]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
32d0add0 | 3 | Copyright (C) 1992-2015 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
ccefe4c4 | 63 | |
4c4b4cd2 | 64 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 65 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
66 | Copied from valarith.c. */ |
67 | ||
68 | #ifndef TRUNCATION_TOWARDS_ZERO | |
69 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
70 | #endif | |
71 | ||
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
40658b94 PH |
104 | static int full_match (const char *, const char *); |
105 | ||
40bc484c | 106 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 107 | |
4c4b4cd2 | 108 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 109 | const struct block *, const char *, |
2570f2b7 | 110 | domain_enum, struct objfile *, int); |
14f9c5c9 | 111 | |
22cee43f PMR |
112 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
113 | const char *, domain_enum, int, int *); | |
114 | ||
d12307c1 | 115 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 118 | const struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
d12307c1 | 122 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 128 | struct symbol *, const struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 150 | const struct block *); |
aeb5907d | 151 | |
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
108d56a4 | 218 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
219 | struct type *); |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
0d5cff50 | 224 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
d12307c1 | 230 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
231 | struct value **, int, const char *, |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab | 238 | |
52ce6436 PH |
239 | static struct value *ada_index_struct_field (int, struct value *, int, |
240 | struct type *); | |
241 | ||
242 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
243 | struct expression *, |
244 | int *, enum noside); | |
52ce6436 PH |
245 | |
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
852dff6c JB |
270 | |
271 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
ee01b665 JB |
274 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
275 | ||
276 | struct cache_entry | |
277 | { | |
278 | /* The name used to perform the lookup. */ | |
279 | const char *name; | |
280 | /* The namespace used during the lookup. */ | |
fe978cb0 | 281 | domain_enum domain; |
ee01b665 JB |
282 | /* The symbol returned by the lookup, or NULL if no matching symbol |
283 | was found. */ | |
284 | struct symbol *sym; | |
285 | /* The block where the symbol was found, or NULL if no matching | |
286 | symbol was found. */ | |
287 | const struct block *block; | |
288 | /* A pointer to the next entry with the same hash. */ | |
289 | struct cache_entry *next; | |
290 | }; | |
291 | ||
292 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
293 | lookups in the course of executing the user's commands. | |
294 | ||
295 | The cache is implemented using a simple, fixed-sized hash. | |
296 | The size is fixed on the grounds that there are not likely to be | |
297 | all that many symbols looked up during any given session, regardless | |
298 | of the size of the symbol table. If we decide to go to a resizable | |
299 | table, let's just use the stuff from libiberty instead. */ | |
300 | ||
301 | #define HASH_SIZE 1009 | |
302 | ||
303 | struct ada_symbol_cache | |
304 | { | |
305 | /* An obstack used to store the entries in our cache. */ | |
306 | struct obstack cache_space; | |
307 | ||
308 | /* The root of the hash table used to implement our symbol cache. */ | |
309 | struct cache_entry *root[HASH_SIZE]; | |
310 | }; | |
311 | ||
312 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 313 | |
4c4b4cd2 | 314 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
315 | static unsigned int varsize_limit; |
316 | ||
4c4b4cd2 PH |
317 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
318 | returned by a function that does not return a const char *. */ | |
319 | static char *ada_completer_word_break_characters = | |
320 | #ifdef VMS | |
321 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
322 | #else | |
14f9c5c9 | 323 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 324 | #endif |
14f9c5c9 | 325 | |
4c4b4cd2 | 326 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 327 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 328 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 329 | |
4c4b4cd2 PH |
330 | /* Limit on the number of warnings to raise per expression evaluation. */ |
331 | static int warning_limit = 2; | |
332 | ||
333 | /* Number of warning messages issued; reset to 0 by cleanups after | |
334 | expression evaluation. */ | |
335 | static int warnings_issued = 0; | |
336 | ||
337 | static const char *known_runtime_file_name_patterns[] = { | |
338 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
339 | }; | |
340 | ||
341 | static const char *known_auxiliary_function_name_patterns[] = { | |
342 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
343 | }; | |
344 | ||
345 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
346 | static struct obstack symbol_list_obstack; | |
347 | ||
c6044dd1 JB |
348 | /* Maintenance-related settings for this module. */ |
349 | ||
350 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
351 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
352 | ||
353 | /* Implement the "maintenance set ada" (prefix) command. */ | |
354 | ||
355 | static void | |
356 | maint_set_ada_cmd (char *args, int from_tty) | |
357 | { | |
635c7e8a TT |
358 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
359 | gdb_stdout); | |
c6044dd1 JB |
360 | } |
361 | ||
362 | /* Implement the "maintenance show ada" (prefix) command. */ | |
363 | ||
364 | static void | |
365 | maint_show_ada_cmd (char *args, int from_tty) | |
366 | { | |
367 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
368 | } | |
369 | ||
370 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
371 | ||
372 | static int ada_ignore_descriptive_types_p = 0; | |
373 | ||
e802dbe0 JB |
374 | /* Inferior-specific data. */ |
375 | ||
376 | /* Per-inferior data for this module. */ | |
377 | ||
378 | struct ada_inferior_data | |
379 | { | |
380 | /* The ada__tags__type_specific_data type, which is used when decoding | |
381 | tagged types. With older versions of GNAT, this type was directly | |
382 | accessible through a component ("tsd") in the object tag. But this | |
383 | is no longer the case, so we cache it for each inferior. */ | |
384 | struct type *tsd_type; | |
3eecfa55 JB |
385 | |
386 | /* The exception_support_info data. This data is used to determine | |
387 | how to implement support for Ada exception catchpoints in a given | |
388 | inferior. */ | |
389 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
390 | }; |
391 | ||
392 | /* Our key to this module's inferior data. */ | |
393 | static const struct inferior_data *ada_inferior_data; | |
394 | ||
395 | /* A cleanup routine for our inferior data. */ | |
396 | static void | |
397 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
398 | { | |
399 | struct ada_inferior_data *data; | |
400 | ||
9a3c8263 | 401 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
402 | if (data != NULL) |
403 | xfree (data); | |
404 | } | |
405 | ||
406 | /* Return our inferior data for the given inferior (INF). | |
407 | ||
408 | This function always returns a valid pointer to an allocated | |
409 | ada_inferior_data structure. If INF's inferior data has not | |
410 | been previously set, this functions creates a new one with all | |
411 | fields set to zero, sets INF's inferior to it, and then returns | |
412 | a pointer to that newly allocated ada_inferior_data. */ | |
413 | ||
414 | static struct ada_inferior_data * | |
415 | get_ada_inferior_data (struct inferior *inf) | |
416 | { | |
417 | struct ada_inferior_data *data; | |
418 | ||
9a3c8263 | 419 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
420 | if (data == NULL) |
421 | { | |
41bf6aca | 422 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
423 | set_inferior_data (inf, ada_inferior_data, data); |
424 | } | |
425 | ||
426 | return data; | |
427 | } | |
428 | ||
429 | /* Perform all necessary cleanups regarding our module's inferior data | |
430 | that is required after the inferior INF just exited. */ | |
431 | ||
432 | static void | |
433 | ada_inferior_exit (struct inferior *inf) | |
434 | { | |
435 | ada_inferior_data_cleanup (inf, NULL); | |
436 | set_inferior_data (inf, ada_inferior_data, NULL); | |
437 | } | |
438 | ||
ee01b665 JB |
439 | |
440 | /* program-space-specific data. */ | |
441 | ||
442 | /* This module's per-program-space data. */ | |
443 | struct ada_pspace_data | |
444 | { | |
445 | /* The Ada symbol cache. */ | |
446 | struct ada_symbol_cache *sym_cache; | |
447 | }; | |
448 | ||
449 | /* Key to our per-program-space data. */ | |
450 | static const struct program_space_data *ada_pspace_data_handle; | |
451 | ||
452 | /* Return this module's data for the given program space (PSPACE). | |
453 | If not is found, add a zero'ed one now. | |
454 | ||
455 | This function always returns a valid object. */ | |
456 | ||
457 | static struct ada_pspace_data * | |
458 | get_ada_pspace_data (struct program_space *pspace) | |
459 | { | |
460 | struct ada_pspace_data *data; | |
461 | ||
9a3c8263 SM |
462 | data = ((struct ada_pspace_data *) |
463 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
464 | if (data == NULL) |
465 | { | |
466 | data = XCNEW (struct ada_pspace_data); | |
467 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
468 | } | |
469 | ||
470 | return data; | |
471 | } | |
472 | ||
473 | /* The cleanup callback for this module's per-program-space data. */ | |
474 | ||
475 | static void | |
476 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
477 | { | |
9a3c8263 | 478 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
479 | |
480 | if (pspace_data->sym_cache != NULL) | |
481 | ada_free_symbol_cache (pspace_data->sym_cache); | |
482 | xfree (pspace_data); | |
483 | } | |
484 | ||
4c4b4cd2 PH |
485 | /* Utilities */ |
486 | ||
720d1a40 | 487 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 488 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
489 | |
490 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
491 | In other words, we really expect the target type of a typedef type to be | |
492 | a non-typedef type. This is particularly true for Ada units, because | |
493 | the language does not have a typedef vs not-typedef distinction. | |
494 | In that respect, the Ada compiler has been trying to eliminate as many | |
495 | typedef definitions in the debugging information, since they generally | |
496 | do not bring any extra information (we still use typedef under certain | |
497 | circumstances related mostly to the GNAT encoding). | |
498 | ||
499 | Unfortunately, we have seen situations where the debugging information | |
500 | generated by the compiler leads to such multiple typedef layers. For | |
501 | instance, consider the following example with stabs: | |
502 | ||
503 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
504 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
505 | ||
506 | This is an error in the debugging information which causes type | |
507 | pck__float_array___XUP to be defined twice, and the second time, | |
508 | it is defined as a typedef of a typedef. | |
509 | ||
510 | This is on the fringe of legality as far as debugging information is | |
511 | concerned, and certainly unexpected. But it is easy to handle these | |
512 | situations correctly, so we can afford to be lenient in this case. */ | |
513 | ||
514 | static struct type * | |
515 | ada_typedef_target_type (struct type *type) | |
516 | { | |
517 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
518 | type = TYPE_TARGET_TYPE (type); | |
519 | return type; | |
520 | } | |
521 | ||
41d27058 JB |
522 | /* Given DECODED_NAME a string holding a symbol name in its |
523 | decoded form (ie using the Ada dotted notation), returns | |
524 | its unqualified name. */ | |
525 | ||
526 | static const char * | |
527 | ada_unqualified_name (const char *decoded_name) | |
528 | { | |
2b0f535a JB |
529 | const char *result; |
530 | ||
531 | /* If the decoded name starts with '<', it means that the encoded | |
532 | name does not follow standard naming conventions, and thus that | |
533 | it is not your typical Ada symbol name. Trying to unqualify it | |
534 | is therefore pointless and possibly erroneous. */ | |
535 | if (decoded_name[0] == '<') | |
536 | return decoded_name; | |
537 | ||
538 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
539 | if (result != NULL) |
540 | result++; /* Skip the dot... */ | |
541 | else | |
542 | result = decoded_name; | |
543 | ||
544 | return result; | |
545 | } | |
546 | ||
547 | /* Return a string starting with '<', followed by STR, and '>'. | |
548 | The result is good until the next call. */ | |
549 | ||
550 | static char * | |
551 | add_angle_brackets (const char *str) | |
552 | { | |
553 | static char *result = NULL; | |
554 | ||
555 | xfree (result); | |
88c15c34 | 556 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
557 | return result; |
558 | } | |
96d887e8 | 559 | |
4c4b4cd2 PH |
560 | static char * |
561 | ada_get_gdb_completer_word_break_characters (void) | |
562 | { | |
563 | return ada_completer_word_break_characters; | |
564 | } | |
565 | ||
e79af960 JB |
566 | /* Print an array element index using the Ada syntax. */ |
567 | ||
568 | static void | |
569 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 570 | const struct value_print_options *options) |
e79af960 | 571 | { |
79a45b7d | 572 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
573 | fprintf_filtered (stream, " => "); |
574 | } | |
575 | ||
f27cf670 | 576 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 577 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 578 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 579 | |
f27cf670 AS |
580 | void * |
581 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 582 | { |
d2e4a39e AS |
583 | if (*size < min_size) |
584 | { | |
585 | *size *= 2; | |
586 | if (*size < min_size) | |
4c4b4cd2 | 587 | *size = min_size; |
f27cf670 | 588 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 589 | } |
f27cf670 | 590 | return vect; |
14f9c5c9 AS |
591 | } |
592 | ||
593 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 594 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
595 | |
596 | static int | |
ebf56fd3 | 597 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
598 | { |
599 | int len = strlen (target); | |
5b4ee69b | 600 | |
d2e4a39e | 601 | return |
4c4b4cd2 PH |
602 | (strncmp (field_name, target, len) == 0 |
603 | && (field_name[len] == '\0' | |
61012eef | 604 | || (startswith (field_name + len, "___") |
76a01679 JB |
605 | && strcmp (field_name + strlen (field_name) - 6, |
606 | "___XVN") != 0))); | |
14f9c5c9 AS |
607 | } |
608 | ||
609 | ||
872c8b51 JB |
610 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
611 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
612 | and return its index. This function also handles fields whose name | |
613 | have ___ suffixes because the compiler sometimes alters their name | |
614 | by adding such a suffix to represent fields with certain constraints. | |
615 | If the field could not be found, return a negative number if | |
616 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
617 | |
618 | int | |
619 | ada_get_field_index (const struct type *type, const char *field_name, | |
620 | int maybe_missing) | |
621 | { | |
622 | int fieldno; | |
872c8b51 JB |
623 | struct type *struct_type = check_typedef ((struct type *) type); |
624 | ||
625 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
626 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
627 | return fieldno; |
628 | ||
629 | if (!maybe_missing) | |
323e0a4a | 630 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 631 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
632 | |
633 | return -1; | |
634 | } | |
635 | ||
636 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
637 | |
638 | int | |
d2e4a39e | 639 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
640 | { |
641 | if (name == NULL) | |
642 | return 0; | |
d2e4a39e | 643 | else |
14f9c5c9 | 644 | { |
d2e4a39e | 645 | const char *p = strstr (name, "___"); |
5b4ee69b | 646 | |
14f9c5c9 | 647 | if (p == NULL) |
4c4b4cd2 | 648 | return strlen (name); |
14f9c5c9 | 649 | else |
4c4b4cd2 | 650 | return p - name; |
14f9c5c9 AS |
651 | } |
652 | } | |
653 | ||
4c4b4cd2 PH |
654 | /* Return non-zero if SUFFIX is a suffix of STR. |
655 | Return zero if STR is null. */ | |
656 | ||
14f9c5c9 | 657 | static int |
d2e4a39e | 658 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
659 | { |
660 | int len1, len2; | |
5b4ee69b | 661 | |
14f9c5c9 AS |
662 | if (str == NULL) |
663 | return 0; | |
664 | len1 = strlen (str); | |
665 | len2 = strlen (suffix); | |
4c4b4cd2 | 666 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
667 | } |
668 | ||
4c4b4cd2 PH |
669 | /* The contents of value VAL, treated as a value of type TYPE. The |
670 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 671 | |
d2e4a39e | 672 | static struct value * |
4c4b4cd2 | 673 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 674 | { |
61ee279c | 675 | type = ada_check_typedef (type); |
df407dfe | 676 | if (value_type (val) == type) |
4c4b4cd2 | 677 | return val; |
d2e4a39e | 678 | else |
14f9c5c9 | 679 | { |
4c4b4cd2 PH |
680 | struct value *result; |
681 | ||
682 | /* Make sure that the object size is not unreasonable before | |
683 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 684 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 685 | |
41e8491f JK |
686 | if (value_lazy (val) |
687 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
688 | result = allocate_value_lazy (type); | |
689 | else | |
690 | { | |
691 | result = allocate_value (type); | |
9a0dc9e3 | 692 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 693 | } |
74bcbdf3 | 694 | set_value_component_location (result, val); |
9bbda503 AC |
695 | set_value_bitsize (result, value_bitsize (val)); |
696 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 697 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
698 | return result; |
699 | } | |
700 | } | |
701 | ||
fc1a4b47 AC |
702 | static const gdb_byte * |
703 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
704 | { |
705 | if (valaddr == NULL) | |
706 | return NULL; | |
707 | else | |
708 | return valaddr + offset; | |
709 | } | |
710 | ||
711 | static CORE_ADDR | |
ebf56fd3 | 712 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
713 | { |
714 | if (address == 0) | |
715 | return 0; | |
d2e4a39e | 716 | else |
14f9c5c9 AS |
717 | return address + offset; |
718 | } | |
719 | ||
4c4b4cd2 PH |
720 | /* Issue a warning (as for the definition of warning in utils.c, but |
721 | with exactly one argument rather than ...), unless the limit on the | |
722 | number of warnings has passed during the evaluation of the current | |
723 | expression. */ | |
a2249542 | 724 | |
77109804 AC |
725 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
726 | provided by "complaint". */ | |
a0b31db1 | 727 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 728 | |
14f9c5c9 | 729 | static void |
a2249542 | 730 | lim_warning (const char *format, ...) |
14f9c5c9 | 731 | { |
a2249542 | 732 | va_list args; |
a2249542 | 733 | |
5b4ee69b | 734 | va_start (args, format); |
4c4b4cd2 PH |
735 | warnings_issued += 1; |
736 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
737 | vwarning (format, args); |
738 | ||
739 | va_end (args); | |
4c4b4cd2 PH |
740 | } |
741 | ||
714e53ab PH |
742 | /* Issue an error if the size of an object of type T is unreasonable, |
743 | i.e. if it would be a bad idea to allocate a value of this type in | |
744 | GDB. */ | |
745 | ||
c1b5a1a6 JB |
746 | void |
747 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
748 | { |
749 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 750 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
751 | } |
752 | ||
0963b4bd | 753 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 754 | static LONGEST |
c3e5cd34 | 755 | max_of_size (int size) |
4c4b4cd2 | 756 | { |
76a01679 | 757 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 758 | |
76a01679 | 759 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
760 | } |
761 | ||
0963b4bd | 762 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 763 | static LONGEST |
c3e5cd34 | 764 | min_of_size (int size) |
4c4b4cd2 | 765 | { |
c3e5cd34 | 766 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
767 | } |
768 | ||
0963b4bd | 769 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 770 | static ULONGEST |
c3e5cd34 | 771 | umax_of_size (int size) |
4c4b4cd2 | 772 | { |
76a01679 | 773 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 774 | |
76a01679 | 775 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
776 | } |
777 | ||
0963b4bd | 778 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
779 | static LONGEST |
780 | max_of_type (struct type *t) | |
4c4b4cd2 | 781 | { |
c3e5cd34 PH |
782 | if (TYPE_UNSIGNED (t)) |
783 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
784 | else | |
785 | return max_of_size (TYPE_LENGTH (t)); | |
786 | } | |
787 | ||
0963b4bd | 788 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
789 | static LONGEST |
790 | min_of_type (struct type *t) | |
791 | { | |
792 | if (TYPE_UNSIGNED (t)) | |
793 | return 0; | |
794 | else | |
795 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
796 | } |
797 | ||
798 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
799 | LONGEST |
800 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 801 | { |
c3345124 | 802 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 803 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
804 | { |
805 | case TYPE_CODE_RANGE: | |
690cc4eb | 806 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 807 | case TYPE_CODE_ENUM: |
14e75d8e | 808 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
809 | case TYPE_CODE_BOOL: |
810 | return 1; | |
811 | case TYPE_CODE_CHAR: | |
76a01679 | 812 | case TYPE_CODE_INT: |
690cc4eb | 813 | return max_of_type (type); |
4c4b4cd2 | 814 | default: |
43bbcdc2 | 815 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
816 | } |
817 | } | |
818 | ||
14e75d8e | 819 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
820 | LONGEST |
821 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 822 | { |
c3345124 | 823 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 824 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
825 | { |
826 | case TYPE_CODE_RANGE: | |
690cc4eb | 827 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 828 | case TYPE_CODE_ENUM: |
14e75d8e | 829 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
830 | case TYPE_CODE_BOOL: |
831 | return 0; | |
832 | case TYPE_CODE_CHAR: | |
76a01679 | 833 | case TYPE_CODE_INT: |
690cc4eb | 834 | return min_of_type (type); |
4c4b4cd2 | 835 | default: |
43bbcdc2 | 836 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
837 | } |
838 | } | |
839 | ||
840 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 841 | non-range scalar type. */ |
4c4b4cd2 PH |
842 | |
843 | static struct type * | |
18af8284 | 844 | get_base_type (struct type *type) |
4c4b4cd2 PH |
845 | { |
846 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
847 | { | |
76a01679 JB |
848 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
849 | return type; | |
4c4b4cd2 PH |
850 | type = TYPE_TARGET_TYPE (type); |
851 | } | |
852 | return type; | |
14f9c5c9 | 853 | } |
41246937 JB |
854 | |
855 | /* Return a decoded version of the given VALUE. This means returning | |
856 | a value whose type is obtained by applying all the GNAT-specific | |
857 | encondings, making the resulting type a static but standard description | |
858 | of the initial type. */ | |
859 | ||
860 | struct value * | |
861 | ada_get_decoded_value (struct value *value) | |
862 | { | |
863 | struct type *type = ada_check_typedef (value_type (value)); | |
864 | ||
865 | if (ada_is_array_descriptor_type (type) | |
866 | || (ada_is_constrained_packed_array_type (type) | |
867 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
868 | { | |
869 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
870 | value = ada_coerce_to_simple_array_ptr (value); | |
871 | else | |
872 | value = ada_coerce_to_simple_array (value); | |
873 | } | |
874 | else | |
875 | value = ada_to_fixed_value (value); | |
876 | ||
877 | return value; | |
878 | } | |
879 | ||
880 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
881 | Because there is no associated actual value for this type, | |
882 | the resulting type might be a best-effort approximation in | |
883 | the case of dynamic types. */ | |
884 | ||
885 | struct type * | |
886 | ada_get_decoded_type (struct type *type) | |
887 | { | |
888 | type = to_static_fixed_type (type); | |
889 | if (ada_is_constrained_packed_array_type (type)) | |
890 | type = ada_coerce_to_simple_array_type (type); | |
891 | return type; | |
892 | } | |
893 | ||
4c4b4cd2 | 894 | \f |
76a01679 | 895 | |
4c4b4cd2 | 896 | /* Language Selection */ |
14f9c5c9 AS |
897 | |
898 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 899 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 900 | |
14f9c5c9 | 901 | enum language |
ccefe4c4 | 902 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 903 | { |
d2e4a39e | 904 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 905 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 906 | return language_ada; |
14f9c5c9 AS |
907 | |
908 | return lang; | |
909 | } | |
96d887e8 PH |
910 | |
911 | /* If the main procedure is written in Ada, then return its name. | |
912 | The result is good until the next call. Return NULL if the main | |
913 | procedure doesn't appear to be in Ada. */ | |
914 | ||
915 | char * | |
916 | ada_main_name (void) | |
917 | { | |
3b7344d5 | 918 | struct bound_minimal_symbol msym; |
f9bc20b9 | 919 | static char *main_program_name = NULL; |
6c038f32 | 920 | |
96d887e8 PH |
921 | /* For Ada, the name of the main procedure is stored in a specific |
922 | string constant, generated by the binder. Look for that symbol, | |
923 | extract its address, and then read that string. If we didn't find | |
924 | that string, then most probably the main procedure is not written | |
925 | in Ada. */ | |
926 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
927 | ||
3b7344d5 | 928 | if (msym.minsym != NULL) |
96d887e8 | 929 | { |
f9bc20b9 JB |
930 | CORE_ADDR main_program_name_addr; |
931 | int err_code; | |
932 | ||
77e371c0 | 933 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 934 | if (main_program_name_addr == 0) |
323e0a4a | 935 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 936 | |
f9bc20b9 JB |
937 | xfree (main_program_name); |
938 | target_read_string (main_program_name_addr, &main_program_name, | |
939 | 1024, &err_code); | |
940 | ||
941 | if (err_code != 0) | |
942 | return NULL; | |
96d887e8 PH |
943 | return main_program_name; |
944 | } | |
945 | ||
946 | /* The main procedure doesn't seem to be in Ada. */ | |
947 | return NULL; | |
948 | } | |
14f9c5c9 | 949 | \f |
4c4b4cd2 | 950 | /* Symbols */ |
d2e4a39e | 951 | |
4c4b4cd2 PH |
952 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
953 | of NULLs. */ | |
14f9c5c9 | 954 | |
d2e4a39e AS |
955 | const struct ada_opname_map ada_opname_table[] = { |
956 | {"Oadd", "\"+\"", BINOP_ADD}, | |
957 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
958 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
959 | {"Odivide", "\"/\"", BINOP_DIV}, | |
960 | {"Omod", "\"mod\"", BINOP_MOD}, | |
961 | {"Orem", "\"rem\"", BINOP_REM}, | |
962 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
963 | {"Olt", "\"<\"", BINOP_LESS}, | |
964 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
965 | {"Ogt", "\">\"", BINOP_GTR}, | |
966 | {"Oge", "\">=\"", BINOP_GEQ}, | |
967 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
968 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
969 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
970 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
971 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
972 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
973 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
974 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
975 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
976 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
977 | {NULL, NULL} | |
14f9c5c9 AS |
978 | }; |
979 | ||
4c4b4cd2 PH |
980 | /* The "encoded" form of DECODED, according to GNAT conventions. |
981 | The result is valid until the next call to ada_encode. */ | |
982 | ||
14f9c5c9 | 983 | char * |
4c4b4cd2 | 984 | ada_encode (const char *decoded) |
14f9c5c9 | 985 | { |
4c4b4cd2 PH |
986 | static char *encoding_buffer = NULL; |
987 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 988 | const char *p; |
14f9c5c9 | 989 | int k; |
d2e4a39e | 990 | |
4c4b4cd2 | 991 | if (decoded == NULL) |
14f9c5c9 AS |
992 | return NULL; |
993 | ||
4c4b4cd2 PH |
994 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
995 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
996 | |
997 | k = 0; | |
4c4b4cd2 | 998 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 999 | { |
cdc7bb92 | 1000 | if (*p == '.') |
4c4b4cd2 PH |
1001 | { |
1002 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1003 | k += 2; | |
1004 | } | |
14f9c5c9 | 1005 | else if (*p == '"') |
4c4b4cd2 PH |
1006 | { |
1007 | const struct ada_opname_map *mapping; | |
1008 | ||
1009 | for (mapping = ada_opname_table; | |
1265e4aa | 1010 | mapping->encoded != NULL |
61012eef | 1011 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1012 | ; |
1013 | if (mapping->encoded == NULL) | |
323e0a4a | 1014 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1015 | strcpy (encoding_buffer + k, mapping->encoded); |
1016 | k += strlen (mapping->encoded); | |
1017 | break; | |
1018 | } | |
d2e4a39e | 1019 | else |
4c4b4cd2 PH |
1020 | { |
1021 | encoding_buffer[k] = *p; | |
1022 | k += 1; | |
1023 | } | |
14f9c5c9 AS |
1024 | } |
1025 | ||
4c4b4cd2 PH |
1026 | encoding_buffer[k] = '\0'; |
1027 | return encoding_buffer; | |
14f9c5c9 AS |
1028 | } |
1029 | ||
1030 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1031 | quotes, unfolded, but with the quotes stripped away. Result good |
1032 | to next call. */ | |
1033 | ||
d2e4a39e AS |
1034 | char * |
1035 | ada_fold_name (const char *name) | |
14f9c5c9 | 1036 | { |
d2e4a39e | 1037 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1038 | static size_t fold_buffer_size = 0; |
1039 | ||
1040 | int len = strlen (name); | |
d2e4a39e | 1041 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1042 | |
1043 | if (name[0] == '\'') | |
1044 | { | |
d2e4a39e AS |
1045 | strncpy (fold_buffer, name + 1, len - 2); |
1046 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1047 | } |
1048 | else | |
1049 | { | |
1050 | int i; | |
5b4ee69b | 1051 | |
14f9c5c9 | 1052 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1053 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1054 | } |
1055 | ||
1056 | return fold_buffer; | |
1057 | } | |
1058 | ||
529cad9c PH |
1059 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1060 | ||
1061 | static int | |
1062 | is_lower_alphanum (const char c) | |
1063 | { | |
1064 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1065 | } | |
1066 | ||
c90092fe JB |
1067 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1068 | This function saves in LEN the length of that same symbol name but | |
1069 | without either of these suffixes: | |
29480c32 JB |
1070 | . .{DIGIT}+ |
1071 | . ${DIGIT}+ | |
1072 | . ___{DIGIT}+ | |
1073 | . __{DIGIT}+. | |
c90092fe | 1074 | |
29480c32 JB |
1075 | These are suffixes introduced by the compiler for entities such as |
1076 | nested subprogram for instance, in order to avoid name clashes. | |
1077 | They do not serve any purpose for the debugger. */ | |
1078 | ||
1079 | static void | |
1080 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1081 | { | |
1082 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1083 | { | |
1084 | int i = *len - 2; | |
5b4ee69b | 1085 | |
29480c32 JB |
1086 | while (i > 0 && isdigit (encoded[i])) |
1087 | i--; | |
1088 | if (i >= 0 && encoded[i] == '.') | |
1089 | *len = i; | |
1090 | else if (i >= 0 && encoded[i] == '$') | |
1091 | *len = i; | |
61012eef | 1092 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1093 | *len = i - 2; |
61012eef | 1094 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1095 | *len = i - 1; |
1096 | } | |
1097 | } | |
1098 | ||
1099 | /* Remove the suffix introduced by the compiler for protected object | |
1100 | subprograms. */ | |
1101 | ||
1102 | static void | |
1103 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1104 | { | |
1105 | /* Remove trailing N. */ | |
1106 | ||
1107 | /* Protected entry subprograms are broken into two | |
1108 | separate subprograms: The first one is unprotected, and has | |
1109 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1110 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1111 | the protection. Since the P subprograms are internally generated, |
1112 | we leave these names undecoded, giving the user a clue that this | |
1113 | entity is internal. */ | |
1114 | ||
1115 | if (*len > 1 | |
1116 | && encoded[*len - 1] == 'N' | |
1117 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1118 | *len = *len - 1; | |
1119 | } | |
1120 | ||
69fadcdf JB |
1121 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1122 | ||
1123 | static void | |
1124 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1125 | { | |
1126 | int i = *len - 1; | |
1127 | ||
1128 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1129 | i--; | |
1130 | ||
1131 | if (encoded[i] != 'X') | |
1132 | return; | |
1133 | ||
1134 | if (i == 0) | |
1135 | return; | |
1136 | ||
1137 | if (isalnum (encoded[i-1])) | |
1138 | *len = i; | |
1139 | } | |
1140 | ||
29480c32 JB |
1141 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1142 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1143 | replaced by ENCODED. | |
14f9c5c9 | 1144 | |
4c4b4cd2 | 1145 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1146 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1147 | is returned. */ |
1148 | ||
1149 | const char * | |
1150 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1151 | { |
1152 | int i, j; | |
1153 | int len0; | |
d2e4a39e | 1154 | const char *p; |
4c4b4cd2 | 1155 | char *decoded; |
14f9c5c9 | 1156 | int at_start_name; |
4c4b4cd2 PH |
1157 | static char *decoding_buffer = NULL; |
1158 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1159 | |
29480c32 JB |
1160 | /* The name of the Ada main procedure starts with "_ada_". |
1161 | This prefix is not part of the decoded name, so skip this part | |
1162 | if we see this prefix. */ | |
61012eef | 1163 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1164 | encoded += 5; |
14f9c5c9 | 1165 | |
29480c32 JB |
1166 | /* If the name starts with '_', then it is not a properly encoded |
1167 | name, so do not attempt to decode it. Similarly, if the name | |
1168 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1169 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1170 | goto Suppress; |
1171 | ||
4c4b4cd2 | 1172 | len0 = strlen (encoded); |
4c4b4cd2 | 1173 | |
29480c32 JB |
1174 | ada_remove_trailing_digits (encoded, &len0); |
1175 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1176 | |
4c4b4cd2 PH |
1177 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1178 | the suffix is located before the current "end" of ENCODED. We want | |
1179 | to avoid re-matching parts of ENCODED that have previously been | |
1180 | marked as discarded (by decrementing LEN0). */ | |
1181 | p = strstr (encoded, "___"); | |
1182 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1183 | { |
1184 | if (p[3] == 'X') | |
4c4b4cd2 | 1185 | len0 = p - encoded; |
14f9c5c9 | 1186 | else |
4c4b4cd2 | 1187 | goto Suppress; |
14f9c5c9 | 1188 | } |
4c4b4cd2 | 1189 | |
29480c32 JB |
1190 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1191 | is for the body of a task, but that information does not actually | |
1192 | appear in the decoded name. */ | |
1193 | ||
61012eef | 1194 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1195 | len0 -= 3; |
76a01679 | 1196 | |
a10967fa JB |
1197 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1198 | from the TKB suffix because it is used for non-anonymous task | |
1199 | bodies. */ | |
1200 | ||
61012eef | 1201 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1202 | len0 -= 2; |
1203 | ||
29480c32 JB |
1204 | /* Remove trailing "B" suffixes. */ |
1205 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1206 | ||
61012eef | 1207 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1208 | len0 -= 1; |
1209 | ||
4c4b4cd2 | 1210 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1211 | |
4c4b4cd2 PH |
1212 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1213 | decoded = decoding_buffer; | |
14f9c5c9 | 1214 | |
29480c32 JB |
1215 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1216 | ||
4c4b4cd2 | 1217 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1218 | { |
4c4b4cd2 PH |
1219 | i = len0 - 2; |
1220 | while ((i >= 0 && isdigit (encoded[i])) | |
1221 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1222 | i -= 1; | |
1223 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1224 | len0 = i - 1; | |
1225 | else if (encoded[i] == '$') | |
1226 | len0 = i; | |
d2e4a39e | 1227 | } |
14f9c5c9 | 1228 | |
29480c32 JB |
1229 | /* The first few characters that are not alphabetic are not part |
1230 | of any encoding we use, so we can copy them over verbatim. */ | |
1231 | ||
4c4b4cd2 PH |
1232 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1233 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1234 | |
1235 | at_start_name = 1; | |
1236 | while (i < len0) | |
1237 | { | |
29480c32 | 1238 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1239 | if (at_start_name && encoded[i] == 'O') |
1240 | { | |
1241 | int k; | |
5b4ee69b | 1242 | |
4c4b4cd2 PH |
1243 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1244 | { | |
1245 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1246 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1247 | op_len - 1) == 0) | |
1248 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1249 | { |
1250 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1251 | at_start_name = 0; | |
1252 | i += op_len; | |
1253 | j += strlen (ada_opname_table[k].decoded); | |
1254 | break; | |
1255 | } | |
1256 | } | |
1257 | if (ada_opname_table[k].encoded != NULL) | |
1258 | continue; | |
1259 | } | |
14f9c5c9 AS |
1260 | at_start_name = 0; |
1261 | ||
529cad9c PH |
1262 | /* Replace "TK__" with "__", which will eventually be translated |
1263 | into "." (just below). */ | |
1264 | ||
61012eef | 1265 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1266 | i += 2; |
529cad9c | 1267 | |
29480c32 JB |
1268 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1269 | be translated into "." (just below). These are internal names | |
1270 | generated for anonymous blocks inside which our symbol is nested. */ | |
1271 | ||
1272 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1273 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1274 | && isdigit (encoded [i+4])) | |
1275 | { | |
1276 | int k = i + 5; | |
1277 | ||
1278 | while (k < len0 && isdigit (encoded[k])) | |
1279 | k++; /* Skip any extra digit. */ | |
1280 | ||
1281 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1282 | is indeed followed by "__". */ | |
1283 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1284 | i = k; | |
1285 | } | |
1286 | ||
529cad9c PH |
1287 | /* Remove _E{DIGITS}+[sb] */ |
1288 | ||
1289 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1290 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1291 | one implements the actual entry code, and has a suffix following |
1292 | the convention above; the second one implements the barrier and | |
1293 | uses the same convention as above, except that the 'E' is replaced | |
1294 | by a 'B'. | |
1295 | ||
1296 | Just as above, we do not decode the name of barrier functions | |
1297 | to give the user a clue that the code he is debugging has been | |
1298 | internally generated. */ | |
1299 | ||
1300 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1301 | && isdigit (encoded[i+2])) | |
1302 | { | |
1303 | int k = i + 3; | |
1304 | ||
1305 | while (k < len0 && isdigit (encoded[k])) | |
1306 | k++; | |
1307 | ||
1308 | if (k < len0 | |
1309 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1310 | { | |
1311 | k++; | |
1312 | /* Just as an extra precaution, make sure that if this | |
1313 | suffix is followed by anything else, it is a '_'. | |
1314 | Otherwise, we matched this sequence by accident. */ | |
1315 | if (k == len0 | |
1316 | || (k < len0 && encoded[k] == '_')) | |
1317 | i = k; | |
1318 | } | |
1319 | } | |
1320 | ||
1321 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1322 | the GNAT front-end in protected object subprograms. */ | |
1323 | ||
1324 | if (i < len0 + 3 | |
1325 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1326 | { | |
1327 | /* Backtrack a bit up until we reach either the begining of | |
1328 | the encoded name, or "__". Make sure that we only find | |
1329 | digits or lowercase characters. */ | |
1330 | const char *ptr = encoded + i - 1; | |
1331 | ||
1332 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1333 | ptr--; | |
1334 | if (ptr < encoded | |
1335 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1336 | i++; | |
1337 | } | |
1338 | ||
4c4b4cd2 PH |
1339 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1340 | { | |
29480c32 JB |
1341 | /* This is a X[bn]* sequence not separated from the previous |
1342 | part of the name with a non-alpha-numeric character (in other | |
1343 | words, immediately following an alpha-numeric character), then | |
1344 | verify that it is placed at the end of the encoded name. If | |
1345 | not, then the encoding is not valid and we should abort the | |
1346 | decoding. Otherwise, just skip it, it is used in body-nested | |
1347 | package names. */ | |
4c4b4cd2 PH |
1348 | do |
1349 | i += 1; | |
1350 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1351 | if (i < len0) | |
1352 | goto Suppress; | |
1353 | } | |
cdc7bb92 | 1354 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1355 | { |
29480c32 | 1356 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1357 | decoded[j] = '.'; |
1358 | at_start_name = 1; | |
1359 | i += 2; | |
1360 | j += 1; | |
1361 | } | |
14f9c5c9 | 1362 | else |
4c4b4cd2 | 1363 | { |
29480c32 JB |
1364 | /* It's a character part of the decoded name, so just copy it |
1365 | over. */ | |
4c4b4cd2 PH |
1366 | decoded[j] = encoded[i]; |
1367 | i += 1; | |
1368 | j += 1; | |
1369 | } | |
14f9c5c9 | 1370 | } |
4c4b4cd2 | 1371 | decoded[j] = '\000'; |
14f9c5c9 | 1372 | |
29480c32 JB |
1373 | /* Decoded names should never contain any uppercase character. |
1374 | Double-check this, and abort the decoding if we find one. */ | |
1375 | ||
4c4b4cd2 PH |
1376 | for (i = 0; decoded[i] != '\0'; i += 1) |
1377 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1378 | goto Suppress; |
1379 | ||
4c4b4cd2 PH |
1380 | if (strcmp (decoded, encoded) == 0) |
1381 | return encoded; | |
1382 | else | |
1383 | return decoded; | |
14f9c5c9 AS |
1384 | |
1385 | Suppress: | |
4c4b4cd2 PH |
1386 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1387 | decoded = decoding_buffer; | |
1388 | if (encoded[0] == '<') | |
1389 | strcpy (decoded, encoded); | |
14f9c5c9 | 1390 | else |
88c15c34 | 1391 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1392 | return decoded; |
1393 | ||
1394 | } | |
1395 | ||
1396 | /* Table for keeping permanent unique copies of decoded names. Once | |
1397 | allocated, names in this table are never released. While this is a | |
1398 | storage leak, it should not be significant unless there are massive | |
1399 | changes in the set of decoded names in successive versions of a | |
1400 | symbol table loaded during a single session. */ | |
1401 | static struct htab *decoded_names_store; | |
1402 | ||
1403 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1404 | in the language-specific part of GSYMBOL, if it has not been | |
1405 | previously computed. Tries to save the decoded name in the same | |
1406 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1407 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1408 | GSYMBOL). |
4c4b4cd2 PH |
1409 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1410 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1411 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1412 | |
45e6c716 | 1413 | const char * |
f85f34ed | 1414 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1415 | { |
f85f34ed TT |
1416 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1417 | const char **resultp = | |
615b3f62 | 1418 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1419 | |
f85f34ed | 1420 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1421 | { |
1422 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1423 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1424 | |
f85f34ed | 1425 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1426 | |
f85f34ed | 1427 | if (obstack != NULL) |
224c3ddb SM |
1428 | *resultp |
1429 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1430 | else |
76a01679 | 1431 | { |
f85f34ed TT |
1432 | /* Sometimes, we can't find a corresponding objfile, in |
1433 | which case, we put the result on the heap. Since we only | |
1434 | decode when needed, we hope this usually does not cause a | |
1435 | significant memory leak (FIXME). */ | |
1436 | ||
76a01679 JB |
1437 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1438 | decoded, INSERT); | |
5b4ee69b | 1439 | |
76a01679 JB |
1440 | if (*slot == NULL) |
1441 | *slot = xstrdup (decoded); | |
1442 | *resultp = *slot; | |
1443 | } | |
4c4b4cd2 | 1444 | } |
14f9c5c9 | 1445 | |
4c4b4cd2 PH |
1446 | return *resultp; |
1447 | } | |
76a01679 | 1448 | |
2c0b251b | 1449 | static char * |
76a01679 | 1450 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1451 | { |
1452 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1453 | } |
1454 | ||
1455 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1456 | suffixes that encode debugging information or leading _ada_ on |
1457 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1458 | information that is ignored). If WILD, then NAME need only match a | |
1459 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1460 | either argument is NULL. */ | |
14f9c5c9 | 1461 | |
2c0b251b | 1462 | static int |
40658b94 | 1463 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1464 | { |
1465 | if (sym_name == NULL || name == NULL) | |
1466 | return 0; | |
1467 | else if (wild) | |
73589123 | 1468 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1469 | else |
1470 | { | |
1471 | int len_name = strlen (name); | |
5b4ee69b | 1472 | |
4c4b4cd2 PH |
1473 | return (strncmp (sym_name, name, len_name) == 0 |
1474 | && is_name_suffix (sym_name + len_name)) | |
61012eef | 1475 | || (startswith (sym_name, "_ada_") |
4c4b4cd2 PH |
1476 | && strncmp (sym_name + 5, name, len_name) == 0 |
1477 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1478 | } |
14f9c5c9 | 1479 | } |
14f9c5c9 | 1480 | \f |
d2e4a39e | 1481 | |
4c4b4cd2 | 1482 | /* Arrays */ |
14f9c5c9 | 1483 | |
28c85d6c JB |
1484 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1485 | generated by the GNAT compiler to describe the index type used | |
1486 | for each dimension of an array, check whether it follows the latest | |
1487 | known encoding. If not, fix it up to conform to the latest encoding. | |
1488 | Otherwise, do nothing. This function also does nothing if | |
1489 | INDEX_DESC_TYPE is NULL. | |
1490 | ||
1491 | The GNAT encoding used to describle the array index type evolved a bit. | |
1492 | Initially, the information would be provided through the name of each | |
1493 | field of the structure type only, while the type of these fields was | |
1494 | described as unspecified and irrelevant. The debugger was then expected | |
1495 | to perform a global type lookup using the name of that field in order | |
1496 | to get access to the full index type description. Because these global | |
1497 | lookups can be very expensive, the encoding was later enhanced to make | |
1498 | the global lookup unnecessary by defining the field type as being | |
1499 | the full index type description. | |
1500 | ||
1501 | The purpose of this routine is to allow us to support older versions | |
1502 | of the compiler by detecting the use of the older encoding, and by | |
1503 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1504 | we essentially replace each field's meaningless type by the associated | |
1505 | index subtype). */ | |
1506 | ||
1507 | void | |
1508 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1509 | { | |
1510 | int i; | |
1511 | ||
1512 | if (index_desc_type == NULL) | |
1513 | return; | |
1514 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1515 | ||
1516 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1517 | to check one field only, no need to check them all). If not, return | |
1518 | now. | |
1519 | ||
1520 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1521 | the field type should be a meaningless integer type whose name | |
1522 | is not equal to the field name. */ | |
1523 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1524 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1525 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1526 | return; | |
1527 | ||
1528 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1529 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1530 | { | |
0d5cff50 | 1531 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1532 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1533 | ||
1534 | if (raw_type) | |
1535 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1536 | } | |
1537 | } | |
1538 | ||
4c4b4cd2 | 1539 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1540 | |
d2e4a39e AS |
1541 | static char *bound_name[] = { |
1542 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1543 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1544 | }; | |
1545 | ||
1546 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1547 | ||
4c4b4cd2 | 1548 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1549 | |
14f9c5c9 | 1550 | |
4c4b4cd2 PH |
1551 | /* The desc_* routines return primitive portions of array descriptors |
1552 | (fat pointers). */ | |
14f9c5c9 AS |
1553 | |
1554 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1555 | level of indirection, if needed. */ |
1556 | ||
d2e4a39e AS |
1557 | static struct type * |
1558 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1559 | { |
1560 | if (type == NULL) | |
1561 | return NULL; | |
61ee279c | 1562 | type = ada_check_typedef (type); |
720d1a40 JB |
1563 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1564 | type = ada_typedef_target_type (type); | |
1565 | ||
1265e4aa JB |
1566 | if (type != NULL |
1567 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1568 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1569 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1570 | else |
1571 | return type; | |
1572 | } | |
1573 | ||
4c4b4cd2 PH |
1574 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1575 | ||
14f9c5c9 | 1576 | static int |
d2e4a39e | 1577 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1578 | { |
d2e4a39e | 1579 | return |
14f9c5c9 AS |
1580 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1581 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1582 | } | |
1583 | ||
4c4b4cd2 PH |
1584 | /* The descriptor type for thin pointer type TYPE. */ |
1585 | ||
d2e4a39e AS |
1586 | static struct type * |
1587 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1588 | { |
d2e4a39e | 1589 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1590 | |
14f9c5c9 AS |
1591 | if (base_type == NULL) |
1592 | return NULL; | |
1593 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1594 | return base_type; | |
d2e4a39e | 1595 | else |
14f9c5c9 | 1596 | { |
d2e4a39e | 1597 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1598 | |
14f9c5c9 | 1599 | if (alt_type == NULL) |
4c4b4cd2 | 1600 | return base_type; |
14f9c5c9 | 1601 | else |
4c4b4cd2 | 1602 | return alt_type; |
14f9c5c9 AS |
1603 | } |
1604 | } | |
1605 | ||
4c4b4cd2 PH |
1606 | /* A pointer to the array data for thin-pointer value VAL. */ |
1607 | ||
d2e4a39e AS |
1608 | static struct value * |
1609 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1610 | { |
828292f2 | 1611 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1612 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1613 | |
556bdfd4 UW |
1614 | data_type = lookup_pointer_type (data_type); |
1615 | ||
14f9c5c9 | 1616 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1617 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1618 | else |
42ae5230 | 1619 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1620 | } |
1621 | ||
4c4b4cd2 PH |
1622 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1623 | ||
14f9c5c9 | 1624 | static int |
d2e4a39e | 1625 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1626 | { |
1627 | type = desc_base_type (type); | |
1628 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1629 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1630 | } |
1631 | ||
4c4b4cd2 PH |
1632 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1633 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1634 | |
d2e4a39e AS |
1635 | static struct type * |
1636 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1637 | { |
d2e4a39e | 1638 | struct type *r; |
14f9c5c9 AS |
1639 | |
1640 | type = desc_base_type (type); | |
1641 | ||
1642 | if (type == NULL) | |
1643 | return NULL; | |
1644 | else if (is_thin_pntr (type)) | |
1645 | { | |
1646 | type = thin_descriptor_type (type); | |
1647 | if (type == NULL) | |
4c4b4cd2 | 1648 | return NULL; |
14f9c5c9 AS |
1649 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1650 | if (r != NULL) | |
61ee279c | 1651 | return ada_check_typedef (r); |
14f9c5c9 AS |
1652 | } |
1653 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1654 | { | |
1655 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1656 | if (r != NULL) | |
61ee279c | 1657 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1658 | } |
1659 | return NULL; | |
1660 | } | |
1661 | ||
1662 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1663 | one, a pointer to its bounds data. Otherwise NULL. */ |
1664 | ||
d2e4a39e AS |
1665 | static struct value * |
1666 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1667 | { |
df407dfe | 1668 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1669 | |
d2e4a39e | 1670 | if (is_thin_pntr (type)) |
14f9c5c9 | 1671 | { |
d2e4a39e | 1672 | struct type *bounds_type = |
4c4b4cd2 | 1673 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1674 | LONGEST addr; |
1675 | ||
4cdfadb1 | 1676 | if (bounds_type == NULL) |
323e0a4a | 1677 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1678 | |
1679 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1680 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1681 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1682 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1683 | addr = value_as_long (arr); |
d2e4a39e | 1684 | else |
42ae5230 | 1685 | addr = value_address (arr); |
14f9c5c9 | 1686 | |
d2e4a39e | 1687 | return |
4c4b4cd2 PH |
1688 | value_from_longest (lookup_pointer_type (bounds_type), |
1689 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1690 | } |
1691 | ||
1692 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1693 | { |
1694 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1695 | _("Bad GNAT array descriptor")); | |
1696 | struct type *p_bounds_type = value_type (p_bounds); | |
1697 | ||
1698 | if (p_bounds_type | |
1699 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1700 | { | |
1701 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1702 | ||
1703 | if (TYPE_STUB (target_type)) | |
1704 | p_bounds = value_cast (lookup_pointer_type | |
1705 | (ada_check_typedef (target_type)), | |
1706 | p_bounds); | |
1707 | } | |
1708 | else | |
1709 | error (_("Bad GNAT array descriptor")); | |
1710 | ||
1711 | return p_bounds; | |
1712 | } | |
14f9c5c9 AS |
1713 | else |
1714 | return NULL; | |
1715 | } | |
1716 | ||
4c4b4cd2 PH |
1717 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1718 | position of the field containing the address of the bounds data. */ | |
1719 | ||
14f9c5c9 | 1720 | static int |
d2e4a39e | 1721 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1722 | { |
1723 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1724 | } | |
1725 | ||
1726 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1727 | size of the field containing the address of the bounds data. */ |
1728 | ||
14f9c5c9 | 1729 | static int |
d2e4a39e | 1730 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1731 | { |
1732 | type = desc_base_type (type); | |
1733 | ||
d2e4a39e | 1734 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1735 | return TYPE_FIELD_BITSIZE (type, 1); |
1736 | else | |
61ee279c | 1737 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1738 | } |
1739 | ||
4c4b4cd2 | 1740 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1741 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1742 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1743 | data. */ | |
4c4b4cd2 | 1744 | |
d2e4a39e | 1745 | static struct type * |
556bdfd4 | 1746 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1747 | { |
1748 | type = desc_base_type (type); | |
1749 | ||
4c4b4cd2 | 1750 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1751 | if (is_thin_pntr (type)) |
556bdfd4 | 1752 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1753 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1754 | { |
1755 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1756 | ||
1757 | if (data_type | |
1758 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1759 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1760 | } |
1761 | ||
1762 | return NULL; | |
14f9c5c9 AS |
1763 | } |
1764 | ||
1765 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1766 | its array data. */ | |
4c4b4cd2 | 1767 | |
d2e4a39e AS |
1768 | static struct value * |
1769 | desc_data (struct value *arr) | |
14f9c5c9 | 1770 | { |
df407dfe | 1771 | struct type *type = value_type (arr); |
5b4ee69b | 1772 | |
14f9c5c9 AS |
1773 | if (is_thin_pntr (type)) |
1774 | return thin_data_pntr (arr); | |
1775 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1776 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1777 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1778 | else |
1779 | return NULL; | |
1780 | } | |
1781 | ||
1782 | ||
1783 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1784 | position of the field containing the address of the data. */ |
1785 | ||
14f9c5c9 | 1786 | static int |
d2e4a39e | 1787 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1788 | { |
1789 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1790 | } | |
1791 | ||
1792 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1793 | size of the field containing the address of the data. */ |
1794 | ||
14f9c5c9 | 1795 | static int |
d2e4a39e | 1796 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1797 | { |
1798 | type = desc_base_type (type); | |
1799 | ||
1800 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1801 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1802 | else |
14f9c5c9 AS |
1803 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1804 | } | |
1805 | ||
4c4b4cd2 | 1806 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1807 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1808 | bound, if WHICH is 1. The first bound is I=1. */ |
1809 | ||
d2e4a39e AS |
1810 | static struct value * |
1811 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1812 | { |
d2e4a39e | 1813 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1814 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1815 | } |
1816 | ||
1817 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1818 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1819 | bound, if WHICH is 1. The first bound is I=1. */ |
1820 | ||
14f9c5c9 | 1821 | static int |
d2e4a39e | 1822 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1823 | { |
d2e4a39e | 1824 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1825 | } |
1826 | ||
1827 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1828 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1829 | bound, if WHICH is 1. The first bound is I=1. */ |
1830 | ||
76a01679 | 1831 | static int |
d2e4a39e | 1832 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1833 | { |
1834 | type = desc_base_type (type); | |
1835 | ||
d2e4a39e AS |
1836 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1837 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1838 | else | |
1839 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1840 | } |
1841 | ||
1842 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1843 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1844 | ||
d2e4a39e AS |
1845 | static struct type * |
1846 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1847 | { |
1848 | type = desc_base_type (type); | |
1849 | ||
1850 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1851 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1852 | else | |
14f9c5c9 AS |
1853 | return NULL; |
1854 | } | |
1855 | ||
4c4b4cd2 PH |
1856 | /* The number of index positions in the array-bounds type TYPE. |
1857 | Return 0 if TYPE is NULL. */ | |
1858 | ||
14f9c5c9 | 1859 | static int |
d2e4a39e | 1860 | desc_arity (struct type *type) |
14f9c5c9 AS |
1861 | { |
1862 | type = desc_base_type (type); | |
1863 | ||
1864 | if (type != NULL) | |
1865 | return TYPE_NFIELDS (type) / 2; | |
1866 | return 0; | |
1867 | } | |
1868 | ||
4c4b4cd2 PH |
1869 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1870 | an array descriptor type (representing an unconstrained array | |
1871 | type). */ | |
1872 | ||
76a01679 JB |
1873 | static int |
1874 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1875 | { |
1876 | if (type == NULL) | |
1877 | return 0; | |
61ee279c | 1878 | type = ada_check_typedef (type); |
4c4b4cd2 | 1879 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1880 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1881 | } |
1882 | ||
52ce6436 | 1883 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1884 | * to one. */ |
52ce6436 | 1885 | |
2c0b251b | 1886 | static int |
52ce6436 PH |
1887 | ada_is_array_type (struct type *type) |
1888 | { | |
1889 | while (type != NULL | |
1890 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1891 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1892 | type = TYPE_TARGET_TYPE (type); | |
1893 | return ada_is_direct_array_type (type); | |
1894 | } | |
1895 | ||
4c4b4cd2 | 1896 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1897 | |
14f9c5c9 | 1898 | int |
4c4b4cd2 | 1899 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1900 | { |
1901 | if (type == NULL) | |
1902 | return 0; | |
61ee279c | 1903 | type = ada_check_typedef (type); |
14f9c5c9 | 1904 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1905 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1906 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1907 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1908 | } |
1909 | ||
4c4b4cd2 PH |
1910 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1911 | ||
14f9c5c9 | 1912 | int |
4c4b4cd2 | 1913 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1914 | { |
556bdfd4 | 1915 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1916 | |
1917 | if (type == NULL) | |
1918 | return 0; | |
61ee279c | 1919 | type = ada_check_typedef (type); |
556bdfd4 UW |
1920 | return (data_type != NULL |
1921 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1922 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1923 | } |
1924 | ||
1925 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1926 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1927 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1928 | is still needed. */ |
1929 | ||
14f9c5c9 | 1930 | int |
ebf56fd3 | 1931 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1932 | { |
d2e4a39e | 1933 | return |
14f9c5c9 AS |
1934 | type != NULL |
1935 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1936 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1937 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1938 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1939 | } |
1940 | ||
1941 | ||
4c4b4cd2 | 1942 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1943 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1944 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1945 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1946 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1947 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1948 | a descriptor. */ |
d2e4a39e AS |
1949 | struct type * |
1950 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1951 | { |
ad82864c JB |
1952 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1953 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1954 | |
df407dfe AC |
1955 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1956 | return value_type (arr); | |
d2e4a39e AS |
1957 | |
1958 | if (!bounds) | |
ad82864c JB |
1959 | { |
1960 | struct type *array_type = | |
1961 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1962 | ||
1963 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1964 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1965 | decode_packed_array_bitsize (value_type (arr)); | |
1966 | ||
1967 | return array_type; | |
1968 | } | |
14f9c5c9 AS |
1969 | else |
1970 | { | |
d2e4a39e | 1971 | struct type *elt_type; |
14f9c5c9 | 1972 | int arity; |
d2e4a39e | 1973 | struct value *descriptor; |
14f9c5c9 | 1974 | |
df407dfe AC |
1975 | elt_type = ada_array_element_type (value_type (arr), -1); |
1976 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1977 | |
d2e4a39e | 1978 | if (elt_type == NULL || arity == 0) |
df407dfe | 1979 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1980 | |
1981 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1982 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1983 | return NULL; |
d2e4a39e | 1984 | while (arity > 0) |
4c4b4cd2 | 1985 | { |
e9bb382b UW |
1986 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1987 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1988 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1989 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1990 | |
5b4ee69b | 1991 | arity -= 1; |
0c9c3474 SA |
1992 | create_static_range_type (range_type, value_type (low), |
1993 | longest_to_int (value_as_long (low)), | |
1994 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1995 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1996 | |
1997 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1998 | { |
1999 | /* We need to store the element packed bitsize, as well as | |
2000 | recompute the array size, because it was previously | |
2001 | computed based on the unpacked element size. */ | |
2002 | LONGEST lo = value_as_long (low); | |
2003 | LONGEST hi = value_as_long (high); | |
2004 | ||
2005 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2006 | decode_packed_array_bitsize (value_type (arr)); | |
2007 | /* If the array has no element, then the size is already | |
2008 | zero, and does not need to be recomputed. */ | |
2009 | if (lo < hi) | |
2010 | { | |
2011 | int array_bitsize = | |
2012 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2013 | ||
2014 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2015 | } | |
2016 | } | |
4c4b4cd2 | 2017 | } |
14f9c5c9 AS |
2018 | |
2019 | return lookup_pointer_type (elt_type); | |
2020 | } | |
2021 | } | |
2022 | ||
2023 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2024 | Otherwise, returns either a standard GDB array with bounds set |
2025 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2026 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2027 | ||
d2e4a39e AS |
2028 | struct value * |
2029 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2030 | { |
df407dfe | 2031 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2032 | { |
d2e4a39e | 2033 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2034 | |
14f9c5c9 | 2035 | if (arrType == NULL) |
4c4b4cd2 | 2036 | return NULL; |
14f9c5c9 AS |
2037 | return value_cast (arrType, value_copy (desc_data (arr))); |
2038 | } | |
ad82864c JB |
2039 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2040 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2041 | else |
2042 | return arr; | |
2043 | } | |
2044 | ||
2045 | /* If ARR does not represent an array, returns ARR unchanged. | |
2046 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2047 | be ARR itself if it already is in the proper form). */ |
2048 | ||
720d1a40 | 2049 | struct value * |
d2e4a39e | 2050 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2051 | { |
df407dfe | 2052 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2053 | { |
d2e4a39e | 2054 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2055 | |
14f9c5c9 | 2056 | if (arrVal == NULL) |
323e0a4a | 2057 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2058 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2059 | return value_ind (arrVal); |
2060 | } | |
ad82864c JB |
2061 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2062 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2063 | else |
14f9c5c9 AS |
2064 | return arr; |
2065 | } | |
2066 | ||
2067 | /* If TYPE represents a GNAT array type, return it translated to an | |
2068 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2069 | packing). For other types, is the identity. */ |
2070 | ||
d2e4a39e AS |
2071 | struct type * |
2072 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2073 | { |
ad82864c JB |
2074 | if (ada_is_constrained_packed_array_type (type)) |
2075 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2076 | |
2077 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2078 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2079 | |
2080 | return type; | |
14f9c5c9 AS |
2081 | } |
2082 | ||
4c4b4cd2 PH |
2083 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2084 | ||
ad82864c JB |
2085 | static int |
2086 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2087 | { |
2088 | if (type == NULL) | |
2089 | return 0; | |
4c4b4cd2 | 2090 | type = desc_base_type (type); |
61ee279c | 2091 | type = ada_check_typedef (type); |
d2e4a39e | 2092 | return |
14f9c5c9 AS |
2093 | ada_type_name (type) != NULL |
2094 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2095 | } | |
2096 | ||
ad82864c JB |
2097 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2098 | packed-array type. */ | |
2099 | ||
2100 | int | |
2101 | ada_is_constrained_packed_array_type (struct type *type) | |
2102 | { | |
2103 | return ada_is_packed_array_type (type) | |
2104 | && !ada_is_array_descriptor_type (type); | |
2105 | } | |
2106 | ||
2107 | /* Non-zero iff TYPE represents an array descriptor for a | |
2108 | unconstrained packed-array type. */ | |
2109 | ||
2110 | static int | |
2111 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2112 | { | |
2113 | return ada_is_packed_array_type (type) | |
2114 | && ada_is_array_descriptor_type (type); | |
2115 | } | |
2116 | ||
2117 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2118 | return the size of its elements in bits. */ | |
2119 | ||
2120 | static long | |
2121 | decode_packed_array_bitsize (struct type *type) | |
2122 | { | |
0d5cff50 DE |
2123 | const char *raw_name; |
2124 | const char *tail; | |
ad82864c JB |
2125 | long bits; |
2126 | ||
720d1a40 JB |
2127 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2128 | of the fat pointer type. We need the name of the fat pointer type | |
2129 | to do the decoding, so strip the typedef layer. */ | |
2130 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2131 | type = ada_typedef_target_type (type); | |
2132 | ||
2133 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2134 | if (!raw_name) |
2135 | raw_name = ada_type_name (desc_base_type (type)); | |
2136 | ||
2137 | if (!raw_name) | |
2138 | return 0; | |
2139 | ||
2140 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2141 | gdb_assert (tail != NULL); |
ad82864c JB |
2142 | |
2143 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2144 | { | |
2145 | lim_warning | |
2146 | (_("could not understand bit size information on packed array")); | |
2147 | return 0; | |
2148 | } | |
2149 | ||
2150 | return bits; | |
2151 | } | |
2152 | ||
14f9c5c9 AS |
2153 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2154 | in, and that the element size of its ultimate scalar constituents | |
2155 | (that is, either its elements, or, if it is an array of arrays, its | |
2156 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2157 | but with the bit sizes of its elements (and those of any | |
2158 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2159 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2160 | in bits. |
2161 | ||
2162 | Note that, for arrays whose index type has an XA encoding where | |
2163 | a bound references a record discriminant, getting that discriminant, | |
2164 | and therefore the actual value of that bound, is not possible | |
2165 | because none of the given parameters gives us access to the record. | |
2166 | This function assumes that it is OK in the context where it is being | |
2167 | used to return an array whose bounds are still dynamic and where | |
2168 | the length is arbitrary. */ | |
4c4b4cd2 | 2169 | |
d2e4a39e | 2170 | static struct type * |
ad82864c | 2171 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2172 | { |
d2e4a39e AS |
2173 | struct type *new_elt_type; |
2174 | struct type *new_type; | |
99b1c762 JB |
2175 | struct type *index_type_desc; |
2176 | struct type *index_type; | |
14f9c5c9 AS |
2177 | LONGEST low_bound, high_bound; |
2178 | ||
61ee279c | 2179 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2180 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2181 | return type; | |
2182 | ||
99b1c762 JB |
2183 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2184 | if (index_type_desc) | |
2185 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2186 | NULL); | |
2187 | else | |
2188 | index_type = TYPE_INDEX_TYPE (type); | |
2189 | ||
e9bb382b | 2190 | new_type = alloc_type_copy (type); |
ad82864c JB |
2191 | new_elt_type = |
2192 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2193 | elt_bits); | |
99b1c762 | 2194 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2195 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2196 | TYPE_NAME (new_type) = ada_type_name (type); | |
2197 | ||
4a46959e JB |
2198 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2199 | && is_dynamic_type (check_typedef (index_type))) | |
2200 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2201 | low_bound = high_bound = 0; |
2202 | if (high_bound < low_bound) | |
2203 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2204 | else |
14f9c5c9 AS |
2205 | { |
2206 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2207 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2208 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2209 | } |
2210 | ||
876cecd0 | 2211 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2212 | return new_type; |
2213 | } | |
2214 | ||
ad82864c JB |
2215 | /* The array type encoded by TYPE, where |
2216 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2217 | |
d2e4a39e | 2218 | static struct type * |
ad82864c | 2219 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2220 | { |
0d5cff50 | 2221 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2222 | char *name; |
0d5cff50 | 2223 | const char *tail; |
d2e4a39e | 2224 | struct type *shadow_type; |
14f9c5c9 | 2225 | long bits; |
14f9c5c9 | 2226 | |
727e3d2e JB |
2227 | if (!raw_name) |
2228 | raw_name = ada_type_name (desc_base_type (type)); | |
2229 | ||
2230 | if (!raw_name) | |
2231 | return NULL; | |
2232 | ||
2233 | name = (char *) alloca (strlen (raw_name) + 1); | |
2234 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2235 | type = desc_base_type (type); |
2236 | ||
14f9c5c9 AS |
2237 | memcpy (name, raw_name, tail - raw_name); |
2238 | name[tail - raw_name] = '\000'; | |
2239 | ||
b4ba55a1 JB |
2240 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2241 | ||
2242 | if (shadow_type == NULL) | |
14f9c5c9 | 2243 | { |
323e0a4a | 2244 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2245 | return NULL; |
2246 | } | |
f168693b | 2247 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2248 | |
2249 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2250 | { | |
0963b4bd MS |
2251 | lim_warning (_("could not understand bounds " |
2252 | "information on packed array")); | |
14f9c5c9 AS |
2253 | return NULL; |
2254 | } | |
d2e4a39e | 2255 | |
ad82864c JB |
2256 | bits = decode_packed_array_bitsize (type); |
2257 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2258 | } |
2259 | ||
ad82864c JB |
2260 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2261 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2262 | standard GDB array type except that the BITSIZEs of the array |
2263 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2264 | type length is set appropriately. */ |
14f9c5c9 | 2265 | |
d2e4a39e | 2266 | static struct value * |
ad82864c | 2267 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2268 | { |
4c4b4cd2 | 2269 | struct type *type; |
14f9c5c9 | 2270 | |
11aa919a PMR |
2271 | /* If our value is a pointer, then dereference it. Likewise if |
2272 | the value is a reference. Make sure that this operation does not | |
2273 | cause the target type to be fixed, as this would indirectly cause | |
2274 | this array to be decoded. The rest of the routine assumes that | |
2275 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2276 | and "value_ind" routines to perform the dereferencing, as opposed | |
2277 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2278 | arr = coerce_ref (arr); | |
828292f2 | 2279 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2280 | arr = value_ind (arr); |
4c4b4cd2 | 2281 | |
ad82864c | 2282 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2283 | if (type == NULL) |
2284 | { | |
323e0a4a | 2285 | error (_("can't unpack array")); |
14f9c5c9 AS |
2286 | return NULL; |
2287 | } | |
61ee279c | 2288 | |
50810684 | 2289 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2290 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2291 | { |
2292 | /* This is a (right-justified) modular type representing a packed | |
2293 | array with no wrapper. In order to interpret the value through | |
2294 | the (left-justified) packed array type we just built, we must | |
2295 | first left-justify it. */ | |
2296 | int bit_size, bit_pos; | |
2297 | ULONGEST mod; | |
2298 | ||
df407dfe | 2299 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2300 | bit_size = 0; |
2301 | while (mod > 0) | |
2302 | { | |
2303 | bit_size += 1; | |
2304 | mod >>= 1; | |
2305 | } | |
df407dfe | 2306 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2307 | arr = ada_value_primitive_packed_val (arr, NULL, |
2308 | bit_pos / HOST_CHAR_BIT, | |
2309 | bit_pos % HOST_CHAR_BIT, | |
2310 | bit_size, | |
2311 | type); | |
2312 | } | |
2313 | ||
4c4b4cd2 | 2314 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2315 | } |
2316 | ||
2317 | ||
2318 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2319 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2320 | |
d2e4a39e AS |
2321 | static struct value * |
2322 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2323 | { |
2324 | int i; | |
2325 | int bits, elt_off, bit_off; | |
2326 | long elt_total_bit_offset; | |
d2e4a39e AS |
2327 | struct type *elt_type; |
2328 | struct value *v; | |
14f9c5c9 AS |
2329 | |
2330 | bits = 0; | |
2331 | elt_total_bit_offset = 0; | |
df407dfe | 2332 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2333 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2334 | { |
d2e4a39e | 2335 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2336 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2337 | error | |
0963b4bd MS |
2338 | (_("attempt to do packed indexing of " |
2339 | "something other than a packed array")); | |
14f9c5c9 | 2340 | else |
4c4b4cd2 PH |
2341 | { |
2342 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2343 | LONGEST lowerbound, upperbound; | |
2344 | LONGEST idx; | |
2345 | ||
2346 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2347 | { | |
323e0a4a | 2348 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2349 | lowerbound = upperbound = 0; |
2350 | } | |
2351 | ||
3cb382c9 | 2352 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2353 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2354 | lim_warning (_("packed array index %ld out of bounds"), |
2355 | (long) idx); | |
4c4b4cd2 PH |
2356 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2357 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2358 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2359 | } |
14f9c5c9 AS |
2360 | } |
2361 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2362 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2363 | |
2364 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2365 | bits, elt_type); |
14f9c5c9 AS |
2366 | return v; |
2367 | } | |
2368 | ||
4c4b4cd2 | 2369 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2370 | |
2371 | static int | |
d2e4a39e | 2372 | has_negatives (struct type *type) |
14f9c5c9 | 2373 | { |
d2e4a39e AS |
2374 | switch (TYPE_CODE (type)) |
2375 | { | |
2376 | default: | |
2377 | return 0; | |
2378 | case TYPE_CODE_INT: | |
2379 | return !TYPE_UNSIGNED (type); | |
2380 | case TYPE_CODE_RANGE: | |
2381 | return TYPE_LOW_BOUND (type) < 0; | |
2382 | } | |
14f9c5c9 | 2383 | } |
d2e4a39e | 2384 | |
14f9c5c9 AS |
2385 | |
2386 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2387 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2388 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2389 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2390 | VALADDR is ignored unless OBJ is NULL, in which case, |
2391 | VALADDR+OFFSET must address the start of storage containing the | |
2392 | packed value. The value returned in this case is never an lval. | |
2393 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2394 | |
d2e4a39e | 2395 | struct value * |
fc1a4b47 | 2396 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2397 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2398 | struct type *type) |
14f9c5c9 | 2399 | { |
d2e4a39e | 2400 | struct value *v; |
4c4b4cd2 PH |
2401 | int src, /* Index into the source area */ |
2402 | targ, /* Index into the target area */ | |
2403 | srcBitsLeft, /* Number of source bits left to move */ | |
2404 | nsrc, ntarg, /* Number of source and target bytes */ | |
2405 | unusedLS, /* Number of bits in next significant | |
2406 | byte of source that are unused */ | |
2407 | accumSize; /* Number of meaningful bits in accum */ | |
2408 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2409 | unsigned char *unpacked; |
4c4b4cd2 | 2410 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2411 | unsigned char sign; |
2412 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2413 | /* Transmit bytes from least to most significant; delta is the direction |
2414 | the indices move. */ | |
50810684 | 2415 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2416 | |
61ee279c | 2417 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2418 | |
2419 | if (obj == NULL) | |
2420 | { | |
2421 | v = allocate_value (type); | |
d2e4a39e | 2422 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2423 | } |
9214ee5f | 2424 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2425 | { |
ca34b84f | 2426 | v = value_at (type, value_address (obj) + offset); |
9f1f738a | 2427 | type = value_type (v); |
fc958966 JB |
2428 | if (TYPE_LENGTH (type) * HOST_CHAR_BIT < bit_size) |
2429 | { | |
2430 | /* This can happen in the case of an array of dynamic objects, | |
2431 | where the size of each element changes from element to element. | |
2432 | In that case, we're initially given the array stride, but | |
2433 | after resolving the element type, we find that its size is | |
2434 | less than this stride. In that case, adjust bit_size to | |
2435 | match TYPE's length, and recompute LEN accordingly. */ | |
2436 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2437 | len = TYPE_LENGTH (type) + (bit_offset + HOST_CHAR_BIT - 1) / 8; | |
2438 | } | |
d2e4a39e | 2439 | bytes = (unsigned char *) alloca (len); |
ca34b84f | 2440 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2441 | } |
d2e4a39e | 2442 | else |
14f9c5c9 AS |
2443 | { |
2444 | v = allocate_value (type); | |
0fd88904 | 2445 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2446 | } |
d2e4a39e AS |
2447 | |
2448 | if (obj != NULL) | |
14f9c5c9 | 2449 | { |
53ba8333 | 2450 | long new_offset = offset; |
5b4ee69b | 2451 | |
74bcbdf3 | 2452 | set_value_component_location (v, obj); |
9bbda503 AC |
2453 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2454 | set_value_bitsize (v, bit_size); | |
df407dfe | 2455 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2456 | { |
53ba8333 | 2457 | ++new_offset; |
9bbda503 | 2458 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2459 | } |
53ba8333 JB |
2460 | set_value_offset (v, new_offset); |
2461 | ||
2462 | /* Also set the parent value. This is needed when trying to | |
2463 | assign a new value (in inferior memory). */ | |
2464 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2465 | } |
2466 | else | |
9bbda503 | 2467 | set_value_bitsize (v, bit_size); |
0fd88904 | 2468 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2469 | |
2470 | srcBitsLeft = bit_size; | |
2471 | nsrc = len; | |
2472 | ntarg = TYPE_LENGTH (type); | |
2473 | sign = 0; | |
2474 | if (bit_size == 0) | |
2475 | { | |
2476 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2477 | return v; | |
2478 | } | |
50810684 | 2479 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2480 | { |
d2e4a39e | 2481 | src = len - 1; |
1265e4aa JB |
2482 | if (has_negatives (type) |
2483 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2484 | sign = ~0; |
d2e4a39e AS |
2485 | |
2486 | unusedLS = | |
4c4b4cd2 PH |
2487 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2488 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2489 | |
2490 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2491 | { |
2492 | case TYPE_CODE_ARRAY: | |
2493 | case TYPE_CODE_UNION: | |
2494 | case TYPE_CODE_STRUCT: | |
2495 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2496 | accumSize = | |
2497 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2498 | /* ... And are placed at the beginning (most-significant) bytes | |
2499 | of the target. */ | |
529cad9c | 2500 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2501 | ntarg = targ + 1; |
4c4b4cd2 PH |
2502 | break; |
2503 | default: | |
2504 | accumSize = 0; | |
2505 | targ = TYPE_LENGTH (type) - 1; | |
2506 | break; | |
2507 | } | |
14f9c5c9 | 2508 | } |
d2e4a39e | 2509 | else |
14f9c5c9 AS |
2510 | { |
2511 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2512 | ||
2513 | src = targ = 0; | |
2514 | unusedLS = bit_offset; | |
2515 | accumSize = 0; | |
2516 | ||
d2e4a39e | 2517 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2518 | sign = ~0; |
14f9c5c9 | 2519 | } |
d2e4a39e | 2520 | |
14f9c5c9 AS |
2521 | accum = 0; |
2522 | while (nsrc > 0) | |
2523 | { | |
2524 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2525 | part of the value. */ |
d2e4a39e | 2526 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2527 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2528 | 1; | |
2529 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2530 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2531 | |
d2e4a39e | 2532 | accum |= |
4c4b4cd2 | 2533 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2534 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2535 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2536 | { |
2537 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2538 | accumSize -= HOST_CHAR_BIT; | |
2539 | accum >>= HOST_CHAR_BIT; | |
2540 | ntarg -= 1; | |
2541 | targ += delta; | |
2542 | } | |
14f9c5c9 AS |
2543 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2544 | unusedLS = 0; | |
2545 | nsrc -= 1; | |
2546 | src += delta; | |
2547 | } | |
2548 | while (ntarg > 0) | |
2549 | { | |
2550 | accum |= sign << accumSize; | |
2551 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2552 | accumSize -= HOST_CHAR_BIT; | |
9cd4d857 JB |
2553 | if (accumSize < 0) |
2554 | accumSize = 0; | |
14f9c5c9 AS |
2555 | accum >>= HOST_CHAR_BIT; |
2556 | ntarg -= 1; | |
2557 | targ += delta; | |
2558 | } | |
2559 | ||
2478d075 JB |
2560 | if (is_dynamic_type (value_type (v))) |
2561 | v = value_from_contents_and_address (value_type (v), value_contents (v), | |
2562 | 0); | |
14f9c5c9 AS |
2563 | return v; |
2564 | } | |
d2e4a39e | 2565 | |
14f9c5c9 AS |
2566 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2567 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2568 | not overlap. */ |
14f9c5c9 | 2569 | static void |
fc1a4b47 | 2570 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2571 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2572 | { |
2573 | unsigned int accum, mask; | |
2574 | int accum_bits, chunk_size; | |
2575 | ||
2576 | target += targ_offset / HOST_CHAR_BIT; | |
2577 | targ_offset %= HOST_CHAR_BIT; | |
2578 | source += src_offset / HOST_CHAR_BIT; | |
2579 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2580 | if (bits_big_endian_p) |
14f9c5c9 AS |
2581 | { |
2582 | accum = (unsigned char) *source; | |
2583 | source += 1; | |
2584 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2585 | ||
d2e4a39e | 2586 | while (n > 0) |
4c4b4cd2 PH |
2587 | { |
2588 | int unused_right; | |
5b4ee69b | 2589 | |
4c4b4cd2 PH |
2590 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2591 | accum_bits += HOST_CHAR_BIT; | |
2592 | source += 1; | |
2593 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2594 | if (chunk_size > n) | |
2595 | chunk_size = n; | |
2596 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2597 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2598 | *target = | |
2599 | (*target & ~mask) | |
2600 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2601 | n -= chunk_size; | |
2602 | accum_bits -= chunk_size; | |
2603 | target += 1; | |
2604 | targ_offset = 0; | |
2605 | } | |
14f9c5c9 AS |
2606 | } |
2607 | else | |
2608 | { | |
2609 | accum = (unsigned char) *source >> src_offset; | |
2610 | source += 1; | |
2611 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2612 | ||
d2e4a39e | 2613 | while (n > 0) |
4c4b4cd2 PH |
2614 | { |
2615 | accum = accum + ((unsigned char) *source << accum_bits); | |
2616 | accum_bits += HOST_CHAR_BIT; | |
2617 | source += 1; | |
2618 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2619 | if (chunk_size > n) | |
2620 | chunk_size = n; | |
2621 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2622 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2623 | n -= chunk_size; | |
2624 | accum_bits -= chunk_size; | |
2625 | accum >>= chunk_size; | |
2626 | target += 1; | |
2627 | targ_offset = 0; | |
2628 | } | |
14f9c5c9 AS |
2629 | } |
2630 | } | |
2631 | ||
14f9c5c9 AS |
2632 | /* Store the contents of FROMVAL into the location of TOVAL. |
2633 | Return a new value with the location of TOVAL and contents of | |
2634 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2635 | floating-point or non-scalar types. */ |
14f9c5c9 | 2636 | |
d2e4a39e AS |
2637 | static struct value * |
2638 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2639 | { |
df407dfe AC |
2640 | struct type *type = value_type (toval); |
2641 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2642 | |
52ce6436 PH |
2643 | toval = ada_coerce_ref (toval); |
2644 | fromval = ada_coerce_ref (fromval); | |
2645 | ||
2646 | if (ada_is_direct_array_type (value_type (toval))) | |
2647 | toval = ada_coerce_to_simple_array (toval); | |
2648 | if (ada_is_direct_array_type (value_type (fromval))) | |
2649 | fromval = ada_coerce_to_simple_array (fromval); | |
2650 | ||
88e3b34b | 2651 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2652 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2653 | |
d2e4a39e | 2654 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2655 | && bits > 0 |
d2e4a39e | 2656 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2657 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2658 | { |
df407dfe AC |
2659 | int len = (value_bitpos (toval) |
2660 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2661 | int from_size; |
224c3ddb | 2662 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2663 | struct value *val; |
42ae5230 | 2664 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2665 | |
2666 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2667 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2668 | |
52ce6436 | 2669 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2670 | from_size = value_bitsize (fromval); |
2671 | if (from_size == 0) | |
2672 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2673 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2674 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2675 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2676 | else |
50810684 UW |
2677 | move_bits (buffer, value_bitpos (toval), |
2678 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2679 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2680 | |
14f9c5c9 | 2681 | val = value_copy (toval); |
0fd88904 | 2682 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2683 | TYPE_LENGTH (type)); |
04624583 | 2684 | deprecated_set_value_type (val, type); |
d2e4a39e | 2685 | |
14f9c5c9 AS |
2686 | return val; |
2687 | } | |
2688 | ||
2689 | return value_assign (toval, fromval); | |
2690 | } | |
2691 | ||
2692 | ||
7c512744 JB |
2693 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2694 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2695 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2696 | COMPONENT, and not the inferior's memory. The current contents | |
2697 | of COMPONENT are ignored. | |
2698 | ||
2699 | Although not part of the initial design, this function also works | |
2700 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2701 | had a null address, and COMPONENT had an address which is equal to | |
2702 | its offset inside CONTAINER. */ | |
2703 | ||
52ce6436 PH |
2704 | static void |
2705 | value_assign_to_component (struct value *container, struct value *component, | |
2706 | struct value *val) | |
2707 | { | |
2708 | LONGEST offset_in_container = | |
42ae5230 | 2709 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2710 | int bit_offset_in_container = |
52ce6436 PH |
2711 | value_bitpos (component) - value_bitpos (container); |
2712 | int bits; | |
7c512744 | 2713 | |
52ce6436 PH |
2714 | val = value_cast (value_type (component), val); |
2715 | ||
2716 | if (value_bitsize (component) == 0) | |
2717 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2718 | else | |
2719 | bits = value_bitsize (component); | |
2720 | ||
50810684 | 2721 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2722 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2723 | value_bitpos (container) + bit_offset_in_container, |
2724 | value_contents (val), | |
2725 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2726 | bits, 1); |
52ce6436 | 2727 | else |
7c512744 | 2728 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2729 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2730 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2731 | } |
2732 | ||
4c4b4cd2 PH |
2733 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2734 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2735 | thereto. */ |
2736 | ||
d2e4a39e AS |
2737 | struct value * |
2738 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2739 | { |
2740 | int k; | |
d2e4a39e AS |
2741 | struct value *elt; |
2742 | struct type *elt_type; | |
14f9c5c9 AS |
2743 | |
2744 | elt = ada_coerce_to_simple_array (arr); | |
2745 | ||
df407dfe | 2746 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2747 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2748 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2749 | return value_subscript_packed (elt, arity, ind); | |
2750 | ||
2751 | for (k = 0; k < arity; k += 1) | |
2752 | { | |
2753 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2754 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2755 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2756 | } |
2757 | return elt; | |
2758 | } | |
2759 | ||
deede10c JB |
2760 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2761 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2762 | Does not read the entire array into memory. |
2763 | ||
2764 | Note: Unlike what one would expect, this function is used instead of | |
2765 | ada_value_subscript for basically all non-packed array types. The reason | |
2766 | for this is that a side effect of doing our own pointer arithmetics instead | |
2767 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2768 | This is important for arrays of array accesses, where it allows us to | |
2769 | preserve the fact that the array's element is an array access, where the | |
2770 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2771 | |
2c0b251b | 2772 | static struct value * |
deede10c | 2773 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2774 | { |
2775 | int k; | |
919e6dbe | 2776 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2777 | struct type *type |
919e6dbe PMR |
2778 | = check_typedef (value_enclosing_type (array_ind)); |
2779 | ||
2780 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2781 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2782 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2783 | |
2784 | for (k = 0; k < arity; k += 1) | |
2785 | { | |
2786 | LONGEST lwb, upb; | |
aa715135 | 2787 | struct value *lwb_value; |
14f9c5c9 AS |
2788 | |
2789 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2790 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2791 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2792 | value_copy (arr)); |
14f9c5c9 | 2793 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2794 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2795 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2796 | type = TYPE_TARGET_TYPE (type); |
2797 | } | |
2798 | ||
2799 | return value_ind (arr); | |
2800 | } | |
2801 | ||
0b5d8877 | 2802 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2803 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2804 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2805 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2806 | static struct value * |
f5938064 JG |
2807 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2808 | int low, int high) | |
0b5d8877 | 2809 | { |
b0dd7688 | 2810 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2811 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2812 | struct type *index_type |
aa715135 | 2813 | = create_static_range_type (NULL, base_index_type, low, high); |
6c038f32 | 2814 | struct type *slice_type = |
b0dd7688 | 2815 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
aa715135 JG |
2816 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2817 | LONGEST base_low_pos, low_pos; | |
2818 | CORE_ADDR base; | |
2819 | ||
2820 | if (!discrete_position (base_index_type, low, &low_pos) | |
2821 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2822 | { | |
2823 | warning (_("unable to get positions in slice, use bounds instead")); | |
2824 | low_pos = low; | |
2825 | base_low_pos = base_low; | |
2826 | } | |
5b4ee69b | 2827 | |
aa715135 JG |
2828 | base = value_as_address (array_ptr) |
2829 | + ((low_pos - base_low_pos) | |
2830 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2831 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2832 | } |
2833 | ||
2834 | ||
2835 | static struct value * | |
2836 | ada_value_slice (struct value *array, int low, int high) | |
2837 | { | |
b0dd7688 | 2838 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2839 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2840 | struct type *index_type |
2841 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2842 | struct type *slice_type = |
0b5d8877 | 2843 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
aa715135 | 2844 | LONGEST low_pos, high_pos; |
5b4ee69b | 2845 | |
aa715135 JG |
2846 | if (!discrete_position (base_index_type, low, &low_pos) |
2847 | || !discrete_position (base_index_type, high, &high_pos)) | |
2848 | { | |
2849 | warning (_("unable to get positions in slice, use bounds instead")); | |
2850 | low_pos = low; | |
2851 | high_pos = high; | |
2852 | } | |
2853 | ||
2854 | return value_cast (slice_type, | |
2855 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2856 | } |
2857 | ||
14f9c5c9 AS |
2858 | /* If type is a record type in the form of a standard GNAT array |
2859 | descriptor, returns the number of dimensions for type. If arr is a | |
2860 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2861 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2862 | |
2863 | int | |
d2e4a39e | 2864 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2865 | { |
2866 | int arity; | |
2867 | ||
2868 | if (type == NULL) | |
2869 | return 0; | |
2870 | ||
2871 | type = desc_base_type (type); | |
2872 | ||
2873 | arity = 0; | |
d2e4a39e | 2874 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2875 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2876 | else |
2877 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2878 | { |
4c4b4cd2 | 2879 | arity += 1; |
61ee279c | 2880 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2881 | } |
d2e4a39e | 2882 | |
14f9c5c9 AS |
2883 | return arity; |
2884 | } | |
2885 | ||
2886 | /* If TYPE is a record type in the form of a standard GNAT array | |
2887 | descriptor or a simple array type, returns the element type for | |
2888 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2889 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2890 | |
d2e4a39e AS |
2891 | struct type * |
2892 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2893 | { |
2894 | type = desc_base_type (type); | |
2895 | ||
d2e4a39e | 2896 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2897 | { |
2898 | int k; | |
d2e4a39e | 2899 | struct type *p_array_type; |
14f9c5c9 | 2900 | |
556bdfd4 | 2901 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2902 | |
2903 | k = ada_array_arity (type); | |
2904 | if (k == 0) | |
4c4b4cd2 | 2905 | return NULL; |
d2e4a39e | 2906 | |
4c4b4cd2 | 2907 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2908 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2909 | k = nindices; |
d2e4a39e | 2910 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2911 | { |
61ee279c | 2912 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2913 | k -= 1; |
2914 | } | |
14f9c5c9 AS |
2915 | return p_array_type; |
2916 | } | |
2917 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2918 | { | |
2919 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2920 | { |
2921 | type = TYPE_TARGET_TYPE (type); | |
2922 | nindices -= 1; | |
2923 | } | |
14f9c5c9 AS |
2924 | return type; |
2925 | } | |
2926 | ||
2927 | return NULL; | |
2928 | } | |
2929 | ||
4c4b4cd2 | 2930 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2931 | Does not examine memory. Throws an error if N is invalid or TYPE |
2932 | is not an array type. NAME is the name of the Ada attribute being | |
2933 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2934 | the error message. */ | |
14f9c5c9 | 2935 | |
1eea4ebd UW |
2936 | static struct type * |
2937 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2938 | { |
4c4b4cd2 PH |
2939 | struct type *result_type; |
2940 | ||
14f9c5c9 AS |
2941 | type = desc_base_type (type); |
2942 | ||
1eea4ebd UW |
2943 | if (n < 0 || n > ada_array_arity (type)) |
2944 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2945 | |
4c4b4cd2 | 2946 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2947 | { |
2948 | int i; | |
2949 | ||
2950 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2951 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2952 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2953 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2954 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2955 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2956 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2957 | result_type = NULL; | |
14f9c5c9 | 2958 | } |
d2e4a39e | 2959 | else |
1eea4ebd UW |
2960 | { |
2961 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2962 | if (result_type == NULL) | |
2963 | error (_("attempt to take bound of something that is not an array")); | |
2964 | } | |
2965 | ||
2966 | return result_type; | |
14f9c5c9 AS |
2967 | } |
2968 | ||
2969 | /* Given that arr is an array type, returns the lower bound of the | |
2970 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2971 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2972 | array-descriptor type. It works for other arrays with bounds supplied |
2973 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2974 | |
abb68b3e | 2975 | static LONGEST |
fb5e3d5c | 2976 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2977 | { |
8a48ac95 | 2978 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2979 | int i; |
262452ec JK |
2980 | |
2981 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2982 | |
ad82864c JB |
2983 | if (ada_is_constrained_packed_array_type (arr_type)) |
2984 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2985 | |
4c4b4cd2 | 2986 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2987 | return (LONGEST) - which; |
14f9c5c9 AS |
2988 | |
2989 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2990 | type = TYPE_TARGET_TYPE (arr_type); | |
2991 | else | |
2992 | type = arr_type; | |
2993 | ||
bafffb51 JB |
2994 | if (TYPE_FIXED_INSTANCE (type)) |
2995 | { | |
2996 | /* The array has already been fixed, so we do not need to | |
2997 | check the parallel ___XA type again. That encoding has | |
2998 | already been applied, so ignore it now. */ | |
2999 | index_type_desc = NULL; | |
3000 | } | |
3001 | else | |
3002 | { | |
3003 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3004 | ada_fixup_array_indexes_type (index_type_desc); | |
3005 | } | |
3006 | ||
262452ec | 3007 | if (index_type_desc != NULL) |
28c85d6c JB |
3008 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3009 | NULL); | |
262452ec | 3010 | else |
8a48ac95 JB |
3011 | { |
3012 | struct type *elt_type = check_typedef (type); | |
3013 | ||
3014 | for (i = 1; i < n; i++) | |
3015 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3016 | ||
3017 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3018 | } | |
262452ec | 3019 | |
43bbcdc2 PH |
3020 | return |
3021 | (LONGEST) (which == 0 | |
3022 | ? ada_discrete_type_low_bound (index_type) | |
3023 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3024 | } |
3025 | ||
3026 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3027 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3028 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3029 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3030 | |
1eea4ebd | 3031 | static LONGEST |
4dc81987 | 3032 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3033 | { |
eb479039 JB |
3034 | struct type *arr_type; |
3035 | ||
3036 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3037 | arr = value_ind (arr); | |
3038 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3039 | |
ad82864c JB |
3040 | if (ada_is_constrained_packed_array_type (arr_type)) |
3041 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3042 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3043 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3044 | else |
1eea4ebd | 3045 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3046 | } |
3047 | ||
3048 | /* Given that arr is an array value, returns the length of the | |
3049 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3050 | supplied by run-time quantities other than discriminants. |
3051 | Does not work for arrays indexed by enumeration types with representation | |
3052 | clauses at the moment. */ | |
14f9c5c9 | 3053 | |
1eea4ebd | 3054 | static LONGEST |
d2e4a39e | 3055 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3056 | { |
aa715135 JG |
3057 | struct type *arr_type, *index_type; |
3058 | int low, high; | |
eb479039 JB |
3059 | |
3060 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3061 | arr = value_ind (arr); | |
3062 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3063 | |
ad82864c JB |
3064 | if (ada_is_constrained_packed_array_type (arr_type)) |
3065 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3066 | |
4c4b4cd2 | 3067 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3068 | { |
3069 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3070 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3071 | } | |
14f9c5c9 | 3072 | else |
aa715135 JG |
3073 | { |
3074 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3075 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3076 | } | |
3077 | ||
f168693b | 3078 | arr_type = check_typedef (arr_type); |
aa715135 JG |
3079 | index_type = TYPE_INDEX_TYPE (arr_type); |
3080 | if (index_type != NULL) | |
3081 | { | |
3082 | struct type *base_type; | |
3083 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3084 | base_type = TYPE_TARGET_TYPE (index_type); | |
3085 | else | |
3086 | base_type = index_type; | |
3087 | ||
3088 | low = pos_atr (value_from_longest (base_type, low)); | |
3089 | high = pos_atr (value_from_longest (base_type, high)); | |
3090 | } | |
3091 | return high - low + 1; | |
4c4b4cd2 PH |
3092 | } |
3093 | ||
3094 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3095 | with bounds LOW to LOW-1. */ | |
3096 | ||
3097 | static struct value * | |
3098 | empty_array (struct type *arr_type, int low) | |
3099 | { | |
b0dd7688 | 3100 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3101 | struct type *index_type |
3102 | = create_static_range_type | |
3103 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3104 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3105 | |
0b5d8877 | 3106 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3107 | } |
14f9c5c9 | 3108 | \f |
d2e4a39e | 3109 | |
4c4b4cd2 | 3110 | /* Name resolution */ |
14f9c5c9 | 3111 | |
4c4b4cd2 PH |
3112 | /* The "decoded" name for the user-definable Ada operator corresponding |
3113 | to OP. */ | |
14f9c5c9 | 3114 | |
d2e4a39e | 3115 | static const char * |
4c4b4cd2 | 3116 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3117 | { |
3118 | int i; | |
3119 | ||
4c4b4cd2 | 3120 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3121 | { |
3122 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3123 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3124 | } |
323e0a4a | 3125 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3126 | } |
3127 | ||
3128 | ||
4c4b4cd2 PH |
3129 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3130 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3131 | undefined namespace) and converts operators that are | |
3132 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3133 | non-null, it provides a preferred result type [at the moment, only |
3134 | type void has any effect---causing procedures to be preferred over | |
3135 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3136 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3137 | |
4c4b4cd2 PH |
3138 | static void |
3139 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3140 | { |
30b15541 UW |
3141 | struct type *context_type = NULL; |
3142 | int pc = 0; | |
3143 | ||
3144 | if (void_context_p) | |
3145 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3146 | ||
3147 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3148 | } |
3149 | ||
4c4b4cd2 PH |
3150 | /* Resolve the operator of the subexpression beginning at |
3151 | position *POS of *EXPP. "Resolving" consists of replacing | |
3152 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3153 | with their resolutions, replacing built-in operators with | |
3154 | function calls to user-defined operators, where appropriate, and, | |
3155 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3156 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3157 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3158 | |
d2e4a39e | 3159 | static struct value * |
4c4b4cd2 | 3160 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3161 | struct type *context_type) |
14f9c5c9 AS |
3162 | { |
3163 | int pc = *pos; | |
3164 | int i; | |
4c4b4cd2 | 3165 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3166 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3167 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3168 | int nargs; /* Number of operands. */ | |
52ce6436 | 3169 | int oplen; |
14f9c5c9 AS |
3170 | |
3171 | argvec = NULL; | |
3172 | nargs = 0; | |
3173 | exp = *expp; | |
3174 | ||
52ce6436 PH |
3175 | /* Pass one: resolve operands, saving their types and updating *pos, |
3176 | if needed. */ | |
14f9c5c9 AS |
3177 | switch (op) |
3178 | { | |
4c4b4cd2 PH |
3179 | case OP_FUNCALL: |
3180 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3181 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3182 | *pos += 7; | |
4c4b4cd2 PH |
3183 | else |
3184 | { | |
3185 | *pos += 3; | |
3186 | resolve_subexp (expp, pos, 0, NULL); | |
3187 | } | |
3188 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3189 | break; |
3190 | ||
14f9c5c9 | 3191 | case UNOP_ADDR: |
4c4b4cd2 PH |
3192 | *pos += 1; |
3193 | resolve_subexp (expp, pos, 0, NULL); | |
3194 | break; | |
3195 | ||
52ce6436 PH |
3196 | case UNOP_QUAL: |
3197 | *pos += 3; | |
17466c1a | 3198 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3199 | break; |
3200 | ||
52ce6436 | 3201 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3202 | case OP_ATR_SIZE: |
3203 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3204 | case OP_ATR_FIRST: |
3205 | case OP_ATR_LAST: | |
3206 | case OP_ATR_LENGTH: | |
3207 | case OP_ATR_POS: | |
3208 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3209 | case OP_ATR_MIN: |
3210 | case OP_ATR_MAX: | |
52ce6436 PH |
3211 | case TERNOP_IN_RANGE: |
3212 | case BINOP_IN_BOUNDS: | |
3213 | case UNOP_IN_RANGE: | |
3214 | case OP_AGGREGATE: | |
3215 | case OP_OTHERS: | |
3216 | case OP_CHOICES: | |
3217 | case OP_POSITIONAL: | |
3218 | case OP_DISCRETE_RANGE: | |
3219 | case OP_NAME: | |
3220 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3221 | *pos += oplen; | |
14f9c5c9 AS |
3222 | break; |
3223 | ||
3224 | case BINOP_ASSIGN: | |
3225 | { | |
4c4b4cd2 PH |
3226 | struct value *arg1; |
3227 | ||
3228 | *pos += 1; | |
3229 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3230 | if (arg1 == NULL) | |
3231 | resolve_subexp (expp, pos, 1, NULL); | |
3232 | else | |
df407dfe | 3233 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3234 | break; |
14f9c5c9 AS |
3235 | } |
3236 | ||
4c4b4cd2 | 3237 | case UNOP_CAST: |
4c4b4cd2 PH |
3238 | *pos += 3; |
3239 | nargs = 1; | |
3240 | break; | |
14f9c5c9 | 3241 | |
4c4b4cd2 PH |
3242 | case BINOP_ADD: |
3243 | case BINOP_SUB: | |
3244 | case BINOP_MUL: | |
3245 | case BINOP_DIV: | |
3246 | case BINOP_REM: | |
3247 | case BINOP_MOD: | |
3248 | case BINOP_EXP: | |
3249 | case BINOP_CONCAT: | |
3250 | case BINOP_LOGICAL_AND: | |
3251 | case BINOP_LOGICAL_OR: | |
3252 | case BINOP_BITWISE_AND: | |
3253 | case BINOP_BITWISE_IOR: | |
3254 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3255 | |
4c4b4cd2 PH |
3256 | case BINOP_EQUAL: |
3257 | case BINOP_NOTEQUAL: | |
3258 | case BINOP_LESS: | |
3259 | case BINOP_GTR: | |
3260 | case BINOP_LEQ: | |
3261 | case BINOP_GEQ: | |
14f9c5c9 | 3262 | |
4c4b4cd2 PH |
3263 | case BINOP_REPEAT: |
3264 | case BINOP_SUBSCRIPT: | |
3265 | case BINOP_COMMA: | |
40c8aaa9 JB |
3266 | *pos += 1; |
3267 | nargs = 2; | |
3268 | break; | |
14f9c5c9 | 3269 | |
4c4b4cd2 PH |
3270 | case UNOP_NEG: |
3271 | case UNOP_PLUS: | |
3272 | case UNOP_LOGICAL_NOT: | |
3273 | case UNOP_ABS: | |
3274 | case UNOP_IND: | |
3275 | *pos += 1; | |
3276 | nargs = 1; | |
3277 | break; | |
14f9c5c9 | 3278 | |
4c4b4cd2 PH |
3279 | case OP_LONG: |
3280 | case OP_DOUBLE: | |
3281 | case OP_VAR_VALUE: | |
3282 | *pos += 4; | |
3283 | break; | |
14f9c5c9 | 3284 | |
4c4b4cd2 PH |
3285 | case OP_TYPE: |
3286 | case OP_BOOL: | |
3287 | case OP_LAST: | |
4c4b4cd2 PH |
3288 | case OP_INTERNALVAR: |
3289 | *pos += 3; | |
3290 | break; | |
14f9c5c9 | 3291 | |
4c4b4cd2 PH |
3292 | case UNOP_MEMVAL: |
3293 | *pos += 3; | |
3294 | nargs = 1; | |
3295 | break; | |
3296 | ||
67f3407f DJ |
3297 | case OP_REGISTER: |
3298 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3299 | break; | |
3300 | ||
4c4b4cd2 PH |
3301 | case STRUCTOP_STRUCT: |
3302 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3303 | nargs = 1; | |
3304 | break; | |
3305 | ||
4c4b4cd2 | 3306 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3307 | *pos += 1; |
3308 | nargs = 3; | |
3309 | break; | |
3310 | ||
52ce6436 | 3311 | case OP_STRING: |
14f9c5c9 | 3312 | break; |
4c4b4cd2 PH |
3313 | |
3314 | default: | |
323e0a4a | 3315 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3316 | } |
3317 | ||
8d749320 | 3318 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3319 | for (i = 0; i < nargs; i += 1) |
3320 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3321 | argvec[i] = NULL; | |
3322 | exp = *expp; | |
3323 | ||
3324 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3325 | switch (op) |
3326 | { | |
3327 | default: | |
3328 | break; | |
3329 | ||
14f9c5c9 | 3330 | case OP_VAR_VALUE: |
4c4b4cd2 | 3331 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3332 | { |
d12307c1 | 3333 | struct block_symbol *candidates; |
76a01679 JB |
3334 | int n_candidates; |
3335 | ||
3336 | n_candidates = | |
3337 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3338 | (exp->elts[pc + 2].symbol), | |
3339 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3340 | &candidates); |
76a01679 JB |
3341 | |
3342 | if (n_candidates > 1) | |
3343 | { | |
3344 | /* Types tend to get re-introduced locally, so if there | |
3345 | are any local symbols that are not types, first filter | |
3346 | out all types. */ | |
3347 | int j; | |
3348 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3349 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3350 | { |
3351 | case LOC_REGISTER: | |
3352 | case LOC_ARG: | |
3353 | case LOC_REF_ARG: | |
76a01679 JB |
3354 | case LOC_REGPARM_ADDR: |
3355 | case LOC_LOCAL: | |
76a01679 | 3356 | case LOC_COMPUTED: |
76a01679 JB |
3357 | goto FoundNonType; |
3358 | default: | |
3359 | break; | |
3360 | } | |
3361 | FoundNonType: | |
3362 | if (j < n_candidates) | |
3363 | { | |
3364 | j = 0; | |
3365 | while (j < n_candidates) | |
3366 | { | |
d12307c1 | 3367 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3368 | { |
3369 | candidates[j] = candidates[n_candidates - 1]; | |
3370 | n_candidates -= 1; | |
3371 | } | |
3372 | else | |
3373 | j += 1; | |
3374 | } | |
3375 | } | |
3376 | } | |
3377 | ||
3378 | if (n_candidates == 0) | |
323e0a4a | 3379 | error (_("No definition found for %s"), |
76a01679 JB |
3380 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3381 | else if (n_candidates == 1) | |
3382 | i = 0; | |
3383 | else if (deprocedure_p | |
3384 | && !is_nonfunction (candidates, n_candidates)) | |
3385 | { | |
06d5cf63 JB |
3386 | i = ada_resolve_function |
3387 | (candidates, n_candidates, NULL, 0, | |
3388 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3389 | context_type); | |
76a01679 | 3390 | if (i < 0) |
323e0a4a | 3391 | error (_("Could not find a match for %s"), |
76a01679 JB |
3392 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3393 | } | |
3394 | else | |
3395 | { | |
323e0a4a | 3396 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3397 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3398 | user_select_syms (candidates, n_candidates, 1); | |
3399 | i = 0; | |
3400 | } | |
3401 | ||
3402 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3403 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
1265e4aa JB |
3404 | if (innermost_block == NULL |
3405 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3406 | innermost_block = candidates[i].block; |
3407 | } | |
3408 | ||
3409 | if (deprocedure_p | |
3410 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3411 | == TYPE_CODE_FUNC)) | |
3412 | { | |
3413 | replace_operator_with_call (expp, pc, 0, 0, | |
3414 | exp->elts[pc + 2].symbol, | |
3415 | exp->elts[pc + 1].block); | |
3416 | exp = *expp; | |
3417 | } | |
14f9c5c9 AS |
3418 | break; |
3419 | ||
3420 | case OP_FUNCALL: | |
3421 | { | |
4c4b4cd2 | 3422 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3423 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3424 | { |
d12307c1 | 3425 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3426 | int n_candidates; |
3427 | ||
3428 | n_candidates = | |
76a01679 JB |
3429 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3430 | (exp->elts[pc + 5].symbol), | |
3431 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3432 | &candidates); |
4c4b4cd2 PH |
3433 | if (n_candidates == 1) |
3434 | i = 0; | |
3435 | else | |
3436 | { | |
06d5cf63 JB |
3437 | i = ada_resolve_function |
3438 | (candidates, n_candidates, | |
3439 | argvec, nargs, | |
3440 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3441 | context_type); | |
4c4b4cd2 | 3442 | if (i < 0) |
323e0a4a | 3443 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3444 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3445 | } | |
3446 | ||
3447 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3448 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
1265e4aa JB |
3449 | if (innermost_block == NULL |
3450 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3451 | innermost_block = candidates[i].block; |
3452 | } | |
14f9c5c9 AS |
3453 | } |
3454 | break; | |
3455 | case BINOP_ADD: | |
3456 | case BINOP_SUB: | |
3457 | case BINOP_MUL: | |
3458 | case BINOP_DIV: | |
3459 | case BINOP_REM: | |
3460 | case BINOP_MOD: | |
3461 | case BINOP_CONCAT: | |
3462 | case BINOP_BITWISE_AND: | |
3463 | case BINOP_BITWISE_IOR: | |
3464 | case BINOP_BITWISE_XOR: | |
3465 | case BINOP_EQUAL: | |
3466 | case BINOP_NOTEQUAL: | |
3467 | case BINOP_LESS: | |
3468 | case BINOP_GTR: | |
3469 | case BINOP_LEQ: | |
3470 | case BINOP_GEQ: | |
3471 | case BINOP_EXP: | |
3472 | case UNOP_NEG: | |
3473 | case UNOP_PLUS: | |
3474 | case UNOP_LOGICAL_NOT: | |
3475 | case UNOP_ABS: | |
3476 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3477 | { |
d12307c1 | 3478 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3479 | int n_candidates; |
3480 | ||
3481 | n_candidates = | |
3482 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3483 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3484 | &candidates); |
4c4b4cd2 | 3485 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3486 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3487 | if (i < 0) |
3488 | break; | |
3489 | ||
d12307c1 PMR |
3490 | replace_operator_with_call (expp, pc, nargs, 1, |
3491 | candidates[i].symbol, | |
3492 | candidates[i].block); | |
4c4b4cd2 PH |
3493 | exp = *expp; |
3494 | } | |
14f9c5c9 | 3495 | break; |
4c4b4cd2 PH |
3496 | |
3497 | case OP_TYPE: | |
b3dbf008 | 3498 | case OP_REGISTER: |
4c4b4cd2 | 3499 | return NULL; |
14f9c5c9 AS |
3500 | } |
3501 | ||
3502 | *pos = pc; | |
3503 | return evaluate_subexp_type (exp, pos); | |
3504 | } | |
3505 | ||
3506 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3507 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3508 | a non-pointer. */ |
14f9c5c9 | 3509 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3510 | liberal. */ |
14f9c5c9 AS |
3511 | |
3512 | static int | |
4dc81987 | 3513 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3514 | { |
61ee279c PH |
3515 | ftype = ada_check_typedef (ftype); |
3516 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3517 | |
3518 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3519 | ftype = TYPE_TARGET_TYPE (ftype); | |
3520 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3521 | atype = TYPE_TARGET_TYPE (atype); | |
3522 | ||
d2e4a39e | 3523 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3524 | { |
3525 | default: | |
5b3d5b7d | 3526 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3527 | case TYPE_CODE_PTR: |
3528 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3529 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3530 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3531 | else |
1265e4aa JB |
3532 | return (may_deref |
3533 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3534 | case TYPE_CODE_INT: |
3535 | case TYPE_CODE_ENUM: | |
3536 | case TYPE_CODE_RANGE: | |
3537 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3538 | { |
3539 | case TYPE_CODE_INT: | |
3540 | case TYPE_CODE_ENUM: | |
3541 | case TYPE_CODE_RANGE: | |
3542 | return 1; | |
3543 | default: | |
3544 | return 0; | |
3545 | } | |
14f9c5c9 AS |
3546 | |
3547 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3548 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3549 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3550 | |
3551 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3552 | if (ada_is_array_descriptor_type (ftype)) |
3553 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3554 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3555 | else |
4c4b4cd2 PH |
3556 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3557 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3558 | |
3559 | case TYPE_CODE_UNION: | |
3560 | case TYPE_CODE_FLT: | |
3561 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3562 | } | |
3563 | } | |
3564 | ||
3565 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3566 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3567 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3568 | argument function. */ |
14f9c5c9 AS |
3569 | |
3570 | static int | |
d2e4a39e | 3571 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3572 | { |
3573 | int i; | |
d2e4a39e | 3574 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3575 | |
1265e4aa JB |
3576 | if (SYMBOL_CLASS (func) == LOC_CONST |
3577 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3578 | return (n_actuals == 0); |
3579 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3580 | return 0; | |
3581 | ||
3582 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3583 | return 0; | |
3584 | ||
3585 | for (i = 0; i < n_actuals; i += 1) | |
3586 | { | |
4c4b4cd2 | 3587 | if (actuals[i] == NULL) |
76a01679 JB |
3588 | return 0; |
3589 | else | |
3590 | { | |
5b4ee69b MS |
3591 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3592 | i)); | |
df407dfe | 3593 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3594 | |
76a01679 JB |
3595 | if (!ada_type_match (ftype, atype, 1)) |
3596 | return 0; | |
3597 | } | |
14f9c5c9 AS |
3598 | } |
3599 | return 1; | |
3600 | } | |
3601 | ||
3602 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3603 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3604 | FUNC_TYPE is not a valid function type with a non-null return type | |
3605 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3606 | ||
3607 | static int | |
d2e4a39e | 3608 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3609 | { |
d2e4a39e | 3610 | struct type *return_type; |
14f9c5c9 AS |
3611 | |
3612 | if (func_type == NULL) | |
3613 | return 1; | |
3614 | ||
4c4b4cd2 | 3615 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3616 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3617 | else |
18af8284 | 3618 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3619 | if (return_type == NULL) |
3620 | return 1; | |
3621 | ||
18af8284 | 3622 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3623 | |
3624 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3625 | return context_type == NULL || return_type == context_type; | |
3626 | else if (context_type == NULL) | |
3627 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3628 | else | |
3629 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3630 | } | |
3631 | ||
3632 | ||
4c4b4cd2 | 3633 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3634 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3635 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3636 | that returns that type, then eliminate matches that don't. If | |
3637 | CONTEXT_TYPE is void and there is at least one match that does not | |
3638 | return void, eliminate all matches that do. | |
3639 | ||
14f9c5c9 AS |
3640 | Asks the user if there is more than one match remaining. Returns -1 |
3641 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3642 | solely for messages. May re-arrange and modify SYMS in |
3643 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3644 | |
4c4b4cd2 | 3645 | static int |
d12307c1 | 3646 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3647 | int nsyms, struct value **args, int nargs, |
3648 | const char *name, struct type *context_type) | |
14f9c5c9 | 3649 | { |
30b15541 | 3650 | int fallback; |
14f9c5c9 | 3651 | int k; |
4c4b4cd2 | 3652 | int m; /* Number of hits */ |
14f9c5c9 | 3653 | |
d2e4a39e | 3654 | m = 0; |
30b15541 UW |
3655 | /* In the first pass of the loop, we only accept functions matching |
3656 | context_type. If none are found, we add a second pass of the loop | |
3657 | where every function is accepted. */ | |
3658 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3659 | { |
3660 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3661 | { |
d12307c1 | 3662 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3663 | |
d12307c1 | 3664 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3665 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3666 | { |
3667 | syms[m] = syms[k]; | |
3668 | m += 1; | |
3669 | } | |
3670 | } | |
14f9c5c9 AS |
3671 | } |
3672 | ||
dc5c8746 PMR |
3673 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3674 | interactive thing during completion, though, as the purpose of the | |
3675 | completion is providing a list of all possible matches. Prompting the | |
3676 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3677 | if (m == 0) |
3678 | return -1; | |
dc5c8746 | 3679 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3680 | { |
323e0a4a | 3681 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3682 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3683 | return 0; |
3684 | } | |
3685 | return 0; | |
3686 | } | |
3687 | ||
4c4b4cd2 PH |
3688 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3689 | in a listing of choices during disambiguation (see sort_choices, below). | |
3690 | The idea is that overloadings of a subprogram name from the | |
3691 | same package should sort in their source order. We settle for ordering | |
3692 | such symbols by their trailing number (__N or $N). */ | |
3693 | ||
14f9c5c9 | 3694 | static int |
0d5cff50 | 3695 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3696 | { |
3697 | if (N1 == NULL) | |
3698 | return 0; | |
3699 | else if (N0 == NULL) | |
3700 | return 1; | |
3701 | else | |
3702 | { | |
3703 | int k0, k1; | |
5b4ee69b | 3704 | |
d2e4a39e | 3705 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3706 | ; |
d2e4a39e | 3707 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3708 | ; |
d2e4a39e | 3709 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3710 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3711 | { | |
3712 | int n0, n1; | |
5b4ee69b | 3713 | |
4c4b4cd2 PH |
3714 | n0 = k0; |
3715 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3716 | n0 -= 1; | |
3717 | n1 = k1; | |
3718 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3719 | n1 -= 1; | |
3720 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3721 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3722 | } | |
14f9c5c9 AS |
3723 | return (strcmp (N0, N1) < 0); |
3724 | } | |
3725 | } | |
d2e4a39e | 3726 | |
4c4b4cd2 PH |
3727 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3728 | encoded names. */ | |
3729 | ||
d2e4a39e | 3730 | static void |
d12307c1 | 3731 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3732 | { |
4c4b4cd2 | 3733 | int i; |
5b4ee69b | 3734 | |
d2e4a39e | 3735 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3736 | { |
d12307c1 | 3737 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3738 | int j; |
3739 | ||
d2e4a39e | 3740 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3741 | { |
d12307c1 PMR |
3742 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3743 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3744 | break; |
3745 | syms[j + 1] = syms[j]; | |
3746 | } | |
d2e4a39e | 3747 | syms[j + 1] = sym; |
14f9c5c9 AS |
3748 | } |
3749 | } | |
3750 | ||
4c4b4cd2 PH |
3751 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3752 | by asking the user (if necessary), returning the number selected, | |
3753 | and setting the first elements of SYMS items. Error if no symbols | |
3754 | selected. */ | |
14f9c5c9 AS |
3755 | |
3756 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3757 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3758 | |
3759 | int | |
d12307c1 | 3760 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3761 | { |
3762 | int i; | |
8d749320 | 3763 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3764 | int n_chosen; |
3765 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3766 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3767 | |
3768 | if (max_results < 1) | |
323e0a4a | 3769 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3770 | if (nsyms <= 1) |
3771 | return nsyms; | |
3772 | ||
717d2f5a JB |
3773 | if (select_mode == multiple_symbols_cancel) |
3774 | error (_("\ | |
3775 | canceled because the command is ambiguous\n\ | |
3776 | See set/show multiple-symbol.")); | |
3777 | ||
3778 | /* If select_mode is "all", then return all possible symbols. | |
3779 | Only do that if more than one symbol can be selected, of course. | |
3780 | Otherwise, display the menu as usual. */ | |
3781 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3782 | return nsyms; | |
3783 | ||
323e0a4a | 3784 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3785 | if (max_results > 1) |
323e0a4a | 3786 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3787 | |
4c4b4cd2 | 3788 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3789 | |
3790 | for (i = 0; i < nsyms; i += 1) | |
3791 | { | |
d12307c1 | 3792 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3793 | continue; |
3794 | ||
d12307c1 | 3795 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3796 | { |
76a01679 | 3797 | struct symtab_and_line sal = |
d12307c1 | 3798 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3799 | |
323e0a4a AC |
3800 | if (sal.symtab == NULL) |
3801 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3802 | i + first_choice, | |
d12307c1 | 3803 | SYMBOL_PRINT_NAME (syms[i].symbol), |
323e0a4a AC |
3804 | sal.line); |
3805 | else | |
3806 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
d12307c1 | 3807 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 JK |
3808 | symtab_to_filename_for_display (sal.symtab), |
3809 | sal.line); | |
4c4b4cd2 PH |
3810 | continue; |
3811 | } | |
d2e4a39e | 3812 | else |
4c4b4cd2 PH |
3813 | { |
3814 | int is_enumeral = | |
d12307c1 PMR |
3815 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3816 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3817 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3818 | struct symtab *symtab = NULL; |
3819 | ||
d12307c1 PMR |
3820 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3821 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3822 | |
d12307c1 | 3823 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
323e0a4a | 3824 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 | 3825 | i + first_choice, |
d12307c1 | 3826 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 | 3827 | symtab_to_filename_for_display (symtab), |
d12307c1 | 3828 | SYMBOL_LINE (syms[i].symbol)); |
76a01679 | 3829 | else if (is_enumeral |
d12307c1 | 3830 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3831 | { |
a3f17187 | 3832 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3833 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3834 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3835 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3836 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 PH |
3837 | } |
3838 | else if (symtab != NULL) | |
3839 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3840 | ? _("[%d] %s in %s (enumeral)\n") |
3841 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 | 3842 | i + first_choice, |
d12307c1 | 3843 | SYMBOL_PRINT_NAME (syms[i].symbol), |
05cba821 | 3844 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3845 | else |
3846 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3847 | ? _("[%d] %s (enumeral)\n") |
3848 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 | 3849 | i + first_choice, |
d12307c1 | 3850 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3851 | } |
14f9c5c9 | 3852 | } |
d2e4a39e | 3853 | |
14f9c5c9 | 3854 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3855 | "overload-choice"); |
14f9c5c9 AS |
3856 | |
3857 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3858 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3859 | |
3860 | return n_chosen; | |
3861 | } | |
3862 | ||
3863 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3864 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3865 | order in CHOICES[0 .. N-1], and return N. |
3866 | ||
3867 | The user types choices as a sequence of numbers on one line | |
3868 | separated by blanks, encoding them as follows: | |
3869 | ||
4c4b4cd2 | 3870 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3871 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3872 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3873 | ||
4c4b4cd2 | 3874 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3875 | |
3876 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3877 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3878 | |
3879 | int | |
d2e4a39e | 3880 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3881 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3882 | { |
d2e4a39e | 3883 | char *args; |
0bcd0149 | 3884 | char *prompt; |
14f9c5c9 AS |
3885 | int n_chosen; |
3886 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3887 | |
14f9c5c9 AS |
3888 | prompt = getenv ("PS2"); |
3889 | if (prompt == NULL) | |
0bcd0149 | 3890 | prompt = "> "; |
14f9c5c9 | 3891 | |
0bcd0149 | 3892 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3893 | |
14f9c5c9 | 3894 | if (args == NULL) |
323e0a4a | 3895 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3896 | |
3897 | n_chosen = 0; | |
76a01679 | 3898 | |
4c4b4cd2 PH |
3899 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3900 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3901 | while (1) |
3902 | { | |
d2e4a39e | 3903 | char *args2; |
14f9c5c9 AS |
3904 | int choice, j; |
3905 | ||
0fcd72ba | 3906 | args = skip_spaces (args); |
14f9c5c9 | 3907 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3908 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3909 | else if (*args == '\0') |
4c4b4cd2 | 3910 | break; |
14f9c5c9 AS |
3911 | |
3912 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3913 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3914 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3915 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3916 | args = args2; |
3917 | ||
d2e4a39e | 3918 | if (choice == 0) |
323e0a4a | 3919 | error (_("cancelled")); |
14f9c5c9 AS |
3920 | |
3921 | if (choice < first_choice) | |
4c4b4cd2 PH |
3922 | { |
3923 | n_chosen = n_choices; | |
3924 | for (j = 0; j < n_choices; j += 1) | |
3925 | choices[j] = j; | |
3926 | break; | |
3927 | } | |
14f9c5c9 AS |
3928 | choice -= first_choice; |
3929 | ||
d2e4a39e | 3930 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3931 | { |
3932 | } | |
14f9c5c9 AS |
3933 | |
3934 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3935 | { |
3936 | int k; | |
5b4ee69b | 3937 | |
4c4b4cd2 PH |
3938 | for (k = n_chosen - 1; k > j; k -= 1) |
3939 | choices[k + 1] = choices[k]; | |
3940 | choices[j + 1] = choice; | |
3941 | n_chosen += 1; | |
3942 | } | |
14f9c5c9 AS |
3943 | } |
3944 | ||
3945 | if (n_chosen > max_results) | |
323e0a4a | 3946 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3947 | |
14f9c5c9 AS |
3948 | return n_chosen; |
3949 | } | |
3950 | ||
4c4b4cd2 PH |
3951 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3952 | on the function identified by SYM and BLOCK, and taking NARGS | |
3953 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3954 | |
3955 | static void | |
d2e4a39e | 3956 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3957 | int oplen, struct symbol *sym, |
270140bd | 3958 | const struct block *block) |
14f9c5c9 AS |
3959 | { |
3960 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3961 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3962 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3963 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3964 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3965 | struct expression *exp = *expp; |
14f9c5c9 AS |
3966 | |
3967 | newexp->nelts = exp->nelts + 7 - oplen; | |
3968 | newexp->language_defn = exp->language_defn; | |
3489610d | 3969 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3970 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3971 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3972 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3973 | |
3974 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3975 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3976 | ||
3977 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3978 | newexp->elts[pc + 4].block = block; | |
3979 | newexp->elts[pc + 5].symbol = sym; | |
3980 | ||
3981 | *expp = newexp; | |
aacb1f0a | 3982 | xfree (exp); |
d2e4a39e | 3983 | } |
14f9c5c9 AS |
3984 | |
3985 | /* Type-class predicates */ | |
3986 | ||
4c4b4cd2 PH |
3987 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3988 | or FLOAT). */ | |
14f9c5c9 AS |
3989 | |
3990 | static int | |
d2e4a39e | 3991 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3992 | { |
3993 | if (type == NULL) | |
3994 | return 0; | |
d2e4a39e AS |
3995 | else |
3996 | { | |
3997 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3998 | { |
3999 | case TYPE_CODE_INT: | |
4000 | case TYPE_CODE_FLT: | |
4001 | return 1; | |
4002 | case TYPE_CODE_RANGE: | |
4003 | return (type == TYPE_TARGET_TYPE (type) | |
4004 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4005 | default: | |
4006 | return 0; | |
4007 | } | |
d2e4a39e | 4008 | } |
14f9c5c9 AS |
4009 | } |
4010 | ||
4c4b4cd2 | 4011 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4012 | |
4013 | static int | |
d2e4a39e | 4014 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4015 | { |
4016 | if (type == NULL) | |
4017 | return 0; | |
d2e4a39e AS |
4018 | else |
4019 | { | |
4020 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4021 | { |
4022 | case TYPE_CODE_INT: | |
4023 | return 1; | |
4024 | case TYPE_CODE_RANGE: | |
4025 | return (type == TYPE_TARGET_TYPE (type) | |
4026 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4027 | default: | |
4028 | return 0; | |
4029 | } | |
d2e4a39e | 4030 | } |
14f9c5c9 AS |
4031 | } |
4032 | ||
4c4b4cd2 | 4033 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4034 | |
4035 | static int | |
d2e4a39e | 4036 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4037 | { |
4038 | if (type == NULL) | |
4039 | return 0; | |
d2e4a39e AS |
4040 | else |
4041 | { | |
4042 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4043 | { |
4044 | case TYPE_CODE_INT: | |
4045 | case TYPE_CODE_RANGE: | |
4046 | case TYPE_CODE_ENUM: | |
4047 | case TYPE_CODE_FLT: | |
4048 | return 1; | |
4049 | default: | |
4050 | return 0; | |
4051 | } | |
d2e4a39e | 4052 | } |
14f9c5c9 AS |
4053 | } |
4054 | ||
4c4b4cd2 | 4055 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4056 | |
4057 | static int | |
d2e4a39e | 4058 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4059 | { |
4060 | if (type == NULL) | |
4061 | return 0; | |
d2e4a39e AS |
4062 | else |
4063 | { | |
4064 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4065 | { |
4066 | case TYPE_CODE_INT: | |
4067 | case TYPE_CODE_RANGE: | |
4068 | case TYPE_CODE_ENUM: | |
872f0337 | 4069 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4070 | return 1; |
4071 | default: | |
4072 | return 0; | |
4073 | } | |
d2e4a39e | 4074 | } |
14f9c5c9 AS |
4075 | } |
4076 | ||
4c4b4cd2 PH |
4077 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4078 | a user-defined function. Errs on the side of pre-defined operators | |
4079 | (i.e., result 0). */ | |
14f9c5c9 AS |
4080 | |
4081 | static int | |
d2e4a39e | 4082 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4083 | { |
76a01679 | 4084 | struct type *type0 = |
df407dfe | 4085 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4086 | struct type *type1 = |
df407dfe | 4087 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4088 | |
4c4b4cd2 PH |
4089 | if (type0 == NULL) |
4090 | return 0; | |
4091 | ||
14f9c5c9 AS |
4092 | switch (op) |
4093 | { | |
4094 | default: | |
4095 | return 0; | |
4096 | ||
4097 | case BINOP_ADD: | |
4098 | case BINOP_SUB: | |
4099 | case BINOP_MUL: | |
4100 | case BINOP_DIV: | |
d2e4a39e | 4101 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4102 | |
4103 | case BINOP_REM: | |
4104 | case BINOP_MOD: | |
4105 | case BINOP_BITWISE_AND: | |
4106 | case BINOP_BITWISE_IOR: | |
4107 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4108 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4109 | |
4110 | case BINOP_EQUAL: | |
4111 | case BINOP_NOTEQUAL: | |
4112 | case BINOP_LESS: | |
4113 | case BINOP_GTR: | |
4114 | case BINOP_LEQ: | |
4115 | case BINOP_GEQ: | |
d2e4a39e | 4116 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4117 | |
4118 | case BINOP_CONCAT: | |
ee90b9ab | 4119 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4120 | |
4121 | case BINOP_EXP: | |
d2e4a39e | 4122 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4123 | |
4124 | case UNOP_NEG: | |
4125 | case UNOP_PLUS: | |
4126 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4127 | case UNOP_ABS: |
4128 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4129 | |
4130 | } | |
4131 | } | |
4132 | \f | |
4c4b4cd2 | 4133 | /* Renaming */ |
14f9c5c9 | 4134 | |
aeb5907d JB |
4135 | /* NOTES: |
4136 | ||
4137 | 1. In the following, we assume that a renaming type's name may | |
4138 | have an ___XD suffix. It would be nice if this went away at some | |
4139 | point. | |
4140 | 2. We handle both the (old) purely type-based representation of | |
4141 | renamings and the (new) variable-based encoding. At some point, | |
4142 | it is devoutly to be hoped that the former goes away | |
4143 | (FIXME: hilfinger-2007-07-09). | |
4144 | 3. Subprogram renamings are not implemented, although the XRS | |
4145 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4146 | ||
4147 | /* If SYM encodes a renaming, | |
4148 | ||
4149 | <renaming> renames <renamed entity>, | |
4150 | ||
4151 | sets *LEN to the length of the renamed entity's name, | |
4152 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4153 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4154 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4155 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4156 | are undefined). Otherwise, returns a value indicating the category | |
4157 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4158 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4159 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4160 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4161 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4162 | may be NULL, in which case they are not assigned. | |
4163 | ||
4164 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4165 | ||
4166 | enum ada_renaming_category | |
4167 | ada_parse_renaming (struct symbol *sym, | |
4168 | const char **renamed_entity, int *len, | |
4169 | const char **renaming_expr) | |
4170 | { | |
4171 | enum ada_renaming_category kind; | |
4172 | const char *info; | |
4173 | const char *suffix; | |
4174 | ||
4175 | if (sym == NULL) | |
4176 | return ADA_NOT_RENAMING; | |
4177 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4178 | { |
aeb5907d JB |
4179 | default: |
4180 | return ADA_NOT_RENAMING; | |
4181 | case LOC_TYPEDEF: | |
4182 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4183 | renamed_entity, len, renaming_expr); | |
4184 | case LOC_LOCAL: | |
4185 | case LOC_STATIC: | |
4186 | case LOC_COMPUTED: | |
4187 | case LOC_OPTIMIZED_OUT: | |
4188 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4189 | if (info == NULL) | |
4190 | return ADA_NOT_RENAMING; | |
4191 | switch (info[5]) | |
4192 | { | |
4193 | case '_': | |
4194 | kind = ADA_OBJECT_RENAMING; | |
4195 | info += 6; | |
4196 | break; | |
4197 | case 'E': | |
4198 | kind = ADA_EXCEPTION_RENAMING; | |
4199 | info += 7; | |
4200 | break; | |
4201 | case 'P': | |
4202 | kind = ADA_PACKAGE_RENAMING; | |
4203 | info += 7; | |
4204 | break; | |
4205 | case 'S': | |
4206 | kind = ADA_SUBPROGRAM_RENAMING; | |
4207 | info += 7; | |
4208 | break; | |
4209 | default: | |
4210 | return ADA_NOT_RENAMING; | |
4211 | } | |
14f9c5c9 | 4212 | } |
4c4b4cd2 | 4213 | |
aeb5907d JB |
4214 | if (renamed_entity != NULL) |
4215 | *renamed_entity = info; | |
4216 | suffix = strstr (info, "___XE"); | |
4217 | if (suffix == NULL || suffix == info) | |
4218 | return ADA_NOT_RENAMING; | |
4219 | if (len != NULL) | |
4220 | *len = strlen (info) - strlen (suffix); | |
4221 | suffix += 5; | |
4222 | if (renaming_expr != NULL) | |
4223 | *renaming_expr = suffix; | |
4224 | return kind; | |
4225 | } | |
4226 | ||
4227 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4228 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4229 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4230 | ADA_NOT_RENAMING otherwise. */ | |
4231 | static enum ada_renaming_category | |
4232 | parse_old_style_renaming (struct type *type, | |
4233 | const char **renamed_entity, int *len, | |
4234 | const char **renaming_expr) | |
4235 | { | |
4236 | enum ada_renaming_category kind; | |
4237 | const char *name; | |
4238 | const char *info; | |
4239 | const char *suffix; | |
14f9c5c9 | 4240 | |
aeb5907d JB |
4241 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4242 | || TYPE_NFIELDS (type) != 1) | |
4243 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4244 | |
aeb5907d JB |
4245 | name = type_name_no_tag (type); |
4246 | if (name == NULL) | |
4247 | return ADA_NOT_RENAMING; | |
4248 | ||
4249 | name = strstr (name, "___XR"); | |
4250 | if (name == NULL) | |
4251 | return ADA_NOT_RENAMING; | |
4252 | switch (name[5]) | |
4253 | { | |
4254 | case '\0': | |
4255 | case '_': | |
4256 | kind = ADA_OBJECT_RENAMING; | |
4257 | break; | |
4258 | case 'E': | |
4259 | kind = ADA_EXCEPTION_RENAMING; | |
4260 | break; | |
4261 | case 'P': | |
4262 | kind = ADA_PACKAGE_RENAMING; | |
4263 | break; | |
4264 | case 'S': | |
4265 | kind = ADA_SUBPROGRAM_RENAMING; | |
4266 | break; | |
4267 | default: | |
4268 | return ADA_NOT_RENAMING; | |
4269 | } | |
14f9c5c9 | 4270 | |
aeb5907d JB |
4271 | info = TYPE_FIELD_NAME (type, 0); |
4272 | if (info == NULL) | |
4273 | return ADA_NOT_RENAMING; | |
4274 | if (renamed_entity != NULL) | |
4275 | *renamed_entity = info; | |
4276 | suffix = strstr (info, "___XE"); | |
4277 | if (renaming_expr != NULL) | |
4278 | *renaming_expr = suffix + 5; | |
4279 | if (suffix == NULL || suffix == info) | |
4280 | return ADA_NOT_RENAMING; | |
4281 | if (len != NULL) | |
4282 | *len = suffix - info; | |
4283 | return kind; | |
a5ee536b JB |
4284 | } |
4285 | ||
4286 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4287 | be a symbol encoding a renaming expression. BLOCK is the block | |
4288 | used to evaluate the renaming. */ | |
52ce6436 | 4289 | |
a5ee536b JB |
4290 | static struct value * |
4291 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4292 | const struct block *block) |
a5ee536b | 4293 | { |
bbc13ae3 | 4294 | const char *sym_name; |
a5ee536b JB |
4295 | struct expression *expr; |
4296 | struct value *value; | |
4297 | struct cleanup *old_chain = NULL; | |
4298 | ||
bbc13ae3 | 4299 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4300 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4301 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4302 | value = evaluate_expression (expr); |
4303 | ||
4304 | do_cleanups (old_chain); | |
4305 | return value; | |
4306 | } | |
14f9c5c9 | 4307 | \f |
d2e4a39e | 4308 | |
4c4b4cd2 | 4309 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4310 | |
4c4b4cd2 | 4311 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4312 | lvalues, and otherwise has the side-effect of allocating memory |
4313 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4314 | |
d2e4a39e | 4315 | static struct value * |
40bc484c | 4316 | ensure_lval (struct value *val) |
14f9c5c9 | 4317 | { |
40bc484c JB |
4318 | if (VALUE_LVAL (val) == not_lval |
4319 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4320 | { |
df407dfe | 4321 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4322 | const CORE_ADDR addr = |
4323 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4324 | |
40bc484c | 4325 | set_value_address (val, addr); |
a84a8a0d | 4326 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4327 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4328 | } |
14f9c5c9 AS |
4329 | |
4330 | return val; | |
4331 | } | |
4332 | ||
4333 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4334 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4335 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4336 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4337 | |
a93c0eb6 | 4338 | struct value * |
40bc484c | 4339 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4340 | { |
df407dfe | 4341 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4342 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4343 | struct type *formal_target = |
4344 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4345 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4346 | struct type *actual_target = |
4347 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4348 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4349 | |
4c4b4cd2 | 4350 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4351 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4352 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4353 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4354 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4355 | { |
a84a8a0d | 4356 | struct value *result; |
5b4ee69b | 4357 | |
14f9c5c9 | 4358 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4359 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4360 | result = desc_data (actual); |
14f9c5c9 | 4361 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4362 | { |
4363 | if (VALUE_LVAL (actual) != lval_memory) | |
4364 | { | |
4365 | struct value *val; | |
5b4ee69b | 4366 | |
df407dfe | 4367 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4368 | val = allocate_value (actual_type); |
990a07ab | 4369 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4370 | (char *) value_contents (actual), |
4c4b4cd2 | 4371 | TYPE_LENGTH (actual_type)); |
40bc484c | 4372 | actual = ensure_lval (val); |
4c4b4cd2 | 4373 | } |
a84a8a0d | 4374 | result = value_addr (actual); |
4c4b4cd2 | 4375 | } |
a84a8a0d JB |
4376 | else |
4377 | return actual; | |
b1af9e97 | 4378 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4379 | } |
4380 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4381 | return ada_value_ind (actual); | |
8344af1e JB |
4382 | else if (ada_is_aligner_type (formal_type)) |
4383 | { | |
4384 | /* We need to turn this parameter into an aligner type | |
4385 | as well. */ | |
4386 | struct value *aligner = allocate_value (formal_type); | |
4387 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4388 | ||
4389 | value_assign_to_component (aligner, component, actual); | |
4390 | return aligner; | |
4391 | } | |
14f9c5c9 AS |
4392 | |
4393 | return actual; | |
4394 | } | |
4395 | ||
438c98a1 JB |
4396 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4397 | type TYPE. This is usually an inefficient no-op except on some targets | |
4398 | (such as AVR) where the representation of a pointer and an address | |
4399 | differs. */ | |
4400 | ||
4401 | static CORE_ADDR | |
4402 | value_pointer (struct value *value, struct type *type) | |
4403 | { | |
4404 | struct gdbarch *gdbarch = get_type_arch (type); | |
4405 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4406 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4407 | CORE_ADDR addr; |
4408 | ||
4409 | addr = value_address (value); | |
4410 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4411 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4412 | return addr; | |
4413 | } | |
4414 | ||
14f9c5c9 | 4415 | |
4c4b4cd2 PH |
4416 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4417 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4418 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4419 | to-descriptor type rather than a descriptor type), a struct value * |
4420 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4421 | |
d2e4a39e | 4422 | static struct value * |
40bc484c | 4423 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4424 | { |
d2e4a39e AS |
4425 | struct type *bounds_type = desc_bounds_type (type); |
4426 | struct type *desc_type = desc_base_type (type); | |
4427 | struct value *descriptor = allocate_value (desc_type); | |
4428 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4429 | int i; |
d2e4a39e | 4430 | |
0963b4bd MS |
4431 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4432 | i > 0; i -= 1) | |
14f9c5c9 | 4433 | { |
19f220c3 JK |
4434 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4435 | ada_array_bound (arr, i, 0), | |
4436 | desc_bound_bitpos (bounds_type, i, 0), | |
4437 | desc_bound_bitsize (bounds_type, i, 0)); | |
4438 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4439 | ada_array_bound (arr, i, 1), | |
4440 | desc_bound_bitpos (bounds_type, i, 1), | |
4441 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4442 | } |
d2e4a39e | 4443 | |
40bc484c | 4444 | bounds = ensure_lval (bounds); |
d2e4a39e | 4445 | |
19f220c3 JK |
4446 | modify_field (value_type (descriptor), |
4447 | value_contents_writeable (descriptor), | |
4448 | value_pointer (ensure_lval (arr), | |
4449 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4450 | fat_pntr_data_bitpos (desc_type), | |
4451 | fat_pntr_data_bitsize (desc_type)); | |
4452 | ||
4453 | modify_field (value_type (descriptor), | |
4454 | value_contents_writeable (descriptor), | |
4455 | value_pointer (bounds, | |
4456 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4457 | fat_pntr_bounds_bitpos (desc_type), | |
4458 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4459 | |
40bc484c | 4460 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4461 | |
4462 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4463 | return value_addr (descriptor); | |
4464 | else | |
4465 | return descriptor; | |
4466 | } | |
14f9c5c9 | 4467 | \f |
3d9434b5 JB |
4468 | /* Symbol Cache Module */ |
4469 | ||
3d9434b5 | 4470 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4471 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4472 | on the type of entity being printed, the cache can make it as much |
4473 | as an order of magnitude faster than without it. | |
4474 | ||
4475 | The descriptive type DWARF extension has significantly reduced | |
4476 | the need for this cache, at least when DWARF is being used. However, | |
4477 | even in this case, some expensive name-based symbol searches are still | |
4478 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4479 | ||
ee01b665 | 4480 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4481 | |
ee01b665 JB |
4482 | static void |
4483 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4484 | { | |
4485 | obstack_init (&sym_cache->cache_space); | |
4486 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4487 | } | |
3d9434b5 | 4488 | |
ee01b665 JB |
4489 | /* Free the memory used by SYM_CACHE. */ |
4490 | ||
4491 | static void | |
4492 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4493 | { |
ee01b665 JB |
4494 | obstack_free (&sym_cache->cache_space, NULL); |
4495 | xfree (sym_cache); | |
4496 | } | |
3d9434b5 | 4497 | |
ee01b665 JB |
4498 | /* Return the symbol cache associated to the given program space PSPACE. |
4499 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4500 | |
ee01b665 JB |
4501 | static struct ada_symbol_cache * |
4502 | ada_get_symbol_cache (struct program_space *pspace) | |
4503 | { | |
4504 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4505 | |
66c168ae | 4506 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4507 | { |
66c168ae JB |
4508 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4509 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4510 | } |
4511 | ||
66c168ae | 4512 | return pspace_data->sym_cache; |
ee01b665 | 4513 | } |
3d9434b5 JB |
4514 | |
4515 | /* Clear all entries from the symbol cache. */ | |
4516 | ||
4517 | static void | |
4518 | ada_clear_symbol_cache (void) | |
4519 | { | |
ee01b665 JB |
4520 | struct ada_symbol_cache *sym_cache |
4521 | = ada_get_symbol_cache (current_program_space); | |
4522 | ||
4523 | obstack_free (&sym_cache->cache_space, NULL); | |
4524 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4525 | } |
4526 | ||
fe978cb0 | 4527 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4528 | Return it if found, or NULL otherwise. */ |
4529 | ||
4530 | static struct cache_entry ** | |
fe978cb0 | 4531 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4532 | { |
ee01b665 JB |
4533 | struct ada_symbol_cache *sym_cache |
4534 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4535 | int h = msymbol_hash (name) % HASH_SIZE; |
4536 | struct cache_entry **e; | |
4537 | ||
ee01b665 | 4538 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4539 | { |
fe978cb0 | 4540 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4541 | return e; |
4542 | } | |
4543 | return NULL; | |
4544 | } | |
4545 | ||
fe978cb0 | 4546 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4547 | Return 1 if found, 0 otherwise. |
4548 | ||
4549 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4550 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4551 | |
96d887e8 | 4552 | static int |
fe978cb0 | 4553 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4554 | struct symbol **sym, const struct block **block) |
96d887e8 | 4555 | { |
fe978cb0 | 4556 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4557 | |
4558 | if (e == NULL) | |
4559 | return 0; | |
4560 | if (sym != NULL) | |
4561 | *sym = (*e)->sym; | |
4562 | if (block != NULL) | |
4563 | *block = (*e)->block; | |
4564 | return 1; | |
96d887e8 PH |
4565 | } |
4566 | ||
3d9434b5 | 4567 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4568 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4569 | |
96d887e8 | 4570 | static void |
fe978cb0 | 4571 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4572 | const struct block *block) |
96d887e8 | 4573 | { |
ee01b665 JB |
4574 | struct ada_symbol_cache *sym_cache |
4575 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4576 | int h; |
4577 | char *copy; | |
4578 | struct cache_entry *e; | |
4579 | ||
1994afbf DE |
4580 | /* Symbols for builtin types don't have a block. |
4581 | For now don't cache such symbols. */ | |
4582 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4583 | return; | |
4584 | ||
3d9434b5 JB |
4585 | /* If the symbol is a local symbol, then do not cache it, as a search |
4586 | for that symbol depends on the context. To determine whether | |
4587 | the symbol is local or not, we check the block where we found it | |
4588 | against the global and static blocks of its associated symtab. */ | |
4589 | if (sym | |
08be3fe3 | 4590 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4591 | GLOBAL_BLOCK) != block |
08be3fe3 | 4592 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4593 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4594 | return; |
4595 | ||
4596 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4597 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4598 | sizeof (*e)); | |
4599 | e->next = sym_cache->root[h]; | |
4600 | sym_cache->root[h] = e; | |
224c3ddb SM |
4601 | e->name = copy |
4602 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4603 | strcpy (copy, name); |
4604 | e->sym = sym; | |
fe978cb0 | 4605 | e->domain = domain; |
3d9434b5 | 4606 | e->block = block; |
96d887e8 | 4607 | } |
4c4b4cd2 PH |
4608 | \f |
4609 | /* Symbol Lookup */ | |
4610 | ||
c0431670 JB |
4611 | /* Return nonzero if wild matching should be used when searching for |
4612 | all symbols matching LOOKUP_NAME. | |
4613 | ||
4614 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4615 | for Ada lookups (see ada_name_for_lookup). */ | |
4616 | ||
4617 | static int | |
4618 | should_use_wild_match (const char *lookup_name) | |
4619 | { | |
4620 | return (strstr (lookup_name, "__") == NULL); | |
4621 | } | |
4622 | ||
4c4b4cd2 PH |
4623 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4624 | given DOMAIN, visible from lexical block BLOCK. */ | |
4625 | ||
4626 | static struct symbol * | |
4627 | standard_lookup (const char *name, const struct block *block, | |
4628 | domain_enum domain) | |
4629 | { | |
acbd605d | 4630 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4631 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4632 | |
d12307c1 PMR |
4633 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4634 | return sym.symbol; | |
2570f2b7 | 4635 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4636 | cache_symbol (name, domain, sym.symbol, sym.block); |
4637 | return sym.symbol; | |
4c4b4cd2 PH |
4638 | } |
4639 | ||
4640 | ||
4641 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4642 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4643 | since they contend in overloading in the same way. */ | |
4644 | static int | |
d12307c1 | 4645 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4646 | { |
4647 | int i; | |
4648 | ||
4649 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4650 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4651 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4652 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4653 | return 1; |
4654 | ||
4655 | return 0; | |
4656 | } | |
4657 | ||
4658 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4659 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4660 | |
4661 | static int | |
d2e4a39e | 4662 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4663 | { |
d2e4a39e | 4664 | if (type0 == type1) |
14f9c5c9 | 4665 | return 1; |
d2e4a39e | 4666 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4667 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4668 | return 0; | |
d2e4a39e | 4669 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4670 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4671 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4672 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4673 | return 1; |
d2e4a39e | 4674 | |
14f9c5c9 AS |
4675 | return 0; |
4676 | } | |
4677 | ||
4678 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4679 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4680 | |
4681 | static int | |
d2e4a39e | 4682 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4683 | { |
4684 | if (sym0 == sym1) | |
4685 | return 1; | |
176620f1 | 4686 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4687 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4688 | return 0; | |
4689 | ||
d2e4a39e | 4690 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4691 | { |
4692 | case LOC_UNDEF: | |
4693 | return 1; | |
4694 | case LOC_TYPEDEF: | |
4695 | { | |
4c4b4cd2 PH |
4696 | struct type *type0 = SYMBOL_TYPE (sym0); |
4697 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4698 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4699 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4700 | int len0 = strlen (name0); |
5b4ee69b | 4701 | |
4c4b4cd2 PH |
4702 | return |
4703 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4704 | && (equiv_types (type0, type1) | |
4705 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4706 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4707 | } |
4708 | case LOC_CONST: | |
4709 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4710 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4711 | default: |
4712 | return 0; | |
14f9c5c9 AS |
4713 | } |
4714 | } | |
4715 | ||
d12307c1 | 4716 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4717 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4718 | |
4719 | static void | |
76a01679 JB |
4720 | add_defn_to_vec (struct obstack *obstackp, |
4721 | struct symbol *sym, | |
f0c5f9b2 | 4722 | const struct block *block) |
14f9c5c9 AS |
4723 | { |
4724 | int i; | |
d12307c1 | 4725 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4726 | |
529cad9c PH |
4727 | /* Do not try to complete stub types, as the debugger is probably |
4728 | already scanning all symbols matching a certain name at the | |
4729 | time when this function is called. Trying to replace the stub | |
4730 | type by its associated full type will cause us to restart a scan | |
4731 | which may lead to an infinite recursion. Instead, the client | |
4732 | collecting the matching symbols will end up collecting several | |
4733 | matches, with at least one of them complete. It can then filter | |
4734 | out the stub ones if needed. */ | |
4735 | ||
4c4b4cd2 PH |
4736 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4737 | { | |
d12307c1 | 4738 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4739 | return; |
d12307c1 | 4740 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4741 | { |
d12307c1 | 4742 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4743 | prevDefns[i].block = block; |
4c4b4cd2 | 4744 | return; |
76a01679 | 4745 | } |
4c4b4cd2 PH |
4746 | } |
4747 | ||
4748 | { | |
d12307c1 | 4749 | struct block_symbol info; |
4c4b4cd2 | 4750 | |
d12307c1 | 4751 | info.symbol = sym; |
4c4b4cd2 | 4752 | info.block = block; |
d12307c1 | 4753 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4754 | } |
4755 | } | |
4756 | ||
d12307c1 PMR |
4757 | /* Number of block_symbol structures currently collected in current vector in |
4758 | OBSTACKP. */ | |
4c4b4cd2 | 4759 | |
76a01679 JB |
4760 | static int |
4761 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4762 | { |
d12307c1 | 4763 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4764 | } |
4765 | ||
d12307c1 PMR |
4766 | /* Vector of block_symbol structures currently collected in current vector in |
4767 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4768 | |
d12307c1 | 4769 | static struct block_symbol * |
4c4b4cd2 PH |
4770 | defns_collected (struct obstack *obstackp, int finish) |
4771 | { | |
4772 | if (finish) | |
224c3ddb | 4773 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4774 | else |
d12307c1 | 4775 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4776 | } |
4777 | ||
7c7b6655 TT |
4778 | /* Return a bound minimal symbol matching NAME according to Ada |
4779 | decoding rules. Returns an invalid symbol if there is no such | |
4780 | minimal symbol. Names prefixed with "standard__" are handled | |
4781 | specially: "standard__" is first stripped off, and only static and | |
4782 | global symbols are searched. */ | |
4c4b4cd2 | 4783 | |
7c7b6655 | 4784 | struct bound_minimal_symbol |
96d887e8 | 4785 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4786 | { |
7c7b6655 | 4787 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4788 | struct objfile *objfile; |
96d887e8 | 4789 | struct minimal_symbol *msymbol; |
dc4024cd | 4790 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4791 | |
7c7b6655 TT |
4792 | memset (&result, 0, sizeof (result)); |
4793 | ||
c0431670 JB |
4794 | /* Special case: If the user specifies a symbol name inside package |
4795 | Standard, do a non-wild matching of the symbol name without | |
4796 | the "standard__" prefix. This was primarily introduced in order | |
4797 | to allow the user to specifically access the standard exceptions | |
4798 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4799 | is ambiguous (due to the user defining its own Constraint_Error | |
4800 | entity inside its program). */ | |
61012eef | 4801 | if (startswith (name, "standard__")) |
c0431670 | 4802 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4803 | |
96d887e8 PH |
4804 | ALL_MSYMBOLS (objfile, msymbol) |
4805 | { | |
efd66ac6 | 4806 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4807 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4808 | { |
4809 | result.minsym = msymbol; | |
4810 | result.objfile = objfile; | |
4811 | break; | |
4812 | } | |
96d887e8 | 4813 | } |
4c4b4cd2 | 4814 | |
7c7b6655 | 4815 | return result; |
96d887e8 | 4816 | } |
4c4b4cd2 | 4817 | |
96d887e8 PH |
4818 | /* For all subprograms that statically enclose the subprogram of the |
4819 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4820 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4821 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4822 | with a wildcard prefix. */ | |
4c4b4cd2 | 4823 | |
96d887e8 PH |
4824 | static void |
4825 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
fe978cb0 | 4826 | const char *name, domain_enum domain, |
48b78332 | 4827 | int wild_match_p) |
96d887e8 | 4828 | { |
96d887e8 | 4829 | } |
14f9c5c9 | 4830 | |
96d887e8 PH |
4831 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4832 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4833 | |
96d887e8 PH |
4834 | static int |
4835 | is_nondebugging_type (struct type *type) | |
4836 | { | |
0d5cff50 | 4837 | const char *name = ada_type_name (type); |
5b4ee69b | 4838 | |
96d887e8 PH |
4839 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4840 | } | |
4c4b4cd2 | 4841 | |
8f17729f JB |
4842 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4843 | that are deemed "identical" for practical purposes. | |
4844 | ||
4845 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4846 | types and that their number of enumerals is identical (in other | |
4847 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4848 | ||
4849 | static int | |
4850 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4851 | { | |
4852 | int i; | |
4853 | ||
4854 | /* The heuristic we use here is fairly conservative. We consider | |
4855 | that 2 enumerate types are identical if they have the same | |
4856 | number of enumerals and that all enumerals have the same | |
4857 | underlying value and name. */ | |
4858 | ||
4859 | /* All enums in the type should have an identical underlying value. */ | |
4860 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4861 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4862 | return 0; |
4863 | ||
4864 | /* All enumerals should also have the same name (modulo any numerical | |
4865 | suffix). */ | |
4866 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4867 | { | |
0d5cff50 DE |
4868 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4869 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4870 | int len_1 = strlen (name_1); |
4871 | int len_2 = strlen (name_2); | |
4872 | ||
4873 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4874 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4875 | if (len_1 != len_2 | |
4876 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4877 | TYPE_FIELD_NAME (type2, i), | |
4878 | len_1) != 0) | |
4879 | return 0; | |
4880 | } | |
4881 | ||
4882 | return 1; | |
4883 | } | |
4884 | ||
4885 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4886 | that are deemed "identical" for practical purposes. Sometimes, | |
4887 | enumerals are not strictly identical, but their types are so similar | |
4888 | that they can be considered identical. | |
4889 | ||
4890 | For instance, consider the following code: | |
4891 | ||
4892 | type Color is (Black, Red, Green, Blue, White); | |
4893 | type RGB_Color is new Color range Red .. Blue; | |
4894 | ||
4895 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4896 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4897 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4898 | As a result, when an expression references any of the enumeral | |
4899 | by name (Eg. "print green"), the expression is technically | |
4900 | ambiguous and the user should be asked to disambiguate. But | |
4901 | doing so would only hinder the user, since it wouldn't matter | |
4902 | what choice he makes, the outcome would always be the same. | |
4903 | So, for practical purposes, we consider them as the same. */ | |
4904 | ||
4905 | static int | |
d12307c1 | 4906 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
4907 | { |
4908 | int i; | |
4909 | ||
4910 | /* Before performing a thorough comparison check of each type, | |
4911 | we perform a series of inexpensive checks. We expect that these | |
4912 | checks will quickly fail in the vast majority of cases, and thus | |
4913 | help prevent the unnecessary use of a more expensive comparison. | |
4914 | Said comparison also expects us to make some of these checks | |
4915 | (see ada_identical_enum_types_p). */ | |
4916 | ||
4917 | /* Quick check: All symbols should have an enum type. */ | |
4918 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 4919 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
4920 | return 0; |
4921 | ||
4922 | /* Quick check: They should all have the same value. */ | |
4923 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 4924 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
4925 | return 0; |
4926 | ||
4927 | /* Quick check: They should all have the same number of enumerals. */ | |
4928 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
4929 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
4930 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
4931 | return 0; |
4932 | ||
4933 | /* All the sanity checks passed, so we might have a set of | |
4934 | identical enumeration types. Perform a more complete | |
4935 | comparison of the type of each symbol. */ | |
4936 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
4937 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
4938 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
4939 | return 0; |
4940 | ||
4941 | return 1; | |
4942 | } | |
4943 | ||
96d887e8 PH |
4944 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4945 | duplicate other symbols in the list (The only case I know of where | |
4946 | this happens is when object files containing stabs-in-ecoff are | |
4947 | linked with files containing ordinary ecoff debugging symbols (or no | |
4948 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4949 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4950 | |
96d887e8 | 4951 | static int |
d12307c1 | 4952 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
4953 | { |
4954 | int i, j; | |
4c4b4cd2 | 4955 | |
8f17729f JB |
4956 | /* We should never be called with less than 2 symbols, as there |
4957 | cannot be any extra symbol in that case. But it's easy to | |
4958 | handle, since we have nothing to do in that case. */ | |
4959 | if (nsyms < 2) | |
4960 | return nsyms; | |
4961 | ||
96d887e8 PH |
4962 | i = 0; |
4963 | while (i < nsyms) | |
4964 | { | |
a35ddb44 | 4965 | int remove_p = 0; |
339c13b6 JB |
4966 | |
4967 | /* If two symbols have the same name and one of them is a stub type, | |
4968 | the get rid of the stub. */ | |
4969 | ||
d12307c1 PMR |
4970 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
4971 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
4972 | { |
4973 | for (j = 0; j < nsyms; j++) | |
4974 | { | |
4975 | if (j != i | |
d12307c1 PMR |
4976 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
4977 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
4978 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
4979 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 4980 | remove_p = 1; |
339c13b6 JB |
4981 | } |
4982 | } | |
4983 | ||
4984 | /* Two symbols with the same name, same class and same address | |
4985 | should be identical. */ | |
4986 | ||
d12307c1 PMR |
4987 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
4988 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
4989 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
4990 | { |
4991 | for (j = 0; j < nsyms; j += 1) | |
4992 | { | |
4993 | if (i != j | |
d12307c1 PMR |
4994 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
4995 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
4996 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
4997 | && SYMBOL_CLASS (syms[i].symbol) | |
4998 | == SYMBOL_CLASS (syms[j].symbol) | |
4999 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
5000 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 5001 | remove_p = 1; |
4c4b4cd2 | 5002 | } |
4c4b4cd2 | 5003 | } |
339c13b6 | 5004 | |
a35ddb44 | 5005 | if (remove_p) |
339c13b6 JB |
5006 | { |
5007 | for (j = i + 1; j < nsyms; j += 1) | |
5008 | syms[j - 1] = syms[j]; | |
5009 | nsyms -= 1; | |
5010 | } | |
5011 | ||
96d887e8 | 5012 | i += 1; |
14f9c5c9 | 5013 | } |
8f17729f JB |
5014 | |
5015 | /* If all the remaining symbols are identical enumerals, then | |
5016 | just keep the first one and discard the rest. | |
5017 | ||
5018 | Unlike what we did previously, we do not discard any entry | |
5019 | unless they are ALL identical. This is because the symbol | |
5020 | comparison is not a strict comparison, but rather a practical | |
5021 | comparison. If all symbols are considered identical, then | |
5022 | we can just go ahead and use the first one and discard the rest. | |
5023 | But if we cannot reduce the list to a single element, we have | |
5024 | to ask the user to disambiguate anyways. And if we have to | |
5025 | present a multiple-choice menu, it's less confusing if the list | |
5026 | isn't missing some choices that were identical and yet distinct. */ | |
5027 | if (symbols_are_identical_enums (syms, nsyms)) | |
5028 | nsyms = 1; | |
5029 | ||
96d887e8 | 5030 | return nsyms; |
14f9c5c9 AS |
5031 | } |
5032 | ||
96d887e8 PH |
5033 | /* Given a type that corresponds to a renaming entity, use the type name |
5034 | to extract the scope (package name or function name, fully qualified, | |
5035 | and following the GNAT encoding convention) where this renaming has been | |
5036 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 5037 | |
96d887e8 PH |
5038 | static char * |
5039 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 5040 | { |
96d887e8 | 5041 | /* The renaming types adhere to the following convention: |
0963b4bd | 5042 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5043 | So, to extract the scope, we search for the "___XR" extension, |
5044 | and then backtrack until we find the first "__". */ | |
76a01679 | 5045 | |
96d887e8 | 5046 | const char *name = type_name_no_tag (renaming_type); |
108d56a4 SM |
5047 | const char *suffix = strstr (name, "___XR"); |
5048 | const char *last; | |
96d887e8 PH |
5049 | int scope_len; |
5050 | char *scope; | |
14f9c5c9 | 5051 | |
96d887e8 PH |
5052 | /* Now, backtrack a bit until we find the first "__". Start looking |
5053 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5054 | |
96d887e8 PH |
5055 | for (last = suffix - 3; last > name; last--) |
5056 | if (last[0] == '_' && last[1] == '_') | |
5057 | break; | |
76a01679 | 5058 | |
96d887e8 | 5059 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 5060 | |
96d887e8 PH |
5061 | scope_len = last - name; |
5062 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 5063 | |
96d887e8 PH |
5064 | strncpy (scope, name, scope_len); |
5065 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 5066 | |
96d887e8 | 5067 | return scope; |
4c4b4cd2 PH |
5068 | } |
5069 | ||
96d887e8 | 5070 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5071 | |
96d887e8 PH |
5072 | static int |
5073 | is_package_name (const char *name) | |
4c4b4cd2 | 5074 | { |
96d887e8 PH |
5075 | /* Here, We take advantage of the fact that no symbols are generated |
5076 | for packages, while symbols are generated for each function. | |
5077 | So the condition for NAME represent a package becomes equivalent | |
5078 | to NAME not existing in our list of symbols. There is only one | |
5079 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5080 | |
96d887e8 | 5081 | char *fun_name; |
76a01679 | 5082 | |
96d887e8 PH |
5083 | /* If it is a function that has not been defined at library level, |
5084 | then we should be able to look it up in the symbols. */ | |
5085 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5086 | return 0; | |
14f9c5c9 | 5087 | |
96d887e8 PH |
5088 | /* Library-level function names start with "_ada_". See if function |
5089 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5090 | |
96d887e8 | 5091 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5092 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5093 | if (strstr (name, "__") != NULL) |
5094 | return 0; | |
4c4b4cd2 | 5095 | |
b435e160 | 5096 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5097 | |
96d887e8 PH |
5098 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5099 | } | |
14f9c5c9 | 5100 | |
96d887e8 | 5101 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5102 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5103 | |
96d887e8 | 5104 | static int |
0d5cff50 | 5105 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5106 | { |
aeb5907d | 5107 | char *scope; |
1509e573 | 5108 | struct cleanup *old_chain; |
aeb5907d JB |
5109 | |
5110 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5111 | return 0; | |
5112 | ||
5113 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5114 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5115 | |
96d887e8 PH |
5116 | /* If the rename has been defined in a package, then it is visible. */ |
5117 | if (is_package_name (scope)) | |
1509e573 JB |
5118 | { |
5119 | do_cleanups (old_chain); | |
5120 | return 0; | |
5121 | } | |
14f9c5c9 | 5122 | |
96d887e8 PH |
5123 | /* Check that the rename is in the current function scope by checking |
5124 | that its name starts with SCOPE. */ | |
76a01679 | 5125 | |
96d887e8 PH |
5126 | /* If the function name starts with "_ada_", it means that it is |
5127 | a library-level function. Strip this prefix before doing the | |
5128 | comparison, as the encoding for the renaming does not contain | |
5129 | this prefix. */ | |
61012eef | 5130 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5131 | function_name += 5; |
f26caa11 | 5132 | |
1509e573 | 5133 | { |
61012eef | 5134 | int is_invisible = !startswith (function_name, scope); |
1509e573 JB |
5135 | |
5136 | do_cleanups (old_chain); | |
5137 | return is_invisible; | |
5138 | } | |
f26caa11 PH |
5139 | } |
5140 | ||
aeb5907d JB |
5141 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5142 | is not visible from the function associated with CURRENT_BLOCK or | |
5143 | that is superfluous due to the presence of more specific renaming | |
5144 | information. Places surviving symbols in the initial entries of | |
5145 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5146 | |
5147 | Rationale: | |
aeb5907d JB |
5148 | First, in cases where an object renaming is implemented as a |
5149 | reference variable, GNAT may produce both the actual reference | |
5150 | variable and the renaming encoding. In this case, we discard the | |
5151 | latter. | |
5152 | ||
5153 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5154 | entity. Unfortunately, STABS currently does not support the definition |
5155 | of types that are local to a given lexical block, so all renamings types | |
5156 | are emitted at library level. As a consequence, if an application | |
5157 | contains two renaming entities using the same name, and a user tries to | |
5158 | print the value of one of these entities, the result of the ada symbol | |
5159 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5160 | |
96d887e8 PH |
5161 | This function partially covers for this limitation by attempting to |
5162 | remove from the SYMS list renaming symbols that should be visible | |
5163 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5164 | method with the current information available. The implementation | |
5165 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5166 | ||
5167 | - When the user tries to print a rename in a function while there | |
5168 | is another rename entity defined in a package: Normally, the | |
5169 | rename in the function has precedence over the rename in the | |
5170 | package, so the latter should be removed from the list. This is | |
5171 | currently not the case. | |
5172 | ||
5173 | - This function will incorrectly remove valid renames if | |
5174 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5175 | has been changed by an "Export" pragma. As a consequence, | |
5176 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5177 | |
14f9c5c9 | 5178 | static int |
d12307c1 | 5179 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5180 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5181 | { |
5182 | struct symbol *current_function; | |
0d5cff50 | 5183 | const char *current_function_name; |
4c4b4cd2 | 5184 | int i; |
aeb5907d JB |
5185 | int is_new_style_renaming; |
5186 | ||
5187 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5188 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5189 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5190 | is_new_style_renaming = 0; |
5191 | for (i = 0; i < nsyms; i += 1) | |
5192 | { | |
d12307c1 | 5193 | struct symbol *sym = syms[i].symbol; |
270140bd | 5194 | const struct block *block = syms[i].block; |
aeb5907d JB |
5195 | const char *name; |
5196 | const char *suffix; | |
5197 | ||
5198 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5199 | continue; | |
5200 | name = SYMBOL_LINKAGE_NAME (sym); | |
5201 | suffix = strstr (name, "___XR"); | |
5202 | ||
5203 | if (suffix != NULL) | |
5204 | { | |
5205 | int name_len = suffix - name; | |
5206 | int j; | |
5b4ee69b | 5207 | |
aeb5907d JB |
5208 | is_new_style_renaming = 1; |
5209 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5210 | if (i != j && syms[j].symbol != NULL |
5211 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5212 | name_len) == 0 |
5213 | && block == syms[j].block) | |
d12307c1 | 5214 | syms[j].symbol = NULL; |
aeb5907d JB |
5215 | } |
5216 | } | |
5217 | if (is_new_style_renaming) | |
5218 | { | |
5219 | int j, k; | |
5220 | ||
5221 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5222 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5223 | { |
5224 | syms[k] = syms[j]; | |
5225 | k += 1; | |
5226 | } | |
5227 | return k; | |
5228 | } | |
4c4b4cd2 PH |
5229 | |
5230 | /* Extract the function name associated to CURRENT_BLOCK. | |
5231 | Abort if unable to do so. */ | |
76a01679 | 5232 | |
4c4b4cd2 PH |
5233 | if (current_block == NULL) |
5234 | return nsyms; | |
76a01679 | 5235 | |
7f0df278 | 5236 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5237 | if (current_function == NULL) |
5238 | return nsyms; | |
5239 | ||
5240 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5241 | if (current_function_name == NULL) | |
5242 | return nsyms; | |
5243 | ||
5244 | /* Check each of the symbols, and remove it from the list if it is | |
5245 | a type corresponding to a renaming that is out of the scope of | |
5246 | the current block. */ | |
5247 | ||
5248 | i = 0; | |
5249 | while (i < nsyms) | |
5250 | { | |
d12307c1 | 5251 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5252 | == ADA_OBJECT_RENAMING |
d12307c1 | 5253 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5254 | { |
5255 | int j; | |
5b4ee69b | 5256 | |
aeb5907d | 5257 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5258 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5259 | nsyms -= 1; |
5260 | } | |
5261 | else | |
5262 | i += 1; | |
5263 | } | |
5264 | ||
5265 | return nsyms; | |
5266 | } | |
5267 | ||
339c13b6 JB |
5268 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5269 | whose name and domain match NAME and DOMAIN respectively. | |
5270 | If no match was found, then extend the search to "enclosing" | |
5271 | routines (in other words, if we're inside a nested function, | |
5272 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5273 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5274 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5275 | |
5276 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5277 | ||
5278 | static void | |
5279 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5280 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5281 | int wild_match_p) |
339c13b6 JB |
5282 | { |
5283 | int block_depth = 0; | |
5284 | ||
5285 | while (block != NULL) | |
5286 | { | |
5287 | block_depth += 1; | |
d0a8ab18 JB |
5288 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5289 | wild_match_p); | |
339c13b6 JB |
5290 | |
5291 | /* If we found a non-function match, assume that's the one. */ | |
5292 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5293 | num_defns_collected (obstackp))) | |
5294 | return; | |
5295 | ||
5296 | block = BLOCK_SUPERBLOCK (block); | |
5297 | } | |
5298 | ||
5299 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5300 | enclosing subprogram. */ | |
5301 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5302 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5303 | } |
5304 | ||
ccefe4c4 | 5305 | /* An object of this type is used as the user_data argument when |
40658b94 | 5306 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5307 | |
40658b94 | 5308 | struct match_data |
ccefe4c4 | 5309 | { |
40658b94 | 5310 | struct objfile *objfile; |
ccefe4c4 | 5311 | struct obstack *obstackp; |
40658b94 PH |
5312 | struct symbol *arg_sym; |
5313 | int found_sym; | |
ccefe4c4 TT |
5314 | }; |
5315 | ||
22cee43f | 5316 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5317 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5318 | containing the obstack that collects the symbol list, the file that SYM | |
5319 | must come from, a flag indicating whether a non-argument symbol has | |
5320 | been found in the current block, and the last argument symbol | |
5321 | passed in SYM within the current block (if any). When SYM is null, | |
5322 | marking the end of a block, the argument symbol is added if no | |
5323 | other has been found. */ | |
ccefe4c4 | 5324 | |
40658b94 PH |
5325 | static int |
5326 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5327 | { |
40658b94 PH |
5328 | struct match_data *data = (struct match_data *) data0; |
5329 | ||
5330 | if (sym == NULL) | |
5331 | { | |
5332 | if (!data->found_sym && data->arg_sym != NULL) | |
5333 | add_defn_to_vec (data->obstackp, | |
5334 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5335 | block); | |
5336 | data->found_sym = 0; | |
5337 | data->arg_sym = NULL; | |
5338 | } | |
5339 | else | |
5340 | { | |
5341 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5342 | return 0; | |
5343 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5344 | data->arg_sym = sym; | |
5345 | else | |
5346 | { | |
5347 | data->found_sym = 1; | |
5348 | add_defn_to_vec (data->obstackp, | |
5349 | fixup_symbol_section (sym, data->objfile), | |
5350 | block); | |
5351 | } | |
5352 | } | |
5353 | return 0; | |
5354 | } | |
5355 | ||
22cee43f PMR |
5356 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted |
5357 | by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If | |
5358 | WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see | |
5359 | function "wild_match" for more information). Return whether we found such | |
5360 | symbols. */ | |
5361 | ||
5362 | static int | |
5363 | ada_add_block_renamings (struct obstack *obstackp, | |
5364 | const struct block *block, | |
5365 | const char *name, | |
5366 | domain_enum domain, | |
5367 | int wild_match_p) | |
5368 | { | |
5369 | struct using_direct *renaming; | |
5370 | int defns_mark = num_defns_collected (obstackp); | |
5371 | ||
5372 | for (renaming = block_using (block); | |
5373 | renaming != NULL; | |
5374 | renaming = renaming->next) | |
5375 | { | |
5376 | const char *r_name; | |
5377 | int name_match; | |
5378 | ||
5379 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5380 | already traversing it. | |
5381 | ||
5382 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5383 | C++/Fortran support: skip namespace imports that use them. */ | |
5384 | if (renaming->searched | |
5385 | || (renaming->import_src != NULL | |
5386 | && renaming->import_src[0] != '\0') | |
5387 | || (renaming->import_dest != NULL | |
5388 | && renaming->import_dest[0] != '\0')) | |
5389 | continue; | |
5390 | renaming->searched = 1; | |
5391 | ||
5392 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5393 | pull its own multiple overloads. In theory, we should be able to do | |
5394 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5395 | not a simple name. But in order to do this, we would need to enhance | |
5396 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5397 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5398 | namespace machinery. */ | |
5399 | r_name = (renaming->alias != NULL | |
5400 | ? renaming->alias | |
5401 | : renaming->declaration); | |
5402 | name_match | |
5403 | = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name); | |
5404 | if (name_match == 0) | |
5405 | ada_add_all_symbols (obstackp, block, renaming->declaration, domain, | |
5406 | 1, NULL); | |
5407 | renaming->searched = 0; | |
5408 | } | |
5409 | return num_defns_collected (obstackp) != defns_mark; | |
5410 | } | |
5411 | ||
db230ce3 JB |
5412 | /* Implements compare_names, but only applying the comparision using |
5413 | the given CASING. */ | |
5b4ee69b | 5414 | |
40658b94 | 5415 | static int |
db230ce3 JB |
5416 | compare_names_with_case (const char *string1, const char *string2, |
5417 | enum case_sensitivity casing) | |
40658b94 PH |
5418 | { |
5419 | while (*string1 != '\0' && *string2 != '\0') | |
5420 | { | |
db230ce3 JB |
5421 | char c1, c2; |
5422 | ||
40658b94 PH |
5423 | if (isspace (*string1) || isspace (*string2)) |
5424 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5425 | |
5426 | if (casing == case_sensitive_off) | |
5427 | { | |
5428 | c1 = tolower (*string1); | |
5429 | c2 = tolower (*string2); | |
5430 | } | |
5431 | else | |
5432 | { | |
5433 | c1 = *string1; | |
5434 | c2 = *string2; | |
5435 | } | |
5436 | if (c1 != c2) | |
40658b94 | 5437 | break; |
db230ce3 | 5438 | |
40658b94 PH |
5439 | string1 += 1; |
5440 | string2 += 1; | |
5441 | } | |
db230ce3 | 5442 | |
40658b94 PH |
5443 | switch (*string1) |
5444 | { | |
5445 | case '(': | |
5446 | return strcmp_iw_ordered (string1, string2); | |
5447 | case '_': | |
5448 | if (*string2 == '\0') | |
5449 | { | |
052874e8 | 5450 | if (is_name_suffix (string1)) |
40658b94 PH |
5451 | return 0; |
5452 | else | |
1a1d5513 | 5453 | return 1; |
40658b94 | 5454 | } |
dbb8534f | 5455 | /* FALLTHROUGH */ |
40658b94 PH |
5456 | default: |
5457 | if (*string2 == '(') | |
5458 | return strcmp_iw_ordered (string1, string2); | |
5459 | else | |
db230ce3 JB |
5460 | { |
5461 | if (casing == case_sensitive_off) | |
5462 | return tolower (*string1) - tolower (*string2); | |
5463 | else | |
5464 | return *string1 - *string2; | |
5465 | } | |
40658b94 | 5466 | } |
ccefe4c4 TT |
5467 | } |
5468 | ||
db230ce3 JB |
5469 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5470 | Compatible with strcmp_iw_ordered in that... | |
5471 | ||
5472 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5473 | ||
5474 | ... implies... | |
5475 | ||
5476 | compare_names (STRING1, STRING2) <= 0 | |
5477 | ||
5478 | (they may differ as to what symbols compare equal). */ | |
5479 | ||
5480 | static int | |
5481 | compare_names (const char *string1, const char *string2) | |
5482 | { | |
5483 | int result; | |
5484 | ||
5485 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5486 | a case-insensitive comparison first, and only resort to | |
5487 | a second, case-sensitive, comparison if the first one was | |
5488 | not sufficient to differentiate the two strings. */ | |
5489 | ||
5490 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5491 | if (result == 0) | |
5492 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5493 | ||
5494 | return result; | |
5495 | } | |
5496 | ||
339c13b6 JB |
5497 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5498 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5499 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5500 | ||
5501 | static void | |
40658b94 PH |
5502 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5503 | domain_enum domain, int global, | |
5504 | int is_wild_match) | |
339c13b6 JB |
5505 | { |
5506 | struct objfile *objfile; | |
22cee43f | 5507 | struct compunit_symtab *cu; |
40658b94 | 5508 | struct match_data data; |
339c13b6 | 5509 | |
6475f2fe | 5510 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5511 | data.obstackp = obstackp; |
339c13b6 | 5512 | |
ccefe4c4 | 5513 | ALL_OBJFILES (objfile) |
40658b94 PH |
5514 | { |
5515 | data.objfile = objfile; | |
5516 | ||
5517 | if (is_wild_match) | |
4186eb54 KS |
5518 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5519 | aux_add_nonlocal_symbols, &data, | |
5520 | wild_match, NULL); | |
40658b94 | 5521 | else |
4186eb54 KS |
5522 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5523 | aux_add_nonlocal_symbols, &data, | |
5524 | full_match, compare_names); | |
22cee43f PMR |
5525 | |
5526 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5527 | { | |
5528 | const struct block *global_block | |
5529 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5530 | ||
5531 | if (ada_add_block_renamings (obstackp, global_block , name, domain, | |
5532 | is_wild_match)) | |
5533 | data.found_sym = 1; | |
5534 | } | |
40658b94 PH |
5535 | } |
5536 | ||
5537 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5538 | { | |
5539 | ALL_OBJFILES (objfile) | |
5540 | { | |
224c3ddb | 5541 | char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_")); |
40658b94 PH |
5542 | strcpy (name1, "_ada_"); |
5543 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5544 | data.objfile = objfile; | |
ade7ed9e DE |
5545 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5546 | global, | |
0963b4bd MS |
5547 | aux_add_nonlocal_symbols, |
5548 | &data, | |
40658b94 PH |
5549 | full_match, compare_names); |
5550 | } | |
5551 | } | |
339c13b6 JB |
5552 | } |
5553 | ||
22cee43f | 5554 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is |
4eeaa230 | 5555 | non-zero, enclosing scope and in global scopes, returning the number of |
22cee43f | 5556 | matches. Add these to OBSTACKP. |
4eeaa230 | 5557 | |
22cee43f PMR |
5558 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5559 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5560 | is the one match returned (no other matches in that or |
d9680e73 | 5561 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5562 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5563 | |
9f88c959 | 5564 | Names prefixed with "standard__" are handled specially: "standard__" |
22cee43f | 5565 | is first stripped off, and only static and global symbols are searched. |
14f9c5c9 | 5566 | |
22cee43f PMR |
5567 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5568 | to lookup global symbols. */ | |
5569 | ||
5570 | static void | |
5571 | ada_add_all_symbols (struct obstack *obstackp, | |
5572 | const struct block *block, | |
5573 | const char *name, | |
5574 | domain_enum domain, | |
5575 | int full_search, | |
5576 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5577 | { |
5578 | struct symbol *sym; | |
22cee43f | 5579 | const int wild_match_p = should_use_wild_match (name); |
14f9c5c9 | 5580 | |
22cee43f PMR |
5581 | if (made_global_lookup_p) |
5582 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5583 | |
5584 | /* Special case: If the user specifies a symbol name inside package | |
5585 | Standard, do a non-wild matching of the symbol name without | |
5586 | the "standard__" prefix. This was primarily introduced in order | |
5587 | to allow the user to specifically access the standard exceptions | |
5588 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5589 | is ambiguous (due to the user defining its own Constraint_Error | |
5590 | entity inside its program). */ | |
22cee43f | 5591 | if (startswith (name, "standard__")) |
4c4b4cd2 | 5592 | { |
4c4b4cd2 | 5593 | block = NULL; |
22cee43f | 5594 | name = name + sizeof ("standard__") - 1; |
4c4b4cd2 PH |
5595 | } |
5596 | ||
339c13b6 | 5597 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5598 | |
4eeaa230 DE |
5599 | if (block != NULL) |
5600 | { | |
5601 | if (full_search) | |
22cee43f | 5602 | ada_add_local_symbols (obstackp, name, block, domain, wild_match_p); |
4eeaa230 DE |
5603 | else |
5604 | { | |
5605 | /* In the !full_search case we're are being called by | |
5606 | ada_iterate_over_symbols, and we don't want to search | |
5607 | superblocks. */ | |
22cee43f PMR |
5608 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5609 | wild_match_p); | |
4eeaa230 | 5610 | } |
22cee43f PMR |
5611 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5612 | return; | |
4eeaa230 | 5613 | } |
d2e4a39e | 5614 | |
339c13b6 JB |
5615 | /* No non-global symbols found. Check our cache to see if we have |
5616 | already performed this search before. If we have, then return | |
5617 | the same result. */ | |
5618 | ||
22cee43f | 5619 | if (lookup_cached_symbol (name, domain, &sym, &block)) |
4c4b4cd2 PH |
5620 | { |
5621 | if (sym != NULL) | |
22cee43f PMR |
5622 | add_defn_to_vec (obstackp, sym, block); |
5623 | return; | |
4c4b4cd2 | 5624 | } |
14f9c5c9 | 5625 | |
22cee43f PMR |
5626 | if (made_global_lookup_p) |
5627 | *made_global_lookup_p = 1; | |
b1eedac9 | 5628 | |
339c13b6 JB |
5629 | /* Search symbols from all global blocks. */ |
5630 | ||
22cee43f | 5631 | add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p); |
d2e4a39e | 5632 | |
4c4b4cd2 | 5633 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5634 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5635 | |
22cee43f PMR |
5636 | if (num_defns_collected (obstackp) == 0) |
5637 | add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p); | |
5638 | } | |
5639 | ||
5640 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is | |
5641 | non-zero, enclosing scope and in global scopes, returning the number of | |
5642 | matches. | |
5643 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
5644 | indicating the symbols found and the blocks and symbol tables (if | |
5645 | any) in which they were found. This vector is transient---good only to | |
5646 | the next call of ada_lookup_symbol_list. | |
5647 | ||
5648 | When full_search is non-zero, any non-function/non-enumeral | |
5649 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5650 | is the one match returned (no other matches in that or | |
5651 | enclosing blocks is returned). If there are any matches in or | |
5652 | surrounding BLOCK, then these alone are returned. | |
5653 | ||
5654 | Names prefixed with "standard__" are handled specially: "standard__" | |
5655 | is first stripped off, and only static and global symbols are searched. */ | |
5656 | ||
5657 | static int | |
5658 | ada_lookup_symbol_list_worker (const char *name, const struct block *block, | |
5659 | domain_enum domain, | |
5660 | struct block_symbol **results, | |
5661 | int full_search) | |
5662 | { | |
5663 | const int wild_match_p = should_use_wild_match (name); | |
5664 | int syms_from_global_search; | |
5665 | int ndefns; | |
5666 | ||
5667 | obstack_free (&symbol_list_obstack, NULL); | |
5668 | obstack_init (&symbol_list_obstack); | |
5669 | ada_add_all_symbols (&symbol_list_obstack, block, name, domain, | |
5670 | full_search, &syms_from_global_search); | |
14f9c5c9 | 5671 | |
4c4b4cd2 PH |
5672 | ndefns = num_defns_collected (&symbol_list_obstack); |
5673 | *results = defns_collected (&symbol_list_obstack, 1); | |
5674 | ||
5675 | ndefns = remove_extra_symbols (*results, ndefns); | |
5676 | ||
b1eedac9 | 5677 | if (ndefns == 0 && full_search && syms_from_global_search) |
22cee43f | 5678 | cache_symbol (name, domain, NULL, NULL); |
14f9c5c9 | 5679 | |
b1eedac9 | 5680 | if (ndefns == 1 && full_search && syms_from_global_search) |
22cee43f | 5681 | cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block); |
14f9c5c9 | 5682 | |
22cee43f | 5683 | ndefns = remove_irrelevant_renamings (*results, ndefns, block); |
14f9c5c9 AS |
5684 | return ndefns; |
5685 | } | |
5686 | ||
4eeaa230 DE |
5687 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5688 | in global scopes, returning the number of matches, and setting *RESULTS | |
5689 | to a vector of (SYM,BLOCK) tuples. | |
5690 | See ada_lookup_symbol_list_worker for further details. */ | |
5691 | ||
5692 | int | |
5693 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
d12307c1 | 5694 | domain_enum domain, struct block_symbol **results) |
4eeaa230 DE |
5695 | { |
5696 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5697 | } | |
5698 | ||
5699 | /* Implementation of the la_iterate_over_symbols method. */ | |
5700 | ||
5701 | static void | |
5702 | ada_iterate_over_symbols (const struct block *block, | |
5703 | const char *name, domain_enum domain, | |
5704 | symbol_found_callback_ftype *callback, | |
5705 | void *data) | |
5706 | { | |
5707 | int ndefs, i; | |
d12307c1 | 5708 | struct block_symbol *results; |
4eeaa230 DE |
5709 | |
5710 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5711 | for (i = 0; i < ndefs; ++i) | |
5712 | { | |
d12307c1 | 5713 | if (! (*callback) (results[i].symbol, data)) |
4eeaa230 DE |
5714 | break; |
5715 | } | |
5716 | } | |
5717 | ||
f8eba3c6 TT |
5718 | /* If NAME is the name of an entity, return a string that should |
5719 | be used to look that entity up in Ada units. This string should | |
5720 | be deallocated after use using xfree. | |
5721 | ||
5722 | NAME can have any form that the "break" or "print" commands might | |
5723 | recognize. In other words, it does not have to be the "natural" | |
5724 | name, or the "encoded" name. */ | |
5725 | ||
5726 | char * | |
5727 | ada_name_for_lookup (const char *name) | |
5728 | { | |
5729 | char *canon; | |
5730 | int nlen = strlen (name); | |
5731 | ||
5732 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5733 | { | |
224c3ddb | 5734 | canon = (char *) xmalloc (nlen - 1); |
f8eba3c6 TT |
5735 | memcpy (canon, name + 1, nlen - 2); |
5736 | canon[nlen - 2] = '\0'; | |
5737 | } | |
5738 | else | |
5739 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5740 | return canon; | |
5741 | } | |
5742 | ||
4e5c77fe JB |
5743 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5744 | to 1, but choosing the first symbol found if there are multiple | |
5745 | choices. | |
5746 | ||
5e2336be JB |
5747 | The result is stored in *INFO, which must be non-NULL. |
5748 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5749 | |
5750 | void | |
5751 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5752 | domain_enum domain, |
d12307c1 | 5753 | struct block_symbol *info) |
14f9c5c9 | 5754 | { |
d12307c1 | 5755 | struct block_symbol *candidates; |
14f9c5c9 AS |
5756 | int n_candidates; |
5757 | ||
5e2336be | 5758 | gdb_assert (info != NULL); |
d12307c1 | 5759 | memset (info, 0, sizeof (struct block_symbol)); |
4e5c77fe | 5760 | |
fe978cb0 | 5761 | n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates); |
14f9c5c9 | 5762 | if (n_candidates == 0) |
4e5c77fe | 5763 | return; |
4c4b4cd2 | 5764 | |
5e2336be | 5765 | *info = candidates[0]; |
d12307c1 | 5766 | info->symbol = fixup_symbol_section (info->symbol, NULL); |
4e5c77fe | 5767 | } |
aeb5907d JB |
5768 | |
5769 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5770 | scope and in global scopes, or NULL if none. NAME is folded and | |
5771 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5772 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5773 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5774 | ||
d12307c1 | 5775 | struct block_symbol |
aeb5907d | 5776 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5777 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d | 5778 | { |
d12307c1 | 5779 | struct block_symbol info; |
4e5c77fe | 5780 | |
aeb5907d JB |
5781 | if (is_a_field_of_this != NULL) |
5782 | *is_a_field_of_this = 0; | |
5783 | ||
4e5c77fe | 5784 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
fe978cb0 | 5785 | block0, domain, &info); |
d12307c1 | 5786 | return info; |
4c4b4cd2 | 5787 | } |
14f9c5c9 | 5788 | |
d12307c1 | 5789 | static struct block_symbol |
f606139a DE |
5790 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5791 | const char *name, | |
76a01679 | 5792 | const struct block *block, |
21b556f4 | 5793 | const domain_enum domain) |
4c4b4cd2 | 5794 | { |
d12307c1 | 5795 | struct block_symbol sym; |
04dccad0 JB |
5796 | |
5797 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5798 | if (sym.symbol != NULL) |
04dccad0 JB |
5799 | return sym; |
5800 | ||
5801 | /* If we haven't found a match at this point, try the primitive | |
5802 | types. In other languages, this search is performed before | |
5803 | searching for global symbols in order to short-circuit that | |
5804 | global-symbol search if it happens that the name corresponds | |
5805 | to a primitive type. But we cannot do the same in Ada, because | |
5806 | it is perfectly legitimate for a program to declare a type which | |
5807 | has the same name as a standard type. If looking up a type in | |
5808 | that situation, we have traditionally ignored the primitive type | |
5809 | in favor of user-defined types. This is why, unlike most other | |
5810 | languages, we search the primitive types this late and only after | |
5811 | having searched the global symbols without success. */ | |
5812 | ||
5813 | if (domain == VAR_DOMAIN) | |
5814 | { | |
5815 | struct gdbarch *gdbarch; | |
5816 | ||
5817 | if (block == NULL) | |
5818 | gdbarch = target_gdbarch (); | |
5819 | else | |
5820 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5821 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5822 | if (sym.symbol != NULL) | |
04dccad0 JB |
5823 | return sym; |
5824 | } | |
5825 | ||
d12307c1 | 5826 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5827 | } |
5828 | ||
5829 | ||
4c4b4cd2 PH |
5830 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5831 | that is to be ignored for matching purposes. Suffixes of parallel | |
5832 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5833 | are given by any of the regular expressions: |
4c4b4cd2 | 5834 | |
babe1480 JB |
5835 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5836 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5837 | TKB [subprogram suffix for task bodies] |
babe1480 | 5838 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5839 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5840 | |
5841 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5842 | match is performed. This sequence is used to differentiate homonyms, | |
5843 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5844 | |
14f9c5c9 | 5845 | static int |
d2e4a39e | 5846 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5847 | { |
5848 | int k; | |
4c4b4cd2 PH |
5849 | const char *matching; |
5850 | const int len = strlen (str); | |
5851 | ||
babe1480 JB |
5852 | /* Skip optional leading __[0-9]+. */ |
5853 | ||
4c4b4cd2 PH |
5854 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5855 | { | |
babe1480 JB |
5856 | str += 3; |
5857 | while (isdigit (str[0])) | |
5858 | str += 1; | |
4c4b4cd2 | 5859 | } |
babe1480 JB |
5860 | |
5861 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5862 | |
babe1480 | 5863 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5864 | { |
babe1480 | 5865 | matching = str + 1; |
4c4b4cd2 PH |
5866 | while (isdigit (matching[0])) |
5867 | matching += 1; | |
5868 | if (matching[0] == '\0') | |
5869 | return 1; | |
5870 | } | |
5871 | ||
5872 | /* ___[0-9]+ */ | |
babe1480 | 5873 | |
4c4b4cd2 PH |
5874 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5875 | { | |
5876 | matching = str + 3; | |
5877 | while (isdigit (matching[0])) | |
5878 | matching += 1; | |
5879 | if (matching[0] == '\0') | |
5880 | return 1; | |
5881 | } | |
5882 | ||
9ac7f98e JB |
5883 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5884 | ||
5885 | if (strcmp (str, "TKB") == 0) | |
5886 | return 1; | |
5887 | ||
529cad9c PH |
5888 | #if 0 |
5889 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5890 | with a N at the end. Unfortunately, the compiler uses the same |
5891 | convention for other internal types it creates. So treating | |
529cad9c | 5892 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5893 | some regressions. For instance, consider the case of an enumerated |
5894 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5895 | name ends with N. |
5896 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5897 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5898 | to be something like "_N" instead. In the meantime, do not do |
5899 | the following check. */ | |
5900 | /* Protected Object Subprograms */ | |
5901 | if (len == 1 && str [0] == 'N') | |
5902 | return 1; | |
5903 | #endif | |
5904 | ||
5905 | /* _E[0-9]+[bs]$ */ | |
5906 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5907 | { | |
5908 | matching = str + 3; | |
5909 | while (isdigit (matching[0])) | |
5910 | matching += 1; | |
5911 | if ((matching[0] == 'b' || matching[0] == 's') | |
5912 | && matching [1] == '\0') | |
5913 | return 1; | |
5914 | } | |
5915 | ||
4c4b4cd2 PH |
5916 | /* ??? We should not modify STR directly, as we are doing below. This |
5917 | is fine in this case, but may become problematic later if we find | |
5918 | that this alternative did not work, and want to try matching | |
5919 | another one from the begining of STR. Since we modified it, we | |
5920 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5921 | if (str[0] == 'X') |
5922 | { | |
5923 | str += 1; | |
d2e4a39e | 5924 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5925 | { |
5926 | if (str[0] != 'n' && str[0] != 'b') | |
5927 | return 0; | |
5928 | str += 1; | |
5929 | } | |
14f9c5c9 | 5930 | } |
babe1480 | 5931 | |
14f9c5c9 AS |
5932 | if (str[0] == '\000') |
5933 | return 1; | |
babe1480 | 5934 | |
d2e4a39e | 5935 | if (str[0] == '_') |
14f9c5c9 AS |
5936 | { |
5937 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5938 | return 0; |
d2e4a39e | 5939 | if (str[2] == '_') |
4c4b4cd2 | 5940 | { |
61ee279c PH |
5941 | if (strcmp (str + 3, "JM") == 0) |
5942 | return 1; | |
5943 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5944 | the LJM suffix in favor of the JM one. But we will | |
5945 | still accept LJM as a valid suffix for a reasonable | |
5946 | amount of time, just to allow ourselves to debug programs | |
5947 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5948 | if (strcmp (str + 3, "LJM") == 0) |
5949 | return 1; | |
5950 | if (str[3] != 'X') | |
5951 | return 0; | |
1265e4aa JB |
5952 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5953 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5954 | return 1; |
5955 | if (str[4] == 'R' && str[5] != 'T') | |
5956 | return 1; | |
5957 | return 0; | |
5958 | } | |
5959 | if (!isdigit (str[2])) | |
5960 | return 0; | |
5961 | for (k = 3; str[k] != '\0'; k += 1) | |
5962 | if (!isdigit (str[k]) && str[k] != '_') | |
5963 | return 0; | |
14f9c5c9 AS |
5964 | return 1; |
5965 | } | |
4c4b4cd2 | 5966 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5967 | { |
4c4b4cd2 PH |
5968 | for (k = 2; str[k] != '\0'; k += 1) |
5969 | if (!isdigit (str[k]) && str[k] != '_') | |
5970 | return 0; | |
14f9c5c9 AS |
5971 | return 1; |
5972 | } | |
5973 | return 0; | |
5974 | } | |
d2e4a39e | 5975 | |
aeb5907d JB |
5976 | /* Return non-zero if the string starting at NAME and ending before |
5977 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5978 | |
5979 | static int | |
5980 | is_valid_name_for_wild_match (const char *name0) | |
5981 | { | |
5982 | const char *decoded_name = ada_decode (name0); | |
5983 | int i; | |
5984 | ||
5823c3ef JB |
5985 | /* If the decoded name starts with an angle bracket, it means that |
5986 | NAME0 does not follow the GNAT encoding format. It should then | |
5987 | not be allowed as a possible wild match. */ | |
5988 | if (decoded_name[0] == '<') | |
5989 | return 0; | |
5990 | ||
529cad9c PH |
5991 | for (i=0; decoded_name[i] != '\0'; i++) |
5992 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5993 | return 0; | |
5994 | ||
5995 | return 1; | |
5996 | } | |
5997 | ||
73589123 PH |
5998 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5999 | that could start a simple name. Assumes that *NAMEP points into | |
6000 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6001 | |
14f9c5c9 | 6002 | static int |
73589123 | 6003 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6004 | { |
73589123 | 6005 | const char *name = *namep; |
5b4ee69b | 6006 | |
5823c3ef | 6007 | while (1) |
14f9c5c9 | 6008 | { |
aa27d0b3 | 6009 | int t0, t1; |
73589123 PH |
6010 | |
6011 | t0 = *name; | |
6012 | if (t0 == '_') | |
6013 | { | |
6014 | t1 = name[1]; | |
6015 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6016 | { | |
6017 | name += 1; | |
61012eef | 6018 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6019 | break; |
6020 | else | |
6021 | name += 1; | |
6022 | } | |
aa27d0b3 JB |
6023 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6024 | || name[2] == target0)) | |
73589123 PH |
6025 | { |
6026 | name += 2; | |
6027 | break; | |
6028 | } | |
6029 | else | |
6030 | return 0; | |
6031 | } | |
6032 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6033 | name += 1; | |
6034 | else | |
5823c3ef | 6035 | return 0; |
73589123 PH |
6036 | } |
6037 | ||
6038 | *namep = name; | |
6039 | return 1; | |
6040 | } | |
6041 | ||
6042 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
6043 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
6044 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
6045 | ||
6046 | static int | |
6047 | wild_match (const char *name, const char *patn) | |
6048 | { | |
22e048c9 | 6049 | const char *p; |
73589123 PH |
6050 | const char *name0 = name; |
6051 | ||
6052 | while (1) | |
6053 | { | |
6054 | const char *match = name; | |
6055 | ||
6056 | if (*name == *patn) | |
6057 | { | |
6058 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6059 | if (*p != *name) | |
6060 | break; | |
6061 | if (*p == '\0' && is_name_suffix (name)) | |
6062 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
6063 | ||
6064 | if (name[-1] == '_') | |
6065 | name -= 1; | |
6066 | } | |
6067 | if (!advance_wild_match (&name, name0, *patn)) | |
6068 | return 1; | |
96d887e8 | 6069 | } |
96d887e8 PH |
6070 | } |
6071 | ||
40658b94 PH |
6072 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
6073 | informational suffix. */ | |
6074 | ||
c4d840bd PH |
6075 | static int |
6076 | full_match (const char *sym_name, const char *search_name) | |
6077 | { | |
40658b94 | 6078 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
6079 | } |
6080 | ||
6081 | ||
96d887e8 PH |
6082 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
6083 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 6084 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 6085 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
6086 | |
6087 | static void | |
6088 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 6089 | const struct block *block, const char *name, |
96d887e8 | 6090 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 6091 | int wild) |
96d887e8 | 6092 | { |
8157b174 | 6093 | struct block_iterator iter; |
96d887e8 PH |
6094 | int name_len = strlen (name); |
6095 | /* A matching argument symbol, if any. */ | |
6096 | struct symbol *arg_sym; | |
6097 | /* Set true when we find a matching non-argument symbol. */ | |
6098 | int found_sym; | |
6099 | struct symbol *sym; | |
6100 | ||
6101 | arg_sym = NULL; | |
6102 | found_sym = 0; | |
6103 | if (wild) | |
6104 | { | |
8157b174 TT |
6105 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
6106 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 6107 | { |
4186eb54 KS |
6108 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6109 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 6110 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 6111 | { |
2a2d4dc3 AS |
6112 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
6113 | continue; | |
6114 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
6115 | arg_sym = sym; | |
6116 | else | |
6117 | { | |
76a01679 JB |
6118 | found_sym = 1; |
6119 | add_defn_to_vec (obstackp, | |
6120 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 6121 | block); |
76a01679 JB |
6122 | } |
6123 | } | |
6124 | } | |
96d887e8 PH |
6125 | } |
6126 | else | |
6127 | { | |
8157b174 TT |
6128 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
6129 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 6130 | { |
4186eb54 KS |
6131 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6132 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 6133 | { |
c4d840bd PH |
6134 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6135 | { | |
6136 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6137 | arg_sym = sym; | |
6138 | else | |
2a2d4dc3 | 6139 | { |
c4d840bd PH |
6140 | found_sym = 1; |
6141 | add_defn_to_vec (obstackp, | |
6142 | fixup_symbol_section (sym, objfile), | |
6143 | block); | |
2a2d4dc3 | 6144 | } |
c4d840bd | 6145 | } |
76a01679 JB |
6146 | } |
6147 | } | |
96d887e8 PH |
6148 | } |
6149 | ||
22cee43f PMR |
6150 | /* Handle renamings. */ |
6151 | ||
6152 | if (ada_add_block_renamings (obstackp, block, name, domain, wild)) | |
6153 | found_sym = 1; | |
6154 | ||
96d887e8 PH |
6155 | if (!found_sym && arg_sym != NULL) |
6156 | { | |
76a01679 JB |
6157 | add_defn_to_vec (obstackp, |
6158 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6159 | block); |
96d887e8 PH |
6160 | } |
6161 | ||
6162 | if (!wild) | |
6163 | { | |
6164 | arg_sym = NULL; | |
6165 | found_sym = 0; | |
6166 | ||
6167 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6168 | { |
4186eb54 KS |
6169 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6170 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6171 | { |
6172 | int cmp; | |
6173 | ||
6174 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6175 | if (cmp == 0) | |
6176 | { | |
61012eef | 6177 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6178 | if (cmp == 0) |
6179 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6180 | name_len); | |
6181 | } | |
6182 | ||
6183 | if (cmp == 0 | |
6184 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6185 | { | |
2a2d4dc3 AS |
6186 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6187 | { | |
6188 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6189 | arg_sym = sym; | |
6190 | else | |
6191 | { | |
6192 | found_sym = 1; | |
6193 | add_defn_to_vec (obstackp, | |
6194 | fixup_symbol_section (sym, objfile), | |
6195 | block); | |
6196 | } | |
6197 | } | |
76a01679 JB |
6198 | } |
6199 | } | |
76a01679 | 6200 | } |
96d887e8 PH |
6201 | |
6202 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6203 | They aren't parameters, right? */ | |
6204 | if (!found_sym && arg_sym != NULL) | |
6205 | { | |
6206 | add_defn_to_vec (obstackp, | |
76a01679 | 6207 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6208 | block); |
96d887e8 PH |
6209 | } |
6210 | } | |
6211 | } | |
6212 | \f | |
41d27058 JB |
6213 | |
6214 | /* Symbol Completion */ | |
6215 | ||
6216 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6217 | name in a form that's appropriate for the completion. The result | |
6218 | does not need to be deallocated, but is only good until the next call. | |
6219 | ||
6220 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6221 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6222 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6223 | in its encoded form. */ |
6224 | ||
6225 | static const char * | |
6226 | symbol_completion_match (const char *sym_name, | |
6227 | const char *text, int text_len, | |
6ea35997 | 6228 | int wild_match_p, int encoded_p) |
41d27058 | 6229 | { |
41d27058 JB |
6230 | const int verbatim_match = (text[0] == '<'); |
6231 | int match = 0; | |
6232 | ||
6233 | if (verbatim_match) | |
6234 | { | |
6235 | /* Strip the leading angle bracket. */ | |
6236 | text = text + 1; | |
6237 | text_len--; | |
6238 | } | |
6239 | ||
6240 | /* First, test against the fully qualified name of the symbol. */ | |
6241 | ||
6242 | if (strncmp (sym_name, text, text_len) == 0) | |
6243 | match = 1; | |
6244 | ||
6ea35997 | 6245 | if (match && !encoded_p) |
41d27058 JB |
6246 | { |
6247 | /* One needed check before declaring a positive match is to verify | |
6248 | that iff we are doing a verbatim match, the decoded version | |
6249 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6250 | is not a suitable completion. */ | |
6251 | const char *sym_name_copy = sym_name; | |
6252 | int has_angle_bracket; | |
6253 | ||
6254 | sym_name = ada_decode (sym_name); | |
6255 | has_angle_bracket = (sym_name[0] == '<'); | |
6256 | match = (has_angle_bracket == verbatim_match); | |
6257 | sym_name = sym_name_copy; | |
6258 | } | |
6259 | ||
6260 | if (match && !verbatim_match) | |
6261 | { | |
6262 | /* When doing non-verbatim match, another check that needs to | |
6263 | be done is to verify that the potentially matching symbol name | |
6264 | does not include capital letters, because the ada-mode would | |
6265 | not be able to understand these symbol names without the | |
6266 | angle bracket notation. */ | |
6267 | const char *tmp; | |
6268 | ||
6269 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6270 | if (*tmp != '\0') | |
6271 | match = 0; | |
6272 | } | |
6273 | ||
6274 | /* Second: Try wild matching... */ | |
6275 | ||
e701b3c0 | 6276 | if (!match && wild_match_p) |
41d27058 JB |
6277 | { |
6278 | /* Since we are doing wild matching, this means that TEXT | |
6279 | may represent an unqualified symbol name. We therefore must | |
6280 | also compare TEXT against the unqualified name of the symbol. */ | |
6281 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6282 | ||
6283 | if (strncmp (sym_name, text, text_len) == 0) | |
6284 | match = 1; | |
6285 | } | |
6286 | ||
6287 | /* Finally: If we found a mach, prepare the result to return. */ | |
6288 | ||
6289 | if (!match) | |
6290 | return NULL; | |
6291 | ||
6292 | if (verbatim_match) | |
6293 | sym_name = add_angle_brackets (sym_name); | |
6294 | ||
6ea35997 | 6295 | if (!encoded_p) |
41d27058 JB |
6296 | sym_name = ada_decode (sym_name); |
6297 | ||
6298 | return sym_name; | |
6299 | } | |
6300 | ||
6301 | /* A companion function to ada_make_symbol_completion_list(). | |
6302 | Check if SYM_NAME represents a symbol which name would be suitable | |
6303 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6304 | it is appended at the end of the given string vector SV. | |
6305 | ||
6306 | ORIG_TEXT is the string original string from the user command | |
6307 | that needs to be completed. WORD is the entire command on which | |
6308 | completion should be performed. These two parameters are used to | |
6309 | determine which part of the symbol name should be added to the | |
6310 | completion vector. | |
c0af1706 | 6311 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6312 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6313 | encoded formed (in which case the completion should also be |
6314 | encoded). */ | |
6315 | ||
6316 | static void | |
d6565258 | 6317 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6318 | const char *sym_name, |
6319 | const char *text, int text_len, | |
6320 | const char *orig_text, const char *word, | |
cb8e9b97 | 6321 | int wild_match_p, int encoded_p) |
41d27058 JB |
6322 | { |
6323 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6324 | wild_match_p, encoded_p); |
41d27058 JB |
6325 | char *completion; |
6326 | ||
6327 | if (match == NULL) | |
6328 | return; | |
6329 | ||
6330 | /* We found a match, so add the appropriate completion to the given | |
6331 | string vector. */ | |
6332 | ||
6333 | if (word == orig_text) | |
6334 | { | |
224c3ddb | 6335 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6336 | strcpy (completion, match); |
6337 | } | |
6338 | else if (word > orig_text) | |
6339 | { | |
6340 | /* Return some portion of sym_name. */ | |
224c3ddb | 6341 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6342 | strcpy (completion, match + (word - orig_text)); |
6343 | } | |
6344 | else | |
6345 | { | |
6346 | /* Return some of ORIG_TEXT plus sym_name. */ | |
224c3ddb | 6347 | completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5); |
41d27058 JB |
6348 | strncpy (completion, word, orig_text - word); |
6349 | completion[orig_text - word] = '\0'; | |
6350 | strcat (completion, match); | |
6351 | } | |
6352 | ||
d6565258 | 6353 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6354 | } |
6355 | ||
ccefe4c4 | 6356 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 6357 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
6358 | struct add_partial_datum |
6359 | { | |
6360 | VEC(char_ptr) **completions; | |
6f937416 | 6361 | const char *text; |
ccefe4c4 | 6362 | int text_len; |
6f937416 PA |
6363 | const char *text0; |
6364 | const char *word; | |
ccefe4c4 TT |
6365 | int wild_match; |
6366 | int encoded; | |
6367 | }; | |
6368 | ||
bb4142cf DE |
6369 | /* A callback for expand_symtabs_matching. */ |
6370 | ||
7b08b9eb | 6371 | static int |
bb4142cf | 6372 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 | 6373 | { |
9a3c8263 | 6374 | struct add_partial_datum *data = (struct add_partial_datum *) user_data; |
7b08b9eb JK |
6375 | |
6376 | return symbol_completion_match (name, data->text, data->text_len, | |
6377 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
6378 | } |
6379 | ||
49c4e619 TT |
6380 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6381 | the entire command on which completion is made. */ | |
41d27058 | 6382 | |
49c4e619 | 6383 | static VEC (char_ptr) * |
6f937416 PA |
6384 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6385 | enum type_code code) | |
41d27058 JB |
6386 | { |
6387 | char *text; | |
6388 | int text_len; | |
b1ed564a JB |
6389 | int wild_match_p; |
6390 | int encoded_p; | |
2ba95b9b | 6391 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 | 6392 | struct symbol *sym; |
43f3e411 | 6393 | struct compunit_symtab *s; |
41d27058 JB |
6394 | struct minimal_symbol *msymbol; |
6395 | struct objfile *objfile; | |
3977b71f | 6396 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6397 | int i; |
8157b174 | 6398 | struct block_iterator iter; |
b8fea896 | 6399 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6400 | |
2f68a895 TT |
6401 | gdb_assert (code == TYPE_CODE_UNDEF); |
6402 | ||
41d27058 JB |
6403 | if (text0[0] == '<') |
6404 | { | |
6405 | text = xstrdup (text0); | |
6406 | make_cleanup (xfree, text); | |
6407 | text_len = strlen (text); | |
b1ed564a JB |
6408 | wild_match_p = 0; |
6409 | encoded_p = 1; | |
41d27058 JB |
6410 | } |
6411 | else | |
6412 | { | |
6413 | text = xstrdup (ada_encode (text0)); | |
6414 | make_cleanup (xfree, text); | |
6415 | text_len = strlen (text); | |
6416 | for (i = 0; i < text_len; i++) | |
6417 | text[i] = tolower (text[i]); | |
6418 | ||
b1ed564a | 6419 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6420 | /* If the name contains a ".", then the user is entering a fully |
6421 | qualified entity name, and the match must not be done in wild | |
6422 | mode. Similarly, if the user wants to complete what looks like | |
6423 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6424 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6425 | } |
6426 | ||
6427 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 6428 | { |
ccefe4c4 TT |
6429 | struct add_partial_datum data; |
6430 | ||
6431 | data.completions = &completions; | |
6432 | data.text = text; | |
6433 | data.text_len = text_len; | |
6434 | data.text0 = text0; | |
6435 | data.word = word; | |
b1ed564a JB |
6436 | data.wild_match = wild_match_p; |
6437 | data.encoded = encoded_p; | |
276d885b GB |
6438 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL, |
6439 | ALL_DOMAIN, &data); | |
41d27058 JB |
6440 | } |
6441 | ||
6442 | /* At this point scan through the misc symbol vectors and add each | |
6443 | symbol you find to the list. Eventually we want to ignore | |
6444 | anything that isn't a text symbol (everything else will be | |
6445 | handled by the psymtab code above). */ | |
6446 | ||
6447 | ALL_MSYMBOLS (objfile, msymbol) | |
6448 | { | |
6449 | QUIT; | |
efd66ac6 | 6450 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6451 | text, text_len, text0, word, wild_match_p, |
6452 | encoded_p); | |
41d27058 JB |
6453 | } |
6454 | ||
6455 | /* Search upwards from currently selected frame (so that we can | |
6456 | complete on local vars. */ | |
6457 | ||
6458 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6459 | { | |
6460 | if (!BLOCK_SUPERBLOCK (b)) | |
6461 | surrounding_static_block = b; /* For elmin of dups */ | |
6462 | ||
6463 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6464 | { | |
d6565258 | 6465 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6466 | text, text_len, text0, word, |
b1ed564a | 6467 | wild_match_p, encoded_p); |
41d27058 JB |
6468 | } |
6469 | } | |
6470 | ||
6471 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6472 | symbols which match. */ |
41d27058 | 6473 | |
43f3e411 | 6474 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6475 | { |
6476 | QUIT; | |
43f3e411 | 6477 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6478 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6479 | { | |
d6565258 | 6480 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6481 | text, text_len, text0, word, |
b1ed564a | 6482 | wild_match_p, encoded_p); |
41d27058 JB |
6483 | } |
6484 | } | |
6485 | ||
43f3e411 | 6486 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6487 | { |
6488 | QUIT; | |
43f3e411 | 6489 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6490 | /* Don't do this block twice. */ |
6491 | if (b == surrounding_static_block) | |
6492 | continue; | |
6493 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6494 | { | |
d6565258 | 6495 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6496 | text, text_len, text0, word, |
b1ed564a | 6497 | wild_match_p, encoded_p); |
41d27058 JB |
6498 | } |
6499 | } | |
6500 | ||
b8fea896 | 6501 | do_cleanups (old_chain); |
49c4e619 | 6502 | return completions; |
41d27058 JB |
6503 | } |
6504 | ||
963a6417 | 6505 | /* Field Access */ |
96d887e8 | 6506 | |
73fb9985 JB |
6507 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6508 | for tagged types. */ | |
6509 | ||
6510 | static int | |
6511 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6512 | { | |
0d5cff50 | 6513 | const char *name; |
73fb9985 JB |
6514 | |
6515 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6516 | return 0; | |
6517 | ||
6518 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6519 | if (name == NULL) | |
6520 | return 0; | |
6521 | ||
6522 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6523 | } | |
6524 | ||
ac4a2da4 JG |
6525 | /* Return non-zero if TYPE is an interface tag. */ |
6526 | ||
6527 | static int | |
6528 | ada_is_interface_tag (struct type *type) | |
6529 | { | |
6530 | const char *name = TYPE_NAME (type); | |
6531 | ||
6532 | if (name == NULL) | |
6533 | return 0; | |
6534 | ||
6535 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6536 | } | |
6537 | ||
963a6417 PH |
6538 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6539 | to be invisible to users. */ | |
96d887e8 | 6540 | |
963a6417 PH |
6541 | int |
6542 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6543 | { |
963a6417 PH |
6544 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6545 | return 1; | |
ffde82bf | 6546 | |
73fb9985 JB |
6547 | /* Check the name of that field. */ |
6548 | { | |
6549 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6550 | ||
6551 | /* Anonymous field names should not be printed. | |
6552 | brobecker/2007-02-20: I don't think this can actually happen | |
6553 | but we don't want to print the value of annonymous fields anyway. */ | |
6554 | if (name == NULL) | |
6555 | return 1; | |
6556 | ||
ffde82bf JB |
6557 | /* Normally, fields whose name start with an underscore ("_") |
6558 | are fields that have been internally generated by the compiler, | |
6559 | and thus should not be printed. The "_parent" field is special, | |
6560 | however: This is a field internally generated by the compiler | |
6561 | for tagged types, and it contains the components inherited from | |
6562 | the parent type. This field should not be printed as is, but | |
6563 | should not be ignored either. */ | |
61012eef | 6564 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6565 | return 1; |
6566 | } | |
6567 | ||
ac4a2da4 JG |
6568 | /* If this is the dispatch table of a tagged type or an interface tag, |
6569 | then ignore. */ | |
73fb9985 | 6570 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6571 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6572 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6573 | return 1; |
6574 | ||
6575 | /* Not a special field, so it should not be ignored. */ | |
6576 | return 0; | |
963a6417 | 6577 | } |
96d887e8 | 6578 | |
963a6417 | 6579 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6580 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6581 | |
963a6417 PH |
6582 | int |
6583 | ada_is_tagged_type (struct type *type, int refok) | |
6584 | { | |
6585 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6586 | } | |
96d887e8 | 6587 | |
963a6417 | 6588 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6589 | |
963a6417 PH |
6590 | int |
6591 | ada_is_tag_type (struct type *type) | |
6592 | { | |
460efde1 JB |
6593 | type = ada_check_typedef (type); |
6594 | ||
963a6417 PH |
6595 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6596 | return 0; | |
6597 | else | |
96d887e8 | 6598 | { |
963a6417 | 6599 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6600 | |
963a6417 PH |
6601 | return (name != NULL |
6602 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6603 | } |
96d887e8 PH |
6604 | } |
6605 | ||
963a6417 | 6606 | /* The type of the tag on VAL. */ |
76a01679 | 6607 | |
963a6417 PH |
6608 | struct type * |
6609 | ada_tag_type (struct value *val) | |
96d887e8 | 6610 | { |
df407dfe | 6611 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6612 | } |
96d887e8 | 6613 | |
b50d69b5 JG |
6614 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6615 | retired at Ada 05). */ | |
6616 | ||
6617 | static int | |
6618 | is_ada95_tag (struct value *tag) | |
6619 | { | |
6620 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6621 | } | |
6622 | ||
963a6417 | 6623 | /* The value of the tag on VAL. */ |
96d887e8 | 6624 | |
963a6417 PH |
6625 | struct value * |
6626 | ada_value_tag (struct value *val) | |
6627 | { | |
03ee6b2e | 6628 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6629 | } |
6630 | ||
963a6417 PH |
6631 | /* The value of the tag on the object of type TYPE whose contents are |
6632 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6633 | ADDRESS. */ |
96d887e8 | 6634 | |
963a6417 | 6635 | static struct value * |
10a2c479 | 6636 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6637 | const gdb_byte *valaddr, |
963a6417 | 6638 | CORE_ADDR address) |
96d887e8 | 6639 | { |
b5385fc0 | 6640 | int tag_byte_offset; |
963a6417 | 6641 | struct type *tag_type; |
5b4ee69b | 6642 | |
963a6417 | 6643 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6644 | NULL, NULL, NULL)) |
96d887e8 | 6645 | { |
fc1a4b47 | 6646 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6647 | ? NULL |
6648 | : valaddr + tag_byte_offset); | |
963a6417 | 6649 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6650 | |
963a6417 | 6651 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6652 | } |
963a6417 PH |
6653 | return NULL; |
6654 | } | |
96d887e8 | 6655 | |
963a6417 PH |
6656 | static struct type * |
6657 | type_from_tag (struct value *tag) | |
6658 | { | |
6659 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6660 | |
963a6417 PH |
6661 | if (type_name != NULL) |
6662 | return ada_find_any_type (ada_encode (type_name)); | |
6663 | return NULL; | |
6664 | } | |
96d887e8 | 6665 | |
b50d69b5 JG |
6666 | /* Given a value OBJ of a tagged type, return a value of this |
6667 | type at the base address of the object. The base address, as | |
6668 | defined in Ada.Tags, it is the address of the primary tag of | |
6669 | the object, and therefore where the field values of its full | |
6670 | view can be fetched. */ | |
6671 | ||
6672 | struct value * | |
6673 | ada_tag_value_at_base_address (struct value *obj) | |
6674 | { | |
b50d69b5 JG |
6675 | struct value *val; |
6676 | LONGEST offset_to_top = 0; | |
6677 | struct type *ptr_type, *obj_type; | |
6678 | struct value *tag; | |
6679 | CORE_ADDR base_address; | |
6680 | ||
6681 | obj_type = value_type (obj); | |
6682 | ||
6683 | /* It is the responsability of the caller to deref pointers. */ | |
6684 | ||
6685 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6686 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6687 | return obj; | |
6688 | ||
6689 | tag = ada_value_tag (obj); | |
6690 | if (!tag) | |
6691 | return obj; | |
6692 | ||
6693 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6694 | ||
6695 | if (is_ada95_tag (tag)) | |
6696 | return obj; | |
6697 | ||
6698 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6699 | ptr_type = lookup_pointer_type (ptr_type); | |
6700 | val = value_cast (ptr_type, tag); | |
6701 | if (!val) | |
6702 | return obj; | |
6703 | ||
6704 | /* It is perfectly possible that an exception be raised while | |
6705 | trying to determine the base address, just like for the tag; | |
6706 | see ada_tag_name for more details. We do not print the error | |
6707 | message for the same reason. */ | |
6708 | ||
492d29ea | 6709 | TRY |
b50d69b5 JG |
6710 | { |
6711 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6712 | } | |
6713 | ||
492d29ea PA |
6714 | CATCH (e, RETURN_MASK_ERROR) |
6715 | { | |
6716 | return obj; | |
6717 | } | |
6718 | END_CATCH | |
b50d69b5 JG |
6719 | |
6720 | /* If offset is null, nothing to do. */ | |
6721 | ||
6722 | if (offset_to_top == 0) | |
6723 | return obj; | |
6724 | ||
6725 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6726 | is not quite clear from the documentation. So do nothing for | |
6727 | now. */ | |
6728 | ||
6729 | if (offset_to_top == -1) | |
6730 | return obj; | |
6731 | ||
6732 | base_address = value_address (obj) - offset_to_top; | |
6733 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6734 | ||
6735 | /* Make sure that we have a proper tag at the new address. | |
6736 | Otherwise, offset_to_top is bogus (which can happen when | |
6737 | the object is not initialized yet). */ | |
6738 | ||
6739 | if (!tag) | |
6740 | return obj; | |
6741 | ||
6742 | obj_type = type_from_tag (tag); | |
6743 | ||
6744 | if (!obj_type) | |
6745 | return obj; | |
6746 | ||
6747 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6748 | } | |
6749 | ||
1b611343 JB |
6750 | /* Return the "ada__tags__type_specific_data" type. */ |
6751 | ||
6752 | static struct type * | |
6753 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6754 | { |
1b611343 | 6755 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6756 | |
1b611343 JB |
6757 | if (data->tsd_type == 0) |
6758 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6759 | return data->tsd_type; | |
6760 | } | |
529cad9c | 6761 | |
1b611343 JB |
6762 | /* Return the TSD (type-specific data) associated to the given TAG. |
6763 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6764 | |
1b611343 | 6765 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6766 | |
1b611343 JB |
6767 | static struct value * |
6768 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6769 | { |
4c4b4cd2 | 6770 | struct value *val; |
1b611343 | 6771 | struct type *type; |
5b4ee69b | 6772 | |
1b611343 JB |
6773 | /* First option: The TSD is simply stored as a field of our TAG. |
6774 | Only older versions of GNAT would use this format, but we have | |
6775 | to test it first, because there are no visible markers for | |
6776 | the current approach except the absence of that field. */ | |
529cad9c | 6777 | |
1b611343 JB |
6778 | val = ada_value_struct_elt (tag, "tsd", 1); |
6779 | if (val) | |
6780 | return val; | |
e802dbe0 | 6781 | |
1b611343 JB |
6782 | /* Try the second representation for the dispatch table (in which |
6783 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6784 | and instead the tsd pointer is stored just before the dispatch | |
6785 | table. */ | |
e802dbe0 | 6786 | |
1b611343 JB |
6787 | type = ada_get_tsd_type (current_inferior()); |
6788 | if (type == NULL) | |
6789 | return NULL; | |
6790 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6791 | val = value_cast (type, tag); | |
6792 | if (val == NULL) | |
6793 | return NULL; | |
6794 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6795 | } |
6796 | ||
1b611343 JB |
6797 | /* Given the TSD of a tag (type-specific data), return a string |
6798 | containing the name of the associated type. | |
6799 | ||
6800 | The returned value is good until the next call. May return NULL | |
6801 | if we are unable to determine the tag name. */ | |
6802 | ||
6803 | static char * | |
6804 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6805 | { |
529cad9c PH |
6806 | static char name[1024]; |
6807 | char *p; | |
1b611343 | 6808 | struct value *val; |
529cad9c | 6809 | |
1b611343 | 6810 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6811 | if (val == NULL) |
1b611343 | 6812 | return NULL; |
4c4b4cd2 PH |
6813 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6814 | for (p = name; *p != '\0'; p += 1) | |
6815 | if (isalpha (*p)) | |
6816 | *p = tolower (*p); | |
1b611343 | 6817 | return name; |
4c4b4cd2 PH |
6818 | } |
6819 | ||
6820 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6821 | a C string. |
6822 | ||
6823 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6824 | determine the name of that tag. The result is good until the next | |
6825 | call. */ | |
4c4b4cd2 PH |
6826 | |
6827 | const char * | |
6828 | ada_tag_name (struct value *tag) | |
6829 | { | |
1b611343 | 6830 | char *name = NULL; |
5b4ee69b | 6831 | |
df407dfe | 6832 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6833 | return NULL; |
1b611343 JB |
6834 | |
6835 | /* It is perfectly possible that an exception be raised while trying | |
6836 | to determine the TAG's name, even under normal circumstances: | |
6837 | The associated variable may be uninitialized or corrupted, for | |
6838 | instance. We do not let any exception propagate past this point. | |
6839 | instead we return NULL. | |
6840 | ||
6841 | We also do not print the error message either (which often is very | |
6842 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6843 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6844 | TRY |
1b611343 JB |
6845 | { |
6846 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6847 | ||
6848 | if (tsd != NULL) | |
6849 | name = ada_tag_name_from_tsd (tsd); | |
6850 | } | |
492d29ea PA |
6851 | CATCH (e, RETURN_MASK_ERROR) |
6852 | { | |
6853 | } | |
6854 | END_CATCH | |
1b611343 JB |
6855 | |
6856 | return name; | |
4c4b4cd2 PH |
6857 | } |
6858 | ||
6859 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6860 | |
d2e4a39e | 6861 | struct type * |
ebf56fd3 | 6862 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6863 | { |
6864 | int i; | |
6865 | ||
61ee279c | 6866 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6867 | |
6868 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6869 | return NULL; | |
6870 | ||
6871 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6872 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6873 | { |
6874 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6875 | ||
6876 | /* If the _parent field is a pointer, then dereference it. */ | |
6877 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6878 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6879 | /* If there is a parallel XVS type, get the actual base type. */ | |
6880 | parent_type = ada_get_base_type (parent_type); | |
6881 | ||
6882 | return ada_check_typedef (parent_type); | |
6883 | } | |
14f9c5c9 AS |
6884 | |
6885 | return NULL; | |
6886 | } | |
6887 | ||
4c4b4cd2 PH |
6888 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6889 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6890 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6891 | |
6892 | int | |
ebf56fd3 | 6893 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6894 | { |
61ee279c | 6895 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6896 | |
4c4b4cd2 | 6897 | return (name != NULL |
61012eef GB |
6898 | && (startswith (name, "PARENT") |
6899 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6900 | } |
6901 | ||
4c4b4cd2 | 6902 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6903 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6904 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6905 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6906 | structures. */ |
14f9c5c9 AS |
6907 | |
6908 | int | |
ebf56fd3 | 6909 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6910 | { |
d2e4a39e | 6911 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6912 | |
d2e4a39e | 6913 | return (name != NULL |
61012eef | 6914 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6915 | || strcmp (name, "REP") == 0 |
61012eef | 6916 | || startswith (name, "_parent") |
4c4b4cd2 | 6917 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6918 | } |
6919 | ||
4c4b4cd2 PH |
6920 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6921 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6922 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6923 | |
6924 | int | |
ebf56fd3 | 6925 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6926 | { |
d2e4a39e | 6927 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6928 | |
14f9c5c9 | 6929 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6930 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6931 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6932 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6933 | } |
6934 | ||
6935 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6936 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6937 | returns the type of the controlling discriminant for the variant. |
6938 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6939 | |
d2e4a39e | 6940 | struct type * |
ebf56fd3 | 6941 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6942 | { |
d2e4a39e | 6943 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6944 | |
7c964f07 | 6945 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6946 | } |
6947 | ||
4c4b4cd2 | 6948 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6949 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6950 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6951 | |
6952 | int | |
ebf56fd3 | 6953 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6954 | { |
d2e4a39e | 6955 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6956 | |
14f9c5c9 AS |
6957 | return (name != NULL && name[0] == 'O'); |
6958 | } | |
6959 | ||
6960 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6961 | returns the name of the discriminant controlling the variant. |
6962 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6963 | |
d2e4a39e | 6964 | char * |
ebf56fd3 | 6965 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6966 | { |
d2e4a39e | 6967 | static char *result = NULL; |
14f9c5c9 | 6968 | static size_t result_len = 0; |
d2e4a39e AS |
6969 | struct type *type; |
6970 | const char *name; | |
6971 | const char *discrim_end; | |
6972 | const char *discrim_start; | |
14f9c5c9 AS |
6973 | |
6974 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6975 | type = TYPE_TARGET_TYPE (type0); | |
6976 | else | |
6977 | type = type0; | |
6978 | ||
6979 | name = ada_type_name (type); | |
6980 | ||
6981 | if (name == NULL || name[0] == '\000') | |
6982 | return ""; | |
6983 | ||
6984 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6985 | discrim_end -= 1) | |
6986 | { | |
61012eef | 6987 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 6988 | break; |
14f9c5c9 AS |
6989 | } |
6990 | if (discrim_end == name) | |
6991 | return ""; | |
6992 | ||
d2e4a39e | 6993 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6994 | discrim_start -= 1) |
6995 | { | |
d2e4a39e | 6996 | if (discrim_start == name + 1) |
4c4b4cd2 | 6997 | return ""; |
76a01679 | 6998 | if ((discrim_start > name + 3 |
61012eef | 6999 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7000 | || discrim_start[-1] == '.') |
7001 | break; | |
14f9c5c9 AS |
7002 | } |
7003 | ||
7004 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7005 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7006 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7007 | return result; |
7008 | } | |
7009 | ||
4c4b4cd2 PH |
7010 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7011 | Put the position of the character just past the number scanned in | |
7012 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7013 | Return 1 if there was a valid number at the given position, and 0 | |
7014 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7015 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7016 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7017 | |
7018 | int | |
d2e4a39e | 7019 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7020 | { |
7021 | ULONGEST RU; | |
7022 | ||
d2e4a39e | 7023 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7024 | return 0; |
7025 | ||
4c4b4cd2 | 7026 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7027 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7028 | LONGEST. */ |
14f9c5c9 AS |
7029 | RU = 0; |
7030 | while (isdigit (str[k])) | |
7031 | { | |
d2e4a39e | 7032 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7033 | k += 1; |
7034 | } | |
7035 | ||
d2e4a39e | 7036 | if (str[k] == 'm') |
14f9c5c9 AS |
7037 | { |
7038 | if (R != NULL) | |
4c4b4cd2 | 7039 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7040 | k += 1; |
7041 | } | |
7042 | else if (R != NULL) | |
7043 | *R = (LONGEST) RU; | |
7044 | ||
4c4b4cd2 | 7045 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7046 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7047 | number representable as a LONGEST (although either would probably work | |
7048 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7049 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7050 | |
7051 | if (new_k != NULL) | |
7052 | *new_k = k; | |
7053 | return 1; | |
7054 | } | |
7055 | ||
4c4b4cd2 PH |
7056 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7057 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7058 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7059 | |
d2e4a39e | 7060 | int |
ebf56fd3 | 7061 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7062 | { |
d2e4a39e | 7063 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7064 | int p; |
7065 | ||
7066 | p = 0; | |
7067 | while (1) | |
7068 | { | |
d2e4a39e | 7069 | switch (name[p]) |
4c4b4cd2 PH |
7070 | { |
7071 | case '\0': | |
7072 | return 0; | |
7073 | case 'S': | |
7074 | { | |
7075 | LONGEST W; | |
5b4ee69b | 7076 | |
4c4b4cd2 PH |
7077 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7078 | return 0; | |
7079 | if (val == W) | |
7080 | return 1; | |
7081 | break; | |
7082 | } | |
7083 | case 'R': | |
7084 | { | |
7085 | LONGEST L, U; | |
5b4ee69b | 7086 | |
4c4b4cd2 PH |
7087 | if (!ada_scan_number (name, p + 1, &L, &p) |
7088 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7089 | return 0; | |
7090 | if (val >= L && val <= U) | |
7091 | return 1; | |
7092 | break; | |
7093 | } | |
7094 | case 'O': | |
7095 | return 1; | |
7096 | default: | |
7097 | return 0; | |
7098 | } | |
7099 | } | |
7100 | } | |
7101 | ||
0963b4bd | 7102 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7103 | |
7104 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7105 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7106 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7107 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7108 | |
4c4b4cd2 | 7109 | static struct value * |
d2e4a39e | 7110 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7111 | struct type *arg_type) |
14f9c5c9 | 7112 | { |
14f9c5c9 AS |
7113 | struct type *type; |
7114 | ||
61ee279c | 7115 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7116 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7117 | ||
4c4b4cd2 | 7118 | /* Handle packed fields. */ |
14f9c5c9 AS |
7119 | |
7120 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7121 | { | |
7122 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7123 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7124 | |
0fd88904 | 7125 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7126 | offset + bit_pos / 8, |
7127 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7128 | } |
7129 | else | |
7130 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7131 | } | |
7132 | ||
52ce6436 PH |
7133 | /* Find field with name NAME in object of type TYPE. If found, |
7134 | set the following for each argument that is non-null: | |
7135 | - *FIELD_TYPE_P to the field's type; | |
7136 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7137 | an object of that type; | |
7138 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7139 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7140 | 0 otherwise; | |
7141 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7142 | fields up to but not including the desired field, or by the total | |
7143 | number of fields if not found. A NULL value of NAME never | |
7144 | matches; the function just counts visible fields in this case. | |
7145 | ||
0963b4bd | 7146 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7147 | |
4c4b4cd2 | 7148 | static int |
0d5cff50 | 7149 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7150 | struct type **field_type_p, |
52ce6436 PH |
7151 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7152 | int *index_p) | |
4c4b4cd2 PH |
7153 | { |
7154 | int i; | |
7155 | ||
61ee279c | 7156 | type = ada_check_typedef (type); |
76a01679 | 7157 | |
52ce6436 PH |
7158 | if (field_type_p != NULL) |
7159 | *field_type_p = NULL; | |
7160 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7161 | *byte_offset_p = 0; |
52ce6436 PH |
7162 | if (bit_offset_p != NULL) |
7163 | *bit_offset_p = 0; | |
7164 | if (bit_size_p != NULL) | |
7165 | *bit_size_p = 0; | |
7166 | ||
7167 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7168 | { |
7169 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7170 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7171 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7172 | |
4c4b4cd2 PH |
7173 | if (t_field_name == NULL) |
7174 | continue; | |
7175 | ||
52ce6436 | 7176 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7177 | { |
7178 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7179 | |
52ce6436 PH |
7180 | if (field_type_p != NULL) |
7181 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7182 | if (byte_offset_p != NULL) | |
7183 | *byte_offset_p = fld_offset; | |
7184 | if (bit_offset_p != NULL) | |
7185 | *bit_offset_p = bit_pos % 8; | |
7186 | if (bit_size_p != NULL) | |
7187 | *bit_size_p = bit_size; | |
76a01679 JB |
7188 | return 1; |
7189 | } | |
4c4b4cd2 PH |
7190 | else if (ada_is_wrapper_field (type, i)) |
7191 | { | |
52ce6436 PH |
7192 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7193 | field_type_p, byte_offset_p, bit_offset_p, | |
7194 | bit_size_p, index_p)) | |
76a01679 JB |
7195 | return 1; |
7196 | } | |
4c4b4cd2 PH |
7197 | else if (ada_is_variant_part (type, i)) |
7198 | { | |
52ce6436 PH |
7199 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7200 | fixed type?? */ | |
4c4b4cd2 | 7201 | int j; |
52ce6436 PH |
7202 | struct type *field_type |
7203 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7204 | |
52ce6436 | 7205 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7206 | { |
76a01679 JB |
7207 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7208 | fld_offset | |
7209 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7210 | field_type_p, byte_offset_p, | |
52ce6436 | 7211 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7212 | return 1; |
4c4b4cd2 PH |
7213 | } |
7214 | } | |
52ce6436 PH |
7215 | else if (index_p != NULL) |
7216 | *index_p += 1; | |
4c4b4cd2 PH |
7217 | } |
7218 | return 0; | |
7219 | } | |
7220 | ||
0963b4bd | 7221 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7222 | |
52ce6436 PH |
7223 | static int |
7224 | num_visible_fields (struct type *type) | |
7225 | { | |
7226 | int n; | |
5b4ee69b | 7227 | |
52ce6436 PH |
7228 | n = 0; |
7229 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7230 | return n; | |
7231 | } | |
14f9c5c9 | 7232 | |
4c4b4cd2 | 7233 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7234 | and search in it assuming it has (class) type TYPE. |
7235 | If found, return value, else return NULL. | |
7236 | ||
4c4b4cd2 | 7237 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7238 | |
4c4b4cd2 | 7239 | static struct value * |
108d56a4 | 7240 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7241 | struct type *type) |
14f9c5c9 AS |
7242 | { |
7243 | int i; | |
14f9c5c9 | 7244 | |
5b4ee69b | 7245 | type = ada_check_typedef (type); |
52ce6436 | 7246 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7247 | { |
0d5cff50 | 7248 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7249 | |
7250 | if (t_field_name == NULL) | |
4c4b4cd2 | 7251 | continue; |
14f9c5c9 AS |
7252 | |
7253 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7254 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7255 | |
7256 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7257 | { |
0963b4bd | 7258 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7259 | ada_search_struct_field (name, arg, |
7260 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7261 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7262 | |
4c4b4cd2 PH |
7263 | if (v != NULL) |
7264 | return v; | |
7265 | } | |
14f9c5c9 AS |
7266 | |
7267 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7268 | { |
0963b4bd | 7269 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7270 | int j; |
5b4ee69b MS |
7271 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7272 | i)); | |
4c4b4cd2 PH |
7273 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7274 | ||
52ce6436 | 7275 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7276 | { |
0963b4bd MS |
7277 | struct value *v = ada_search_struct_field /* Force line |
7278 | break. */ | |
06d5cf63 JB |
7279 | (name, arg, |
7280 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7281 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7282 | |
4c4b4cd2 PH |
7283 | if (v != NULL) |
7284 | return v; | |
7285 | } | |
7286 | } | |
14f9c5c9 AS |
7287 | } |
7288 | return NULL; | |
7289 | } | |
d2e4a39e | 7290 | |
52ce6436 PH |
7291 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7292 | int, struct type *); | |
7293 | ||
7294 | ||
7295 | /* Return field #INDEX in ARG, where the index is that returned by | |
7296 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7297 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7298 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7299 | |
7300 | static struct value * | |
7301 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7302 | struct type *type) | |
7303 | { | |
7304 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7305 | } | |
7306 | ||
7307 | ||
7308 | /* Auxiliary function for ada_index_struct_field. Like | |
7309 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7310 | * *INDEX_P. */ |
52ce6436 PH |
7311 | |
7312 | static struct value * | |
7313 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7314 | struct type *type) | |
7315 | { | |
7316 | int i; | |
7317 | type = ada_check_typedef (type); | |
7318 | ||
7319 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7320 | { | |
7321 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7322 | continue; | |
7323 | else if (ada_is_wrapper_field (type, i)) | |
7324 | { | |
0963b4bd | 7325 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7326 | ada_index_struct_field_1 (index_p, arg, |
7327 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7328 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7329 | |
52ce6436 PH |
7330 | if (v != NULL) |
7331 | return v; | |
7332 | } | |
7333 | ||
7334 | else if (ada_is_variant_part (type, i)) | |
7335 | { | |
7336 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7337 | find_struct_field. */ |
52ce6436 PH |
7338 | error (_("Cannot assign this kind of variant record")); |
7339 | } | |
7340 | else if (*index_p == 0) | |
7341 | return ada_value_primitive_field (arg, offset, i, type); | |
7342 | else | |
7343 | *index_p -= 1; | |
7344 | } | |
7345 | return NULL; | |
7346 | } | |
7347 | ||
4c4b4cd2 PH |
7348 | /* Given ARG, a value of type (pointer or reference to a)* |
7349 | structure/union, extract the component named NAME from the ultimate | |
7350 | target structure/union and return it as a value with its | |
f5938064 | 7351 | appropriate type. |
14f9c5c9 | 7352 | |
4c4b4cd2 PH |
7353 | The routine searches for NAME among all members of the structure itself |
7354 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7355 | (e.g., '_parent'). |
7356 | ||
03ee6b2e PH |
7357 | If NO_ERR, then simply return NULL in case of error, rather than |
7358 | calling error. */ | |
14f9c5c9 | 7359 | |
d2e4a39e | 7360 | struct value * |
03ee6b2e | 7361 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 7362 | { |
4c4b4cd2 | 7363 | struct type *t, *t1; |
d2e4a39e | 7364 | struct value *v; |
14f9c5c9 | 7365 | |
4c4b4cd2 | 7366 | v = NULL; |
df407dfe | 7367 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7368 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7369 | { | |
7370 | t1 = TYPE_TARGET_TYPE (t); | |
7371 | if (t1 == NULL) | |
03ee6b2e | 7372 | goto BadValue; |
61ee279c | 7373 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7374 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7375 | { |
994b9211 | 7376 | arg = coerce_ref (arg); |
76a01679 JB |
7377 | t = t1; |
7378 | } | |
4c4b4cd2 | 7379 | } |
14f9c5c9 | 7380 | |
4c4b4cd2 PH |
7381 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7382 | { | |
7383 | t1 = TYPE_TARGET_TYPE (t); | |
7384 | if (t1 == NULL) | |
03ee6b2e | 7385 | goto BadValue; |
61ee279c | 7386 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7387 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7388 | { |
7389 | arg = value_ind (arg); | |
7390 | t = t1; | |
7391 | } | |
4c4b4cd2 | 7392 | else |
76a01679 | 7393 | break; |
4c4b4cd2 | 7394 | } |
14f9c5c9 | 7395 | |
4c4b4cd2 | 7396 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7397 | goto BadValue; |
14f9c5c9 | 7398 | |
4c4b4cd2 PH |
7399 | if (t1 == t) |
7400 | v = ada_search_struct_field (name, arg, 0, t); | |
7401 | else | |
7402 | { | |
7403 | int bit_offset, bit_size, byte_offset; | |
7404 | struct type *field_type; | |
7405 | CORE_ADDR address; | |
7406 | ||
76a01679 | 7407 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7408 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7409 | else |
b50d69b5 | 7410 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7411 | |
1ed6ede0 | 7412 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7413 | if (find_struct_field (name, t1, 0, |
7414 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7415 | &bit_size, NULL)) |
76a01679 JB |
7416 | { |
7417 | if (bit_size != 0) | |
7418 | { | |
714e53ab PH |
7419 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7420 | arg = ada_coerce_ref (arg); | |
7421 | else | |
7422 | arg = ada_value_ind (arg); | |
76a01679 JB |
7423 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7424 | bit_offset, bit_size, | |
7425 | field_type); | |
7426 | } | |
7427 | else | |
f5938064 | 7428 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7429 | } |
7430 | } | |
7431 | ||
03ee6b2e PH |
7432 | if (v != NULL || no_err) |
7433 | return v; | |
7434 | else | |
323e0a4a | 7435 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7436 | |
03ee6b2e PH |
7437 | BadValue: |
7438 | if (no_err) | |
7439 | return NULL; | |
7440 | else | |
0963b4bd MS |
7441 | error (_("Attempt to extract a component of " |
7442 | "a value that is not a record.")); | |
14f9c5c9 AS |
7443 | } |
7444 | ||
7445 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
7446 | If DISPP is non-null, add its byte displacement from the beginning of a |
7447 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7448 | work for packed fields). |
7449 | ||
7450 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7451 | followed by "___". |
14f9c5c9 | 7452 | |
0963b4bd | 7453 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7454 | be a (pointer or reference)+ to a struct or union, and the |
7455 | ultimate target type will be searched. | |
14f9c5c9 AS |
7456 | |
7457 | Looks recursively into variant clauses and parent types. | |
7458 | ||
4c4b4cd2 PH |
7459 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7460 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7461 | |
4c4b4cd2 | 7462 | static struct type * |
76a01679 JB |
7463 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
7464 | int noerr, int *dispp) | |
14f9c5c9 AS |
7465 | { |
7466 | int i; | |
7467 | ||
7468 | if (name == NULL) | |
7469 | goto BadName; | |
7470 | ||
76a01679 | 7471 | if (refok && type != NULL) |
4c4b4cd2 PH |
7472 | while (1) |
7473 | { | |
61ee279c | 7474 | type = ada_check_typedef (type); |
76a01679 JB |
7475 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7476 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7477 | break; | |
7478 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7479 | } |
14f9c5c9 | 7480 | |
76a01679 | 7481 | if (type == NULL |
1265e4aa JB |
7482 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7483 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7484 | { |
4c4b4cd2 | 7485 | if (noerr) |
76a01679 | 7486 | return NULL; |
4c4b4cd2 | 7487 | else |
76a01679 JB |
7488 | { |
7489 | target_terminal_ours (); | |
7490 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7491 | if (type == NULL) |
7492 | error (_("Type (null) is not a structure or union type")); | |
7493 | else | |
7494 | { | |
7495 | /* XXX: type_sprint */ | |
7496 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7497 | type_print (type, "", gdb_stderr, -1); | |
7498 | error (_(" is not a structure or union type")); | |
7499 | } | |
76a01679 | 7500 | } |
14f9c5c9 AS |
7501 | } |
7502 | ||
7503 | type = to_static_fixed_type (type); | |
7504 | ||
7505 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7506 | { | |
0d5cff50 | 7507 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7508 | struct type *t; |
7509 | int disp; | |
d2e4a39e | 7510 | |
14f9c5c9 | 7511 | if (t_field_name == NULL) |
4c4b4cd2 | 7512 | continue; |
14f9c5c9 AS |
7513 | |
7514 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7515 | { |
7516 | if (dispp != NULL) | |
7517 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
460efde1 | 7518 | return TYPE_FIELD_TYPE (type, i); |
4c4b4cd2 | 7519 | } |
14f9c5c9 AS |
7520 | |
7521 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7522 | { |
7523 | disp = 0; | |
7524 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7525 | 0, 1, &disp); | |
7526 | if (t != NULL) | |
7527 | { | |
7528 | if (dispp != NULL) | |
7529 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7530 | return t; | |
7531 | } | |
7532 | } | |
14f9c5c9 AS |
7533 | |
7534 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7535 | { |
7536 | int j; | |
5b4ee69b MS |
7537 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7538 | i)); | |
4c4b4cd2 PH |
7539 | |
7540 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7541 | { | |
b1f33ddd JB |
7542 | /* FIXME pnh 2008/01/26: We check for a field that is |
7543 | NOT wrapped in a struct, since the compiler sometimes | |
7544 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7545 | if the compiler changes this practice. */ |
0d5cff50 | 7546 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7547 | disp = 0; |
b1f33ddd JB |
7548 | if (v_field_name != NULL |
7549 | && field_name_match (v_field_name, name)) | |
460efde1 | 7550 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7551 | else |
0963b4bd MS |
7552 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7553 | j), | |
b1f33ddd JB |
7554 | name, 0, 1, &disp); |
7555 | ||
4c4b4cd2 PH |
7556 | if (t != NULL) |
7557 | { | |
7558 | if (dispp != NULL) | |
7559 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7560 | return t; | |
7561 | } | |
7562 | } | |
7563 | } | |
14f9c5c9 AS |
7564 | |
7565 | } | |
7566 | ||
7567 | BadName: | |
d2e4a39e | 7568 | if (!noerr) |
14f9c5c9 AS |
7569 | { |
7570 | target_terminal_ours (); | |
7571 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7572 | if (name == NULL) |
7573 | { | |
7574 | /* XXX: type_sprint */ | |
7575 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7576 | type_print (type, "", gdb_stderr, -1); | |
7577 | error (_(" has no component named <null>")); | |
7578 | } | |
7579 | else | |
7580 | { | |
7581 | /* XXX: type_sprint */ | |
7582 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7583 | type_print (type, "", gdb_stderr, -1); | |
7584 | error (_(" has no component named %s"), name); | |
7585 | } | |
14f9c5c9 AS |
7586 | } |
7587 | ||
7588 | return NULL; | |
7589 | } | |
7590 | ||
b1f33ddd JB |
7591 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7592 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7593 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7594 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7595 | |
7596 | static int | |
7597 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7598 | { | |
7599 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7600 | |
b1f33ddd JB |
7601 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7602 | == NULL); | |
7603 | } | |
7604 | ||
7605 | ||
14f9c5c9 AS |
7606 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7607 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7608 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7609 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7610 | |
d2e4a39e | 7611 | int |
ebf56fd3 | 7612 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7613 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7614 | { |
7615 | int others_clause; | |
7616 | int i; | |
d2e4a39e | 7617 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7618 | struct value *outer; |
7619 | struct value *discrim; | |
14f9c5c9 AS |
7620 | LONGEST discrim_val; |
7621 | ||
012370f6 TT |
7622 | /* Using plain value_from_contents_and_address here causes problems |
7623 | because we will end up trying to resolve a type that is currently | |
7624 | being constructed. */ | |
7625 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7626 | outer_valaddr, 0); | |
0c281816 JB |
7627 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7628 | if (discrim == NULL) | |
14f9c5c9 | 7629 | return -1; |
0c281816 | 7630 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7631 | |
7632 | others_clause = -1; | |
7633 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7634 | { | |
7635 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7636 | others_clause = i; |
14f9c5c9 | 7637 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7638 | return i; |
14f9c5c9 AS |
7639 | } |
7640 | ||
7641 | return others_clause; | |
7642 | } | |
d2e4a39e | 7643 | \f |
14f9c5c9 AS |
7644 | |
7645 | ||
4c4b4cd2 | 7646 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7647 | |
7648 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7649 | (i.e., a size that is not statically recorded in the debugging | |
7650 | data) does not accurately reflect the size or layout of the value. | |
7651 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7652 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7653 | |
7654 | /* There is a subtle and tricky problem here. In general, we cannot | |
7655 | determine the size of dynamic records without its data. However, | |
7656 | the 'struct value' data structure, which GDB uses to represent | |
7657 | quantities in the inferior process (the target), requires the size | |
7658 | of the type at the time of its allocation in order to reserve space | |
7659 | for GDB's internal copy of the data. That's why the | |
7660 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7661 | rather than struct value*s. |
14f9c5c9 AS |
7662 | |
7663 | However, GDB's internal history variables ($1, $2, etc.) are | |
7664 | struct value*s containing internal copies of the data that are not, in | |
7665 | general, the same as the data at their corresponding addresses in | |
7666 | the target. Fortunately, the types we give to these values are all | |
7667 | conventional, fixed-size types (as per the strategy described | |
7668 | above), so that we don't usually have to perform the | |
7669 | 'to_fixed_xxx_type' conversions to look at their values. | |
7670 | Unfortunately, there is one exception: if one of the internal | |
7671 | history variables is an array whose elements are unconstrained | |
7672 | records, then we will need to create distinct fixed types for each | |
7673 | element selected. */ | |
7674 | ||
7675 | /* The upshot of all of this is that many routines take a (type, host | |
7676 | address, target address) triple as arguments to represent a value. | |
7677 | The host address, if non-null, is supposed to contain an internal | |
7678 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7679 | target at the target address. */ |
14f9c5c9 AS |
7680 | |
7681 | /* Assuming that VAL0 represents a pointer value, the result of | |
7682 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7683 | dynamic-sized types. */ |
14f9c5c9 | 7684 | |
d2e4a39e AS |
7685 | struct value * |
7686 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7687 | { |
c48db5ca | 7688 | struct value *val = value_ind (val0); |
5b4ee69b | 7689 | |
b50d69b5 JG |
7690 | if (ada_is_tagged_type (value_type (val), 0)) |
7691 | val = ada_tag_value_at_base_address (val); | |
7692 | ||
4c4b4cd2 | 7693 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7694 | } |
7695 | ||
7696 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7697 | qualifiers on VAL0. */ |
7698 | ||
d2e4a39e AS |
7699 | static struct value * |
7700 | ada_coerce_ref (struct value *val0) | |
7701 | { | |
df407dfe | 7702 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7703 | { |
7704 | struct value *val = val0; | |
5b4ee69b | 7705 | |
994b9211 | 7706 | val = coerce_ref (val); |
b50d69b5 JG |
7707 | |
7708 | if (ada_is_tagged_type (value_type (val), 0)) | |
7709 | val = ada_tag_value_at_base_address (val); | |
7710 | ||
4c4b4cd2 | 7711 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7712 | } |
7713 | else | |
14f9c5c9 AS |
7714 | return val0; |
7715 | } | |
7716 | ||
7717 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7718 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7719 | |
7720 | static unsigned int | |
ebf56fd3 | 7721 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7722 | { |
7723 | return (off + alignment - 1) & ~(alignment - 1); | |
7724 | } | |
7725 | ||
4c4b4cd2 | 7726 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7727 | |
7728 | static unsigned int | |
ebf56fd3 | 7729 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7730 | { |
d2e4a39e | 7731 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7732 | int len; |
14f9c5c9 AS |
7733 | int align_offset; |
7734 | ||
64a1bf19 JB |
7735 | /* The field name should never be null, unless the debugging information |
7736 | is somehow malformed. In this case, we assume the field does not | |
7737 | require any alignment. */ | |
7738 | if (name == NULL) | |
7739 | return 1; | |
7740 | ||
7741 | len = strlen (name); | |
7742 | ||
4c4b4cd2 PH |
7743 | if (!isdigit (name[len - 1])) |
7744 | return 1; | |
14f9c5c9 | 7745 | |
d2e4a39e | 7746 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7747 | align_offset = len - 2; |
7748 | else | |
7749 | align_offset = len - 1; | |
7750 | ||
61012eef | 7751 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7752 | return TARGET_CHAR_BIT; |
7753 | ||
4c4b4cd2 PH |
7754 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7755 | } | |
7756 | ||
852dff6c | 7757 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7758 | |
852dff6c JB |
7759 | static struct symbol * |
7760 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7761 | { |
7762 | struct symbol *sym; | |
7763 | ||
7764 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7765 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7766 | return sym; |
7767 | ||
4186eb54 KS |
7768 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7769 | return sym; | |
14f9c5c9 AS |
7770 | } |
7771 | ||
dddfab26 UW |
7772 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7773 | solely for types defined by debug info, it will not search the GDB | |
7774 | primitive types. */ | |
4c4b4cd2 | 7775 | |
852dff6c | 7776 | static struct type * |
ebf56fd3 | 7777 | ada_find_any_type (const char *name) |
14f9c5c9 | 7778 | { |
852dff6c | 7779 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7780 | |
14f9c5c9 | 7781 | if (sym != NULL) |
dddfab26 | 7782 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7783 | |
dddfab26 | 7784 | return NULL; |
14f9c5c9 AS |
7785 | } |
7786 | ||
739593e0 JB |
7787 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7788 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7789 | symbol, in which case it is returned. Otherwise, this looks for | |
7790 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7791 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7792 | |
7793 | struct symbol * | |
270140bd | 7794 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7795 | { |
739593e0 | 7796 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7797 | struct symbol *sym; |
7798 | ||
739593e0 JB |
7799 | if (strstr (name, "___XR") != NULL) |
7800 | return name_sym; | |
7801 | ||
aeb5907d JB |
7802 | sym = find_old_style_renaming_symbol (name, block); |
7803 | ||
7804 | if (sym != NULL) | |
7805 | return sym; | |
7806 | ||
0963b4bd | 7807 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7808 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7809 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7810 | return sym; | |
7811 | else | |
7812 | return NULL; | |
7813 | } | |
7814 | ||
7815 | static struct symbol * | |
270140bd | 7816 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7817 | { |
7f0df278 | 7818 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7819 | char *rename; |
7820 | ||
7821 | if (function_sym != NULL) | |
7822 | { | |
7823 | /* If the symbol is defined inside a function, NAME is not fully | |
7824 | qualified. This means we need to prepend the function name | |
7825 | as well as adding the ``___XR'' suffix to build the name of | |
7826 | the associated renaming symbol. */ | |
0d5cff50 | 7827 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7828 | /* Function names sometimes contain suffixes used |
7829 | for instance to qualify nested subprograms. When building | |
7830 | the XR type name, we need to make sure that this suffix is | |
7831 | not included. So do not include any suffix in the function | |
7832 | name length below. */ | |
69fadcdf | 7833 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7834 | const int rename_len = function_name_len + 2 /* "__" */ |
7835 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7836 | |
529cad9c | 7837 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7838 | ada_remove_trailing_digits (function_name, &function_name_len); |
7839 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7840 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7841 | |
4c4b4cd2 PH |
7842 | /* Library-level functions are a special case, as GNAT adds |
7843 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7844 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7845 | have this prefix, so we need to skip this prefix if present. */ |
7846 | if (function_name_len > 5 /* "_ada_" */ | |
7847 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7848 | { |
7849 | function_name += 5; | |
7850 | function_name_len -= 5; | |
7851 | } | |
4c4b4cd2 PH |
7852 | |
7853 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7854 | strncpy (rename, function_name, function_name_len); |
7855 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7856 | "__%s___XR", name); | |
4c4b4cd2 PH |
7857 | } |
7858 | else | |
7859 | { | |
7860 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7861 | |
4c4b4cd2 | 7862 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7863 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7864 | } |
7865 | ||
852dff6c | 7866 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7867 | } |
7868 | ||
14f9c5c9 | 7869 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7870 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7871 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7872 | otherwise return 0. */ |
7873 | ||
14f9c5c9 | 7874 | int |
d2e4a39e | 7875 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7876 | { |
7877 | if (type1 == NULL) | |
7878 | return 1; | |
7879 | else if (type0 == NULL) | |
7880 | return 0; | |
7881 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7882 | return 1; | |
7883 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7884 | return 0; | |
4c4b4cd2 PH |
7885 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7886 | return 1; | |
ad82864c | 7887 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7888 | return 1; |
4c4b4cd2 PH |
7889 | else if (ada_is_array_descriptor_type (type0) |
7890 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7891 | return 1; |
aeb5907d JB |
7892 | else |
7893 | { | |
7894 | const char *type0_name = type_name_no_tag (type0); | |
7895 | const char *type1_name = type_name_no_tag (type1); | |
7896 | ||
7897 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7898 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7899 | return 1; | |
7900 | } | |
14f9c5c9 AS |
7901 | return 0; |
7902 | } | |
7903 | ||
7904 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7905 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7906 | ||
0d5cff50 | 7907 | const char * |
d2e4a39e | 7908 | ada_type_name (struct type *type) |
14f9c5c9 | 7909 | { |
d2e4a39e | 7910 | if (type == NULL) |
14f9c5c9 AS |
7911 | return NULL; |
7912 | else if (TYPE_NAME (type) != NULL) | |
7913 | return TYPE_NAME (type); | |
7914 | else | |
7915 | return TYPE_TAG_NAME (type); | |
7916 | } | |
7917 | ||
b4ba55a1 JB |
7918 | /* Search the list of "descriptive" types associated to TYPE for a type |
7919 | whose name is NAME. */ | |
7920 | ||
7921 | static struct type * | |
7922 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7923 | { | |
931e5bc3 | 7924 | struct type *result, *tmp; |
b4ba55a1 | 7925 | |
c6044dd1 JB |
7926 | if (ada_ignore_descriptive_types_p) |
7927 | return NULL; | |
7928 | ||
b4ba55a1 JB |
7929 | /* If there no descriptive-type info, then there is no parallel type |
7930 | to be found. */ | |
7931 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7932 | return NULL; | |
7933 | ||
7934 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7935 | while (result != NULL) | |
7936 | { | |
0d5cff50 | 7937 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7938 | |
7939 | if (result_name == NULL) | |
7940 | { | |
7941 | warning (_("unexpected null name on descriptive type")); | |
7942 | return NULL; | |
7943 | } | |
7944 | ||
7945 | /* If the names match, stop. */ | |
7946 | if (strcmp (result_name, name) == 0) | |
7947 | break; | |
7948 | ||
7949 | /* Otherwise, look at the next item on the list, if any. */ | |
7950 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
7951 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
7952 | else | |
7953 | tmp = NULL; | |
7954 | ||
7955 | /* If not found either, try after having resolved the typedef. */ | |
7956 | if (tmp != NULL) | |
7957 | result = tmp; | |
b4ba55a1 | 7958 | else |
931e5bc3 | 7959 | { |
f168693b | 7960 | result = check_typedef (result); |
931e5bc3 JG |
7961 | if (HAVE_GNAT_AUX_INFO (result)) |
7962 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7963 | else | |
7964 | result = NULL; | |
7965 | } | |
b4ba55a1 JB |
7966 | } |
7967 | ||
7968 | /* If we didn't find a match, see whether this is a packed array. With | |
7969 | older compilers, the descriptive type information is either absent or | |
7970 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7971 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7972 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7973 | return ada_find_any_type (name); |
7974 | ||
7975 | return result; | |
7976 | } | |
7977 | ||
7978 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7979 | descriptive type taken from the debugging information, if available, | |
7980 | and otherwise using the (slower) name-based method. */ | |
7981 | ||
7982 | static struct type * | |
7983 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7984 | { | |
7985 | struct type *result = NULL; | |
7986 | ||
7987 | if (HAVE_GNAT_AUX_INFO (type)) | |
7988 | result = find_parallel_type_by_descriptive_type (type, name); | |
7989 | else | |
7990 | result = ada_find_any_type (name); | |
7991 | ||
7992 | return result; | |
7993 | } | |
7994 | ||
7995 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7996 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7997 | |
d2e4a39e | 7998 | struct type * |
ebf56fd3 | 7999 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8000 | { |
0d5cff50 | 8001 | char *name; |
fe978cb0 | 8002 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8003 | int len; |
d2e4a39e | 8004 | |
fe978cb0 | 8005 | if (type_name == NULL) |
14f9c5c9 AS |
8006 | return NULL; |
8007 | ||
fe978cb0 | 8008 | len = strlen (type_name); |
14f9c5c9 | 8009 | |
b4ba55a1 | 8010 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8011 | |
fe978cb0 | 8012 | strcpy (name, type_name); |
14f9c5c9 AS |
8013 | strcpy (name + len, suffix); |
8014 | ||
b4ba55a1 | 8015 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8016 | } |
8017 | ||
14f9c5c9 | 8018 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8019 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8020 | |
d2e4a39e AS |
8021 | static struct type * |
8022 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8023 | { |
61ee279c | 8024 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8025 | |
8026 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8027 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8028 | return NULL; |
d2e4a39e | 8029 | else |
14f9c5c9 AS |
8030 | { |
8031 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8032 | |
4c4b4cd2 PH |
8033 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8034 | return type; | |
14f9c5c9 | 8035 | else |
4c4b4cd2 | 8036 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8037 | } |
8038 | } | |
8039 | ||
8040 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8041 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8042 | |
d2e4a39e AS |
8043 | static int |
8044 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8045 | { |
8046 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8047 | |
d2e4a39e | 8048 | return name != NULL |
14f9c5c9 AS |
8049 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8050 | && strstr (name, "___XVL") != NULL; | |
8051 | } | |
8052 | ||
4c4b4cd2 PH |
8053 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8054 | represent a variant record type. */ | |
14f9c5c9 | 8055 | |
d2e4a39e | 8056 | static int |
4c4b4cd2 | 8057 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8058 | { |
8059 | int f; | |
8060 | ||
4c4b4cd2 PH |
8061 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8062 | return -1; | |
8063 | ||
8064 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8065 | { | |
8066 | if (ada_is_variant_part (type, f)) | |
8067 | return f; | |
8068 | } | |
8069 | return -1; | |
14f9c5c9 AS |
8070 | } |
8071 | ||
4c4b4cd2 PH |
8072 | /* A record type with no fields. */ |
8073 | ||
d2e4a39e | 8074 | static struct type * |
fe978cb0 | 8075 | empty_record (struct type *templ) |
14f9c5c9 | 8076 | { |
fe978cb0 | 8077 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8078 | |
14f9c5c9 AS |
8079 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8080 | TYPE_NFIELDS (type) = 0; | |
8081 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8082 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
8083 | TYPE_NAME (type) = "<empty>"; |
8084 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
8085 | TYPE_LENGTH (type) = 0; |
8086 | return type; | |
8087 | } | |
8088 | ||
8089 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8090 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8091 | the beginning of this section) VAL according to GNAT conventions. | |
8092 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8093 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8094 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8095 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8096 | of the variant. |
14f9c5c9 | 8097 | |
4c4b4cd2 PH |
8098 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8099 | length are not statically known are discarded. As a consequence, | |
8100 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8101 | ||
8102 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8103 | variants occupy whole numbers of bytes. However, they need not be | |
8104 | byte-aligned. */ | |
8105 | ||
8106 | struct type * | |
10a2c479 | 8107 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8108 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8109 | CORE_ADDR address, struct value *dval0, |
8110 | int keep_dynamic_fields) | |
14f9c5c9 | 8111 | { |
d2e4a39e AS |
8112 | struct value *mark = value_mark (); |
8113 | struct value *dval; | |
8114 | struct type *rtype; | |
14f9c5c9 | 8115 | int nfields, bit_len; |
4c4b4cd2 | 8116 | int variant_field; |
14f9c5c9 | 8117 | long off; |
d94e4f4f | 8118 | int fld_bit_len; |
14f9c5c9 AS |
8119 | int f; |
8120 | ||
4c4b4cd2 PH |
8121 | /* Compute the number of fields in this record type that are going |
8122 | to be processed: unless keep_dynamic_fields, this includes only | |
8123 | fields whose position and length are static will be processed. */ | |
8124 | if (keep_dynamic_fields) | |
8125 | nfields = TYPE_NFIELDS (type); | |
8126 | else | |
8127 | { | |
8128 | nfields = 0; | |
76a01679 | 8129 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8130 | && !ada_is_variant_part (type, nfields) |
8131 | && !is_dynamic_field (type, nfields)) | |
8132 | nfields++; | |
8133 | } | |
8134 | ||
e9bb382b | 8135 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8136 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8137 | INIT_CPLUS_SPECIFIC (rtype); | |
8138 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8139 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8140 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8141 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8142 | TYPE_NAME (rtype) = ada_type_name (type); | |
8143 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8144 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8145 | |
d2e4a39e AS |
8146 | off = 0; |
8147 | bit_len = 0; | |
4c4b4cd2 PH |
8148 | variant_field = -1; |
8149 | ||
14f9c5c9 AS |
8150 | for (f = 0; f < nfields; f += 1) |
8151 | { | |
6c038f32 PH |
8152 | off = align_value (off, field_alignment (type, f)) |
8153 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8154 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8155 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8156 | |
d2e4a39e | 8157 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8158 | { |
8159 | variant_field = f; | |
d94e4f4f | 8160 | fld_bit_len = 0; |
4c4b4cd2 | 8161 | } |
14f9c5c9 | 8162 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8163 | { |
284614f0 JB |
8164 | const gdb_byte *field_valaddr = valaddr; |
8165 | CORE_ADDR field_address = address; | |
8166 | struct type *field_type = | |
8167 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8168 | ||
4c4b4cd2 | 8169 | if (dval0 == NULL) |
b5304971 JG |
8170 | { |
8171 | /* rtype's length is computed based on the run-time | |
8172 | value of discriminants. If the discriminants are not | |
8173 | initialized, the type size may be completely bogus and | |
0963b4bd | 8174 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8175 | size first before creating the value. */ |
c1b5a1a6 | 8176 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8177 | /* Using plain value_from_contents_and_address here |
8178 | causes problems because we will end up trying to | |
8179 | resolve a type that is currently being | |
8180 | constructed. */ | |
8181 | dval = value_from_contents_and_address_unresolved (rtype, | |
8182 | valaddr, | |
8183 | address); | |
9f1f738a | 8184 | rtype = value_type (dval); |
b5304971 | 8185 | } |
4c4b4cd2 PH |
8186 | else |
8187 | dval = dval0; | |
8188 | ||
284614f0 JB |
8189 | /* If the type referenced by this field is an aligner type, we need |
8190 | to unwrap that aligner type, because its size might not be set. | |
8191 | Keeping the aligner type would cause us to compute the wrong | |
8192 | size for this field, impacting the offset of the all the fields | |
8193 | that follow this one. */ | |
8194 | if (ada_is_aligner_type (field_type)) | |
8195 | { | |
8196 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8197 | ||
8198 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8199 | field_address = cond_offset_target (field_address, field_offset); | |
8200 | field_type = ada_aligned_type (field_type); | |
8201 | } | |
8202 | ||
8203 | field_valaddr = cond_offset_host (field_valaddr, | |
8204 | off / TARGET_CHAR_BIT); | |
8205 | field_address = cond_offset_target (field_address, | |
8206 | off / TARGET_CHAR_BIT); | |
8207 | ||
8208 | /* Get the fixed type of the field. Note that, in this case, | |
8209 | we do not want to get the real type out of the tag: if | |
8210 | the current field is the parent part of a tagged record, | |
8211 | we will get the tag of the object. Clearly wrong: the real | |
8212 | type of the parent is not the real type of the child. We | |
8213 | would end up in an infinite loop. */ | |
8214 | field_type = ada_get_base_type (field_type); | |
8215 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8216 | field_address, dval, 0); | |
27f2a97b JB |
8217 | /* If the field size is already larger than the maximum |
8218 | object size, then the record itself will necessarily | |
8219 | be larger than the maximum object size. We need to make | |
8220 | this check now, because the size might be so ridiculously | |
8221 | large (due to an uninitialized variable in the inferior) | |
8222 | that it would cause an overflow when adding it to the | |
8223 | record size. */ | |
c1b5a1a6 | 8224 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8225 | |
8226 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8227 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8228 | /* The multiplication can potentially overflow. But because |
8229 | the field length has been size-checked just above, and | |
8230 | assuming that the maximum size is a reasonable value, | |
8231 | an overflow should not happen in practice. So rather than | |
8232 | adding overflow recovery code to this already complex code, | |
8233 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8234 | fld_bit_len = |
4c4b4cd2 PH |
8235 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8236 | } | |
14f9c5c9 | 8237 | else |
4c4b4cd2 | 8238 | { |
5ded5331 JB |
8239 | /* Note: If this field's type is a typedef, it is important |
8240 | to preserve the typedef layer. | |
8241 | ||
8242 | Otherwise, we might be transforming a typedef to a fat | |
8243 | pointer (encoding a pointer to an unconstrained array), | |
8244 | into a basic fat pointer (encoding an unconstrained | |
8245 | array). As both types are implemented using the same | |
8246 | structure, the typedef is the only clue which allows us | |
8247 | to distinguish between the two options. Stripping it | |
8248 | would prevent us from printing this field appropriately. */ | |
8249 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8250 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8251 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8252 | fld_bit_len = |
4c4b4cd2 PH |
8253 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8254 | else | |
5ded5331 JB |
8255 | { |
8256 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8257 | ||
8258 | /* We need to be careful of typedefs when computing | |
8259 | the length of our field. If this is a typedef, | |
8260 | get the length of the target type, not the length | |
8261 | of the typedef. */ | |
8262 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8263 | field_type = ada_typedef_target_type (field_type); | |
8264 | ||
8265 | fld_bit_len = | |
8266 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8267 | } | |
4c4b4cd2 | 8268 | } |
14f9c5c9 | 8269 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8270 | bit_len = off + fld_bit_len; |
d94e4f4f | 8271 | off += fld_bit_len; |
4c4b4cd2 PH |
8272 | TYPE_LENGTH (rtype) = |
8273 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8274 | } |
4c4b4cd2 PH |
8275 | |
8276 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8277 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8278 | the record. This can happen in the presence of representation |
8279 | clauses. */ | |
8280 | if (variant_field >= 0) | |
8281 | { | |
8282 | struct type *branch_type; | |
8283 | ||
8284 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8285 | ||
8286 | if (dval0 == NULL) | |
9f1f738a | 8287 | { |
012370f6 TT |
8288 | /* Using plain value_from_contents_and_address here causes |
8289 | problems because we will end up trying to resolve a type | |
8290 | that is currently being constructed. */ | |
8291 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8292 | address); | |
9f1f738a SA |
8293 | rtype = value_type (dval); |
8294 | } | |
4c4b4cd2 PH |
8295 | else |
8296 | dval = dval0; | |
8297 | ||
8298 | branch_type = | |
8299 | to_fixed_variant_branch_type | |
8300 | (TYPE_FIELD_TYPE (type, variant_field), | |
8301 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8302 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8303 | if (branch_type == NULL) | |
8304 | { | |
8305 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8306 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8307 | TYPE_NFIELDS (rtype) -= 1; | |
8308 | } | |
8309 | else | |
8310 | { | |
8311 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8312 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8313 | fld_bit_len = | |
8314 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8315 | TARGET_CHAR_BIT; | |
8316 | if (off + fld_bit_len > bit_len) | |
8317 | bit_len = off + fld_bit_len; | |
8318 | TYPE_LENGTH (rtype) = | |
8319 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8320 | } | |
8321 | } | |
8322 | ||
714e53ab PH |
8323 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8324 | should contain the alignment of that record, which should be a strictly | |
8325 | positive value. If null or negative, then something is wrong, most | |
8326 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8327 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8328 | the current RTYPE length might be good enough for our purposes. */ |
8329 | if (TYPE_LENGTH (type) <= 0) | |
8330 | { | |
323e0a4a AC |
8331 | if (TYPE_NAME (rtype)) |
8332 | warning (_("Invalid type size for `%s' detected: %d."), | |
8333 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8334 | else | |
8335 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8336 | TYPE_LENGTH (type)); | |
714e53ab PH |
8337 | } |
8338 | else | |
8339 | { | |
8340 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8341 | TYPE_LENGTH (type)); | |
8342 | } | |
14f9c5c9 AS |
8343 | |
8344 | value_free_to_mark (mark); | |
d2e4a39e | 8345 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8346 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8347 | return rtype; |
8348 | } | |
8349 | ||
4c4b4cd2 PH |
8350 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8351 | of 1. */ | |
14f9c5c9 | 8352 | |
d2e4a39e | 8353 | static struct type * |
fc1a4b47 | 8354 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8355 | CORE_ADDR address, struct value *dval0) |
8356 | { | |
8357 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8358 | address, dval0, 1); | |
8359 | } | |
8360 | ||
8361 | /* An ordinary record type in which ___XVL-convention fields and | |
8362 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8363 | static approximations, containing all possible fields. Uses | |
8364 | no runtime values. Useless for use in values, but that's OK, | |
8365 | since the results are used only for type determinations. Works on both | |
8366 | structs and unions. Representation note: to save space, we memorize | |
8367 | the result of this function in the TYPE_TARGET_TYPE of the | |
8368 | template type. */ | |
8369 | ||
8370 | static struct type * | |
8371 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8372 | { |
8373 | struct type *type; | |
8374 | int nfields; | |
8375 | int f; | |
8376 | ||
9e195661 PMR |
8377 | /* No need no do anything if the input type is already fixed. */ |
8378 | if (TYPE_FIXED_INSTANCE (type0)) | |
8379 | return type0; | |
8380 | ||
8381 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8382 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8383 | return TYPE_TARGET_TYPE (type0); | |
8384 | ||
9e195661 | 8385 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8386 | type = type0; |
9e195661 PMR |
8387 | nfields = TYPE_NFIELDS (type0); |
8388 | ||
8389 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8390 | recompute all over next time. */ | |
8391 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8392 | |
8393 | for (f = 0; f < nfields; f += 1) | |
8394 | { | |
460efde1 | 8395 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8396 | struct type *new_type; |
14f9c5c9 | 8397 | |
4c4b4cd2 | 8398 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8399 | { |
8400 | field_type = ada_check_typedef (field_type); | |
8401 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8402 | } | |
14f9c5c9 | 8403 | else |
f192137b | 8404 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8405 | |
8406 | if (new_type != field_type) | |
8407 | { | |
8408 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8409 | if (type == type0) | |
8410 | { | |
8411 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8412 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8413 | INIT_CPLUS_SPECIFIC (type); | |
8414 | TYPE_NFIELDS (type) = nfields; | |
8415 | TYPE_FIELDS (type) = (struct field *) | |
8416 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8417 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8418 | sizeof (struct field) * nfields); | |
8419 | TYPE_NAME (type) = ada_type_name (type0); | |
8420 | TYPE_TAG_NAME (type) = NULL; | |
8421 | TYPE_FIXED_INSTANCE (type) = 1; | |
8422 | TYPE_LENGTH (type) = 0; | |
8423 | } | |
8424 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8425 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8426 | } | |
14f9c5c9 | 8427 | } |
9e195661 | 8428 | |
14f9c5c9 AS |
8429 | return type; |
8430 | } | |
8431 | ||
4c4b4cd2 | 8432 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8433 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8434 | which should be a non-dynamic-sized record, in which the variant | |
8435 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8436 | for discriminant values in DVAL0, which can be NULL if the record |
8437 | contains the necessary discriminant values. */ | |
8438 | ||
d2e4a39e | 8439 | static struct type * |
fc1a4b47 | 8440 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8441 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8442 | { |
d2e4a39e | 8443 | struct value *mark = value_mark (); |
4c4b4cd2 | 8444 | struct value *dval; |
d2e4a39e | 8445 | struct type *rtype; |
14f9c5c9 AS |
8446 | struct type *branch_type; |
8447 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8448 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8449 | |
4c4b4cd2 | 8450 | if (variant_field == -1) |
14f9c5c9 AS |
8451 | return type; |
8452 | ||
4c4b4cd2 | 8453 | if (dval0 == NULL) |
9f1f738a SA |
8454 | { |
8455 | dval = value_from_contents_and_address (type, valaddr, address); | |
8456 | type = value_type (dval); | |
8457 | } | |
4c4b4cd2 PH |
8458 | else |
8459 | dval = dval0; | |
8460 | ||
e9bb382b | 8461 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8462 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8463 | INIT_CPLUS_SPECIFIC (rtype); |
8464 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8465 | TYPE_FIELDS (rtype) = |
8466 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8467 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8468 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8469 | TYPE_NAME (rtype) = ada_type_name (type); |
8470 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8471 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8472 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8473 | ||
4c4b4cd2 PH |
8474 | branch_type = to_fixed_variant_branch_type |
8475 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8476 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8477 | TYPE_FIELD_BITPOS (type, variant_field) |
8478 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8479 | cond_offset_target (address, |
4c4b4cd2 PH |
8480 | TYPE_FIELD_BITPOS (type, variant_field) |
8481 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8482 | if (branch_type == NULL) |
14f9c5c9 | 8483 | { |
4c4b4cd2 | 8484 | int f; |
5b4ee69b | 8485 | |
4c4b4cd2 PH |
8486 | for (f = variant_field + 1; f < nfields; f += 1) |
8487 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8488 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8489 | } |
8490 | else | |
8491 | { | |
4c4b4cd2 PH |
8492 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8493 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8494 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8495 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8496 | } |
4c4b4cd2 | 8497 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8498 | |
4c4b4cd2 | 8499 | value_free_to_mark (mark); |
14f9c5c9 AS |
8500 | return rtype; |
8501 | } | |
8502 | ||
8503 | /* An ordinary record type (with fixed-length fields) that describes | |
8504 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8505 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8506 | should be in DVAL, a record value; it may be NULL if the object |
8507 | at ADDR itself contains any necessary discriminant values. | |
8508 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8509 | values from the record are needed. Except in the case that DVAL, | |
8510 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8511 | unchecked) is replaced by a particular branch of the variant. | |
8512 | ||
8513 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8514 | is questionable and may be removed. It can arise during the | |
8515 | processing of an unconstrained-array-of-record type where all the | |
8516 | variant branches have exactly the same size. This is because in | |
8517 | such cases, the compiler does not bother to use the XVS convention | |
8518 | when encoding the record. I am currently dubious of this | |
8519 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8520 | |
d2e4a39e | 8521 | static struct type * |
fc1a4b47 | 8522 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8523 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8524 | { |
d2e4a39e | 8525 | struct type *templ_type; |
14f9c5c9 | 8526 | |
876cecd0 | 8527 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8528 | return type0; |
8529 | ||
d2e4a39e | 8530 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8531 | |
8532 | if (templ_type != NULL) | |
8533 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8534 | else if (variant_field_index (type0) >= 0) |
8535 | { | |
8536 | if (dval == NULL && valaddr == NULL && address == 0) | |
8537 | return type0; | |
8538 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8539 | dval); | |
8540 | } | |
14f9c5c9 AS |
8541 | else |
8542 | { | |
876cecd0 | 8543 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8544 | return type0; |
8545 | } | |
8546 | ||
8547 | } | |
8548 | ||
8549 | /* An ordinary record type (with fixed-length fields) that describes | |
8550 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8551 | union type. Any necessary discriminants' values should be in DVAL, | |
8552 | a record value. That is, this routine selects the appropriate | |
8553 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8554 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8555 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8556 | |
d2e4a39e | 8557 | static struct type * |
fc1a4b47 | 8558 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8559 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8560 | { |
8561 | int which; | |
d2e4a39e AS |
8562 | struct type *templ_type; |
8563 | struct type *var_type; | |
14f9c5c9 AS |
8564 | |
8565 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8566 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8567 | else |
14f9c5c9 AS |
8568 | var_type = var_type0; |
8569 | ||
8570 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8571 | ||
8572 | if (templ_type != NULL) | |
8573 | var_type = templ_type; | |
8574 | ||
b1f33ddd JB |
8575 | if (is_unchecked_variant (var_type, value_type (dval))) |
8576 | return var_type0; | |
d2e4a39e AS |
8577 | which = |
8578 | ada_which_variant_applies (var_type, | |
0fd88904 | 8579 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8580 | |
8581 | if (which < 0) | |
e9bb382b | 8582 | return empty_record (var_type); |
14f9c5c9 | 8583 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8584 | return to_fixed_record_type |
d2e4a39e AS |
8585 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8586 | valaddr, address, dval); | |
4c4b4cd2 | 8587 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8588 | return |
8589 | to_fixed_record_type | |
8590 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8591 | else |
8592 | return TYPE_FIELD_TYPE (var_type, which); | |
8593 | } | |
8594 | ||
8908fca5 JB |
8595 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8596 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8597 | type encodings, only carries redundant information. */ | |
8598 | ||
8599 | static int | |
8600 | ada_is_redundant_range_encoding (struct type *range_type, | |
8601 | struct type *encoding_type) | |
8602 | { | |
8603 | struct type *fixed_range_type; | |
108d56a4 | 8604 | const char *bounds_str; |
8908fca5 JB |
8605 | int n; |
8606 | LONGEST lo, hi; | |
8607 | ||
8608 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8609 | ||
005e2509 JB |
8610 | if (TYPE_CODE (get_base_type (range_type)) |
8611 | != TYPE_CODE (get_base_type (encoding_type))) | |
8612 | { | |
8613 | /* The compiler probably used a simple base type to describe | |
8614 | the range type instead of the range's actual base type, | |
8615 | expecting us to get the real base type from the encoding | |
8616 | anyway. In this situation, the encoding cannot be ignored | |
8617 | as redundant. */ | |
8618 | return 0; | |
8619 | } | |
8620 | ||
8908fca5 JB |
8621 | if (is_dynamic_type (range_type)) |
8622 | return 0; | |
8623 | ||
8624 | if (TYPE_NAME (encoding_type) == NULL) | |
8625 | return 0; | |
8626 | ||
8627 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8628 | if (bounds_str == NULL) | |
8629 | return 0; | |
8630 | ||
8631 | n = 8; /* Skip "___XDLU_". */ | |
8632 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8633 | return 0; | |
8634 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8635 | return 0; | |
8636 | ||
8637 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8638 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8639 | return 0; | |
8640 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8641 | return 0; | |
8642 | ||
8643 | return 1; | |
8644 | } | |
8645 | ||
8646 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8647 | a type following the GNAT encoding for describing array type | |
8648 | indices, only carries redundant information. */ | |
8649 | ||
8650 | static int | |
8651 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8652 | struct type *desc_type) | |
8653 | { | |
8654 | struct type *this_layer = check_typedef (array_type); | |
8655 | int i; | |
8656 | ||
8657 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8658 | { | |
8659 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8660 | TYPE_FIELD_TYPE (desc_type, i))) | |
8661 | return 0; | |
8662 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8663 | } | |
8664 | ||
8665 | return 1; | |
8666 | } | |
8667 | ||
14f9c5c9 AS |
8668 | /* Assuming that TYPE0 is an array type describing the type of a value |
8669 | at ADDR, and that DVAL describes a record containing any | |
8670 | discriminants used in TYPE0, returns a type for the value that | |
8671 | contains no dynamic components (that is, no components whose sizes | |
8672 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8673 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8674 | varsize_limit. */ |
14f9c5c9 | 8675 | |
d2e4a39e AS |
8676 | static struct type * |
8677 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8678 | int ignore_too_big) |
14f9c5c9 | 8679 | { |
d2e4a39e AS |
8680 | struct type *index_type_desc; |
8681 | struct type *result; | |
ad82864c | 8682 | int constrained_packed_array_p; |
931e5bc3 | 8683 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8684 | |
b0dd7688 | 8685 | type0 = ada_check_typedef (type0); |
284614f0 | 8686 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8687 | return type0; |
14f9c5c9 | 8688 | |
ad82864c JB |
8689 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8690 | if (constrained_packed_array_p) | |
8691 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8692 | |
931e5bc3 JG |
8693 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8694 | ||
8695 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8696 | encoding suffixed with 'P' may still be generated. If so, | |
8697 | it should be used to find the XA type. */ | |
8698 | ||
8699 | if (index_type_desc == NULL) | |
8700 | { | |
1da0522e | 8701 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8702 | |
1da0522e | 8703 | if (type_name != NULL) |
931e5bc3 | 8704 | { |
1da0522e | 8705 | const int len = strlen (type_name); |
931e5bc3 JG |
8706 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8707 | ||
1da0522e | 8708 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8709 | { |
1da0522e | 8710 | strcpy (name, type_name); |
931e5bc3 JG |
8711 | strcpy (name + len - 1, xa_suffix); |
8712 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8713 | } | |
8714 | } | |
8715 | } | |
8716 | ||
28c85d6c | 8717 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8718 | if (index_type_desc != NULL |
8719 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8720 | { | |
8721 | /* Ignore this ___XA parallel type, as it does not bring any | |
8722 | useful information. This allows us to avoid creating fixed | |
8723 | versions of the array's index types, which would be identical | |
8724 | to the original ones. This, in turn, can also help avoid | |
8725 | the creation of fixed versions of the array itself. */ | |
8726 | index_type_desc = NULL; | |
8727 | } | |
8728 | ||
14f9c5c9 AS |
8729 | if (index_type_desc == NULL) |
8730 | { | |
61ee279c | 8731 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8732 | |
14f9c5c9 | 8733 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8734 | depend on the contents of the array in properly constructed |
8735 | debugging data. */ | |
529cad9c PH |
8736 | /* Create a fixed version of the array element type. |
8737 | We're not providing the address of an element here, | |
e1d5a0d2 | 8738 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8739 | the conversion. This should not be a problem, since arrays of |
8740 | unconstrained objects are not allowed. In particular, all | |
8741 | the elements of an array of a tagged type should all be of | |
8742 | the same type specified in the debugging info. No need to | |
8743 | consult the object tag. */ | |
1ed6ede0 | 8744 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8745 | |
284614f0 JB |
8746 | /* Make sure we always create a new array type when dealing with |
8747 | packed array types, since we're going to fix-up the array | |
8748 | type length and element bitsize a little further down. */ | |
ad82864c | 8749 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8750 | result = type0; |
14f9c5c9 | 8751 | else |
e9bb382b | 8752 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8753 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8754 | } |
8755 | else | |
8756 | { | |
8757 | int i; | |
8758 | struct type *elt_type0; | |
8759 | ||
8760 | elt_type0 = type0; | |
8761 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8762 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8763 | |
8764 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8765 | depend on the contents of the array in properly constructed |
8766 | debugging data. */ | |
529cad9c PH |
8767 | /* Create a fixed version of the array element type. |
8768 | We're not providing the address of an element here, | |
e1d5a0d2 | 8769 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8770 | the conversion. This should not be a problem, since arrays of |
8771 | unconstrained objects are not allowed. In particular, all | |
8772 | the elements of an array of a tagged type should all be of | |
8773 | the same type specified in the debugging info. No need to | |
8774 | consult the object tag. */ | |
1ed6ede0 JB |
8775 | result = |
8776 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8777 | |
8778 | elt_type0 = type0; | |
14f9c5c9 | 8779 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8780 | { |
8781 | struct type *range_type = | |
28c85d6c | 8782 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8783 | |
e9bb382b | 8784 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8785 | result, range_type); |
1ce677a4 | 8786 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8787 | } |
d2e4a39e | 8788 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8789 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8790 | } |
8791 | ||
2e6fda7d JB |
8792 | /* We want to preserve the type name. This can be useful when |
8793 | trying to get the type name of a value that has already been | |
8794 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8795 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8796 | ||
ad82864c | 8797 | if (constrained_packed_array_p) |
284614f0 JB |
8798 | { |
8799 | /* So far, the resulting type has been created as if the original | |
8800 | type was a regular (non-packed) array type. As a result, the | |
8801 | bitsize of the array elements needs to be set again, and the array | |
8802 | length needs to be recomputed based on that bitsize. */ | |
8803 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8804 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8805 | ||
8806 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8807 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8808 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8809 | TYPE_LENGTH (result)++; | |
8810 | } | |
8811 | ||
876cecd0 | 8812 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8813 | return result; |
d2e4a39e | 8814 | } |
14f9c5c9 AS |
8815 | |
8816 | ||
8817 | /* A standard type (containing no dynamically sized components) | |
8818 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8819 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8820 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8821 | ADDRESS or in VALADDR contains these discriminants. |
8822 | ||
1ed6ede0 JB |
8823 | If CHECK_TAG is not null, in the case of tagged types, this function |
8824 | attempts to locate the object's tag and use it to compute the actual | |
8825 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8826 | location of the tag, and therefore compute the tagged type's actual type. | |
8827 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8828 | |
f192137b JB |
8829 | static struct type * |
8830 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8831 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8832 | { |
61ee279c | 8833 | type = ada_check_typedef (type); |
d2e4a39e AS |
8834 | switch (TYPE_CODE (type)) |
8835 | { | |
8836 | default: | |
14f9c5c9 | 8837 | return type; |
d2e4a39e | 8838 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8839 | { |
76a01679 | 8840 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8841 | struct type *fixed_record_type = |
8842 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8843 | |
529cad9c PH |
8844 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8845 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8846 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8847 | type (the parent part of the record may have dynamic fields |
8848 | and the way the location of _tag is expressed may depend on | |
8849 | them). */ | |
529cad9c | 8850 | |
1ed6ede0 | 8851 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8852 | { |
b50d69b5 JG |
8853 | struct value *tag = |
8854 | value_tag_from_contents_and_address | |
8855 | (fixed_record_type, | |
8856 | valaddr, | |
8857 | address); | |
8858 | struct type *real_type = type_from_tag (tag); | |
8859 | struct value *obj = | |
8860 | value_from_contents_and_address (fixed_record_type, | |
8861 | valaddr, | |
8862 | address); | |
9f1f738a | 8863 | fixed_record_type = value_type (obj); |
76a01679 | 8864 | if (real_type != NULL) |
b50d69b5 JG |
8865 | return to_fixed_record_type |
8866 | (real_type, NULL, | |
8867 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8868 | } |
4af88198 JB |
8869 | |
8870 | /* Check to see if there is a parallel ___XVZ variable. | |
8871 | If there is, then it provides the actual size of our type. */ | |
8872 | else if (ada_type_name (fixed_record_type) != NULL) | |
8873 | { | |
0d5cff50 | 8874 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
8875 | char *xvz_name |
8876 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
4af88198 JB |
8877 | int xvz_found = 0; |
8878 | LONGEST size; | |
8879 | ||
88c15c34 | 8880 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8881 | size = get_int_var_value (xvz_name, &xvz_found); |
8882 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8883 | { | |
8884 | fixed_record_type = copy_type (fixed_record_type); | |
8885 | TYPE_LENGTH (fixed_record_type) = size; | |
8886 | ||
8887 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8888 | observed this when the debugging info is STABS, and | |
8889 | apparently it is something that is hard to fix. | |
8890 | ||
8891 | In practice, we don't need the actual type definition | |
8892 | at all, because the presence of the XVZ variable allows us | |
8893 | to assume that there must be a XVS type as well, which we | |
8894 | should be able to use later, when we need the actual type | |
8895 | definition. | |
8896 | ||
8897 | In the meantime, pretend that the "fixed" type we are | |
8898 | returning is NOT a stub, because this can cause trouble | |
8899 | when using this type to create new types targeting it. | |
8900 | Indeed, the associated creation routines often check | |
8901 | whether the target type is a stub and will try to replace | |
0963b4bd | 8902 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8903 | might cause the new type to have the wrong size too. |
8904 | Consider the case of an array, for instance, where the size | |
8905 | of the array is computed from the number of elements in | |
8906 | our array multiplied by the size of its element. */ | |
8907 | TYPE_STUB (fixed_record_type) = 0; | |
8908 | } | |
8909 | } | |
1ed6ede0 | 8910 | return fixed_record_type; |
4c4b4cd2 | 8911 | } |
d2e4a39e | 8912 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8913 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8914 | case TYPE_CODE_UNION: |
8915 | if (dval == NULL) | |
4c4b4cd2 | 8916 | return type; |
d2e4a39e | 8917 | else |
4c4b4cd2 | 8918 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8919 | } |
14f9c5c9 AS |
8920 | } |
8921 | ||
f192137b JB |
8922 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8923 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8924 | |
8925 | The typedef layer needs be preserved in order to differentiate between | |
8926 | arrays and array pointers when both types are implemented using the same | |
8927 | fat pointer. In the array pointer case, the pointer is encoded as | |
8928 | a typedef of the pointer type. For instance, considering: | |
8929 | ||
8930 | type String_Access is access String; | |
8931 | S1 : String_Access := null; | |
8932 | ||
8933 | To the debugger, S1 is defined as a typedef of type String. But | |
8934 | to the user, it is a pointer. So if the user tries to print S1, | |
8935 | we should not dereference the array, but print the array address | |
8936 | instead. | |
8937 | ||
8938 | If we didn't preserve the typedef layer, we would lose the fact that | |
8939 | the type is to be presented as a pointer (needs de-reference before | |
8940 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8941 | |
8942 | struct type * | |
8943 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8944 | CORE_ADDR address, struct value *dval, int check_tag) | |
8945 | ||
8946 | { | |
8947 | struct type *fixed_type = | |
8948 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8949 | ||
96dbd2c1 JB |
8950 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8951 | then preserve the typedef layer. | |
8952 | ||
8953 | Implementation note: We can only check the main-type portion of | |
8954 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8955 | from TYPE now returns a type that has the same instance flags | |
8956 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8957 | target type is a "struct", then the typedef elimination will return | |
8958 | a "const" version of the target type. See check_typedef for more | |
8959 | details about how the typedef layer elimination is done. | |
8960 | ||
8961 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8962 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8963 | Perhaps, we could add a check for that and preserve the typedef layer | |
8964 | only in that situation. But this seems unecessary so far, probably | |
8965 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8966 | */ | |
f192137b | 8967 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8968 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8969 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8970 | return type; |
8971 | ||
8972 | return fixed_type; | |
8973 | } | |
8974 | ||
14f9c5c9 | 8975 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8976 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8977 | |
d2e4a39e AS |
8978 | static struct type * |
8979 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8980 | { |
d2e4a39e | 8981 | struct type *type; |
14f9c5c9 AS |
8982 | |
8983 | if (type0 == NULL) | |
8984 | return NULL; | |
8985 | ||
876cecd0 | 8986 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8987 | return type0; |
8988 | ||
61ee279c | 8989 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8990 | |
14f9c5c9 AS |
8991 | switch (TYPE_CODE (type0)) |
8992 | { | |
8993 | default: | |
8994 | return type0; | |
8995 | case TYPE_CODE_STRUCT: | |
8996 | type = dynamic_template_type (type0); | |
d2e4a39e | 8997 | if (type != NULL) |
4c4b4cd2 PH |
8998 | return template_to_static_fixed_type (type); |
8999 | else | |
9000 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9001 | case TYPE_CODE_UNION: |
9002 | type = ada_find_parallel_type (type0, "___XVU"); | |
9003 | if (type != NULL) | |
4c4b4cd2 PH |
9004 | return template_to_static_fixed_type (type); |
9005 | else | |
9006 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9007 | } |
9008 | } | |
9009 | ||
4c4b4cd2 PH |
9010 | /* A static approximation of TYPE with all type wrappers removed. */ |
9011 | ||
d2e4a39e AS |
9012 | static struct type * |
9013 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9014 | { |
9015 | if (ada_is_aligner_type (type)) | |
9016 | { | |
61ee279c | 9017 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9018 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9019 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9020 | |
9021 | return static_unwrap_type (type1); | |
9022 | } | |
d2e4a39e | 9023 | else |
14f9c5c9 | 9024 | { |
d2e4a39e | 9025 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9026 | |
d2e4a39e | 9027 | if (raw_real_type == type) |
4c4b4cd2 | 9028 | return type; |
14f9c5c9 | 9029 | else |
4c4b4cd2 | 9030 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9031 | } |
9032 | } | |
9033 | ||
9034 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9035 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9036 | type Foo; |
9037 | type FooP is access Foo; | |
9038 | V: FooP; | |
9039 | type Foo is array ...; | |
4c4b4cd2 | 9040 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9041 | cross-references to such types, we instead substitute for FooP a |
9042 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9043 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9044 | |
9045 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9046 | exists, otherwise TYPE. */ |
9047 | ||
d2e4a39e | 9048 | struct type * |
61ee279c | 9049 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9050 | { |
727e3d2e JB |
9051 | if (type == NULL) |
9052 | return NULL; | |
9053 | ||
720d1a40 JB |
9054 | /* If our type is a typedef type of a fat pointer, then we're done. |
9055 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
9056 | what allows us to distinguish between fat pointers that represent | |
9057 | array types, and fat pointers that represent array access types | |
9058 | (in both cases, the compiler implements them as fat pointers). */ | |
9059 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
9060 | && is_thick_pntr (ada_typedef_target_type (type))) | |
9061 | return type; | |
9062 | ||
f168693b | 9063 | type = check_typedef (type); |
14f9c5c9 | 9064 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9065 | || !TYPE_STUB (type) |
14f9c5c9 AS |
9066 | || TYPE_TAG_NAME (type) == NULL) |
9067 | return type; | |
d2e4a39e | 9068 | else |
14f9c5c9 | 9069 | { |
0d5cff50 | 9070 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 9071 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9072 | |
05e522ef JB |
9073 | if (type1 == NULL) |
9074 | return type; | |
9075 | ||
9076 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9077 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9078 | types, only for the typedef-to-array types). If that's the case, |
9079 | strip the typedef layer. */ | |
9080 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9081 | type1 = ada_check_typedef (type1); | |
9082 | ||
9083 | return type1; | |
14f9c5c9 AS |
9084 | } |
9085 | } | |
9086 | ||
9087 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9088 | type TYPE0, but with a standard (static-sized) type that correctly | |
9089 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9090 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9091 | creation of struct values]. */ |
14f9c5c9 | 9092 | |
4c4b4cd2 PH |
9093 | static struct value * |
9094 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9095 | struct value *val0) | |
14f9c5c9 | 9096 | { |
1ed6ede0 | 9097 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9098 | |
14f9c5c9 AS |
9099 | if (type == type0 && val0 != NULL) |
9100 | return val0; | |
d2e4a39e | 9101 | else |
4c4b4cd2 PH |
9102 | return value_from_contents_and_address (type, 0, address); |
9103 | } | |
9104 | ||
9105 | /* A value representing VAL, but with a standard (static-sized) type | |
9106 | that correctly describes it. Does not necessarily create a new | |
9107 | value. */ | |
9108 | ||
0c3acc09 | 9109 | struct value * |
4c4b4cd2 PH |
9110 | ada_to_fixed_value (struct value *val) |
9111 | { | |
c48db5ca JB |
9112 | val = unwrap_value (val); |
9113 | val = ada_to_fixed_value_create (value_type (val), | |
9114 | value_address (val), | |
9115 | val); | |
9116 | return val; | |
14f9c5c9 | 9117 | } |
d2e4a39e | 9118 | \f |
14f9c5c9 | 9119 | |
14f9c5c9 AS |
9120 | /* Attributes */ |
9121 | ||
4c4b4cd2 PH |
9122 | /* Table mapping attribute numbers to names. |
9123 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9124 | |
d2e4a39e | 9125 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9126 | "<?>", |
9127 | ||
d2e4a39e | 9128 | "first", |
14f9c5c9 AS |
9129 | "last", |
9130 | "length", | |
9131 | "image", | |
14f9c5c9 AS |
9132 | "max", |
9133 | "min", | |
4c4b4cd2 PH |
9134 | "modulus", |
9135 | "pos", | |
9136 | "size", | |
9137 | "tag", | |
14f9c5c9 | 9138 | "val", |
14f9c5c9 AS |
9139 | 0 |
9140 | }; | |
9141 | ||
d2e4a39e | 9142 | const char * |
4c4b4cd2 | 9143 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9144 | { |
4c4b4cd2 PH |
9145 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9146 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9147 | else |
9148 | return attribute_names[0]; | |
9149 | } | |
9150 | ||
4c4b4cd2 | 9151 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9152 | |
4c4b4cd2 PH |
9153 | static LONGEST |
9154 | pos_atr (struct value *arg) | |
14f9c5c9 | 9155 | { |
24209737 PH |
9156 | struct value *val = coerce_ref (arg); |
9157 | struct type *type = value_type (val); | |
aa715135 | 9158 | LONGEST result; |
14f9c5c9 | 9159 | |
d2e4a39e | 9160 | if (!discrete_type_p (type)) |
323e0a4a | 9161 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9162 | |
aa715135 JG |
9163 | if (!discrete_position (type, value_as_long (val), &result)) |
9164 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9165 | |
aa715135 | 9166 | return result; |
4c4b4cd2 PH |
9167 | } |
9168 | ||
9169 | static struct value * | |
3cb382c9 | 9170 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9171 | { |
3cb382c9 | 9172 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9173 | } |
9174 | ||
4c4b4cd2 | 9175 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9176 | |
d2e4a39e AS |
9177 | static struct value * |
9178 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9179 | { |
d2e4a39e | 9180 | if (!discrete_type_p (type)) |
323e0a4a | 9181 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9182 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9183 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9184 | |
9185 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9186 | { | |
9187 | long pos = value_as_long (arg); | |
5b4ee69b | 9188 | |
14f9c5c9 | 9189 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9190 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9191 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9192 | } |
9193 | else | |
9194 | return value_from_longest (type, value_as_long (arg)); | |
9195 | } | |
14f9c5c9 | 9196 | \f |
d2e4a39e | 9197 | |
4c4b4cd2 | 9198 | /* Evaluation */ |
14f9c5c9 | 9199 | |
4c4b4cd2 PH |
9200 | /* True if TYPE appears to be an Ada character type. |
9201 | [At the moment, this is true only for Character and Wide_Character; | |
9202 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9203 | |
d2e4a39e AS |
9204 | int |
9205 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9206 | { |
7b9f71f2 JB |
9207 | const char *name; |
9208 | ||
9209 | /* If the type code says it's a character, then assume it really is, | |
9210 | and don't check any further. */ | |
9211 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9212 | return 1; | |
9213 | ||
9214 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9215 | with a known character type name. */ | |
9216 | name = ada_type_name (type); | |
9217 | return (name != NULL | |
9218 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9219 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9220 | && (strcmp (name, "character") == 0 | |
9221 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9222 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9223 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9224 | } |
9225 | ||
4c4b4cd2 | 9226 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9227 | |
9228 | int | |
ebf56fd3 | 9229 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9230 | { |
61ee279c | 9231 | type = ada_check_typedef (type); |
d2e4a39e | 9232 | if (type != NULL |
14f9c5c9 | 9233 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9234 | && (ada_is_simple_array_type (type) |
9235 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9236 | && ada_array_arity (type) == 1) |
9237 | { | |
9238 | struct type *elttype = ada_array_element_type (type, 1); | |
9239 | ||
9240 | return ada_is_character_type (elttype); | |
9241 | } | |
d2e4a39e | 9242 | else |
14f9c5c9 AS |
9243 | return 0; |
9244 | } | |
9245 | ||
5bf03f13 JB |
9246 | /* The compiler sometimes provides a parallel XVS type for a given |
9247 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9248 | but older versions of the compiler have a bug that causes the offset | |
9249 | of its "F" field to be wrong. Following that field in that case | |
9250 | would lead to incorrect results, but this can be worked around | |
9251 | by ignoring the PAD type and using the associated XVS type instead. | |
9252 | ||
9253 | Set to True if the debugger should trust the contents of PAD types. | |
9254 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9255 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9256 | |
9257 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9258 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9259 | distinctive name. */ |
14f9c5c9 AS |
9260 | |
9261 | int | |
ebf56fd3 | 9262 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9263 | { |
61ee279c | 9264 | type = ada_check_typedef (type); |
714e53ab | 9265 | |
5bf03f13 | 9266 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9267 | return 0; |
9268 | ||
14f9c5c9 | 9269 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9270 | && TYPE_NFIELDS (type) == 1 |
9271 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9272 | } |
9273 | ||
9274 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9275 | the parallel type. */ |
14f9c5c9 | 9276 | |
d2e4a39e AS |
9277 | struct type * |
9278 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9279 | { |
d2e4a39e AS |
9280 | struct type *real_type_namer; |
9281 | struct type *raw_real_type; | |
14f9c5c9 AS |
9282 | |
9283 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9284 | return raw_type; | |
9285 | ||
284614f0 JB |
9286 | if (ada_is_aligner_type (raw_type)) |
9287 | /* The encoding specifies that we should always use the aligner type. | |
9288 | So, even if this aligner type has an associated XVS type, we should | |
9289 | simply ignore it. | |
9290 | ||
9291 | According to the compiler gurus, an XVS type parallel to an aligner | |
9292 | type may exist because of a stabs limitation. In stabs, aligner | |
9293 | types are empty because the field has a variable-sized type, and | |
9294 | thus cannot actually be used as an aligner type. As a result, | |
9295 | we need the associated parallel XVS type to decode the type. | |
9296 | Since the policy in the compiler is to not change the internal | |
9297 | representation based on the debugging info format, we sometimes | |
9298 | end up having a redundant XVS type parallel to the aligner type. */ | |
9299 | return raw_type; | |
9300 | ||
14f9c5c9 | 9301 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9302 | if (real_type_namer == NULL |
14f9c5c9 AS |
9303 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9304 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9305 | return raw_type; | |
9306 | ||
f80d3ff2 JB |
9307 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9308 | { | |
9309 | /* This is an older encoding form where the base type needs to be | |
9310 | looked up by name. We prefer the newer enconding because it is | |
9311 | more efficient. */ | |
9312 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9313 | if (raw_real_type == NULL) | |
9314 | return raw_type; | |
9315 | else | |
9316 | return raw_real_type; | |
9317 | } | |
9318 | ||
9319 | /* The field in our XVS type is a reference to the base type. */ | |
9320 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9321 | } |
14f9c5c9 | 9322 | |
4c4b4cd2 | 9323 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9324 | |
d2e4a39e AS |
9325 | struct type * |
9326 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9327 | { |
9328 | if (ada_is_aligner_type (type)) | |
9329 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9330 | else | |
9331 | return ada_get_base_type (type); | |
9332 | } | |
9333 | ||
9334 | ||
9335 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9336 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9337 | |
fc1a4b47 AC |
9338 | const gdb_byte * |
9339 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9340 | { |
d2e4a39e | 9341 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9342 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9343 | valaddr + |
9344 | TYPE_FIELD_BITPOS (type, | |
9345 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9346 | else |
9347 | return valaddr; | |
9348 | } | |
9349 | ||
4c4b4cd2 PH |
9350 | |
9351 | ||
14f9c5c9 | 9352 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9353 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9354 | const char * |
9355 | ada_enum_name (const char *name) | |
14f9c5c9 | 9356 | { |
4c4b4cd2 PH |
9357 | static char *result; |
9358 | static size_t result_len = 0; | |
d2e4a39e | 9359 | char *tmp; |
14f9c5c9 | 9360 | |
4c4b4cd2 PH |
9361 | /* First, unqualify the enumeration name: |
9362 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9363 | all the preceding characters, the unqualified name starts |
76a01679 | 9364 | right after that dot. |
4c4b4cd2 | 9365 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9366 | translates dots into "__". Search forward for double underscores, |
9367 | but stop searching when we hit an overloading suffix, which is | |
9368 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9369 | |
c3e5cd34 PH |
9370 | tmp = strrchr (name, '.'); |
9371 | if (tmp != NULL) | |
4c4b4cd2 PH |
9372 | name = tmp + 1; |
9373 | else | |
14f9c5c9 | 9374 | { |
4c4b4cd2 PH |
9375 | while ((tmp = strstr (name, "__")) != NULL) |
9376 | { | |
9377 | if (isdigit (tmp[2])) | |
9378 | break; | |
9379 | else | |
9380 | name = tmp + 2; | |
9381 | } | |
14f9c5c9 AS |
9382 | } |
9383 | ||
9384 | if (name[0] == 'Q') | |
9385 | { | |
14f9c5c9 | 9386 | int v; |
5b4ee69b | 9387 | |
14f9c5c9 | 9388 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9389 | { |
9390 | if (sscanf (name + 2, "%x", &v) != 1) | |
9391 | return name; | |
9392 | } | |
14f9c5c9 | 9393 | else |
4c4b4cd2 | 9394 | return name; |
14f9c5c9 | 9395 | |
4c4b4cd2 | 9396 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9397 | if (isascii (v) && isprint (v)) |
88c15c34 | 9398 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9399 | else if (name[1] == 'U') |
88c15c34 | 9400 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9401 | else |
88c15c34 | 9402 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9403 | |
9404 | return result; | |
9405 | } | |
d2e4a39e | 9406 | else |
4c4b4cd2 | 9407 | { |
c3e5cd34 PH |
9408 | tmp = strstr (name, "__"); |
9409 | if (tmp == NULL) | |
9410 | tmp = strstr (name, "$"); | |
9411 | if (tmp != NULL) | |
4c4b4cd2 PH |
9412 | { |
9413 | GROW_VECT (result, result_len, tmp - name + 1); | |
9414 | strncpy (result, name, tmp - name); | |
9415 | result[tmp - name] = '\0'; | |
9416 | return result; | |
9417 | } | |
9418 | ||
9419 | return name; | |
9420 | } | |
14f9c5c9 AS |
9421 | } |
9422 | ||
14f9c5c9 AS |
9423 | /* Evaluate the subexpression of EXP starting at *POS as for |
9424 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9425 | expression. */ |
14f9c5c9 | 9426 | |
d2e4a39e AS |
9427 | static struct value * |
9428 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9429 | { |
4b27a620 | 9430 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9431 | } |
9432 | ||
9433 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9434 | value it wraps. */ |
14f9c5c9 | 9435 | |
d2e4a39e AS |
9436 | static struct value * |
9437 | unwrap_value (struct value *val) | |
14f9c5c9 | 9438 | { |
df407dfe | 9439 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9440 | |
14f9c5c9 AS |
9441 | if (ada_is_aligner_type (type)) |
9442 | { | |
de4d072f | 9443 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9444 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9445 | |
14f9c5c9 | 9446 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9447 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9448 | |
9449 | return unwrap_value (v); | |
9450 | } | |
d2e4a39e | 9451 | else |
14f9c5c9 | 9452 | { |
d2e4a39e | 9453 | struct type *raw_real_type = |
61ee279c | 9454 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9455 | |
5bf03f13 JB |
9456 | /* If there is no parallel XVS or XVE type, then the value is |
9457 | already unwrapped. Return it without further modification. */ | |
9458 | if ((type == raw_real_type) | |
9459 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9460 | return val; | |
14f9c5c9 | 9461 | |
d2e4a39e | 9462 | return |
4c4b4cd2 PH |
9463 | coerce_unspec_val_to_type |
9464 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9465 | value_address (val), |
1ed6ede0 | 9466 | NULL, 1)); |
14f9c5c9 AS |
9467 | } |
9468 | } | |
d2e4a39e AS |
9469 | |
9470 | static struct value * | |
9471 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9472 | { |
9473 | LONGEST val; | |
9474 | ||
df407dfe | 9475 | if (type == value_type (arg)) |
14f9c5c9 | 9476 | return arg; |
df407dfe | 9477 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9478 | val = ada_float_to_fixed (type, |
df407dfe | 9479 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9480 | value_as_long (arg))); |
d2e4a39e | 9481 | else |
14f9c5c9 | 9482 | { |
a53b7a21 | 9483 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9484 | |
14f9c5c9 AS |
9485 | val = ada_float_to_fixed (type, argd); |
9486 | } | |
9487 | ||
9488 | return value_from_longest (type, val); | |
9489 | } | |
9490 | ||
d2e4a39e | 9491 | static struct value * |
a53b7a21 | 9492 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9493 | { |
df407dfe | 9494 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9495 | value_as_long (arg)); |
5b4ee69b | 9496 | |
a53b7a21 | 9497 | return value_from_double (type, val); |
14f9c5c9 AS |
9498 | } |
9499 | ||
d99dcf51 JB |
9500 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9501 | contain the same number of elements. */ | |
9502 | ||
9503 | static int | |
9504 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9505 | { | |
9506 | LONGEST lo1, hi1, lo2, hi2; | |
9507 | ||
9508 | /* Get the array bounds in order to verify that the size of | |
9509 | the two arrays match. */ | |
9510 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9511 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9512 | error (_("unable to determine array bounds")); | |
9513 | ||
9514 | /* To make things easier for size comparison, normalize a bit | |
9515 | the case of empty arrays by making sure that the difference | |
9516 | between upper bound and lower bound is always -1. */ | |
9517 | if (lo1 > hi1) | |
9518 | hi1 = lo1 - 1; | |
9519 | if (lo2 > hi2) | |
9520 | hi2 = lo2 - 1; | |
9521 | ||
9522 | return (hi1 - lo1 == hi2 - lo2); | |
9523 | } | |
9524 | ||
9525 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9526 | an array with the same number of elements, but with wider integral | |
9527 | elements, return an array "casted" to TYPE. In practice, this | |
9528 | means that the returned array is built by casting each element | |
9529 | of the original array into TYPE's (wider) element type. */ | |
9530 | ||
9531 | static struct value * | |
9532 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9533 | { | |
9534 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9535 | LONGEST lo, hi; | |
9536 | struct value *res; | |
9537 | LONGEST i; | |
9538 | ||
9539 | /* Verify that both val and type are arrays of scalars, and | |
9540 | that the size of val's elements is smaller than the size | |
9541 | of type's element. */ | |
9542 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9543 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9544 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9545 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9546 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9547 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9548 | ||
9549 | if (!get_array_bounds (type, &lo, &hi)) | |
9550 | error (_("unable to determine array bounds")); | |
9551 | ||
9552 | res = allocate_value (type); | |
9553 | ||
9554 | /* Promote each array element. */ | |
9555 | for (i = 0; i < hi - lo + 1; i++) | |
9556 | { | |
9557 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9558 | ||
9559 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9560 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9561 | } | |
9562 | ||
9563 | return res; | |
9564 | } | |
9565 | ||
4c4b4cd2 PH |
9566 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9567 | return the converted value. */ | |
9568 | ||
d2e4a39e AS |
9569 | static struct value * |
9570 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9571 | { |
df407dfe | 9572 | struct type *type2 = value_type (val); |
5b4ee69b | 9573 | |
14f9c5c9 AS |
9574 | if (type == type2) |
9575 | return val; | |
9576 | ||
61ee279c PH |
9577 | type2 = ada_check_typedef (type2); |
9578 | type = ada_check_typedef (type); | |
14f9c5c9 | 9579 | |
d2e4a39e AS |
9580 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9581 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9582 | { |
9583 | val = ada_value_ind (val); | |
df407dfe | 9584 | type2 = value_type (val); |
14f9c5c9 AS |
9585 | } |
9586 | ||
d2e4a39e | 9587 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9588 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9589 | { | |
d99dcf51 JB |
9590 | if (!ada_same_array_size_p (type, type2)) |
9591 | error (_("cannot assign arrays of different length")); | |
9592 | ||
9593 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9594 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9595 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9596 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9597 | { | |
9598 | /* Allow implicit promotion of the array elements to | |
9599 | a wider type. */ | |
9600 | return ada_promote_array_of_integrals (type, val); | |
9601 | } | |
9602 | ||
9603 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9604 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9605 | error (_("Incompatible types in assignment")); |
04624583 | 9606 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9607 | } |
d2e4a39e | 9608 | return val; |
14f9c5c9 AS |
9609 | } |
9610 | ||
4c4b4cd2 PH |
9611 | static struct value * |
9612 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9613 | { | |
9614 | struct value *val; | |
9615 | struct type *type1, *type2; | |
9616 | LONGEST v, v1, v2; | |
9617 | ||
994b9211 AC |
9618 | arg1 = coerce_ref (arg1); |
9619 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9620 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9621 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9622 | |
76a01679 JB |
9623 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9624 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9625 | return value_binop (arg1, arg2, op); |
9626 | ||
76a01679 | 9627 | switch (op) |
4c4b4cd2 PH |
9628 | { |
9629 | case BINOP_MOD: | |
9630 | case BINOP_DIV: | |
9631 | case BINOP_REM: | |
9632 | break; | |
9633 | default: | |
9634 | return value_binop (arg1, arg2, op); | |
9635 | } | |
9636 | ||
9637 | v2 = value_as_long (arg2); | |
9638 | if (v2 == 0) | |
323e0a4a | 9639 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9640 | |
9641 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9642 | return value_binop (arg1, arg2, op); | |
9643 | ||
9644 | v1 = value_as_long (arg1); | |
9645 | switch (op) | |
9646 | { | |
9647 | case BINOP_DIV: | |
9648 | v = v1 / v2; | |
76a01679 JB |
9649 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9650 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9651 | break; |
9652 | case BINOP_REM: | |
9653 | v = v1 % v2; | |
76a01679 JB |
9654 | if (v * v1 < 0) |
9655 | v -= v2; | |
4c4b4cd2 PH |
9656 | break; |
9657 | default: | |
9658 | /* Should not reach this point. */ | |
9659 | v = 0; | |
9660 | } | |
9661 | ||
9662 | val = allocate_value (type1); | |
990a07ab | 9663 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9664 | TYPE_LENGTH (value_type (val)), |
9665 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9666 | return val; |
9667 | } | |
9668 | ||
9669 | static int | |
9670 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9671 | { | |
df407dfe AC |
9672 | if (ada_is_direct_array_type (value_type (arg1)) |
9673 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9674 | { |
f58b38bf JB |
9675 | /* Automatically dereference any array reference before |
9676 | we attempt to perform the comparison. */ | |
9677 | arg1 = ada_coerce_ref (arg1); | |
9678 | arg2 = ada_coerce_ref (arg2); | |
9679 | ||
4c4b4cd2 PH |
9680 | arg1 = ada_coerce_to_simple_array (arg1); |
9681 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9682 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9683 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9684 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9685 | /* FIXME: The following works only for types whose |
76a01679 JB |
9686 | representations use all bits (no padding or undefined bits) |
9687 | and do not have user-defined equality. */ | |
9688 | return | |
df407dfe | 9689 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9690 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9691 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9692 | } |
9693 | return value_equal (arg1, arg2); | |
9694 | } | |
9695 | ||
52ce6436 PH |
9696 | /* Total number of component associations in the aggregate starting at |
9697 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9698 | OP_AGGREGATE. */ |
52ce6436 PH |
9699 | |
9700 | static int | |
9701 | num_component_specs (struct expression *exp, int pc) | |
9702 | { | |
9703 | int n, m, i; | |
5b4ee69b | 9704 | |
52ce6436 PH |
9705 | m = exp->elts[pc + 1].longconst; |
9706 | pc += 3; | |
9707 | n = 0; | |
9708 | for (i = 0; i < m; i += 1) | |
9709 | { | |
9710 | switch (exp->elts[pc].opcode) | |
9711 | { | |
9712 | default: | |
9713 | n += 1; | |
9714 | break; | |
9715 | case OP_CHOICES: | |
9716 | n += exp->elts[pc + 1].longconst; | |
9717 | break; | |
9718 | } | |
9719 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9720 | } | |
9721 | return n; | |
9722 | } | |
9723 | ||
9724 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9725 | component of LHS (a simple array or a record), updating *POS past | |
9726 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9727 | not modify the inferior's memory, nor does it modify LHS (unless | |
9728 | LHS == CONTAINER). */ | |
9729 | ||
9730 | static void | |
9731 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9732 | struct expression *exp, int *pos) | |
9733 | { | |
9734 | struct value *mark = value_mark (); | |
9735 | struct value *elt; | |
5b4ee69b | 9736 | |
52ce6436 PH |
9737 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9738 | { | |
22601c15 UW |
9739 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9740 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9741 | |
52ce6436 PH |
9742 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9743 | } | |
9744 | else | |
9745 | { | |
9746 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9747 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9748 | } |
9749 | ||
9750 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9751 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9752 | else | |
9753 | value_assign_to_component (container, elt, | |
9754 | ada_evaluate_subexp (NULL, exp, pos, | |
9755 | EVAL_NORMAL)); | |
9756 | ||
9757 | value_free_to_mark (mark); | |
9758 | } | |
9759 | ||
9760 | /* Assuming that LHS represents an lvalue having a record or array | |
9761 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9762 | of that aggregate's value to LHS, advancing *POS past the | |
9763 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9764 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9765 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9766 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9767 | |
9768 | static struct value * | |
9769 | assign_aggregate (struct value *container, | |
9770 | struct value *lhs, struct expression *exp, | |
9771 | int *pos, enum noside noside) | |
9772 | { | |
9773 | struct type *lhs_type; | |
9774 | int n = exp->elts[*pos+1].longconst; | |
9775 | LONGEST low_index, high_index; | |
9776 | int num_specs; | |
9777 | LONGEST *indices; | |
9778 | int max_indices, num_indices; | |
52ce6436 | 9779 | int i; |
52ce6436 PH |
9780 | |
9781 | *pos += 3; | |
9782 | if (noside != EVAL_NORMAL) | |
9783 | { | |
52ce6436 PH |
9784 | for (i = 0; i < n; i += 1) |
9785 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9786 | return container; | |
9787 | } | |
9788 | ||
9789 | container = ada_coerce_ref (container); | |
9790 | if (ada_is_direct_array_type (value_type (container))) | |
9791 | container = ada_coerce_to_simple_array (container); | |
9792 | lhs = ada_coerce_ref (lhs); | |
9793 | if (!deprecated_value_modifiable (lhs)) | |
9794 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9795 | ||
9796 | lhs_type = value_type (lhs); | |
9797 | if (ada_is_direct_array_type (lhs_type)) | |
9798 | { | |
9799 | lhs = ada_coerce_to_simple_array (lhs); | |
9800 | lhs_type = value_type (lhs); | |
9801 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9802 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9803 | } |
9804 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9805 | { | |
9806 | low_index = 0; | |
9807 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9808 | } |
9809 | else | |
9810 | error (_("Left-hand side must be array or record.")); | |
9811 | ||
9812 | num_specs = num_component_specs (exp, *pos - 3); | |
9813 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9814 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9815 | indices[0] = indices[1] = low_index - 1; |
9816 | indices[2] = indices[3] = high_index + 1; | |
9817 | num_indices = 4; | |
9818 | ||
9819 | for (i = 0; i < n; i += 1) | |
9820 | { | |
9821 | switch (exp->elts[*pos].opcode) | |
9822 | { | |
1fbf5ada JB |
9823 | case OP_CHOICES: |
9824 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9825 | &num_indices, max_indices, | |
9826 | low_index, high_index); | |
9827 | break; | |
9828 | case OP_POSITIONAL: | |
9829 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9830 | &num_indices, max_indices, |
9831 | low_index, high_index); | |
1fbf5ada JB |
9832 | break; |
9833 | case OP_OTHERS: | |
9834 | if (i != n-1) | |
9835 | error (_("Misplaced 'others' clause")); | |
9836 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9837 | num_indices, low_index, high_index); | |
9838 | break; | |
9839 | default: | |
9840 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9841 | } |
9842 | } | |
9843 | ||
9844 | return container; | |
9845 | } | |
9846 | ||
9847 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9848 | construct at *POS, updating *POS past the construct, given that | |
9849 | the positions are relative to lower bound LOW, where HIGH is the | |
9850 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9851 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9852 | assign_aggregate. */ |
52ce6436 PH |
9853 | static void |
9854 | aggregate_assign_positional (struct value *container, | |
9855 | struct value *lhs, struct expression *exp, | |
9856 | int *pos, LONGEST *indices, int *num_indices, | |
9857 | int max_indices, LONGEST low, LONGEST high) | |
9858 | { | |
9859 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9860 | ||
9861 | if (ind - 1 == high) | |
e1d5a0d2 | 9862 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9863 | if (ind <= high) |
9864 | { | |
9865 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9866 | *pos += 3; | |
9867 | assign_component (container, lhs, ind, exp, pos); | |
9868 | } | |
9869 | else | |
9870 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9871 | } | |
9872 | ||
9873 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9874 | construct at *POS, updating *POS past the construct, given that | |
9875 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9876 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9877 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9878 | static void |
9879 | aggregate_assign_from_choices (struct value *container, | |
9880 | struct value *lhs, struct expression *exp, | |
9881 | int *pos, LONGEST *indices, int *num_indices, | |
9882 | int max_indices, LONGEST low, LONGEST high) | |
9883 | { | |
9884 | int j; | |
9885 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9886 | int choice_pos, expr_pc; | |
9887 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9888 | ||
9889 | choice_pos = *pos += 3; | |
9890 | ||
9891 | for (j = 0; j < n_choices; j += 1) | |
9892 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9893 | expr_pc = *pos; | |
9894 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9895 | ||
9896 | for (j = 0; j < n_choices; j += 1) | |
9897 | { | |
9898 | LONGEST lower, upper; | |
9899 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9900 | |
52ce6436 PH |
9901 | if (op == OP_DISCRETE_RANGE) |
9902 | { | |
9903 | choice_pos += 1; | |
9904 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9905 | EVAL_NORMAL)); | |
9906 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9907 | EVAL_NORMAL)); | |
9908 | } | |
9909 | else if (is_array) | |
9910 | { | |
9911 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9912 | EVAL_NORMAL)); | |
9913 | upper = lower; | |
9914 | } | |
9915 | else | |
9916 | { | |
9917 | int ind; | |
0d5cff50 | 9918 | const char *name; |
5b4ee69b | 9919 | |
52ce6436 PH |
9920 | switch (op) |
9921 | { | |
9922 | case OP_NAME: | |
9923 | name = &exp->elts[choice_pos + 2].string; | |
9924 | break; | |
9925 | case OP_VAR_VALUE: | |
9926 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9927 | break; | |
9928 | default: | |
9929 | error (_("Invalid record component association.")); | |
9930 | } | |
9931 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9932 | ind = 0; | |
9933 | if (! find_struct_field (name, value_type (lhs), 0, | |
9934 | NULL, NULL, NULL, NULL, &ind)) | |
9935 | error (_("Unknown component name: %s."), name); | |
9936 | lower = upper = ind; | |
9937 | } | |
9938 | ||
9939 | if (lower <= upper && (lower < low || upper > high)) | |
9940 | error (_("Index in component association out of bounds.")); | |
9941 | ||
9942 | add_component_interval (lower, upper, indices, num_indices, | |
9943 | max_indices); | |
9944 | while (lower <= upper) | |
9945 | { | |
9946 | int pos1; | |
5b4ee69b | 9947 | |
52ce6436 PH |
9948 | pos1 = expr_pc; |
9949 | assign_component (container, lhs, lower, exp, &pos1); | |
9950 | lower += 1; | |
9951 | } | |
9952 | } | |
9953 | } | |
9954 | ||
9955 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9956 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9957 | have not been previously assigned. The index intervals already assigned | |
9958 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9959 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9960 | static void |
9961 | aggregate_assign_others (struct value *container, | |
9962 | struct value *lhs, struct expression *exp, | |
9963 | int *pos, LONGEST *indices, int num_indices, | |
9964 | LONGEST low, LONGEST high) | |
9965 | { | |
9966 | int i; | |
5ce64950 | 9967 | int expr_pc = *pos + 1; |
52ce6436 PH |
9968 | |
9969 | for (i = 0; i < num_indices - 2; i += 2) | |
9970 | { | |
9971 | LONGEST ind; | |
5b4ee69b | 9972 | |
52ce6436 PH |
9973 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9974 | { | |
5ce64950 | 9975 | int localpos; |
5b4ee69b | 9976 | |
5ce64950 MS |
9977 | localpos = expr_pc; |
9978 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9979 | } |
9980 | } | |
9981 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9982 | } | |
9983 | ||
9984 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9985 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9986 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9987 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9988 | static void | |
9989 | add_component_interval (LONGEST low, LONGEST high, | |
9990 | LONGEST* indices, int *size, int max_size) | |
9991 | { | |
9992 | int i, j; | |
5b4ee69b | 9993 | |
52ce6436 PH |
9994 | for (i = 0; i < *size; i += 2) { |
9995 | if (high >= indices[i] && low <= indices[i + 1]) | |
9996 | { | |
9997 | int kh; | |
5b4ee69b | 9998 | |
52ce6436 PH |
9999 | for (kh = i + 2; kh < *size; kh += 2) |
10000 | if (high < indices[kh]) | |
10001 | break; | |
10002 | if (low < indices[i]) | |
10003 | indices[i] = low; | |
10004 | indices[i + 1] = indices[kh - 1]; | |
10005 | if (high > indices[i + 1]) | |
10006 | indices[i + 1] = high; | |
10007 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10008 | *size -= kh - i - 2; | |
10009 | return; | |
10010 | } | |
10011 | else if (high < indices[i]) | |
10012 | break; | |
10013 | } | |
10014 | ||
10015 | if (*size == max_size) | |
10016 | error (_("Internal error: miscounted aggregate components.")); | |
10017 | *size += 2; | |
10018 | for (j = *size-1; j >= i+2; j -= 1) | |
10019 | indices[j] = indices[j - 2]; | |
10020 | indices[i] = low; | |
10021 | indices[i + 1] = high; | |
10022 | } | |
10023 | ||
6e48bd2c JB |
10024 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10025 | is different. */ | |
10026 | ||
10027 | static struct value * | |
10028 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
10029 | { | |
10030 | if (type == ada_check_typedef (value_type (arg2))) | |
10031 | return arg2; | |
10032 | ||
10033 | if (ada_is_fixed_point_type (type)) | |
10034 | return (cast_to_fixed (type, arg2)); | |
10035 | ||
10036 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10037 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10038 | |
10039 | return value_cast (type, arg2); | |
10040 | } | |
10041 | ||
284614f0 JB |
10042 | /* Evaluating Ada expressions, and printing their result. |
10043 | ------------------------------------------------------ | |
10044 | ||
21649b50 JB |
10045 | 1. Introduction: |
10046 | ---------------- | |
10047 | ||
284614f0 JB |
10048 | We usually evaluate an Ada expression in order to print its value. |
10049 | We also evaluate an expression in order to print its type, which | |
10050 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10051 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10052 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10053 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10054 | similar. | |
10055 | ||
10056 | Evaluating expressions is a little more complicated for Ada entities | |
10057 | than it is for entities in languages such as C. The main reason for | |
10058 | this is that Ada provides types whose definition might be dynamic. | |
10059 | One example of such types is variant records. Or another example | |
10060 | would be an array whose bounds can only be known at run time. | |
10061 | ||
10062 | The following description is a general guide as to what should be | |
10063 | done (and what should NOT be done) in order to evaluate an expression | |
10064 | involving such types, and when. This does not cover how the semantic | |
10065 | information is encoded by GNAT as this is covered separatly. For the | |
10066 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10067 | in the GNAT sources. | |
10068 | ||
10069 | Ideally, we should embed each part of this description next to its | |
10070 | associated code. Unfortunately, the amount of code is so vast right | |
10071 | now that it's hard to see whether the code handling a particular | |
10072 | situation might be duplicated or not. One day, when the code is | |
10073 | cleaned up, this guide might become redundant with the comments | |
10074 | inserted in the code, and we might want to remove it. | |
10075 | ||
21649b50 JB |
10076 | 2. ``Fixing'' an Entity, the Simple Case: |
10077 | ----------------------------------------- | |
10078 | ||
284614f0 JB |
10079 | When evaluating Ada expressions, the tricky issue is that they may |
10080 | reference entities whose type contents and size are not statically | |
10081 | known. Consider for instance a variant record: | |
10082 | ||
10083 | type Rec (Empty : Boolean := True) is record | |
10084 | case Empty is | |
10085 | when True => null; | |
10086 | when False => Value : Integer; | |
10087 | end case; | |
10088 | end record; | |
10089 | Yes : Rec := (Empty => False, Value => 1); | |
10090 | No : Rec := (empty => True); | |
10091 | ||
10092 | The size and contents of that record depends on the value of the | |
10093 | descriminant (Rec.Empty). At this point, neither the debugging | |
10094 | information nor the associated type structure in GDB are able to | |
10095 | express such dynamic types. So what the debugger does is to create | |
10096 | "fixed" versions of the type that applies to the specific object. | |
10097 | We also informally refer to this opperation as "fixing" an object, | |
10098 | which means creating its associated fixed type. | |
10099 | ||
10100 | Example: when printing the value of variable "Yes" above, its fixed | |
10101 | type would look like this: | |
10102 | ||
10103 | type Rec is record | |
10104 | Empty : Boolean; | |
10105 | Value : Integer; | |
10106 | end record; | |
10107 | ||
10108 | On the other hand, if we printed the value of "No", its fixed type | |
10109 | would become: | |
10110 | ||
10111 | type Rec is record | |
10112 | Empty : Boolean; | |
10113 | end record; | |
10114 | ||
10115 | Things become a little more complicated when trying to fix an entity | |
10116 | with a dynamic type that directly contains another dynamic type, | |
10117 | such as an array of variant records, for instance. There are | |
10118 | two possible cases: Arrays, and records. | |
10119 | ||
21649b50 JB |
10120 | 3. ``Fixing'' Arrays: |
10121 | --------------------- | |
10122 | ||
10123 | The type structure in GDB describes an array in terms of its bounds, | |
10124 | and the type of its elements. By design, all elements in the array | |
10125 | have the same type and we cannot represent an array of variant elements | |
10126 | using the current type structure in GDB. When fixing an array, | |
10127 | we cannot fix the array element, as we would potentially need one | |
10128 | fixed type per element of the array. As a result, the best we can do | |
10129 | when fixing an array is to produce an array whose bounds and size | |
10130 | are correct (allowing us to read it from memory), but without having | |
10131 | touched its element type. Fixing each element will be done later, | |
10132 | when (if) necessary. | |
10133 | ||
10134 | Arrays are a little simpler to handle than records, because the same | |
10135 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10136 | the amount of space actually used by each element differs from element |
21649b50 | 10137 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10138 | |
10139 | type Rec_Array is array (1 .. 2) of Rec; | |
10140 | ||
1b536f04 JB |
10141 | The actual amount of memory occupied by each element might be different |
10142 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10143 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10144 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10145 | the debugging information available, from which we can then determine |
10146 | the array size (we multiply the number of elements of the array by | |
10147 | the size of each element). | |
10148 | ||
10149 | The simplest case is when we have an array of a constrained element | |
10150 | type. For instance, consider the following type declarations: | |
10151 | ||
10152 | type Bounded_String (Max_Size : Integer) is | |
10153 | Length : Integer; | |
10154 | Buffer : String (1 .. Max_Size); | |
10155 | end record; | |
10156 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10157 | ||
10158 | In this case, the compiler describes the array as an array of | |
10159 | variable-size elements (identified by its XVS suffix) for which | |
10160 | the size can be read in the parallel XVZ variable. | |
10161 | ||
10162 | In the case of an array of an unconstrained element type, the compiler | |
10163 | wraps the array element inside a private PAD type. This type should not | |
10164 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10165 | that we also use the adjective "aligner" in our code to designate |
10166 | these wrapper types. | |
10167 | ||
1b536f04 | 10168 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10169 | known. In that case, the PAD type already has the correct size, |
10170 | and the array element should remain unfixed. | |
10171 | ||
10172 | But there are cases when this size is not statically known. | |
10173 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10174 | |
10175 | type Dynamic is array (1 .. Five) of Integer; | |
10176 | type Wrapper (Has_Length : Boolean := False) is record | |
10177 | Data : Dynamic; | |
10178 | case Has_Length is | |
10179 | when True => Length : Integer; | |
10180 | when False => null; | |
10181 | end case; | |
10182 | end record; | |
10183 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10184 | ||
10185 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10186 | Data => (others => 17), | |
10187 | Length => 1)); | |
10188 | ||
10189 | ||
10190 | The debugging info would describe variable Hello as being an | |
10191 | array of a PAD type. The size of that PAD type is not statically | |
10192 | known, but can be determined using a parallel XVZ variable. | |
10193 | In that case, a copy of the PAD type with the correct size should | |
10194 | be used for the fixed array. | |
10195 | ||
21649b50 JB |
10196 | 3. ``Fixing'' record type objects: |
10197 | ---------------------------------- | |
10198 | ||
10199 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10200 | record types. In this case, in order to compute the associated |
10201 | fixed type, we need to determine the size and offset of each of | |
10202 | its components. This, in turn, requires us to compute the fixed | |
10203 | type of each of these components. | |
10204 | ||
10205 | Consider for instance the example: | |
10206 | ||
10207 | type Bounded_String (Max_Size : Natural) is record | |
10208 | Str : String (1 .. Max_Size); | |
10209 | Length : Natural; | |
10210 | end record; | |
10211 | My_String : Bounded_String (Max_Size => 10); | |
10212 | ||
10213 | In that case, the position of field "Length" depends on the size | |
10214 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10215 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10216 | we need to fix the type of field Str. Therefore, fixing a variant |
10217 | record requires us to fix each of its components. | |
10218 | ||
10219 | However, if a component does not have a dynamic size, the component | |
10220 | should not be fixed. In particular, fields that use a PAD type | |
10221 | should not fixed. Here is an example where this might happen | |
10222 | (assuming type Rec above): | |
10223 | ||
10224 | type Container (Big : Boolean) is record | |
10225 | First : Rec; | |
10226 | After : Integer; | |
10227 | case Big is | |
10228 | when True => Another : Integer; | |
10229 | when False => null; | |
10230 | end case; | |
10231 | end record; | |
10232 | My_Container : Container := (Big => False, | |
10233 | First => (Empty => True), | |
10234 | After => 42); | |
10235 | ||
10236 | In that example, the compiler creates a PAD type for component First, | |
10237 | whose size is constant, and then positions the component After just | |
10238 | right after it. The offset of component After is therefore constant | |
10239 | in this case. | |
10240 | ||
10241 | The debugger computes the position of each field based on an algorithm | |
10242 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10243 | preceding it. Let's now imagine that the user is trying to print |
10244 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10245 | end up computing the offset of field After based on the size of the |
10246 | fixed version of field First. And since in our example First has | |
10247 | only one actual field, the size of the fixed type is actually smaller | |
10248 | than the amount of space allocated to that field, and thus we would | |
10249 | compute the wrong offset of field After. | |
10250 | ||
21649b50 JB |
10251 | To make things more complicated, we need to watch out for dynamic |
10252 | components of variant records (identified by the ___XVL suffix in | |
10253 | the component name). Even if the target type is a PAD type, the size | |
10254 | of that type might not be statically known. So the PAD type needs | |
10255 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10256 | we might end up with the wrong size for our component. This can be | |
10257 | observed with the following type declarations: | |
284614f0 JB |
10258 | |
10259 | type Octal is new Integer range 0 .. 7; | |
10260 | type Octal_Array is array (Positive range <>) of Octal; | |
10261 | pragma Pack (Octal_Array); | |
10262 | ||
10263 | type Octal_Buffer (Size : Positive) is record | |
10264 | Buffer : Octal_Array (1 .. Size); | |
10265 | Length : Integer; | |
10266 | end record; | |
10267 | ||
10268 | In that case, Buffer is a PAD type whose size is unset and needs | |
10269 | to be computed by fixing the unwrapped type. | |
10270 | ||
21649b50 JB |
10271 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10272 | ---------------------------------------------------------- | |
10273 | ||
10274 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10275 | thus far, be actually fixed? |
10276 | ||
10277 | The answer is: Only when referencing that element. For instance | |
10278 | when selecting one component of a record, this specific component | |
10279 | should be fixed at that point in time. Or when printing the value | |
10280 | of a record, each component should be fixed before its value gets | |
10281 | printed. Similarly for arrays, the element of the array should be | |
10282 | fixed when printing each element of the array, or when extracting | |
10283 | one element out of that array. On the other hand, fixing should | |
10284 | not be performed on the elements when taking a slice of an array! | |
10285 | ||
10286 | Note that one of the side-effects of miscomputing the offset and | |
10287 | size of each field is that we end up also miscomputing the size | |
10288 | of the containing type. This can have adverse results when computing | |
10289 | the value of an entity. GDB fetches the value of an entity based | |
10290 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10291 | the wrong amount of memory. In the case where the computed size is | |
10292 | too small, GDB fetches too little data to print the value of our | |
10293 | entiry. Results in this case as unpredicatble, as we usually read | |
10294 | past the buffer containing the data =:-o. */ | |
10295 | ||
10296 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10297 | for the Ada language. */ | |
10298 | ||
52ce6436 | 10299 | static struct value * |
ebf56fd3 | 10300 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10301 | int *pos, enum noside noside) |
14f9c5c9 AS |
10302 | { |
10303 | enum exp_opcode op; | |
b5385fc0 | 10304 | int tem; |
14f9c5c9 | 10305 | int pc; |
5ec18f2b | 10306 | int preeval_pos; |
14f9c5c9 AS |
10307 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10308 | struct type *type; | |
52ce6436 | 10309 | int nargs, oplen; |
d2e4a39e | 10310 | struct value **argvec; |
14f9c5c9 | 10311 | |
d2e4a39e AS |
10312 | pc = *pos; |
10313 | *pos += 1; | |
14f9c5c9 AS |
10314 | op = exp->elts[pc].opcode; |
10315 | ||
d2e4a39e | 10316 | switch (op) |
14f9c5c9 AS |
10317 | { |
10318 | default: | |
10319 | *pos -= 1; | |
6e48bd2c | 10320 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10321 | |
10322 | if (noside == EVAL_NORMAL) | |
10323 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10324 | |
10325 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10326 | then we need to perform the conversion manually, because | |
10327 | evaluate_subexp_standard doesn't do it. This conversion is | |
10328 | necessary in Ada because the different kinds of float/fixed | |
10329 | types in Ada have different representations. | |
10330 | ||
10331 | Similarly, we need to perform the conversion from OP_LONG | |
10332 | ourselves. */ | |
10333 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10334 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10335 | ||
10336 | return arg1; | |
4c4b4cd2 PH |
10337 | |
10338 | case OP_STRING: | |
10339 | { | |
76a01679 | 10340 | struct value *result; |
5b4ee69b | 10341 | |
76a01679 JB |
10342 | *pos -= 1; |
10343 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10344 | /* The result type will have code OP_STRING, bashed there from | |
10345 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10346 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10347 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10348 | return result; |
4c4b4cd2 | 10349 | } |
14f9c5c9 AS |
10350 | |
10351 | case UNOP_CAST: | |
10352 | (*pos) += 2; | |
10353 | type = exp->elts[pc + 1].type; | |
10354 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10355 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10356 | goto nosideret; |
6e48bd2c | 10357 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10358 | return arg1; |
10359 | ||
4c4b4cd2 PH |
10360 | case UNOP_QUAL: |
10361 | (*pos) += 2; | |
10362 | type = exp->elts[pc + 1].type; | |
10363 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10364 | ||
14f9c5c9 AS |
10365 | case BINOP_ASSIGN: |
10366 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10367 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10368 | { | |
10369 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10370 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10371 | return arg1; | |
10372 | return ada_value_assign (arg1, arg1); | |
10373 | } | |
003f3813 JB |
10374 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10375 | except if the lhs of our assignment is a convenience variable. | |
10376 | In the case of assigning to a convenience variable, the lhs | |
10377 | should be exactly the result of the evaluation of the rhs. */ | |
10378 | type = value_type (arg1); | |
10379 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10380 | type = NULL; | |
10381 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10382 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10383 | return arg1; |
df407dfe AC |
10384 | if (ada_is_fixed_point_type (value_type (arg1))) |
10385 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10386 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10387 | error |
323e0a4a | 10388 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10389 | else |
df407dfe | 10390 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10391 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10392 | |
10393 | case BINOP_ADD: | |
10394 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10395 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10396 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10397 | goto nosideret; |
2ac8a782 JB |
10398 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10399 | return (value_from_longest | |
10400 | (value_type (arg1), | |
10401 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10402 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10403 | return (value_from_longest | |
10404 | (value_type (arg2), | |
10405 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10406 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10407 | || ada_is_fixed_point_type (value_type (arg2))) | |
10408 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10409 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10410 | /* Do the addition, and cast the result to the type of the first |
10411 | argument. We cannot cast the result to a reference type, so if | |
10412 | ARG1 is a reference type, find its underlying type. */ | |
10413 | type = value_type (arg1); | |
10414 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10415 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10416 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10417 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10418 | |
10419 | case BINOP_SUB: | |
10420 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10421 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10422 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10423 | goto nosideret; |
2ac8a782 JB |
10424 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10425 | return (value_from_longest | |
10426 | (value_type (arg1), | |
10427 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10428 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10429 | return (value_from_longest | |
10430 | (value_type (arg2), | |
10431 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10432 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10433 | || ada_is_fixed_point_type (value_type (arg2))) | |
10434 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10435 | error (_("Operands of fixed-point subtraction " |
10436 | "must have the same type")); | |
b7789565 JB |
10437 | /* Do the substraction, and cast the result to the type of the first |
10438 | argument. We cannot cast the result to a reference type, so if | |
10439 | ARG1 is a reference type, find its underlying type. */ | |
10440 | type = value_type (arg1); | |
10441 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10442 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10443 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10444 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10445 | |
10446 | case BINOP_MUL: | |
10447 | case BINOP_DIV: | |
e1578042 JB |
10448 | case BINOP_REM: |
10449 | case BINOP_MOD: | |
14f9c5c9 AS |
10450 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10451 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10452 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10453 | goto nosideret; |
e1578042 | 10454 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10455 | { |
10456 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10457 | return value_zero (value_type (arg1), not_lval); | |
10458 | } | |
14f9c5c9 | 10459 | else |
4c4b4cd2 | 10460 | { |
a53b7a21 | 10461 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10462 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10463 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10464 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10465 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10466 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10467 | return ada_value_binop (arg1, arg2, op); |
10468 | } | |
10469 | ||
4c4b4cd2 PH |
10470 | case BINOP_EQUAL: |
10471 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10472 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10473 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10474 | if (noside == EVAL_SKIP) |
76a01679 | 10475 | goto nosideret; |
4c4b4cd2 | 10476 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10477 | tem = 0; |
4c4b4cd2 | 10478 | else |
f44316fa UW |
10479 | { |
10480 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10481 | tem = ada_value_equal (arg1, arg2); | |
10482 | } | |
4c4b4cd2 | 10483 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10484 | tem = !tem; |
fbb06eb1 UW |
10485 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10486 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10487 | |
10488 | case UNOP_NEG: | |
10489 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10490 | if (noside == EVAL_SKIP) | |
10491 | goto nosideret; | |
df407dfe AC |
10492 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10493 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10494 | else |
f44316fa UW |
10495 | { |
10496 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10497 | return value_neg (arg1); | |
10498 | } | |
4c4b4cd2 | 10499 | |
2330c6c6 JB |
10500 | case BINOP_LOGICAL_AND: |
10501 | case BINOP_LOGICAL_OR: | |
10502 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10503 | { |
10504 | struct value *val; | |
10505 | ||
10506 | *pos -= 1; | |
10507 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10508 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10509 | return value_cast (type, val); | |
000d5124 | 10510 | } |
2330c6c6 JB |
10511 | |
10512 | case BINOP_BITWISE_AND: | |
10513 | case BINOP_BITWISE_IOR: | |
10514 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10515 | { |
10516 | struct value *val; | |
10517 | ||
10518 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10519 | *pos = pc; | |
10520 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10521 | ||
10522 | return value_cast (value_type (arg1), val); | |
10523 | } | |
2330c6c6 | 10524 | |
14f9c5c9 AS |
10525 | case OP_VAR_VALUE: |
10526 | *pos -= 1; | |
6799def4 | 10527 | |
14f9c5c9 | 10528 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10529 | { |
10530 | *pos += 4; | |
10531 | goto nosideret; | |
10532 | } | |
da5c522f JB |
10533 | |
10534 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10535 | /* Only encountered when an unresolved symbol occurs in a |
10536 | context other than a function call, in which case, it is | |
52ce6436 | 10537 | invalid. */ |
323e0a4a | 10538 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10539 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10540 | |
10541 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10542 | { |
0c1f74cf | 10543 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10544 | /* Check to see if this is a tagged type. We also need to handle |
10545 | the case where the type is a reference to a tagged type, but | |
10546 | we have to be careful to exclude pointers to tagged types. | |
10547 | The latter should be shown as usual (as a pointer), whereas | |
10548 | a reference should mostly be transparent to the user. */ | |
10549 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10550 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10551 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10552 | { |
10553 | /* Tagged types are a little special in the fact that the real | |
10554 | type is dynamic and can only be determined by inspecting the | |
10555 | object's tag. This means that we need to get the object's | |
10556 | value first (EVAL_NORMAL) and then extract the actual object | |
10557 | type from its tag. | |
10558 | ||
10559 | Note that we cannot skip the final step where we extract | |
10560 | the object type from its tag, because the EVAL_NORMAL phase | |
10561 | results in dynamic components being resolved into fixed ones. | |
10562 | This can cause problems when trying to print the type | |
10563 | description of tagged types whose parent has a dynamic size: | |
10564 | We use the type name of the "_parent" component in order | |
10565 | to print the name of the ancestor type in the type description. | |
10566 | If that component had a dynamic size, the resolution into | |
10567 | a fixed type would result in the loss of that type name, | |
10568 | thus preventing us from printing the name of the ancestor | |
10569 | type in the type description. */ | |
10570 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10571 | ||
10572 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10573 | { | |
10574 | struct type *actual_type; | |
10575 | ||
10576 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10577 | if (actual_type == NULL) | |
10578 | /* If, for some reason, we were unable to determine | |
10579 | the actual type from the tag, then use the static | |
10580 | approximation that we just computed as a fallback. | |
10581 | This can happen if the debugging information is | |
10582 | incomplete, for instance. */ | |
10583 | actual_type = type; | |
10584 | return value_zero (actual_type, not_lval); | |
10585 | } | |
10586 | else | |
10587 | { | |
10588 | /* In the case of a ref, ada_coerce_ref takes care | |
10589 | of determining the actual type. But the evaluation | |
10590 | should return a ref as it should be valid to ask | |
10591 | for its address; so rebuild a ref after coerce. */ | |
10592 | arg1 = ada_coerce_ref (arg1); | |
10593 | return value_ref (arg1); | |
10594 | } | |
10595 | } | |
0c1f74cf | 10596 | |
84754697 JB |
10597 | /* Records and unions for which GNAT encodings have been |
10598 | generated need to be statically fixed as well. | |
10599 | Otherwise, non-static fixing produces a type where | |
10600 | all dynamic properties are removed, which prevents "ptype" | |
10601 | from being able to completely describe the type. | |
10602 | For instance, a case statement in a variant record would be | |
10603 | replaced by the relevant components based on the actual | |
10604 | value of the discriminants. */ | |
10605 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10606 | && dynamic_template_type (type) != NULL) | |
10607 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10608 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10609 | { | |
10610 | *pos += 4; | |
10611 | return value_zero (to_static_fixed_type (type), not_lval); | |
10612 | } | |
4c4b4cd2 | 10613 | } |
da5c522f JB |
10614 | |
10615 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10616 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10617 | |
10618 | case OP_FUNCALL: | |
10619 | (*pos) += 2; | |
10620 | ||
10621 | /* Allocate arg vector, including space for the function to be | |
10622 | called in argvec[0] and a terminating NULL. */ | |
10623 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10624 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10625 | |
10626 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10627 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10628 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10629 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10630 | else | |
10631 | { | |
10632 | for (tem = 0; tem <= nargs; tem += 1) | |
10633 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10634 | argvec[tem] = 0; | |
10635 | ||
10636 | if (noside == EVAL_SKIP) | |
10637 | goto nosideret; | |
10638 | } | |
10639 | ||
ad82864c JB |
10640 | if (ada_is_constrained_packed_array_type |
10641 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10642 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10643 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10644 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10645 | /* This is a packed array that has already been fixed, and | |
10646 | therefore already coerced to a simple array. Nothing further | |
10647 | to do. */ | |
10648 | ; | |
e6c2c623 PMR |
10649 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10650 | { | |
10651 | /* Make sure we dereference references so that all the code below | |
10652 | feels like it's really handling the referenced value. Wrapping | |
10653 | types (for alignment) may be there, so make sure we strip them as | |
10654 | well. */ | |
10655 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10656 | } | |
10657 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10658 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10659 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10660 | |
df407dfe | 10661 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10662 | |
10663 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10664 | them. So, if this is an array typedef (encoding use for array |
10665 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10666 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10667 | type = ada_typedef_target_type (type); | |
10668 | ||
4c4b4cd2 PH |
10669 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10670 | { | |
61ee279c | 10671 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10672 | { |
10673 | case TYPE_CODE_FUNC: | |
61ee279c | 10674 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10675 | break; |
10676 | case TYPE_CODE_ARRAY: | |
10677 | break; | |
10678 | case TYPE_CODE_STRUCT: | |
10679 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10680 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10681 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10682 | break; |
10683 | default: | |
323e0a4a | 10684 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10685 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10686 | break; |
10687 | } | |
10688 | } | |
10689 | ||
10690 | switch (TYPE_CODE (type)) | |
10691 | { | |
10692 | case TYPE_CODE_FUNC: | |
10693 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10694 | { |
10695 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10696 | ||
10697 | if (TYPE_GNU_IFUNC (type)) | |
10698 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10699 | return allocate_value (rtype); | |
10700 | } | |
4c4b4cd2 | 10701 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10702 | case TYPE_CODE_INTERNAL_FUNCTION: |
10703 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10704 | /* We don't know anything about what the internal | |
10705 | function might return, but we have to return | |
10706 | something. */ | |
10707 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10708 | not_lval); | |
10709 | else | |
10710 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10711 | argvec[0], nargs, argvec + 1); | |
10712 | ||
4c4b4cd2 PH |
10713 | case TYPE_CODE_STRUCT: |
10714 | { | |
10715 | int arity; | |
10716 | ||
4c4b4cd2 PH |
10717 | arity = ada_array_arity (type); |
10718 | type = ada_array_element_type (type, nargs); | |
10719 | if (type == NULL) | |
323e0a4a | 10720 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10721 | if (arity != nargs) |
323e0a4a | 10722 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10723 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10724 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10725 | return |
10726 | unwrap_value (ada_value_subscript | |
10727 | (argvec[0], nargs, argvec + 1)); | |
10728 | } | |
10729 | case TYPE_CODE_ARRAY: | |
10730 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10731 | { | |
10732 | type = ada_array_element_type (type, nargs); | |
10733 | if (type == NULL) | |
323e0a4a | 10734 | error (_("element type of array unknown")); |
4c4b4cd2 | 10735 | else |
0a07e705 | 10736 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10737 | } |
10738 | return | |
10739 | unwrap_value (ada_value_subscript | |
10740 | (ada_coerce_to_simple_array (argvec[0]), | |
10741 | nargs, argvec + 1)); | |
10742 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10743 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10744 | { | |
deede10c | 10745 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10746 | type = ada_array_element_type (type, nargs); |
10747 | if (type == NULL) | |
323e0a4a | 10748 | error (_("element type of array unknown")); |
4c4b4cd2 | 10749 | else |
0a07e705 | 10750 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10751 | } |
10752 | return | |
deede10c JB |
10753 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10754 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10755 | |
10756 | default: | |
e1d5a0d2 PH |
10757 | error (_("Attempt to index or call something other than an " |
10758 | "array or function")); | |
4c4b4cd2 PH |
10759 | } |
10760 | ||
10761 | case TERNOP_SLICE: | |
10762 | { | |
10763 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10764 | struct value *low_bound_val = | |
10765 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10766 | struct value *high_bound_val = |
10767 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10768 | LONGEST low_bound; | |
10769 | LONGEST high_bound; | |
5b4ee69b | 10770 | |
994b9211 AC |
10771 | low_bound_val = coerce_ref (low_bound_val); |
10772 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10773 | low_bound = value_as_long (low_bound_val); |
10774 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10775 | |
4c4b4cd2 PH |
10776 | if (noside == EVAL_SKIP) |
10777 | goto nosideret; | |
10778 | ||
4c4b4cd2 PH |
10779 | /* If this is a reference to an aligner type, then remove all |
10780 | the aligners. */ | |
df407dfe AC |
10781 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10782 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10783 | TYPE_TARGET_TYPE (value_type (array)) = | |
10784 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10785 | |
ad82864c | 10786 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10787 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10788 | |
10789 | /* If this is a reference to an array or an array lvalue, | |
10790 | convert to a pointer. */ | |
df407dfe AC |
10791 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10792 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10793 | && VALUE_LVAL (array) == lval_memory)) |
10794 | array = value_addr (array); | |
10795 | ||
1265e4aa | 10796 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10797 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10798 | (value_type (array)))) |
0b5d8877 | 10799 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10800 | |
10801 | array = ada_coerce_to_simple_array_ptr (array); | |
10802 | ||
714e53ab PH |
10803 | /* If we have more than one level of pointer indirection, |
10804 | dereference the value until we get only one level. */ | |
df407dfe AC |
10805 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10806 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10807 | == TYPE_CODE_PTR)) |
10808 | array = value_ind (array); | |
10809 | ||
10810 | /* Make sure we really do have an array type before going further, | |
10811 | to avoid a SEGV when trying to get the index type or the target | |
10812 | type later down the road if the debug info generated by | |
10813 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10814 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10815 | error (_("cannot take slice of non-array")); |
714e53ab | 10816 | |
828292f2 JB |
10817 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10818 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10819 | { |
828292f2 JB |
10820 | struct type *type0 = ada_check_typedef (value_type (array)); |
10821 | ||
0b5d8877 | 10822 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10823 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10824 | else |
10825 | { | |
10826 | struct type *arr_type0 = | |
828292f2 | 10827 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10828 | |
f5938064 JG |
10829 | return ada_value_slice_from_ptr (array, arr_type0, |
10830 | longest_to_int (low_bound), | |
10831 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10832 | } |
10833 | } | |
10834 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10835 | return array; | |
10836 | else if (high_bound < low_bound) | |
df407dfe | 10837 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10838 | else |
529cad9c PH |
10839 | return ada_value_slice (array, longest_to_int (low_bound), |
10840 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10841 | } |
14f9c5c9 | 10842 | |
4c4b4cd2 PH |
10843 | case UNOP_IN_RANGE: |
10844 | (*pos) += 2; | |
10845 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10846 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10847 | |
14f9c5c9 | 10848 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10849 | goto nosideret; |
14f9c5c9 | 10850 | |
4c4b4cd2 PH |
10851 | switch (TYPE_CODE (type)) |
10852 | { | |
10853 | default: | |
e1d5a0d2 PH |
10854 | lim_warning (_("Membership test incompletely implemented; " |
10855 | "always returns true")); | |
fbb06eb1 UW |
10856 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10857 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10858 | |
10859 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10860 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10861 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10862 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10863 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10864 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10865 | return | |
10866 | value_from_longest (type, | |
4c4b4cd2 PH |
10867 | (value_less (arg1, arg3) |
10868 | || value_equal (arg1, arg3)) | |
10869 | && (value_less (arg2, arg1) | |
10870 | || value_equal (arg2, arg1))); | |
10871 | } | |
10872 | ||
10873 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10874 | (*pos) += 2; |
4c4b4cd2 PH |
10875 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10876 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10877 | |
4c4b4cd2 PH |
10878 | if (noside == EVAL_SKIP) |
10879 | goto nosideret; | |
14f9c5c9 | 10880 | |
4c4b4cd2 | 10881 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10882 | { |
10883 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10884 | return value_zero (type, not_lval); | |
10885 | } | |
14f9c5c9 | 10886 | |
4c4b4cd2 | 10887 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10888 | |
1eea4ebd UW |
10889 | type = ada_index_type (value_type (arg2), tem, "range"); |
10890 | if (!type) | |
10891 | type = value_type (arg1); | |
14f9c5c9 | 10892 | |
1eea4ebd UW |
10893 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10894 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10895 | |
f44316fa UW |
10896 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10897 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10898 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10899 | return |
fbb06eb1 | 10900 | value_from_longest (type, |
4c4b4cd2 PH |
10901 | (value_less (arg1, arg3) |
10902 | || value_equal (arg1, arg3)) | |
10903 | && (value_less (arg2, arg1) | |
10904 | || value_equal (arg2, arg1))); | |
10905 | ||
10906 | case TERNOP_IN_RANGE: | |
10907 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10908 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10909 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10910 | ||
10911 | if (noside == EVAL_SKIP) | |
10912 | goto nosideret; | |
10913 | ||
f44316fa UW |
10914 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10915 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10916 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10917 | return |
fbb06eb1 | 10918 | value_from_longest (type, |
4c4b4cd2 PH |
10919 | (value_less (arg1, arg3) |
10920 | || value_equal (arg1, arg3)) | |
10921 | && (value_less (arg2, arg1) | |
10922 | || value_equal (arg2, arg1))); | |
10923 | ||
10924 | case OP_ATR_FIRST: | |
10925 | case OP_ATR_LAST: | |
10926 | case OP_ATR_LENGTH: | |
10927 | { | |
76a01679 | 10928 | struct type *type_arg; |
5b4ee69b | 10929 | |
76a01679 JB |
10930 | if (exp->elts[*pos].opcode == OP_TYPE) |
10931 | { | |
10932 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10933 | arg1 = NULL; | |
5bc23cb3 | 10934 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10935 | } |
10936 | else | |
10937 | { | |
10938 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10939 | type_arg = NULL; | |
10940 | } | |
10941 | ||
10942 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10943 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10944 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10945 | *pos += 4; | |
10946 | ||
10947 | if (noside == EVAL_SKIP) | |
10948 | goto nosideret; | |
10949 | ||
10950 | if (type_arg == NULL) | |
10951 | { | |
10952 | arg1 = ada_coerce_ref (arg1); | |
10953 | ||
ad82864c | 10954 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10955 | arg1 = ada_coerce_to_simple_array (arg1); |
10956 | ||
aa4fb036 | 10957 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10958 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10959 | else |
10960 | { | |
10961 | type = ada_index_type (value_type (arg1), tem, | |
10962 | ada_attribute_name (op)); | |
10963 | if (type == NULL) | |
10964 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10965 | } | |
76a01679 JB |
10966 | |
10967 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10968 | return allocate_value (type); |
76a01679 JB |
10969 | |
10970 | switch (op) | |
10971 | { | |
10972 | default: /* Should never happen. */ | |
323e0a4a | 10973 | error (_("unexpected attribute encountered")); |
76a01679 | 10974 | case OP_ATR_FIRST: |
1eea4ebd UW |
10975 | return value_from_longest |
10976 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10977 | case OP_ATR_LAST: |
1eea4ebd UW |
10978 | return value_from_longest |
10979 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10980 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10981 | return value_from_longest |
10982 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10983 | } |
10984 | } | |
10985 | else if (discrete_type_p (type_arg)) | |
10986 | { | |
10987 | struct type *range_type; | |
0d5cff50 | 10988 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10989 | |
76a01679 JB |
10990 | range_type = NULL; |
10991 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10992 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10993 | if (range_type == NULL) |
10994 | range_type = type_arg; | |
10995 | switch (op) | |
10996 | { | |
10997 | default: | |
323e0a4a | 10998 | error (_("unexpected attribute encountered")); |
76a01679 | 10999 | case OP_ATR_FIRST: |
690cc4eb | 11000 | return value_from_longest |
43bbcdc2 | 11001 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11002 | case OP_ATR_LAST: |
690cc4eb | 11003 | return value_from_longest |
43bbcdc2 | 11004 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11005 | case OP_ATR_LENGTH: |
323e0a4a | 11006 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11007 | } |
11008 | } | |
11009 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11010 | error (_("unimplemented type attribute")); |
76a01679 JB |
11011 | else |
11012 | { | |
11013 | LONGEST low, high; | |
11014 | ||
ad82864c JB |
11015 | if (ada_is_constrained_packed_array_type (type_arg)) |
11016 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11017 | |
aa4fb036 | 11018 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11019 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11020 | else |
11021 | { | |
11022 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11023 | if (type == NULL) | |
11024 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11025 | } | |
1eea4ebd | 11026 | |
76a01679 JB |
11027 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11028 | return allocate_value (type); | |
11029 | ||
11030 | switch (op) | |
11031 | { | |
11032 | default: | |
323e0a4a | 11033 | error (_("unexpected attribute encountered")); |
76a01679 | 11034 | case OP_ATR_FIRST: |
1eea4ebd | 11035 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11036 | return value_from_longest (type, low); |
11037 | case OP_ATR_LAST: | |
1eea4ebd | 11038 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11039 | return value_from_longest (type, high); |
11040 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11041 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11042 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11043 | return value_from_longest (type, high - low + 1); |
11044 | } | |
11045 | } | |
14f9c5c9 AS |
11046 | } |
11047 | ||
4c4b4cd2 PH |
11048 | case OP_ATR_TAG: |
11049 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11050 | if (noside == EVAL_SKIP) | |
76a01679 | 11051 | goto nosideret; |
4c4b4cd2 PH |
11052 | |
11053 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11054 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11055 | |
11056 | return ada_value_tag (arg1); | |
11057 | ||
11058 | case OP_ATR_MIN: | |
11059 | case OP_ATR_MAX: | |
11060 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11061 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11062 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11063 | if (noside == EVAL_SKIP) | |
76a01679 | 11064 | goto nosideret; |
d2e4a39e | 11065 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11066 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11067 | else |
f44316fa UW |
11068 | { |
11069 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11070 | return value_binop (arg1, arg2, | |
11071 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11072 | } | |
14f9c5c9 | 11073 | |
4c4b4cd2 PH |
11074 | case OP_ATR_MODULUS: |
11075 | { | |
31dedfee | 11076 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11077 | |
5b4ee69b | 11078 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11079 | if (noside == EVAL_SKIP) |
11080 | goto nosideret; | |
4c4b4cd2 | 11081 | |
76a01679 | 11082 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11083 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11084 | |
76a01679 JB |
11085 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11086 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11087 | } |
11088 | ||
11089 | ||
11090 | case OP_ATR_POS: | |
11091 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11092 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11093 | if (noside == EVAL_SKIP) | |
76a01679 | 11094 | goto nosideret; |
3cb382c9 UW |
11095 | type = builtin_type (exp->gdbarch)->builtin_int; |
11096 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11097 | return value_zero (type, not_lval); | |
14f9c5c9 | 11098 | else |
3cb382c9 | 11099 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11100 | |
4c4b4cd2 PH |
11101 | case OP_ATR_SIZE: |
11102 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11103 | type = value_type (arg1); |
11104 | ||
11105 | /* If the argument is a reference, then dereference its type, since | |
11106 | the user is really asking for the size of the actual object, | |
11107 | not the size of the pointer. */ | |
11108 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11109 | type = TYPE_TARGET_TYPE (type); | |
11110 | ||
4c4b4cd2 | 11111 | if (noside == EVAL_SKIP) |
76a01679 | 11112 | goto nosideret; |
4c4b4cd2 | 11113 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11114 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11115 | else |
22601c15 | 11116 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11117 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11118 | |
11119 | case OP_ATR_VAL: | |
11120 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11121 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11122 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11123 | if (noside == EVAL_SKIP) |
76a01679 | 11124 | goto nosideret; |
4c4b4cd2 | 11125 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11126 | return value_zero (type, not_lval); |
4c4b4cd2 | 11127 | else |
76a01679 | 11128 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11129 | |
11130 | case BINOP_EXP: | |
11131 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11132 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11133 | if (noside == EVAL_SKIP) | |
11134 | goto nosideret; | |
11135 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11136 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11137 | else |
f44316fa UW |
11138 | { |
11139 | /* For integer exponentiation operations, | |
11140 | only promote the first argument. */ | |
11141 | if (is_integral_type (value_type (arg2))) | |
11142 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11143 | else | |
11144 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11145 | ||
11146 | return value_binop (arg1, arg2, op); | |
11147 | } | |
4c4b4cd2 PH |
11148 | |
11149 | case UNOP_PLUS: | |
11150 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11151 | if (noside == EVAL_SKIP) | |
11152 | goto nosideret; | |
11153 | else | |
11154 | return arg1; | |
11155 | ||
11156 | case UNOP_ABS: | |
11157 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11158 | if (noside == EVAL_SKIP) | |
11159 | goto nosideret; | |
f44316fa | 11160 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11161 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11162 | return value_neg (arg1); |
14f9c5c9 | 11163 | else |
4c4b4cd2 | 11164 | return arg1; |
14f9c5c9 AS |
11165 | |
11166 | case UNOP_IND: | |
5ec18f2b | 11167 | preeval_pos = *pos; |
6b0d7253 | 11168 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11169 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11170 | goto nosideret; |
df407dfe | 11171 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11172 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11173 | { |
11174 | if (ada_is_array_descriptor_type (type)) | |
11175 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11176 | { | |
11177 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11178 | |
4c4b4cd2 | 11179 | if (arrType == NULL) |
323e0a4a | 11180 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11181 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11182 | } |
11183 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11184 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11185 | /* In C you can dereference an array to get the 1st elt. */ | |
11186 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11187 | { |
5ec18f2b JG |
11188 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11189 | only be determined by inspecting the object's tag. | |
11190 | This means that we need to evaluate completely the | |
11191 | expression in order to get its type. */ | |
11192 | ||
023db19c JB |
11193 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11194 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11195 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11196 | { | |
11197 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11198 | EVAL_NORMAL); | |
11199 | type = value_type (ada_value_ind (arg1)); | |
11200 | } | |
11201 | else | |
11202 | { | |
11203 | type = to_static_fixed_type | |
11204 | (ada_aligned_type | |
11205 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11206 | } | |
c1b5a1a6 | 11207 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11208 | return value_zero (type, lval_memory); |
11209 | } | |
4c4b4cd2 | 11210 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11211 | { |
11212 | /* GDB allows dereferencing an int. */ | |
11213 | if (expect_type == NULL) | |
11214 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11215 | lval_memory); | |
11216 | else | |
11217 | { | |
11218 | expect_type = | |
11219 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11220 | return value_zero (expect_type, lval_memory); | |
11221 | } | |
11222 | } | |
4c4b4cd2 | 11223 | else |
323e0a4a | 11224 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11225 | } |
0963b4bd | 11226 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11227 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11228 | |
96967637 JB |
11229 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11230 | /* GDB allows dereferencing an int. If we were given | |
11231 | the expect_type, then use that as the target type. | |
11232 | Otherwise, assume that the target type is an int. */ | |
11233 | { | |
11234 | if (expect_type != NULL) | |
11235 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11236 | arg1)); | |
11237 | else | |
11238 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11239 | (CORE_ADDR) value_as_address (arg1)); | |
11240 | } | |
6b0d7253 | 11241 | |
4c4b4cd2 PH |
11242 | if (ada_is_array_descriptor_type (type)) |
11243 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11244 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11245 | else |
4c4b4cd2 | 11246 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11247 | |
11248 | case STRUCTOP_STRUCT: | |
11249 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11250 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11251 | preeval_pos = *pos; |
14f9c5c9 AS |
11252 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11253 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11254 | goto nosideret; |
14f9c5c9 | 11255 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11256 | { |
df407dfe | 11257 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11258 | |
76a01679 JB |
11259 | if (ada_is_tagged_type (type1, 1)) |
11260 | { | |
11261 | type = ada_lookup_struct_elt_type (type1, | |
11262 | &exp->elts[pc + 2].string, | |
11263 | 1, 1, NULL); | |
5ec18f2b JG |
11264 | |
11265 | /* If the field is not found, check if it exists in the | |
11266 | extension of this object's type. This means that we | |
11267 | need to evaluate completely the expression. */ | |
11268 | ||
76a01679 | 11269 | if (type == NULL) |
5ec18f2b JG |
11270 | { |
11271 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11272 | EVAL_NORMAL); | |
11273 | arg1 = ada_value_struct_elt (arg1, | |
11274 | &exp->elts[pc + 2].string, | |
11275 | 0); | |
11276 | arg1 = unwrap_value (arg1); | |
11277 | type = value_type (ada_to_fixed_value (arg1)); | |
11278 | } | |
76a01679 JB |
11279 | } |
11280 | else | |
11281 | type = | |
11282 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
11283 | 0, NULL); | |
11284 | ||
11285 | return value_zero (ada_aligned_type (type), lval_memory); | |
11286 | } | |
14f9c5c9 | 11287 | else |
284614f0 JB |
11288 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
11289 | arg1 = unwrap_value (arg1); | |
11290 | return ada_to_fixed_value (arg1); | |
11291 | ||
14f9c5c9 | 11292 | case OP_TYPE: |
4c4b4cd2 PH |
11293 | /* The value is not supposed to be used. This is here to make it |
11294 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11295 | (*pos) += 2; |
11296 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11297 | goto nosideret; |
14f9c5c9 | 11298 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11299 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11300 | else |
323e0a4a | 11301 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11302 | |
11303 | case OP_AGGREGATE: | |
11304 | case OP_CHOICES: | |
11305 | case OP_OTHERS: | |
11306 | case OP_DISCRETE_RANGE: | |
11307 | case OP_POSITIONAL: | |
11308 | case OP_NAME: | |
11309 | if (noside == EVAL_NORMAL) | |
11310 | switch (op) | |
11311 | { | |
11312 | case OP_NAME: | |
11313 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11314 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11315 | case OP_AGGREGATE: |
11316 | error (_("Aggregates only allowed on the right of an assignment")); | |
11317 | default: | |
0963b4bd MS |
11318 | internal_error (__FILE__, __LINE__, |
11319 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11320 | } |
11321 | ||
11322 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11323 | *pos += oplen - 1; | |
11324 | for (tem = 0; tem < nargs; tem += 1) | |
11325 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11326 | goto nosideret; | |
14f9c5c9 AS |
11327 | } |
11328 | ||
11329 | nosideret: | |
22601c15 | 11330 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11331 | } |
14f9c5c9 | 11332 | \f |
d2e4a39e | 11333 | |
4c4b4cd2 | 11334 | /* Fixed point */ |
14f9c5c9 AS |
11335 | |
11336 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11337 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11338 | Otherwise, return NULL. */ |
14f9c5c9 | 11339 | |
d2e4a39e | 11340 | static const char * |
ebf56fd3 | 11341 | fixed_type_info (struct type *type) |
14f9c5c9 | 11342 | { |
d2e4a39e | 11343 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11344 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11345 | ||
d2e4a39e AS |
11346 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11347 | { | |
14f9c5c9 | 11348 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11349 | |
14f9c5c9 | 11350 | if (tail == NULL) |
4c4b4cd2 | 11351 | return NULL; |
d2e4a39e | 11352 | else |
4c4b4cd2 | 11353 | return tail + 5; |
14f9c5c9 AS |
11354 | } |
11355 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11356 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11357 | else | |
11358 | return NULL; | |
11359 | } | |
11360 | ||
4c4b4cd2 | 11361 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11362 | |
11363 | int | |
ebf56fd3 | 11364 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11365 | { |
11366 | return fixed_type_info (type) != NULL; | |
11367 | } | |
11368 | ||
4c4b4cd2 PH |
11369 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11370 | ||
11371 | int | |
11372 | ada_is_system_address_type (struct type *type) | |
11373 | { | |
11374 | return (TYPE_NAME (type) | |
11375 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11376 | } | |
11377 | ||
14f9c5c9 AS |
11378 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11379 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11380 | delta cannot be determined. */ |
14f9c5c9 AS |
11381 | |
11382 | DOUBLEST | |
ebf56fd3 | 11383 | ada_delta (struct type *type) |
14f9c5c9 AS |
11384 | { |
11385 | const char *encoding = fixed_type_info (type); | |
facc390f | 11386 | DOUBLEST num, den; |
14f9c5c9 | 11387 | |
facc390f JB |
11388 | /* Strictly speaking, num and den are encoded as integer. However, |
11389 | they may not fit into a long, and they will have to be converted | |
11390 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11391 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11392 | &num, &den) < 2) | |
14f9c5c9 | 11393 | return -1.0; |
d2e4a39e | 11394 | else |
facc390f | 11395 | return num / den; |
14f9c5c9 AS |
11396 | } |
11397 | ||
11398 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11399 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11400 | |
11401 | static DOUBLEST | |
ebf56fd3 | 11402 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11403 | { |
11404 | const char *encoding = fixed_type_info (type); | |
facc390f | 11405 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11406 | int n; |
d2e4a39e | 11407 | |
facc390f JB |
11408 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11409 | they may not fit into a long, and they will have to be converted | |
11410 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11411 | n = sscanf (encoding, | |
11412 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11413 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11414 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11415 | |
11416 | if (n < 2) | |
11417 | return 1.0; | |
11418 | else if (n == 4) | |
facc390f | 11419 | return num1 / den1; |
d2e4a39e | 11420 | else |
facc390f | 11421 | return num0 / den0; |
14f9c5c9 AS |
11422 | } |
11423 | ||
11424 | ||
11425 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11426 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11427 | |
11428 | DOUBLEST | |
ebf56fd3 | 11429 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11430 | { |
d2e4a39e | 11431 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11432 | } |
11433 | ||
4c4b4cd2 PH |
11434 | /* The representation of a fixed-point value of type TYPE |
11435 | corresponding to the value X. */ | |
14f9c5c9 AS |
11436 | |
11437 | LONGEST | |
ebf56fd3 | 11438 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11439 | { |
11440 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11441 | } | |
11442 | ||
14f9c5c9 | 11443 | \f |
d2e4a39e | 11444 | |
4c4b4cd2 | 11445 | /* Range types */ |
14f9c5c9 AS |
11446 | |
11447 | /* Scan STR beginning at position K for a discriminant name, and | |
11448 | return the value of that discriminant field of DVAL in *PX. If | |
11449 | PNEW_K is not null, put the position of the character beyond the | |
11450 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11451 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11452 | |
11453 | static int | |
108d56a4 | 11454 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11455 | int *pnew_k) |
14f9c5c9 AS |
11456 | { |
11457 | static char *bound_buffer = NULL; | |
11458 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11459 | const char *pstart, *pend, *bound; |
d2e4a39e | 11460 | struct value *bound_val; |
14f9c5c9 AS |
11461 | |
11462 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11463 | return 0; | |
11464 | ||
5da1a4d3 SM |
11465 | pstart = str + k; |
11466 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11467 | if (pend == NULL) |
11468 | { | |
5da1a4d3 | 11469 | bound = pstart; |
14f9c5c9 AS |
11470 | k += strlen (bound); |
11471 | } | |
d2e4a39e | 11472 | else |
14f9c5c9 | 11473 | { |
5da1a4d3 SM |
11474 | int len = pend - pstart; |
11475 | ||
11476 | /* Strip __ and beyond. */ | |
11477 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11478 | strncpy (bound_buffer, pstart, len); | |
11479 | bound_buffer[len] = '\0'; | |
11480 | ||
14f9c5c9 | 11481 | bound = bound_buffer; |
d2e4a39e | 11482 | k = pend - str; |
14f9c5c9 | 11483 | } |
d2e4a39e | 11484 | |
df407dfe | 11485 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11486 | if (bound_val == NULL) |
11487 | return 0; | |
11488 | ||
11489 | *px = value_as_long (bound_val); | |
11490 | if (pnew_k != NULL) | |
11491 | *pnew_k = k; | |
11492 | return 1; | |
11493 | } | |
11494 | ||
11495 | /* Value of variable named NAME in the current environment. If | |
11496 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11497 | otherwise causes an error with message ERR_MSG. */ |
11498 | ||
d2e4a39e AS |
11499 | static struct value * |
11500 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11501 | { |
d12307c1 | 11502 | struct block_symbol *syms; |
14f9c5c9 AS |
11503 | int nsyms; |
11504 | ||
4c4b4cd2 | 11505 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11506 | &syms); |
14f9c5c9 AS |
11507 | |
11508 | if (nsyms != 1) | |
11509 | { | |
11510 | if (err_msg == NULL) | |
4c4b4cd2 | 11511 | return 0; |
14f9c5c9 | 11512 | else |
8a3fe4f8 | 11513 | error (("%s"), err_msg); |
14f9c5c9 AS |
11514 | } |
11515 | ||
d12307c1 | 11516 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11517 | } |
d2e4a39e | 11518 | |
14f9c5c9 | 11519 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11520 | no such variable found, returns 0, and sets *FLAG to 0. If |
11521 | successful, sets *FLAG to 1. */ | |
11522 | ||
14f9c5c9 | 11523 | LONGEST |
4c4b4cd2 | 11524 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11525 | { |
4c4b4cd2 | 11526 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11527 | |
14f9c5c9 AS |
11528 | if (var_val == 0) |
11529 | { | |
11530 | if (flag != NULL) | |
4c4b4cd2 | 11531 | *flag = 0; |
14f9c5c9 AS |
11532 | return 0; |
11533 | } | |
11534 | else | |
11535 | { | |
11536 | if (flag != NULL) | |
4c4b4cd2 | 11537 | *flag = 1; |
14f9c5c9 AS |
11538 | return value_as_long (var_val); |
11539 | } | |
11540 | } | |
d2e4a39e | 11541 | |
14f9c5c9 AS |
11542 | |
11543 | /* Return a range type whose base type is that of the range type named | |
11544 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11545 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11546 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11547 | corresponding range type from debug information; fall back to using it | |
11548 | if symbol lookup fails. If a new type must be created, allocate it | |
11549 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11550 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11551 | |
d2e4a39e | 11552 | static struct type * |
28c85d6c | 11553 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11554 | { |
0d5cff50 | 11555 | const char *name; |
14f9c5c9 | 11556 | struct type *base_type; |
108d56a4 | 11557 | const char *subtype_info; |
14f9c5c9 | 11558 | |
28c85d6c JB |
11559 | gdb_assert (raw_type != NULL); |
11560 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11561 | |
1ce677a4 | 11562 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11563 | base_type = TYPE_TARGET_TYPE (raw_type); |
11564 | else | |
11565 | base_type = raw_type; | |
11566 | ||
28c85d6c | 11567 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11568 | subtype_info = strstr (name, "___XD"); |
11569 | if (subtype_info == NULL) | |
690cc4eb | 11570 | { |
43bbcdc2 PH |
11571 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11572 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11573 | |
690cc4eb PH |
11574 | if (L < INT_MIN || U > INT_MAX) |
11575 | return raw_type; | |
11576 | else | |
0c9c3474 SA |
11577 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11578 | L, U); | |
690cc4eb | 11579 | } |
14f9c5c9 AS |
11580 | else |
11581 | { | |
11582 | static char *name_buf = NULL; | |
11583 | static size_t name_len = 0; | |
11584 | int prefix_len = subtype_info - name; | |
11585 | LONGEST L, U; | |
11586 | struct type *type; | |
108d56a4 | 11587 | const char *bounds_str; |
14f9c5c9 AS |
11588 | int n; |
11589 | ||
11590 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11591 | strncpy (name_buf, name, prefix_len); | |
11592 | name_buf[prefix_len] = '\0'; | |
11593 | ||
11594 | subtype_info += 5; | |
11595 | bounds_str = strchr (subtype_info, '_'); | |
11596 | n = 1; | |
11597 | ||
d2e4a39e | 11598 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11599 | { |
11600 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11601 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11602 | return raw_type; | |
11603 | if (bounds_str[n] == '_') | |
11604 | n += 2; | |
0963b4bd | 11605 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11606 | n += 1; |
11607 | subtype_info += 1; | |
11608 | } | |
d2e4a39e | 11609 | else |
4c4b4cd2 PH |
11610 | { |
11611 | int ok; | |
5b4ee69b | 11612 | |
4c4b4cd2 PH |
11613 | strcpy (name_buf + prefix_len, "___L"); |
11614 | L = get_int_var_value (name_buf, &ok); | |
11615 | if (!ok) | |
11616 | { | |
323e0a4a | 11617 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11618 | L = 1; |
11619 | } | |
11620 | } | |
14f9c5c9 | 11621 | |
d2e4a39e | 11622 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11623 | { |
11624 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11625 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11626 | return raw_type; | |
11627 | } | |
d2e4a39e | 11628 | else |
4c4b4cd2 PH |
11629 | { |
11630 | int ok; | |
5b4ee69b | 11631 | |
4c4b4cd2 PH |
11632 | strcpy (name_buf + prefix_len, "___U"); |
11633 | U = get_int_var_value (name_buf, &ok); | |
11634 | if (!ok) | |
11635 | { | |
323e0a4a | 11636 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11637 | U = L; |
11638 | } | |
11639 | } | |
14f9c5c9 | 11640 | |
0c9c3474 SA |
11641 | type = create_static_range_type (alloc_type_copy (raw_type), |
11642 | base_type, L, U); | |
d2e4a39e | 11643 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11644 | return type; |
11645 | } | |
11646 | } | |
11647 | ||
4c4b4cd2 PH |
11648 | /* True iff NAME is the name of a range type. */ |
11649 | ||
14f9c5c9 | 11650 | int |
d2e4a39e | 11651 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11652 | { |
11653 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11654 | } |
14f9c5c9 | 11655 | \f |
d2e4a39e | 11656 | |
4c4b4cd2 PH |
11657 | /* Modular types */ |
11658 | ||
11659 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11660 | |
14f9c5c9 | 11661 | int |
d2e4a39e | 11662 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11663 | { |
18af8284 | 11664 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11665 | |
11666 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11667 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11668 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11669 | } |
11670 | ||
4c4b4cd2 PH |
11671 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11672 | ||
61ee279c | 11673 | ULONGEST |
0056e4d5 | 11674 | ada_modulus (struct type *type) |
14f9c5c9 | 11675 | { |
43bbcdc2 | 11676 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11677 | } |
d2e4a39e | 11678 | \f |
f7f9143b JB |
11679 | |
11680 | /* Ada exception catchpoint support: | |
11681 | --------------------------------- | |
11682 | ||
11683 | We support 3 kinds of exception catchpoints: | |
11684 | . catchpoints on Ada exceptions | |
11685 | . catchpoints on unhandled Ada exceptions | |
11686 | . catchpoints on failed assertions | |
11687 | ||
11688 | Exceptions raised during failed assertions, or unhandled exceptions | |
11689 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11690 | However, we can easily differentiate these two special cases, and having | |
11691 | the option to distinguish these two cases from the rest can be useful | |
11692 | to zero-in on certain situations. | |
11693 | ||
11694 | Exception catchpoints are a specialized form of breakpoint, | |
11695 | since they rely on inserting breakpoints inside known routines | |
11696 | of the GNAT runtime. The implementation therefore uses a standard | |
11697 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11698 | of breakpoint_ops. | |
11699 | ||
0259addd JB |
11700 | Support in the runtime for exception catchpoints have been changed |
11701 | a few times already, and these changes affect the implementation | |
11702 | of these catchpoints. In order to be able to support several | |
11703 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11704 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11705 | |
82eacd52 JB |
11706 | /* Ada's standard exceptions. |
11707 | ||
11708 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11709 | situations where it was unclear from the Ada 83 Reference Manual | |
11710 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11711 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11712 | Interpretation saying that anytime the RM says that Numeric_Error | |
11713 | should be raised, the implementation may raise Constraint_Error. | |
11714 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11715 | from the list of standard exceptions (it made it a renaming of | |
11716 | Constraint_Error, to help preserve compatibility when compiling | |
11717 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11718 | this list of standard exceptions. */ | |
3d0b0fa3 JB |
11719 | |
11720 | static char *standard_exc[] = { | |
11721 | "constraint_error", | |
11722 | "program_error", | |
11723 | "storage_error", | |
11724 | "tasking_error" | |
11725 | }; | |
11726 | ||
0259addd JB |
11727 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11728 | ||
11729 | /* A structure that describes how to support exception catchpoints | |
11730 | for a given executable. */ | |
11731 | ||
11732 | struct exception_support_info | |
11733 | { | |
11734 | /* The name of the symbol to break on in order to insert | |
11735 | a catchpoint on exceptions. */ | |
11736 | const char *catch_exception_sym; | |
11737 | ||
11738 | /* The name of the symbol to break on in order to insert | |
11739 | a catchpoint on unhandled exceptions. */ | |
11740 | const char *catch_exception_unhandled_sym; | |
11741 | ||
11742 | /* The name of the symbol to break on in order to insert | |
11743 | a catchpoint on failed assertions. */ | |
11744 | const char *catch_assert_sym; | |
11745 | ||
11746 | /* Assuming that the inferior just triggered an unhandled exception | |
11747 | catchpoint, this function is responsible for returning the address | |
11748 | in inferior memory where the name of that exception is stored. | |
11749 | Return zero if the address could not be computed. */ | |
11750 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11751 | }; | |
11752 | ||
11753 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11754 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11755 | ||
11756 | /* The following exception support info structure describes how to | |
11757 | implement exception catchpoints with the latest version of the | |
11758 | Ada runtime (as of 2007-03-06). */ | |
11759 | ||
11760 | static const struct exception_support_info default_exception_support_info = | |
11761 | { | |
11762 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11763 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11764 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11765 | ada_unhandled_exception_name_addr | |
11766 | }; | |
11767 | ||
11768 | /* The following exception support info structure describes how to | |
11769 | implement exception catchpoints with a slightly older version | |
11770 | of the Ada runtime. */ | |
11771 | ||
11772 | static const struct exception_support_info exception_support_info_fallback = | |
11773 | { | |
11774 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11775 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11776 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11777 | ada_unhandled_exception_name_addr_from_raise | |
11778 | }; | |
11779 | ||
f17011e0 JB |
11780 | /* Return nonzero if we can detect the exception support routines |
11781 | described in EINFO. | |
11782 | ||
11783 | This function errors out if an abnormal situation is detected | |
11784 | (for instance, if we find the exception support routines, but | |
11785 | that support is found to be incomplete). */ | |
11786 | ||
11787 | static int | |
11788 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11789 | { | |
11790 | struct symbol *sym; | |
11791 | ||
11792 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11793 | that should be compiled with debugging information. As a result, we | |
11794 | expect to find that symbol in the symtabs. */ | |
11795 | ||
11796 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11797 | if (sym == NULL) | |
a6af7abe JB |
11798 | { |
11799 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11800 | compiled without debugging info, or simply stripped of it. | |
11801 | It happens on some GNU/Linux distributions for instance, where | |
11802 | users have to install a separate debug package in order to get | |
11803 | the runtime's debugging info. In that situation, let the user | |
11804 | know why we cannot insert an Ada exception catchpoint. | |
11805 | ||
11806 | Note: Just for the purpose of inserting our Ada exception | |
11807 | catchpoint, we could rely purely on the associated minimal symbol. | |
11808 | But we would be operating in degraded mode anyway, since we are | |
11809 | still lacking the debugging info needed later on to extract | |
11810 | the name of the exception being raised (this name is printed in | |
11811 | the catchpoint message, and is also used when trying to catch | |
11812 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11813 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11814 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11815 | ||
3b7344d5 | 11816 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11817 | error (_("Your Ada runtime appears to be missing some debugging " |
11818 | "information.\nCannot insert Ada exception catchpoint " | |
11819 | "in this configuration.")); | |
11820 | ||
11821 | return 0; | |
11822 | } | |
f17011e0 JB |
11823 | |
11824 | /* Make sure that the symbol we found corresponds to a function. */ | |
11825 | ||
11826 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11827 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11828 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11829 | ||
11830 | return 1; | |
11831 | } | |
11832 | ||
0259addd JB |
11833 | /* Inspect the Ada runtime and determine which exception info structure |
11834 | should be used to provide support for exception catchpoints. | |
11835 | ||
3eecfa55 JB |
11836 | This function will always set the per-inferior exception_info, |
11837 | or raise an error. */ | |
0259addd JB |
11838 | |
11839 | static void | |
11840 | ada_exception_support_info_sniffer (void) | |
11841 | { | |
3eecfa55 | 11842 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11843 | |
11844 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11845 | if (data->exception_info != NULL) |
0259addd JB |
11846 | return; |
11847 | ||
11848 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11849 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11850 | { |
3eecfa55 | 11851 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11852 | return; |
11853 | } | |
11854 | ||
11855 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11856 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11857 | { |
3eecfa55 | 11858 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11859 | return; |
11860 | } | |
11861 | ||
11862 | /* Sometimes, it is normal for us to not be able to find the routine | |
11863 | we are looking for. This happens when the program is linked with | |
11864 | the shared version of the GNAT runtime, and the program has not been | |
11865 | started yet. Inform the user of these two possible causes if | |
11866 | applicable. */ | |
11867 | ||
ccefe4c4 | 11868 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11869 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11870 | ||
11871 | /* If the symbol does not exist, then check that the program is | |
11872 | already started, to make sure that shared libraries have been | |
11873 | loaded. If it is not started, this may mean that the symbol is | |
11874 | in a shared library. */ | |
11875 | ||
11876 | if (ptid_get_pid (inferior_ptid) == 0) | |
11877 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11878 | ||
11879 | /* At this point, we know that we are debugging an Ada program and | |
11880 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11881 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11882 | configurable run time mode, or that a-except as been optimized |
11883 | out by the linker... In any case, at this point it is not worth | |
11884 | supporting this feature. */ | |
11885 | ||
7dda8cff | 11886 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11887 | } |
11888 | ||
f7f9143b JB |
11889 | /* True iff FRAME is very likely to be that of a function that is |
11890 | part of the runtime system. This is all very heuristic, but is | |
11891 | intended to be used as advice as to what frames are uninteresting | |
11892 | to most users. */ | |
11893 | ||
11894 | static int | |
11895 | is_known_support_routine (struct frame_info *frame) | |
11896 | { | |
4ed6b5be | 11897 | struct symtab_and_line sal; |
55b87a52 | 11898 | char *func_name; |
692465f1 | 11899 | enum language func_lang; |
f7f9143b | 11900 | int i; |
f35a17b5 | 11901 | const char *fullname; |
f7f9143b | 11902 | |
4ed6b5be JB |
11903 | /* If this code does not have any debugging information (no symtab), |
11904 | This cannot be any user code. */ | |
f7f9143b | 11905 | |
4ed6b5be | 11906 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11907 | if (sal.symtab == NULL) |
11908 | return 1; | |
11909 | ||
4ed6b5be JB |
11910 | /* If there is a symtab, but the associated source file cannot be |
11911 | located, then assume this is not user code: Selecting a frame | |
11912 | for which we cannot display the code would not be very helpful | |
11913 | for the user. This should also take care of case such as VxWorks | |
11914 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11915 | |
f35a17b5 JK |
11916 | fullname = symtab_to_fullname (sal.symtab); |
11917 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11918 | return 1; |
11919 | ||
4ed6b5be JB |
11920 | /* Check the unit filename againt the Ada runtime file naming. |
11921 | We also check the name of the objfile against the name of some | |
11922 | known system libraries that sometimes come with debugging info | |
11923 | too. */ | |
11924 | ||
f7f9143b JB |
11925 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11926 | { | |
11927 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11928 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11929 | return 1; |
eb822aa6 DE |
11930 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
11931 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 11932 | return 1; |
f7f9143b JB |
11933 | } |
11934 | ||
4ed6b5be | 11935 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11936 | |
e9e07ba6 | 11937 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11938 | if (func_name == NULL) |
11939 | return 1; | |
11940 | ||
11941 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11942 | { | |
11943 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11944 | if (re_exec (func_name)) | |
55b87a52 KS |
11945 | { |
11946 | xfree (func_name); | |
11947 | return 1; | |
11948 | } | |
f7f9143b JB |
11949 | } |
11950 | ||
55b87a52 | 11951 | xfree (func_name); |
f7f9143b JB |
11952 | return 0; |
11953 | } | |
11954 | ||
11955 | /* Find the first frame that contains debugging information and that is not | |
11956 | part of the Ada run-time, starting from FI and moving upward. */ | |
11957 | ||
0ef643c8 | 11958 | void |
f7f9143b JB |
11959 | ada_find_printable_frame (struct frame_info *fi) |
11960 | { | |
11961 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11962 | { | |
11963 | if (!is_known_support_routine (fi)) | |
11964 | { | |
11965 | select_frame (fi); | |
11966 | break; | |
11967 | } | |
11968 | } | |
11969 | ||
11970 | } | |
11971 | ||
11972 | /* Assuming that the inferior just triggered an unhandled exception | |
11973 | catchpoint, return the address in inferior memory where the name | |
11974 | of the exception is stored. | |
11975 | ||
11976 | Return zero if the address could not be computed. */ | |
11977 | ||
11978 | static CORE_ADDR | |
11979 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11980 | { |
11981 | return parse_and_eval_address ("e.full_name"); | |
11982 | } | |
11983 | ||
11984 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11985 | should be used when the inferior uses an older version of the runtime, | |
11986 | where the exception name needs to be extracted from a specific frame | |
11987 | several frames up in the callstack. */ | |
11988 | ||
11989 | static CORE_ADDR | |
11990 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11991 | { |
11992 | int frame_level; | |
11993 | struct frame_info *fi; | |
3eecfa55 | 11994 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11995 | struct cleanup *old_chain; |
f7f9143b JB |
11996 | |
11997 | /* To determine the name of this exception, we need to select | |
11998 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11999 | at least 3 levels up, so we simply skip the first 3 frames | |
12000 | without checking the name of their associated function. */ | |
12001 | fi = get_current_frame (); | |
12002 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12003 | if (fi != NULL) | |
12004 | fi = get_prev_frame (fi); | |
12005 | ||
55b87a52 | 12006 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
12007 | while (fi != NULL) |
12008 | { | |
55b87a52 | 12009 | char *func_name; |
692465f1 JB |
12010 | enum language func_lang; |
12011 | ||
e9e07ba6 | 12012 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
12013 | if (func_name != NULL) |
12014 | { | |
12015 | make_cleanup (xfree, func_name); | |
12016 | ||
12017 | if (strcmp (func_name, | |
12018 | data->exception_info->catch_exception_sym) == 0) | |
12019 | break; /* We found the frame we were looking for... */ | |
12020 | fi = get_prev_frame (fi); | |
12021 | } | |
f7f9143b | 12022 | } |
55b87a52 | 12023 | do_cleanups (old_chain); |
f7f9143b JB |
12024 | |
12025 | if (fi == NULL) | |
12026 | return 0; | |
12027 | ||
12028 | select_frame (fi); | |
12029 | return parse_and_eval_address ("id.full_name"); | |
12030 | } | |
12031 | ||
12032 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12033 | (of any type), return the address in inferior memory where the name | |
12034 | of the exception is stored, if applicable. | |
12035 | ||
12036 | Return zero if the address could not be computed, or if not relevant. */ | |
12037 | ||
12038 | static CORE_ADDR | |
761269c8 | 12039 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12040 | struct breakpoint *b) |
12041 | { | |
3eecfa55 JB |
12042 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12043 | ||
f7f9143b JB |
12044 | switch (ex) |
12045 | { | |
761269c8 | 12046 | case ada_catch_exception: |
f7f9143b JB |
12047 | return (parse_and_eval_address ("e.full_name")); |
12048 | break; | |
12049 | ||
761269c8 | 12050 | case ada_catch_exception_unhandled: |
3eecfa55 | 12051 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
12052 | break; |
12053 | ||
761269c8 | 12054 | case ada_catch_assert: |
f7f9143b JB |
12055 | return 0; /* Exception name is not relevant in this case. */ |
12056 | break; | |
12057 | ||
12058 | default: | |
12059 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12060 | break; | |
12061 | } | |
12062 | ||
12063 | return 0; /* Should never be reached. */ | |
12064 | } | |
12065 | ||
12066 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
12067 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12068 | When an error is intercepted, a warning with the error message is printed, | |
12069 | and zero is returned. */ | |
12070 | ||
12071 | static CORE_ADDR | |
761269c8 | 12072 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12073 | struct breakpoint *b) |
12074 | { | |
f7f9143b JB |
12075 | CORE_ADDR result = 0; |
12076 | ||
492d29ea | 12077 | TRY |
f7f9143b JB |
12078 | { |
12079 | result = ada_exception_name_addr_1 (ex, b); | |
12080 | } | |
12081 | ||
492d29ea | 12082 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12083 | { |
12084 | warning (_("failed to get exception name: %s"), e.message); | |
12085 | return 0; | |
12086 | } | |
492d29ea | 12087 | END_CATCH |
f7f9143b JB |
12088 | |
12089 | return result; | |
12090 | } | |
12091 | ||
28010a5d PA |
12092 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
12093 | ||
12094 | /* Ada catchpoints. | |
12095 | ||
12096 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12097 | stop the target on every exception the program throws. When a user | |
12098 | specifies the name of a specific exception, we translate this | |
12099 | request into a condition expression (in text form), and then parse | |
12100 | it into an expression stored in each of the catchpoint's locations. | |
12101 | We then use this condition to check whether the exception that was | |
12102 | raised is the one the user is interested in. If not, then the | |
12103 | target is resumed again. We store the name of the requested | |
12104 | exception, in order to be able to re-set the condition expression | |
12105 | when symbols change. */ | |
12106 | ||
12107 | /* An instance of this type is used to represent an Ada catchpoint | |
12108 | breakpoint location. It includes a "struct bp_location" as a kind | |
12109 | of base class; users downcast to "struct bp_location *" when | |
12110 | needed. */ | |
12111 | ||
12112 | struct ada_catchpoint_location | |
12113 | { | |
12114 | /* The base class. */ | |
12115 | struct bp_location base; | |
12116 | ||
12117 | /* The condition that checks whether the exception that was raised | |
12118 | is the specific exception the user specified on catchpoint | |
12119 | creation. */ | |
12120 | struct expression *excep_cond_expr; | |
12121 | }; | |
12122 | ||
12123 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12124 | Ada exception catchpoint kinds. */ | |
12125 | ||
12126 | static void | |
12127 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12128 | { | |
12129 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12130 | ||
12131 | xfree (al->excep_cond_expr); | |
12132 | } | |
12133 | ||
12134 | /* The vtable to be used in Ada catchpoint locations. */ | |
12135 | ||
12136 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12137 | { | |
12138 | ada_catchpoint_location_dtor | |
12139 | }; | |
12140 | ||
12141 | /* An instance of this type is used to represent an Ada catchpoint. | |
12142 | It includes a "struct breakpoint" as a kind of base class; users | |
12143 | downcast to "struct breakpoint *" when needed. */ | |
12144 | ||
12145 | struct ada_catchpoint | |
12146 | { | |
12147 | /* The base class. */ | |
12148 | struct breakpoint base; | |
12149 | ||
12150 | /* The name of the specific exception the user specified. */ | |
12151 | char *excep_string; | |
12152 | }; | |
12153 | ||
12154 | /* Parse the exception condition string in the context of each of the | |
12155 | catchpoint's locations, and store them for later evaluation. */ | |
12156 | ||
12157 | static void | |
12158 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
12159 | { | |
12160 | struct cleanup *old_chain; | |
12161 | struct bp_location *bl; | |
12162 | char *cond_string; | |
12163 | ||
12164 | /* Nothing to do if there's no specific exception to catch. */ | |
12165 | if (c->excep_string == NULL) | |
12166 | return; | |
12167 | ||
12168 | /* Same if there are no locations... */ | |
12169 | if (c->base.loc == NULL) | |
12170 | return; | |
12171 | ||
12172 | /* Compute the condition expression in text form, from the specific | |
12173 | expection we want to catch. */ | |
12174 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
12175 | old_chain = make_cleanup (xfree, cond_string); | |
12176 | ||
12177 | /* Iterate over all the catchpoint's locations, and parse an | |
12178 | expression for each. */ | |
12179 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
12180 | { | |
12181 | struct ada_catchpoint_location *ada_loc | |
12182 | = (struct ada_catchpoint_location *) bl; | |
12183 | struct expression *exp = NULL; | |
12184 | ||
12185 | if (!bl->shlib_disabled) | |
12186 | { | |
bbc13ae3 | 12187 | const char *s; |
28010a5d PA |
12188 | |
12189 | s = cond_string; | |
492d29ea | 12190 | TRY |
28010a5d | 12191 | { |
1bb9788d TT |
12192 | exp = parse_exp_1 (&s, bl->address, |
12193 | block_for_pc (bl->address), 0); | |
28010a5d | 12194 | } |
492d29ea | 12195 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12196 | { |
12197 | warning (_("failed to reevaluate internal exception condition " | |
12198 | "for catchpoint %d: %s"), | |
12199 | c->base.number, e.message); | |
12200 | /* There is a bug in GCC on sparc-solaris when building with | |
12201 | optimization which causes EXP to change unexpectedly | |
12202 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
12203 | The problem should be fixed starting with GCC 4.9. | |
12204 | In the meantime, work around it by forcing EXP back | |
12205 | to NULL. */ | |
12206 | exp = NULL; | |
12207 | } | |
492d29ea | 12208 | END_CATCH |
28010a5d PA |
12209 | } |
12210 | ||
12211 | ada_loc->excep_cond_expr = exp; | |
12212 | } | |
12213 | ||
12214 | do_cleanups (old_chain); | |
12215 | } | |
12216 | ||
12217 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
12218 | exception catchpoint kinds. */ | |
12219 | ||
12220 | static void | |
761269c8 | 12221 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12222 | { |
12223 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12224 | ||
12225 | xfree (c->excep_string); | |
348d480f | 12226 | |
2060206e | 12227 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
12228 | } |
12229 | ||
12230 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12231 | structure for all exception catchpoint kinds. */ | |
12232 | ||
12233 | static struct bp_location * | |
761269c8 | 12234 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12235 | struct breakpoint *self) |
12236 | { | |
12237 | struct ada_catchpoint_location *loc; | |
12238 | ||
12239 | loc = XNEW (struct ada_catchpoint_location); | |
12240 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
12241 | loc->excep_cond_expr = NULL; | |
12242 | return &loc->base; | |
12243 | } | |
12244 | ||
12245 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12246 | exception catchpoint kinds. */ | |
12247 | ||
12248 | static void | |
761269c8 | 12249 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12250 | { |
12251 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12252 | ||
12253 | /* Call the base class's method. This updates the catchpoint's | |
12254 | locations. */ | |
2060206e | 12255 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12256 | |
12257 | /* Reparse the exception conditional expressions. One for each | |
12258 | location. */ | |
12259 | create_excep_cond_exprs (c); | |
12260 | } | |
12261 | ||
12262 | /* Returns true if we should stop for this breakpoint hit. If the | |
12263 | user specified a specific exception, we only want to cause a stop | |
12264 | if the program thrown that exception. */ | |
12265 | ||
12266 | static int | |
12267 | should_stop_exception (const struct bp_location *bl) | |
12268 | { | |
12269 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12270 | const struct ada_catchpoint_location *ada_loc | |
12271 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12272 | int stop; |
12273 | ||
12274 | /* With no specific exception, should always stop. */ | |
12275 | if (c->excep_string == NULL) | |
12276 | return 1; | |
12277 | ||
12278 | if (ada_loc->excep_cond_expr == NULL) | |
12279 | { | |
12280 | /* We will have a NULL expression if back when we were creating | |
12281 | the expressions, this location's had failed to parse. */ | |
12282 | return 1; | |
12283 | } | |
12284 | ||
12285 | stop = 1; | |
492d29ea | 12286 | TRY |
28010a5d PA |
12287 | { |
12288 | struct value *mark; | |
12289 | ||
12290 | mark = value_mark (); | |
12291 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
12292 | value_free_to_mark (mark); | |
12293 | } | |
492d29ea PA |
12294 | CATCH (ex, RETURN_MASK_ALL) |
12295 | { | |
12296 | exception_fprintf (gdb_stderr, ex, | |
12297 | _("Error in testing exception condition:\n")); | |
12298 | } | |
12299 | END_CATCH | |
12300 | ||
28010a5d PA |
12301 | return stop; |
12302 | } | |
12303 | ||
12304 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12305 | for all exception catchpoint kinds. */ | |
12306 | ||
12307 | static void | |
761269c8 | 12308 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12309 | { |
12310 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12311 | } | |
12312 | ||
f7f9143b JB |
12313 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12314 | for all exception catchpoint kinds. */ | |
12315 | ||
12316 | static enum print_stop_action | |
761269c8 | 12317 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12318 | { |
79a45e25 | 12319 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12320 | struct breakpoint *b = bs->breakpoint_at; |
12321 | ||
956a9fb9 | 12322 | annotate_catchpoint (b->number); |
f7f9143b | 12323 | |
956a9fb9 | 12324 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 12325 | { |
956a9fb9 JB |
12326 | ui_out_field_string (uiout, "reason", |
12327 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
12328 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
12329 | } |
12330 | ||
00eb2c4a JB |
12331 | ui_out_text (uiout, |
12332 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
12333 | : "\nCatchpoint "); | |
956a9fb9 JB |
12334 | ui_out_field_int (uiout, "bkptno", b->number); |
12335 | ui_out_text (uiout, ", "); | |
f7f9143b | 12336 | |
f7f9143b JB |
12337 | switch (ex) |
12338 | { | |
761269c8 JB |
12339 | case ada_catch_exception: |
12340 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12341 | { |
12342 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12343 | char exception_name[256]; | |
12344 | ||
12345 | if (addr != 0) | |
12346 | { | |
c714b426 PA |
12347 | read_memory (addr, (gdb_byte *) exception_name, |
12348 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12349 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12350 | } | |
12351 | else | |
12352 | { | |
12353 | /* For some reason, we were unable to read the exception | |
12354 | name. This could happen if the Runtime was compiled | |
12355 | without debugging info, for instance. In that case, | |
12356 | just replace the exception name by the generic string | |
12357 | "exception" - it will read as "an exception" in the | |
12358 | notification we are about to print. */ | |
967cff16 | 12359 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12360 | } |
12361 | /* In the case of unhandled exception breakpoints, we print | |
12362 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12363 | it clearer to the user which kind of catchpoint just got | |
12364 | hit. We used ui_out_text to make sure that this extra | |
12365 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12366 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
12367 | ui_out_text (uiout, "unhandled "); |
12368 | ui_out_field_string (uiout, "exception-name", exception_name); | |
12369 | } | |
12370 | break; | |
761269c8 | 12371 | case ada_catch_assert: |
956a9fb9 JB |
12372 | /* In this case, the name of the exception is not really |
12373 | important. Just print "failed assertion" to make it clearer | |
12374 | that his program just hit an assertion-failure catchpoint. | |
12375 | We used ui_out_text because this info does not belong in | |
12376 | the MI output. */ | |
12377 | ui_out_text (uiout, "failed assertion"); | |
12378 | break; | |
f7f9143b | 12379 | } |
956a9fb9 JB |
12380 | ui_out_text (uiout, " at "); |
12381 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
12382 | |
12383 | return PRINT_SRC_AND_LOC; | |
12384 | } | |
12385 | ||
12386 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12387 | for all exception catchpoint kinds. */ | |
12388 | ||
12389 | static void | |
761269c8 | 12390 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12391 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12392 | { |
79a45e25 | 12393 | struct ui_out *uiout = current_uiout; |
28010a5d | 12394 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12395 | struct value_print_options opts; |
12396 | ||
12397 | get_user_print_options (&opts); | |
12398 | if (opts.addressprint) | |
f7f9143b JB |
12399 | { |
12400 | annotate_field (4); | |
5af949e3 | 12401 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12402 | } |
12403 | ||
12404 | annotate_field (5); | |
a6d9a66e | 12405 | *last_loc = b->loc; |
f7f9143b JB |
12406 | switch (ex) |
12407 | { | |
761269c8 | 12408 | case ada_catch_exception: |
28010a5d | 12409 | if (c->excep_string != NULL) |
f7f9143b | 12410 | { |
28010a5d PA |
12411 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12412 | ||
f7f9143b JB |
12413 | ui_out_field_string (uiout, "what", msg); |
12414 | xfree (msg); | |
12415 | } | |
12416 | else | |
12417 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
12418 | ||
12419 | break; | |
12420 | ||
761269c8 | 12421 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12422 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
12423 | break; | |
12424 | ||
761269c8 | 12425 | case ada_catch_assert: |
f7f9143b JB |
12426 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
12427 | break; | |
12428 | ||
12429 | default: | |
12430 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12431 | break; | |
12432 | } | |
12433 | } | |
12434 | ||
12435 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12436 | for all exception catchpoint kinds. */ | |
12437 | ||
12438 | static void | |
761269c8 | 12439 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12440 | struct breakpoint *b) |
12441 | { | |
28010a5d | 12442 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12443 | struct ui_out *uiout = current_uiout; |
28010a5d | 12444 | |
00eb2c4a JB |
12445 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
12446 | : _("Catchpoint ")); | |
12447 | ui_out_field_int (uiout, "bkptno", b->number); | |
12448 | ui_out_text (uiout, ": "); | |
12449 | ||
f7f9143b JB |
12450 | switch (ex) |
12451 | { | |
761269c8 | 12452 | case ada_catch_exception: |
28010a5d | 12453 | if (c->excep_string != NULL) |
00eb2c4a JB |
12454 | { |
12455 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12456 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12457 | ||
12458 | ui_out_text (uiout, info); | |
12459 | do_cleanups (old_chain); | |
12460 | } | |
f7f9143b | 12461 | else |
00eb2c4a | 12462 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
12463 | break; |
12464 | ||
761269c8 | 12465 | case ada_catch_exception_unhandled: |
00eb2c4a | 12466 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
12467 | break; |
12468 | ||
761269c8 | 12469 | case ada_catch_assert: |
00eb2c4a | 12470 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
12471 | break; |
12472 | ||
12473 | default: | |
12474 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12475 | break; | |
12476 | } | |
12477 | } | |
12478 | ||
6149aea9 PA |
12479 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12480 | for all exception catchpoint kinds. */ | |
12481 | ||
12482 | static void | |
761269c8 | 12483 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12484 | struct breakpoint *b, struct ui_file *fp) |
12485 | { | |
28010a5d PA |
12486 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12487 | ||
6149aea9 PA |
12488 | switch (ex) |
12489 | { | |
761269c8 | 12490 | case ada_catch_exception: |
6149aea9 | 12491 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12492 | if (c->excep_string != NULL) |
12493 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12494 | break; |
12495 | ||
761269c8 | 12496 | case ada_catch_exception_unhandled: |
78076abc | 12497 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12498 | break; |
12499 | ||
761269c8 | 12500 | case ada_catch_assert: |
6149aea9 PA |
12501 | fprintf_filtered (fp, "catch assert"); |
12502 | break; | |
12503 | ||
12504 | default: | |
12505 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12506 | } | |
d9b3f62e | 12507 | print_recreate_thread (b, fp); |
6149aea9 PA |
12508 | } |
12509 | ||
f7f9143b JB |
12510 | /* Virtual table for "catch exception" breakpoints. */ |
12511 | ||
28010a5d PA |
12512 | static void |
12513 | dtor_catch_exception (struct breakpoint *b) | |
12514 | { | |
761269c8 | 12515 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12516 | } |
12517 | ||
12518 | static struct bp_location * | |
12519 | allocate_location_catch_exception (struct breakpoint *self) | |
12520 | { | |
761269c8 | 12521 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12522 | } |
12523 | ||
12524 | static void | |
12525 | re_set_catch_exception (struct breakpoint *b) | |
12526 | { | |
761269c8 | 12527 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12528 | } |
12529 | ||
12530 | static void | |
12531 | check_status_catch_exception (bpstat bs) | |
12532 | { | |
761269c8 | 12533 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12534 | } |
12535 | ||
f7f9143b | 12536 | static enum print_stop_action |
348d480f | 12537 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12538 | { |
761269c8 | 12539 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12540 | } |
12541 | ||
12542 | static void | |
a6d9a66e | 12543 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12544 | { |
761269c8 | 12545 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12546 | } |
12547 | ||
12548 | static void | |
12549 | print_mention_catch_exception (struct breakpoint *b) | |
12550 | { | |
761269c8 | 12551 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12552 | } |
12553 | ||
6149aea9 PA |
12554 | static void |
12555 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12556 | { | |
761269c8 | 12557 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12558 | } |
12559 | ||
2060206e | 12560 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12561 | |
12562 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12563 | ||
28010a5d PA |
12564 | static void |
12565 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12566 | { | |
761269c8 | 12567 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12568 | } |
12569 | ||
12570 | static struct bp_location * | |
12571 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12572 | { | |
761269c8 | 12573 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12574 | } |
12575 | ||
12576 | static void | |
12577 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12578 | { | |
761269c8 | 12579 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12580 | } |
12581 | ||
12582 | static void | |
12583 | check_status_catch_exception_unhandled (bpstat bs) | |
12584 | { | |
761269c8 | 12585 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12586 | } |
12587 | ||
f7f9143b | 12588 | static enum print_stop_action |
348d480f | 12589 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12590 | { |
761269c8 | 12591 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12592 | } |
12593 | ||
12594 | static void | |
a6d9a66e UW |
12595 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12596 | struct bp_location **last_loc) | |
f7f9143b | 12597 | { |
761269c8 | 12598 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12599 | } |
12600 | ||
12601 | static void | |
12602 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12603 | { | |
761269c8 | 12604 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12605 | } |
12606 | ||
6149aea9 PA |
12607 | static void |
12608 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12609 | struct ui_file *fp) | |
12610 | { | |
761269c8 | 12611 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12612 | } |
12613 | ||
2060206e | 12614 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12615 | |
12616 | /* Virtual table for "catch assert" breakpoints. */ | |
12617 | ||
28010a5d PA |
12618 | static void |
12619 | dtor_catch_assert (struct breakpoint *b) | |
12620 | { | |
761269c8 | 12621 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12622 | } |
12623 | ||
12624 | static struct bp_location * | |
12625 | allocate_location_catch_assert (struct breakpoint *self) | |
12626 | { | |
761269c8 | 12627 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12628 | } |
12629 | ||
12630 | static void | |
12631 | re_set_catch_assert (struct breakpoint *b) | |
12632 | { | |
761269c8 | 12633 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12634 | } |
12635 | ||
12636 | static void | |
12637 | check_status_catch_assert (bpstat bs) | |
12638 | { | |
761269c8 | 12639 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12640 | } |
12641 | ||
f7f9143b | 12642 | static enum print_stop_action |
348d480f | 12643 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12644 | { |
761269c8 | 12645 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12646 | } |
12647 | ||
12648 | static void | |
a6d9a66e | 12649 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12650 | { |
761269c8 | 12651 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12652 | } |
12653 | ||
12654 | static void | |
12655 | print_mention_catch_assert (struct breakpoint *b) | |
12656 | { | |
761269c8 | 12657 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12658 | } |
12659 | ||
6149aea9 PA |
12660 | static void |
12661 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12662 | { | |
761269c8 | 12663 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12664 | } |
12665 | ||
2060206e | 12666 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12667 | |
f7f9143b JB |
12668 | /* Return a newly allocated copy of the first space-separated token |
12669 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12670 | token. | |
12671 | ||
12672 | Return NULL if ARGPS does not contain any more tokens. */ | |
12673 | ||
12674 | static char * | |
12675 | ada_get_next_arg (char **argsp) | |
12676 | { | |
12677 | char *args = *argsp; | |
12678 | char *end; | |
12679 | char *result; | |
12680 | ||
0fcd72ba | 12681 | args = skip_spaces (args); |
f7f9143b JB |
12682 | if (args[0] == '\0') |
12683 | return NULL; /* No more arguments. */ | |
12684 | ||
12685 | /* Find the end of the current argument. */ | |
12686 | ||
0fcd72ba | 12687 | end = skip_to_space (args); |
f7f9143b JB |
12688 | |
12689 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12690 | ||
12691 | *argsp = end; | |
12692 | ||
12693 | /* Make a copy of the current argument and return it. */ | |
12694 | ||
224c3ddb | 12695 | result = (char *) xmalloc (end - args + 1); |
f7f9143b JB |
12696 | strncpy (result, args, end - args); |
12697 | result[end - args] = '\0'; | |
12698 | ||
12699 | return result; | |
12700 | } | |
12701 | ||
12702 | /* Split the arguments specified in a "catch exception" command. | |
12703 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12704 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12705 | specified by the user. |
12706 | If a condition is found at the end of the arguments, the condition | |
12707 | expression is stored in COND_STRING (memory must be deallocated | |
12708 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12709 | |
12710 | static void | |
12711 | catch_ada_exception_command_split (char *args, | |
761269c8 | 12712 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12713 | char **excep_string, |
12714 | char **cond_string) | |
f7f9143b JB |
12715 | { |
12716 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12717 | char *exception_name; | |
5845583d | 12718 | char *cond = NULL; |
f7f9143b JB |
12719 | |
12720 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12721 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12722 | { | |
12723 | /* This is not an exception name; this is the start of a condition | |
12724 | expression for a catchpoint on all exceptions. So, "un-get" | |
12725 | this token, and set exception_name to NULL. */ | |
12726 | xfree (exception_name); | |
12727 | exception_name = NULL; | |
12728 | args -= 2; | |
12729 | } | |
f7f9143b JB |
12730 | make_cleanup (xfree, exception_name); |
12731 | ||
5845583d | 12732 | /* Check to see if we have a condition. */ |
f7f9143b | 12733 | |
0fcd72ba | 12734 | args = skip_spaces (args); |
61012eef | 12735 | if (startswith (args, "if") |
5845583d JB |
12736 | && (isspace (args[2]) || args[2] == '\0')) |
12737 | { | |
12738 | args += 2; | |
12739 | args = skip_spaces (args); | |
12740 | ||
12741 | if (args[0] == '\0') | |
12742 | error (_("Condition missing after `if' keyword")); | |
12743 | cond = xstrdup (args); | |
12744 | make_cleanup (xfree, cond); | |
12745 | ||
12746 | args += strlen (args); | |
12747 | } | |
12748 | ||
12749 | /* Check that we do not have any more arguments. Anything else | |
12750 | is unexpected. */ | |
f7f9143b JB |
12751 | |
12752 | if (args[0] != '\0') | |
12753 | error (_("Junk at end of expression")); | |
12754 | ||
12755 | discard_cleanups (old_chain); | |
12756 | ||
12757 | if (exception_name == NULL) | |
12758 | { | |
12759 | /* Catch all exceptions. */ | |
761269c8 | 12760 | *ex = ada_catch_exception; |
28010a5d | 12761 | *excep_string = NULL; |
f7f9143b JB |
12762 | } |
12763 | else if (strcmp (exception_name, "unhandled") == 0) | |
12764 | { | |
12765 | /* Catch unhandled exceptions. */ | |
761269c8 | 12766 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12767 | *excep_string = NULL; |
f7f9143b JB |
12768 | } |
12769 | else | |
12770 | { | |
12771 | /* Catch a specific exception. */ | |
761269c8 | 12772 | *ex = ada_catch_exception; |
28010a5d | 12773 | *excep_string = exception_name; |
f7f9143b | 12774 | } |
5845583d | 12775 | *cond_string = cond; |
f7f9143b JB |
12776 | } |
12777 | ||
12778 | /* Return the name of the symbol on which we should break in order to | |
12779 | implement a catchpoint of the EX kind. */ | |
12780 | ||
12781 | static const char * | |
761269c8 | 12782 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12783 | { |
3eecfa55 JB |
12784 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12785 | ||
12786 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12787 | |
f7f9143b JB |
12788 | switch (ex) |
12789 | { | |
761269c8 | 12790 | case ada_catch_exception: |
3eecfa55 | 12791 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12792 | break; |
761269c8 | 12793 | case ada_catch_exception_unhandled: |
3eecfa55 | 12794 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12795 | break; |
761269c8 | 12796 | case ada_catch_assert: |
3eecfa55 | 12797 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12798 | break; |
12799 | default: | |
12800 | internal_error (__FILE__, __LINE__, | |
12801 | _("unexpected catchpoint kind (%d)"), ex); | |
12802 | } | |
12803 | } | |
12804 | ||
12805 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12806 | of the EX kind. */ | |
12807 | ||
c0a91b2b | 12808 | static const struct breakpoint_ops * |
761269c8 | 12809 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12810 | { |
12811 | switch (ex) | |
12812 | { | |
761269c8 | 12813 | case ada_catch_exception: |
f7f9143b JB |
12814 | return (&catch_exception_breakpoint_ops); |
12815 | break; | |
761269c8 | 12816 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12817 | return (&catch_exception_unhandled_breakpoint_ops); |
12818 | break; | |
761269c8 | 12819 | case ada_catch_assert: |
f7f9143b JB |
12820 | return (&catch_assert_breakpoint_ops); |
12821 | break; | |
12822 | default: | |
12823 | internal_error (__FILE__, __LINE__, | |
12824 | _("unexpected catchpoint kind (%d)"), ex); | |
12825 | } | |
12826 | } | |
12827 | ||
12828 | /* Return the condition that will be used to match the current exception | |
12829 | being raised with the exception that the user wants to catch. This | |
12830 | assumes that this condition is used when the inferior just triggered | |
12831 | an exception catchpoint. | |
12832 | ||
12833 | The string returned is a newly allocated string that needs to be | |
12834 | deallocated later. */ | |
12835 | ||
12836 | static char * | |
28010a5d | 12837 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12838 | { |
3d0b0fa3 JB |
12839 | int i; |
12840 | ||
0963b4bd | 12841 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12842 | runtime units that have been compiled without debugging info; if |
28010a5d | 12843 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12844 | exception (e.g. "constraint_error") then, during the evaluation |
12845 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12846 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12847 | may then be set only on user-defined exceptions which have the |
12848 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12849 | ||
12850 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12851 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12852 | exception constraint_error" is rewritten into "catch exception |
12853 | standard.constraint_error". | |
12854 | ||
12855 | If an exception named contraint_error is defined in another package of | |
12856 | the inferior program, then the only way to specify this exception as a | |
12857 | breakpoint condition is to use its fully-qualified named: | |
12858 | e.g. my_package.constraint_error. */ | |
12859 | ||
12860 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12861 | { | |
28010a5d | 12862 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12863 | { |
12864 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12865 | excep_string); |
3d0b0fa3 JB |
12866 | } |
12867 | } | |
28010a5d | 12868 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12869 | } |
12870 | ||
12871 | /* Return the symtab_and_line that should be used to insert an exception | |
12872 | catchpoint of the TYPE kind. | |
12873 | ||
28010a5d PA |
12874 | EXCEP_STRING should contain the name of a specific exception that |
12875 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12876 | |
28010a5d PA |
12877 | ADDR_STRING returns the name of the function where the real |
12878 | breakpoint that implements the catchpoints is set, depending on the | |
12879 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12880 | |
12881 | static struct symtab_and_line | |
761269c8 | 12882 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12883 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12884 | { |
12885 | const char *sym_name; | |
12886 | struct symbol *sym; | |
f7f9143b | 12887 | |
0259addd JB |
12888 | /* First, find out which exception support info to use. */ |
12889 | ada_exception_support_info_sniffer (); | |
12890 | ||
12891 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12892 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12893 | sym_name = ada_exception_sym_name (ex); |
12894 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12895 | ||
f17011e0 JB |
12896 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12897 | did not exist, ada_exception_support_info_sniffer would have | |
12898 | raised an exception. | |
f7f9143b | 12899 | |
f17011e0 JB |
12900 | Also, ada_exception_support_info_sniffer should have already |
12901 | verified that SYM is a function symbol. */ | |
12902 | gdb_assert (sym != NULL); | |
12903 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12904 | |
12905 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12906 | *addr_string = xstrdup (sym_name); |
12907 | ||
f7f9143b | 12908 | /* Set OPS. */ |
4b9eee8c | 12909 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12910 | |
f17011e0 | 12911 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12912 | } |
12913 | ||
b4a5b78b | 12914 | /* Create an Ada exception catchpoint. |
f7f9143b | 12915 | |
b4a5b78b | 12916 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12917 | |
2df4d1d5 JB |
12918 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12919 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12920 | of the exception to which this catchpoint applies. When not NULL, | |
12921 | the string must be allocated on the heap, and its deallocation | |
12922 | is no longer the responsibility of the caller. | |
12923 | ||
12924 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12925 | must be allocated on the heap, and its deallocation is no longer | |
12926 | the responsibility of the caller. | |
f7f9143b | 12927 | |
b4a5b78b JB |
12928 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12929 | should be temporary. | |
28010a5d | 12930 | |
b4a5b78b | 12931 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12932 | |
349774ef | 12933 | void |
28010a5d | 12934 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12935 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12936 | char *excep_string, |
5845583d | 12937 | char *cond_string, |
28010a5d | 12938 | int tempflag, |
349774ef | 12939 | int disabled, |
28010a5d PA |
12940 | int from_tty) |
12941 | { | |
12942 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12943 | char *addr_string = NULL; |
12944 | const struct breakpoint_ops *ops = NULL; | |
12945 | struct symtab_and_line sal | |
12946 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12947 | |
12948 | c = XNEW (struct ada_catchpoint); | |
12949 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12950 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12951 | c->excep_string = excep_string; |
12952 | create_excep_cond_exprs (c); | |
5845583d JB |
12953 | if (cond_string != NULL) |
12954 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12955 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12956 | } |
12957 | ||
9ac4176b PA |
12958 | /* Implement the "catch exception" command. */ |
12959 | ||
12960 | static void | |
12961 | catch_ada_exception_command (char *arg, int from_tty, | |
12962 | struct cmd_list_element *command) | |
12963 | { | |
12964 | struct gdbarch *gdbarch = get_current_arch (); | |
12965 | int tempflag; | |
761269c8 | 12966 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12967 | char *excep_string = NULL; |
5845583d | 12968 | char *cond_string = NULL; |
9ac4176b PA |
12969 | |
12970 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12971 | ||
12972 | if (!arg) | |
12973 | arg = ""; | |
b4a5b78b JB |
12974 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12975 | &cond_string); | |
12976 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12977 | excep_string, cond_string, | |
349774ef JB |
12978 | tempflag, 1 /* enabled */, |
12979 | from_tty); | |
9ac4176b PA |
12980 | } |
12981 | ||
b4a5b78b | 12982 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12983 | |
b4a5b78b JB |
12984 | ARGS contains the command's arguments (or the empty string if |
12985 | no arguments were passed). | |
5845583d JB |
12986 | |
12987 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12988 | (the memory needs to be deallocated after use). */ |
5845583d | 12989 | |
b4a5b78b JB |
12990 | static void |
12991 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12992 | { |
5845583d | 12993 | args = skip_spaces (args); |
f7f9143b | 12994 | |
5845583d | 12995 | /* Check whether a condition was provided. */ |
61012eef | 12996 | if (startswith (args, "if") |
5845583d | 12997 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 12998 | { |
5845583d | 12999 | args += 2; |
0fcd72ba | 13000 | args = skip_spaces (args); |
5845583d JB |
13001 | if (args[0] == '\0') |
13002 | error (_("condition missing after `if' keyword")); | |
13003 | *cond_string = xstrdup (args); | |
f7f9143b JB |
13004 | } |
13005 | ||
5845583d JB |
13006 | /* Otherwise, there should be no other argument at the end of |
13007 | the command. */ | |
13008 | else if (args[0] != '\0') | |
13009 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13010 | } |
13011 | ||
9ac4176b PA |
13012 | /* Implement the "catch assert" command. */ |
13013 | ||
13014 | static void | |
13015 | catch_assert_command (char *arg, int from_tty, | |
13016 | struct cmd_list_element *command) | |
13017 | { | |
13018 | struct gdbarch *gdbarch = get_current_arch (); | |
13019 | int tempflag; | |
5845583d | 13020 | char *cond_string = NULL; |
9ac4176b PA |
13021 | |
13022 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13023 | ||
13024 | if (!arg) | |
13025 | arg = ""; | |
b4a5b78b | 13026 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 13027 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 13028 | NULL, cond_string, |
349774ef JB |
13029 | tempflag, 1 /* enabled */, |
13030 | from_tty); | |
9ac4176b | 13031 | } |
778865d3 JB |
13032 | |
13033 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13034 | ||
13035 | static int | |
13036 | ada_is_exception_sym (struct symbol *sym) | |
13037 | { | |
13038 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
13039 | ||
13040 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13041 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13042 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13043 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13044 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13045 | } | |
13046 | ||
13047 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13048 | Ada exception object. This matches all exceptions except the ones | |
13049 | defined by the Ada language. */ | |
13050 | ||
13051 | static int | |
13052 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13053 | { | |
13054 | int i; | |
13055 | ||
13056 | if (!ada_is_exception_sym (sym)) | |
13057 | return 0; | |
13058 | ||
13059 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13060 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13061 | return 0; /* A standard exception. */ | |
13062 | ||
13063 | /* Numeric_Error is also a standard exception, so exclude it. | |
13064 | See the STANDARD_EXC description for more details as to why | |
13065 | this exception is not listed in that array. */ | |
13066 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13067 | return 0; | |
13068 | ||
13069 | return 1; | |
13070 | } | |
13071 | ||
13072 | /* A helper function for qsort, comparing two struct ada_exc_info | |
13073 | objects. | |
13074 | ||
13075 | The comparison is determined first by exception name, and then | |
13076 | by exception address. */ | |
13077 | ||
13078 | static int | |
13079 | compare_ada_exception_info (const void *a, const void *b) | |
13080 | { | |
13081 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
13082 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
13083 | int result; | |
13084 | ||
13085 | result = strcmp (exc_a->name, exc_b->name); | |
13086 | if (result != 0) | |
13087 | return result; | |
13088 | ||
13089 | if (exc_a->addr < exc_b->addr) | |
13090 | return -1; | |
13091 | if (exc_a->addr > exc_b->addr) | |
13092 | return 1; | |
13093 | ||
13094 | return 0; | |
13095 | } | |
13096 | ||
13097 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13098 | routine, but keeping the first SKIP elements untouched. | |
13099 | ||
13100 | All duplicates are also removed. */ | |
13101 | ||
13102 | static void | |
13103 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
13104 | int skip) | |
13105 | { | |
13106 | struct ada_exc_info *to_sort | |
13107 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
13108 | int to_sort_len | |
13109 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
13110 | int i, j; | |
13111 | ||
13112 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
13113 | compare_ada_exception_info); | |
13114 | ||
13115 | for (i = 1, j = 1; i < to_sort_len; i++) | |
13116 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
13117 | to_sort[j++] = to_sort[i]; | |
13118 | to_sort_len = j; | |
13119 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
13120 | } | |
13121 | ||
13122 | /* A function intended as the "name_matcher" callback in the struct | |
13123 | quick_symbol_functions' expand_symtabs_matching method. | |
13124 | ||
13125 | SEARCH_NAME is the symbol's search name. | |
13126 | ||
13127 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
13128 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
13129 | is null, no filtering is performed, and all symbols are a positive | |
13130 | match. */ | |
13131 | ||
13132 | static int | |
13133 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
13134 | { | |
9a3c8263 | 13135 | regex_t *preg = (regex_t *) user_data; |
778865d3 JB |
13136 | |
13137 | if (preg == NULL) | |
13138 | return 1; | |
13139 | ||
13140 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
13141 | the regular expression used to do the matching refers to | |
13142 | the natural name. So match against the decoded name. */ | |
13143 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
13144 | } | |
13145 | ||
13146 | /* Add all exceptions defined by the Ada standard whose name match | |
13147 | a regular expression. | |
13148 | ||
13149 | If PREG is not NULL, then this regexp_t object is used to | |
13150 | perform the symbol name matching. Otherwise, no name-based | |
13151 | filtering is performed. | |
13152 | ||
13153 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13154 | gets pushed. */ | |
13155 | ||
13156 | static void | |
13157 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13158 | { | |
13159 | int i; | |
13160 | ||
13161 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13162 | { | |
13163 | if (preg == NULL | |
13164 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
13165 | { | |
13166 | struct bound_minimal_symbol msymbol | |
13167 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13168 | ||
13169 | if (msymbol.minsym != NULL) | |
13170 | { | |
13171 | struct ada_exc_info info | |
77e371c0 | 13172 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
13173 | |
13174 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13175 | } | |
13176 | } | |
13177 | } | |
13178 | } | |
13179 | ||
13180 | /* Add all Ada exceptions defined locally and accessible from the given | |
13181 | FRAME. | |
13182 | ||
13183 | If PREG is not NULL, then this regexp_t object is used to | |
13184 | perform the symbol name matching. Otherwise, no name-based | |
13185 | filtering is performed. | |
13186 | ||
13187 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13188 | gets pushed. */ | |
13189 | ||
13190 | static void | |
13191 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
13192 | VEC(ada_exc_info) **exceptions) | |
13193 | { | |
3977b71f | 13194 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13195 | |
13196 | while (block != 0) | |
13197 | { | |
13198 | struct block_iterator iter; | |
13199 | struct symbol *sym; | |
13200 | ||
13201 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13202 | { | |
13203 | switch (SYMBOL_CLASS (sym)) | |
13204 | { | |
13205 | case LOC_TYPEDEF: | |
13206 | case LOC_BLOCK: | |
13207 | case LOC_CONST: | |
13208 | break; | |
13209 | default: | |
13210 | if (ada_is_exception_sym (sym)) | |
13211 | { | |
13212 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13213 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13214 | ||
13215 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13216 | } | |
13217 | } | |
13218 | } | |
13219 | if (BLOCK_FUNCTION (block) != NULL) | |
13220 | break; | |
13221 | block = BLOCK_SUPERBLOCK (block); | |
13222 | } | |
13223 | } | |
13224 | ||
13225 | /* Add all exceptions defined globally whose name name match | |
13226 | a regular expression, excluding standard exceptions. | |
13227 | ||
13228 | The reason we exclude standard exceptions is that they need | |
13229 | to be handled separately: Standard exceptions are defined inside | |
13230 | a runtime unit which is normally not compiled with debugging info, | |
13231 | and thus usually do not show up in our symbol search. However, | |
13232 | if the unit was in fact built with debugging info, we need to | |
13233 | exclude them because they would duplicate the entry we found | |
13234 | during the special loop that specifically searches for those | |
13235 | standard exceptions. | |
13236 | ||
13237 | If PREG is not NULL, then this regexp_t object is used to | |
13238 | perform the symbol name matching. Otherwise, no name-based | |
13239 | filtering is performed. | |
13240 | ||
13241 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13242 | gets pushed. */ | |
13243 | ||
13244 | static void | |
13245 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
13246 | { | |
13247 | struct objfile *objfile; | |
43f3e411 | 13248 | struct compunit_symtab *s; |
778865d3 | 13249 | |
276d885b | 13250 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL, |
bb4142cf | 13251 | VARIABLES_DOMAIN, preg); |
778865d3 | 13252 | |
43f3e411 | 13253 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13254 | { |
43f3e411 | 13255 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13256 | int i; |
13257 | ||
13258 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13259 | { | |
13260 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13261 | struct block_iterator iter; | |
13262 | struct symbol *sym; | |
13263 | ||
13264 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13265 | if (ada_is_non_standard_exception_sym (sym) | |
13266 | && (preg == NULL | |
13267 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
13268 | 0, NULL, 0) == 0)) | |
13269 | { | |
13270 | struct ada_exc_info info | |
13271 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13272 | ||
13273 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13274 | } | |
13275 | } | |
13276 | } | |
13277 | } | |
13278 | ||
13279 | /* Implements ada_exceptions_list with the regular expression passed | |
13280 | as a regex_t, rather than a string. | |
13281 | ||
13282 | If not NULL, PREG is used to filter out exceptions whose names | |
13283 | do not match. Otherwise, all exceptions are listed. */ | |
13284 | ||
13285 | static VEC(ada_exc_info) * | |
13286 | ada_exceptions_list_1 (regex_t *preg) | |
13287 | { | |
13288 | VEC(ada_exc_info) *result = NULL; | |
13289 | struct cleanup *old_chain | |
13290 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
13291 | int prev_len; | |
13292 | ||
13293 | /* First, list the known standard exceptions. These exceptions | |
13294 | need to be handled separately, as they are usually defined in | |
13295 | runtime units that have been compiled without debugging info. */ | |
13296 | ||
13297 | ada_add_standard_exceptions (preg, &result); | |
13298 | ||
13299 | /* Next, find all exceptions whose scope is local and accessible | |
13300 | from the currently selected frame. */ | |
13301 | ||
13302 | if (has_stack_frames ()) | |
13303 | { | |
13304 | prev_len = VEC_length (ada_exc_info, result); | |
13305 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13306 | &result); | |
13307 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13308 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13309 | } | |
13310 | ||
13311 | /* Add all exceptions whose scope is global. */ | |
13312 | ||
13313 | prev_len = VEC_length (ada_exc_info, result); | |
13314 | ada_add_global_exceptions (preg, &result); | |
13315 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13316 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13317 | ||
13318 | discard_cleanups (old_chain); | |
13319 | return result; | |
13320 | } | |
13321 | ||
13322 | /* Return a vector of ada_exc_info. | |
13323 | ||
13324 | If REGEXP is NULL, all exceptions are included in the result. | |
13325 | Otherwise, it should contain a valid regular expression, | |
13326 | and only the exceptions whose names match that regular expression | |
13327 | are included in the result. | |
13328 | ||
13329 | The exceptions are sorted in the following order: | |
13330 | - Standard exceptions (defined by the Ada language), in | |
13331 | alphabetical order; | |
13332 | - Exceptions only visible from the current frame, in | |
13333 | alphabetical order; | |
13334 | - Exceptions whose scope is global, in alphabetical order. */ | |
13335 | ||
13336 | VEC(ada_exc_info) * | |
13337 | ada_exceptions_list (const char *regexp) | |
13338 | { | |
13339 | VEC(ada_exc_info) *result = NULL; | |
13340 | struct cleanup *old_chain = NULL; | |
13341 | regex_t reg; | |
13342 | ||
13343 | if (regexp != NULL) | |
13344 | old_chain = compile_rx_or_error (®, regexp, | |
13345 | _("invalid regular expression")); | |
13346 | ||
13347 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
13348 | ||
13349 | if (old_chain != NULL) | |
13350 | do_cleanups (old_chain); | |
13351 | return result; | |
13352 | } | |
13353 | ||
13354 | /* Implement the "info exceptions" command. */ | |
13355 | ||
13356 | static void | |
13357 | info_exceptions_command (char *regexp, int from_tty) | |
13358 | { | |
13359 | VEC(ada_exc_info) *exceptions; | |
13360 | struct cleanup *cleanup; | |
13361 | struct gdbarch *gdbarch = get_current_arch (); | |
13362 | int ix; | |
13363 | struct ada_exc_info *info; | |
13364 | ||
13365 | exceptions = ada_exceptions_list (regexp); | |
13366 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13367 | ||
13368 | if (regexp != NULL) | |
13369 | printf_filtered | |
13370 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13371 | else | |
13372 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13373 | ||
13374 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13375 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13376 | ||
13377 | do_cleanups (cleanup); | |
13378 | } | |
13379 | ||
4c4b4cd2 PH |
13380 | /* Operators */ |
13381 | /* Information about operators given special treatment in functions | |
13382 | below. */ | |
13383 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13384 | ||
13385 | #define ADA_OPERATORS \ | |
13386 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13387 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13388 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13389 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13390 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13391 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13392 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13393 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13394 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13395 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13396 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13397 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13398 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13399 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13400 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13401 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13402 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13403 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13404 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13405 | |
13406 | static void | |
554794dc SDJ |
13407 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13408 | int *argsp) | |
4c4b4cd2 PH |
13409 | { |
13410 | switch (exp->elts[pc - 1].opcode) | |
13411 | { | |
76a01679 | 13412 | default: |
4c4b4cd2 PH |
13413 | operator_length_standard (exp, pc, oplenp, argsp); |
13414 | break; | |
13415 | ||
13416 | #define OP_DEFN(op, len, args, binop) \ | |
13417 | case op: *oplenp = len; *argsp = args; break; | |
13418 | ADA_OPERATORS; | |
13419 | #undef OP_DEFN | |
52ce6436 PH |
13420 | |
13421 | case OP_AGGREGATE: | |
13422 | *oplenp = 3; | |
13423 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13424 | break; | |
13425 | ||
13426 | case OP_CHOICES: | |
13427 | *oplenp = 3; | |
13428 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13429 | break; | |
4c4b4cd2 PH |
13430 | } |
13431 | } | |
13432 | ||
c0201579 JK |
13433 | /* Implementation of the exp_descriptor method operator_check. */ |
13434 | ||
13435 | static int | |
13436 | ada_operator_check (struct expression *exp, int pos, | |
13437 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13438 | void *data) | |
13439 | { | |
13440 | const union exp_element *const elts = exp->elts; | |
13441 | struct type *type = NULL; | |
13442 | ||
13443 | switch (elts[pos].opcode) | |
13444 | { | |
13445 | case UNOP_IN_RANGE: | |
13446 | case UNOP_QUAL: | |
13447 | type = elts[pos + 1].type; | |
13448 | break; | |
13449 | ||
13450 | default: | |
13451 | return operator_check_standard (exp, pos, objfile_func, data); | |
13452 | } | |
13453 | ||
13454 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13455 | ||
13456 | if (type && TYPE_OBJFILE (type) | |
13457 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13458 | return 1; | |
13459 | ||
13460 | return 0; | |
13461 | } | |
13462 | ||
4c4b4cd2 PH |
13463 | static char * |
13464 | ada_op_name (enum exp_opcode opcode) | |
13465 | { | |
13466 | switch (opcode) | |
13467 | { | |
76a01679 | 13468 | default: |
4c4b4cd2 | 13469 | return op_name_standard (opcode); |
52ce6436 | 13470 | |
4c4b4cd2 PH |
13471 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13472 | ADA_OPERATORS; | |
13473 | #undef OP_DEFN | |
52ce6436 PH |
13474 | |
13475 | case OP_AGGREGATE: | |
13476 | return "OP_AGGREGATE"; | |
13477 | case OP_CHOICES: | |
13478 | return "OP_CHOICES"; | |
13479 | case OP_NAME: | |
13480 | return "OP_NAME"; | |
4c4b4cd2 PH |
13481 | } |
13482 | } | |
13483 | ||
13484 | /* As for operator_length, but assumes PC is pointing at the first | |
13485 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13486 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13487 | |
13488 | static void | |
76a01679 JB |
13489 | ada_forward_operator_length (struct expression *exp, int pc, |
13490 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13491 | { |
76a01679 | 13492 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13493 | { |
13494 | default: | |
13495 | *oplenp = *argsp = 0; | |
13496 | break; | |
52ce6436 | 13497 | |
4c4b4cd2 PH |
13498 | #define OP_DEFN(op, len, args, binop) \ |
13499 | case op: *oplenp = len; *argsp = args; break; | |
13500 | ADA_OPERATORS; | |
13501 | #undef OP_DEFN | |
52ce6436 PH |
13502 | |
13503 | case OP_AGGREGATE: | |
13504 | *oplenp = 3; | |
13505 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13506 | break; | |
13507 | ||
13508 | case OP_CHOICES: | |
13509 | *oplenp = 3; | |
13510 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13511 | break; | |
13512 | ||
13513 | case OP_STRING: | |
13514 | case OP_NAME: | |
13515 | { | |
13516 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13517 | |
52ce6436 PH |
13518 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13519 | *argsp = 0; | |
13520 | break; | |
13521 | } | |
4c4b4cd2 PH |
13522 | } |
13523 | } | |
13524 | ||
13525 | static int | |
13526 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13527 | { | |
13528 | enum exp_opcode op = exp->elts[elt].opcode; | |
13529 | int oplen, nargs; | |
13530 | int pc = elt; | |
13531 | int i; | |
76a01679 | 13532 | |
4c4b4cd2 PH |
13533 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13534 | ||
76a01679 | 13535 | switch (op) |
4c4b4cd2 | 13536 | { |
76a01679 | 13537 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13538 | case OP_ATR_FIRST: |
13539 | case OP_ATR_LAST: | |
13540 | case OP_ATR_LENGTH: | |
13541 | case OP_ATR_IMAGE: | |
13542 | case OP_ATR_MAX: | |
13543 | case OP_ATR_MIN: | |
13544 | case OP_ATR_MODULUS: | |
13545 | case OP_ATR_POS: | |
13546 | case OP_ATR_SIZE: | |
13547 | case OP_ATR_TAG: | |
13548 | case OP_ATR_VAL: | |
13549 | break; | |
13550 | ||
13551 | case UNOP_IN_RANGE: | |
13552 | case UNOP_QUAL: | |
323e0a4a AC |
13553 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13554 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13555 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13556 | fprintf_filtered (stream, " ("); | |
13557 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13558 | fprintf_filtered (stream, ")"); | |
13559 | break; | |
13560 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13561 | fprintf_filtered (stream, " (%d)", |
13562 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13563 | break; |
13564 | case TERNOP_IN_RANGE: | |
13565 | break; | |
13566 | ||
52ce6436 PH |
13567 | case OP_AGGREGATE: |
13568 | case OP_OTHERS: | |
13569 | case OP_DISCRETE_RANGE: | |
13570 | case OP_POSITIONAL: | |
13571 | case OP_CHOICES: | |
13572 | break; | |
13573 | ||
13574 | case OP_NAME: | |
13575 | case OP_STRING: | |
13576 | { | |
13577 | char *name = &exp->elts[elt + 2].string; | |
13578 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13579 | |
52ce6436 PH |
13580 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13581 | break; | |
13582 | } | |
13583 | ||
4c4b4cd2 PH |
13584 | default: |
13585 | return dump_subexp_body_standard (exp, stream, elt); | |
13586 | } | |
13587 | ||
13588 | elt += oplen; | |
13589 | for (i = 0; i < nargs; i += 1) | |
13590 | elt = dump_subexp (exp, stream, elt); | |
13591 | ||
13592 | return elt; | |
13593 | } | |
13594 | ||
13595 | /* The Ada extension of print_subexp (q.v.). */ | |
13596 | ||
76a01679 JB |
13597 | static void |
13598 | ada_print_subexp (struct expression *exp, int *pos, | |
13599 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13600 | { |
52ce6436 | 13601 | int oplen, nargs, i; |
4c4b4cd2 PH |
13602 | int pc = *pos; |
13603 | enum exp_opcode op = exp->elts[pc].opcode; | |
13604 | ||
13605 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13606 | ||
52ce6436 | 13607 | *pos += oplen; |
4c4b4cd2 PH |
13608 | switch (op) |
13609 | { | |
13610 | default: | |
52ce6436 | 13611 | *pos -= oplen; |
4c4b4cd2 PH |
13612 | print_subexp_standard (exp, pos, stream, prec); |
13613 | return; | |
13614 | ||
13615 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13616 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13617 | return; | |
13618 | ||
13619 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13620 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13621 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13622 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13623 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13624 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13625 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13626 | fprintf_filtered (stream, "(%ld)", |
13627 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13628 | return; |
13629 | ||
13630 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13631 | if (prec >= PREC_EQUAL) |
76a01679 | 13632 | fputs_filtered ("(", stream); |
323e0a4a | 13633 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13634 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13635 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13636 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13637 | fputs_filtered (" .. ", stream); | |
13638 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13639 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13640 | fputs_filtered (")", stream); |
13641 | return; | |
4c4b4cd2 PH |
13642 | |
13643 | case OP_ATR_FIRST: | |
13644 | case OP_ATR_LAST: | |
13645 | case OP_ATR_LENGTH: | |
13646 | case OP_ATR_IMAGE: | |
13647 | case OP_ATR_MAX: | |
13648 | case OP_ATR_MIN: | |
13649 | case OP_ATR_MODULUS: | |
13650 | case OP_ATR_POS: | |
13651 | case OP_ATR_SIZE: | |
13652 | case OP_ATR_TAG: | |
13653 | case OP_ATR_VAL: | |
4c4b4cd2 | 13654 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13655 | { |
13656 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13657 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13658 | &type_print_raw_options); | |
76a01679 JB |
13659 | *pos += 3; |
13660 | } | |
4c4b4cd2 | 13661 | else |
76a01679 | 13662 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13663 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13664 | if (nargs > 1) | |
76a01679 JB |
13665 | { |
13666 | int tem; | |
5b4ee69b | 13667 | |
76a01679 JB |
13668 | for (tem = 1; tem < nargs; tem += 1) |
13669 | { | |
13670 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13671 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13672 | } | |
13673 | fputs_filtered (")", stream); | |
13674 | } | |
4c4b4cd2 | 13675 | return; |
14f9c5c9 | 13676 | |
4c4b4cd2 | 13677 | case UNOP_QUAL: |
4c4b4cd2 PH |
13678 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13679 | fputs_filtered ("'(", stream); | |
13680 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13681 | fputs_filtered (")", stream); | |
13682 | return; | |
14f9c5c9 | 13683 | |
4c4b4cd2 | 13684 | case UNOP_IN_RANGE: |
323e0a4a | 13685 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13686 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13687 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13688 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13689 | &type_print_raw_options); | |
4c4b4cd2 | 13690 | return; |
52ce6436 PH |
13691 | |
13692 | case OP_DISCRETE_RANGE: | |
13693 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13694 | fputs_filtered ("..", stream); | |
13695 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13696 | return; | |
13697 | ||
13698 | case OP_OTHERS: | |
13699 | fputs_filtered ("others => ", stream); | |
13700 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13701 | return; | |
13702 | ||
13703 | case OP_CHOICES: | |
13704 | for (i = 0; i < nargs-1; i += 1) | |
13705 | { | |
13706 | if (i > 0) | |
13707 | fputs_filtered ("|", stream); | |
13708 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13709 | } | |
13710 | fputs_filtered (" => ", stream); | |
13711 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13712 | return; | |
13713 | ||
13714 | case OP_POSITIONAL: | |
13715 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13716 | return; | |
13717 | ||
13718 | case OP_AGGREGATE: | |
13719 | fputs_filtered ("(", stream); | |
13720 | for (i = 0; i < nargs; i += 1) | |
13721 | { | |
13722 | if (i > 0) | |
13723 | fputs_filtered (", ", stream); | |
13724 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13725 | } | |
13726 | fputs_filtered (")", stream); | |
13727 | return; | |
4c4b4cd2 PH |
13728 | } |
13729 | } | |
14f9c5c9 AS |
13730 | |
13731 | /* Table mapping opcodes into strings for printing operators | |
13732 | and precedences of the operators. */ | |
13733 | ||
d2e4a39e AS |
13734 | static const struct op_print ada_op_print_tab[] = { |
13735 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13736 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13737 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13738 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13739 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13740 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13741 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13742 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13743 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13744 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13745 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13746 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13747 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13748 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13749 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13750 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13751 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13752 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13753 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13754 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13755 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13756 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13757 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13758 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13759 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13760 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13761 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13762 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13763 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13764 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13765 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13766 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13767 | }; |
13768 | \f | |
72d5681a PH |
13769 | enum ada_primitive_types { |
13770 | ada_primitive_type_int, | |
13771 | ada_primitive_type_long, | |
13772 | ada_primitive_type_short, | |
13773 | ada_primitive_type_char, | |
13774 | ada_primitive_type_float, | |
13775 | ada_primitive_type_double, | |
13776 | ada_primitive_type_void, | |
13777 | ada_primitive_type_long_long, | |
13778 | ada_primitive_type_long_double, | |
13779 | ada_primitive_type_natural, | |
13780 | ada_primitive_type_positive, | |
13781 | ada_primitive_type_system_address, | |
13782 | nr_ada_primitive_types | |
13783 | }; | |
6c038f32 PH |
13784 | |
13785 | static void | |
d4a9a881 | 13786 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13787 | struct language_arch_info *lai) |
13788 | { | |
d4a9a881 | 13789 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13790 | |
72d5681a | 13791 | lai->primitive_type_vector |
d4a9a881 | 13792 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13793 | struct type *); |
e9bb382b UW |
13794 | |
13795 | lai->primitive_type_vector [ada_primitive_type_int] | |
13796 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13797 | 0, "integer"); | |
13798 | lai->primitive_type_vector [ada_primitive_type_long] | |
13799 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13800 | 0, "long_integer"); | |
13801 | lai->primitive_type_vector [ada_primitive_type_short] | |
13802 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13803 | 0, "short_integer"); | |
13804 | lai->string_char_type | |
13805 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 13806 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
13807 | lai->primitive_type_vector [ada_primitive_type_float] |
13808 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13809 | "float", NULL); | |
13810 | lai->primitive_type_vector [ada_primitive_type_double] | |
13811 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13812 | "long_float", NULL); | |
13813 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13814 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13815 | 0, "long_long_integer"); | |
13816 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13817 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13818 | "long_long_float", NULL); | |
13819 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13820 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13821 | 0, "natural"); | |
13822 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13823 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13824 | 0, "positive"); | |
13825 | lai->primitive_type_vector [ada_primitive_type_void] | |
13826 | = builtin->builtin_void; | |
13827 | ||
13828 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13829 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13830 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13831 | = "system__address"; | |
fbb06eb1 | 13832 | |
47e729a8 | 13833 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13834 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13835 | } |
6c038f32 PH |
13836 | \f |
13837 | /* Language vector */ | |
13838 | ||
13839 | /* Not really used, but needed in the ada_language_defn. */ | |
13840 | ||
13841 | static void | |
6c7a06a3 | 13842 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13843 | { |
6c7a06a3 | 13844 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13845 | } |
13846 | ||
13847 | static int | |
410a0ff2 | 13848 | parse (struct parser_state *ps) |
6c038f32 PH |
13849 | { |
13850 | warnings_issued = 0; | |
410a0ff2 | 13851 | return ada_parse (ps); |
6c038f32 PH |
13852 | } |
13853 | ||
13854 | static const struct exp_descriptor ada_exp_descriptor = { | |
13855 | ada_print_subexp, | |
13856 | ada_operator_length, | |
c0201579 | 13857 | ada_operator_check, |
6c038f32 PH |
13858 | ada_op_name, |
13859 | ada_dump_subexp_body, | |
13860 | ada_evaluate_subexp | |
13861 | }; | |
13862 | ||
1a119f36 | 13863 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13864 | for Ada. */ |
13865 | ||
1a119f36 JB |
13866 | static symbol_name_cmp_ftype |
13867 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13868 | { |
13869 | if (should_use_wild_match (lookup_name)) | |
13870 | return wild_match; | |
13871 | else | |
13872 | return compare_names; | |
13873 | } | |
13874 | ||
a5ee536b JB |
13875 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13876 | ||
13877 | static struct value * | |
63e43d3a PMR |
13878 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
13879 | struct frame_info *frame) | |
a5ee536b | 13880 | { |
3977b71f | 13881 | const struct block *frame_block = NULL; |
a5ee536b JB |
13882 | struct symbol *renaming_sym = NULL; |
13883 | ||
13884 | /* The only case where default_read_var_value is not sufficient | |
13885 | is when VAR is a renaming... */ | |
13886 | if (frame) | |
13887 | frame_block = get_frame_block (frame, NULL); | |
13888 | if (frame_block) | |
13889 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13890 | if (renaming_sym != NULL) | |
13891 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13892 | ||
13893 | /* This is a typical case where we expect the default_read_var_value | |
13894 | function to work. */ | |
63e43d3a | 13895 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
13896 | } |
13897 | ||
6c038f32 PH |
13898 | const struct language_defn ada_language_defn = { |
13899 | "ada", /* Language name */ | |
6abde28f | 13900 | "Ada", |
6c038f32 | 13901 | language_ada, |
6c038f32 | 13902 | range_check_off, |
6c038f32 PH |
13903 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13904 | that's not quite what this means. */ | |
6c038f32 | 13905 | array_row_major, |
9a044a89 | 13906 | macro_expansion_no, |
6c038f32 PH |
13907 | &ada_exp_descriptor, |
13908 | parse, | |
13909 | ada_error, | |
13910 | resolve, | |
13911 | ada_printchar, /* Print a character constant */ | |
13912 | ada_printstr, /* Function to print string constant */ | |
13913 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13914 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13915 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13916 | ada_val_print, /* Print a value using appropriate syntax */ |
13917 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13918 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13919 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13920 | NULL, /* name_of_this */ |
6c038f32 PH |
13921 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13922 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13923 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13924 | NULL, /* Language specific |
13925 | class_name_from_physname */ | |
6c038f32 PH |
13926 | ada_op_print_tab, /* expression operators for printing */ |
13927 | 0, /* c-style arrays */ | |
13928 | 1, /* String lower bound */ | |
6c038f32 | 13929 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13930 | ada_make_symbol_completion_list, |
72d5681a | 13931 | ada_language_arch_info, |
e79af960 | 13932 | ada_print_array_index, |
41f1b697 | 13933 | default_pass_by_reference, |
ae6a3a4c | 13934 | c_get_string, |
1a119f36 | 13935 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13936 | ada_iterate_over_symbols, |
a53b64ea | 13937 | &ada_varobj_ops, |
bb2ec1b3 TT |
13938 | NULL, |
13939 | NULL, | |
6c038f32 PH |
13940 | LANG_MAGIC |
13941 | }; | |
13942 | ||
2c0b251b PA |
13943 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13944 | extern initialize_file_ftype _initialize_ada_language; | |
13945 | ||
5bf03f13 JB |
13946 | /* Command-list for the "set/show ada" prefix command. */ |
13947 | static struct cmd_list_element *set_ada_list; | |
13948 | static struct cmd_list_element *show_ada_list; | |
13949 | ||
13950 | /* Implement the "set ada" prefix command. */ | |
13951 | ||
13952 | static void | |
13953 | set_ada_command (char *arg, int from_tty) | |
13954 | { | |
13955 | printf_unfiltered (_(\ | |
13956 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 13957 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
13958 | } |
13959 | ||
13960 | /* Implement the "show ada" prefix command. */ | |
13961 | ||
13962 | static void | |
13963 | show_ada_command (char *args, int from_tty) | |
13964 | { | |
13965 | cmd_show_list (show_ada_list, from_tty, ""); | |
13966 | } | |
13967 | ||
2060206e PA |
13968 | static void |
13969 | initialize_ada_catchpoint_ops (void) | |
13970 | { | |
13971 | struct breakpoint_ops *ops; | |
13972 | ||
13973 | initialize_breakpoint_ops (); | |
13974 | ||
13975 | ops = &catch_exception_breakpoint_ops; | |
13976 | *ops = bkpt_breakpoint_ops; | |
13977 | ops->dtor = dtor_catch_exception; | |
13978 | ops->allocate_location = allocate_location_catch_exception; | |
13979 | ops->re_set = re_set_catch_exception; | |
13980 | ops->check_status = check_status_catch_exception; | |
13981 | ops->print_it = print_it_catch_exception; | |
13982 | ops->print_one = print_one_catch_exception; | |
13983 | ops->print_mention = print_mention_catch_exception; | |
13984 | ops->print_recreate = print_recreate_catch_exception; | |
13985 | ||
13986 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13987 | *ops = bkpt_breakpoint_ops; | |
13988 | ops->dtor = dtor_catch_exception_unhandled; | |
13989 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13990 | ops->re_set = re_set_catch_exception_unhandled; | |
13991 | ops->check_status = check_status_catch_exception_unhandled; | |
13992 | ops->print_it = print_it_catch_exception_unhandled; | |
13993 | ops->print_one = print_one_catch_exception_unhandled; | |
13994 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13995 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13996 | ||
13997 | ops = &catch_assert_breakpoint_ops; | |
13998 | *ops = bkpt_breakpoint_ops; | |
13999 | ops->dtor = dtor_catch_assert; | |
14000 | ops->allocate_location = allocate_location_catch_assert; | |
14001 | ops->re_set = re_set_catch_assert; | |
14002 | ops->check_status = check_status_catch_assert; | |
14003 | ops->print_it = print_it_catch_assert; | |
14004 | ops->print_one = print_one_catch_assert; | |
14005 | ops->print_mention = print_mention_catch_assert; | |
14006 | ops->print_recreate = print_recreate_catch_assert; | |
14007 | } | |
14008 | ||
3d9434b5 JB |
14009 | /* This module's 'new_objfile' observer. */ |
14010 | ||
14011 | static void | |
14012 | ada_new_objfile_observer (struct objfile *objfile) | |
14013 | { | |
14014 | ada_clear_symbol_cache (); | |
14015 | } | |
14016 | ||
14017 | /* This module's 'free_objfile' observer. */ | |
14018 | ||
14019 | static void | |
14020 | ada_free_objfile_observer (struct objfile *objfile) | |
14021 | { | |
14022 | ada_clear_symbol_cache (); | |
14023 | } | |
14024 | ||
d2e4a39e | 14025 | void |
6c038f32 | 14026 | _initialize_ada_language (void) |
14f9c5c9 | 14027 | { |
6c038f32 PH |
14028 | add_language (&ada_language_defn); |
14029 | ||
2060206e PA |
14030 | initialize_ada_catchpoint_ops (); |
14031 | ||
5bf03f13 JB |
14032 | add_prefix_cmd ("ada", no_class, set_ada_command, |
14033 | _("Prefix command for changing Ada-specfic settings"), | |
14034 | &set_ada_list, "set ada ", 0, &setlist); | |
14035 | ||
14036 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14037 | _("Generic command for showing Ada-specific settings."), | |
14038 | &show_ada_list, "show ada ", 0, &showlist); | |
14039 | ||
14040 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14041 | &trust_pad_over_xvs, _("\ | |
14042 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14043 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14044 | _("\ | |
14045 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14046 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14047 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14048 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14049 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14050 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14051 | this option to \"off\" unless necessary."), | |
14052 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14053 | ||
9ac4176b PA |
14054 | add_catch_command ("exception", _("\ |
14055 | Catch Ada exceptions, when raised.\n\ | |
14056 | With an argument, catch only exceptions with the given name."), | |
14057 | catch_ada_exception_command, | |
14058 | NULL, | |
14059 | CATCH_PERMANENT, | |
14060 | CATCH_TEMPORARY); | |
14061 | add_catch_command ("assert", _("\ | |
14062 | Catch failed Ada assertions, when raised.\n\ | |
14063 | With an argument, catch only exceptions with the given name."), | |
14064 | catch_assert_command, | |
14065 | NULL, | |
14066 | CATCH_PERMANENT, | |
14067 | CATCH_TEMPORARY); | |
14068 | ||
6c038f32 | 14069 | varsize_limit = 65536; |
6c038f32 | 14070 | |
778865d3 JB |
14071 | add_info ("exceptions", info_exceptions_command, |
14072 | _("\ | |
14073 | List all Ada exception names.\n\ | |
14074 | If a regular expression is passed as an argument, only those matching\n\ | |
14075 | the regular expression are listed.")); | |
14076 | ||
c6044dd1 JB |
14077 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14078 | _("Set Ada maintenance-related variables."), | |
14079 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14080 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14081 | ||
14082 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14083 | _("Show Ada maintenance-related variables"), | |
14084 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14085 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14086 | ||
14087 | add_setshow_boolean_cmd | |
14088 | ("ignore-descriptive-types", class_maintenance, | |
14089 | &ada_ignore_descriptive_types_p, | |
14090 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14091 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14092 | _("\ | |
14093 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14094 | DWARF attribute."), | |
14095 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14096 | ||
6c038f32 PH |
14097 | obstack_init (&symbol_list_obstack); |
14098 | ||
14099 | decoded_names_store = htab_create_alloc | |
14100 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
14101 | NULL, xcalloc, xfree); | |
6b69afc4 | 14102 | |
3d9434b5 JB |
14103 | /* The ada-lang observers. */ |
14104 | observer_attach_new_objfile (ada_new_objfile_observer); | |
14105 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 14106 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
14107 | |
14108 | /* Setup various context-specific data. */ | |
e802dbe0 | 14109 | ada_inferior_data |
8e260fc0 | 14110 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14111 | ada_pspace_data_handle |
14112 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14113 | } |