (TYPE_CODE (type) == TYPE_CODE_REF)
9667 type = TYPE_TARGET_TYPE (type);
f44316fa 9668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9670
9671 case BINOP_SUB:
9672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 if (noside == EVAL_SKIP)
4c4b4cd2 9675 goto nosideret;
2ac8a782
JB
9676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9677 return (value_from_longest
9678 (value_type (arg1),
9679 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9680 if ((ada_is_fixed_point_type (value_type (arg1))
9681 || ada_is_fixed_point_type (value_type (arg2)))
9682 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9683 error (_("Operands of fixed-point subtraction "
9684 "must have the same type"));
b7789565
JB
9685 /* Do the substraction, and cast the result to the type of the first
9686 argument. We cannot cast the result to a reference type, so if
9687 ARG1 is a reference type, find its underlying type. */
9688 type = value_type (arg1);
9689 while (TYPE_CODE (type) == TYPE_CODE_REF)
9690 type = TYPE_TARGET_TYPE (type);
f44316fa 9691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9693
9694 case BINOP_MUL:
9695 case BINOP_DIV:
e1578042
JB
9696 case BINOP_REM:
9697 case BINOP_MOD:
14f9c5c9
AS
9698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9700 if (noside == EVAL_SKIP)
4c4b4cd2 9701 goto nosideret;
e1578042 9702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9703 {
9704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9705 return value_zero (value_type (arg1), not_lval);
9706 }
14f9c5c9 9707 else
4c4b4cd2 9708 {
a53b7a21 9709 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9710 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9711 arg1 = cast_from_fixed (type, arg1);
df407dfe 9712 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9713 arg2 = cast_from_fixed (type, arg2);
f44316fa 9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9715 return ada_value_binop (arg1, arg2, op);
9716 }
9717
4c4b4cd2
PH
9718 case BINOP_EQUAL:
9719 case BINOP_NOTEQUAL:
14f9c5c9 9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9722 if (noside == EVAL_SKIP)
76a01679 9723 goto nosideret;
4c4b4cd2 9724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9725 tem = 0;
4c4b4cd2 9726 else
f44316fa
UW
9727 {
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 tem = ada_value_equal (arg1, arg2);
9730 }
4c4b4cd2 9731 if (op == BINOP_NOTEQUAL)
76a01679 9732 tem = !tem;
fbb06eb1
UW
9733 type = language_bool_type (exp->language_defn, exp->gdbarch);
9734 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9735
9736 case UNOP_NEG:
9737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9738 if (noside == EVAL_SKIP)
9739 goto nosideret;
df407dfe
AC
9740 else if (ada_is_fixed_point_type (value_type (arg1)))
9741 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9742 else
f44316fa
UW
9743 {
9744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9745 return value_neg (arg1);
9746 }
4c4b4cd2 9747
2330c6c6
JB
9748 case BINOP_LOGICAL_AND:
9749 case BINOP_LOGICAL_OR:
9750 case UNOP_LOGICAL_NOT:
000d5124
JB
9751 {
9752 struct value *val;
9753
9754 *pos -= 1;
9755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9756 type = language_bool_type (exp->language_defn, exp->gdbarch);
9757 return value_cast (type, val);
000d5124 9758 }
2330c6c6
JB
9759
9760 case BINOP_BITWISE_AND:
9761 case BINOP_BITWISE_IOR:
9762 case BINOP_BITWISE_XOR:
000d5124
JB
9763 {
9764 struct value *val;
9765
9766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9767 *pos = pc;
9768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9769
9770 return value_cast (value_type (arg1), val);
9771 }
2330c6c6 9772
14f9c5c9
AS
9773 case OP_VAR_VALUE:
9774 *pos -= 1;
6799def4 9775
14f9c5c9 9776 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9777 {
9778 *pos += 4;
9779 goto nosideret;
9780 }
9781 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9782 /* Only encountered when an unresolved symbol occurs in a
9783 context other than a function call, in which case, it is
52ce6436 9784 invalid. */
323e0a4a 9785 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9786 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9788 {
0c1f74cf 9789 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9790 /* Check to see if this is a tagged type. We also need to handle
9791 the case where the type is a reference to a tagged type, but
9792 we have to be careful to exclude pointers to tagged types.
9793 The latter should be shown as usual (as a pointer), whereas
9794 a reference should mostly be transparent to the user. */
9795 if (ada_is_tagged_type (type, 0)
9796 || (TYPE_CODE(type) == TYPE_CODE_REF
9797 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9798 {
9799 /* Tagged types are a little special in the fact that the real
9800 type is dynamic and can only be determined by inspecting the
9801 object's tag. This means that we need to get the object's
9802 value first (EVAL_NORMAL) and then extract the actual object
9803 type from its tag.
9804
9805 Note that we cannot skip the final step where we extract
9806 the object type from its tag, because the EVAL_NORMAL phase
9807 results in dynamic components being resolved into fixed ones.
9808 This can cause problems when trying to print the type
9809 description of tagged types whose parent has a dynamic size:
9810 We use the type name of the "_parent" component in order
9811 to print the name of the ancestor type in the type description.
9812 If that component had a dynamic size, the resolution into
9813 a fixed type would result in the loss of that type name,
9814 thus preventing us from printing the name of the ancestor
9815 type in the type description. */
9816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9817
9818 if (TYPE_CODE (type) != TYPE_CODE_REF)
9819 {
9820 struct type *actual_type;
9821
9822 actual_type = type_from_tag (ada_value_tag (arg1));
9823 if (actual_type == NULL)
9824 /* If, for some reason, we were unable to determine
9825 the actual type from the tag, then use the static
9826 approximation that we just computed as a fallback.
9827 This can happen if the debugging information is
9828 incomplete, for instance. */
9829 actual_type = type;
9830 return value_zero (actual_type, not_lval);
9831 }
9832 else
9833 {
9834 /* In the case of a ref, ada_coerce_ref takes care
9835 of determining the actual type. But the evaluation
9836 should return a ref as it should be valid to ask
9837 for its address; so rebuild a ref after coerce. */
9838 arg1 = ada_coerce_ref (arg1);
9839 return value_ref (arg1);
9840 }
0c1f74cf
JB
9841 }
9842
4c4b4cd2
PH
9843 *pos += 4;
9844 return value_zero
9845 (to_static_fixed_type
9846 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9847 not_lval);
9848 }
d2e4a39e 9849 else
4c4b4cd2 9850 {
284614f0 9851 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9852 return ada_to_fixed_value (arg1);
9853 }
9854
9855 case OP_FUNCALL:
9856 (*pos) += 2;
9857
9858 /* Allocate arg vector, including space for the function to be
9859 called in argvec[0] and a terminating NULL. */
9860 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9861 argvec =
9862 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9863
9864 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9865 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9866 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9867 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9868 else
9869 {
9870 for (tem = 0; tem <= nargs; tem += 1)
9871 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9872 argvec[tem] = 0;
9873
9874 if (noside == EVAL_SKIP)
9875 goto nosideret;
9876 }
9877
ad82864c
JB
9878 if (ada_is_constrained_packed_array_type
9879 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9880 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9881 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9882 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9883 /* This is a packed array that has already been fixed, and
9884 therefore already coerced to a simple array. Nothing further
9885 to do. */
9886 ;
df407dfe
AC
9887 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9888 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9889 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9890 argvec[0] = value_addr (argvec[0]);
9891
df407dfe 9892 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9893
9894 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9895 them. So, if this is an array typedef (encoding use for array
9896 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9897 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9898 type = ada_typedef_target_type (type);
9899
4c4b4cd2
PH
9900 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9901 {
61ee279c 9902 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9903 {
9904 case TYPE_CODE_FUNC:
61ee279c 9905 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9906 break;
9907 case TYPE_CODE_ARRAY:
9908 break;
9909 case TYPE_CODE_STRUCT:
9910 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9911 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9913 break;
9914 default:
323e0a4a 9915 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9916 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9917 break;
9918 }
9919 }
9920
9921 switch (TYPE_CODE (type))
9922 {
9923 case TYPE_CODE_FUNC:
9924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9925 {
9926 struct type *rtype = TYPE_TARGET_TYPE (type);
9927
9928 if (TYPE_GNU_IFUNC (type))
9929 return allocate_value (TYPE_TARGET_TYPE (rtype));
9930 return allocate_value (rtype);
9931 }
4c4b4cd2 9932 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9933 case TYPE_CODE_INTERNAL_FUNCTION:
9934 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9935 /* We don't know anything about what the internal
9936 function might return, but we have to return
9937 something. */
9938 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9939 not_lval);
9940 else
9941 return call_internal_function (exp->gdbarch, exp->language_defn,
9942 argvec[0], nargs, argvec + 1);
9943
4c4b4cd2
PH
9944 case TYPE_CODE_STRUCT:
9945 {
9946 int arity;
9947
4c4b4cd2
PH
9948 arity = ada_array_arity (type);
9949 type = ada_array_element_type (type, nargs);
9950 if (type == NULL)
323e0a4a 9951 error (_("cannot subscript or call a record"));
4c4b4cd2 9952 if (arity != nargs)
323e0a4a 9953 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9955 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9956 return
9957 unwrap_value (ada_value_subscript
9958 (argvec[0], nargs, argvec + 1));
9959 }
9960 case TYPE_CODE_ARRAY:
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9962 {
9963 type = ada_array_element_type (type, nargs);
9964 if (type == NULL)
323e0a4a 9965 error (_("element type of array unknown"));
4c4b4cd2 9966 else
0a07e705 9967 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9968 }
9969 return
9970 unwrap_value (ada_value_subscript
9971 (ada_coerce_to_simple_array (argvec[0]),
9972 nargs, argvec + 1));
9973 case TYPE_CODE_PTR: /* Pointer to array */
9974 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9976 {
9977 type = ada_array_element_type (type, nargs);
9978 if (type == NULL)
323e0a4a 9979 error (_("element type of array unknown"));
4c4b4cd2 9980 else
0a07e705 9981 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9982 }
9983 return
9984 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9985 nargs, argvec + 1));
9986
9987 default:
e1d5a0d2
PH
9988 error (_("Attempt to index or call something other than an "
9989 "array or function"));
4c4b4cd2
PH
9990 }
9991
9992 case TERNOP_SLICE:
9993 {
9994 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9995 struct value *low_bound_val =
9996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9997 struct value *high_bound_val =
9998 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9999 LONGEST low_bound;
10000 LONGEST high_bound;
5b4ee69b 10001
994b9211
AC
10002 low_bound_val = coerce_ref (low_bound_val);
10003 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10004 low_bound = pos_atr (low_bound_val);
10005 high_bound = pos_atr (high_bound_val);
963a6417 10006
4c4b4cd2
PH
10007 if (noside == EVAL_SKIP)
10008 goto nosideret;
10009
4c4b4cd2
PH
10010 /* If this is a reference to an aligner type, then remove all
10011 the aligners. */
df407dfe
AC
10012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10013 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10014 TYPE_TARGET_TYPE (value_type (array)) =
10015 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10016
ad82864c 10017 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10018 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10019
10020 /* If this is a reference to an array or an array lvalue,
10021 convert to a pointer. */
df407dfe
AC
10022 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10023 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10024 && VALUE_LVAL (array) == lval_memory))
10025 array = value_addr (array);
10026
1265e4aa 10027 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10028 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10029 (value_type (array))))
0b5d8877 10030 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10031
10032 array = ada_coerce_to_simple_array_ptr (array);
10033
714e53ab
PH
10034 /* If we have more than one level of pointer indirection,
10035 dereference the value until we get only one level. */
df407dfe
AC
10036 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10037 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10038 == TYPE_CODE_PTR))
10039 array = value_ind (array);
10040
10041 /* Make sure we really do have an array type before going further,
10042 to avoid a SEGV when trying to get the index type or the target
10043 type later down the road if the debug info generated by
10044 the compiler is incorrect or incomplete. */
df407dfe 10045 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10046 error (_("cannot take slice of non-array"));
714e53ab 10047
828292f2
JB
10048 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10049 == TYPE_CODE_PTR)
4c4b4cd2 10050 {
828292f2
JB
10051 struct type *type0 = ada_check_typedef (value_type (array));
10052
0b5d8877 10053 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10054 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10055 else
10056 {
10057 struct type *arr_type0 =
828292f2 10058 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10059
f5938064
JG
10060 return ada_value_slice_from_ptr (array, arr_type0,
10061 longest_to_int (low_bound),
10062 longest_to_int (high_bound));
4c4b4cd2
PH
10063 }
10064 }
10065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066 return array;
10067 else if (high_bound < low_bound)
df407dfe 10068 return empty_array (value_type (array), low_bound);
4c4b4cd2 10069 else
529cad9c
PH
10070 return ada_value_slice (array, longest_to_int (low_bound),
10071 longest_to_int (high_bound));
4c4b4cd2 10072 }
14f9c5c9 10073
4c4b4cd2
PH
10074 case UNOP_IN_RANGE:
10075 (*pos) += 2;
10076 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10077 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10078
14f9c5c9 10079 if (noside == EVAL_SKIP)
4c4b4cd2 10080 goto nosideret;
14f9c5c9 10081
4c4b4cd2
PH
10082 switch (TYPE_CODE (type))
10083 {
10084 default:
e1d5a0d2
PH
10085 lim_warning (_("Membership test incompletely implemented; "
10086 "always returns true"));
fbb06eb1
UW
10087 type = language_bool_type (exp->language_defn, exp->gdbarch);
10088 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10089
10090 case TYPE_CODE_RANGE:
030b4912
UW
10091 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10092 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10095 type = language_bool_type (exp->language_defn, exp->gdbarch);
10096 return
10097 value_from_longest (type,
4c4b4cd2
PH
10098 (value_less (arg1, arg3)
10099 || value_equal (arg1, arg3))
10100 && (value_less (arg2, arg1)
10101 || value_equal (arg2, arg1)));
10102 }
10103
10104 case BINOP_IN_BOUNDS:
14f9c5c9 10105 (*pos) += 2;
4c4b4cd2
PH
10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10108
4c4b4cd2
PH
10109 if (noside == EVAL_SKIP)
10110 goto nosideret;
14f9c5c9 10111
4c4b4cd2 10112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10113 {
10114 type = language_bool_type (exp->language_defn, exp->gdbarch);
10115 return value_zero (type, not_lval);
10116 }
14f9c5c9 10117
4c4b4cd2 10118 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10119
1eea4ebd
UW
10120 type = ada_index_type (value_type (arg2), tem, "range");
10121 if (!type)
10122 type = value_type (arg1);
14f9c5c9 10123
1eea4ebd
UW
10124 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10125 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10126
f44316fa
UW
10127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10129 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10130 return
fbb06eb1 10131 value_from_longest (type,
4c4b4cd2
PH
10132 (value_less (arg1, arg3)
10133 || value_equal (arg1, arg3))
10134 && (value_less (arg2, arg1)
10135 || value_equal (arg2, arg1)));
10136
10137 case TERNOP_IN_RANGE:
10138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10141
10142 if (noside == EVAL_SKIP)
10143 goto nosideret;
10144
f44316fa
UW
10145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10147 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10148 return
fbb06eb1 10149 value_from_longest (type,
4c4b4cd2
PH
10150 (value_less (arg1, arg3)
10151 || value_equal (arg1, arg3))
10152 && (value_less (arg2, arg1)
10153 || value_equal (arg2, arg1)));
10154
10155 case OP_ATR_FIRST:
10156 case OP_ATR_LAST:
10157 case OP_ATR_LENGTH:
10158 {
76a01679 10159 struct type *type_arg;
5b4ee69b 10160
76a01679
JB
10161 if (exp->elts[*pos].opcode == OP_TYPE)
10162 {
10163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10164 arg1 = NULL;
5bc23cb3 10165 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10166 }
10167 else
10168 {
10169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10170 type_arg = NULL;
10171 }
10172
10173 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10174 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10175 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10176 *pos += 4;
10177
10178 if (noside == EVAL_SKIP)
10179 goto nosideret;
10180
10181 if (type_arg == NULL)
10182 {
10183 arg1 = ada_coerce_ref (arg1);
10184
ad82864c 10185 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10186 arg1 = ada_coerce_to_simple_array (arg1);
10187
1eea4ebd
UW
10188 type = ada_index_type (value_type (arg1), tem,
10189 ada_attribute_name (op));
10190 if (type == NULL)
10191 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10192
10193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10194 return allocate_value (type);
76a01679
JB
10195
10196 switch (op)
10197 {
10198 default: /* Should never happen. */
323e0a4a 10199 error (_("unexpected attribute encountered"));
76a01679 10200 case OP_ATR_FIRST:
1eea4ebd
UW
10201 return value_from_longest
10202 (type, ada_array_bound (arg1, tem, 0));
76a01679 10203 case OP_ATR_LAST:
1eea4ebd
UW
10204 return value_from_longest
10205 (type, ada_array_bound (arg1, tem, 1));
76a01679 10206 case OP_ATR_LENGTH:
1eea4ebd
UW
10207 return value_from_longest
10208 (type, ada_array_length (arg1, tem));
76a01679
JB
10209 }
10210 }
10211 else if (discrete_type_p (type_arg))
10212 {
10213 struct type *range_type;
0d5cff50 10214 const char *name = ada_type_name (type_arg);
5b4ee69b 10215
76a01679
JB
10216 range_type = NULL;
10217 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10218 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10219 if (range_type == NULL)
10220 range_type = type_arg;
10221 switch (op)
10222 {
10223 default:
323e0a4a 10224 error (_("unexpected attribute encountered"));
76a01679 10225 case OP_ATR_FIRST:
690cc4eb 10226 return value_from_longest
43bbcdc2 10227 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10228 case OP_ATR_LAST:
690cc4eb 10229 return value_from_longest
43bbcdc2 10230 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10231 case OP_ATR_LENGTH:
323e0a4a 10232 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10233 }
10234 }
10235 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10236 error (_("unimplemented type attribute"));
76a01679
JB
10237 else
10238 {
10239 LONGEST low, high;
10240
ad82864c
JB
10241 if (ada_is_constrained_packed_array_type (type_arg))
10242 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10243
1eea4ebd 10244 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10245 if (type == NULL)
1eea4ebd
UW
10246 type = builtin_type (exp->gdbarch)->builtin_int;
10247
76a01679
JB
10248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10249 return allocate_value (type);
10250
10251 switch (op)
10252 {
10253 default:
323e0a4a 10254 error (_("unexpected attribute encountered"));
76a01679 10255 case OP_ATR_FIRST:
1eea4ebd 10256 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10257 return value_from_longest (type, low);
10258 case OP_ATR_LAST:
1eea4ebd 10259 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10260 return value_from_longest (type, high);
10261 case OP_ATR_LENGTH:
1eea4ebd
UW
10262 low = ada_array_bound_from_type (type_arg, tem, 0);
10263 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10264 return value_from_longest (type, high - low + 1);
10265 }
10266 }
14f9c5c9
AS
10267 }
10268
4c4b4cd2
PH
10269 case OP_ATR_TAG:
10270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10271 if (noside == EVAL_SKIP)
76a01679 10272 goto nosideret;
4c4b4cd2
PH
10273
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10275 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10276
10277 return ada_value_tag (arg1);
10278
10279 case OP_ATR_MIN:
10280 case OP_ATR_MAX:
10281 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10283 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10284 if (noside == EVAL_SKIP)
76a01679 10285 goto nosideret;
d2e4a39e 10286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10287 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10288 else
f44316fa
UW
10289 {
10290 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10291 return value_binop (arg1, arg2,
10292 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10293 }
14f9c5c9 10294
4c4b4cd2
PH
10295 case OP_ATR_MODULUS:
10296 {
31dedfee 10297 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10298
5b4ee69b 10299 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10300 if (noside == EVAL_SKIP)
10301 goto nosideret;
4c4b4cd2 10302
76a01679 10303 if (!ada_is_modular_type (type_arg))
323e0a4a 10304 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10305
76a01679
JB
10306 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10307 ada_modulus (type_arg));
4c4b4cd2
PH
10308 }
10309
10310
10311 case OP_ATR_POS:
10312 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10314 if (noside == EVAL_SKIP)
76a01679 10315 goto nosideret;
3cb382c9
UW
10316 type = builtin_type (exp->gdbarch)->builtin_int;
10317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10318 return value_zero (type, not_lval);
14f9c5c9 10319 else
3cb382c9 10320 return value_pos_atr (type, arg1);
14f9c5c9 10321
4c4b4cd2
PH
10322 case OP_ATR_SIZE:
10323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10324 type = value_type (arg1);
10325
10326 /* If the argument is a reference, then dereference its type, since
10327 the user is really asking for the size of the actual object,
10328 not the size of the pointer. */
10329 if (TYPE_CODE (type) == TYPE_CODE_REF)
10330 type = TYPE_TARGET_TYPE (type);
10331
4c4b4cd2 10332 if (noside == EVAL_SKIP)
76a01679 10333 goto nosideret;
4c4b4cd2 10334 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10335 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10336 else
22601c15 10337 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10338 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10339
10340 case OP_ATR_VAL:
10341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10343 type = exp->elts[pc + 2].type;
14f9c5c9 10344 if (noside == EVAL_SKIP)
76a01679 10345 goto nosideret;
4c4b4cd2 10346 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10347 return value_zero (type, not_lval);
4c4b4cd2 10348 else
76a01679 10349 return value_val_atr (type, arg1);
4c4b4cd2
PH
10350
10351 case BINOP_EXP:
10352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10353 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10354 if (noside == EVAL_SKIP)
10355 goto nosideret;
10356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10357 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10358 else
f44316fa
UW
10359 {
10360 /* For integer exponentiation operations,
10361 only promote the first argument. */
10362 if (is_integral_type (value_type (arg2)))
10363 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10364 else
10365 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10366
10367 return value_binop (arg1, arg2, op);
10368 }
4c4b4cd2
PH
10369
10370 case UNOP_PLUS:
10371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (noside == EVAL_SKIP)
10373 goto nosideret;
10374 else
10375 return arg1;
10376
10377 case UNOP_ABS:
10378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
f44316fa 10381 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10382 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10383 return value_neg (arg1);
14f9c5c9 10384 else
4c4b4cd2 10385 return arg1;
14f9c5c9
AS
10386
10387 case UNOP_IND:
6b0d7253 10388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10389 if (noside == EVAL_SKIP)
4c4b4cd2 10390 goto nosideret;
df407dfe 10391 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10392 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10393 {
10394 if (ada_is_array_descriptor_type (type))
10395 /* GDB allows dereferencing GNAT array descriptors. */
10396 {
10397 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10398
4c4b4cd2 10399 if (arrType == NULL)
323e0a4a 10400 error (_("Attempt to dereference null array pointer."));
00a4c844 10401 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10402 }
10403 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10404 || TYPE_CODE (type) == TYPE_CODE_REF
10405 /* In C you can dereference an array to get the 1st elt. */
10406 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10407 {
10408 type = to_static_fixed_type
10409 (ada_aligned_type
10410 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10411 check_size (type);
10412 return value_zero (type, lval_memory);
10413 }
4c4b4cd2 10414 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10415 {
10416 /* GDB allows dereferencing an int. */
10417 if (expect_type == NULL)
10418 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10419 lval_memory);
10420 else
10421 {
10422 expect_type =
10423 to_static_fixed_type (ada_aligned_type (expect_type));
10424 return value_zero (expect_type, lval_memory);
10425 }
10426 }
4c4b4cd2 10427 else
323e0a4a 10428 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10429 }
0963b4bd 10430 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10431 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10432
96967637
JB
10433 if (TYPE_CODE (type) == TYPE_CODE_INT)
10434 /* GDB allows dereferencing an int. If we were given
10435 the expect_type, then use that as the target type.
10436 Otherwise, assume that the target type is an int. */
10437 {
10438 if (expect_type != NULL)
10439 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10440 arg1));
10441 else
10442 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10443 (CORE_ADDR) value_as_address (arg1));
10444 }
6b0d7253 10445
4c4b4cd2
PH
10446 if (ada_is_array_descriptor_type (type))
10447 /* GDB allows dereferencing GNAT array descriptors. */
10448 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10449 else
4c4b4cd2 10450 return ada_value_ind (arg1);
14f9c5c9
AS
10451
10452 case STRUCTOP_STRUCT:
10453 tem = longest_to_int (exp->elts[pc + 1].longconst);
10454 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10456 if (noside == EVAL_SKIP)
4c4b4cd2 10457 goto nosideret;
14f9c5c9 10458 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10459 {
df407dfe 10460 struct type *type1 = value_type (arg1);
5b4ee69b 10461
76a01679
JB
10462 if (ada_is_tagged_type (type1, 1))
10463 {
10464 type = ada_lookup_struct_elt_type (type1,
10465 &exp->elts[pc + 2].string,
10466 1, 1, NULL);
10467 if (type == NULL)
10468 /* In this case, we assume that the field COULD exist
10469 in some extension of the type. Return an object of
10470 "type" void, which will match any formal
0963b4bd 10471 (see ada_type_match). */
30b15541
UW
10472 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10473 lval_memory);
76a01679
JB
10474 }
10475 else
10476 type =
10477 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10478 0, NULL);
10479
10480 return value_zero (ada_aligned_type (type), lval_memory);
10481 }
14f9c5c9 10482 else
284614f0
JB
10483 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10484 arg1 = unwrap_value (arg1);
10485 return ada_to_fixed_value (arg1);
10486
14f9c5c9 10487 case OP_TYPE:
4c4b4cd2
PH
10488 /* The value is not supposed to be used. This is here to make it
10489 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10490 (*pos) += 2;
10491 if (noside == EVAL_SKIP)
4c4b4cd2 10492 goto nosideret;
14f9c5c9 10493 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10494 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10495 else
323e0a4a 10496 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10497
10498 case OP_AGGREGATE:
10499 case OP_CHOICES:
10500 case OP_OTHERS:
10501 case OP_DISCRETE_RANGE:
10502 case OP_POSITIONAL:
10503 case OP_NAME:
10504 if (noside == EVAL_NORMAL)
10505 switch (op)
10506 {
10507 case OP_NAME:
10508 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10509 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10510 case OP_AGGREGATE:
10511 error (_("Aggregates only allowed on the right of an assignment"));
10512 default:
0963b4bd
MS
10513 internal_error (__FILE__, __LINE__,
10514 _("aggregate apparently mangled"));
52ce6436
PH
10515 }
10516
10517 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10518 *pos += oplen - 1;
10519 for (tem = 0; tem < nargs; tem += 1)
10520 ada_evaluate_subexp (NULL, exp, pos, noside);
10521 goto nosideret;
14f9c5c9
AS
10522 }
10523
10524nosideret:
22601c15 10525 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10526}
14f9c5c9 10527\f
d2e4a39e 10528
4c4b4cd2 10529 /* Fixed point */
14f9c5c9
AS
10530
10531/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10532 type name that encodes the 'small and 'delta information.
4c4b4cd2 10533 Otherwise, return NULL. */
14f9c5c9 10534
d2e4a39e 10535static const char *
ebf56fd3 10536fixed_type_info (struct type *type)
14f9c5c9 10537{
d2e4a39e 10538 const char *name = ada_type_name (type);
14f9c5c9
AS
10539 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10540
d2e4a39e
AS
10541 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10542 {
14f9c5c9 10543 const char *tail = strstr (name, "___XF_");
5b4ee69b 10544
14f9c5c9 10545 if (tail == NULL)
4c4b4cd2 10546 return NULL;
d2e4a39e 10547 else
4c4b4cd2 10548 return tail + 5;
14f9c5c9
AS
10549 }
10550 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10551 return fixed_type_info (TYPE_TARGET_TYPE (type));
10552 else
10553 return NULL;
10554}
10555
4c4b4cd2 10556/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10557
10558int
ebf56fd3 10559ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10560{
10561 return fixed_type_info (type) != NULL;
10562}
10563
4c4b4cd2
PH
10564/* Return non-zero iff TYPE represents a System.Address type. */
10565
10566int
10567ada_is_system_address_type (struct type *type)
10568{
10569 return (TYPE_NAME (type)
10570 && strcmp (TYPE_NAME (type), "system__address") == 0);
10571}
10572
14f9c5c9
AS
10573/* Assuming that TYPE is the representation of an Ada fixed-point
10574 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10575 delta cannot be determined. */
14f9c5c9
AS
10576
10577DOUBLEST
ebf56fd3 10578ada_delta (struct type *type)
14f9c5c9
AS
10579{
10580 const char *encoding = fixed_type_info (type);
facc390f 10581 DOUBLEST num, den;
14f9c5c9 10582
facc390f
JB
10583 /* Strictly speaking, num and den are encoded as integer. However,
10584 they may not fit into a long, and they will have to be converted
10585 to DOUBLEST anyway. So scan them as DOUBLEST. */
10586 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10587 &num, &den) < 2)
14f9c5c9 10588 return -1.0;
d2e4a39e 10589 else
facc390f 10590 return num / den;
14f9c5c9
AS
10591}
10592
10593/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10594 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10595
10596static DOUBLEST
ebf56fd3 10597scaling_factor (struct type *type)
14f9c5c9
AS
10598{
10599 const char *encoding = fixed_type_info (type);
facc390f 10600 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10601 int n;
d2e4a39e 10602
facc390f
JB
10603 /* Strictly speaking, num's and den's are encoded as integer. However,
10604 they may not fit into a long, and they will have to be converted
10605 to DOUBLEST anyway. So scan them as DOUBLEST. */
10606 n = sscanf (encoding,
10607 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10608 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10609 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10610
10611 if (n < 2)
10612 return 1.0;
10613 else if (n == 4)
facc390f 10614 return num1 / den1;
d2e4a39e 10615 else
facc390f 10616 return num0 / den0;
14f9c5c9
AS
10617}
10618
10619
10620/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10621 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10622
10623DOUBLEST
ebf56fd3 10624ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10625{
d2e4a39e 10626 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10627}
10628
4c4b4cd2
PH
10629/* The representation of a fixed-point value of type TYPE
10630 corresponding to the value X. */
14f9c5c9
AS
10631
10632LONGEST
ebf56fd3 10633ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10634{
10635 return (LONGEST) (x / scaling_factor (type) + 0.5);
10636}
10637
14f9c5c9 10638\f
d2e4a39e 10639
4c4b4cd2 10640 /* Range types */
14f9c5c9
AS
10641
10642/* Scan STR beginning at position K for a discriminant name, and
10643 return the value of that discriminant field of DVAL in *PX. If
10644 PNEW_K is not null, put the position of the character beyond the
10645 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10646 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10647
10648static int
07d8f827 10649scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10650 int *pnew_k)
14f9c5c9
AS
10651{
10652 static char *bound_buffer = NULL;
10653 static size_t bound_buffer_len = 0;
10654 char *bound;
10655 char *pend;
d2e4a39e 10656 struct value *bound_val;
14f9c5c9
AS
10657
10658 if (dval == NULL || str == NULL || str[k] == '\0')
10659 return 0;
10660
d2e4a39e 10661 pend = strstr (str + k, "__");
14f9c5c9
AS
10662 if (pend == NULL)
10663 {
d2e4a39e 10664 bound = str + k;
14f9c5c9
AS
10665 k += strlen (bound);
10666 }
d2e4a39e 10667 else
14f9c5c9 10668 {
d2e4a39e 10669 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10670 bound = bound_buffer;
d2e4a39e
AS
10671 strncpy (bound_buffer, str + k, pend - (str + k));
10672 bound[pend - (str + k)] = '\0';
10673 k = pend - str;
14f9c5c9 10674 }
d2e4a39e 10675
df407dfe 10676 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10677 if (bound_val == NULL)
10678 return 0;
10679
10680 *px = value_as_long (bound_val);
10681 if (pnew_k != NULL)
10682 *pnew_k = k;
10683 return 1;
10684}
10685
10686/* Value of variable named NAME in the current environment. If
10687 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10688 otherwise causes an error with message ERR_MSG. */
10689
d2e4a39e
AS
10690static struct value *
10691get_var_value (char *name, char *err_msg)
14f9c5c9 10692{
4c4b4cd2 10693 struct ada_symbol_info *syms;
14f9c5c9
AS
10694 int nsyms;
10695
4c4b4cd2 10696 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10697 &syms, 1);
14f9c5c9
AS
10698
10699 if (nsyms != 1)
10700 {
10701 if (err_msg == NULL)
4c4b4cd2 10702 return 0;
14f9c5c9 10703 else
8a3fe4f8 10704 error (("%s"), err_msg);
14f9c5c9
AS
10705 }
10706
4c4b4cd2 10707 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10708}
d2e4a39e 10709
14f9c5c9 10710/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10711 no such variable found, returns 0, and sets *FLAG to 0. If
10712 successful, sets *FLAG to 1. */
10713
14f9c5c9 10714LONGEST
4c4b4cd2 10715get_int_var_value (char *name, int *flag)
14f9c5c9 10716{
4c4b4cd2 10717 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10718
14f9c5c9
AS
10719 if (var_val == 0)
10720 {
10721 if (flag != NULL)
4c4b4cd2 10722 *flag = 0;
14f9c5c9
AS
10723 return 0;
10724 }
10725 else
10726 {
10727 if (flag != NULL)
4c4b4cd2 10728 *flag = 1;
14f9c5c9
AS
10729 return value_as_long (var_val);
10730 }
10731}
d2e4a39e 10732
14f9c5c9
AS
10733
10734/* Return a range type whose base type is that of the range type named
10735 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10736 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10737 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10738 corresponding range type from debug information; fall back to using it
10739 if symbol lookup fails. If a new type must be created, allocate it
10740 like ORIG_TYPE was. The bounds information, in general, is encoded
10741 in NAME, the base type given in the named range type. */
14f9c5c9 10742
d2e4a39e 10743static struct type *
28c85d6c 10744to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10745{
0d5cff50 10746 const char *name;
14f9c5c9 10747 struct type *base_type;
d2e4a39e 10748 char *subtype_info;
14f9c5c9 10749
28c85d6c
JB
10750 gdb_assert (raw_type != NULL);
10751 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10752
1ce677a4 10753 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10754 base_type = TYPE_TARGET_TYPE (raw_type);
10755 else
10756 base_type = raw_type;
10757
28c85d6c 10758 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10759 subtype_info = strstr (name, "___XD");
10760 if (subtype_info == NULL)
690cc4eb 10761 {
43bbcdc2
PH
10762 LONGEST L = ada_discrete_type_low_bound (raw_type);
10763 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10764
690cc4eb
PH
10765 if (L < INT_MIN || U > INT_MAX)
10766 return raw_type;
10767 else
28c85d6c 10768 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10769 ada_discrete_type_low_bound (raw_type),
10770 ada_discrete_type_high_bound (raw_type));
690cc4eb 10771 }
14f9c5c9
AS
10772 else
10773 {
10774 static char *name_buf = NULL;
10775 static size_t name_len = 0;
10776 int prefix_len = subtype_info - name;
10777 LONGEST L, U;
10778 struct type *type;
10779 char *bounds_str;
10780 int n;
10781
10782 GROW_VECT (name_buf, name_len, prefix_len + 5);
10783 strncpy (name_buf, name, prefix_len);
10784 name_buf[prefix_len] = '\0';
10785
10786 subtype_info += 5;
10787 bounds_str = strchr (subtype_info, '_');
10788 n = 1;
10789
d2e4a39e 10790 if (*subtype_info == 'L')
4c4b4cd2
PH
10791 {
10792 if (!ada_scan_number (bounds_str, n, &L, &n)
10793 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10794 return raw_type;
10795 if (bounds_str[n] == '_')
10796 n += 2;
0963b4bd 10797 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10798 n += 1;
10799 subtype_info += 1;
10800 }
d2e4a39e 10801 else
4c4b4cd2
PH
10802 {
10803 int ok;
5b4ee69b 10804
4c4b4cd2
PH
10805 strcpy (name_buf + prefix_len, "___L");
10806 L = get_int_var_value (name_buf, &ok);
10807 if (!ok)
10808 {
323e0a4a 10809 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10810 L = 1;
10811 }
10812 }
14f9c5c9 10813
d2e4a39e 10814 if (*subtype_info == 'U')
4c4b4cd2
PH
10815 {
10816 if (!ada_scan_number (bounds_str, n, &U, &n)
10817 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10818 return raw_type;
10819 }
d2e4a39e 10820 else
4c4b4cd2
PH
10821 {
10822 int ok;
5b4ee69b 10823
4c4b4cd2
PH
10824 strcpy (name_buf + prefix_len, "___U");
10825 U = get_int_var_value (name_buf, &ok);
10826 if (!ok)
10827 {
323e0a4a 10828 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10829 U = L;
10830 }
10831 }
14f9c5c9 10832
28c85d6c 10833 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10834 TYPE_NAME (type) = name;
14f9c5c9
AS
10835 return type;
10836 }
10837}
10838
4c4b4cd2
PH
10839/* True iff NAME is the name of a range type. */
10840
14f9c5c9 10841int
d2e4a39e 10842ada_is_range_type_name (const char *name)
14f9c5c9
AS
10843{
10844 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10845}
14f9c5c9 10846\f
d2e4a39e 10847
4c4b4cd2
PH
10848 /* Modular types */
10849
10850/* True iff TYPE is an Ada modular type. */
14f9c5c9 10851
14f9c5c9 10852int
d2e4a39e 10853ada_is_modular_type (struct type *type)
14f9c5c9 10854{
18af8284 10855 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10856
10857 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10858 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10859 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10860}
10861
4c4b4cd2
PH
10862/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10863
61ee279c 10864ULONGEST
0056e4d5 10865ada_modulus (struct type *type)
14f9c5c9 10866{
43bbcdc2 10867 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10868}
d2e4a39e 10869\f
f7f9143b
JB
10870
10871/* Ada exception catchpoint support:
10872 ---------------------------------
10873
10874 We support 3 kinds of exception catchpoints:
10875 . catchpoints on Ada exceptions
10876 . catchpoints on unhandled Ada exceptions
10877 . catchpoints on failed assertions
10878
10879 Exceptions raised during failed assertions, or unhandled exceptions
10880 could perfectly be caught with the general catchpoint on Ada exceptions.
10881 However, we can easily differentiate these two special cases, and having
10882 the option to distinguish these two cases from the rest can be useful
10883 to zero-in on certain situations.
10884
10885 Exception catchpoints are a specialized form of breakpoint,
10886 since they rely on inserting breakpoints inside known routines
10887 of the GNAT runtime. The implementation therefore uses a standard
10888 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10889 of breakpoint_ops.
10890
0259addd
JB
10891 Support in the runtime for exception catchpoints have been changed
10892 a few times already, and these changes affect the implementation
10893 of these catchpoints. In order to be able to support several
10894 variants of the runtime, we use a sniffer that will determine
28010a5d 10895 the runtime variant used by the program being debugged. */
f7f9143b
JB
10896
10897/* The different types of catchpoints that we introduced for catching
10898 Ada exceptions. */
10899
10900enum exception_catchpoint_kind
10901{
10902 ex_catch_exception,
10903 ex_catch_exception_unhandled,
10904 ex_catch_assert
10905};
10906
3d0b0fa3
JB
10907/* Ada's standard exceptions. */
10908
10909static char *standard_exc[] = {
10910 "constraint_error",
10911 "program_error",
10912 "storage_error",
10913 "tasking_error"
10914};
10915
0259addd
JB
10916typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10917
10918/* A structure that describes how to support exception catchpoints
10919 for a given executable. */
10920
10921struct exception_support_info
10922{
10923 /* The name of the symbol to break on in order to insert
10924 a catchpoint on exceptions. */
10925 const char *catch_exception_sym;
10926
10927 /* The name of the symbol to break on in order to insert
10928 a catchpoint on unhandled exceptions. */
10929 const char *catch_exception_unhandled_sym;
10930
10931 /* The name of the symbol to break on in order to insert
10932 a catchpoint on failed assertions. */
10933 const char *catch_assert_sym;
10934
10935 /* Assuming that the inferior just triggered an unhandled exception
10936 catchpoint, this function is responsible for returning the address
10937 in inferior memory where the name of that exception is stored.
10938 Return zero if the address could not be computed. */
10939 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10940};
10941
10942static CORE_ADDR ada_unhandled_exception_name_addr (void);
10943static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10944
10945/* The following exception support info structure describes how to
10946 implement exception catchpoints with the latest version of the
10947 Ada runtime (as of 2007-03-06). */
10948
10949static const struct exception_support_info default_exception_support_info =
10950{
10951 "__gnat_debug_raise_exception", /* catch_exception_sym */
10952 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10953 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10954 ada_unhandled_exception_name_addr
10955};
10956
10957/* The following exception support info structure describes how to
10958 implement exception catchpoints with a slightly older version
10959 of the Ada runtime. */
10960
10961static const struct exception_support_info exception_support_info_fallback =
10962{
10963 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10964 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10965 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10966 ada_unhandled_exception_name_addr_from_raise
10967};
10968
f17011e0
JB
10969/* Return nonzero if we can detect the exception support routines
10970 described in EINFO.
10971
10972 This function errors out if an abnormal situation is detected
10973 (for instance, if we find the exception support routines, but
10974 that support is found to be incomplete). */
10975
10976static int
10977ada_has_this_exception_support (const struct exception_support_info *einfo)
10978{
10979 struct symbol *sym;
10980
10981 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10982 that should be compiled with debugging information. As a result, we
10983 expect to find that symbol in the symtabs. */
10984
10985 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10986 if (sym == NULL)
a6af7abe
JB
10987 {
10988 /* Perhaps we did not find our symbol because the Ada runtime was
10989 compiled without debugging info, or simply stripped of it.
10990 It happens on some GNU/Linux distributions for instance, where
10991 users have to install a separate debug package in order to get
10992 the runtime's debugging info. In that situation, let the user
10993 know why we cannot insert an Ada exception catchpoint.
10994
10995 Note: Just for the purpose of inserting our Ada exception
10996 catchpoint, we could rely purely on the associated minimal symbol.
10997 But we would be operating in degraded mode anyway, since we are
10998 still lacking the debugging info needed later on to extract
10999 the name of the exception being raised (this name is printed in
11000 the catchpoint message, and is also used when trying to catch
11001 a specific exception). We do not handle this case for now. */
11002 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11003 error (_("Your Ada runtime appears to be missing some debugging "
11004 "information.\nCannot insert Ada exception catchpoint "
11005 "in this configuration."));
11006
11007 return 0;
11008 }
f17011e0
JB
11009
11010 /* Make sure that the symbol we found corresponds to a function. */
11011
11012 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11013 error (_("Symbol \"%s\" is not a function (class = %d)"),
11014 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11015
11016 return 1;
11017}
11018
0259addd
JB
11019/* Inspect the Ada runtime and determine which exception info structure
11020 should be used to provide support for exception catchpoints.
11021
3eecfa55
JB
11022 This function will always set the per-inferior exception_info,
11023 or raise an error. */
0259addd
JB
11024
11025static void
11026ada_exception_support_info_sniffer (void)
11027{
3eecfa55 11028 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11029
11030 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11031 if (data->exception_info != NULL)
0259addd
JB
11032 return;
11033
11034 /* Check the latest (default) exception support info. */
f17011e0 11035 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11036 {
3eecfa55 11037 data->exception_info = &default_exception_support_info;
0259addd
JB
11038 return;
11039 }
11040
11041 /* Try our fallback exception suport info. */
f17011e0 11042 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11043 {
3eecfa55 11044 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11045 return;
11046 }
11047
11048 /* Sometimes, it is normal for us to not be able to find the routine
11049 we are looking for. This happens when the program is linked with
11050 the shared version of the GNAT runtime, and the program has not been
11051 started yet. Inform the user of these two possible causes if
11052 applicable. */
11053
ccefe4c4 11054 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11055 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11056
11057 /* If the symbol does not exist, then check that the program is
11058 already started, to make sure that shared libraries have been
11059 loaded. If it is not started, this may mean that the symbol is
11060 in a shared library. */
11061
11062 if (ptid_get_pid (inferior_ptid) == 0)
11063 error (_("Unable to insert catchpoint. Try to start the program first."));
11064
11065 /* At this point, we know that we are debugging an Ada program and
11066 that the inferior has been started, but we still are not able to
0963b4bd 11067 find the run-time symbols. That can mean that we are in
0259addd
JB
11068 configurable run time mode, or that a-except as been optimized
11069 out by the linker... In any case, at this point it is not worth
11070 supporting this feature. */
11071
7dda8cff 11072 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11073}
11074
f7f9143b
JB
11075/* True iff FRAME is very likely to be that of a function that is
11076 part of the runtime system. This is all very heuristic, but is
11077 intended to be used as advice as to what frames are uninteresting
11078 to most users. */
11079
11080static int
11081is_known_support_routine (struct frame_info *frame)
11082{
4ed6b5be 11083 struct symtab_and_line sal;
0d5cff50 11084 const char *func_name;
692465f1 11085 enum language func_lang;
f7f9143b 11086 int i;
f7f9143b 11087
4ed6b5be
JB
11088 /* If this code does not have any debugging information (no symtab),
11089 This cannot be any user code. */
f7f9143b 11090
4ed6b5be 11091 find_frame_sal (frame, &sal);
f7f9143b
JB
11092 if (sal.symtab == NULL)
11093 return 1;
11094
4ed6b5be
JB
11095 /* If there is a symtab, but the associated source file cannot be
11096 located, then assume this is not user code: Selecting a frame
11097 for which we cannot display the code would not be very helpful
11098 for the user. This should also take care of case such as VxWorks
11099 where the kernel has some debugging info provided for a few units. */
f7f9143b 11100
9bbc9174 11101 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
11102 return 1;
11103
4ed6b5be
JB
11104 /* Check the unit filename againt the Ada runtime file naming.
11105 We also check the name of the objfile against the name of some
11106 known system libraries that sometimes come with debugging info
11107 too. */
11108
f7f9143b
JB
11109 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11110 {
11111 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11112 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11113 return 1;
4ed6b5be
JB
11114 if (sal.symtab->objfile != NULL
11115 && re_exec (sal.symtab->objfile->name))
11116 return 1;
f7f9143b
JB
11117 }
11118
4ed6b5be 11119 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11120
e9e07ba6 11121 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11122 if (func_name == NULL)
11123 return 1;
11124
11125 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11126 {
11127 re_comp (known_auxiliary_function_name_patterns[i]);
11128 if (re_exec (func_name))
11129 return 1;
11130 }
11131
11132 return 0;
11133}
11134
11135/* Find the first frame that contains debugging information and that is not
11136 part of the Ada run-time, starting from FI and moving upward. */
11137
0ef643c8 11138void
f7f9143b
JB
11139ada_find_printable_frame (struct frame_info *fi)
11140{
11141 for (; fi != NULL; fi = get_prev_frame (fi))
11142 {
11143 if (!is_known_support_routine (fi))
11144 {
11145 select_frame (fi);
11146 break;
11147 }
11148 }
11149
11150}
11151
11152/* Assuming that the inferior just triggered an unhandled exception
11153 catchpoint, return the address in inferior memory where the name
11154 of the exception is stored.
11155
11156 Return zero if the address could not be computed. */
11157
11158static CORE_ADDR
11159ada_unhandled_exception_name_addr (void)
0259addd
JB
11160{
11161 return parse_and_eval_address ("e.full_name");
11162}
11163
11164/* Same as ada_unhandled_exception_name_addr, except that this function
11165 should be used when the inferior uses an older version of the runtime,
11166 where the exception name needs to be extracted from a specific frame
11167 several frames up in the callstack. */
11168
11169static CORE_ADDR
11170ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11171{
11172 int frame_level;
11173 struct frame_info *fi;
3eecfa55 11174 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11175
11176 /* To determine the name of this exception, we need to select
11177 the frame corresponding to RAISE_SYM_NAME. This frame is
11178 at least 3 levels up, so we simply skip the first 3 frames
11179 without checking the name of their associated function. */
11180 fi = get_current_frame ();
11181 for (frame_level = 0; frame_level < 3; frame_level += 1)
11182 if (fi != NULL)
11183 fi = get_prev_frame (fi);
11184
11185 while (fi != NULL)
11186 {
0d5cff50 11187 const char *func_name;
692465f1
JB
11188 enum language func_lang;
11189
e9e07ba6 11190 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11191 if (func_name != NULL
3eecfa55 11192 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11193 break; /* We found the frame we were looking for... */
11194 fi = get_prev_frame (fi);
11195 }
11196
11197 if (fi == NULL)
11198 return 0;
11199
11200 select_frame (fi);
11201 return parse_and_eval_address ("id.full_name");
11202}
11203
11204/* Assuming the inferior just triggered an Ada exception catchpoint
11205 (of any type), return the address in inferior memory where the name
11206 of the exception is stored, if applicable.
11207
11208 Return zero if the address could not be computed, or if not relevant. */
11209
11210static CORE_ADDR
11211ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11212 struct breakpoint *b)
11213{
3eecfa55
JB
11214 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11215
f7f9143b
JB
11216 switch (ex)
11217 {
11218 case ex_catch_exception:
11219 return (parse_and_eval_address ("e.full_name"));
11220 break;
11221
11222 case ex_catch_exception_unhandled:
3eecfa55 11223 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11224 break;
11225
11226 case ex_catch_assert:
11227 return 0; /* Exception name is not relevant in this case. */
11228 break;
11229
11230 default:
11231 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11232 break;
11233 }
11234
11235 return 0; /* Should never be reached. */
11236}
11237
11238/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11239 any error that ada_exception_name_addr_1 might cause to be thrown.
11240 When an error is intercepted, a warning with the error message is printed,
11241 and zero is returned. */
11242
11243static CORE_ADDR
11244ada_exception_name_addr (enum exception_catchpoint_kind ex,
11245 struct breakpoint *b)
11246{
bfd189b1 11247 volatile struct gdb_exception e;
f7f9143b
JB
11248 CORE_ADDR result = 0;
11249
11250 TRY_CATCH (e, RETURN_MASK_ERROR)
11251 {
11252 result = ada_exception_name_addr_1 (ex, b);
11253 }
11254
11255 if (e.reason < 0)
11256 {
11257 warning (_("failed to get exception name: %s"), e.message);
11258 return 0;
11259 }
11260
11261 return result;
11262}
11263
28010a5d
PA
11264static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11265 char *, char **,
c0a91b2b 11266 const struct breakpoint_ops **);
28010a5d
PA
11267static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11268
11269/* Ada catchpoints.
11270
11271 In the case of catchpoints on Ada exceptions, the catchpoint will
11272 stop the target on every exception the program throws. When a user
11273 specifies the name of a specific exception, we translate this
11274 request into a condition expression (in text form), and then parse
11275 it into an expression stored in each of the catchpoint's locations.
11276 We then use this condition to check whether the exception that was
11277 raised is the one the user is interested in. If not, then the
11278 target is resumed again. We store the name of the requested
11279 exception, in order to be able to re-set the condition expression
11280 when symbols change. */
11281
11282/* An instance of this type is used to represent an Ada catchpoint
11283 breakpoint location. It includes a "struct bp_location" as a kind
11284 of base class; users downcast to "struct bp_location *" when
11285 needed. */
11286
11287struct ada_catchpoint_location
11288{
11289 /* The base class. */
11290 struct bp_location base;
11291
11292 /* The condition that checks whether the exception that was raised
11293 is the specific exception the user specified on catchpoint
11294 creation. */
11295 struct expression *excep_cond_expr;
11296};
11297
11298/* Implement the DTOR method in the bp_location_ops structure for all
11299 Ada exception catchpoint kinds. */
11300
11301static void
11302ada_catchpoint_location_dtor (struct bp_location *bl)
11303{
11304 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11305
11306 xfree (al->excep_cond_expr);
11307}
11308
11309/* The vtable to be used in Ada catchpoint locations. */
11310
11311static const struct bp_location_ops ada_catchpoint_location_ops =
11312{
11313 ada_catchpoint_location_dtor
11314};
11315
11316/* An instance of this type is used to represent an Ada catchpoint.
11317 It includes a "struct breakpoint" as a kind of base class; users
11318 downcast to "struct breakpoint *" when needed. */
11319
11320struct ada_catchpoint
11321{
11322 /* The base class. */
11323 struct breakpoint base;
11324
11325 /* The name of the specific exception the user specified. */
11326 char *excep_string;
11327};
11328
11329/* Parse the exception condition string in the context of each of the
11330 catchpoint's locations, and store them for later evaluation. */
11331
11332static void
11333create_excep_cond_exprs (struct ada_catchpoint *c)
11334{
11335 struct cleanup *old_chain;
11336 struct bp_location *bl;
11337 char *cond_string;
11338
11339 /* Nothing to do if there's no specific exception to catch. */
11340 if (c->excep_string == NULL)
11341 return;
11342
11343 /* Same if there are no locations... */
11344 if (c->base.loc == NULL)
11345 return;
11346
11347 /* Compute the condition expression in text form, from the specific
11348 expection we want to catch. */
11349 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11350 old_chain = make_cleanup (xfree, cond_string);
11351
11352 /* Iterate over all the catchpoint's locations, and parse an
11353 expression for each. */
11354 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11355 {
11356 struct ada_catchpoint_location *ada_loc
11357 = (struct ada_catchpoint_location *) bl;
11358 struct expression *exp = NULL;
11359
11360 if (!bl->shlib_disabled)
11361 {
11362 volatile struct gdb_exception e;
11363 char *s;
11364
11365 s = cond_string;
11366 TRY_CATCH (e, RETURN_MASK_ERROR)
11367 {
1bb9788d
TT
11368 exp = parse_exp_1 (&s, bl->address,
11369 block_for_pc (bl->address), 0);
28010a5d
PA
11370 }
11371 if (e.reason < 0)
11372 warning (_("failed to reevaluate internal exception condition "
11373 "for catchpoint %d: %s"),
11374 c->base.number, e.message);
11375 }
11376
11377 ada_loc->excep_cond_expr = exp;
11378 }
11379
11380 do_cleanups (old_chain);
11381}
11382
11383/* Implement the DTOR method in the breakpoint_ops structure for all
11384 exception catchpoint kinds. */
11385
11386static void
11387dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11388{
11389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11390
11391 xfree (c->excep_string);
348d480f 11392
2060206e 11393 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11394}
11395
11396/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11397 structure for all exception catchpoint kinds. */
11398
11399static struct bp_location *
11400allocate_location_exception (enum exception_catchpoint_kind ex,
11401 struct breakpoint *self)
11402{
11403 struct ada_catchpoint_location *loc;
11404
11405 loc = XNEW (struct ada_catchpoint_location);
11406 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11407 loc->excep_cond_expr = NULL;
11408 return &loc->base;
11409}
11410
11411/* Implement the RE_SET method in the breakpoint_ops structure for all
11412 exception catchpoint kinds. */
11413
11414static void
11415re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11416{
11417 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11418
11419 /* Call the base class's method. This updates the catchpoint's
11420 locations. */
2060206e 11421 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11422
11423 /* Reparse the exception conditional expressions. One for each
11424 location. */
11425 create_excep_cond_exprs (c);
11426}
11427
11428/* Returns true if we should stop for this breakpoint hit. If the
11429 user specified a specific exception, we only want to cause a stop
11430 if the program thrown that exception. */
11431
11432static int
11433should_stop_exception (const struct bp_location *bl)
11434{
11435 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11436 const struct ada_catchpoint_location *ada_loc
11437 = (const struct ada_catchpoint_location *) bl;
11438 volatile struct gdb_exception ex;
11439 int stop;
11440
11441 /* With no specific exception, should always stop. */
11442 if (c->excep_string == NULL)
11443 return 1;
11444
11445 if (ada_loc->excep_cond_expr == NULL)
11446 {
11447 /* We will have a NULL expression if back when we were creating
11448 the expressions, this location's had failed to parse. */
11449 return 1;
11450 }
11451
11452 stop = 1;
11453 TRY_CATCH (ex, RETURN_MASK_ALL)
11454 {
11455 struct value *mark;
11456
11457 mark = value_mark ();
11458 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11459 value_free_to_mark (mark);
11460 }
11461 if (ex.reason < 0)
11462 exception_fprintf (gdb_stderr, ex,
11463 _("Error in testing exception condition:\n"));
11464 return stop;
11465}
11466
11467/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11468 for all exception catchpoint kinds. */
11469
11470static void
11471check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11472{
11473 bs->stop = should_stop_exception (bs->bp_location_at);
11474}
11475
f7f9143b
JB
11476/* Implement the PRINT_IT method in the breakpoint_ops structure
11477 for all exception catchpoint kinds. */
11478
11479static enum print_stop_action
348d480f 11480print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11481{
79a45e25 11482 struct ui_out *uiout = current_uiout;
348d480f
PA
11483 struct breakpoint *b = bs->breakpoint_at;
11484
956a9fb9 11485 annotate_catchpoint (b->number);
f7f9143b 11486
956a9fb9 11487 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11488 {
956a9fb9
JB
11489 ui_out_field_string (uiout, "reason",
11490 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11491 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11492 }
11493
00eb2c4a
JB
11494 ui_out_text (uiout,
11495 b->disposition == disp_del ? "\nTemporary catchpoint "
11496 : "\nCatchpoint ");
956a9fb9
JB
11497 ui_out_field_int (uiout, "bkptno", b->number);
11498 ui_out_text (uiout, ", ");
f7f9143b 11499
f7f9143b
JB
11500 switch (ex)
11501 {
11502 case ex_catch_exception:
f7f9143b 11503 case ex_catch_exception_unhandled:
956a9fb9
JB
11504 {
11505 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11506 char exception_name[256];
11507
11508 if (addr != 0)
11509 {
11510 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11511 exception_name [sizeof (exception_name) - 1] = '\0';
11512 }
11513 else
11514 {
11515 /* For some reason, we were unable to read the exception
11516 name. This could happen if the Runtime was compiled
11517 without debugging info, for instance. In that case,
11518 just replace the exception name by the generic string
11519 "exception" - it will read as "an exception" in the
11520 notification we are about to print. */
967cff16 11521 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11522 }
11523 /* In the case of unhandled exception breakpoints, we print
11524 the exception name as "unhandled EXCEPTION_NAME", to make
11525 it clearer to the user which kind of catchpoint just got
11526 hit. We used ui_out_text to make sure that this extra
11527 info does not pollute the exception name in the MI case. */
11528 if (ex == ex_catch_exception_unhandled)
11529 ui_out_text (uiout, "unhandled ");
11530 ui_out_field_string (uiout, "exception-name", exception_name);
11531 }
11532 break;
f7f9143b 11533 case ex_catch_assert:
956a9fb9
JB
11534 /* In this case, the name of the exception is not really
11535 important. Just print "failed assertion" to make it clearer
11536 that his program just hit an assertion-failure catchpoint.
11537 We used ui_out_text because this info does not belong in
11538 the MI output. */
11539 ui_out_text (uiout, "failed assertion");
11540 break;
f7f9143b 11541 }
956a9fb9
JB
11542 ui_out_text (uiout, " at ");
11543 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11544
11545 return PRINT_SRC_AND_LOC;
11546}
11547
11548/* Implement the PRINT_ONE method in the breakpoint_ops structure
11549 for all exception catchpoint kinds. */
11550
11551static void
11552print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11553 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11554{
79a45e25 11555 struct ui_out *uiout = current_uiout;
28010a5d 11556 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11557 struct value_print_options opts;
11558
11559 get_user_print_options (&opts);
11560 if (opts.addressprint)
f7f9143b
JB
11561 {
11562 annotate_field (4);
5af949e3 11563 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11564 }
11565
11566 annotate_field (5);
a6d9a66e 11567 *last_loc = b->loc;
f7f9143b
JB
11568 switch (ex)
11569 {
11570 case ex_catch_exception:
28010a5d 11571 if (c->excep_string != NULL)
f7f9143b 11572 {
28010a5d
PA
11573 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11574
f7f9143b
JB
11575 ui_out_field_string (uiout, "what", msg);
11576 xfree (msg);
11577 }
11578 else
11579 ui_out_field_string (uiout, "what", "all Ada exceptions");
11580
11581 break;
11582
11583 case ex_catch_exception_unhandled:
11584 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11585 break;
11586
11587 case ex_catch_assert:
11588 ui_out_field_string (uiout, "what", "failed Ada assertions");
11589 break;
11590
11591 default:
11592 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11593 break;
11594 }
11595}
11596
11597/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11598 for all exception catchpoint kinds. */
11599
11600static void
11601print_mention_exception (enum exception_catchpoint_kind ex,
11602 struct breakpoint *b)
11603{
28010a5d 11604 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11605 struct ui_out *uiout = current_uiout;
28010a5d 11606
00eb2c4a
JB
11607 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11608 : _("Catchpoint "));
11609 ui_out_field_int (uiout, "bkptno", b->number);
11610 ui_out_text (uiout, ": ");
11611
f7f9143b
JB
11612 switch (ex)
11613 {
11614 case ex_catch_exception:
28010a5d 11615 if (c->excep_string != NULL)
00eb2c4a
JB
11616 {
11617 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11618 struct cleanup *old_chain = make_cleanup (xfree, info);
11619
11620 ui_out_text (uiout, info);
11621 do_cleanups (old_chain);
11622 }
f7f9143b 11623 else
00eb2c4a 11624 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11625 break;
11626
11627 case ex_catch_exception_unhandled:
00eb2c4a 11628 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11629 break;
11630
11631 case ex_catch_assert:
00eb2c4a 11632 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11633 break;
11634
11635 default:
11636 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11637 break;
11638 }
11639}
11640
6149aea9
PA
11641/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11642 for all exception catchpoint kinds. */
11643
11644static void
11645print_recreate_exception (enum exception_catchpoint_kind ex,
11646 struct breakpoint *b, struct ui_file *fp)
11647{
28010a5d
PA
11648 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11649
6149aea9
PA
11650 switch (ex)
11651 {
11652 case ex_catch_exception:
11653 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11654 if (c->excep_string != NULL)
11655 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11656 break;
11657
11658 case ex_catch_exception_unhandled:
78076abc 11659 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11660 break;
11661
11662 case ex_catch_assert:
11663 fprintf_filtered (fp, "catch assert");
11664 break;
11665
11666 default:
11667 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11668 }
d9b3f62e 11669 print_recreate_thread (b, fp);
6149aea9
PA
11670}
11671
f7f9143b
JB
11672/* Virtual table for "catch exception" breakpoints. */
11673
28010a5d
PA
11674static void
11675dtor_catch_exception (struct breakpoint *b)
11676{
11677 dtor_exception (ex_catch_exception, b);
11678}
11679
11680static struct bp_location *
11681allocate_location_catch_exception (struct breakpoint *self)
11682{
11683 return allocate_location_exception (ex_catch_exception, self);
11684}
11685
11686static void
11687re_set_catch_exception (struct breakpoint *b)
11688{
11689 re_set_exception (ex_catch_exception, b);
11690}
11691
11692static void
11693check_status_catch_exception (bpstat bs)
11694{
11695 check_status_exception (ex_catch_exception, bs);
11696}
11697
f7f9143b 11698static enum print_stop_action
348d480f 11699print_it_catch_exception (bpstat bs)
f7f9143b 11700{
348d480f 11701 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11702}
11703
11704static void
a6d9a66e 11705print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11706{
a6d9a66e 11707 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11708}
11709
11710static void
11711print_mention_catch_exception (struct breakpoint *b)
11712{
11713 print_mention_exception (ex_catch_exception, b);
11714}
11715
6149aea9
PA
11716static void
11717print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11718{
11719 print_recreate_exception (ex_catch_exception, b, fp);
11720}
11721
2060206e 11722static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11723
11724/* Virtual table for "catch exception unhandled" breakpoints. */
11725
28010a5d
PA
11726static void
11727dtor_catch_exception_unhandled (struct breakpoint *b)
11728{
11729 dtor_exception (ex_catch_exception_unhandled, b);
11730}
11731
11732static struct bp_location *
11733allocate_location_catch_exception_unhandled (struct breakpoint *self)
11734{
11735 return allocate_location_exception (ex_catch_exception_unhandled, self);
11736}
11737
11738static void
11739re_set_catch_exception_unhandled (struct breakpoint *b)
11740{
11741 re_set_exception (ex_catch_exception_unhandled, b);
11742}
11743
11744static void
11745check_status_catch_exception_unhandled (bpstat bs)
11746{
11747 check_status_exception (ex_catch_exception_unhandled, bs);
11748}
11749
f7f9143b 11750static enum print_stop_action
348d480f 11751print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11752{
348d480f 11753 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11754}
11755
11756static void
a6d9a66e
UW
11757print_one_catch_exception_unhandled (struct breakpoint *b,
11758 struct bp_location **last_loc)
f7f9143b 11759{
a6d9a66e 11760 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11761}
11762
11763static void
11764print_mention_catch_exception_unhandled (struct breakpoint *b)
11765{
11766 print_mention_exception (ex_catch_exception_unhandled, b);
11767}
11768
6149aea9
PA
11769static void
11770print_recreate_catch_exception_unhandled (struct breakpoint *b,
11771 struct ui_file *fp)
11772{
11773 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11774}
11775
2060206e 11776static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11777
11778/* Virtual table for "catch assert" breakpoints. */
11779
28010a5d
PA
11780static void
11781dtor_catch_assert (struct breakpoint *b)
11782{
11783 dtor_exception (ex_catch_assert, b);
11784}
11785
11786static struct bp_location *
11787allocate_location_catch_assert (struct breakpoint *self)
11788{
11789 return allocate_location_exception (ex_catch_assert, self);
11790}
11791
11792static void
11793re_set_catch_assert (struct breakpoint *b)
11794{
11795 return re_set_exception (ex_catch_assert, b);
11796}
11797
11798static void
11799check_status_catch_assert (bpstat bs)
11800{
11801 check_status_exception (ex_catch_assert, bs);
11802}
11803
f7f9143b 11804static enum print_stop_action
348d480f 11805print_it_catch_assert (bpstat bs)
f7f9143b 11806{
348d480f 11807 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11808}
11809
11810static void
a6d9a66e 11811print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11812{
a6d9a66e 11813 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11814}
11815
11816static void
11817print_mention_catch_assert (struct breakpoint *b)
11818{
11819 print_mention_exception (ex_catch_assert, b);
11820}
11821
6149aea9
PA
11822static void
11823print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11824{
11825 print_recreate_exception (ex_catch_assert, b, fp);
11826}
11827
2060206e 11828static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11829
f7f9143b
JB
11830/* Return a newly allocated copy of the first space-separated token
11831 in ARGSP, and then adjust ARGSP to point immediately after that
11832 token.
11833
11834 Return NULL if ARGPS does not contain any more tokens. */
11835
11836static char *
11837ada_get_next_arg (char **argsp)
11838{
11839 char *args = *argsp;
11840 char *end;
11841 char *result;
11842
0fcd72ba 11843 args = skip_spaces (args);
f7f9143b
JB
11844 if (args[0] == '\0')
11845 return NULL; /* No more arguments. */
11846
11847 /* Find the end of the current argument. */
11848
0fcd72ba 11849 end = skip_to_space (args);
f7f9143b
JB
11850
11851 /* Adjust ARGSP to point to the start of the next argument. */
11852
11853 *argsp = end;
11854
11855 /* Make a copy of the current argument and return it. */
11856
11857 result = xmalloc (end - args + 1);
11858 strncpy (result, args, end - args);
11859 result[end - args] = '\0';
11860
11861 return result;
11862}
11863
11864/* Split the arguments specified in a "catch exception" command.
11865 Set EX to the appropriate catchpoint type.
28010a5d 11866 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11867 specified by the user.
11868 If a condition is found at the end of the arguments, the condition
11869 expression is stored in COND_STRING (memory must be deallocated
11870 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11871
11872static void
11873catch_ada_exception_command_split (char *args,
11874 enum exception_catchpoint_kind *ex,
5845583d
JB
11875 char **excep_string,
11876 char **cond_string)
f7f9143b
JB
11877{
11878 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11879 char *exception_name;
5845583d 11880 char *cond = NULL;
f7f9143b
JB
11881
11882 exception_name = ada_get_next_arg (&args);
5845583d
JB
11883 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11884 {
11885 /* This is not an exception name; this is the start of a condition
11886 expression for a catchpoint on all exceptions. So, "un-get"
11887 this token, and set exception_name to NULL. */
11888 xfree (exception_name);
11889 exception_name = NULL;
11890 args -= 2;
11891 }
f7f9143b
JB
11892 make_cleanup (xfree, exception_name);
11893
5845583d 11894 /* Check to see if we have a condition. */
f7f9143b 11895
0fcd72ba 11896 args = skip_spaces (args);
5845583d
JB
11897 if (strncmp (args, "if", 2) == 0
11898 && (isspace (args[2]) || args[2] == '\0'))
11899 {
11900 args += 2;
11901 args = skip_spaces (args);
11902
11903 if (args[0] == '\0')
11904 error (_("Condition missing after `if' keyword"));
11905 cond = xstrdup (args);
11906 make_cleanup (xfree, cond);
11907
11908 args += strlen (args);
11909 }
11910
11911 /* Check that we do not have any more arguments. Anything else
11912 is unexpected. */
f7f9143b
JB
11913
11914 if (args[0] != '\0')
11915 error (_("Junk at end of expression"));
11916
11917 discard_cleanups (old_chain);
11918
11919 if (exception_name == NULL)
11920 {
11921 /* Catch all exceptions. */
11922 *ex = ex_catch_exception;
28010a5d 11923 *excep_string = NULL;
f7f9143b
JB
11924 }
11925 else if (strcmp (exception_name, "unhandled") == 0)
11926 {
11927 /* Catch unhandled exceptions. */
11928 *ex = ex_catch_exception_unhandled;
28010a5d 11929 *excep_string = NULL;
f7f9143b
JB
11930 }
11931 else
11932 {
11933 /* Catch a specific exception. */
11934 *ex = ex_catch_exception;
28010a5d 11935 *excep_string = exception_name;
f7f9143b 11936 }
5845583d 11937 *cond_string = cond;
f7f9143b
JB
11938}
11939
11940/* Return the name of the symbol on which we should break in order to
11941 implement a catchpoint of the EX kind. */
11942
11943static const char *
11944ada_exception_sym_name (enum exception_catchpoint_kind ex)
11945{
3eecfa55
JB
11946 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11947
11948 gdb_assert (data->exception_info != NULL);
0259addd 11949
f7f9143b
JB
11950 switch (ex)
11951 {
11952 case ex_catch_exception:
3eecfa55 11953 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11954 break;
11955 case ex_catch_exception_unhandled:
3eecfa55 11956 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11957 break;
11958 case ex_catch_assert:
3eecfa55 11959 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11960 break;
11961 default:
11962 internal_error (__FILE__, __LINE__,
11963 _("unexpected catchpoint kind (%d)"), ex);
11964 }
11965}
11966
11967/* Return the breakpoint ops "virtual table" used for catchpoints
11968 of the EX kind. */
11969
c0a91b2b 11970static const struct breakpoint_ops *
4b9eee8c 11971ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11972{
11973 switch (ex)
11974 {
11975 case ex_catch_exception:
11976 return (&catch_exception_breakpoint_ops);
11977 break;
11978 case ex_catch_exception_unhandled:
11979 return (&catch_exception_unhandled_breakpoint_ops);
11980 break;
11981 case ex_catch_assert:
11982 return (&catch_assert_breakpoint_ops);
11983 break;
11984 default:
11985 internal_error (__FILE__, __LINE__,
11986 _("unexpected catchpoint kind (%d)"), ex);
11987 }
11988}
11989
11990/* Return the condition that will be used to match the current exception
11991 being raised with the exception that the user wants to catch. This
11992 assumes that this condition is used when the inferior just triggered
11993 an exception catchpoint.
11994
11995 The string returned is a newly allocated string that needs to be
11996 deallocated later. */
11997
11998static char *
28010a5d 11999ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12000{
3d0b0fa3
JB
12001 int i;
12002
0963b4bd 12003 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12004 runtime units that have been compiled without debugging info; if
28010a5d 12005 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12006 exception (e.g. "constraint_error") then, during the evaluation
12007 of the condition expression, the symbol lookup on this name would
0963b4bd 12008 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12009 may then be set only on user-defined exceptions which have the
12010 same not-fully-qualified name (e.g. my_package.constraint_error).
12011
12012 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12013 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12014 exception constraint_error" is rewritten into "catch exception
12015 standard.constraint_error".
12016
12017 If an exception named contraint_error is defined in another package of
12018 the inferior program, then the only way to specify this exception as a
12019 breakpoint condition is to use its fully-qualified named:
12020 e.g. my_package.constraint_error. */
12021
12022 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12023 {
28010a5d 12024 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12025 {
12026 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12027 excep_string);
3d0b0fa3
JB
12028 }
12029 }
28010a5d 12030 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12031}
12032
12033/* Return the symtab_and_line that should be used to insert an exception
12034 catchpoint of the TYPE kind.
12035
28010a5d
PA
12036 EXCEP_STRING should contain the name of a specific exception that
12037 the catchpoint should catch, or NULL otherwise.
f7f9143b 12038
28010a5d
PA
12039 ADDR_STRING returns the name of the function where the real
12040 breakpoint that implements the catchpoints is set, depending on the
12041 type of catchpoint we need to create. */
f7f9143b
JB
12042
12043static struct symtab_and_line
28010a5d 12044ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12045 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12046{
12047 const char *sym_name;
12048 struct symbol *sym;
f7f9143b 12049
0259addd
JB
12050 /* First, find out which exception support info to use. */
12051 ada_exception_support_info_sniffer ();
12052
12053 /* Then lookup the function on which we will break in order to catch
f7f9143b 12054 the Ada exceptions requested by the user. */
f7f9143b
JB
12055 sym_name = ada_exception_sym_name (ex);
12056 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12057
f17011e0
JB
12058 /* We can assume that SYM is not NULL at this stage. If the symbol
12059 did not exist, ada_exception_support_info_sniffer would have
12060 raised an exception.
f7f9143b 12061
f17011e0
JB
12062 Also, ada_exception_support_info_sniffer should have already
12063 verified that SYM is a function symbol. */
12064 gdb_assert (sym != NULL);
12065 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12066
12067 /* Set ADDR_STRING. */
f7f9143b
JB
12068 *addr_string = xstrdup (sym_name);
12069
f7f9143b 12070 /* Set OPS. */
4b9eee8c 12071 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12072
f17011e0 12073 return find_function_start_sal (sym, 1);
f7f9143b
JB
12074}
12075
12076/* Parse the arguments (ARGS) of the "catch exception" command.
12077
f7f9143b
JB
12078 If the user asked the catchpoint to catch only a specific
12079 exception, then save the exception name in ADDR_STRING.
12080
5845583d
JB
12081 If the user provided a condition, then set COND_STRING to
12082 that condition expression (the memory must be deallocated
12083 after use). Otherwise, set COND_STRING to NULL.
12084
f7f9143b
JB
12085 See ada_exception_sal for a description of all the remaining
12086 function arguments of this function. */
12087
9ac4176b 12088static struct symtab_and_line
f7f9143b 12089ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12090 char **excep_string,
5845583d 12091 char **cond_string,
c0a91b2b 12092 const struct breakpoint_ops **ops)
f7f9143b
JB
12093{
12094 enum exception_catchpoint_kind ex;
12095
5845583d 12096 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12097 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12098}
12099
12100/* Create an Ada exception catchpoint. */
12101
12102static void
12103create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12104 struct symtab_and_line sal,
12105 char *addr_string,
12106 char *excep_string,
5845583d 12107 char *cond_string,
c0a91b2b 12108 const struct breakpoint_ops *ops,
28010a5d
PA
12109 int tempflag,
12110 int from_tty)
12111{
12112 struct ada_catchpoint *c;
12113
12114 c = XNEW (struct ada_catchpoint);
12115 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12116 ops, tempflag, from_tty);
12117 c->excep_string = excep_string;
12118 create_excep_cond_exprs (c);
5845583d
JB
12119 if (cond_string != NULL)
12120 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12121 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12122}
12123
9ac4176b
PA
12124/* Implement the "catch exception" command. */
12125
12126static void
12127catch_ada_exception_command (char *arg, int from_tty,
12128 struct cmd_list_element *command)
12129{
12130 struct gdbarch *gdbarch = get_current_arch ();
12131 int tempflag;
12132 struct symtab_and_line sal;
12133 char *addr_string = NULL;
28010a5d 12134 char *excep_string = NULL;
5845583d 12135 char *cond_string = NULL;
c0a91b2b 12136 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12137
12138 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12139
12140 if (!arg)
12141 arg = "";
5845583d
JB
12142 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12143 &cond_string, &ops);
28010a5d 12144 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12145 excep_string, cond_string, ops,
12146 tempflag, from_tty);
9ac4176b
PA
12147}
12148
5845583d
JB
12149/* Assuming that ARGS contains the arguments of a "catch assert"
12150 command, parse those arguments and return a symtab_and_line object
12151 for a failed assertion catchpoint.
12152
12153 Set ADDR_STRING to the name of the function where the real
12154 breakpoint that implements the catchpoint is set.
12155
12156 If ARGS contains a condition, set COND_STRING to that condition
12157 (the memory needs to be deallocated after use). Otherwise, set
12158 COND_STRING to NULL. */
12159
9ac4176b 12160static struct symtab_and_line
f7f9143b 12161ada_decode_assert_location (char *args, char **addr_string,
5845583d 12162 char **cond_string,
c0a91b2b 12163 const struct breakpoint_ops **ops)
f7f9143b 12164{
5845583d 12165 args = skip_spaces (args);
f7f9143b 12166
5845583d
JB
12167 /* Check whether a condition was provided. */
12168 if (strncmp (args, "if", 2) == 0
12169 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12170 {
5845583d 12171 args += 2;
0fcd72ba 12172 args = skip_spaces (args);
5845583d
JB
12173 if (args[0] == '\0')
12174 error (_("condition missing after `if' keyword"));
12175 *cond_string = xstrdup (args);
f7f9143b
JB
12176 }
12177
5845583d
JB
12178 /* Otherwise, there should be no other argument at the end of
12179 the command. */
12180 else if (args[0] != '\0')
12181 error (_("Junk at end of arguments."));
12182
28010a5d 12183 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12184}
12185
9ac4176b
PA
12186/* Implement the "catch assert" command. */
12187
12188static void
12189catch_assert_command (char *arg, int from_tty,
12190 struct cmd_list_element *command)
12191{
12192 struct gdbarch *gdbarch = get_current_arch ();
12193 int tempflag;
12194 struct symtab_and_line sal;
12195 char *addr_string = NULL;
5845583d 12196 char *cond_string = NULL;
c0a91b2b 12197 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12198
12199 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12200
12201 if (!arg)
12202 arg = "";
5845583d 12203 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12204 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12205 NULL, cond_string, ops, tempflag,
12206 from_tty);
9ac4176b 12207}
4c4b4cd2
PH
12208 /* Operators */
12209/* Information about operators given special treatment in functions
12210 below. */
12211/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12212
12213#define ADA_OPERATORS \
12214 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12215 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12216 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12217 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12218 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12220 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12221 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12222 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12223 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12224 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12225 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12226 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12227 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12228 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12229 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12230 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12231 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12232 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12233
12234static void
554794dc
SDJ
12235ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12236 int *argsp)
4c4b4cd2
PH
12237{
12238 switch (exp->elts[pc - 1].opcode)
12239 {
76a01679 12240 default:
4c4b4cd2
PH
12241 operator_length_standard (exp, pc, oplenp, argsp);
12242 break;
12243
12244#define OP_DEFN(op, len, args, binop) \
12245 case op: *oplenp = len; *argsp = args; break;
12246 ADA_OPERATORS;
12247#undef OP_DEFN
52ce6436
PH
12248
12249 case OP_AGGREGATE:
12250 *oplenp = 3;
12251 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12252 break;
12253
12254 case OP_CHOICES:
12255 *oplenp = 3;
12256 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12257 break;
4c4b4cd2
PH
12258 }
12259}
12260
c0201579
JK
12261/* Implementation of the exp_descriptor method operator_check. */
12262
12263static int
12264ada_operator_check (struct expression *exp, int pos,
12265 int (*objfile_func) (struct objfile *objfile, void *data),
12266 void *data)
12267{
12268 const union exp_element *const elts = exp->elts;
12269 struct type *type = NULL;
12270
12271 switch (elts[pos].opcode)
12272 {
12273 case UNOP_IN_RANGE:
12274 case UNOP_QUAL:
12275 type = elts[pos + 1].type;
12276 break;
12277
12278 default:
12279 return operator_check_standard (exp, pos, objfile_func, data);
12280 }
12281
12282 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12283
12284 if (type && TYPE_OBJFILE (type)
12285 && (*objfile_func) (TYPE_OBJFILE (type), data))
12286 return 1;
12287
12288 return 0;
12289}
12290
4c4b4cd2
PH
12291static char *
12292ada_op_name (enum exp_opcode opcode)
12293{
12294 switch (opcode)
12295 {
76a01679 12296 default:
4c4b4cd2 12297 return op_name_standard (opcode);
52ce6436 12298
4c4b4cd2
PH
12299#define OP_DEFN(op, len, args, binop) case op: return #op;
12300 ADA_OPERATORS;
12301#undef OP_DEFN
52ce6436
PH
12302
12303 case OP_AGGREGATE:
12304 return "OP_AGGREGATE";
12305 case OP_CHOICES:
12306 return "OP_CHOICES";
12307 case OP_NAME:
12308 return "OP_NAME";
4c4b4cd2
PH
12309 }
12310}
12311
12312/* As for operator_length, but assumes PC is pointing at the first
12313 element of the operator, and gives meaningful results only for the
52ce6436 12314 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12315
12316static void
76a01679
JB
12317ada_forward_operator_length (struct expression *exp, int pc,
12318 int *oplenp, int *argsp)
4c4b4cd2 12319{
76a01679 12320 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12321 {
12322 default:
12323 *oplenp = *argsp = 0;
12324 break;
52ce6436 12325
4c4b4cd2
PH
12326#define OP_DEFN(op, len, args, binop) \
12327 case op: *oplenp = len; *argsp = args; break;
12328 ADA_OPERATORS;
12329#undef OP_DEFN
52ce6436
PH
12330
12331 case OP_AGGREGATE:
12332 *oplenp = 3;
12333 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12334 break;
12335
12336 case OP_CHOICES:
12337 *oplenp = 3;
12338 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12339 break;
12340
12341 case OP_STRING:
12342 case OP_NAME:
12343 {
12344 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12345
52ce6436
PH
12346 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12347 *argsp = 0;
12348 break;
12349 }
4c4b4cd2
PH
12350 }
12351}
12352
12353static int
12354ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12355{
12356 enum exp_opcode op = exp->elts[elt].opcode;
12357 int oplen, nargs;
12358 int pc = elt;
12359 int i;
76a01679 12360
4c4b4cd2
PH
12361 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12362
76a01679 12363 switch (op)
4c4b4cd2 12364 {
76a01679 12365 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12366 case OP_ATR_FIRST:
12367 case OP_ATR_LAST:
12368 case OP_ATR_LENGTH:
12369 case OP_ATR_IMAGE:
12370 case OP_ATR_MAX:
12371 case OP_ATR_MIN:
12372 case OP_ATR_MODULUS:
12373 case OP_ATR_POS:
12374 case OP_ATR_SIZE:
12375 case OP_ATR_TAG:
12376 case OP_ATR_VAL:
12377 break;
12378
12379 case UNOP_IN_RANGE:
12380 case UNOP_QUAL:
323e0a4a
AC
12381 /* XXX: gdb_sprint_host_address, type_sprint */
12382 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12383 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12384 fprintf_filtered (stream, " (");
12385 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12386 fprintf_filtered (stream, ")");
12387 break;
12388 case BINOP_IN_BOUNDS:
52ce6436
PH
12389 fprintf_filtered (stream, " (%d)",
12390 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12391 break;
12392 case TERNOP_IN_RANGE:
12393 break;
12394
52ce6436
PH
12395 case OP_AGGREGATE:
12396 case OP_OTHERS:
12397 case OP_DISCRETE_RANGE:
12398 case OP_POSITIONAL:
12399 case OP_CHOICES:
12400 break;
12401
12402 case OP_NAME:
12403 case OP_STRING:
12404 {
12405 char *name = &exp->elts[elt + 2].string;
12406 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12407
52ce6436
PH
12408 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12409 break;
12410 }
12411
4c4b4cd2
PH
12412 default:
12413 return dump_subexp_body_standard (exp, stream, elt);
12414 }
12415
12416 elt += oplen;
12417 for (i = 0; i < nargs; i += 1)
12418 elt = dump_subexp (exp, stream, elt);
12419
12420 return elt;
12421}
12422
12423/* The Ada extension of print_subexp (q.v.). */
12424
76a01679
JB
12425static void
12426ada_print_subexp (struct expression *exp, int *pos,
12427 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12428{
52ce6436 12429 int oplen, nargs, i;
4c4b4cd2
PH
12430 int pc = *pos;
12431 enum exp_opcode op = exp->elts[pc].opcode;
12432
12433 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12434
52ce6436 12435 *pos += oplen;
4c4b4cd2
PH
12436 switch (op)
12437 {
12438 default:
52ce6436 12439 *pos -= oplen;
4c4b4cd2
PH
12440 print_subexp_standard (exp, pos, stream, prec);
12441 return;
12442
12443 case OP_VAR_VALUE:
4c4b4cd2
PH
12444 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12445 return;
12446
12447 case BINOP_IN_BOUNDS:
323e0a4a 12448 /* XXX: sprint_subexp */
4c4b4cd2 12449 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12450 fputs_filtered (" in ", stream);
4c4b4cd2 12451 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12452 fputs_filtered ("'range", stream);
4c4b4cd2 12453 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12454 fprintf_filtered (stream, "(%ld)",
12455 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12456 return;
12457
12458 case TERNOP_IN_RANGE:
4c4b4cd2 12459 if (prec >= PREC_EQUAL)
76a01679 12460 fputs_filtered ("(", stream);
323e0a4a 12461 /* XXX: sprint_subexp */
4c4b4cd2 12462 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12463 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12464 print_subexp (exp, pos, stream, PREC_EQUAL);
12465 fputs_filtered (" .. ", stream);
12466 print_subexp (exp, pos, stream, PREC_EQUAL);
12467 if (prec >= PREC_EQUAL)
76a01679
JB
12468 fputs_filtered (")", stream);
12469 return;
4c4b4cd2
PH
12470
12471 case OP_ATR_FIRST:
12472 case OP_ATR_LAST:
12473 case OP_ATR_LENGTH:
12474 case OP_ATR_IMAGE:
12475 case OP_ATR_MAX:
12476 case OP_ATR_MIN:
12477 case OP_ATR_MODULUS:
12478 case OP_ATR_POS:
12479 case OP_ATR_SIZE:
12480 case OP_ATR_TAG:
12481 case OP_ATR_VAL:
4c4b4cd2 12482 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12483 {
12484 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12485 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12486 &type_print_raw_options);
76a01679
JB
12487 *pos += 3;
12488 }
4c4b4cd2 12489 else
76a01679 12490 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12491 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12492 if (nargs > 1)
76a01679
JB
12493 {
12494 int tem;
5b4ee69b 12495
76a01679
JB
12496 for (tem = 1; tem < nargs; tem += 1)
12497 {
12498 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12499 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12500 }
12501 fputs_filtered (")", stream);
12502 }
4c4b4cd2 12503 return;
14f9c5c9 12504
4c4b4cd2 12505 case UNOP_QUAL:
4c4b4cd2
PH
12506 type_print (exp->elts[pc + 1].type, "", stream, 0);
12507 fputs_filtered ("'(", stream);
12508 print_subexp (exp, pos, stream, PREC_PREFIX);
12509 fputs_filtered (")", stream);
12510 return;
14f9c5c9 12511
4c4b4cd2 12512 case UNOP_IN_RANGE:
323e0a4a 12513 /* XXX: sprint_subexp */
4c4b4cd2 12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12515 fputs_filtered (" in ", stream);
79d43c61
TT
12516 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12517 &type_print_raw_options);
4c4b4cd2 12518 return;
52ce6436
PH
12519
12520 case OP_DISCRETE_RANGE:
12521 print_subexp (exp, pos, stream, PREC_SUFFIX);
12522 fputs_filtered ("..", stream);
12523 print_subexp (exp, pos, stream, PREC_SUFFIX);
12524 return;
12525
12526 case OP_OTHERS:
12527 fputs_filtered ("others => ", stream);
12528 print_subexp (exp, pos, stream, PREC_SUFFIX);
12529 return;
12530
12531 case OP_CHOICES:
12532 for (i = 0; i < nargs-1; i += 1)
12533 {
12534 if (i > 0)
12535 fputs_filtered ("|", stream);
12536 print_subexp (exp, pos, stream, PREC_SUFFIX);
12537 }
12538 fputs_filtered (" => ", stream);
12539 print_subexp (exp, pos, stream, PREC_SUFFIX);
12540 return;
12541
12542 case OP_POSITIONAL:
12543 print_subexp (exp, pos, stream, PREC_SUFFIX);
12544 return;
12545
12546 case OP_AGGREGATE:
12547 fputs_filtered ("(", stream);
12548 for (i = 0; i < nargs; i += 1)
12549 {
12550 if (i > 0)
12551 fputs_filtered (", ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 }
12554 fputs_filtered (")", stream);
12555 return;
4c4b4cd2
PH
12556 }
12557}
14f9c5c9
AS
12558
12559/* Table mapping opcodes into strings for printing operators
12560 and precedences of the operators. */
12561
d2e4a39e
AS
12562static const struct op_print ada_op_print_tab[] = {
12563 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12564 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12565 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12566 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12567 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12568 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12569 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12570 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12571 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12572 {">=", BINOP_GEQ, PREC_ORDER, 0},
12573 {">", BINOP_GTR, PREC_ORDER, 0},
12574 {"<", BINOP_LESS, PREC_ORDER, 0},
12575 {">>", BINOP_RSH, PREC_SHIFT, 0},
12576 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12577 {"+", BINOP_ADD, PREC_ADD, 0},
12578 {"-", BINOP_SUB, PREC_ADD, 0},
12579 {"&", BINOP_CONCAT, PREC_ADD, 0},
12580 {"*", BINOP_MUL, PREC_MUL, 0},
12581 {"/", BINOP_DIV, PREC_MUL, 0},
12582 {"rem", BINOP_REM, PREC_MUL, 0},
12583 {"mod", BINOP_MOD, PREC_MUL, 0},
12584 {"**", BINOP_EXP, PREC_REPEAT, 0},
12585 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12586 {"-", UNOP_NEG, PREC_PREFIX, 0},
12587 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12588 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12589 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12590 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12591 {".all", UNOP_IND, PREC_SUFFIX, 1},
12592 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12593 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12594 {NULL, 0, 0, 0}
14f9c5c9
AS
12595};
12596\f
72d5681a
PH
12597enum ada_primitive_types {
12598 ada_primitive_type_int,
12599 ada_primitive_type_long,
12600 ada_primitive_type_short,
12601 ada_primitive_type_char,
12602 ada_primitive_type_float,
12603 ada_primitive_type_double,
12604 ada_primitive_type_void,
12605 ada_primitive_type_long_long,
12606 ada_primitive_type_long_double,
12607 ada_primitive_type_natural,
12608 ada_primitive_type_positive,
12609 ada_primitive_type_system_address,
12610 nr_ada_primitive_types
12611};
6c038f32
PH
12612
12613static void
d4a9a881 12614ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12615 struct language_arch_info *lai)
12616{
d4a9a881 12617 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12618
72d5681a 12619 lai->primitive_type_vector
d4a9a881 12620 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12621 struct type *);
e9bb382b
UW
12622
12623 lai->primitive_type_vector [ada_primitive_type_int]
12624 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12625 0, "integer");
12626 lai->primitive_type_vector [ada_primitive_type_long]
12627 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12628 0, "long_integer");
12629 lai->primitive_type_vector [ada_primitive_type_short]
12630 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12631 0, "short_integer");
12632 lai->string_char_type
12633 = lai->primitive_type_vector [ada_primitive_type_char]
12634 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12635 lai->primitive_type_vector [ada_primitive_type_float]
12636 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12637 "float", NULL);
12638 lai->primitive_type_vector [ada_primitive_type_double]
12639 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12640 "long_float", NULL);
12641 lai->primitive_type_vector [ada_primitive_type_long_long]
12642 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12643 0, "long_long_integer");
12644 lai->primitive_type_vector [ada_primitive_type_long_double]
12645 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12646 "long_long_float", NULL);
12647 lai->primitive_type_vector [ada_primitive_type_natural]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12649 0, "natural");
12650 lai->primitive_type_vector [ada_primitive_type_positive]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "positive");
12653 lai->primitive_type_vector [ada_primitive_type_void]
12654 = builtin->builtin_void;
12655
12656 lai->primitive_type_vector [ada_primitive_type_system_address]
12657 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12658 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12659 = "system__address";
fbb06eb1 12660
47e729a8 12661 lai->bool_type_symbol = NULL;
fbb06eb1 12662 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12663}
6c038f32
PH
12664\f
12665 /* Language vector */
12666
12667/* Not really used, but needed in the ada_language_defn. */
12668
12669static void
6c7a06a3 12670emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12671{
6c7a06a3 12672 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12673}
12674
12675static int
12676parse (void)
12677{
12678 warnings_issued = 0;
12679 return ada_parse ();
12680}
12681
12682static const struct exp_descriptor ada_exp_descriptor = {
12683 ada_print_subexp,
12684 ada_operator_length,
c0201579 12685 ada_operator_check,
6c038f32
PH
12686 ada_op_name,
12687 ada_dump_subexp_body,
12688 ada_evaluate_subexp
12689};
12690
1a119f36 12691/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12692 for Ada. */
12693
1a119f36
JB
12694static symbol_name_cmp_ftype
12695ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12696{
12697 if (should_use_wild_match (lookup_name))
12698 return wild_match;
12699 else
12700 return compare_names;
12701}
12702
a5ee536b
JB
12703/* Implement the "la_read_var_value" language_defn method for Ada. */
12704
12705static struct value *
12706ada_read_var_value (struct symbol *var, struct frame_info *frame)
12707{
12708 struct block *frame_block = NULL;
12709 struct symbol *renaming_sym = NULL;
12710
12711 /* The only case where default_read_var_value is not sufficient
12712 is when VAR is a renaming... */
12713 if (frame)
12714 frame_block = get_frame_block (frame, NULL);
12715 if (frame_block)
12716 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12717 if (renaming_sym != NULL)
12718 return ada_read_renaming_var_value (renaming_sym, frame_block);
12719
12720 /* This is a typical case where we expect the default_read_var_value
12721 function to work. */
12722 return default_read_var_value (var, frame);
12723}
12724
6c038f32
PH
12725const struct language_defn ada_language_defn = {
12726 "ada", /* Language name */
12727 language_ada,
6c038f32 12728 range_check_off,
6c038f32
PH
12729 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12730 that's not quite what this means. */
6c038f32 12731 array_row_major,
9a044a89 12732 macro_expansion_no,
6c038f32
PH
12733 &ada_exp_descriptor,
12734 parse,
12735 ada_error,
12736 resolve,
12737 ada_printchar, /* Print a character constant */
12738 ada_printstr, /* Function to print string constant */
12739 emit_char, /* Function to print single char (not used) */
6c038f32 12740 ada_print_type, /* Print a type using appropriate syntax */
be942545 12741 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12742 ada_val_print, /* Print a value using appropriate syntax */
12743 ada_value_print, /* Print a top-level value */
a5ee536b 12744 ada_read_var_value, /* la_read_var_value */
6c038f32 12745 NULL, /* Language specific skip_trampoline */
2b2d9e11 12746 NULL, /* name_of_this */
6c038f32
PH
12747 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12748 basic_lookup_transparent_type, /* lookup_transparent_type */
12749 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12750 NULL, /* Language specific
12751 class_name_from_physname */
6c038f32
PH
12752 ada_op_print_tab, /* expression operators for printing */
12753 0, /* c-style arrays */
12754 1, /* String lower bound */
6c038f32 12755 ada_get_gdb_completer_word_break_characters,
41d27058 12756 ada_make_symbol_completion_list,
72d5681a 12757 ada_language_arch_info,
e79af960 12758 ada_print_array_index,
41f1b697 12759 default_pass_by_reference,
ae6a3a4c 12760 c_get_string,
1a119f36 12761 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12762 ada_iterate_over_symbols,
6c038f32
PH
12763 LANG_MAGIC
12764};
12765
2c0b251b
PA
12766/* Provide a prototype to silence -Wmissing-prototypes. */
12767extern initialize_file_ftype _initialize_ada_language;
12768
5bf03f13
JB
12769/* Command-list for the "set/show ada" prefix command. */
12770static struct cmd_list_element *set_ada_list;
12771static struct cmd_list_element *show_ada_list;
12772
12773/* Implement the "set ada" prefix command. */
12774
12775static void
12776set_ada_command (char *arg, int from_tty)
12777{
12778 printf_unfiltered (_(\
12779"\"set ada\" must be followed by the name of a setting.\n"));
12780 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12781}
12782
12783/* Implement the "show ada" prefix command. */
12784
12785static void
12786show_ada_command (char *args, int from_tty)
12787{
12788 cmd_show_list (show_ada_list, from_tty, "");
12789}
12790
2060206e
PA
12791static void
12792initialize_ada_catchpoint_ops (void)
12793{
12794 struct breakpoint_ops *ops;
12795
12796 initialize_breakpoint_ops ();
12797
12798 ops = &catch_exception_breakpoint_ops;
12799 *ops = bkpt_breakpoint_ops;
12800 ops->dtor = dtor_catch_exception;
12801 ops->allocate_location = allocate_location_catch_exception;
12802 ops->re_set = re_set_catch_exception;
12803 ops->check_status = check_status_catch_exception;
12804 ops->print_it = print_it_catch_exception;
12805 ops->print_one = print_one_catch_exception;
12806 ops->print_mention = print_mention_catch_exception;
12807 ops->print_recreate = print_recreate_catch_exception;
12808
12809 ops = &catch_exception_unhandled_breakpoint_ops;
12810 *ops = bkpt_breakpoint_ops;
12811 ops->dtor = dtor_catch_exception_unhandled;
12812 ops->allocate_location = allocate_location_catch_exception_unhandled;
12813 ops->re_set = re_set_catch_exception_unhandled;
12814 ops->check_status = check_status_catch_exception_unhandled;
12815 ops->print_it = print_it_catch_exception_unhandled;
12816 ops->print_one = print_one_catch_exception_unhandled;
12817 ops->print_mention = print_mention_catch_exception_unhandled;
12818 ops->print_recreate = print_recreate_catch_exception_unhandled;
12819
12820 ops = &catch_assert_breakpoint_ops;
12821 *ops = bkpt_breakpoint_ops;
12822 ops->dtor = dtor_catch_assert;
12823 ops->allocate_location = allocate_location_catch_assert;
12824 ops->re_set = re_set_catch_assert;
12825 ops->check_status = check_status_catch_assert;
12826 ops->print_it = print_it_catch_assert;
12827 ops->print_one = print_one_catch_assert;
12828 ops->print_mention = print_mention_catch_assert;
12829 ops->print_recreate = print_recreate_catch_assert;
12830}
12831
d2e4a39e 12832void
6c038f32 12833_initialize_ada_language (void)
14f9c5c9 12834{
6c038f32
PH
12835 add_language (&ada_language_defn);
12836
2060206e
PA
12837 initialize_ada_catchpoint_ops ();
12838
5bf03f13
JB
12839 add_prefix_cmd ("ada", no_class, set_ada_command,
12840 _("Prefix command for changing Ada-specfic settings"),
12841 &set_ada_list, "set ada ", 0, &setlist);
12842
12843 add_prefix_cmd ("ada", no_class, show_ada_command,
12844 _("Generic command for showing Ada-specific settings."),
12845 &show_ada_list, "show ada ", 0, &showlist);
12846
12847 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12848 &trust_pad_over_xvs, _("\
12849Enable or disable an optimization trusting PAD types over XVS types"), _("\
12850Show whether an optimization trusting PAD types over XVS types is activated"),
12851 _("\
12852This is related to the encoding used by the GNAT compiler. The debugger\n\
12853should normally trust the contents of PAD types, but certain older versions\n\
12854of GNAT have a bug that sometimes causes the information in the PAD type\n\
12855to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12856work around this bug. It is always safe to turn this option \"off\", but\n\
12857this incurs a slight performance penalty, so it is recommended to NOT change\n\
12858this option to \"off\" unless necessary."),
12859 NULL, NULL, &set_ada_list, &show_ada_list);
12860
9ac4176b
PA
12861 add_catch_command ("exception", _("\
12862Catch Ada exceptions, when raised.\n\
12863With an argument, catch only exceptions with the given name."),
12864 catch_ada_exception_command,
12865 NULL,
12866 CATCH_PERMANENT,
12867 CATCH_TEMPORARY);
12868 add_catch_command ("assert", _("\
12869Catch failed Ada assertions, when raised.\n\
12870With an argument, catch only exceptions with the given name."),
12871 catch_assert_command,
12872 NULL,
12873 CATCH_PERMANENT,
12874 CATCH_TEMPORARY);
12875
6c038f32 12876 varsize_limit = 65536;
6c038f32
PH
12877
12878 obstack_init (&symbol_list_obstack);
12879
12880 decoded_names_store = htab_create_alloc
12881 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12882 NULL, xcalloc, xfree);
6b69afc4 12883
e802dbe0
JB
12884 /* Setup per-inferior data. */
12885 observer_attach_inferior_exit (ada_inferior_exit);
12886 ada_inferior_data
8e260fc0 12887 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12888}