]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
e2882c85 | 3 | Copyright (C) 1992-2018 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
76727919 | 51 | #include "observable.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
14bc53a8 | 63 | #include "common/function-view.h" |
d5722aa2 | 64 | #include "common/byte-vector.h" |
ab816a27 | 65 | #include <algorithm> |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40bc484c | 107 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 108 | |
4c4b4cd2 | 109 | static void ada_add_block_symbols (struct obstack *, |
b5ec771e PA |
110 | const struct block *, |
111 | const lookup_name_info &lookup_name, | |
112 | domain_enum, struct objfile *); | |
14f9c5c9 | 113 | |
22cee43f | 114 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
b5ec771e PA |
115 | const lookup_name_info &lookup_name, |
116 | domain_enum, int, int *); | |
22cee43f | 117 | |
d12307c1 | 118 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 119 | |
76a01679 | 120 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 121 | const struct block *); |
14f9c5c9 | 122 | |
4c4b4cd2 PH |
123 | static int num_defns_collected (struct obstack *); |
124 | ||
d12307c1 | 125 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 126 | |
e9d9f57e | 127 | static struct value *resolve_subexp (expression_up *, int *, int, |
76a01679 | 128 | struct type *); |
14f9c5c9 | 129 | |
e9d9f57e | 130 | static void replace_operator_with_call (expression_up *, int, int, int, |
270140bd | 131 | struct symbol *, const struct block *); |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 134 | |
a121b7c1 | 135 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
136 | |
137 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int numeric_type_p (struct type *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int integer_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int scalar_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int discrete_type_p (struct type *); |
14f9c5c9 | 146 | |
aeb5907d JB |
147 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
148 | const char **, | |
149 | int *, | |
150 | const char **); | |
151 | ||
152 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 153 | const struct block *); |
aeb5907d | 154 | |
a121b7c1 | 155 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 156 | int, int); |
4c4b4cd2 | 157 | |
d2e4a39e | 158 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 159 | |
b4ba55a1 JB |
160 | static struct type *ada_find_parallel_type_with_name (struct type *, |
161 | const char *); | |
162 | ||
d2e4a39e | 163 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 164 | |
10a2c479 | 165 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 166 | const gdb_byte *, |
4c4b4cd2 PH |
167 | CORE_ADDR, struct value *); |
168 | ||
169 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 170 | |
28c85d6c | 171 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
ad82864c | 180 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
ad82864c JB |
182 | static long decode_packed_array_bitsize (struct type *); |
183 | ||
184 | static struct value *decode_constrained_packed_array (struct value *); | |
185 | ||
186 | static int ada_is_packed_array_type (struct type *); | |
187 | ||
188 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 189 | |
d2e4a39e | 190 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 191 | struct value **); |
14f9c5c9 | 192 | |
50810684 | 193 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 194 | |
4c4b4cd2 PH |
195 | static struct value *coerce_unspec_val_to_type (struct value *, |
196 | struct type *); | |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static int is_name_suffix (const char *); |
14f9c5c9 | 203 | |
73589123 PH |
204 | static int advance_wild_match (const char **, const char *, int); |
205 | ||
b5ec771e | 206 | static bool wild_match (const char *name, const char *patn); |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static LONGEST pos_atr (struct value *); |
211 | ||
3cb382c9 | 212 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
d2e4a39e | 214 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 215 | |
4c4b4cd2 PH |
216 | static struct symbol *standard_lookup (const char *, const struct block *, |
217 | domain_enum); | |
14f9c5c9 | 218 | |
108d56a4 | 219 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
220 | struct type *); |
221 | ||
222 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
223 | struct type *); | |
224 | ||
0d5cff50 | 225 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 226 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 | 227 | |
d12307c1 | 228 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
229 | struct value **, int, const char *, |
230 | struct type *); | |
231 | ||
4c4b4cd2 PH |
232 | static int ada_is_direct_array_type (struct type *); |
233 | ||
72d5681a PH |
234 | static void ada_language_arch_info (struct gdbarch *, |
235 | struct language_arch_info *); | |
714e53ab | 236 | |
52ce6436 PH |
237 | static struct value *ada_index_struct_field (int, struct value *, int, |
238 | struct type *); | |
239 | ||
240 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
241 | struct expression *, |
242 | int *, enum noside); | |
52ce6436 PH |
243 | |
244 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
245 | struct expression *, | |
246 | int *, LONGEST *, int *, | |
247 | int, LONGEST, LONGEST); | |
248 | ||
249 | static void aggregate_assign_positional (struct value *, struct value *, | |
250 | struct expression *, | |
251 | int *, LONGEST *, int *, int, | |
252 | LONGEST, LONGEST); | |
253 | ||
254 | ||
255 | static void aggregate_assign_others (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int, LONGEST, LONGEST); | |
258 | ||
259 | ||
260 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
261 | ||
262 | ||
263 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
264 | int *, enum noside); | |
265 | ||
266 | static void ada_forward_operator_length (struct expression *, int, int *, | |
267 | int *); | |
852dff6c JB |
268 | |
269 | static struct type *ada_find_any_type (const char *name); | |
b5ec771e PA |
270 | |
271 | static symbol_name_matcher_ftype *ada_get_symbol_name_matcher | |
272 | (const lookup_name_info &lookup_name); | |
273 | ||
4c4b4cd2 PH |
274 | \f |
275 | ||
ee01b665 JB |
276 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
277 | ||
278 | struct cache_entry | |
279 | { | |
280 | /* The name used to perform the lookup. */ | |
281 | const char *name; | |
282 | /* The namespace used during the lookup. */ | |
fe978cb0 | 283 | domain_enum domain; |
ee01b665 JB |
284 | /* The symbol returned by the lookup, or NULL if no matching symbol |
285 | was found. */ | |
286 | struct symbol *sym; | |
287 | /* The block where the symbol was found, or NULL if no matching | |
288 | symbol was found. */ | |
289 | const struct block *block; | |
290 | /* A pointer to the next entry with the same hash. */ | |
291 | struct cache_entry *next; | |
292 | }; | |
293 | ||
294 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
295 | lookups in the course of executing the user's commands. | |
296 | ||
297 | The cache is implemented using a simple, fixed-sized hash. | |
298 | The size is fixed on the grounds that there are not likely to be | |
299 | all that many symbols looked up during any given session, regardless | |
300 | of the size of the symbol table. If we decide to go to a resizable | |
301 | table, let's just use the stuff from libiberty instead. */ | |
302 | ||
303 | #define HASH_SIZE 1009 | |
304 | ||
305 | struct ada_symbol_cache | |
306 | { | |
307 | /* An obstack used to store the entries in our cache. */ | |
308 | struct obstack cache_space; | |
309 | ||
310 | /* The root of the hash table used to implement our symbol cache. */ | |
311 | struct cache_entry *root[HASH_SIZE]; | |
312 | }; | |
313 | ||
314 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 315 | |
4c4b4cd2 | 316 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
317 | static unsigned int varsize_limit; |
318 | ||
67cb5b2d | 319 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
320 | #ifdef VMS |
321 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
322 | #else | |
14f9c5c9 | 323 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 324 | #endif |
14f9c5c9 | 325 | |
4c4b4cd2 | 326 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 327 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 328 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 329 | |
4c4b4cd2 PH |
330 | /* Limit on the number of warnings to raise per expression evaluation. */ |
331 | static int warning_limit = 2; | |
332 | ||
333 | /* Number of warning messages issued; reset to 0 by cleanups after | |
334 | expression evaluation. */ | |
335 | static int warnings_issued = 0; | |
336 | ||
337 | static const char *known_runtime_file_name_patterns[] = { | |
338 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
339 | }; | |
340 | ||
341 | static const char *known_auxiliary_function_name_patterns[] = { | |
342 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
343 | }; | |
344 | ||
c6044dd1 JB |
345 | /* Maintenance-related settings for this module. */ |
346 | ||
347 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
348 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
349 | ||
350 | /* Implement the "maintenance set ada" (prefix) command. */ | |
351 | ||
352 | static void | |
981a3fb3 | 353 | maint_set_ada_cmd (const char *args, int from_tty) |
c6044dd1 | 354 | { |
635c7e8a TT |
355 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
356 | gdb_stdout); | |
c6044dd1 JB |
357 | } |
358 | ||
359 | /* Implement the "maintenance show ada" (prefix) command. */ | |
360 | ||
361 | static void | |
981a3fb3 | 362 | maint_show_ada_cmd (const char *args, int from_tty) |
c6044dd1 JB |
363 | { |
364 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
365 | } | |
366 | ||
367 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
368 | ||
369 | static int ada_ignore_descriptive_types_p = 0; | |
370 | ||
e802dbe0 JB |
371 | /* Inferior-specific data. */ |
372 | ||
373 | /* Per-inferior data for this module. */ | |
374 | ||
375 | struct ada_inferior_data | |
376 | { | |
377 | /* The ada__tags__type_specific_data type, which is used when decoding | |
378 | tagged types. With older versions of GNAT, this type was directly | |
379 | accessible through a component ("tsd") in the object tag. But this | |
380 | is no longer the case, so we cache it for each inferior. */ | |
381 | struct type *tsd_type; | |
3eecfa55 JB |
382 | |
383 | /* The exception_support_info data. This data is used to determine | |
384 | how to implement support for Ada exception catchpoints in a given | |
385 | inferior. */ | |
386 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
387 | }; |
388 | ||
389 | /* Our key to this module's inferior data. */ | |
390 | static const struct inferior_data *ada_inferior_data; | |
391 | ||
392 | /* A cleanup routine for our inferior data. */ | |
393 | static void | |
394 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
395 | { | |
396 | struct ada_inferior_data *data; | |
397 | ||
9a3c8263 | 398 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
399 | if (data != NULL) |
400 | xfree (data); | |
401 | } | |
402 | ||
403 | /* Return our inferior data for the given inferior (INF). | |
404 | ||
405 | This function always returns a valid pointer to an allocated | |
406 | ada_inferior_data structure. If INF's inferior data has not | |
407 | been previously set, this functions creates a new one with all | |
408 | fields set to zero, sets INF's inferior to it, and then returns | |
409 | a pointer to that newly allocated ada_inferior_data. */ | |
410 | ||
411 | static struct ada_inferior_data * | |
412 | get_ada_inferior_data (struct inferior *inf) | |
413 | { | |
414 | struct ada_inferior_data *data; | |
415 | ||
9a3c8263 | 416 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
417 | if (data == NULL) |
418 | { | |
41bf6aca | 419 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
420 | set_inferior_data (inf, ada_inferior_data, data); |
421 | } | |
422 | ||
423 | return data; | |
424 | } | |
425 | ||
426 | /* Perform all necessary cleanups regarding our module's inferior data | |
427 | that is required after the inferior INF just exited. */ | |
428 | ||
429 | static void | |
430 | ada_inferior_exit (struct inferior *inf) | |
431 | { | |
432 | ada_inferior_data_cleanup (inf, NULL); | |
433 | set_inferior_data (inf, ada_inferior_data, NULL); | |
434 | } | |
435 | ||
ee01b665 JB |
436 | |
437 | /* program-space-specific data. */ | |
438 | ||
439 | /* This module's per-program-space data. */ | |
440 | struct ada_pspace_data | |
441 | { | |
442 | /* The Ada symbol cache. */ | |
443 | struct ada_symbol_cache *sym_cache; | |
444 | }; | |
445 | ||
446 | /* Key to our per-program-space data. */ | |
447 | static const struct program_space_data *ada_pspace_data_handle; | |
448 | ||
449 | /* Return this module's data for the given program space (PSPACE). | |
450 | If not is found, add a zero'ed one now. | |
451 | ||
452 | This function always returns a valid object. */ | |
453 | ||
454 | static struct ada_pspace_data * | |
455 | get_ada_pspace_data (struct program_space *pspace) | |
456 | { | |
457 | struct ada_pspace_data *data; | |
458 | ||
9a3c8263 SM |
459 | data = ((struct ada_pspace_data *) |
460 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
461 | if (data == NULL) |
462 | { | |
463 | data = XCNEW (struct ada_pspace_data); | |
464 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
465 | } | |
466 | ||
467 | return data; | |
468 | } | |
469 | ||
470 | /* The cleanup callback for this module's per-program-space data. */ | |
471 | ||
472 | static void | |
473 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
474 | { | |
9a3c8263 | 475 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
476 | |
477 | if (pspace_data->sym_cache != NULL) | |
478 | ada_free_symbol_cache (pspace_data->sym_cache); | |
479 | xfree (pspace_data); | |
480 | } | |
481 | ||
4c4b4cd2 PH |
482 | /* Utilities */ |
483 | ||
720d1a40 | 484 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 485 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
486 | |
487 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
488 | In other words, we really expect the target type of a typedef type to be | |
489 | a non-typedef type. This is particularly true for Ada units, because | |
490 | the language does not have a typedef vs not-typedef distinction. | |
491 | In that respect, the Ada compiler has been trying to eliminate as many | |
492 | typedef definitions in the debugging information, since they generally | |
493 | do not bring any extra information (we still use typedef under certain | |
494 | circumstances related mostly to the GNAT encoding). | |
495 | ||
496 | Unfortunately, we have seen situations where the debugging information | |
497 | generated by the compiler leads to such multiple typedef layers. For | |
498 | instance, consider the following example with stabs: | |
499 | ||
500 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
501 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
502 | ||
503 | This is an error in the debugging information which causes type | |
504 | pck__float_array___XUP to be defined twice, and the second time, | |
505 | it is defined as a typedef of a typedef. | |
506 | ||
507 | This is on the fringe of legality as far as debugging information is | |
508 | concerned, and certainly unexpected. But it is easy to handle these | |
509 | situations correctly, so we can afford to be lenient in this case. */ | |
510 | ||
511 | static struct type * | |
512 | ada_typedef_target_type (struct type *type) | |
513 | { | |
514 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
515 | type = TYPE_TARGET_TYPE (type); | |
516 | return type; | |
517 | } | |
518 | ||
41d27058 JB |
519 | /* Given DECODED_NAME a string holding a symbol name in its |
520 | decoded form (ie using the Ada dotted notation), returns | |
521 | its unqualified name. */ | |
522 | ||
523 | static const char * | |
524 | ada_unqualified_name (const char *decoded_name) | |
525 | { | |
2b0f535a JB |
526 | const char *result; |
527 | ||
528 | /* If the decoded name starts with '<', it means that the encoded | |
529 | name does not follow standard naming conventions, and thus that | |
530 | it is not your typical Ada symbol name. Trying to unqualify it | |
531 | is therefore pointless and possibly erroneous. */ | |
532 | if (decoded_name[0] == '<') | |
533 | return decoded_name; | |
534 | ||
535 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
536 | if (result != NULL) |
537 | result++; /* Skip the dot... */ | |
538 | else | |
539 | result = decoded_name; | |
540 | ||
541 | return result; | |
542 | } | |
543 | ||
544 | /* Return a string starting with '<', followed by STR, and '>'. | |
545 | The result is good until the next call. */ | |
546 | ||
547 | static char * | |
548 | add_angle_brackets (const char *str) | |
549 | { | |
550 | static char *result = NULL; | |
551 | ||
552 | xfree (result); | |
88c15c34 | 553 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
554 | return result; |
555 | } | |
96d887e8 | 556 | |
67cb5b2d | 557 | static const char * |
4c4b4cd2 PH |
558 | ada_get_gdb_completer_word_break_characters (void) |
559 | { | |
560 | return ada_completer_word_break_characters; | |
561 | } | |
562 | ||
e79af960 JB |
563 | /* Print an array element index using the Ada syntax. */ |
564 | ||
565 | static void | |
566 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 567 | const struct value_print_options *options) |
e79af960 | 568 | { |
79a45b7d | 569 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
570 | fprintf_filtered (stream, " => "); |
571 | } | |
572 | ||
f27cf670 | 573 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 574 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 575 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 576 | |
f27cf670 AS |
577 | void * |
578 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 579 | { |
d2e4a39e AS |
580 | if (*size < min_size) |
581 | { | |
582 | *size *= 2; | |
583 | if (*size < min_size) | |
4c4b4cd2 | 584 | *size = min_size; |
f27cf670 | 585 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 586 | } |
f27cf670 | 587 | return vect; |
14f9c5c9 AS |
588 | } |
589 | ||
590 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 591 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
592 | |
593 | static int | |
ebf56fd3 | 594 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
595 | { |
596 | int len = strlen (target); | |
5b4ee69b | 597 | |
d2e4a39e | 598 | return |
4c4b4cd2 PH |
599 | (strncmp (field_name, target, len) == 0 |
600 | && (field_name[len] == '\0' | |
61012eef | 601 | || (startswith (field_name + len, "___") |
76a01679 JB |
602 | && strcmp (field_name + strlen (field_name) - 6, |
603 | "___XVN") != 0))); | |
14f9c5c9 AS |
604 | } |
605 | ||
606 | ||
872c8b51 JB |
607 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
608 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
609 | and return its index. This function also handles fields whose name | |
610 | have ___ suffixes because the compiler sometimes alters their name | |
611 | by adding such a suffix to represent fields with certain constraints. | |
612 | If the field could not be found, return a negative number if | |
613 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
614 | |
615 | int | |
616 | ada_get_field_index (const struct type *type, const char *field_name, | |
617 | int maybe_missing) | |
618 | { | |
619 | int fieldno; | |
872c8b51 JB |
620 | struct type *struct_type = check_typedef ((struct type *) type); |
621 | ||
622 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
623 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
624 | return fieldno; |
625 | ||
626 | if (!maybe_missing) | |
323e0a4a | 627 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 628 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
629 | |
630 | return -1; | |
631 | } | |
632 | ||
633 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
634 | |
635 | int | |
d2e4a39e | 636 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
637 | { |
638 | if (name == NULL) | |
639 | return 0; | |
d2e4a39e | 640 | else |
14f9c5c9 | 641 | { |
d2e4a39e | 642 | const char *p = strstr (name, "___"); |
5b4ee69b | 643 | |
14f9c5c9 | 644 | if (p == NULL) |
4c4b4cd2 | 645 | return strlen (name); |
14f9c5c9 | 646 | else |
4c4b4cd2 | 647 | return p - name; |
14f9c5c9 AS |
648 | } |
649 | } | |
650 | ||
4c4b4cd2 PH |
651 | /* Return non-zero if SUFFIX is a suffix of STR. |
652 | Return zero if STR is null. */ | |
653 | ||
14f9c5c9 | 654 | static int |
d2e4a39e | 655 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
656 | { |
657 | int len1, len2; | |
5b4ee69b | 658 | |
14f9c5c9 AS |
659 | if (str == NULL) |
660 | return 0; | |
661 | len1 = strlen (str); | |
662 | len2 = strlen (suffix); | |
4c4b4cd2 | 663 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
664 | } |
665 | ||
4c4b4cd2 PH |
666 | /* The contents of value VAL, treated as a value of type TYPE. The |
667 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 668 | |
d2e4a39e | 669 | static struct value * |
4c4b4cd2 | 670 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 671 | { |
61ee279c | 672 | type = ada_check_typedef (type); |
df407dfe | 673 | if (value_type (val) == type) |
4c4b4cd2 | 674 | return val; |
d2e4a39e | 675 | else |
14f9c5c9 | 676 | { |
4c4b4cd2 PH |
677 | struct value *result; |
678 | ||
679 | /* Make sure that the object size is not unreasonable before | |
680 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 681 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 682 | |
41e8491f JK |
683 | if (value_lazy (val) |
684 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
685 | result = allocate_value_lazy (type); | |
686 | else | |
687 | { | |
688 | result = allocate_value (type); | |
9a0dc9e3 | 689 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 690 | } |
74bcbdf3 | 691 | set_value_component_location (result, val); |
9bbda503 AC |
692 | set_value_bitsize (result, value_bitsize (val)); |
693 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 694 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
695 | return result; |
696 | } | |
697 | } | |
698 | ||
fc1a4b47 AC |
699 | static const gdb_byte * |
700 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
701 | { |
702 | if (valaddr == NULL) | |
703 | return NULL; | |
704 | else | |
705 | return valaddr + offset; | |
706 | } | |
707 | ||
708 | static CORE_ADDR | |
ebf56fd3 | 709 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
710 | { |
711 | if (address == 0) | |
712 | return 0; | |
d2e4a39e | 713 | else |
14f9c5c9 AS |
714 | return address + offset; |
715 | } | |
716 | ||
4c4b4cd2 PH |
717 | /* Issue a warning (as for the definition of warning in utils.c, but |
718 | with exactly one argument rather than ...), unless the limit on the | |
719 | number of warnings has passed during the evaluation of the current | |
720 | expression. */ | |
a2249542 | 721 | |
77109804 AC |
722 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
723 | provided by "complaint". */ | |
a0b31db1 | 724 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 725 | |
14f9c5c9 | 726 | static void |
a2249542 | 727 | lim_warning (const char *format, ...) |
14f9c5c9 | 728 | { |
a2249542 | 729 | va_list args; |
a2249542 | 730 | |
5b4ee69b | 731 | va_start (args, format); |
4c4b4cd2 PH |
732 | warnings_issued += 1; |
733 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
734 | vwarning (format, args); |
735 | ||
736 | va_end (args); | |
4c4b4cd2 PH |
737 | } |
738 | ||
714e53ab PH |
739 | /* Issue an error if the size of an object of type T is unreasonable, |
740 | i.e. if it would be a bad idea to allocate a value of this type in | |
741 | GDB. */ | |
742 | ||
c1b5a1a6 JB |
743 | void |
744 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
745 | { |
746 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 747 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
748 | } |
749 | ||
0963b4bd | 750 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 751 | static LONGEST |
c3e5cd34 | 752 | max_of_size (int size) |
4c4b4cd2 | 753 | { |
76a01679 | 754 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 755 | |
76a01679 | 756 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
757 | } |
758 | ||
0963b4bd | 759 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 760 | static LONGEST |
c3e5cd34 | 761 | min_of_size (int size) |
4c4b4cd2 | 762 | { |
c3e5cd34 | 763 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
764 | } |
765 | ||
0963b4bd | 766 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 767 | static ULONGEST |
c3e5cd34 | 768 | umax_of_size (int size) |
4c4b4cd2 | 769 | { |
76a01679 | 770 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 771 | |
76a01679 | 772 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
773 | } |
774 | ||
0963b4bd | 775 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
776 | static LONGEST |
777 | max_of_type (struct type *t) | |
4c4b4cd2 | 778 | { |
c3e5cd34 PH |
779 | if (TYPE_UNSIGNED (t)) |
780 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
781 | else | |
782 | return max_of_size (TYPE_LENGTH (t)); | |
783 | } | |
784 | ||
0963b4bd | 785 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
786 | static LONGEST |
787 | min_of_type (struct type *t) | |
788 | { | |
789 | if (TYPE_UNSIGNED (t)) | |
790 | return 0; | |
791 | else | |
792 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
793 | } |
794 | ||
795 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
796 | LONGEST |
797 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 798 | { |
c3345124 | 799 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 800 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
801 | { |
802 | case TYPE_CODE_RANGE: | |
690cc4eb | 803 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 804 | case TYPE_CODE_ENUM: |
14e75d8e | 805 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
806 | case TYPE_CODE_BOOL: |
807 | return 1; | |
808 | case TYPE_CODE_CHAR: | |
76a01679 | 809 | case TYPE_CODE_INT: |
690cc4eb | 810 | return max_of_type (type); |
4c4b4cd2 | 811 | default: |
43bbcdc2 | 812 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
813 | } |
814 | } | |
815 | ||
14e75d8e | 816 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
817 | LONGEST |
818 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 819 | { |
c3345124 | 820 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 821 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
822 | { |
823 | case TYPE_CODE_RANGE: | |
690cc4eb | 824 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 825 | case TYPE_CODE_ENUM: |
14e75d8e | 826 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
827 | case TYPE_CODE_BOOL: |
828 | return 0; | |
829 | case TYPE_CODE_CHAR: | |
76a01679 | 830 | case TYPE_CODE_INT: |
690cc4eb | 831 | return min_of_type (type); |
4c4b4cd2 | 832 | default: |
43bbcdc2 | 833 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
834 | } |
835 | } | |
836 | ||
837 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 838 | non-range scalar type. */ |
4c4b4cd2 PH |
839 | |
840 | static struct type * | |
18af8284 | 841 | get_base_type (struct type *type) |
4c4b4cd2 PH |
842 | { |
843 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
844 | { | |
76a01679 JB |
845 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
846 | return type; | |
4c4b4cd2 PH |
847 | type = TYPE_TARGET_TYPE (type); |
848 | } | |
849 | return type; | |
14f9c5c9 | 850 | } |
41246937 JB |
851 | |
852 | /* Return a decoded version of the given VALUE. This means returning | |
853 | a value whose type is obtained by applying all the GNAT-specific | |
854 | encondings, making the resulting type a static but standard description | |
855 | of the initial type. */ | |
856 | ||
857 | struct value * | |
858 | ada_get_decoded_value (struct value *value) | |
859 | { | |
860 | struct type *type = ada_check_typedef (value_type (value)); | |
861 | ||
862 | if (ada_is_array_descriptor_type (type) | |
863 | || (ada_is_constrained_packed_array_type (type) | |
864 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
865 | { | |
866 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
867 | value = ada_coerce_to_simple_array_ptr (value); | |
868 | else | |
869 | value = ada_coerce_to_simple_array (value); | |
870 | } | |
871 | else | |
872 | value = ada_to_fixed_value (value); | |
873 | ||
874 | return value; | |
875 | } | |
876 | ||
877 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
878 | Because there is no associated actual value for this type, | |
879 | the resulting type might be a best-effort approximation in | |
880 | the case of dynamic types. */ | |
881 | ||
882 | struct type * | |
883 | ada_get_decoded_type (struct type *type) | |
884 | { | |
885 | type = to_static_fixed_type (type); | |
886 | if (ada_is_constrained_packed_array_type (type)) | |
887 | type = ada_coerce_to_simple_array_type (type); | |
888 | return type; | |
889 | } | |
890 | ||
4c4b4cd2 | 891 | \f |
76a01679 | 892 | |
4c4b4cd2 | 893 | /* Language Selection */ |
14f9c5c9 AS |
894 | |
895 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 896 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 897 | |
14f9c5c9 | 898 | enum language |
ccefe4c4 | 899 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 900 | { |
d2e4a39e | 901 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 902 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 903 | return language_ada; |
14f9c5c9 AS |
904 | |
905 | return lang; | |
906 | } | |
96d887e8 PH |
907 | |
908 | /* If the main procedure is written in Ada, then return its name. | |
909 | The result is good until the next call. Return NULL if the main | |
910 | procedure doesn't appear to be in Ada. */ | |
911 | ||
912 | char * | |
913 | ada_main_name (void) | |
914 | { | |
3b7344d5 | 915 | struct bound_minimal_symbol msym; |
e83e4e24 | 916 | static gdb::unique_xmalloc_ptr<char> main_program_name; |
6c038f32 | 917 | |
96d887e8 PH |
918 | /* For Ada, the name of the main procedure is stored in a specific |
919 | string constant, generated by the binder. Look for that symbol, | |
920 | extract its address, and then read that string. If we didn't find | |
921 | that string, then most probably the main procedure is not written | |
922 | in Ada. */ | |
923 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
924 | ||
3b7344d5 | 925 | if (msym.minsym != NULL) |
96d887e8 | 926 | { |
f9bc20b9 JB |
927 | CORE_ADDR main_program_name_addr; |
928 | int err_code; | |
929 | ||
77e371c0 | 930 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 931 | if (main_program_name_addr == 0) |
323e0a4a | 932 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 933 | |
f9bc20b9 JB |
934 | target_read_string (main_program_name_addr, &main_program_name, |
935 | 1024, &err_code); | |
936 | ||
937 | if (err_code != 0) | |
938 | return NULL; | |
e83e4e24 | 939 | return main_program_name.get (); |
96d887e8 PH |
940 | } |
941 | ||
942 | /* The main procedure doesn't seem to be in Ada. */ | |
943 | return NULL; | |
944 | } | |
14f9c5c9 | 945 | \f |
4c4b4cd2 | 946 | /* Symbols */ |
d2e4a39e | 947 | |
4c4b4cd2 PH |
948 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
949 | of NULLs. */ | |
14f9c5c9 | 950 | |
d2e4a39e AS |
951 | const struct ada_opname_map ada_opname_table[] = { |
952 | {"Oadd", "\"+\"", BINOP_ADD}, | |
953 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
954 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
955 | {"Odivide", "\"/\"", BINOP_DIV}, | |
956 | {"Omod", "\"mod\"", BINOP_MOD}, | |
957 | {"Orem", "\"rem\"", BINOP_REM}, | |
958 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
959 | {"Olt", "\"<\"", BINOP_LESS}, | |
960 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
961 | {"Ogt", "\">\"", BINOP_GTR}, | |
962 | {"Oge", "\">=\"", BINOP_GEQ}, | |
963 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
964 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
965 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
966 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
967 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
968 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
969 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
970 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
971 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
972 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
973 | {NULL, NULL} | |
14f9c5c9 AS |
974 | }; |
975 | ||
b5ec771e PA |
976 | /* The "encoded" form of DECODED, according to GNAT conventions. The |
977 | result is valid until the next call to ada_encode. If | |
978 | THROW_ERRORS, throw an error if invalid operator name is found. | |
979 | Otherwise, return NULL in that case. */ | |
4c4b4cd2 | 980 | |
b5ec771e PA |
981 | static char * |
982 | ada_encode_1 (const char *decoded, bool throw_errors) | |
14f9c5c9 | 983 | { |
4c4b4cd2 PH |
984 | static char *encoding_buffer = NULL; |
985 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 986 | const char *p; |
14f9c5c9 | 987 | int k; |
d2e4a39e | 988 | |
4c4b4cd2 | 989 | if (decoded == NULL) |
14f9c5c9 AS |
990 | return NULL; |
991 | ||
4c4b4cd2 PH |
992 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
993 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
994 | |
995 | k = 0; | |
4c4b4cd2 | 996 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 997 | { |
cdc7bb92 | 998 | if (*p == '.') |
4c4b4cd2 PH |
999 | { |
1000 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1001 | k += 2; | |
1002 | } | |
14f9c5c9 | 1003 | else if (*p == '"') |
4c4b4cd2 PH |
1004 | { |
1005 | const struct ada_opname_map *mapping; | |
1006 | ||
1007 | for (mapping = ada_opname_table; | |
1265e4aa | 1008 | mapping->encoded != NULL |
61012eef | 1009 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1010 | ; |
1011 | if (mapping->encoded == NULL) | |
b5ec771e PA |
1012 | { |
1013 | if (throw_errors) | |
1014 | error (_("invalid Ada operator name: %s"), p); | |
1015 | else | |
1016 | return NULL; | |
1017 | } | |
4c4b4cd2 PH |
1018 | strcpy (encoding_buffer + k, mapping->encoded); |
1019 | k += strlen (mapping->encoded); | |
1020 | break; | |
1021 | } | |
d2e4a39e | 1022 | else |
4c4b4cd2 PH |
1023 | { |
1024 | encoding_buffer[k] = *p; | |
1025 | k += 1; | |
1026 | } | |
14f9c5c9 AS |
1027 | } |
1028 | ||
4c4b4cd2 PH |
1029 | encoding_buffer[k] = '\0'; |
1030 | return encoding_buffer; | |
14f9c5c9 AS |
1031 | } |
1032 | ||
b5ec771e PA |
1033 | /* The "encoded" form of DECODED, according to GNAT conventions. |
1034 | The result is valid until the next call to ada_encode. */ | |
1035 | ||
1036 | char * | |
1037 | ada_encode (const char *decoded) | |
1038 | { | |
1039 | return ada_encode_1 (decoded, true); | |
1040 | } | |
1041 | ||
14f9c5c9 | 1042 | /* Return NAME folded to lower case, or, if surrounded by single |
4c4b4cd2 PH |
1043 | quotes, unfolded, but with the quotes stripped away. Result good |
1044 | to next call. */ | |
1045 | ||
d2e4a39e AS |
1046 | char * |
1047 | ada_fold_name (const char *name) | |
14f9c5c9 | 1048 | { |
d2e4a39e | 1049 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1050 | static size_t fold_buffer_size = 0; |
1051 | ||
1052 | int len = strlen (name); | |
d2e4a39e | 1053 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1054 | |
1055 | if (name[0] == '\'') | |
1056 | { | |
d2e4a39e AS |
1057 | strncpy (fold_buffer, name + 1, len - 2); |
1058 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1059 | } |
1060 | else | |
1061 | { | |
1062 | int i; | |
5b4ee69b | 1063 | |
14f9c5c9 | 1064 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1065 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1066 | } |
1067 | ||
1068 | return fold_buffer; | |
1069 | } | |
1070 | ||
529cad9c PH |
1071 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1072 | ||
1073 | static int | |
1074 | is_lower_alphanum (const char c) | |
1075 | { | |
1076 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1077 | } | |
1078 | ||
c90092fe JB |
1079 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1080 | This function saves in LEN the length of that same symbol name but | |
1081 | without either of these suffixes: | |
29480c32 JB |
1082 | . .{DIGIT}+ |
1083 | . ${DIGIT}+ | |
1084 | . ___{DIGIT}+ | |
1085 | . __{DIGIT}+. | |
c90092fe | 1086 | |
29480c32 JB |
1087 | These are suffixes introduced by the compiler for entities such as |
1088 | nested subprogram for instance, in order to avoid name clashes. | |
1089 | They do not serve any purpose for the debugger. */ | |
1090 | ||
1091 | static void | |
1092 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1093 | { | |
1094 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1095 | { | |
1096 | int i = *len - 2; | |
5b4ee69b | 1097 | |
29480c32 JB |
1098 | while (i > 0 && isdigit (encoded[i])) |
1099 | i--; | |
1100 | if (i >= 0 && encoded[i] == '.') | |
1101 | *len = i; | |
1102 | else if (i >= 0 && encoded[i] == '$') | |
1103 | *len = i; | |
61012eef | 1104 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1105 | *len = i - 2; |
61012eef | 1106 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1107 | *len = i - 1; |
1108 | } | |
1109 | } | |
1110 | ||
1111 | /* Remove the suffix introduced by the compiler for protected object | |
1112 | subprograms. */ | |
1113 | ||
1114 | static void | |
1115 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1116 | { | |
1117 | /* Remove trailing N. */ | |
1118 | ||
1119 | /* Protected entry subprograms are broken into two | |
1120 | separate subprograms: The first one is unprotected, and has | |
1121 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1122 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1123 | the protection. Since the P subprograms are internally generated, |
1124 | we leave these names undecoded, giving the user a clue that this | |
1125 | entity is internal. */ | |
1126 | ||
1127 | if (*len > 1 | |
1128 | && encoded[*len - 1] == 'N' | |
1129 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1130 | *len = *len - 1; | |
1131 | } | |
1132 | ||
69fadcdf JB |
1133 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1134 | ||
1135 | static void | |
1136 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1137 | { | |
1138 | int i = *len - 1; | |
1139 | ||
1140 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1141 | i--; | |
1142 | ||
1143 | if (encoded[i] != 'X') | |
1144 | return; | |
1145 | ||
1146 | if (i == 0) | |
1147 | return; | |
1148 | ||
1149 | if (isalnum (encoded[i-1])) | |
1150 | *len = i; | |
1151 | } | |
1152 | ||
29480c32 JB |
1153 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1154 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1155 | replaced by ENCODED. | |
14f9c5c9 | 1156 | |
4c4b4cd2 | 1157 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1158 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1159 | is returned. */ |
1160 | ||
1161 | const char * | |
1162 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1163 | { |
1164 | int i, j; | |
1165 | int len0; | |
d2e4a39e | 1166 | const char *p; |
4c4b4cd2 | 1167 | char *decoded; |
14f9c5c9 | 1168 | int at_start_name; |
4c4b4cd2 PH |
1169 | static char *decoding_buffer = NULL; |
1170 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1171 | |
29480c32 JB |
1172 | /* The name of the Ada main procedure starts with "_ada_". |
1173 | This prefix is not part of the decoded name, so skip this part | |
1174 | if we see this prefix. */ | |
61012eef | 1175 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1176 | encoded += 5; |
14f9c5c9 | 1177 | |
29480c32 JB |
1178 | /* If the name starts with '_', then it is not a properly encoded |
1179 | name, so do not attempt to decode it. Similarly, if the name | |
1180 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1181 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1182 | goto Suppress; |
1183 | ||
4c4b4cd2 | 1184 | len0 = strlen (encoded); |
4c4b4cd2 | 1185 | |
29480c32 JB |
1186 | ada_remove_trailing_digits (encoded, &len0); |
1187 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1188 | |
4c4b4cd2 PH |
1189 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1190 | the suffix is located before the current "end" of ENCODED. We want | |
1191 | to avoid re-matching parts of ENCODED that have previously been | |
1192 | marked as discarded (by decrementing LEN0). */ | |
1193 | p = strstr (encoded, "___"); | |
1194 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1195 | { |
1196 | if (p[3] == 'X') | |
4c4b4cd2 | 1197 | len0 = p - encoded; |
14f9c5c9 | 1198 | else |
4c4b4cd2 | 1199 | goto Suppress; |
14f9c5c9 | 1200 | } |
4c4b4cd2 | 1201 | |
29480c32 JB |
1202 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1203 | is for the body of a task, but that information does not actually | |
1204 | appear in the decoded name. */ | |
1205 | ||
61012eef | 1206 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1207 | len0 -= 3; |
76a01679 | 1208 | |
a10967fa JB |
1209 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1210 | from the TKB suffix because it is used for non-anonymous task | |
1211 | bodies. */ | |
1212 | ||
61012eef | 1213 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1214 | len0 -= 2; |
1215 | ||
29480c32 JB |
1216 | /* Remove trailing "B" suffixes. */ |
1217 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1218 | ||
61012eef | 1219 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1220 | len0 -= 1; |
1221 | ||
4c4b4cd2 | 1222 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1223 | |
4c4b4cd2 PH |
1224 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1225 | decoded = decoding_buffer; | |
14f9c5c9 | 1226 | |
29480c32 JB |
1227 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1228 | ||
4c4b4cd2 | 1229 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1230 | { |
4c4b4cd2 PH |
1231 | i = len0 - 2; |
1232 | while ((i >= 0 && isdigit (encoded[i])) | |
1233 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1234 | i -= 1; | |
1235 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1236 | len0 = i - 1; | |
1237 | else if (encoded[i] == '$') | |
1238 | len0 = i; | |
d2e4a39e | 1239 | } |
14f9c5c9 | 1240 | |
29480c32 JB |
1241 | /* The first few characters that are not alphabetic are not part |
1242 | of any encoding we use, so we can copy them over verbatim. */ | |
1243 | ||
4c4b4cd2 PH |
1244 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1245 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1246 | |
1247 | at_start_name = 1; | |
1248 | while (i < len0) | |
1249 | { | |
29480c32 | 1250 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1251 | if (at_start_name && encoded[i] == 'O') |
1252 | { | |
1253 | int k; | |
5b4ee69b | 1254 | |
4c4b4cd2 PH |
1255 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1256 | { | |
1257 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1258 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1259 | op_len - 1) == 0) | |
1260 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1261 | { |
1262 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1263 | at_start_name = 0; | |
1264 | i += op_len; | |
1265 | j += strlen (ada_opname_table[k].decoded); | |
1266 | break; | |
1267 | } | |
1268 | } | |
1269 | if (ada_opname_table[k].encoded != NULL) | |
1270 | continue; | |
1271 | } | |
14f9c5c9 AS |
1272 | at_start_name = 0; |
1273 | ||
529cad9c PH |
1274 | /* Replace "TK__" with "__", which will eventually be translated |
1275 | into "." (just below). */ | |
1276 | ||
61012eef | 1277 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1278 | i += 2; |
529cad9c | 1279 | |
29480c32 JB |
1280 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1281 | be translated into "." (just below). These are internal names | |
1282 | generated for anonymous blocks inside which our symbol is nested. */ | |
1283 | ||
1284 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1285 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1286 | && isdigit (encoded [i+4])) | |
1287 | { | |
1288 | int k = i + 5; | |
1289 | ||
1290 | while (k < len0 && isdigit (encoded[k])) | |
1291 | k++; /* Skip any extra digit. */ | |
1292 | ||
1293 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1294 | is indeed followed by "__". */ | |
1295 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1296 | i = k; | |
1297 | } | |
1298 | ||
529cad9c PH |
1299 | /* Remove _E{DIGITS}+[sb] */ |
1300 | ||
1301 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1302 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1303 | one implements the actual entry code, and has a suffix following |
1304 | the convention above; the second one implements the barrier and | |
1305 | uses the same convention as above, except that the 'E' is replaced | |
1306 | by a 'B'. | |
1307 | ||
1308 | Just as above, we do not decode the name of barrier functions | |
1309 | to give the user a clue that the code he is debugging has been | |
1310 | internally generated. */ | |
1311 | ||
1312 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1313 | && isdigit (encoded[i+2])) | |
1314 | { | |
1315 | int k = i + 3; | |
1316 | ||
1317 | while (k < len0 && isdigit (encoded[k])) | |
1318 | k++; | |
1319 | ||
1320 | if (k < len0 | |
1321 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1322 | { | |
1323 | k++; | |
1324 | /* Just as an extra precaution, make sure that if this | |
1325 | suffix is followed by anything else, it is a '_'. | |
1326 | Otherwise, we matched this sequence by accident. */ | |
1327 | if (k == len0 | |
1328 | || (k < len0 && encoded[k] == '_')) | |
1329 | i = k; | |
1330 | } | |
1331 | } | |
1332 | ||
1333 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1334 | the GNAT front-end in protected object subprograms. */ | |
1335 | ||
1336 | if (i < len0 + 3 | |
1337 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1338 | { | |
1339 | /* Backtrack a bit up until we reach either the begining of | |
1340 | the encoded name, or "__". Make sure that we only find | |
1341 | digits or lowercase characters. */ | |
1342 | const char *ptr = encoded + i - 1; | |
1343 | ||
1344 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1345 | ptr--; | |
1346 | if (ptr < encoded | |
1347 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1348 | i++; | |
1349 | } | |
1350 | ||
4c4b4cd2 PH |
1351 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1352 | { | |
29480c32 JB |
1353 | /* This is a X[bn]* sequence not separated from the previous |
1354 | part of the name with a non-alpha-numeric character (in other | |
1355 | words, immediately following an alpha-numeric character), then | |
1356 | verify that it is placed at the end of the encoded name. If | |
1357 | not, then the encoding is not valid and we should abort the | |
1358 | decoding. Otherwise, just skip it, it is used in body-nested | |
1359 | package names. */ | |
4c4b4cd2 PH |
1360 | do |
1361 | i += 1; | |
1362 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1363 | if (i < len0) | |
1364 | goto Suppress; | |
1365 | } | |
cdc7bb92 | 1366 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1367 | { |
29480c32 | 1368 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1369 | decoded[j] = '.'; |
1370 | at_start_name = 1; | |
1371 | i += 2; | |
1372 | j += 1; | |
1373 | } | |
14f9c5c9 | 1374 | else |
4c4b4cd2 | 1375 | { |
29480c32 JB |
1376 | /* It's a character part of the decoded name, so just copy it |
1377 | over. */ | |
4c4b4cd2 PH |
1378 | decoded[j] = encoded[i]; |
1379 | i += 1; | |
1380 | j += 1; | |
1381 | } | |
14f9c5c9 | 1382 | } |
4c4b4cd2 | 1383 | decoded[j] = '\000'; |
14f9c5c9 | 1384 | |
29480c32 JB |
1385 | /* Decoded names should never contain any uppercase character. |
1386 | Double-check this, and abort the decoding if we find one. */ | |
1387 | ||
4c4b4cd2 PH |
1388 | for (i = 0; decoded[i] != '\0'; i += 1) |
1389 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1390 | goto Suppress; |
1391 | ||
4c4b4cd2 PH |
1392 | if (strcmp (decoded, encoded) == 0) |
1393 | return encoded; | |
1394 | else | |
1395 | return decoded; | |
14f9c5c9 AS |
1396 | |
1397 | Suppress: | |
4c4b4cd2 PH |
1398 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1399 | decoded = decoding_buffer; | |
1400 | if (encoded[0] == '<') | |
1401 | strcpy (decoded, encoded); | |
14f9c5c9 | 1402 | else |
88c15c34 | 1403 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1404 | return decoded; |
1405 | ||
1406 | } | |
1407 | ||
1408 | /* Table for keeping permanent unique copies of decoded names. Once | |
1409 | allocated, names in this table are never released. While this is a | |
1410 | storage leak, it should not be significant unless there are massive | |
1411 | changes in the set of decoded names in successive versions of a | |
1412 | symbol table loaded during a single session. */ | |
1413 | static struct htab *decoded_names_store; | |
1414 | ||
1415 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1416 | in the language-specific part of GSYMBOL, if it has not been | |
1417 | previously computed. Tries to save the decoded name in the same | |
1418 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1419 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1420 | GSYMBOL). |
4c4b4cd2 PH |
1421 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1422 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1423 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1424 | |
45e6c716 | 1425 | const char * |
f85f34ed | 1426 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1427 | { |
f85f34ed TT |
1428 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1429 | const char **resultp = | |
615b3f62 | 1430 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1431 | |
f85f34ed | 1432 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1433 | { |
1434 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1435 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1436 | |
f85f34ed | 1437 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1438 | |
f85f34ed | 1439 | if (obstack != NULL) |
224c3ddb SM |
1440 | *resultp |
1441 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1442 | else |
76a01679 | 1443 | { |
f85f34ed TT |
1444 | /* Sometimes, we can't find a corresponding objfile, in |
1445 | which case, we put the result on the heap. Since we only | |
1446 | decode when needed, we hope this usually does not cause a | |
1447 | significant memory leak (FIXME). */ | |
1448 | ||
76a01679 JB |
1449 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1450 | decoded, INSERT); | |
5b4ee69b | 1451 | |
76a01679 JB |
1452 | if (*slot == NULL) |
1453 | *slot = xstrdup (decoded); | |
1454 | *resultp = *slot; | |
1455 | } | |
4c4b4cd2 | 1456 | } |
14f9c5c9 | 1457 | |
4c4b4cd2 PH |
1458 | return *resultp; |
1459 | } | |
76a01679 | 1460 | |
2c0b251b | 1461 | static char * |
76a01679 | 1462 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1463 | { |
1464 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1465 | } |
1466 | ||
8b302db8 TT |
1467 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1468 | ||
1469 | static int | |
1470 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1471 | { | |
1472 | const char *demangled = ada_decode (mangled); | |
1473 | ||
1474 | *out = NULL; | |
1475 | ||
1476 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1477 | { | |
1478 | /* Set the gsymbol language to Ada, but still return 0. | |
1479 | Two reasons for that: | |
1480 | ||
1481 | 1. For Ada, we prefer computing the symbol's decoded name | |
1482 | on the fly rather than pre-compute it, in order to save | |
1483 | memory (Ada projects are typically very large). | |
1484 | ||
1485 | 2. There are some areas in the definition of the GNAT | |
1486 | encoding where, with a bit of bad luck, we might be able | |
1487 | to decode a non-Ada symbol, generating an incorrect | |
1488 | demangled name (Eg: names ending with "TB" for instance | |
1489 | are identified as task bodies and so stripped from | |
1490 | the decoded name returned). | |
1491 | ||
1492 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1493 | little bit of the best of both worlds. Because we're last, | |
1494 | we should not affect any of the other languages that were | |
1495 | able to demangle the symbol before us; we get to correctly | |
1496 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1497 | non-Ada symbol, which should be rare, any routing through the | |
1498 | Ada language should be transparent (Ada tries to behave much | |
1499 | like C/C++ with non-Ada symbols). */ | |
1500 | return 1; | |
1501 | } | |
1502 | ||
1503 | return 0; | |
1504 | } | |
1505 | ||
14f9c5c9 | 1506 | \f |
d2e4a39e | 1507 | |
4c4b4cd2 | 1508 | /* Arrays */ |
14f9c5c9 | 1509 | |
28c85d6c JB |
1510 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1511 | generated by the GNAT compiler to describe the index type used | |
1512 | for each dimension of an array, check whether it follows the latest | |
1513 | known encoding. If not, fix it up to conform to the latest encoding. | |
1514 | Otherwise, do nothing. This function also does nothing if | |
1515 | INDEX_DESC_TYPE is NULL. | |
1516 | ||
1517 | The GNAT encoding used to describle the array index type evolved a bit. | |
1518 | Initially, the information would be provided through the name of each | |
1519 | field of the structure type only, while the type of these fields was | |
1520 | described as unspecified and irrelevant. The debugger was then expected | |
1521 | to perform a global type lookup using the name of that field in order | |
1522 | to get access to the full index type description. Because these global | |
1523 | lookups can be very expensive, the encoding was later enhanced to make | |
1524 | the global lookup unnecessary by defining the field type as being | |
1525 | the full index type description. | |
1526 | ||
1527 | The purpose of this routine is to allow us to support older versions | |
1528 | of the compiler by detecting the use of the older encoding, and by | |
1529 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1530 | we essentially replace each field's meaningless type by the associated | |
1531 | index subtype). */ | |
1532 | ||
1533 | void | |
1534 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1535 | { | |
1536 | int i; | |
1537 | ||
1538 | if (index_desc_type == NULL) | |
1539 | return; | |
1540 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1541 | ||
1542 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1543 | to check one field only, no need to check them all). If not, return | |
1544 | now. | |
1545 | ||
1546 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1547 | the field type should be a meaningless integer type whose name | |
1548 | is not equal to the field name. */ | |
1549 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1550 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1551 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1552 | return; | |
1553 | ||
1554 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1555 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1556 | { | |
0d5cff50 | 1557 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1558 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1559 | ||
1560 | if (raw_type) | |
1561 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1562 | } | |
1563 | } | |
1564 | ||
4c4b4cd2 | 1565 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1566 | |
a121b7c1 | 1567 | static const char *bound_name[] = { |
d2e4a39e | 1568 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1569 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1570 | }; | |
1571 | ||
1572 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1573 | ||
4c4b4cd2 | 1574 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1575 | |
14f9c5c9 | 1576 | |
4c4b4cd2 PH |
1577 | /* The desc_* routines return primitive portions of array descriptors |
1578 | (fat pointers). */ | |
14f9c5c9 AS |
1579 | |
1580 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1581 | level of indirection, if needed. */ |
1582 | ||
d2e4a39e AS |
1583 | static struct type * |
1584 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1585 | { |
1586 | if (type == NULL) | |
1587 | return NULL; | |
61ee279c | 1588 | type = ada_check_typedef (type); |
720d1a40 JB |
1589 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1590 | type = ada_typedef_target_type (type); | |
1591 | ||
1265e4aa JB |
1592 | if (type != NULL |
1593 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1594 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1595 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1596 | else |
1597 | return type; | |
1598 | } | |
1599 | ||
4c4b4cd2 PH |
1600 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1601 | ||
14f9c5c9 | 1602 | static int |
d2e4a39e | 1603 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1604 | { |
d2e4a39e | 1605 | return |
14f9c5c9 AS |
1606 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1607 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1608 | } | |
1609 | ||
4c4b4cd2 PH |
1610 | /* The descriptor type for thin pointer type TYPE. */ |
1611 | ||
d2e4a39e AS |
1612 | static struct type * |
1613 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1614 | { |
d2e4a39e | 1615 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1616 | |
14f9c5c9 AS |
1617 | if (base_type == NULL) |
1618 | return NULL; | |
1619 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1620 | return base_type; | |
d2e4a39e | 1621 | else |
14f9c5c9 | 1622 | { |
d2e4a39e | 1623 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1624 | |
14f9c5c9 | 1625 | if (alt_type == NULL) |
4c4b4cd2 | 1626 | return base_type; |
14f9c5c9 | 1627 | else |
4c4b4cd2 | 1628 | return alt_type; |
14f9c5c9 AS |
1629 | } |
1630 | } | |
1631 | ||
4c4b4cd2 PH |
1632 | /* A pointer to the array data for thin-pointer value VAL. */ |
1633 | ||
d2e4a39e AS |
1634 | static struct value * |
1635 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1636 | { |
828292f2 | 1637 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1638 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1639 | |
556bdfd4 UW |
1640 | data_type = lookup_pointer_type (data_type); |
1641 | ||
14f9c5c9 | 1642 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1643 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1644 | else |
42ae5230 | 1645 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1646 | } |
1647 | ||
4c4b4cd2 PH |
1648 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1649 | ||
14f9c5c9 | 1650 | static int |
d2e4a39e | 1651 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1652 | { |
1653 | type = desc_base_type (type); | |
1654 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1655 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1656 | } |
1657 | ||
4c4b4cd2 PH |
1658 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1659 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1660 | |
d2e4a39e AS |
1661 | static struct type * |
1662 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1663 | { |
d2e4a39e | 1664 | struct type *r; |
14f9c5c9 AS |
1665 | |
1666 | type = desc_base_type (type); | |
1667 | ||
1668 | if (type == NULL) | |
1669 | return NULL; | |
1670 | else if (is_thin_pntr (type)) | |
1671 | { | |
1672 | type = thin_descriptor_type (type); | |
1673 | if (type == NULL) | |
4c4b4cd2 | 1674 | return NULL; |
14f9c5c9 AS |
1675 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1676 | if (r != NULL) | |
61ee279c | 1677 | return ada_check_typedef (r); |
14f9c5c9 AS |
1678 | } |
1679 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1680 | { | |
1681 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1682 | if (r != NULL) | |
61ee279c | 1683 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1684 | } |
1685 | return NULL; | |
1686 | } | |
1687 | ||
1688 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1689 | one, a pointer to its bounds data. Otherwise NULL. */ |
1690 | ||
d2e4a39e AS |
1691 | static struct value * |
1692 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1693 | { |
df407dfe | 1694 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1695 | |
d2e4a39e | 1696 | if (is_thin_pntr (type)) |
14f9c5c9 | 1697 | { |
d2e4a39e | 1698 | struct type *bounds_type = |
4c4b4cd2 | 1699 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1700 | LONGEST addr; |
1701 | ||
4cdfadb1 | 1702 | if (bounds_type == NULL) |
323e0a4a | 1703 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1704 | |
1705 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1706 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1707 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1708 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1709 | addr = value_as_long (arr); |
d2e4a39e | 1710 | else |
42ae5230 | 1711 | addr = value_address (arr); |
14f9c5c9 | 1712 | |
d2e4a39e | 1713 | return |
4c4b4cd2 PH |
1714 | value_from_longest (lookup_pointer_type (bounds_type), |
1715 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1716 | } |
1717 | ||
1718 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1719 | { |
1720 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1721 | _("Bad GNAT array descriptor")); | |
1722 | struct type *p_bounds_type = value_type (p_bounds); | |
1723 | ||
1724 | if (p_bounds_type | |
1725 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1726 | { | |
1727 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1728 | ||
1729 | if (TYPE_STUB (target_type)) | |
1730 | p_bounds = value_cast (lookup_pointer_type | |
1731 | (ada_check_typedef (target_type)), | |
1732 | p_bounds); | |
1733 | } | |
1734 | else | |
1735 | error (_("Bad GNAT array descriptor")); | |
1736 | ||
1737 | return p_bounds; | |
1738 | } | |
14f9c5c9 AS |
1739 | else |
1740 | return NULL; | |
1741 | } | |
1742 | ||
4c4b4cd2 PH |
1743 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1744 | position of the field containing the address of the bounds data. */ | |
1745 | ||
14f9c5c9 | 1746 | static int |
d2e4a39e | 1747 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1748 | { |
1749 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1750 | } | |
1751 | ||
1752 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1753 | size of the field containing the address of the bounds data. */ |
1754 | ||
14f9c5c9 | 1755 | static int |
d2e4a39e | 1756 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1757 | { |
1758 | type = desc_base_type (type); | |
1759 | ||
d2e4a39e | 1760 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1761 | return TYPE_FIELD_BITSIZE (type, 1); |
1762 | else | |
61ee279c | 1763 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1764 | } |
1765 | ||
4c4b4cd2 | 1766 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1767 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1768 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1769 | data. */ | |
4c4b4cd2 | 1770 | |
d2e4a39e | 1771 | static struct type * |
556bdfd4 | 1772 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1773 | { |
1774 | type = desc_base_type (type); | |
1775 | ||
4c4b4cd2 | 1776 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1777 | if (is_thin_pntr (type)) |
556bdfd4 | 1778 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1779 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1780 | { |
1781 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1782 | ||
1783 | if (data_type | |
1784 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1785 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1786 | } |
1787 | ||
1788 | return NULL; | |
14f9c5c9 AS |
1789 | } |
1790 | ||
1791 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1792 | its array data. */ | |
4c4b4cd2 | 1793 | |
d2e4a39e AS |
1794 | static struct value * |
1795 | desc_data (struct value *arr) | |
14f9c5c9 | 1796 | { |
df407dfe | 1797 | struct type *type = value_type (arr); |
5b4ee69b | 1798 | |
14f9c5c9 AS |
1799 | if (is_thin_pntr (type)) |
1800 | return thin_data_pntr (arr); | |
1801 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1802 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1803 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1804 | else |
1805 | return NULL; | |
1806 | } | |
1807 | ||
1808 | ||
1809 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1810 | position of the field containing the address of the data. */ |
1811 | ||
14f9c5c9 | 1812 | static int |
d2e4a39e | 1813 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1814 | { |
1815 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1816 | } | |
1817 | ||
1818 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1819 | size of the field containing the address of the data. */ |
1820 | ||
14f9c5c9 | 1821 | static int |
d2e4a39e | 1822 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1823 | { |
1824 | type = desc_base_type (type); | |
1825 | ||
1826 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1827 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1828 | else |
14f9c5c9 AS |
1829 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1830 | } | |
1831 | ||
4c4b4cd2 | 1832 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1833 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1834 | bound, if WHICH is 1. The first bound is I=1. */ |
1835 | ||
d2e4a39e AS |
1836 | static struct value * |
1837 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1838 | { |
d2e4a39e | 1839 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1840 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1841 | } |
1842 | ||
1843 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1844 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1845 | bound, if WHICH is 1. The first bound is I=1. */ |
1846 | ||
14f9c5c9 | 1847 | static int |
d2e4a39e | 1848 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1849 | { |
d2e4a39e | 1850 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1851 | } |
1852 | ||
1853 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1854 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1855 | bound, if WHICH is 1. The first bound is I=1. */ |
1856 | ||
76a01679 | 1857 | static int |
d2e4a39e | 1858 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1859 | { |
1860 | type = desc_base_type (type); | |
1861 | ||
d2e4a39e AS |
1862 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1863 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1864 | else | |
1865 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1866 | } |
1867 | ||
1868 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1869 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1870 | ||
d2e4a39e AS |
1871 | static struct type * |
1872 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1873 | { |
1874 | type = desc_base_type (type); | |
1875 | ||
1876 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1877 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1878 | else | |
14f9c5c9 AS |
1879 | return NULL; |
1880 | } | |
1881 | ||
4c4b4cd2 PH |
1882 | /* The number of index positions in the array-bounds type TYPE. |
1883 | Return 0 if TYPE is NULL. */ | |
1884 | ||
14f9c5c9 | 1885 | static int |
d2e4a39e | 1886 | desc_arity (struct type *type) |
14f9c5c9 AS |
1887 | { |
1888 | type = desc_base_type (type); | |
1889 | ||
1890 | if (type != NULL) | |
1891 | return TYPE_NFIELDS (type) / 2; | |
1892 | return 0; | |
1893 | } | |
1894 | ||
4c4b4cd2 PH |
1895 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1896 | an array descriptor type (representing an unconstrained array | |
1897 | type). */ | |
1898 | ||
76a01679 JB |
1899 | static int |
1900 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1901 | { |
1902 | if (type == NULL) | |
1903 | return 0; | |
61ee279c | 1904 | type = ada_check_typedef (type); |
4c4b4cd2 | 1905 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1906 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1907 | } |
1908 | ||
52ce6436 | 1909 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1910 | * to one. */ |
52ce6436 | 1911 | |
2c0b251b | 1912 | static int |
52ce6436 PH |
1913 | ada_is_array_type (struct type *type) |
1914 | { | |
1915 | while (type != NULL | |
1916 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1917 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1918 | type = TYPE_TARGET_TYPE (type); | |
1919 | return ada_is_direct_array_type (type); | |
1920 | } | |
1921 | ||
4c4b4cd2 | 1922 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1923 | |
14f9c5c9 | 1924 | int |
4c4b4cd2 | 1925 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1926 | { |
1927 | if (type == NULL) | |
1928 | return 0; | |
61ee279c | 1929 | type = ada_check_typedef (type); |
14f9c5c9 | 1930 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1931 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1932 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1933 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1934 | } |
1935 | ||
4c4b4cd2 PH |
1936 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1937 | ||
14f9c5c9 | 1938 | int |
4c4b4cd2 | 1939 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1940 | { |
556bdfd4 | 1941 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1942 | |
1943 | if (type == NULL) | |
1944 | return 0; | |
61ee279c | 1945 | type = ada_check_typedef (type); |
556bdfd4 UW |
1946 | return (data_type != NULL |
1947 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1948 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1949 | } |
1950 | ||
1951 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1952 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1953 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1954 | is still needed. */ |
1955 | ||
14f9c5c9 | 1956 | int |
ebf56fd3 | 1957 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1958 | { |
d2e4a39e | 1959 | return |
14f9c5c9 AS |
1960 | type != NULL |
1961 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1962 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1963 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1964 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1965 | } |
1966 | ||
1967 | ||
4c4b4cd2 | 1968 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1969 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1970 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1971 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1972 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1973 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1974 | a descriptor. */ |
d2e4a39e AS |
1975 | struct type * |
1976 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1977 | { |
ad82864c JB |
1978 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1979 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1980 | |
df407dfe AC |
1981 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1982 | return value_type (arr); | |
d2e4a39e AS |
1983 | |
1984 | if (!bounds) | |
ad82864c JB |
1985 | { |
1986 | struct type *array_type = | |
1987 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1988 | ||
1989 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1990 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1991 | decode_packed_array_bitsize (value_type (arr)); | |
1992 | ||
1993 | return array_type; | |
1994 | } | |
14f9c5c9 AS |
1995 | else |
1996 | { | |
d2e4a39e | 1997 | struct type *elt_type; |
14f9c5c9 | 1998 | int arity; |
d2e4a39e | 1999 | struct value *descriptor; |
14f9c5c9 | 2000 | |
df407dfe AC |
2001 | elt_type = ada_array_element_type (value_type (arr), -1); |
2002 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2003 | |
d2e4a39e | 2004 | if (elt_type == NULL || arity == 0) |
df407dfe | 2005 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2006 | |
2007 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2008 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2009 | return NULL; |
d2e4a39e | 2010 | while (arity > 0) |
4c4b4cd2 | 2011 | { |
e9bb382b UW |
2012 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2013 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2014 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2015 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2016 | |
5b4ee69b | 2017 | arity -= 1; |
0c9c3474 SA |
2018 | create_static_range_type (range_type, value_type (low), |
2019 | longest_to_int (value_as_long (low)), | |
2020 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2021 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2022 | |
2023 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2024 | { |
2025 | /* We need to store the element packed bitsize, as well as | |
2026 | recompute the array size, because it was previously | |
2027 | computed based on the unpacked element size. */ | |
2028 | LONGEST lo = value_as_long (low); | |
2029 | LONGEST hi = value_as_long (high); | |
2030 | ||
2031 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2032 | decode_packed_array_bitsize (value_type (arr)); | |
2033 | /* If the array has no element, then the size is already | |
2034 | zero, and does not need to be recomputed. */ | |
2035 | if (lo < hi) | |
2036 | { | |
2037 | int array_bitsize = | |
2038 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2039 | ||
2040 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2041 | } | |
2042 | } | |
4c4b4cd2 | 2043 | } |
14f9c5c9 AS |
2044 | |
2045 | return lookup_pointer_type (elt_type); | |
2046 | } | |
2047 | } | |
2048 | ||
2049 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2050 | Otherwise, returns either a standard GDB array with bounds set |
2051 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2052 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2053 | ||
d2e4a39e AS |
2054 | struct value * |
2055 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2056 | { |
df407dfe | 2057 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2058 | { |
d2e4a39e | 2059 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2060 | |
14f9c5c9 | 2061 | if (arrType == NULL) |
4c4b4cd2 | 2062 | return NULL; |
14f9c5c9 AS |
2063 | return value_cast (arrType, value_copy (desc_data (arr))); |
2064 | } | |
ad82864c JB |
2065 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2066 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2067 | else |
2068 | return arr; | |
2069 | } | |
2070 | ||
2071 | /* If ARR does not represent an array, returns ARR unchanged. | |
2072 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2073 | be ARR itself if it already is in the proper form). */ |
2074 | ||
720d1a40 | 2075 | struct value * |
d2e4a39e | 2076 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2077 | { |
df407dfe | 2078 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2079 | { |
d2e4a39e | 2080 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2081 | |
14f9c5c9 | 2082 | if (arrVal == NULL) |
323e0a4a | 2083 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2084 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2085 | return value_ind (arrVal); |
2086 | } | |
ad82864c JB |
2087 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2088 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2089 | else |
14f9c5c9 AS |
2090 | return arr; |
2091 | } | |
2092 | ||
2093 | /* If TYPE represents a GNAT array type, return it translated to an | |
2094 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2095 | packing). For other types, is the identity. */ |
2096 | ||
d2e4a39e AS |
2097 | struct type * |
2098 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2099 | { |
ad82864c JB |
2100 | if (ada_is_constrained_packed_array_type (type)) |
2101 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2102 | |
2103 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2104 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2105 | |
2106 | return type; | |
14f9c5c9 AS |
2107 | } |
2108 | ||
4c4b4cd2 PH |
2109 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2110 | ||
ad82864c JB |
2111 | static int |
2112 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2113 | { |
2114 | if (type == NULL) | |
2115 | return 0; | |
4c4b4cd2 | 2116 | type = desc_base_type (type); |
61ee279c | 2117 | type = ada_check_typedef (type); |
d2e4a39e | 2118 | return |
14f9c5c9 AS |
2119 | ada_type_name (type) != NULL |
2120 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2121 | } | |
2122 | ||
ad82864c JB |
2123 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2124 | packed-array type. */ | |
2125 | ||
2126 | int | |
2127 | ada_is_constrained_packed_array_type (struct type *type) | |
2128 | { | |
2129 | return ada_is_packed_array_type (type) | |
2130 | && !ada_is_array_descriptor_type (type); | |
2131 | } | |
2132 | ||
2133 | /* Non-zero iff TYPE represents an array descriptor for a | |
2134 | unconstrained packed-array type. */ | |
2135 | ||
2136 | static int | |
2137 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2138 | { | |
2139 | return ada_is_packed_array_type (type) | |
2140 | && ada_is_array_descriptor_type (type); | |
2141 | } | |
2142 | ||
2143 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2144 | return the size of its elements in bits. */ | |
2145 | ||
2146 | static long | |
2147 | decode_packed_array_bitsize (struct type *type) | |
2148 | { | |
0d5cff50 DE |
2149 | const char *raw_name; |
2150 | const char *tail; | |
ad82864c JB |
2151 | long bits; |
2152 | ||
720d1a40 JB |
2153 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2154 | of the fat pointer type. We need the name of the fat pointer type | |
2155 | to do the decoding, so strip the typedef layer. */ | |
2156 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2157 | type = ada_typedef_target_type (type); | |
2158 | ||
2159 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2160 | if (!raw_name) |
2161 | raw_name = ada_type_name (desc_base_type (type)); | |
2162 | ||
2163 | if (!raw_name) | |
2164 | return 0; | |
2165 | ||
2166 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2167 | gdb_assert (tail != NULL); |
ad82864c JB |
2168 | |
2169 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2170 | { | |
2171 | lim_warning | |
2172 | (_("could not understand bit size information on packed array")); | |
2173 | return 0; | |
2174 | } | |
2175 | ||
2176 | return bits; | |
2177 | } | |
2178 | ||
14f9c5c9 AS |
2179 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2180 | in, and that the element size of its ultimate scalar constituents | |
2181 | (that is, either its elements, or, if it is an array of arrays, its | |
2182 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2183 | but with the bit sizes of its elements (and those of any | |
2184 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2185 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2186 | in bits. |
2187 | ||
2188 | Note that, for arrays whose index type has an XA encoding where | |
2189 | a bound references a record discriminant, getting that discriminant, | |
2190 | and therefore the actual value of that bound, is not possible | |
2191 | because none of the given parameters gives us access to the record. | |
2192 | This function assumes that it is OK in the context where it is being | |
2193 | used to return an array whose bounds are still dynamic and where | |
2194 | the length is arbitrary. */ | |
4c4b4cd2 | 2195 | |
d2e4a39e | 2196 | static struct type * |
ad82864c | 2197 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2198 | { |
d2e4a39e AS |
2199 | struct type *new_elt_type; |
2200 | struct type *new_type; | |
99b1c762 JB |
2201 | struct type *index_type_desc; |
2202 | struct type *index_type; | |
14f9c5c9 AS |
2203 | LONGEST low_bound, high_bound; |
2204 | ||
61ee279c | 2205 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2206 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2207 | return type; | |
2208 | ||
99b1c762 JB |
2209 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2210 | if (index_type_desc) | |
2211 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2212 | NULL); | |
2213 | else | |
2214 | index_type = TYPE_INDEX_TYPE (type); | |
2215 | ||
e9bb382b | 2216 | new_type = alloc_type_copy (type); |
ad82864c JB |
2217 | new_elt_type = |
2218 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2219 | elt_bits); | |
99b1c762 | 2220 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2221 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2222 | TYPE_NAME (new_type) = ada_type_name (type); | |
2223 | ||
4a46959e JB |
2224 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2225 | && is_dynamic_type (check_typedef (index_type))) | |
2226 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2227 | low_bound = high_bound = 0; |
2228 | if (high_bound < low_bound) | |
2229 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2230 | else |
14f9c5c9 AS |
2231 | { |
2232 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2233 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2234 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2235 | } |
2236 | ||
876cecd0 | 2237 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2238 | return new_type; |
2239 | } | |
2240 | ||
ad82864c JB |
2241 | /* The array type encoded by TYPE, where |
2242 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2243 | |
d2e4a39e | 2244 | static struct type * |
ad82864c | 2245 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2246 | { |
0d5cff50 | 2247 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2248 | char *name; |
0d5cff50 | 2249 | const char *tail; |
d2e4a39e | 2250 | struct type *shadow_type; |
14f9c5c9 | 2251 | long bits; |
14f9c5c9 | 2252 | |
727e3d2e JB |
2253 | if (!raw_name) |
2254 | raw_name = ada_type_name (desc_base_type (type)); | |
2255 | ||
2256 | if (!raw_name) | |
2257 | return NULL; | |
2258 | ||
2259 | name = (char *) alloca (strlen (raw_name) + 1); | |
2260 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2261 | type = desc_base_type (type); |
2262 | ||
14f9c5c9 AS |
2263 | memcpy (name, raw_name, tail - raw_name); |
2264 | name[tail - raw_name] = '\000'; | |
2265 | ||
b4ba55a1 JB |
2266 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2267 | ||
2268 | if (shadow_type == NULL) | |
14f9c5c9 | 2269 | { |
323e0a4a | 2270 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2271 | return NULL; |
2272 | } | |
f168693b | 2273 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2274 | |
2275 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2276 | { | |
0963b4bd MS |
2277 | lim_warning (_("could not understand bounds " |
2278 | "information on packed array")); | |
14f9c5c9 AS |
2279 | return NULL; |
2280 | } | |
d2e4a39e | 2281 | |
ad82864c JB |
2282 | bits = decode_packed_array_bitsize (type); |
2283 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2284 | } |
2285 | ||
ad82864c JB |
2286 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2287 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2288 | standard GDB array type except that the BITSIZEs of the array |
2289 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2290 | type length is set appropriately. */ |
14f9c5c9 | 2291 | |
d2e4a39e | 2292 | static struct value * |
ad82864c | 2293 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2294 | { |
4c4b4cd2 | 2295 | struct type *type; |
14f9c5c9 | 2296 | |
11aa919a PMR |
2297 | /* If our value is a pointer, then dereference it. Likewise if |
2298 | the value is a reference. Make sure that this operation does not | |
2299 | cause the target type to be fixed, as this would indirectly cause | |
2300 | this array to be decoded. The rest of the routine assumes that | |
2301 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2302 | and "value_ind" routines to perform the dereferencing, as opposed | |
2303 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2304 | arr = coerce_ref (arr); | |
828292f2 | 2305 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2306 | arr = value_ind (arr); |
4c4b4cd2 | 2307 | |
ad82864c | 2308 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2309 | if (type == NULL) |
2310 | { | |
323e0a4a | 2311 | error (_("can't unpack array")); |
14f9c5c9 AS |
2312 | return NULL; |
2313 | } | |
61ee279c | 2314 | |
50810684 | 2315 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2316 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2317 | { |
2318 | /* This is a (right-justified) modular type representing a packed | |
2319 | array with no wrapper. In order to interpret the value through | |
2320 | the (left-justified) packed array type we just built, we must | |
2321 | first left-justify it. */ | |
2322 | int bit_size, bit_pos; | |
2323 | ULONGEST mod; | |
2324 | ||
df407dfe | 2325 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2326 | bit_size = 0; |
2327 | while (mod > 0) | |
2328 | { | |
2329 | bit_size += 1; | |
2330 | mod >>= 1; | |
2331 | } | |
df407dfe | 2332 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2333 | arr = ada_value_primitive_packed_val (arr, NULL, |
2334 | bit_pos / HOST_CHAR_BIT, | |
2335 | bit_pos % HOST_CHAR_BIT, | |
2336 | bit_size, | |
2337 | type); | |
2338 | } | |
2339 | ||
4c4b4cd2 | 2340 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2341 | } |
2342 | ||
2343 | ||
2344 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2345 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2346 | |
d2e4a39e AS |
2347 | static struct value * |
2348 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2349 | { |
2350 | int i; | |
2351 | int bits, elt_off, bit_off; | |
2352 | long elt_total_bit_offset; | |
d2e4a39e AS |
2353 | struct type *elt_type; |
2354 | struct value *v; | |
14f9c5c9 AS |
2355 | |
2356 | bits = 0; | |
2357 | elt_total_bit_offset = 0; | |
df407dfe | 2358 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2359 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2360 | { |
d2e4a39e | 2361 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2362 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2363 | error | |
0963b4bd MS |
2364 | (_("attempt to do packed indexing of " |
2365 | "something other than a packed array")); | |
14f9c5c9 | 2366 | else |
4c4b4cd2 PH |
2367 | { |
2368 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2369 | LONGEST lowerbound, upperbound; | |
2370 | LONGEST idx; | |
2371 | ||
2372 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2373 | { | |
323e0a4a | 2374 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2375 | lowerbound = upperbound = 0; |
2376 | } | |
2377 | ||
3cb382c9 | 2378 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2379 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2380 | lim_warning (_("packed array index %ld out of bounds"), |
2381 | (long) idx); | |
4c4b4cd2 PH |
2382 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2383 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2384 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2385 | } |
14f9c5c9 AS |
2386 | } |
2387 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2388 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2389 | |
2390 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2391 | bits, elt_type); |
14f9c5c9 AS |
2392 | return v; |
2393 | } | |
2394 | ||
4c4b4cd2 | 2395 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2396 | |
2397 | static int | |
d2e4a39e | 2398 | has_negatives (struct type *type) |
14f9c5c9 | 2399 | { |
d2e4a39e AS |
2400 | switch (TYPE_CODE (type)) |
2401 | { | |
2402 | default: | |
2403 | return 0; | |
2404 | case TYPE_CODE_INT: | |
2405 | return !TYPE_UNSIGNED (type); | |
2406 | case TYPE_CODE_RANGE: | |
2407 | return TYPE_LOW_BOUND (type) < 0; | |
2408 | } | |
14f9c5c9 | 2409 | } |
d2e4a39e | 2410 | |
f93fca70 | 2411 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2412 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2413 | the unpacked buffer. |
14f9c5c9 | 2414 | |
5b639dea JB |
2415 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2416 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2417 | ||
f93fca70 JB |
2418 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2419 | zero otherwise. | |
14f9c5c9 | 2420 | |
f93fca70 | 2421 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2422 | |
f93fca70 JB |
2423 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2424 | ||
2425 | static void | |
2426 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2427 | gdb_byte *unpacked, int unpacked_len, | |
2428 | int is_big_endian, int is_signed_type, | |
2429 | int is_scalar) | |
2430 | { | |
a1c95e6b JB |
2431 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2432 | int src_idx; /* Index into the source area */ | |
2433 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2434 | int srcBitsLeft; /* Number of source bits left to move */ | |
2435 | int unusedLS; /* Number of bits in next significant | |
2436 | byte of source that are unused */ | |
2437 | ||
a1c95e6b JB |
2438 | int unpacked_idx; /* Index into the unpacked buffer */ |
2439 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2440 | ||
4c4b4cd2 | 2441 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2442 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2443 | unsigned char sign; |
a1c95e6b | 2444 | |
4c4b4cd2 PH |
2445 | /* Transmit bytes from least to most significant; delta is the direction |
2446 | the indices move. */ | |
f93fca70 | 2447 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2448 | |
5b639dea JB |
2449 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2450 | bits from SRC. .*/ | |
2451 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2452 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2453 | bit_size, unpacked_len); | |
2454 | ||
14f9c5c9 | 2455 | srcBitsLeft = bit_size; |
086ca51f | 2456 | src_bytes_left = src_len; |
f93fca70 | 2457 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2458 | sign = 0; |
f93fca70 JB |
2459 | |
2460 | if (is_big_endian) | |
14f9c5c9 | 2461 | { |
086ca51f | 2462 | src_idx = src_len - 1; |
f93fca70 JB |
2463 | if (is_signed_type |
2464 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2465 | sign = ~0; |
d2e4a39e AS |
2466 | |
2467 | unusedLS = | |
4c4b4cd2 PH |
2468 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2469 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2470 | |
f93fca70 JB |
2471 | if (is_scalar) |
2472 | { | |
2473 | accumSize = 0; | |
2474 | unpacked_idx = unpacked_len - 1; | |
2475 | } | |
2476 | else | |
2477 | { | |
4c4b4cd2 PH |
2478 | /* Non-scalar values must be aligned at a byte boundary... */ |
2479 | accumSize = | |
2480 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2481 | /* ... And are placed at the beginning (most-significant) bytes | |
2482 | of the target. */ | |
086ca51f JB |
2483 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2484 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2485 | } |
14f9c5c9 | 2486 | } |
d2e4a39e | 2487 | else |
14f9c5c9 AS |
2488 | { |
2489 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2490 | ||
086ca51f | 2491 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2492 | unusedLS = bit_offset; |
2493 | accumSize = 0; | |
2494 | ||
f93fca70 | 2495 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2496 | sign = ~0; |
14f9c5c9 | 2497 | } |
d2e4a39e | 2498 | |
14f9c5c9 | 2499 | accum = 0; |
086ca51f | 2500 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2501 | { |
2502 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2503 | part of the value. */ |
d2e4a39e | 2504 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2505 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2506 | 1; | |
2507 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2508 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2509 | |
d2e4a39e | 2510 | accum |= |
086ca51f | 2511 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2512 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2513 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2514 | { |
db297a65 | 2515 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2516 | accumSize -= HOST_CHAR_BIT; |
2517 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2518 | unpacked_bytes_left -= 1; |
2519 | unpacked_idx += delta; | |
4c4b4cd2 | 2520 | } |
14f9c5c9 AS |
2521 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2522 | unusedLS = 0; | |
086ca51f JB |
2523 | src_bytes_left -= 1; |
2524 | src_idx += delta; | |
14f9c5c9 | 2525 | } |
086ca51f | 2526 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2527 | { |
2528 | accum |= sign << accumSize; | |
db297a65 | 2529 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2530 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2531 | if (accumSize < 0) |
2532 | accumSize = 0; | |
14f9c5c9 | 2533 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2534 | unpacked_bytes_left -= 1; |
2535 | unpacked_idx += delta; | |
14f9c5c9 | 2536 | } |
f93fca70 JB |
2537 | } |
2538 | ||
2539 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2540 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2541 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2542 | assigning through the result will set the field fetched from. | |
2543 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2544 | VALADDR+OFFSET must address the start of storage containing the | |
2545 | packed value. The value returned in this case is never an lval. | |
2546 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2547 | ||
2548 | struct value * | |
2549 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2550 | long offset, int bit_offset, int bit_size, | |
2551 | struct type *type) | |
2552 | { | |
2553 | struct value *v; | |
bfb1c796 | 2554 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2555 | gdb_byte *unpacked; |
220475ed | 2556 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2557 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
d5722aa2 | 2558 | gdb::byte_vector staging; |
f93fca70 JB |
2559 | |
2560 | type = ada_check_typedef (type); | |
2561 | ||
d0a9e810 | 2562 | if (obj == NULL) |
bfb1c796 | 2563 | src = valaddr + offset; |
d0a9e810 | 2564 | else |
bfb1c796 | 2565 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2566 | |
2567 | if (is_dynamic_type (type)) | |
2568 | { | |
2569 | /* The length of TYPE might by dynamic, so we need to resolve | |
2570 | TYPE in order to know its actual size, which we then use | |
2571 | to create the contents buffer of the value we return. | |
2572 | The difficulty is that the data containing our object is | |
2573 | packed, and therefore maybe not at a byte boundary. So, what | |
2574 | we do, is unpack the data into a byte-aligned buffer, and then | |
2575 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2576 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2577 | staging.resize (staging_len); | |
d0a9e810 JB |
2578 | |
2579 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2580 | staging.data (), staging.size (), |
d0a9e810 JB |
2581 | is_big_endian, has_negatives (type), |
2582 | is_scalar); | |
d5722aa2 | 2583 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2584 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2585 | { | |
2586 | /* This happens when the length of the object is dynamic, | |
2587 | and is actually smaller than the space reserved for it. | |
2588 | For instance, in an array of variant records, the bit_size | |
2589 | we're given is the array stride, which is constant and | |
2590 | normally equal to the maximum size of its element. | |
2591 | But, in reality, each element only actually spans a portion | |
2592 | of that stride. */ | |
2593 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2594 | } | |
d0a9e810 JB |
2595 | } |
2596 | ||
f93fca70 JB |
2597 | if (obj == NULL) |
2598 | { | |
2599 | v = allocate_value (type); | |
bfb1c796 | 2600 | src = valaddr + offset; |
f93fca70 JB |
2601 | } |
2602 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2603 | { | |
0cafa88c | 2604 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2605 | gdb_byte *buf; |
0cafa88c | 2606 | |
f93fca70 | 2607 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2608 | buf = (gdb_byte *) alloca (src_len); |
2609 | read_memory (value_address (v), buf, src_len); | |
2610 | src = buf; | |
f93fca70 JB |
2611 | } |
2612 | else | |
2613 | { | |
2614 | v = allocate_value (type); | |
bfb1c796 | 2615 | src = value_contents (obj) + offset; |
f93fca70 JB |
2616 | } |
2617 | ||
2618 | if (obj != NULL) | |
2619 | { | |
2620 | long new_offset = offset; | |
2621 | ||
2622 | set_value_component_location (v, obj); | |
2623 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2624 | set_value_bitsize (v, bit_size); | |
2625 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2626 | { | |
2627 | ++new_offset; | |
2628 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2629 | } | |
2630 | set_value_offset (v, new_offset); | |
2631 | ||
2632 | /* Also set the parent value. This is needed when trying to | |
2633 | assign a new value (in inferior memory). */ | |
2634 | set_value_parent (v, obj); | |
2635 | } | |
2636 | else | |
2637 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2638 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2639 | |
2640 | if (bit_size == 0) | |
2641 | { | |
2642 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2643 | return v; | |
2644 | } | |
2645 | ||
d5722aa2 | 2646 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2647 | { |
d0a9e810 JB |
2648 | /* Small short-cut: If we've unpacked the data into a buffer |
2649 | of the same size as TYPE's length, then we can reuse that, | |
2650 | instead of doing the unpacking again. */ | |
d5722aa2 | 2651 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2652 | } |
d0a9e810 JB |
2653 | else |
2654 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2655 | unpacked, TYPE_LENGTH (type), | |
2656 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2657 | |
14f9c5c9 AS |
2658 | return v; |
2659 | } | |
d2e4a39e | 2660 | |
14f9c5c9 AS |
2661 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2662 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2663 | not overlap. */ |
14f9c5c9 | 2664 | static void |
fc1a4b47 | 2665 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2666 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2667 | { |
2668 | unsigned int accum, mask; | |
2669 | int accum_bits, chunk_size; | |
2670 | ||
2671 | target += targ_offset / HOST_CHAR_BIT; | |
2672 | targ_offset %= HOST_CHAR_BIT; | |
2673 | source += src_offset / HOST_CHAR_BIT; | |
2674 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2675 | if (bits_big_endian_p) |
14f9c5c9 AS |
2676 | { |
2677 | accum = (unsigned char) *source; | |
2678 | source += 1; | |
2679 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2680 | ||
d2e4a39e | 2681 | while (n > 0) |
4c4b4cd2 PH |
2682 | { |
2683 | int unused_right; | |
5b4ee69b | 2684 | |
4c4b4cd2 PH |
2685 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2686 | accum_bits += HOST_CHAR_BIT; | |
2687 | source += 1; | |
2688 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2689 | if (chunk_size > n) | |
2690 | chunk_size = n; | |
2691 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2692 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2693 | *target = | |
2694 | (*target & ~mask) | |
2695 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2696 | n -= chunk_size; | |
2697 | accum_bits -= chunk_size; | |
2698 | target += 1; | |
2699 | targ_offset = 0; | |
2700 | } | |
14f9c5c9 AS |
2701 | } |
2702 | else | |
2703 | { | |
2704 | accum = (unsigned char) *source >> src_offset; | |
2705 | source += 1; | |
2706 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2707 | ||
d2e4a39e | 2708 | while (n > 0) |
4c4b4cd2 PH |
2709 | { |
2710 | accum = accum + ((unsigned char) *source << accum_bits); | |
2711 | accum_bits += HOST_CHAR_BIT; | |
2712 | source += 1; | |
2713 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2714 | if (chunk_size > n) | |
2715 | chunk_size = n; | |
2716 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2717 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2718 | n -= chunk_size; | |
2719 | accum_bits -= chunk_size; | |
2720 | accum >>= chunk_size; | |
2721 | target += 1; | |
2722 | targ_offset = 0; | |
2723 | } | |
14f9c5c9 AS |
2724 | } |
2725 | } | |
2726 | ||
14f9c5c9 AS |
2727 | /* Store the contents of FROMVAL into the location of TOVAL. |
2728 | Return a new value with the location of TOVAL and contents of | |
2729 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2730 | floating-point or non-scalar types. */ |
14f9c5c9 | 2731 | |
d2e4a39e AS |
2732 | static struct value * |
2733 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2734 | { |
df407dfe AC |
2735 | struct type *type = value_type (toval); |
2736 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2737 | |
52ce6436 PH |
2738 | toval = ada_coerce_ref (toval); |
2739 | fromval = ada_coerce_ref (fromval); | |
2740 | ||
2741 | if (ada_is_direct_array_type (value_type (toval))) | |
2742 | toval = ada_coerce_to_simple_array (toval); | |
2743 | if (ada_is_direct_array_type (value_type (fromval))) | |
2744 | fromval = ada_coerce_to_simple_array (fromval); | |
2745 | ||
88e3b34b | 2746 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2747 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2748 | |
d2e4a39e | 2749 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2750 | && bits > 0 |
d2e4a39e | 2751 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2752 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2753 | { |
df407dfe AC |
2754 | int len = (value_bitpos (toval) |
2755 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2756 | int from_size; |
224c3ddb | 2757 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2758 | struct value *val; |
42ae5230 | 2759 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2760 | |
2761 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2762 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2763 | |
52ce6436 | 2764 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2765 | from_size = value_bitsize (fromval); |
2766 | if (from_size == 0) | |
2767 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2768 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2769 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2770 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2771 | else |
50810684 UW |
2772 | move_bits (buffer, value_bitpos (toval), |
2773 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2774 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2775 | |
14f9c5c9 | 2776 | val = value_copy (toval); |
0fd88904 | 2777 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2778 | TYPE_LENGTH (type)); |
04624583 | 2779 | deprecated_set_value_type (val, type); |
d2e4a39e | 2780 | |
14f9c5c9 AS |
2781 | return val; |
2782 | } | |
2783 | ||
2784 | return value_assign (toval, fromval); | |
2785 | } | |
2786 | ||
2787 | ||
7c512744 JB |
2788 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2789 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2790 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2791 | COMPONENT, and not the inferior's memory. The current contents | |
2792 | of COMPONENT are ignored. | |
2793 | ||
2794 | Although not part of the initial design, this function also works | |
2795 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2796 | had a null address, and COMPONENT had an address which is equal to | |
2797 | its offset inside CONTAINER. */ | |
2798 | ||
52ce6436 PH |
2799 | static void |
2800 | value_assign_to_component (struct value *container, struct value *component, | |
2801 | struct value *val) | |
2802 | { | |
2803 | LONGEST offset_in_container = | |
42ae5230 | 2804 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2805 | int bit_offset_in_container = |
52ce6436 PH |
2806 | value_bitpos (component) - value_bitpos (container); |
2807 | int bits; | |
7c512744 | 2808 | |
52ce6436 PH |
2809 | val = value_cast (value_type (component), val); |
2810 | ||
2811 | if (value_bitsize (component) == 0) | |
2812 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2813 | else | |
2814 | bits = value_bitsize (component); | |
2815 | ||
50810684 | 2816 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2817 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2818 | value_bitpos (container) + bit_offset_in_container, |
2819 | value_contents (val), | |
2820 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2821 | bits, 1); |
52ce6436 | 2822 | else |
7c512744 | 2823 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2824 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2825 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2826 | } |
2827 | ||
4c4b4cd2 PH |
2828 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2829 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2830 | thereto. */ |
2831 | ||
d2e4a39e AS |
2832 | struct value * |
2833 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2834 | { |
2835 | int k; | |
d2e4a39e AS |
2836 | struct value *elt; |
2837 | struct type *elt_type; | |
14f9c5c9 AS |
2838 | |
2839 | elt = ada_coerce_to_simple_array (arr); | |
2840 | ||
df407dfe | 2841 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2842 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2843 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2844 | return value_subscript_packed (elt, arity, ind); | |
2845 | ||
2846 | for (k = 0; k < arity; k += 1) | |
2847 | { | |
2848 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2849 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2850 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2851 | } |
2852 | return elt; | |
2853 | } | |
2854 | ||
deede10c JB |
2855 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2856 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2857 | Does not read the entire array into memory. |
2858 | ||
2859 | Note: Unlike what one would expect, this function is used instead of | |
2860 | ada_value_subscript for basically all non-packed array types. The reason | |
2861 | for this is that a side effect of doing our own pointer arithmetics instead | |
2862 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2863 | This is important for arrays of array accesses, where it allows us to | |
2864 | preserve the fact that the array's element is an array access, where the | |
2865 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2866 | |
2c0b251b | 2867 | static struct value * |
deede10c | 2868 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2869 | { |
2870 | int k; | |
919e6dbe | 2871 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2872 | struct type *type |
919e6dbe PMR |
2873 | = check_typedef (value_enclosing_type (array_ind)); |
2874 | ||
2875 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2876 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2877 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2878 | |
2879 | for (k = 0; k < arity; k += 1) | |
2880 | { | |
2881 | LONGEST lwb, upb; | |
aa715135 | 2882 | struct value *lwb_value; |
14f9c5c9 AS |
2883 | |
2884 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2885 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2886 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2887 | value_copy (arr)); |
14f9c5c9 | 2888 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2889 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2890 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2891 | type = TYPE_TARGET_TYPE (type); |
2892 | } | |
2893 | ||
2894 | return value_ind (arr); | |
2895 | } | |
2896 | ||
0b5d8877 | 2897 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2898 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2899 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2900 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2901 | static struct value * |
f5938064 JG |
2902 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2903 | int low, int high) | |
0b5d8877 | 2904 | { |
b0dd7688 | 2905 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2906 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2907 | struct type *index_type |
aa715135 | 2908 | = create_static_range_type (NULL, base_index_type, low, high); |
9fe561ab JB |
2909 | struct type *slice_type = create_array_type_with_stride |
2910 | (NULL, TYPE_TARGET_TYPE (type0), index_type, | |
2911 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0), | |
2912 | TYPE_FIELD_BITSIZE (type0, 0)); | |
aa715135 JG |
2913 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2914 | LONGEST base_low_pos, low_pos; | |
2915 | CORE_ADDR base; | |
2916 | ||
2917 | if (!discrete_position (base_index_type, low, &low_pos) | |
2918 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2919 | { | |
2920 | warning (_("unable to get positions in slice, use bounds instead")); | |
2921 | low_pos = low; | |
2922 | base_low_pos = base_low; | |
2923 | } | |
5b4ee69b | 2924 | |
aa715135 JG |
2925 | base = value_as_address (array_ptr) |
2926 | + ((low_pos - base_low_pos) | |
2927 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2928 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2929 | } |
2930 | ||
2931 | ||
2932 | static struct value * | |
2933 | ada_value_slice (struct value *array, int low, int high) | |
2934 | { | |
b0dd7688 | 2935 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2936 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2937 | struct type *index_type |
2938 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
9fe561ab JB |
2939 | struct type *slice_type = create_array_type_with_stride |
2940 | (NULL, TYPE_TARGET_TYPE (type), index_type, | |
2941 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type), | |
2942 | TYPE_FIELD_BITSIZE (type, 0)); | |
aa715135 | 2943 | LONGEST low_pos, high_pos; |
5b4ee69b | 2944 | |
aa715135 JG |
2945 | if (!discrete_position (base_index_type, low, &low_pos) |
2946 | || !discrete_position (base_index_type, high, &high_pos)) | |
2947 | { | |
2948 | warning (_("unable to get positions in slice, use bounds instead")); | |
2949 | low_pos = low; | |
2950 | high_pos = high; | |
2951 | } | |
2952 | ||
2953 | return value_cast (slice_type, | |
2954 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2955 | } |
2956 | ||
14f9c5c9 AS |
2957 | /* If type is a record type in the form of a standard GNAT array |
2958 | descriptor, returns the number of dimensions for type. If arr is a | |
2959 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2960 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2961 | |
2962 | int | |
d2e4a39e | 2963 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2964 | { |
2965 | int arity; | |
2966 | ||
2967 | if (type == NULL) | |
2968 | return 0; | |
2969 | ||
2970 | type = desc_base_type (type); | |
2971 | ||
2972 | arity = 0; | |
d2e4a39e | 2973 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2974 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2975 | else |
2976 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2977 | { |
4c4b4cd2 | 2978 | arity += 1; |
61ee279c | 2979 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2980 | } |
d2e4a39e | 2981 | |
14f9c5c9 AS |
2982 | return arity; |
2983 | } | |
2984 | ||
2985 | /* If TYPE is a record type in the form of a standard GNAT array | |
2986 | descriptor or a simple array type, returns the element type for | |
2987 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2988 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2989 | |
d2e4a39e AS |
2990 | struct type * |
2991 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2992 | { |
2993 | type = desc_base_type (type); | |
2994 | ||
d2e4a39e | 2995 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2996 | { |
2997 | int k; | |
d2e4a39e | 2998 | struct type *p_array_type; |
14f9c5c9 | 2999 | |
556bdfd4 | 3000 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
3001 | |
3002 | k = ada_array_arity (type); | |
3003 | if (k == 0) | |
4c4b4cd2 | 3004 | return NULL; |
d2e4a39e | 3005 | |
4c4b4cd2 | 3006 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 3007 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 3008 | k = nindices; |
d2e4a39e | 3009 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 3010 | { |
61ee279c | 3011 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
3012 | k -= 1; |
3013 | } | |
14f9c5c9 AS |
3014 | return p_array_type; |
3015 | } | |
3016 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3017 | { | |
3018 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3019 | { |
3020 | type = TYPE_TARGET_TYPE (type); | |
3021 | nindices -= 1; | |
3022 | } | |
14f9c5c9 AS |
3023 | return type; |
3024 | } | |
3025 | ||
3026 | return NULL; | |
3027 | } | |
3028 | ||
4c4b4cd2 | 3029 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3030 | Does not examine memory. Throws an error if N is invalid or TYPE |
3031 | is not an array type. NAME is the name of the Ada attribute being | |
3032 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3033 | the error message. */ | |
14f9c5c9 | 3034 | |
1eea4ebd UW |
3035 | static struct type * |
3036 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3037 | { |
4c4b4cd2 PH |
3038 | struct type *result_type; |
3039 | ||
14f9c5c9 AS |
3040 | type = desc_base_type (type); |
3041 | ||
1eea4ebd UW |
3042 | if (n < 0 || n > ada_array_arity (type)) |
3043 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3044 | |
4c4b4cd2 | 3045 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3046 | { |
3047 | int i; | |
3048 | ||
3049 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3050 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3051 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3052 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3053 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3054 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3055 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3056 | result_type = NULL; | |
14f9c5c9 | 3057 | } |
d2e4a39e | 3058 | else |
1eea4ebd UW |
3059 | { |
3060 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3061 | if (result_type == NULL) | |
3062 | error (_("attempt to take bound of something that is not an array")); | |
3063 | } | |
3064 | ||
3065 | return result_type; | |
14f9c5c9 AS |
3066 | } |
3067 | ||
3068 | /* Given that arr is an array type, returns the lower bound of the | |
3069 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3070 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3071 | array-descriptor type. It works for other arrays with bounds supplied |
3072 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3073 | |
abb68b3e | 3074 | static LONGEST |
fb5e3d5c | 3075 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3076 | { |
8a48ac95 | 3077 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3078 | int i; |
262452ec JK |
3079 | |
3080 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3081 | |
ad82864c JB |
3082 | if (ada_is_constrained_packed_array_type (arr_type)) |
3083 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3084 | |
4c4b4cd2 | 3085 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3086 | return (LONGEST) - which; |
14f9c5c9 AS |
3087 | |
3088 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3089 | type = TYPE_TARGET_TYPE (arr_type); | |
3090 | else | |
3091 | type = arr_type; | |
3092 | ||
bafffb51 JB |
3093 | if (TYPE_FIXED_INSTANCE (type)) |
3094 | { | |
3095 | /* The array has already been fixed, so we do not need to | |
3096 | check the parallel ___XA type again. That encoding has | |
3097 | already been applied, so ignore it now. */ | |
3098 | index_type_desc = NULL; | |
3099 | } | |
3100 | else | |
3101 | { | |
3102 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3103 | ada_fixup_array_indexes_type (index_type_desc); | |
3104 | } | |
3105 | ||
262452ec | 3106 | if (index_type_desc != NULL) |
28c85d6c JB |
3107 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3108 | NULL); | |
262452ec | 3109 | else |
8a48ac95 JB |
3110 | { |
3111 | struct type *elt_type = check_typedef (type); | |
3112 | ||
3113 | for (i = 1; i < n; i++) | |
3114 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3115 | ||
3116 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3117 | } | |
262452ec | 3118 | |
43bbcdc2 PH |
3119 | return |
3120 | (LONGEST) (which == 0 | |
3121 | ? ada_discrete_type_low_bound (index_type) | |
3122 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3123 | } |
3124 | ||
3125 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3126 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3127 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3128 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3129 | |
1eea4ebd | 3130 | static LONGEST |
4dc81987 | 3131 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3132 | { |
eb479039 JB |
3133 | struct type *arr_type; |
3134 | ||
3135 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3136 | arr = value_ind (arr); | |
3137 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3138 | |
ad82864c JB |
3139 | if (ada_is_constrained_packed_array_type (arr_type)) |
3140 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3141 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3142 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3143 | else |
1eea4ebd | 3144 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3145 | } |
3146 | ||
3147 | /* Given that arr is an array value, returns the length of the | |
3148 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3149 | supplied by run-time quantities other than discriminants. |
3150 | Does not work for arrays indexed by enumeration types with representation | |
3151 | clauses at the moment. */ | |
14f9c5c9 | 3152 | |
1eea4ebd | 3153 | static LONGEST |
d2e4a39e | 3154 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3155 | { |
aa715135 JG |
3156 | struct type *arr_type, *index_type; |
3157 | int low, high; | |
eb479039 JB |
3158 | |
3159 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3160 | arr = value_ind (arr); | |
3161 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3162 | |
ad82864c JB |
3163 | if (ada_is_constrained_packed_array_type (arr_type)) |
3164 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3165 | |
4c4b4cd2 | 3166 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3167 | { |
3168 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3169 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3170 | } | |
14f9c5c9 | 3171 | else |
aa715135 JG |
3172 | { |
3173 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3174 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3175 | } | |
3176 | ||
f168693b | 3177 | arr_type = check_typedef (arr_type); |
7150d33c | 3178 | index_type = ada_index_type (arr_type, n, "length"); |
aa715135 JG |
3179 | if (index_type != NULL) |
3180 | { | |
3181 | struct type *base_type; | |
3182 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3183 | base_type = TYPE_TARGET_TYPE (index_type); | |
3184 | else | |
3185 | base_type = index_type; | |
3186 | ||
3187 | low = pos_atr (value_from_longest (base_type, low)); | |
3188 | high = pos_atr (value_from_longest (base_type, high)); | |
3189 | } | |
3190 | return high - low + 1; | |
4c4b4cd2 PH |
3191 | } |
3192 | ||
3193 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3194 | with bounds LOW to LOW-1. */ | |
3195 | ||
3196 | static struct value * | |
3197 | empty_array (struct type *arr_type, int low) | |
3198 | { | |
b0dd7688 | 3199 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3200 | struct type *index_type |
3201 | = create_static_range_type | |
3202 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3203 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3204 | |
0b5d8877 | 3205 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3206 | } |
14f9c5c9 | 3207 | \f |
d2e4a39e | 3208 | |
4c4b4cd2 | 3209 | /* Name resolution */ |
14f9c5c9 | 3210 | |
4c4b4cd2 PH |
3211 | /* The "decoded" name for the user-definable Ada operator corresponding |
3212 | to OP. */ | |
14f9c5c9 | 3213 | |
d2e4a39e | 3214 | static const char * |
4c4b4cd2 | 3215 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3216 | { |
3217 | int i; | |
3218 | ||
4c4b4cd2 | 3219 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3220 | { |
3221 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3222 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3223 | } |
323e0a4a | 3224 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3225 | } |
3226 | ||
3227 | ||
4c4b4cd2 PH |
3228 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3229 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3230 | undefined namespace) and converts operators that are | |
3231 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3232 | non-null, it provides a preferred result type [at the moment, only |
3233 | type void has any effect---causing procedures to be preferred over | |
3234 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3235 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3236 | |
4c4b4cd2 | 3237 | static void |
e9d9f57e | 3238 | resolve (expression_up *expp, int void_context_p) |
14f9c5c9 | 3239 | { |
30b15541 UW |
3240 | struct type *context_type = NULL; |
3241 | int pc = 0; | |
3242 | ||
3243 | if (void_context_p) | |
3244 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3245 | ||
3246 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3247 | } |
3248 | ||
4c4b4cd2 PH |
3249 | /* Resolve the operator of the subexpression beginning at |
3250 | position *POS of *EXPP. "Resolving" consists of replacing | |
3251 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3252 | with their resolutions, replacing built-in operators with | |
3253 | function calls to user-defined operators, where appropriate, and, | |
3254 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3255 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3256 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3257 | |
d2e4a39e | 3258 | static struct value * |
e9d9f57e | 3259 | resolve_subexp (expression_up *expp, int *pos, int deprocedure_p, |
76a01679 | 3260 | struct type *context_type) |
14f9c5c9 AS |
3261 | { |
3262 | int pc = *pos; | |
3263 | int i; | |
4c4b4cd2 | 3264 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3265 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3266 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3267 | int nargs; /* Number of operands. */ | |
52ce6436 | 3268 | int oplen; |
ec6a20c2 | 3269 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
14f9c5c9 AS |
3270 | |
3271 | argvec = NULL; | |
3272 | nargs = 0; | |
e9d9f57e | 3273 | exp = expp->get (); |
14f9c5c9 | 3274 | |
52ce6436 PH |
3275 | /* Pass one: resolve operands, saving their types and updating *pos, |
3276 | if needed. */ | |
14f9c5c9 AS |
3277 | switch (op) |
3278 | { | |
4c4b4cd2 PH |
3279 | case OP_FUNCALL: |
3280 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3281 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3282 | *pos += 7; | |
4c4b4cd2 PH |
3283 | else |
3284 | { | |
3285 | *pos += 3; | |
3286 | resolve_subexp (expp, pos, 0, NULL); | |
3287 | } | |
3288 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3289 | break; |
3290 | ||
14f9c5c9 | 3291 | case UNOP_ADDR: |
4c4b4cd2 PH |
3292 | *pos += 1; |
3293 | resolve_subexp (expp, pos, 0, NULL); | |
3294 | break; | |
3295 | ||
52ce6436 PH |
3296 | case UNOP_QUAL: |
3297 | *pos += 3; | |
17466c1a | 3298 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3299 | break; |
3300 | ||
52ce6436 | 3301 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3302 | case OP_ATR_SIZE: |
3303 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3304 | case OP_ATR_FIRST: |
3305 | case OP_ATR_LAST: | |
3306 | case OP_ATR_LENGTH: | |
3307 | case OP_ATR_POS: | |
3308 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3309 | case OP_ATR_MIN: |
3310 | case OP_ATR_MAX: | |
52ce6436 PH |
3311 | case TERNOP_IN_RANGE: |
3312 | case BINOP_IN_BOUNDS: | |
3313 | case UNOP_IN_RANGE: | |
3314 | case OP_AGGREGATE: | |
3315 | case OP_OTHERS: | |
3316 | case OP_CHOICES: | |
3317 | case OP_POSITIONAL: | |
3318 | case OP_DISCRETE_RANGE: | |
3319 | case OP_NAME: | |
3320 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3321 | *pos += oplen; | |
14f9c5c9 AS |
3322 | break; |
3323 | ||
3324 | case BINOP_ASSIGN: | |
3325 | { | |
4c4b4cd2 PH |
3326 | struct value *arg1; |
3327 | ||
3328 | *pos += 1; | |
3329 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3330 | if (arg1 == NULL) | |
3331 | resolve_subexp (expp, pos, 1, NULL); | |
3332 | else | |
df407dfe | 3333 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3334 | break; |
14f9c5c9 AS |
3335 | } |
3336 | ||
4c4b4cd2 | 3337 | case UNOP_CAST: |
4c4b4cd2 PH |
3338 | *pos += 3; |
3339 | nargs = 1; | |
3340 | break; | |
14f9c5c9 | 3341 | |
4c4b4cd2 PH |
3342 | case BINOP_ADD: |
3343 | case BINOP_SUB: | |
3344 | case BINOP_MUL: | |
3345 | case BINOP_DIV: | |
3346 | case BINOP_REM: | |
3347 | case BINOP_MOD: | |
3348 | case BINOP_EXP: | |
3349 | case BINOP_CONCAT: | |
3350 | case BINOP_LOGICAL_AND: | |
3351 | case BINOP_LOGICAL_OR: | |
3352 | case BINOP_BITWISE_AND: | |
3353 | case BINOP_BITWISE_IOR: | |
3354 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3355 | |
4c4b4cd2 PH |
3356 | case BINOP_EQUAL: |
3357 | case BINOP_NOTEQUAL: | |
3358 | case BINOP_LESS: | |
3359 | case BINOP_GTR: | |
3360 | case BINOP_LEQ: | |
3361 | case BINOP_GEQ: | |
14f9c5c9 | 3362 | |
4c4b4cd2 PH |
3363 | case BINOP_REPEAT: |
3364 | case BINOP_SUBSCRIPT: | |
3365 | case BINOP_COMMA: | |
40c8aaa9 JB |
3366 | *pos += 1; |
3367 | nargs = 2; | |
3368 | break; | |
14f9c5c9 | 3369 | |
4c4b4cd2 PH |
3370 | case UNOP_NEG: |
3371 | case UNOP_PLUS: | |
3372 | case UNOP_LOGICAL_NOT: | |
3373 | case UNOP_ABS: | |
3374 | case UNOP_IND: | |
3375 | *pos += 1; | |
3376 | nargs = 1; | |
3377 | break; | |
14f9c5c9 | 3378 | |
4c4b4cd2 | 3379 | case OP_LONG: |
edd079d9 | 3380 | case OP_FLOAT: |
4c4b4cd2 | 3381 | case OP_VAR_VALUE: |
74ea4be4 | 3382 | case OP_VAR_MSYM_VALUE: |
4c4b4cd2 PH |
3383 | *pos += 4; |
3384 | break; | |
14f9c5c9 | 3385 | |
4c4b4cd2 PH |
3386 | case OP_TYPE: |
3387 | case OP_BOOL: | |
3388 | case OP_LAST: | |
4c4b4cd2 PH |
3389 | case OP_INTERNALVAR: |
3390 | *pos += 3; | |
3391 | break; | |
14f9c5c9 | 3392 | |
4c4b4cd2 PH |
3393 | case UNOP_MEMVAL: |
3394 | *pos += 3; | |
3395 | nargs = 1; | |
3396 | break; | |
3397 | ||
67f3407f DJ |
3398 | case OP_REGISTER: |
3399 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3400 | break; | |
3401 | ||
4c4b4cd2 PH |
3402 | case STRUCTOP_STRUCT: |
3403 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3404 | nargs = 1; | |
3405 | break; | |
3406 | ||
4c4b4cd2 | 3407 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3408 | *pos += 1; |
3409 | nargs = 3; | |
3410 | break; | |
3411 | ||
52ce6436 | 3412 | case OP_STRING: |
14f9c5c9 | 3413 | break; |
4c4b4cd2 PH |
3414 | |
3415 | default: | |
323e0a4a | 3416 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3417 | } |
3418 | ||
8d749320 | 3419 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3420 | for (i = 0; i < nargs; i += 1) |
3421 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3422 | argvec[i] = NULL; | |
e9d9f57e | 3423 | exp = expp->get (); |
4c4b4cd2 PH |
3424 | |
3425 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3426 | switch (op) |
3427 | { | |
3428 | default: | |
3429 | break; | |
3430 | ||
14f9c5c9 | 3431 | case OP_VAR_VALUE: |
4c4b4cd2 | 3432 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3433 | { |
d12307c1 | 3434 | struct block_symbol *candidates; |
76a01679 JB |
3435 | int n_candidates; |
3436 | ||
3437 | n_candidates = | |
3438 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3439 | (exp->elts[pc + 2].symbol), | |
3440 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3441 | &candidates); |
ec6a20c2 | 3442 | make_cleanup (xfree, candidates); |
76a01679 JB |
3443 | |
3444 | if (n_candidates > 1) | |
3445 | { | |
3446 | /* Types tend to get re-introduced locally, so if there | |
3447 | are any local symbols that are not types, first filter | |
3448 | out all types. */ | |
3449 | int j; | |
3450 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3451 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3452 | { |
3453 | case LOC_REGISTER: | |
3454 | case LOC_ARG: | |
3455 | case LOC_REF_ARG: | |
76a01679 JB |
3456 | case LOC_REGPARM_ADDR: |
3457 | case LOC_LOCAL: | |
76a01679 | 3458 | case LOC_COMPUTED: |
76a01679 JB |
3459 | goto FoundNonType; |
3460 | default: | |
3461 | break; | |
3462 | } | |
3463 | FoundNonType: | |
3464 | if (j < n_candidates) | |
3465 | { | |
3466 | j = 0; | |
3467 | while (j < n_candidates) | |
3468 | { | |
d12307c1 | 3469 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3470 | { |
3471 | candidates[j] = candidates[n_candidates - 1]; | |
3472 | n_candidates -= 1; | |
3473 | } | |
3474 | else | |
3475 | j += 1; | |
3476 | } | |
3477 | } | |
3478 | } | |
3479 | ||
3480 | if (n_candidates == 0) | |
323e0a4a | 3481 | error (_("No definition found for %s"), |
76a01679 JB |
3482 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3483 | else if (n_candidates == 1) | |
3484 | i = 0; | |
3485 | else if (deprocedure_p | |
3486 | && !is_nonfunction (candidates, n_candidates)) | |
3487 | { | |
06d5cf63 JB |
3488 | i = ada_resolve_function |
3489 | (candidates, n_candidates, NULL, 0, | |
3490 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3491 | context_type); | |
76a01679 | 3492 | if (i < 0) |
323e0a4a | 3493 | error (_("Could not find a match for %s"), |
76a01679 JB |
3494 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3495 | } | |
3496 | else | |
3497 | { | |
323e0a4a | 3498 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3499 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3500 | user_select_syms (candidates, n_candidates, 1); | |
3501 | i = 0; | |
3502 | } | |
3503 | ||
3504 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3505 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
aee1fcdf | 3506 | innermost_block.update (candidates[i]); |
76a01679 JB |
3507 | } |
3508 | ||
3509 | if (deprocedure_p | |
3510 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3511 | == TYPE_CODE_FUNC)) | |
3512 | { | |
3513 | replace_operator_with_call (expp, pc, 0, 0, | |
3514 | exp->elts[pc + 2].symbol, | |
3515 | exp->elts[pc + 1].block); | |
e9d9f57e | 3516 | exp = expp->get (); |
76a01679 | 3517 | } |
14f9c5c9 AS |
3518 | break; |
3519 | ||
3520 | case OP_FUNCALL: | |
3521 | { | |
4c4b4cd2 | 3522 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3523 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3524 | { |
d12307c1 | 3525 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3526 | int n_candidates; |
3527 | ||
3528 | n_candidates = | |
76a01679 JB |
3529 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3530 | (exp->elts[pc + 5].symbol), | |
3531 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3532 | &candidates); |
ec6a20c2 JB |
3533 | make_cleanup (xfree, candidates); |
3534 | ||
4c4b4cd2 PH |
3535 | if (n_candidates == 1) |
3536 | i = 0; | |
3537 | else | |
3538 | { | |
06d5cf63 JB |
3539 | i = ada_resolve_function |
3540 | (candidates, n_candidates, | |
3541 | argvec, nargs, | |
3542 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3543 | context_type); | |
4c4b4cd2 | 3544 | if (i < 0) |
323e0a4a | 3545 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3546 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3547 | } | |
3548 | ||
3549 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3550 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
aee1fcdf | 3551 | innermost_block.update (candidates[i]); |
4c4b4cd2 | 3552 | } |
14f9c5c9 AS |
3553 | } |
3554 | break; | |
3555 | case BINOP_ADD: | |
3556 | case BINOP_SUB: | |
3557 | case BINOP_MUL: | |
3558 | case BINOP_DIV: | |
3559 | case BINOP_REM: | |
3560 | case BINOP_MOD: | |
3561 | case BINOP_CONCAT: | |
3562 | case BINOP_BITWISE_AND: | |
3563 | case BINOP_BITWISE_IOR: | |
3564 | case BINOP_BITWISE_XOR: | |
3565 | case BINOP_EQUAL: | |
3566 | case BINOP_NOTEQUAL: | |
3567 | case BINOP_LESS: | |
3568 | case BINOP_GTR: | |
3569 | case BINOP_LEQ: | |
3570 | case BINOP_GEQ: | |
3571 | case BINOP_EXP: | |
3572 | case UNOP_NEG: | |
3573 | case UNOP_PLUS: | |
3574 | case UNOP_LOGICAL_NOT: | |
3575 | case UNOP_ABS: | |
3576 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3577 | { |
d12307c1 | 3578 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3579 | int n_candidates; |
3580 | ||
3581 | n_candidates = | |
b5ec771e | 3582 | ada_lookup_symbol_list (ada_decoded_op_name (op), |
4c4b4cd2 | 3583 | (struct block *) NULL, VAR_DOMAIN, |
4eeaa230 | 3584 | &candidates); |
ec6a20c2 JB |
3585 | make_cleanup (xfree, candidates); |
3586 | ||
4c4b4cd2 | 3587 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3588 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3589 | if (i < 0) |
3590 | break; | |
3591 | ||
d12307c1 PMR |
3592 | replace_operator_with_call (expp, pc, nargs, 1, |
3593 | candidates[i].symbol, | |
3594 | candidates[i].block); | |
e9d9f57e | 3595 | exp = expp->get (); |
4c4b4cd2 | 3596 | } |
14f9c5c9 | 3597 | break; |
4c4b4cd2 PH |
3598 | |
3599 | case OP_TYPE: | |
b3dbf008 | 3600 | case OP_REGISTER: |
ec6a20c2 | 3601 | do_cleanups (old_chain); |
4c4b4cd2 | 3602 | return NULL; |
14f9c5c9 AS |
3603 | } |
3604 | ||
3605 | *pos = pc; | |
ec6a20c2 | 3606 | do_cleanups (old_chain); |
ced9779b JB |
3607 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) |
3608 | return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS, | |
3609 | exp->elts[pc + 1].objfile, | |
3610 | exp->elts[pc + 2].msymbol); | |
3611 | else | |
3612 | return evaluate_subexp_type (exp, pos); | |
14f9c5c9 AS |
3613 | } |
3614 | ||
3615 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3616 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3617 | a non-pointer. */ |
14f9c5c9 | 3618 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3619 | liberal. */ |
14f9c5c9 AS |
3620 | |
3621 | static int | |
4dc81987 | 3622 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3623 | { |
61ee279c PH |
3624 | ftype = ada_check_typedef (ftype); |
3625 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3626 | |
3627 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3628 | ftype = TYPE_TARGET_TYPE (ftype); | |
3629 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3630 | atype = TYPE_TARGET_TYPE (atype); | |
3631 | ||
d2e4a39e | 3632 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3633 | { |
3634 | default: | |
5b3d5b7d | 3635 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3636 | case TYPE_CODE_PTR: |
3637 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3638 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3639 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3640 | else |
1265e4aa JB |
3641 | return (may_deref |
3642 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3643 | case TYPE_CODE_INT: |
3644 | case TYPE_CODE_ENUM: | |
3645 | case TYPE_CODE_RANGE: | |
3646 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3647 | { |
3648 | case TYPE_CODE_INT: | |
3649 | case TYPE_CODE_ENUM: | |
3650 | case TYPE_CODE_RANGE: | |
3651 | return 1; | |
3652 | default: | |
3653 | return 0; | |
3654 | } | |
14f9c5c9 AS |
3655 | |
3656 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3657 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3658 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3659 | |
3660 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3661 | if (ada_is_array_descriptor_type (ftype)) |
3662 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3663 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3664 | else |
4c4b4cd2 PH |
3665 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3666 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3667 | |
3668 | case TYPE_CODE_UNION: | |
3669 | case TYPE_CODE_FLT: | |
3670 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3671 | } | |
3672 | } | |
3673 | ||
3674 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3675 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3676 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3677 | argument function. */ |
14f9c5c9 AS |
3678 | |
3679 | static int | |
d2e4a39e | 3680 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3681 | { |
3682 | int i; | |
d2e4a39e | 3683 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3684 | |
1265e4aa JB |
3685 | if (SYMBOL_CLASS (func) == LOC_CONST |
3686 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3687 | return (n_actuals == 0); |
3688 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3689 | return 0; | |
3690 | ||
3691 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3692 | return 0; | |
3693 | ||
3694 | for (i = 0; i < n_actuals; i += 1) | |
3695 | { | |
4c4b4cd2 | 3696 | if (actuals[i] == NULL) |
76a01679 JB |
3697 | return 0; |
3698 | else | |
3699 | { | |
5b4ee69b MS |
3700 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3701 | i)); | |
df407dfe | 3702 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3703 | |
76a01679 JB |
3704 | if (!ada_type_match (ftype, atype, 1)) |
3705 | return 0; | |
3706 | } | |
14f9c5c9 AS |
3707 | } |
3708 | return 1; | |
3709 | } | |
3710 | ||
3711 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3712 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3713 | FUNC_TYPE is not a valid function type with a non-null return type | |
3714 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3715 | ||
3716 | static int | |
d2e4a39e | 3717 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3718 | { |
d2e4a39e | 3719 | struct type *return_type; |
14f9c5c9 AS |
3720 | |
3721 | if (func_type == NULL) | |
3722 | return 1; | |
3723 | ||
4c4b4cd2 | 3724 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3725 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3726 | else |
18af8284 | 3727 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3728 | if (return_type == NULL) |
3729 | return 1; | |
3730 | ||
18af8284 | 3731 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3732 | |
3733 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3734 | return context_type == NULL || return_type == context_type; | |
3735 | else if (context_type == NULL) | |
3736 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3737 | else | |
3738 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3739 | } | |
3740 | ||
3741 | ||
4c4b4cd2 | 3742 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3743 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3744 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3745 | that returns that type, then eliminate matches that don't. If | |
3746 | CONTEXT_TYPE is void and there is at least one match that does not | |
3747 | return void, eliminate all matches that do. | |
3748 | ||
14f9c5c9 AS |
3749 | Asks the user if there is more than one match remaining. Returns -1 |
3750 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3751 | solely for messages. May re-arrange and modify SYMS in |
3752 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3753 | |
4c4b4cd2 | 3754 | static int |
d12307c1 | 3755 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3756 | int nsyms, struct value **args, int nargs, |
3757 | const char *name, struct type *context_type) | |
14f9c5c9 | 3758 | { |
30b15541 | 3759 | int fallback; |
14f9c5c9 | 3760 | int k; |
4c4b4cd2 | 3761 | int m; /* Number of hits */ |
14f9c5c9 | 3762 | |
d2e4a39e | 3763 | m = 0; |
30b15541 UW |
3764 | /* In the first pass of the loop, we only accept functions matching |
3765 | context_type. If none are found, we add a second pass of the loop | |
3766 | where every function is accepted. */ | |
3767 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3768 | { |
3769 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3770 | { |
d12307c1 | 3771 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3772 | |
d12307c1 | 3773 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3774 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3775 | { |
3776 | syms[m] = syms[k]; | |
3777 | m += 1; | |
3778 | } | |
3779 | } | |
14f9c5c9 AS |
3780 | } |
3781 | ||
dc5c8746 PMR |
3782 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3783 | interactive thing during completion, though, as the purpose of the | |
3784 | completion is providing a list of all possible matches. Prompting the | |
3785 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3786 | if (m == 0) |
3787 | return -1; | |
dc5c8746 | 3788 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3789 | { |
323e0a4a | 3790 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3791 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3792 | return 0; |
3793 | } | |
3794 | return 0; | |
3795 | } | |
3796 | ||
4c4b4cd2 PH |
3797 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3798 | in a listing of choices during disambiguation (see sort_choices, below). | |
3799 | The idea is that overloadings of a subprogram name from the | |
3800 | same package should sort in their source order. We settle for ordering | |
3801 | such symbols by their trailing number (__N or $N). */ | |
3802 | ||
14f9c5c9 | 3803 | static int |
0d5cff50 | 3804 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3805 | { |
3806 | if (N1 == NULL) | |
3807 | return 0; | |
3808 | else if (N0 == NULL) | |
3809 | return 1; | |
3810 | else | |
3811 | { | |
3812 | int k0, k1; | |
5b4ee69b | 3813 | |
d2e4a39e | 3814 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3815 | ; |
d2e4a39e | 3816 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3817 | ; |
d2e4a39e | 3818 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3819 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3820 | { | |
3821 | int n0, n1; | |
5b4ee69b | 3822 | |
4c4b4cd2 PH |
3823 | n0 = k0; |
3824 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3825 | n0 -= 1; | |
3826 | n1 = k1; | |
3827 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3828 | n1 -= 1; | |
3829 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3830 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3831 | } | |
14f9c5c9 AS |
3832 | return (strcmp (N0, N1) < 0); |
3833 | } | |
3834 | } | |
d2e4a39e | 3835 | |
4c4b4cd2 PH |
3836 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3837 | encoded names. */ | |
3838 | ||
d2e4a39e | 3839 | static void |
d12307c1 | 3840 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3841 | { |
4c4b4cd2 | 3842 | int i; |
5b4ee69b | 3843 | |
d2e4a39e | 3844 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3845 | { |
d12307c1 | 3846 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3847 | int j; |
3848 | ||
d2e4a39e | 3849 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3850 | { |
d12307c1 PMR |
3851 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3852 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3853 | break; |
3854 | syms[j + 1] = syms[j]; | |
3855 | } | |
d2e4a39e | 3856 | syms[j + 1] = sym; |
14f9c5c9 AS |
3857 | } |
3858 | } | |
3859 | ||
d72413e6 PMR |
3860 | /* Whether GDB should display formals and return types for functions in the |
3861 | overloads selection menu. */ | |
3862 | static int print_signatures = 1; | |
3863 | ||
3864 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3865 | all but functions, the signature is just the name of the symbol. For | |
3866 | functions, this is the name of the function, the list of types for formals | |
3867 | and the return type (if any). */ | |
3868 | ||
3869 | static void | |
3870 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3871 | const struct type_print_options *flags) | |
3872 | { | |
3873 | struct type *type = SYMBOL_TYPE (sym); | |
3874 | ||
3875 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3876 | if (!print_signatures | |
3877 | || type == NULL | |
3878 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3879 | return; | |
3880 | ||
3881 | if (TYPE_NFIELDS (type) > 0) | |
3882 | { | |
3883 | int i; | |
3884 | ||
3885 | fprintf_filtered (stream, " ("); | |
3886 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3887 | { | |
3888 | if (i > 0) | |
3889 | fprintf_filtered (stream, "; "); | |
3890 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3891 | flags); | |
3892 | } | |
3893 | fprintf_filtered (stream, ")"); | |
3894 | } | |
3895 | if (TYPE_TARGET_TYPE (type) != NULL | |
3896 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3897 | { | |
3898 | fprintf_filtered (stream, " return "); | |
3899 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3900 | } | |
3901 | } | |
3902 | ||
4c4b4cd2 PH |
3903 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3904 | by asking the user (if necessary), returning the number selected, | |
3905 | and setting the first elements of SYMS items. Error if no symbols | |
3906 | selected. */ | |
14f9c5c9 AS |
3907 | |
3908 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3909 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3910 | |
3911 | int | |
d12307c1 | 3912 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3913 | { |
3914 | int i; | |
8d749320 | 3915 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3916 | int n_chosen; |
3917 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3918 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3919 | |
3920 | if (max_results < 1) | |
323e0a4a | 3921 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3922 | if (nsyms <= 1) |
3923 | return nsyms; | |
3924 | ||
717d2f5a JB |
3925 | if (select_mode == multiple_symbols_cancel) |
3926 | error (_("\ | |
3927 | canceled because the command is ambiguous\n\ | |
3928 | See set/show multiple-symbol.")); | |
3929 | ||
3930 | /* If select_mode is "all", then return all possible symbols. | |
3931 | Only do that if more than one symbol can be selected, of course. | |
3932 | Otherwise, display the menu as usual. */ | |
3933 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3934 | return nsyms; | |
3935 | ||
323e0a4a | 3936 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3937 | if (max_results > 1) |
323e0a4a | 3938 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3939 | |
4c4b4cd2 | 3940 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3941 | |
3942 | for (i = 0; i < nsyms; i += 1) | |
3943 | { | |
d12307c1 | 3944 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3945 | continue; |
3946 | ||
d12307c1 | 3947 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3948 | { |
76a01679 | 3949 | struct symtab_and_line sal = |
d12307c1 | 3950 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3951 | |
d72413e6 PMR |
3952 | printf_unfiltered ("[%d] ", i + first_choice); |
3953 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3954 | &type_print_raw_options); | |
323e0a4a | 3955 | if (sal.symtab == NULL) |
d72413e6 | 3956 | printf_unfiltered (_(" at <no source file available>:%d\n"), |
323e0a4a AC |
3957 | sal.line); |
3958 | else | |
d72413e6 | 3959 | printf_unfiltered (_(" at %s:%d\n"), |
05cba821 JK |
3960 | symtab_to_filename_for_display (sal.symtab), |
3961 | sal.line); | |
4c4b4cd2 PH |
3962 | continue; |
3963 | } | |
d2e4a39e | 3964 | else |
4c4b4cd2 PH |
3965 | { |
3966 | int is_enumeral = | |
d12307c1 PMR |
3967 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3968 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3969 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3970 | struct symtab *symtab = NULL; |
3971 | ||
d12307c1 PMR |
3972 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3973 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3974 | |
d12307c1 | 3975 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 PMR |
3976 | { |
3977 | printf_unfiltered ("[%d] ", i + first_choice); | |
3978 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3979 | &type_print_raw_options); | |
3980 | printf_unfiltered (_(" at %s:%d\n"), | |
3981 | symtab_to_filename_for_display (symtab), | |
3982 | SYMBOL_LINE (syms[i].symbol)); | |
3983 | } | |
76a01679 | 3984 | else if (is_enumeral |
d12307c1 | 3985 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3986 | { |
a3f17187 | 3987 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3988 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3989 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3990 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3991 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3992 | } |
d72413e6 PMR |
3993 | else |
3994 | { | |
3995 | printf_unfiltered ("[%d] ", i + first_choice); | |
3996 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3997 | &type_print_raw_options); | |
3998 | ||
3999 | if (symtab != NULL) | |
4000 | printf_unfiltered (is_enumeral | |
4001 | ? _(" in %s (enumeral)\n") | |
4002 | : _(" at %s:?\n"), | |
4003 | symtab_to_filename_for_display (symtab)); | |
4004 | else | |
4005 | printf_unfiltered (is_enumeral | |
4006 | ? _(" (enumeral)\n") | |
4007 | : _(" at ?\n")); | |
4008 | } | |
4c4b4cd2 | 4009 | } |
14f9c5c9 | 4010 | } |
d2e4a39e | 4011 | |
14f9c5c9 | 4012 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 4013 | "overload-choice"); |
14f9c5c9 AS |
4014 | |
4015 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 4016 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
4017 | |
4018 | return n_chosen; | |
4019 | } | |
4020 | ||
4021 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 4022 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4023 | order in CHOICES[0 .. N-1], and return N. |
4024 | ||
4025 | The user types choices as a sequence of numbers on one line | |
4026 | separated by blanks, encoding them as follows: | |
4027 | ||
4c4b4cd2 | 4028 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4029 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4030 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4031 | ||
4c4b4cd2 | 4032 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4033 | |
4034 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4035 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4036 | |
4037 | int | |
d2e4a39e | 4038 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4039 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4040 | { |
d2e4a39e | 4041 | char *args; |
a121b7c1 | 4042 | const char *prompt; |
14f9c5c9 AS |
4043 | int n_chosen; |
4044 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4045 | |
14f9c5c9 AS |
4046 | prompt = getenv ("PS2"); |
4047 | if (prompt == NULL) | |
0bcd0149 | 4048 | prompt = "> "; |
14f9c5c9 | 4049 | |
0bcd0149 | 4050 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 4051 | |
14f9c5c9 | 4052 | if (args == NULL) |
323e0a4a | 4053 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4054 | |
4055 | n_chosen = 0; | |
76a01679 | 4056 | |
4c4b4cd2 PH |
4057 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4058 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4059 | while (1) |
4060 | { | |
d2e4a39e | 4061 | char *args2; |
14f9c5c9 AS |
4062 | int choice, j; |
4063 | ||
0fcd72ba | 4064 | args = skip_spaces (args); |
14f9c5c9 | 4065 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4066 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4067 | else if (*args == '\0') |
4c4b4cd2 | 4068 | break; |
14f9c5c9 AS |
4069 | |
4070 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4071 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4072 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4073 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4074 | args = args2; |
4075 | ||
d2e4a39e | 4076 | if (choice == 0) |
323e0a4a | 4077 | error (_("cancelled")); |
14f9c5c9 AS |
4078 | |
4079 | if (choice < first_choice) | |
4c4b4cd2 PH |
4080 | { |
4081 | n_chosen = n_choices; | |
4082 | for (j = 0; j < n_choices; j += 1) | |
4083 | choices[j] = j; | |
4084 | break; | |
4085 | } | |
14f9c5c9 AS |
4086 | choice -= first_choice; |
4087 | ||
d2e4a39e | 4088 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4089 | { |
4090 | } | |
14f9c5c9 AS |
4091 | |
4092 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4093 | { |
4094 | int k; | |
5b4ee69b | 4095 | |
4c4b4cd2 PH |
4096 | for (k = n_chosen - 1; k > j; k -= 1) |
4097 | choices[k + 1] = choices[k]; | |
4098 | choices[j + 1] = choice; | |
4099 | n_chosen += 1; | |
4100 | } | |
14f9c5c9 AS |
4101 | } |
4102 | ||
4103 | if (n_chosen > max_results) | |
323e0a4a | 4104 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4105 | |
14f9c5c9 AS |
4106 | return n_chosen; |
4107 | } | |
4108 | ||
4c4b4cd2 PH |
4109 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4110 | on the function identified by SYM and BLOCK, and taking NARGS | |
4111 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4112 | |
4113 | static void | |
e9d9f57e | 4114 | replace_operator_with_call (expression_up *expp, int pc, int nargs, |
4c4b4cd2 | 4115 | int oplen, struct symbol *sym, |
270140bd | 4116 | const struct block *block) |
14f9c5c9 AS |
4117 | { |
4118 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4119 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4120 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4121 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4122 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
e9d9f57e | 4123 | struct expression *exp = expp->get (); |
14f9c5c9 AS |
4124 | |
4125 | newexp->nelts = exp->nelts + 7 - oplen; | |
4126 | newexp->language_defn = exp->language_defn; | |
3489610d | 4127 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4128 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4129 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4130 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4131 | |
4132 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4133 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4134 | ||
4135 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4136 | newexp->elts[pc + 4].block = block; | |
4137 | newexp->elts[pc + 5].symbol = sym; | |
4138 | ||
e9d9f57e | 4139 | expp->reset (newexp); |
d2e4a39e | 4140 | } |
14f9c5c9 AS |
4141 | |
4142 | /* Type-class predicates */ | |
4143 | ||
4c4b4cd2 PH |
4144 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4145 | or FLOAT). */ | |
14f9c5c9 AS |
4146 | |
4147 | static int | |
d2e4a39e | 4148 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4149 | { |
4150 | if (type == NULL) | |
4151 | return 0; | |
d2e4a39e AS |
4152 | else |
4153 | { | |
4154 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4155 | { |
4156 | case TYPE_CODE_INT: | |
4157 | case TYPE_CODE_FLT: | |
4158 | return 1; | |
4159 | case TYPE_CODE_RANGE: | |
4160 | return (type == TYPE_TARGET_TYPE (type) | |
4161 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4162 | default: | |
4163 | return 0; | |
4164 | } | |
d2e4a39e | 4165 | } |
14f9c5c9 AS |
4166 | } |
4167 | ||
4c4b4cd2 | 4168 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4169 | |
4170 | static int | |
d2e4a39e | 4171 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4172 | { |
4173 | if (type == NULL) | |
4174 | return 0; | |
d2e4a39e AS |
4175 | else |
4176 | { | |
4177 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4178 | { |
4179 | case TYPE_CODE_INT: | |
4180 | return 1; | |
4181 | case TYPE_CODE_RANGE: | |
4182 | return (type == TYPE_TARGET_TYPE (type) | |
4183 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4184 | default: | |
4185 | return 0; | |
4186 | } | |
d2e4a39e | 4187 | } |
14f9c5c9 AS |
4188 | } |
4189 | ||
4c4b4cd2 | 4190 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4191 | |
4192 | static int | |
d2e4a39e | 4193 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4194 | { |
4195 | if (type == NULL) | |
4196 | return 0; | |
d2e4a39e AS |
4197 | else |
4198 | { | |
4199 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4200 | { |
4201 | case TYPE_CODE_INT: | |
4202 | case TYPE_CODE_RANGE: | |
4203 | case TYPE_CODE_ENUM: | |
4204 | case TYPE_CODE_FLT: | |
4205 | return 1; | |
4206 | default: | |
4207 | return 0; | |
4208 | } | |
d2e4a39e | 4209 | } |
14f9c5c9 AS |
4210 | } |
4211 | ||
4c4b4cd2 | 4212 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4213 | |
4214 | static int | |
d2e4a39e | 4215 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4216 | { |
4217 | if (type == NULL) | |
4218 | return 0; | |
d2e4a39e AS |
4219 | else |
4220 | { | |
4221 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4222 | { |
4223 | case TYPE_CODE_INT: | |
4224 | case TYPE_CODE_RANGE: | |
4225 | case TYPE_CODE_ENUM: | |
872f0337 | 4226 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4227 | return 1; |
4228 | default: | |
4229 | return 0; | |
4230 | } | |
d2e4a39e | 4231 | } |
14f9c5c9 AS |
4232 | } |
4233 | ||
4c4b4cd2 PH |
4234 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4235 | a user-defined function. Errs on the side of pre-defined operators | |
4236 | (i.e., result 0). */ | |
14f9c5c9 AS |
4237 | |
4238 | static int | |
d2e4a39e | 4239 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4240 | { |
76a01679 | 4241 | struct type *type0 = |
df407dfe | 4242 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4243 | struct type *type1 = |
df407dfe | 4244 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4245 | |
4c4b4cd2 PH |
4246 | if (type0 == NULL) |
4247 | return 0; | |
4248 | ||
14f9c5c9 AS |
4249 | switch (op) |
4250 | { | |
4251 | default: | |
4252 | return 0; | |
4253 | ||
4254 | case BINOP_ADD: | |
4255 | case BINOP_SUB: | |
4256 | case BINOP_MUL: | |
4257 | case BINOP_DIV: | |
d2e4a39e | 4258 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4259 | |
4260 | case BINOP_REM: | |
4261 | case BINOP_MOD: | |
4262 | case BINOP_BITWISE_AND: | |
4263 | case BINOP_BITWISE_IOR: | |
4264 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4265 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4266 | |
4267 | case BINOP_EQUAL: | |
4268 | case BINOP_NOTEQUAL: | |
4269 | case BINOP_LESS: | |
4270 | case BINOP_GTR: | |
4271 | case BINOP_LEQ: | |
4272 | case BINOP_GEQ: | |
d2e4a39e | 4273 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4274 | |
4275 | case BINOP_CONCAT: | |
ee90b9ab | 4276 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4277 | |
4278 | case BINOP_EXP: | |
d2e4a39e | 4279 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4280 | |
4281 | case UNOP_NEG: | |
4282 | case UNOP_PLUS: | |
4283 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4284 | case UNOP_ABS: |
4285 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4286 | |
4287 | } | |
4288 | } | |
4289 | \f | |
4c4b4cd2 | 4290 | /* Renaming */ |
14f9c5c9 | 4291 | |
aeb5907d JB |
4292 | /* NOTES: |
4293 | ||
4294 | 1. In the following, we assume that a renaming type's name may | |
4295 | have an ___XD suffix. It would be nice if this went away at some | |
4296 | point. | |
4297 | 2. We handle both the (old) purely type-based representation of | |
4298 | renamings and the (new) variable-based encoding. At some point, | |
4299 | it is devoutly to be hoped that the former goes away | |
4300 | (FIXME: hilfinger-2007-07-09). | |
4301 | 3. Subprogram renamings are not implemented, although the XRS | |
4302 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4303 | ||
4304 | /* If SYM encodes a renaming, | |
4305 | ||
4306 | <renaming> renames <renamed entity>, | |
4307 | ||
4308 | sets *LEN to the length of the renamed entity's name, | |
4309 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4310 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4311 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4312 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4313 | are undefined). Otherwise, returns a value indicating the category | |
4314 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4315 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4316 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4317 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4318 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4319 | may be NULL, in which case they are not assigned. | |
4320 | ||
4321 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4322 | ||
4323 | enum ada_renaming_category | |
4324 | ada_parse_renaming (struct symbol *sym, | |
4325 | const char **renamed_entity, int *len, | |
4326 | const char **renaming_expr) | |
4327 | { | |
4328 | enum ada_renaming_category kind; | |
4329 | const char *info; | |
4330 | const char *suffix; | |
4331 | ||
4332 | if (sym == NULL) | |
4333 | return ADA_NOT_RENAMING; | |
4334 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4335 | { |
aeb5907d JB |
4336 | default: |
4337 | return ADA_NOT_RENAMING; | |
4338 | case LOC_TYPEDEF: | |
4339 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4340 | renamed_entity, len, renaming_expr); | |
4341 | case LOC_LOCAL: | |
4342 | case LOC_STATIC: | |
4343 | case LOC_COMPUTED: | |
4344 | case LOC_OPTIMIZED_OUT: | |
4345 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4346 | if (info == NULL) | |
4347 | return ADA_NOT_RENAMING; | |
4348 | switch (info[5]) | |
4349 | { | |
4350 | case '_': | |
4351 | kind = ADA_OBJECT_RENAMING; | |
4352 | info += 6; | |
4353 | break; | |
4354 | case 'E': | |
4355 | kind = ADA_EXCEPTION_RENAMING; | |
4356 | info += 7; | |
4357 | break; | |
4358 | case 'P': | |
4359 | kind = ADA_PACKAGE_RENAMING; | |
4360 | info += 7; | |
4361 | break; | |
4362 | case 'S': | |
4363 | kind = ADA_SUBPROGRAM_RENAMING; | |
4364 | info += 7; | |
4365 | break; | |
4366 | default: | |
4367 | return ADA_NOT_RENAMING; | |
4368 | } | |
14f9c5c9 | 4369 | } |
4c4b4cd2 | 4370 | |
aeb5907d JB |
4371 | if (renamed_entity != NULL) |
4372 | *renamed_entity = info; | |
4373 | suffix = strstr (info, "___XE"); | |
4374 | if (suffix == NULL || suffix == info) | |
4375 | return ADA_NOT_RENAMING; | |
4376 | if (len != NULL) | |
4377 | *len = strlen (info) - strlen (suffix); | |
4378 | suffix += 5; | |
4379 | if (renaming_expr != NULL) | |
4380 | *renaming_expr = suffix; | |
4381 | return kind; | |
4382 | } | |
4383 | ||
4384 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4385 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4386 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4387 | ADA_NOT_RENAMING otherwise. */ | |
4388 | static enum ada_renaming_category | |
4389 | parse_old_style_renaming (struct type *type, | |
4390 | const char **renamed_entity, int *len, | |
4391 | const char **renaming_expr) | |
4392 | { | |
4393 | enum ada_renaming_category kind; | |
4394 | const char *name; | |
4395 | const char *info; | |
4396 | const char *suffix; | |
14f9c5c9 | 4397 | |
aeb5907d JB |
4398 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4399 | || TYPE_NFIELDS (type) != 1) | |
4400 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4401 | |
aeb5907d JB |
4402 | name = type_name_no_tag (type); |
4403 | if (name == NULL) | |
4404 | return ADA_NOT_RENAMING; | |
4405 | ||
4406 | name = strstr (name, "___XR"); | |
4407 | if (name == NULL) | |
4408 | return ADA_NOT_RENAMING; | |
4409 | switch (name[5]) | |
4410 | { | |
4411 | case '\0': | |
4412 | case '_': | |
4413 | kind = ADA_OBJECT_RENAMING; | |
4414 | break; | |
4415 | case 'E': | |
4416 | kind = ADA_EXCEPTION_RENAMING; | |
4417 | break; | |
4418 | case 'P': | |
4419 | kind = ADA_PACKAGE_RENAMING; | |
4420 | break; | |
4421 | case 'S': | |
4422 | kind = ADA_SUBPROGRAM_RENAMING; | |
4423 | break; | |
4424 | default: | |
4425 | return ADA_NOT_RENAMING; | |
4426 | } | |
14f9c5c9 | 4427 | |
aeb5907d JB |
4428 | info = TYPE_FIELD_NAME (type, 0); |
4429 | if (info == NULL) | |
4430 | return ADA_NOT_RENAMING; | |
4431 | if (renamed_entity != NULL) | |
4432 | *renamed_entity = info; | |
4433 | suffix = strstr (info, "___XE"); | |
4434 | if (renaming_expr != NULL) | |
4435 | *renaming_expr = suffix + 5; | |
4436 | if (suffix == NULL || suffix == info) | |
4437 | return ADA_NOT_RENAMING; | |
4438 | if (len != NULL) | |
4439 | *len = suffix - info; | |
4440 | return kind; | |
a5ee536b JB |
4441 | } |
4442 | ||
4443 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4444 | be a symbol encoding a renaming expression. BLOCK is the block | |
4445 | used to evaluate the renaming. */ | |
52ce6436 | 4446 | |
a5ee536b JB |
4447 | static struct value * |
4448 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4449 | const struct block *block) |
a5ee536b | 4450 | { |
bbc13ae3 | 4451 | const char *sym_name; |
a5ee536b | 4452 | |
bbc13ae3 | 4453 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4454 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4455 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4456 | } |
14f9c5c9 | 4457 | \f |
d2e4a39e | 4458 | |
4c4b4cd2 | 4459 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4460 | |
4c4b4cd2 | 4461 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4462 | lvalues, and otherwise has the side-effect of allocating memory |
4463 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4464 | |
d2e4a39e | 4465 | static struct value * |
40bc484c | 4466 | ensure_lval (struct value *val) |
14f9c5c9 | 4467 | { |
40bc484c JB |
4468 | if (VALUE_LVAL (val) == not_lval |
4469 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4470 | { |
df407dfe | 4471 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4472 | const CORE_ADDR addr = |
4473 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4474 | |
a84a8a0d | 4475 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4476 | set_value_address (val, addr); |
40bc484c | 4477 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4478 | } |
14f9c5c9 AS |
4479 | |
4480 | return val; | |
4481 | } | |
4482 | ||
4483 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4484 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4485 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4486 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4487 | |
a93c0eb6 | 4488 | struct value * |
40bc484c | 4489 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4490 | { |
df407dfe | 4491 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4492 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4493 | struct type *formal_target = |
4494 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4495 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4496 | struct type *actual_target = |
4497 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4498 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4499 | |
4c4b4cd2 | 4500 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4501 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4502 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4503 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4504 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4505 | { |
a84a8a0d | 4506 | struct value *result; |
5b4ee69b | 4507 | |
14f9c5c9 | 4508 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4509 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4510 | result = desc_data (actual); |
cb923fcc | 4511 | else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4512 | { |
4513 | if (VALUE_LVAL (actual) != lval_memory) | |
4514 | { | |
4515 | struct value *val; | |
5b4ee69b | 4516 | |
df407dfe | 4517 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4518 | val = allocate_value (actual_type); |
990a07ab | 4519 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4520 | (char *) value_contents (actual), |
4c4b4cd2 | 4521 | TYPE_LENGTH (actual_type)); |
40bc484c | 4522 | actual = ensure_lval (val); |
4c4b4cd2 | 4523 | } |
a84a8a0d | 4524 | result = value_addr (actual); |
4c4b4cd2 | 4525 | } |
a84a8a0d JB |
4526 | else |
4527 | return actual; | |
b1af9e97 | 4528 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4529 | } |
4530 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4531 | return ada_value_ind (actual); | |
8344af1e JB |
4532 | else if (ada_is_aligner_type (formal_type)) |
4533 | { | |
4534 | /* We need to turn this parameter into an aligner type | |
4535 | as well. */ | |
4536 | struct value *aligner = allocate_value (formal_type); | |
4537 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4538 | ||
4539 | value_assign_to_component (aligner, component, actual); | |
4540 | return aligner; | |
4541 | } | |
14f9c5c9 AS |
4542 | |
4543 | return actual; | |
4544 | } | |
4545 | ||
438c98a1 JB |
4546 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4547 | type TYPE. This is usually an inefficient no-op except on some targets | |
4548 | (such as AVR) where the representation of a pointer and an address | |
4549 | differs. */ | |
4550 | ||
4551 | static CORE_ADDR | |
4552 | value_pointer (struct value *value, struct type *type) | |
4553 | { | |
4554 | struct gdbarch *gdbarch = get_type_arch (type); | |
4555 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4556 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4557 | CORE_ADDR addr; |
4558 | ||
4559 | addr = value_address (value); | |
4560 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4561 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4562 | return addr; | |
4563 | } | |
4564 | ||
14f9c5c9 | 4565 | |
4c4b4cd2 PH |
4566 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4567 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4568 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4569 | to-descriptor type rather than a descriptor type), a struct value * |
4570 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4571 | |
d2e4a39e | 4572 | static struct value * |
40bc484c | 4573 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4574 | { |
d2e4a39e AS |
4575 | struct type *bounds_type = desc_bounds_type (type); |
4576 | struct type *desc_type = desc_base_type (type); | |
4577 | struct value *descriptor = allocate_value (desc_type); | |
4578 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4579 | int i; |
d2e4a39e | 4580 | |
0963b4bd MS |
4581 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4582 | i > 0; i -= 1) | |
14f9c5c9 | 4583 | { |
19f220c3 JK |
4584 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4585 | ada_array_bound (arr, i, 0), | |
4586 | desc_bound_bitpos (bounds_type, i, 0), | |
4587 | desc_bound_bitsize (bounds_type, i, 0)); | |
4588 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4589 | ada_array_bound (arr, i, 1), | |
4590 | desc_bound_bitpos (bounds_type, i, 1), | |
4591 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4592 | } |
d2e4a39e | 4593 | |
40bc484c | 4594 | bounds = ensure_lval (bounds); |
d2e4a39e | 4595 | |
19f220c3 JK |
4596 | modify_field (value_type (descriptor), |
4597 | value_contents_writeable (descriptor), | |
4598 | value_pointer (ensure_lval (arr), | |
4599 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4600 | fat_pntr_data_bitpos (desc_type), | |
4601 | fat_pntr_data_bitsize (desc_type)); | |
4602 | ||
4603 | modify_field (value_type (descriptor), | |
4604 | value_contents_writeable (descriptor), | |
4605 | value_pointer (bounds, | |
4606 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4607 | fat_pntr_bounds_bitpos (desc_type), | |
4608 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4609 | |
40bc484c | 4610 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4611 | |
4612 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4613 | return value_addr (descriptor); | |
4614 | else | |
4615 | return descriptor; | |
4616 | } | |
14f9c5c9 | 4617 | \f |
3d9434b5 JB |
4618 | /* Symbol Cache Module */ |
4619 | ||
3d9434b5 | 4620 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4621 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4622 | on the type of entity being printed, the cache can make it as much |
4623 | as an order of magnitude faster than without it. | |
4624 | ||
4625 | The descriptive type DWARF extension has significantly reduced | |
4626 | the need for this cache, at least when DWARF is being used. However, | |
4627 | even in this case, some expensive name-based symbol searches are still | |
4628 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4629 | ||
ee01b665 | 4630 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4631 | |
ee01b665 JB |
4632 | static void |
4633 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4634 | { | |
4635 | obstack_init (&sym_cache->cache_space); | |
4636 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4637 | } | |
3d9434b5 | 4638 | |
ee01b665 JB |
4639 | /* Free the memory used by SYM_CACHE. */ |
4640 | ||
4641 | static void | |
4642 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4643 | { |
ee01b665 JB |
4644 | obstack_free (&sym_cache->cache_space, NULL); |
4645 | xfree (sym_cache); | |
4646 | } | |
3d9434b5 | 4647 | |
ee01b665 JB |
4648 | /* Return the symbol cache associated to the given program space PSPACE. |
4649 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4650 | |
ee01b665 JB |
4651 | static struct ada_symbol_cache * |
4652 | ada_get_symbol_cache (struct program_space *pspace) | |
4653 | { | |
4654 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4655 | |
66c168ae | 4656 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4657 | { |
66c168ae JB |
4658 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4659 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4660 | } |
4661 | ||
66c168ae | 4662 | return pspace_data->sym_cache; |
ee01b665 | 4663 | } |
3d9434b5 JB |
4664 | |
4665 | /* Clear all entries from the symbol cache. */ | |
4666 | ||
4667 | static void | |
4668 | ada_clear_symbol_cache (void) | |
4669 | { | |
ee01b665 JB |
4670 | struct ada_symbol_cache *sym_cache |
4671 | = ada_get_symbol_cache (current_program_space); | |
4672 | ||
4673 | obstack_free (&sym_cache->cache_space, NULL); | |
4674 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4675 | } |
4676 | ||
fe978cb0 | 4677 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4678 | Return it if found, or NULL otherwise. */ |
4679 | ||
4680 | static struct cache_entry ** | |
fe978cb0 | 4681 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4682 | { |
ee01b665 JB |
4683 | struct ada_symbol_cache *sym_cache |
4684 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4685 | int h = msymbol_hash (name) % HASH_SIZE; |
4686 | struct cache_entry **e; | |
4687 | ||
ee01b665 | 4688 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4689 | { |
fe978cb0 | 4690 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4691 | return e; |
4692 | } | |
4693 | return NULL; | |
4694 | } | |
4695 | ||
fe978cb0 | 4696 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4697 | Return 1 if found, 0 otherwise. |
4698 | ||
4699 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4700 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4701 | |
96d887e8 | 4702 | static int |
fe978cb0 | 4703 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4704 | struct symbol **sym, const struct block **block) |
96d887e8 | 4705 | { |
fe978cb0 | 4706 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4707 | |
4708 | if (e == NULL) | |
4709 | return 0; | |
4710 | if (sym != NULL) | |
4711 | *sym = (*e)->sym; | |
4712 | if (block != NULL) | |
4713 | *block = (*e)->block; | |
4714 | return 1; | |
96d887e8 PH |
4715 | } |
4716 | ||
3d9434b5 | 4717 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4718 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4719 | |
96d887e8 | 4720 | static void |
fe978cb0 | 4721 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4722 | const struct block *block) |
96d887e8 | 4723 | { |
ee01b665 JB |
4724 | struct ada_symbol_cache *sym_cache |
4725 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4726 | int h; |
4727 | char *copy; | |
4728 | struct cache_entry *e; | |
4729 | ||
1994afbf DE |
4730 | /* Symbols for builtin types don't have a block. |
4731 | For now don't cache such symbols. */ | |
4732 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4733 | return; | |
4734 | ||
3d9434b5 JB |
4735 | /* If the symbol is a local symbol, then do not cache it, as a search |
4736 | for that symbol depends on the context. To determine whether | |
4737 | the symbol is local or not, we check the block where we found it | |
4738 | against the global and static blocks of its associated symtab. */ | |
4739 | if (sym | |
08be3fe3 | 4740 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4741 | GLOBAL_BLOCK) != block |
08be3fe3 | 4742 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4743 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4744 | return; |
4745 | ||
4746 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4747 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4748 | sizeof (*e)); | |
4749 | e->next = sym_cache->root[h]; | |
4750 | sym_cache->root[h] = e; | |
224c3ddb SM |
4751 | e->name = copy |
4752 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4753 | strcpy (copy, name); |
4754 | e->sym = sym; | |
fe978cb0 | 4755 | e->domain = domain; |
3d9434b5 | 4756 | e->block = block; |
96d887e8 | 4757 | } |
4c4b4cd2 PH |
4758 | \f |
4759 | /* Symbol Lookup */ | |
4760 | ||
b5ec771e PA |
4761 | /* Return the symbol name match type that should be used used when |
4762 | searching for all symbols matching LOOKUP_NAME. | |
c0431670 JB |
4763 | |
4764 | LOOKUP_NAME is expected to be a symbol name after transformation | |
f98b2e33 | 4765 | for Ada lookups. */ |
c0431670 | 4766 | |
b5ec771e PA |
4767 | static symbol_name_match_type |
4768 | name_match_type_from_name (const char *lookup_name) | |
c0431670 | 4769 | { |
b5ec771e PA |
4770 | return (strstr (lookup_name, "__") == NULL |
4771 | ? symbol_name_match_type::WILD | |
4772 | : symbol_name_match_type::FULL); | |
c0431670 JB |
4773 | } |
4774 | ||
4c4b4cd2 PH |
4775 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4776 | given DOMAIN, visible from lexical block BLOCK. */ | |
4777 | ||
4778 | static struct symbol * | |
4779 | standard_lookup (const char *name, const struct block *block, | |
4780 | domain_enum domain) | |
4781 | { | |
acbd605d | 4782 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4783 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4784 | |
d12307c1 PMR |
4785 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4786 | return sym.symbol; | |
2570f2b7 | 4787 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4788 | cache_symbol (name, domain, sym.symbol, sym.block); |
4789 | return sym.symbol; | |
4c4b4cd2 PH |
4790 | } |
4791 | ||
4792 | ||
4793 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4794 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4795 | since they contend in overloading in the same way. */ | |
4796 | static int | |
d12307c1 | 4797 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4798 | { |
4799 | int i; | |
4800 | ||
4801 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4802 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4803 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4804 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4805 | return 1; |
4806 | ||
4807 | return 0; | |
4808 | } | |
4809 | ||
4810 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4811 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4812 | |
4813 | static int | |
d2e4a39e | 4814 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4815 | { |
d2e4a39e | 4816 | if (type0 == type1) |
14f9c5c9 | 4817 | return 1; |
d2e4a39e | 4818 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4819 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4820 | return 0; | |
d2e4a39e | 4821 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4822 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4823 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4824 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4825 | return 1; |
d2e4a39e | 4826 | |
14f9c5c9 AS |
4827 | return 0; |
4828 | } | |
4829 | ||
4830 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4831 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4832 | |
4833 | static int | |
d2e4a39e | 4834 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4835 | { |
4836 | if (sym0 == sym1) | |
4837 | return 1; | |
176620f1 | 4838 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4839 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4840 | return 0; | |
4841 | ||
d2e4a39e | 4842 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4843 | { |
4844 | case LOC_UNDEF: | |
4845 | return 1; | |
4846 | case LOC_TYPEDEF: | |
4847 | { | |
4c4b4cd2 PH |
4848 | struct type *type0 = SYMBOL_TYPE (sym0); |
4849 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4850 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4851 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4852 | int len0 = strlen (name0); |
5b4ee69b | 4853 | |
4c4b4cd2 PH |
4854 | return |
4855 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4856 | && (equiv_types (type0, type1) | |
4857 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4858 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4859 | } |
4860 | case LOC_CONST: | |
4861 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4862 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4863 | default: |
4864 | return 0; | |
14f9c5c9 AS |
4865 | } |
4866 | } | |
4867 | ||
d12307c1 | 4868 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4869 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4870 | |
4871 | static void | |
76a01679 JB |
4872 | add_defn_to_vec (struct obstack *obstackp, |
4873 | struct symbol *sym, | |
f0c5f9b2 | 4874 | const struct block *block) |
14f9c5c9 AS |
4875 | { |
4876 | int i; | |
d12307c1 | 4877 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4878 | |
529cad9c PH |
4879 | /* Do not try to complete stub types, as the debugger is probably |
4880 | already scanning all symbols matching a certain name at the | |
4881 | time when this function is called. Trying to replace the stub | |
4882 | type by its associated full type will cause us to restart a scan | |
4883 | which may lead to an infinite recursion. Instead, the client | |
4884 | collecting the matching symbols will end up collecting several | |
4885 | matches, with at least one of them complete. It can then filter | |
4886 | out the stub ones if needed. */ | |
4887 | ||
4c4b4cd2 PH |
4888 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4889 | { | |
d12307c1 | 4890 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4891 | return; |
d12307c1 | 4892 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4893 | { |
d12307c1 | 4894 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4895 | prevDefns[i].block = block; |
4c4b4cd2 | 4896 | return; |
76a01679 | 4897 | } |
4c4b4cd2 PH |
4898 | } |
4899 | ||
4900 | { | |
d12307c1 | 4901 | struct block_symbol info; |
4c4b4cd2 | 4902 | |
d12307c1 | 4903 | info.symbol = sym; |
4c4b4cd2 | 4904 | info.block = block; |
d12307c1 | 4905 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4906 | } |
4907 | } | |
4908 | ||
d12307c1 PMR |
4909 | /* Number of block_symbol structures currently collected in current vector in |
4910 | OBSTACKP. */ | |
4c4b4cd2 | 4911 | |
76a01679 JB |
4912 | static int |
4913 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4914 | { |
d12307c1 | 4915 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4916 | } |
4917 | ||
d12307c1 PMR |
4918 | /* Vector of block_symbol structures currently collected in current vector in |
4919 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4920 | |
d12307c1 | 4921 | static struct block_symbol * |
4c4b4cd2 PH |
4922 | defns_collected (struct obstack *obstackp, int finish) |
4923 | { | |
4924 | if (finish) | |
224c3ddb | 4925 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4926 | else |
d12307c1 | 4927 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4928 | } |
4929 | ||
7c7b6655 TT |
4930 | /* Return a bound minimal symbol matching NAME according to Ada |
4931 | decoding rules. Returns an invalid symbol if there is no such | |
4932 | minimal symbol. Names prefixed with "standard__" are handled | |
4933 | specially: "standard__" is first stripped off, and only static and | |
4934 | global symbols are searched. */ | |
4c4b4cd2 | 4935 | |
7c7b6655 | 4936 | struct bound_minimal_symbol |
96d887e8 | 4937 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4938 | { |
7c7b6655 | 4939 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4940 | struct objfile *objfile; |
96d887e8 | 4941 | struct minimal_symbol *msymbol; |
4c4b4cd2 | 4942 | |
7c7b6655 TT |
4943 | memset (&result, 0, sizeof (result)); |
4944 | ||
b5ec771e PA |
4945 | symbol_name_match_type match_type = name_match_type_from_name (name); |
4946 | lookup_name_info lookup_name (name, match_type); | |
4947 | ||
4948 | symbol_name_matcher_ftype *match_name | |
4949 | = ada_get_symbol_name_matcher (lookup_name); | |
4c4b4cd2 | 4950 | |
96d887e8 PH |
4951 | ALL_MSYMBOLS (objfile, msymbol) |
4952 | { | |
b5ec771e | 4953 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL) |
96d887e8 | 4954 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4955 | { |
4956 | result.minsym = msymbol; | |
4957 | result.objfile = objfile; | |
4958 | break; | |
4959 | } | |
96d887e8 | 4960 | } |
4c4b4cd2 | 4961 | |
7c7b6655 | 4962 | return result; |
96d887e8 | 4963 | } |
4c4b4cd2 | 4964 | |
96d887e8 PH |
4965 | /* For all subprograms that statically enclose the subprogram of the |
4966 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4967 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4968 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4969 | with a wildcard prefix. */ | |
4c4b4cd2 | 4970 | |
96d887e8 PH |
4971 | static void |
4972 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
b5ec771e PA |
4973 | const lookup_name_info &lookup_name, |
4974 | domain_enum domain) | |
96d887e8 | 4975 | { |
96d887e8 | 4976 | } |
14f9c5c9 | 4977 | |
96d887e8 PH |
4978 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4979 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4980 | |
96d887e8 PH |
4981 | static int |
4982 | is_nondebugging_type (struct type *type) | |
4983 | { | |
0d5cff50 | 4984 | const char *name = ada_type_name (type); |
5b4ee69b | 4985 | |
96d887e8 PH |
4986 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4987 | } | |
4c4b4cd2 | 4988 | |
8f17729f JB |
4989 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4990 | that are deemed "identical" for practical purposes. | |
4991 | ||
4992 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4993 | types and that their number of enumerals is identical (in other | |
4994 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4995 | ||
4996 | static int | |
4997 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4998 | { | |
4999 | int i; | |
5000 | ||
5001 | /* The heuristic we use here is fairly conservative. We consider | |
5002 | that 2 enumerate types are identical if they have the same | |
5003 | number of enumerals and that all enumerals have the same | |
5004 | underlying value and name. */ | |
5005 | ||
5006 | /* All enums in the type should have an identical underlying value. */ | |
5007 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 5008 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
5009 | return 0; |
5010 | ||
5011 | /* All enumerals should also have the same name (modulo any numerical | |
5012 | suffix). */ | |
5013 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5014 | { | |
0d5cff50 DE |
5015 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5016 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5017 | int len_1 = strlen (name_1); |
5018 | int len_2 = strlen (name_2); | |
5019 | ||
5020 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5021 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5022 | if (len_1 != len_2 | |
5023 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5024 | TYPE_FIELD_NAME (type2, i), | |
5025 | len_1) != 0) | |
5026 | return 0; | |
5027 | } | |
5028 | ||
5029 | return 1; | |
5030 | } | |
5031 | ||
5032 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5033 | that are deemed "identical" for practical purposes. Sometimes, | |
5034 | enumerals are not strictly identical, but their types are so similar | |
5035 | that they can be considered identical. | |
5036 | ||
5037 | For instance, consider the following code: | |
5038 | ||
5039 | type Color is (Black, Red, Green, Blue, White); | |
5040 | type RGB_Color is new Color range Red .. Blue; | |
5041 | ||
5042 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5043 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5044 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5045 | As a result, when an expression references any of the enumeral | |
5046 | by name (Eg. "print green"), the expression is technically | |
5047 | ambiguous and the user should be asked to disambiguate. But | |
5048 | doing so would only hinder the user, since it wouldn't matter | |
5049 | what choice he makes, the outcome would always be the same. | |
5050 | So, for practical purposes, we consider them as the same. */ | |
5051 | ||
5052 | static int | |
d12307c1 | 5053 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
5054 | { |
5055 | int i; | |
5056 | ||
5057 | /* Before performing a thorough comparison check of each type, | |
5058 | we perform a series of inexpensive checks. We expect that these | |
5059 | checks will quickly fail in the vast majority of cases, and thus | |
5060 | help prevent the unnecessary use of a more expensive comparison. | |
5061 | Said comparison also expects us to make some of these checks | |
5062 | (see ada_identical_enum_types_p). */ | |
5063 | ||
5064 | /* Quick check: All symbols should have an enum type. */ | |
5065 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 5066 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5067 | return 0; |
5068 | ||
5069 | /* Quick check: They should all have the same value. */ | |
5070 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 5071 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5072 | return 0; |
5073 | ||
5074 | /* Quick check: They should all have the same number of enumerals. */ | |
5075 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5076 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5077 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5078 | return 0; |
5079 | ||
5080 | /* All the sanity checks passed, so we might have a set of | |
5081 | identical enumeration types. Perform a more complete | |
5082 | comparison of the type of each symbol. */ | |
5083 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5084 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5085 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5086 | return 0; |
5087 | ||
5088 | return 1; | |
5089 | } | |
5090 | ||
96d887e8 PH |
5091 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
5092 | duplicate other symbols in the list (The only case I know of where | |
5093 | this happens is when object files containing stabs-in-ecoff are | |
5094 | linked with files containing ordinary ecoff debugging symbols (or no | |
5095 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5096 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5097 | |
96d887e8 | 5098 | static int |
d12307c1 | 5099 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
5100 | { |
5101 | int i, j; | |
4c4b4cd2 | 5102 | |
8f17729f JB |
5103 | /* We should never be called with less than 2 symbols, as there |
5104 | cannot be any extra symbol in that case. But it's easy to | |
5105 | handle, since we have nothing to do in that case. */ | |
5106 | if (nsyms < 2) | |
5107 | return nsyms; | |
5108 | ||
96d887e8 PH |
5109 | i = 0; |
5110 | while (i < nsyms) | |
5111 | { | |
a35ddb44 | 5112 | int remove_p = 0; |
339c13b6 JB |
5113 | |
5114 | /* If two symbols have the same name and one of them is a stub type, | |
5115 | the get rid of the stub. */ | |
5116 | ||
d12307c1 PMR |
5117 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
5118 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
5119 | { |
5120 | for (j = 0; j < nsyms; j++) | |
5121 | { | |
5122 | if (j != i | |
d12307c1 PMR |
5123 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
5124 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
5125 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5126 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 5127 | remove_p = 1; |
339c13b6 JB |
5128 | } |
5129 | } | |
5130 | ||
5131 | /* Two symbols with the same name, same class and same address | |
5132 | should be identical. */ | |
5133 | ||
d12307c1 PMR |
5134 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
5135 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
5136 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
5137 | { |
5138 | for (j = 0; j < nsyms; j += 1) | |
5139 | { | |
5140 | if (i != j | |
d12307c1 PMR |
5141 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
5142 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5143 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
5144 | && SYMBOL_CLASS (syms[i].symbol) | |
5145 | == SYMBOL_CLASS (syms[j].symbol) | |
5146 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
5147 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 5148 | remove_p = 1; |
4c4b4cd2 | 5149 | } |
4c4b4cd2 | 5150 | } |
339c13b6 | 5151 | |
a35ddb44 | 5152 | if (remove_p) |
339c13b6 JB |
5153 | { |
5154 | for (j = i + 1; j < nsyms; j += 1) | |
5155 | syms[j - 1] = syms[j]; | |
5156 | nsyms -= 1; | |
5157 | } | |
5158 | ||
96d887e8 | 5159 | i += 1; |
14f9c5c9 | 5160 | } |
8f17729f JB |
5161 | |
5162 | /* If all the remaining symbols are identical enumerals, then | |
5163 | just keep the first one and discard the rest. | |
5164 | ||
5165 | Unlike what we did previously, we do not discard any entry | |
5166 | unless they are ALL identical. This is because the symbol | |
5167 | comparison is not a strict comparison, but rather a practical | |
5168 | comparison. If all symbols are considered identical, then | |
5169 | we can just go ahead and use the first one and discard the rest. | |
5170 | But if we cannot reduce the list to a single element, we have | |
5171 | to ask the user to disambiguate anyways. And if we have to | |
5172 | present a multiple-choice menu, it's less confusing if the list | |
5173 | isn't missing some choices that were identical and yet distinct. */ | |
5174 | if (symbols_are_identical_enums (syms, nsyms)) | |
5175 | nsyms = 1; | |
5176 | ||
96d887e8 | 5177 | return nsyms; |
14f9c5c9 AS |
5178 | } |
5179 | ||
96d887e8 PH |
5180 | /* Given a type that corresponds to a renaming entity, use the type name |
5181 | to extract the scope (package name or function name, fully qualified, | |
5182 | and following the GNAT encoding convention) where this renaming has been | |
49d83361 | 5183 | defined. */ |
4c4b4cd2 | 5184 | |
49d83361 | 5185 | static std::string |
96d887e8 | 5186 | xget_renaming_scope (struct type *renaming_type) |
14f9c5c9 | 5187 | { |
96d887e8 | 5188 | /* The renaming types adhere to the following convention: |
0963b4bd | 5189 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5190 | So, to extract the scope, we search for the "___XR" extension, |
5191 | and then backtrack until we find the first "__". */ | |
76a01679 | 5192 | |
96d887e8 | 5193 | const char *name = type_name_no_tag (renaming_type); |
108d56a4 SM |
5194 | const char *suffix = strstr (name, "___XR"); |
5195 | const char *last; | |
14f9c5c9 | 5196 | |
96d887e8 PH |
5197 | /* Now, backtrack a bit until we find the first "__". Start looking |
5198 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5199 | |
96d887e8 PH |
5200 | for (last = suffix - 3; last > name; last--) |
5201 | if (last[0] == '_' && last[1] == '_') | |
5202 | break; | |
76a01679 | 5203 | |
96d887e8 | 5204 | /* Make a copy of scope and return it. */ |
49d83361 | 5205 | return std::string (name, last); |
4c4b4cd2 PH |
5206 | } |
5207 | ||
96d887e8 | 5208 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5209 | |
96d887e8 PH |
5210 | static int |
5211 | is_package_name (const char *name) | |
4c4b4cd2 | 5212 | { |
96d887e8 PH |
5213 | /* Here, We take advantage of the fact that no symbols are generated |
5214 | for packages, while symbols are generated for each function. | |
5215 | So the condition for NAME represent a package becomes equivalent | |
5216 | to NAME not existing in our list of symbols. There is only one | |
5217 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5218 | |
96d887e8 | 5219 | char *fun_name; |
76a01679 | 5220 | |
96d887e8 PH |
5221 | /* If it is a function that has not been defined at library level, |
5222 | then we should be able to look it up in the symbols. */ | |
5223 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5224 | return 0; | |
14f9c5c9 | 5225 | |
96d887e8 PH |
5226 | /* Library-level function names start with "_ada_". See if function |
5227 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5228 | |
96d887e8 | 5229 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5230 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5231 | if (strstr (name, "__") != NULL) |
5232 | return 0; | |
4c4b4cd2 | 5233 | |
b435e160 | 5234 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5235 | |
96d887e8 PH |
5236 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5237 | } | |
14f9c5c9 | 5238 | |
96d887e8 | 5239 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5240 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5241 | |
96d887e8 | 5242 | static int |
0d5cff50 | 5243 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5244 | { |
aeb5907d JB |
5245 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
5246 | return 0; | |
5247 | ||
49d83361 | 5248 | std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym)); |
14f9c5c9 | 5249 | |
96d887e8 | 5250 | /* If the rename has been defined in a package, then it is visible. */ |
49d83361 TT |
5251 | if (is_package_name (scope.c_str ())) |
5252 | return 0; | |
14f9c5c9 | 5253 | |
96d887e8 PH |
5254 | /* Check that the rename is in the current function scope by checking |
5255 | that its name starts with SCOPE. */ | |
76a01679 | 5256 | |
96d887e8 PH |
5257 | /* If the function name starts with "_ada_", it means that it is |
5258 | a library-level function. Strip this prefix before doing the | |
5259 | comparison, as the encoding for the renaming does not contain | |
5260 | this prefix. */ | |
61012eef | 5261 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5262 | function_name += 5; |
f26caa11 | 5263 | |
49d83361 | 5264 | return !startswith (function_name, scope.c_str ()); |
f26caa11 PH |
5265 | } |
5266 | ||
aeb5907d JB |
5267 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5268 | is not visible from the function associated with CURRENT_BLOCK or | |
5269 | that is superfluous due to the presence of more specific renaming | |
5270 | information. Places surviving symbols in the initial entries of | |
5271 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5272 | |
5273 | Rationale: | |
aeb5907d JB |
5274 | First, in cases where an object renaming is implemented as a |
5275 | reference variable, GNAT may produce both the actual reference | |
5276 | variable and the renaming encoding. In this case, we discard the | |
5277 | latter. | |
5278 | ||
5279 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5280 | entity. Unfortunately, STABS currently does not support the definition |
5281 | of types that are local to a given lexical block, so all renamings types | |
5282 | are emitted at library level. As a consequence, if an application | |
5283 | contains two renaming entities using the same name, and a user tries to | |
5284 | print the value of one of these entities, the result of the ada symbol | |
5285 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5286 | |
96d887e8 PH |
5287 | This function partially covers for this limitation by attempting to |
5288 | remove from the SYMS list renaming symbols that should be visible | |
5289 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5290 | method with the current information available. The implementation | |
5291 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5292 | ||
5293 | - When the user tries to print a rename in a function while there | |
5294 | is another rename entity defined in a package: Normally, the | |
5295 | rename in the function has precedence over the rename in the | |
5296 | package, so the latter should be removed from the list. This is | |
5297 | currently not the case. | |
5298 | ||
5299 | - This function will incorrectly remove valid renames if | |
5300 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5301 | has been changed by an "Export" pragma. As a consequence, | |
5302 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5303 | |
14f9c5c9 | 5304 | static int |
d12307c1 | 5305 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5306 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5307 | { |
5308 | struct symbol *current_function; | |
0d5cff50 | 5309 | const char *current_function_name; |
4c4b4cd2 | 5310 | int i; |
aeb5907d JB |
5311 | int is_new_style_renaming; |
5312 | ||
5313 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5314 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5315 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5316 | is_new_style_renaming = 0; |
5317 | for (i = 0; i < nsyms; i += 1) | |
5318 | { | |
d12307c1 | 5319 | struct symbol *sym = syms[i].symbol; |
270140bd | 5320 | const struct block *block = syms[i].block; |
aeb5907d JB |
5321 | const char *name; |
5322 | const char *suffix; | |
5323 | ||
5324 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5325 | continue; | |
5326 | name = SYMBOL_LINKAGE_NAME (sym); | |
5327 | suffix = strstr (name, "___XR"); | |
5328 | ||
5329 | if (suffix != NULL) | |
5330 | { | |
5331 | int name_len = suffix - name; | |
5332 | int j; | |
5b4ee69b | 5333 | |
aeb5907d JB |
5334 | is_new_style_renaming = 1; |
5335 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5336 | if (i != j && syms[j].symbol != NULL |
5337 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5338 | name_len) == 0 |
5339 | && block == syms[j].block) | |
d12307c1 | 5340 | syms[j].symbol = NULL; |
aeb5907d JB |
5341 | } |
5342 | } | |
5343 | if (is_new_style_renaming) | |
5344 | { | |
5345 | int j, k; | |
5346 | ||
5347 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5348 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5349 | { |
5350 | syms[k] = syms[j]; | |
5351 | k += 1; | |
5352 | } | |
5353 | return k; | |
5354 | } | |
4c4b4cd2 PH |
5355 | |
5356 | /* Extract the function name associated to CURRENT_BLOCK. | |
5357 | Abort if unable to do so. */ | |
76a01679 | 5358 | |
4c4b4cd2 PH |
5359 | if (current_block == NULL) |
5360 | return nsyms; | |
76a01679 | 5361 | |
7f0df278 | 5362 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5363 | if (current_function == NULL) |
5364 | return nsyms; | |
5365 | ||
5366 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5367 | if (current_function_name == NULL) | |
5368 | return nsyms; | |
5369 | ||
5370 | /* Check each of the symbols, and remove it from the list if it is | |
5371 | a type corresponding to a renaming that is out of the scope of | |
5372 | the current block. */ | |
5373 | ||
5374 | i = 0; | |
5375 | while (i < nsyms) | |
5376 | { | |
d12307c1 | 5377 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5378 | == ADA_OBJECT_RENAMING |
d12307c1 | 5379 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5380 | { |
5381 | int j; | |
5b4ee69b | 5382 | |
aeb5907d | 5383 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5384 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5385 | nsyms -= 1; |
5386 | } | |
5387 | else | |
5388 | i += 1; | |
5389 | } | |
5390 | ||
5391 | return nsyms; | |
5392 | } | |
5393 | ||
339c13b6 JB |
5394 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5395 | whose name and domain match NAME and DOMAIN respectively. | |
5396 | If no match was found, then extend the search to "enclosing" | |
5397 | routines (in other words, if we're inside a nested function, | |
5398 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5399 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5400 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5401 | |
5402 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5403 | ||
5404 | static void | |
b5ec771e PA |
5405 | ada_add_local_symbols (struct obstack *obstackp, |
5406 | const lookup_name_info &lookup_name, | |
5407 | const struct block *block, domain_enum domain) | |
339c13b6 JB |
5408 | { |
5409 | int block_depth = 0; | |
5410 | ||
5411 | while (block != NULL) | |
5412 | { | |
5413 | block_depth += 1; | |
b5ec771e | 5414 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
339c13b6 JB |
5415 | |
5416 | /* If we found a non-function match, assume that's the one. */ | |
5417 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5418 | num_defns_collected (obstackp))) | |
5419 | return; | |
5420 | ||
5421 | block = BLOCK_SUPERBLOCK (block); | |
5422 | } | |
5423 | ||
5424 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5425 | enclosing subprogram. */ | |
5426 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
b5ec771e | 5427 | add_symbols_from_enclosing_procs (obstackp, lookup_name, domain); |
339c13b6 JB |
5428 | } |
5429 | ||
ccefe4c4 | 5430 | /* An object of this type is used as the user_data argument when |
40658b94 | 5431 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5432 | |
40658b94 | 5433 | struct match_data |
ccefe4c4 | 5434 | { |
40658b94 | 5435 | struct objfile *objfile; |
ccefe4c4 | 5436 | struct obstack *obstackp; |
40658b94 PH |
5437 | struct symbol *arg_sym; |
5438 | int found_sym; | |
ccefe4c4 TT |
5439 | }; |
5440 | ||
22cee43f | 5441 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5442 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5443 | containing the obstack that collects the symbol list, the file that SYM | |
5444 | must come from, a flag indicating whether a non-argument symbol has | |
5445 | been found in the current block, and the last argument symbol | |
5446 | passed in SYM within the current block (if any). When SYM is null, | |
5447 | marking the end of a block, the argument symbol is added if no | |
5448 | other has been found. */ | |
ccefe4c4 | 5449 | |
40658b94 PH |
5450 | static int |
5451 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5452 | { |
40658b94 PH |
5453 | struct match_data *data = (struct match_data *) data0; |
5454 | ||
5455 | if (sym == NULL) | |
5456 | { | |
5457 | if (!data->found_sym && data->arg_sym != NULL) | |
5458 | add_defn_to_vec (data->obstackp, | |
5459 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5460 | block); | |
5461 | data->found_sym = 0; | |
5462 | data->arg_sym = NULL; | |
5463 | } | |
5464 | else | |
5465 | { | |
5466 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5467 | return 0; | |
5468 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5469 | data->arg_sym = sym; | |
5470 | else | |
5471 | { | |
5472 | data->found_sym = 1; | |
5473 | add_defn_to_vec (data->obstackp, | |
5474 | fixup_symbol_section (sym, data->objfile), | |
5475 | block); | |
5476 | } | |
5477 | } | |
5478 | return 0; | |
5479 | } | |
5480 | ||
b5ec771e PA |
5481 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
5482 | targeted by renamings matching LOOKUP_NAME in BLOCK. Add these | |
5483 | symbols to OBSTACKP. Return whether we found such symbols. */ | |
22cee43f PMR |
5484 | |
5485 | static int | |
5486 | ada_add_block_renamings (struct obstack *obstackp, | |
5487 | const struct block *block, | |
b5ec771e PA |
5488 | const lookup_name_info &lookup_name, |
5489 | domain_enum domain) | |
22cee43f PMR |
5490 | { |
5491 | struct using_direct *renaming; | |
5492 | int defns_mark = num_defns_collected (obstackp); | |
5493 | ||
b5ec771e PA |
5494 | symbol_name_matcher_ftype *name_match |
5495 | = ada_get_symbol_name_matcher (lookup_name); | |
5496 | ||
22cee43f PMR |
5497 | for (renaming = block_using (block); |
5498 | renaming != NULL; | |
5499 | renaming = renaming->next) | |
5500 | { | |
5501 | const char *r_name; | |
22cee43f PMR |
5502 | |
5503 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5504 | already traversing it. | |
5505 | ||
5506 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5507 | C++/Fortran support: skip namespace imports that use them. */ | |
5508 | if (renaming->searched | |
5509 | || (renaming->import_src != NULL | |
5510 | && renaming->import_src[0] != '\0') | |
5511 | || (renaming->import_dest != NULL | |
5512 | && renaming->import_dest[0] != '\0')) | |
5513 | continue; | |
5514 | renaming->searched = 1; | |
5515 | ||
5516 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5517 | pull its own multiple overloads. In theory, we should be able to do | |
5518 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5519 | not a simple name. But in order to do this, we would need to enhance | |
5520 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5521 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5522 | namespace machinery. */ | |
5523 | r_name = (renaming->alias != NULL | |
5524 | ? renaming->alias | |
5525 | : renaming->declaration); | |
b5ec771e PA |
5526 | if (name_match (r_name, lookup_name, NULL)) |
5527 | { | |
5528 | lookup_name_info decl_lookup_name (renaming->declaration, | |
5529 | lookup_name.match_type ()); | |
5530 | ada_add_all_symbols (obstackp, block, decl_lookup_name, domain, | |
5531 | 1, NULL); | |
5532 | } | |
22cee43f PMR |
5533 | renaming->searched = 0; |
5534 | } | |
5535 | return num_defns_collected (obstackp) != defns_mark; | |
5536 | } | |
5537 | ||
db230ce3 JB |
5538 | /* Implements compare_names, but only applying the comparision using |
5539 | the given CASING. */ | |
5b4ee69b | 5540 | |
40658b94 | 5541 | static int |
db230ce3 JB |
5542 | compare_names_with_case (const char *string1, const char *string2, |
5543 | enum case_sensitivity casing) | |
40658b94 PH |
5544 | { |
5545 | while (*string1 != '\0' && *string2 != '\0') | |
5546 | { | |
db230ce3 JB |
5547 | char c1, c2; |
5548 | ||
40658b94 PH |
5549 | if (isspace (*string1) || isspace (*string2)) |
5550 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5551 | |
5552 | if (casing == case_sensitive_off) | |
5553 | { | |
5554 | c1 = tolower (*string1); | |
5555 | c2 = tolower (*string2); | |
5556 | } | |
5557 | else | |
5558 | { | |
5559 | c1 = *string1; | |
5560 | c2 = *string2; | |
5561 | } | |
5562 | if (c1 != c2) | |
40658b94 | 5563 | break; |
db230ce3 | 5564 | |
40658b94 PH |
5565 | string1 += 1; |
5566 | string2 += 1; | |
5567 | } | |
db230ce3 | 5568 | |
40658b94 PH |
5569 | switch (*string1) |
5570 | { | |
5571 | case '(': | |
5572 | return strcmp_iw_ordered (string1, string2); | |
5573 | case '_': | |
5574 | if (*string2 == '\0') | |
5575 | { | |
052874e8 | 5576 | if (is_name_suffix (string1)) |
40658b94 PH |
5577 | return 0; |
5578 | else | |
1a1d5513 | 5579 | return 1; |
40658b94 | 5580 | } |
dbb8534f | 5581 | /* FALLTHROUGH */ |
40658b94 PH |
5582 | default: |
5583 | if (*string2 == '(') | |
5584 | return strcmp_iw_ordered (string1, string2); | |
5585 | else | |
db230ce3 JB |
5586 | { |
5587 | if (casing == case_sensitive_off) | |
5588 | return tolower (*string1) - tolower (*string2); | |
5589 | else | |
5590 | return *string1 - *string2; | |
5591 | } | |
40658b94 | 5592 | } |
ccefe4c4 TT |
5593 | } |
5594 | ||
db230ce3 JB |
5595 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5596 | Compatible with strcmp_iw_ordered in that... | |
5597 | ||
5598 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5599 | ||
5600 | ... implies... | |
5601 | ||
5602 | compare_names (STRING1, STRING2) <= 0 | |
5603 | ||
5604 | (they may differ as to what symbols compare equal). */ | |
5605 | ||
5606 | static int | |
5607 | compare_names (const char *string1, const char *string2) | |
5608 | { | |
5609 | int result; | |
5610 | ||
5611 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5612 | a case-insensitive comparison first, and only resort to | |
5613 | a second, case-sensitive, comparison if the first one was | |
5614 | not sufficient to differentiate the two strings. */ | |
5615 | ||
5616 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5617 | if (result == 0) | |
5618 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5619 | ||
5620 | return result; | |
5621 | } | |
5622 | ||
b5ec771e PA |
5623 | /* Convenience function to get at the Ada encoded lookup name for |
5624 | LOOKUP_NAME, as a C string. */ | |
5625 | ||
5626 | static const char * | |
5627 | ada_lookup_name (const lookup_name_info &lookup_name) | |
5628 | { | |
5629 | return lookup_name.ada ().lookup_name ().c_str (); | |
5630 | } | |
5631 | ||
339c13b6 | 5632 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
b5ec771e PA |
5633 | LOOKUP_NAME and DOMAIN respectively. The search is performed on |
5634 | GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK | |
5635 | symbols otherwise. */ | |
339c13b6 JB |
5636 | |
5637 | static void | |
b5ec771e PA |
5638 | add_nonlocal_symbols (struct obstack *obstackp, |
5639 | const lookup_name_info &lookup_name, | |
5640 | domain_enum domain, int global) | |
339c13b6 JB |
5641 | { |
5642 | struct objfile *objfile; | |
22cee43f | 5643 | struct compunit_symtab *cu; |
40658b94 | 5644 | struct match_data data; |
339c13b6 | 5645 | |
6475f2fe | 5646 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5647 | data.obstackp = obstackp; |
339c13b6 | 5648 | |
b5ec771e PA |
5649 | bool is_wild_match = lookup_name.ada ().wild_match_p (); |
5650 | ||
ccefe4c4 | 5651 | ALL_OBJFILES (objfile) |
40658b94 PH |
5652 | { |
5653 | data.objfile = objfile; | |
5654 | ||
5655 | if (is_wild_match) | |
b5ec771e PA |
5656 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5657 | domain, global, | |
4186eb54 | 5658 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5659 | symbol_name_match_type::WILD, |
5660 | NULL); | |
40658b94 | 5661 | else |
b5ec771e PA |
5662 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (), |
5663 | domain, global, | |
4186eb54 | 5664 | aux_add_nonlocal_symbols, &data, |
b5ec771e PA |
5665 | symbol_name_match_type::FULL, |
5666 | compare_names); | |
22cee43f PMR |
5667 | |
5668 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5669 | { | |
5670 | const struct block *global_block | |
5671 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5672 | ||
b5ec771e PA |
5673 | if (ada_add_block_renamings (obstackp, global_block, lookup_name, |
5674 | domain)) | |
22cee43f PMR |
5675 | data.found_sym = 1; |
5676 | } | |
40658b94 PH |
5677 | } |
5678 | ||
5679 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5680 | { | |
b5ec771e PA |
5681 | const char *name = ada_lookup_name (lookup_name); |
5682 | std::string name1 = std::string ("<_ada_") + name + '>'; | |
5683 | ||
40658b94 PH |
5684 | ALL_OBJFILES (objfile) |
5685 | { | |
40658b94 | 5686 | data.objfile = objfile; |
b5ec771e PA |
5687 | objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (), |
5688 | domain, global, | |
0963b4bd MS |
5689 | aux_add_nonlocal_symbols, |
5690 | &data, | |
b5ec771e PA |
5691 | symbol_name_match_type::FULL, |
5692 | compare_names); | |
40658b94 PH |
5693 | } |
5694 | } | |
339c13b6 JB |
5695 | } |
5696 | ||
b5ec771e PA |
5697 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
5698 | FULL_SEARCH is non-zero, enclosing scope and in global scopes, | |
5699 | returning the number of matches. Add these to OBSTACKP. | |
4eeaa230 | 5700 | |
22cee43f PMR |
5701 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5702 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5703 | is the one match returned (no other matches in that or |
d9680e73 | 5704 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5705 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5706 | |
b5ec771e PA |
5707 | Names prefixed with "standard__" are handled specially: |
5708 | "standard__" is first stripped off (by the lookup_name | |
5709 | constructor), and only static and global symbols are searched. | |
14f9c5c9 | 5710 | |
22cee43f PMR |
5711 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5712 | to lookup global symbols. */ | |
5713 | ||
5714 | static void | |
5715 | ada_add_all_symbols (struct obstack *obstackp, | |
5716 | const struct block *block, | |
b5ec771e | 5717 | const lookup_name_info &lookup_name, |
22cee43f PMR |
5718 | domain_enum domain, |
5719 | int full_search, | |
5720 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5721 | { |
5722 | struct symbol *sym; | |
14f9c5c9 | 5723 | |
22cee43f PMR |
5724 | if (made_global_lookup_p) |
5725 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5726 | |
5727 | /* Special case: If the user specifies a symbol name inside package | |
5728 | Standard, do a non-wild matching of the symbol name without | |
5729 | the "standard__" prefix. This was primarily introduced in order | |
5730 | to allow the user to specifically access the standard exceptions | |
5731 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5732 | is ambiguous (due to the user defining its own Constraint_Error | |
5733 | entity inside its program). */ | |
b5ec771e PA |
5734 | if (lookup_name.ada ().standard_p ()) |
5735 | block = NULL; | |
4c4b4cd2 | 5736 | |
339c13b6 | 5737 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5738 | |
4eeaa230 DE |
5739 | if (block != NULL) |
5740 | { | |
5741 | if (full_search) | |
b5ec771e | 5742 | ada_add_local_symbols (obstackp, lookup_name, block, domain); |
4eeaa230 DE |
5743 | else |
5744 | { | |
5745 | /* In the !full_search case we're are being called by | |
5746 | ada_iterate_over_symbols, and we don't want to search | |
5747 | superblocks. */ | |
b5ec771e | 5748 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
4eeaa230 | 5749 | } |
22cee43f PMR |
5750 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5751 | return; | |
4eeaa230 | 5752 | } |
d2e4a39e | 5753 | |
339c13b6 JB |
5754 | /* No non-global symbols found. Check our cache to see if we have |
5755 | already performed this search before. If we have, then return | |
5756 | the same result. */ | |
5757 | ||
b5ec771e PA |
5758 | if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
5759 | domain, &sym, &block)) | |
4c4b4cd2 PH |
5760 | { |
5761 | if (sym != NULL) | |
b5ec771e | 5762 | add_defn_to_vec (obstackp, sym, block); |
22cee43f | 5763 | return; |
4c4b4cd2 | 5764 | } |
14f9c5c9 | 5765 | |
22cee43f PMR |
5766 | if (made_global_lookup_p) |
5767 | *made_global_lookup_p = 1; | |
b1eedac9 | 5768 | |
339c13b6 JB |
5769 | /* Search symbols from all global blocks. */ |
5770 | ||
b5ec771e | 5771 | add_nonlocal_symbols (obstackp, lookup_name, domain, 1); |
d2e4a39e | 5772 | |
4c4b4cd2 | 5773 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5774 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5775 | |
22cee43f | 5776 | if (num_defns_collected (obstackp) == 0) |
b5ec771e | 5777 | add_nonlocal_symbols (obstackp, lookup_name, domain, 0); |
22cee43f PMR |
5778 | } |
5779 | ||
b5ec771e PA |
5780 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
5781 | is non-zero, enclosing scope and in global scopes, returning the number of | |
22cee43f | 5782 | matches. |
ec6a20c2 | 5783 | Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples, |
22cee43f | 5784 | indicating the symbols found and the blocks and symbol tables (if |
ec6a20c2 JB |
5785 | any) in which they were found. This vector should be freed when |
5786 | no longer useful. | |
22cee43f PMR |
5787 | |
5788 | When full_search is non-zero, any non-function/non-enumeral | |
5789 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5790 | is the one match returned (no other matches in that or | |
5791 | enclosing blocks is returned). If there are any matches in or | |
5792 | surrounding BLOCK, then these alone are returned. | |
5793 | ||
5794 | Names prefixed with "standard__" are handled specially: "standard__" | |
5795 | is first stripped off, and only static and global symbols are searched. */ | |
5796 | ||
5797 | static int | |
b5ec771e PA |
5798 | ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
5799 | const struct block *block, | |
22cee43f PMR |
5800 | domain_enum domain, |
5801 | struct block_symbol **results, | |
5802 | int full_search) | |
5803 | { | |
22cee43f PMR |
5804 | int syms_from_global_search; |
5805 | int ndefns; | |
ec6a20c2 JB |
5806 | int results_size; |
5807 | auto_obstack obstack; | |
22cee43f | 5808 | |
ec6a20c2 | 5809 | ada_add_all_symbols (&obstack, block, lookup_name, |
b5ec771e | 5810 | domain, full_search, &syms_from_global_search); |
14f9c5c9 | 5811 | |
ec6a20c2 JB |
5812 | ndefns = num_defns_collected (&obstack); |
5813 | ||
5814 | results_size = obstack_object_size (&obstack); | |
5815 | *results = (struct block_symbol *) malloc (results_size); | |
5816 | memcpy (*results, defns_collected (&obstack, 1), results_size); | |
4c4b4cd2 PH |
5817 | |
5818 | ndefns = remove_extra_symbols (*results, ndefns); | |
5819 | ||
b1eedac9 | 5820 | if (ndefns == 0 && full_search && syms_from_global_search) |
b5ec771e | 5821 | cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
14f9c5c9 | 5822 | |
b1eedac9 | 5823 | if (ndefns == 1 && full_search && syms_from_global_search) |
b5ec771e PA |
5824 | cache_symbol (ada_lookup_name (lookup_name), domain, |
5825 | (*results)[0].symbol, (*results)[0].block); | |
14f9c5c9 | 5826 | |
22cee43f | 5827 | ndefns = remove_irrelevant_renamings (*results, ndefns, block); |
ec6a20c2 | 5828 | |
14f9c5c9 AS |
5829 | return ndefns; |
5830 | } | |
5831 | ||
b5ec771e | 5832 | /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
4eeaa230 | 5833 | in global scopes, returning the number of matches, and setting *RESULTS |
ec6a20c2 JB |
5834 | to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated |
5835 | vector should be freed when no longer useful. | |
5836 | ||
4eeaa230 DE |
5837 | See ada_lookup_symbol_list_worker for further details. */ |
5838 | ||
5839 | int | |
b5ec771e | 5840 | ada_lookup_symbol_list (const char *name, const struct block *block, |
d12307c1 | 5841 | domain_enum domain, struct block_symbol **results) |
4eeaa230 | 5842 | { |
b5ec771e PA |
5843 | symbol_name_match_type name_match_type = name_match_type_from_name (name); |
5844 | lookup_name_info lookup_name (name, name_match_type); | |
5845 | ||
5846 | return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1); | |
4eeaa230 DE |
5847 | } |
5848 | ||
5849 | /* Implementation of the la_iterate_over_symbols method. */ | |
5850 | ||
5851 | static void | |
14bc53a8 | 5852 | ada_iterate_over_symbols |
b5ec771e PA |
5853 | (const struct block *block, const lookup_name_info &name, |
5854 | domain_enum domain, | |
14bc53a8 | 5855 | gdb::function_view<symbol_found_callback_ftype> callback) |
4eeaa230 DE |
5856 | { |
5857 | int ndefs, i; | |
d12307c1 | 5858 | struct block_symbol *results; |
ec6a20c2 | 5859 | struct cleanup *old_chain; |
4eeaa230 DE |
5860 | |
5861 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
ec6a20c2 JB |
5862 | old_chain = make_cleanup (xfree, results); |
5863 | ||
4eeaa230 DE |
5864 | for (i = 0; i < ndefs; ++i) |
5865 | { | |
14bc53a8 | 5866 | if (!callback (results[i].symbol)) |
4eeaa230 DE |
5867 | break; |
5868 | } | |
ec6a20c2 JB |
5869 | |
5870 | do_cleanups (old_chain); | |
4eeaa230 DE |
5871 | } |
5872 | ||
4e5c77fe JB |
5873 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5874 | to 1, but choosing the first symbol found if there are multiple | |
5875 | choices. | |
5876 | ||
5e2336be JB |
5877 | The result is stored in *INFO, which must be non-NULL. |
5878 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5879 | |
5880 | void | |
5881 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5882 | domain_enum domain, |
d12307c1 | 5883 | struct block_symbol *info) |
14f9c5c9 | 5884 | { |
b5ec771e PA |
5885 | /* Since we already have an encoded name, wrap it in '<>' to force a |
5886 | verbatim match. Otherwise, if the name happens to not look like | |
5887 | an encoded name (because it doesn't include a "__"), | |
5888 | ada_lookup_name_info would re-encode/fold it again, and that | |
5889 | would e.g., incorrectly lowercase object renaming names like | |
5890 | "R28b" -> "r28b". */ | |
5891 | std::string verbatim = std::string ("<") + name + '>'; | |
5892 | ||
5e2336be | 5893 | gdb_assert (info != NULL); |
f98fc17b | 5894 | *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL); |
4e5c77fe | 5895 | } |
aeb5907d JB |
5896 | |
5897 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5898 | scope and in global scopes, or NULL if none. NAME is folded and | |
5899 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5900 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5901 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5902 | ||
d12307c1 | 5903 | struct block_symbol |
aeb5907d | 5904 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5905 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d JB |
5906 | { |
5907 | if (is_a_field_of_this != NULL) | |
5908 | *is_a_field_of_this = 0; | |
5909 | ||
f98fc17b PA |
5910 | struct block_symbol *candidates; |
5911 | int n_candidates; | |
5912 | struct cleanup *old_chain; | |
5913 | ||
5914 | n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates); | |
5915 | old_chain = make_cleanup (xfree, candidates); | |
5916 | ||
5917 | if (n_candidates == 0) | |
5918 | { | |
5919 | do_cleanups (old_chain); | |
5920 | return {}; | |
5921 | } | |
5922 | ||
5923 | block_symbol info = candidates[0]; | |
5924 | info.symbol = fixup_symbol_section (info.symbol, NULL); | |
5925 | ||
5926 | do_cleanups (old_chain); | |
5927 | ||
d12307c1 | 5928 | return info; |
4c4b4cd2 | 5929 | } |
14f9c5c9 | 5930 | |
d12307c1 | 5931 | static struct block_symbol |
f606139a DE |
5932 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5933 | const char *name, | |
76a01679 | 5934 | const struct block *block, |
21b556f4 | 5935 | const domain_enum domain) |
4c4b4cd2 | 5936 | { |
d12307c1 | 5937 | struct block_symbol sym; |
04dccad0 JB |
5938 | |
5939 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5940 | if (sym.symbol != NULL) |
04dccad0 JB |
5941 | return sym; |
5942 | ||
5943 | /* If we haven't found a match at this point, try the primitive | |
5944 | types. In other languages, this search is performed before | |
5945 | searching for global symbols in order to short-circuit that | |
5946 | global-symbol search if it happens that the name corresponds | |
5947 | to a primitive type. But we cannot do the same in Ada, because | |
5948 | it is perfectly legitimate for a program to declare a type which | |
5949 | has the same name as a standard type. If looking up a type in | |
5950 | that situation, we have traditionally ignored the primitive type | |
5951 | in favor of user-defined types. This is why, unlike most other | |
5952 | languages, we search the primitive types this late and only after | |
5953 | having searched the global symbols without success. */ | |
5954 | ||
5955 | if (domain == VAR_DOMAIN) | |
5956 | { | |
5957 | struct gdbarch *gdbarch; | |
5958 | ||
5959 | if (block == NULL) | |
5960 | gdbarch = target_gdbarch (); | |
5961 | else | |
5962 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5963 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5964 | if (sym.symbol != NULL) | |
04dccad0 JB |
5965 | return sym; |
5966 | } | |
5967 | ||
d12307c1 | 5968 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5969 | } |
5970 | ||
5971 | ||
4c4b4cd2 PH |
5972 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5973 | that is to be ignored for matching purposes. Suffixes of parallel | |
5974 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5975 | are given by any of the regular expressions: |
4c4b4cd2 | 5976 | |
babe1480 JB |
5977 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5978 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5979 | TKB [subprogram suffix for task bodies] |
babe1480 | 5980 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5981 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5982 | |
5983 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5984 | match is performed. This sequence is used to differentiate homonyms, | |
5985 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5986 | |
14f9c5c9 | 5987 | static int |
d2e4a39e | 5988 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5989 | { |
5990 | int k; | |
4c4b4cd2 PH |
5991 | const char *matching; |
5992 | const int len = strlen (str); | |
5993 | ||
babe1480 JB |
5994 | /* Skip optional leading __[0-9]+. */ |
5995 | ||
4c4b4cd2 PH |
5996 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5997 | { | |
babe1480 JB |
5998 | str += 3; |
5999 | while (isdigit (str[0])) | |
6000 | str += 1; | |
4c4b4cd2 | 6001 | } |
babe1480 JB |
6002 | |
6003 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 6004 | |
babe1480 | 6005 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 6006 | { |
babe1480 | 6007 | matching = str + 1; |
4c4b4cd2 PH |
6008 | while (isdigit (matching[0])) |
6009 | matching += 1; | |
6010 | if (matching[0] == '\0') | |
6011 | return 1; | |
6012 | } | |
6013 | ||
6014 | /* ___[0-9]+ */ | |
babe1480 | 6015 | |
4c4b4cd2 PH |
6016 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
6017 | { | |
6018 | matching = str + 3; | |
6019 | while (isdigit (matching[0])) | |
6020 | matching += 1; | |
6021 | if (matching[0] == '\0') | |
6022 | return 1; | |
6023 | } | |
6024 | ||
9ac7f98e JB |
6025 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
6026 | ||
6027 | if (strcmp (str, "TKB") == 0) | |
6028 | return 1; | |
6029 | ||
529cad9c PH |
6030 | #if 0 |
6031 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
6032 | with a N at the end. Unfortunately, the compiler uses the same |
6033 | convention for other internal types it creates. So treating | |
529cad9c | 6034 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
6035 | some regressions. For instance, consider the case of an enumerated |
6036 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
6037 | name ends with N. |
6038 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6039 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6040 | to be something like "_N" instead. In the meantime, do not do |
6041 | the following check. */ | |
6042 | /* Protected Object Subprograms */ | |
6043 | if (len == 1 && str [0] == 'N') | |
6044 | return 1; | |
6045 | #endif | |
6046 | ||
6047 | /* _E[0-9]+[bs]$ */ | |
6048 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6049 | { | |
6050 | matching = str + 3; | |
6051 | while (isdigit (matching[0])) | |
6052 | matching += 1; | |
6053 | if ((matching[0] == 'b' || matching[0] == 's') | |
6054 | && matching [1] == '\0') | |
6055 | return 1; | |
6056 | } | |
6057 | ||
4c4b4cd2 PH |
6058 | /* ??? We should not modify STR directly, as we are doing below. This |
6059 | is fine in this case, but may become problematic later if we find | |
6060 | that this alternative did not work, and want to try matching | |
6061 | another one from the begining of STR. Since we modified it, we | |
6062 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6063 | if (str[0] == 'X') |
6064 | { | |
6065 | str += 1; | |
d2e4a39e | 6066 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6067 | { |
6068 | if (str[0] != 'n' && str[0] != 'b') | |
6069 | return 0; | |
6070 | str += 1; | |
6071 | } | |
14f9c5c9 | 6072 | } |
babe1480 | 6073 | |
14f9c5c9 AS |
6074 | if (str[0] == '\000') |
6075 | return 1; | |
babe1480 | 6076 | |
d2e4a39e | 6077 | if (str[0] == '_') |
14f9c5c9 AS |
6078 | { |
6079 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6080 | return 0; |
d2e4a39e | 6081 | if (str[2] == '_') |
4c4b4cd2 | 6082 | { |
61ee279c PH |
6083 | if (strcmp (str + 3, "JM") == 0) |
6084 | return 1; | |
6085 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6086 | the LJM suffix in favor of the JM one. But we will | |
6087 | still accept LJM as a valid suffix for a reasonable | |
6088 | amount of time, just to allow ourselves to debug programs | |
6089 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6090 | if (strcmp (str + 3, "LJM") == 0) |
6091 | return 1; | |
6092 | if (str[3] != 'X') | |
6093 | return 0; | |
1265e4aa JB |
6094 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6095 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6096 | return 1; |
6097 | if (str[4] == 'R' && str[5] != 'T') | |
6098 | return 1; | |
6099 | return 0; | |
6100 | } | |
6101 | if (!isdigit (str[2])) | |
6102 | return 0; | |
6103 | for (k = 3; str[k] != '\0'; k += 1) | |
6104 | if (!isdigit (str[k]) && str[k] != '_') | |
6105 | return 0; | |
14f9c5c9 AS |
6106 | return 1; |
6107 | } | |
4c4b4cd2 | 6108 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6109 | { |
4c4b4cd2 PH |
6110 | for (k = 2; str[k] != '\0'; k += 1) |
6111 | if (!isdigit (str[k]) && str[k] != '_') | |
6112 | return 0; | |
14f9c5c9 AS |
6113 | return 1; |
6114 | } | |
6115 | return 0; | |
6116 | } | |
d2e4a39e | 6117 | |
aeb5907d JB |
6118 | /* Return non-zero if the string starting at NAME and ending before |
6119 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6120 | |
6121 | static int | |
6122 | is_valid_name_for_wild_match (const char *name0) | |
6123 | { | |
6124 | const char *decoded_name = ada_decode (name0); | |
6125 | int i; | |
6126 | ||
5823c3ef JB |
6127 | /* If the decoded name starts with an angle bracket, it means that |
6128 | NAME0 does not follow the GNAT encoding format. It should then | |
6129 | not be allowed as a possible wild match. */ | |
6130 | if (decoded_name[0] == '<') | |
6131 | return 0; | |
6132 | ||
529cad9c PH |
6133 | for (i=0; decoded_name[i] != '\0'; i++) |
6134 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6135 | return 0; | |
6136 | ||
6137 | return 1; | |
6138 | } | |
6139 | ||
73589123 PH |
6140 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6141 | that could start a simple name. Assumes that *NAMEP points into | |
6142 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6143 | |
14f9c5c9 | 6144 | static int |
73589123 | 6145 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6146 | { |
73589123 | 6147 | const char *name = *namep; |
5b4ee69b | 6148 | |
5823c3ef | 6149 | while (1) |
14f9c5c9 | 6150 | { |
aa27d0b3 | 6151 | int t0, t1; |
73589123 PH |
6152 | |
6153 | t0 = *name; | |
6154 | if (t0 == '_') | |
6155 | { | |
6156 | t1 = name[1]; | |
6157 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6158 | { | |
6159 | name += 1; | |
61012eef | 6160 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6161 | break; |
6162 | else | |
6163 | name += 1; | |
6164 | } | |
aa27d0b3 JB |
6165 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6166 | || name[2] == target0)) | |
73589123 PH |
6167 | { |
6168 | name += 2; | |
6169 | break; | |
6170 | } | |
6171 | else | |
6172 | return 0; | |
6173 | } | |
6174 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6175 | name += 1; | |
6176 | else | |
5823c3ef | 6177 | return 0; |
73589123 PH |
6178 | } |
6179 | ||
6180 | *namep = name; | |
6181 | return 1; | |
6182 | } | |
6183 | ||
b5ec771e PA |
6184 | /* Return true iff NAME encodes a name of the form prefix.PATN. |
6185 | Ignores any informational suffixes of NAME (i.e., for which | |
6186 | is_name_suffix is true). Assumes that PATN is a lower-cased Ada | |
6187 | simple name. */ | |
73589123 | 6188 | |
b5ec771e | 6189 | static bool |
73589123 PH |
6190 | wild_match (const char *name, const char *patn) |
6191 | { | |
22e048c9 | 6192 | const char *p; |
73589123 PH |
6193 | const char *name0 = name; |
6194 | ||
6195 | while (1) | |
6196 | { | |
6197 | const char *match = name; | |
6198 | ||
6199 | if (*name == *patn) | |
6200 | { | |
6201 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6202 | if (*p != *name) | |
6203 | break; | |
6204 | if (*p == '\0' && is_name_suffix (name)) | |
b5ec771e | 6205 | return match == name0 || is_valid_name_for_wild_match (name0); |
73589123 PH |
6206 | |
6207 | if (name[-1] == '_') | |
6208 | name -= 1; | |
6209 | } | |
6210 | if (!advance_wild_match (&name, name0, *patn)) | |
b5ec771e | 6211 | return false; |
96d887e8 | 6212 | } |
96d887e8 PH |
6213 | } |
6214 | ||
b5ec771e PA |
6215 | /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring |
6216 | any trailing suffixes that encode debugging information or leading | |
6217 | _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging | |
6218 | information that is ignored). */ | |
40658b94 | 6219 | |
b5ec771e | 6220 | static bool |
c4d840bd PH |
6221 | full_match (const char *sym_name, const char *search_name) |
6222 | { | |
b5ec771e PA |
6223 | size_t search_name_len = strlen (search_name); |
6224 | ||
6225 | if (strncmp (sym_name, search_name, search_name_len) == 0 | |
6226 | && is_name_suffix (sym_name + search_name_len)) | |
6227 | return true; | |
6228 | ||
6229 | if (startswith (sym_name, "_ada_") | |
6230 | && strncmp (sym_name + 5, search_name, search_name_len) == 0 | |
6231 | && is_name_suffix (sym_name + search_name_len + 5)) | |
6232 | return true; | |
c4d840bd | 6233 | |
b5ec771e PA |
6234 | return false; |
6235 | } | |
c4d840bd | 6236 | |
b5ec771e PA |
6237 | /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector |
6238 | *defn_symbols, updating the list of symbols in OBSTACKP (if | |
6239 | necessary). OBJFILE is the section containing BLOCK. */ | |
96d887e8 PH |
6240 | |
6241 | static void | |
6242 | ada_add_block_symbols (struct obstack *obstackp, | |
b5ec771e PA |
6243 | const struct block *block, |
6244 | const lookup_name_info &lookup_name, | |
6245 | domain_enum domain, struct objfile *objfile) | |
96d887e8 | 6246 | { |
8157b174 | 6247 | struct block_iterator iter; |
96d887e8 PH |
6248 | /* A matching argument symbol, if any. */ |
6249 | struct symbol *arg_sym; | |
6250 | /* Set true when we find a matching non-argument symbol. */ | |
6251 | int found_sym; | |
6252 | struct symbol *sym; | |
6253 | ||
6254 | arg_sym = NULL; | |
6255 | found_sym = 0; | |
b5ec771e PA |
6256 | for (sym = block_iter_match_first (block, lookup_name, &iter); |
6257 | sym != NULL; | |
6258 | sym = block_iter_match_next (lookup_name, &iter)) | |
96d887e8 | 6259 | { |
b5ec771e PA |
6260 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6261 | SYMBOL_DOMAIN (sym), domain)) | |
6262 | { | |
6263 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) | |
6264 | { | |
6265 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6266 | arg_sym = sym; | |
6267 | else | |
6268 | { | |
6269 | found_sym = 1; | |
6270 | add_defn_to_vec (obstackp, | |
6271 | fixup_symbol_section (sym, objfile), | |
6272 | block); | |
6273 | } | |
6274 | } | |
6275 | } | |
96d887e8 PH |
6276 | } |
6277 | ||
22cee43f PMR |
6278 | /* Handle renamings. */ |
6279 | ||
b5ec771e | 6280 | if (ada_add_block_renamings (obstackp, block, lookup_name, domain)) |
22cee43f PMR |
6281 | found_sym = 1; |
6282 | ||
96d887e8 PH |
6283 | if (!found_sym && arg_sym != NULL) |
6284 | { | |
76a01679 JB |
6285 | add_defn_to_vec (obstackp, |
6286 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6287 | block); |
96d887e8 PH |
6288 | } |
6289 | ||
b5ec771e | 6290 | if (!lookup_name.ada ().wild_match_p ()) |
96d887e8 PH |
6291 | { |
6292 | arg_sym = NULL; | |
6293 | found_sym = 0; | |
b5ec771e PA |
6294 | const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
6295 | const char *name = ada_lookup_name.c_str (); | |
6296 | size_t name_len = ada_lookup_name.size (); | |
96d887e8 PH |
6297 | |
6298 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6299 | { |
4186eb54 KS |
6300 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6301 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6302 | { |
6303 | int cmp; | |
6304 | ||
6305 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6306 | if (cmp == 0) | |
6307 | { | |
61012eef | 6308 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6309 | if (cmp == 0) |
6310 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6311 | name_len); | |
6312 | } | |
6313 | ||
6314 | if (cmp == 0 | |
6315 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6316 | { | |
2a2d4dc3 AS |
6317 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6318 | { | |
6319 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6320 | arg_sym = sym; | |
6321 | else | |
6322 | { | |
6323 | found_sym = 1; | |
6324 | add_defn_to_vec (obstackp, | |
6325 | fixup_symbol_section (sym, objfile), | |
6326 | block); | |
6327 | } | |
6328 | } | |
76a01679 JB |
6329 | } |
6330 | } | |
76a01679 | 6331 | } |
96d887e8 PH |
6332 | |
6333 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6334 | They aren't parameters, right? */ | |
6335 | if (!found_sym && arg_sym != NULL) | |
6336 | { | |
6337 | add_defn_to_vec (obstackp, | |
76a01679 | 6338 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6339 | block); |
96d887e8 PH |
6340 | } |
6341 | } | |
6342 | } | |
6343 | \f | |
41d27058 JB |
6344 | |
6345 | /* Symbol Completion */ | |
6346 | ||
b5ec771e | 6347 | /* See symtab.h. */ |
41d27058 | 6348 | |
b5ec771e PA |
6349 | bool |
6350 | ada_lookup_name_info::matches | |
6351 | (const char *sym_name, | |
6352 | symbol_name_match_type match_type, | |
a207cff2 | 6353 | completion_match_result *comp_match_res) const |
41d27058 | 6354 | { |
b5ec771e PA |
6355 | bool match = false; |
6356 | const char *text = m_encoded_name.c_str (); | |
6357 | size_t text_len = m_encoded_name.size (); | |
41d27058 JB |
6358 | |
6359 | /* First, test against the fully qualified name of the symbol. */ | |
6360 | ||
6361 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6362 | match = true; |
41d27058 | 6363 | |
b5ec771e | 6364 | if (match && !m_encoded_p) |
41d27058 JB |
6365 | { |
6366 | /* One needed check before declaring a positive match is to verify | |
6367 | that iff we are doing a verbatim match, the decoded version | |
6368 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6369 | is not a suitable completion. */ | |
6370 | const char *sym_name_copy = sym_name; | |
b5ec771e | 6371 | bool has_angle_bracket; |
41d27058 JB |
6372 | |
6373 | sym_name = ada_decode (sym_name); | |
6374 | has_angle_bracket = (sym_name[0] == '<'); | |
b5ec771e | 6375 | match = (has_angle_bracket == m_verbatim_p); |
41d27058 JB |
6376 | sym_name = sym_name_copy; |
6377 | } | |
6378 | ||
b5ec771e | 6379 | if (match && !m_verbatim_p) |
41d27058 JB |
6380 | { |
6381 | /* When doing non-verbatim match, another check that needs to | |
6382 | be done is to verify that the potentially matching symbol name | |
6383 | does not include capital letters, because the ada-mode would | |
6384 | not be able to understand these symbol names without the | |
6385 | angle bracket notation. */ | |
6386 | const char *tmp; | |
6387 | ||
6388 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6389 | if (*tmp != '\0') | |
b5ec771e | 6390 | match = false; |
41d27058 JB |
6391 | } |
6392 | ||
6393 | /* Second: Try wild matching... */ | |
6394 | ||
b5ec771e | 6395 | if (!match && m_wild_match_p) |
41d27058 JB |
6396 | { |
6397 | /* Since we are doing wild matching, this means that TEXT | |
6398 | may represent an unqualified symbol name. We therefore must | |
6399 | also compare TEXT against the unqualified name of the symbol. */ | |
6400 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6401 | ||
6402 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6403 | match = true; |
41d27058 JB |
6404 | } |
6405 | ||
b5ec771e | 6406 | /* Finally: If we found a match, prepare the result to return. */ |
41d27058 JB |
6407 | |
6408 | if (!match) | |
b5ec771e | 6409 | return false; |
41d27058 | 6410 | |
a207cff2 | 6411 | if (comp_match_res != NULL) |
b5ec771e | 6412 | { |
a207cff2 | 6413 | std::string &match_str = comp_match_res->match.storage (); |
41d27058 | 6414 | |
b5ec771e | 6415 | if (!m_encoded_p) |
a207cff2 | 6416 | match_str = ada_decode (sym_name); |
b5ec771e PA |
6417 | else |
6418 | { | |
6419 | if (m_verbatim_p) | |
6420 | match_str = add_angle_brackets (sym_name); | |
6421 | else | |
6422 | match_str = sym_name; | |
41d27058 | 6423 | |
b5ec771e | 6424 | } |
a207cff2 PA |
6425 | |
6426 | comp_match_res->set_match (match_str.c_str ()); | |
41d27058 JB |
6427 | } |
6428 | ||
b5ec771e | 6429 | return true; |
41d27058 JB |
6430 | } |
6431 | ||
b5ec771e | 6432 | /* Add the list of possible symbol names completing TEXT to TRACKER. |
eb3ff9a5 | 6433 | WORD is the entire command on which completion is made. */ |
41d27058 | 6434 | |
eb3ff9a5 PA |
6435 | static void |
6436 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6437 | complete_symbol_mode mode, |
b5ec771e PA |
6438 | symbol_name_match_type name_match_type, |
6439 | const char *text, const char *word, | |
eb3ff9a5 | 6440 | enum type_code code) |
41d27058 | 6441 | { |
41d27058 | 6442 | struct symbol *sym; |
43f3e411 | 6443 | struct compunit_symtab *s; |
41d27058 JB |
6444 | struct minimal_symbol *msymbol; |
6445 | struct objfile *objfile; | |
3977b71f | 6446 | const struct block *b, *surrounding_static_block = 0; |
8157b174 | 6447 | struct block_iterator iter; |
b8fea896 | 6448 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6449 | |
2f68a895 TT |
6450 | gdb_assert (code == TYPE_CODE_UNDEF); |
6451 | ||
1b026119 | 6452 | lookup_name_info lookup_name (text, name_match_type, true); |
41d27058 JB |
6453 | |
6454 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 | 6455 | expand_symtabs_matching (NULL, |
b5ec771e PA |
6456 | lookup_name, |
6457 | NULL, | |
14bc53a8 PA |
6458 | NULL, |
6459 | ALL_DOMAIN); | |
41d27058 JB |
6460 | |
6461 | /* At this point scan through the misc symbol vectors and add each | |
6462 | symbol you find to the list. Eventually we want to ignore | |
6463 | anything that isn't a text symbol (everything else will be | |
6464 | handled by the psymtab code above). */ | |
6465 | ||
6466 | ALL_MSYMBOLS (objfile, msymbol) | |
6467 | { | |
6468 | QUIT; | |
b5ec771e | 6469 | |
f9d67a22 PA |
6470 | if (completion_skip_symbol (mode, msymbol)) |
6471 | continue; | |
6472 | ||
d4c2a405 PA |
6473 | language symbol_language = MSYMBOL_LANGUAGE (msymbol); |
6474 | ||
6475 | /* Ada minimal symbols won't have their language set to Ada. If | |
6476 | we let completion_list_add_name compare using the | |
6477 | default/C-like matcher, then when completing e.g., symbols in a | |
6478 | package named "pck", we'd match internal Ada symbols like | |
6479 | "pckS", which are invalid in an Ada expression, unless you wrap | |
6480 | them in '<' '>' to request a verbatim match. | |
6481 | ||
6482 | Unfortunately, some Ada encoded names successfully demangle as | |
6483 | C++ symbols (using an old mangling scheme), such as "name__2Xn" | |
6484 | -> "Xn::name(void)" and thus some Ada minimal symbols end up | |
6485 | with the wrong language set. Paper over that issue here. */ | |
6486 | if (symbol_language == language_auto | |
6487 | || symbol_language == language_cplus) | |
6488 | symbol_language = language_ada; | |
6489 | ||
b5ec771e | 6490 | completion_list_add_name (tracker, |
d4c2a405 | 6491 | symbol_language, |
b5ec771e | 6492 | MSYMBOL_LINKAGE_NAME (msymbol), |
1b026119 | 6493 | lookup_name, text, word); |
41d27058 JB |
6494 | } |
6495 | ||
6496 | /* Search upwards from currently selected frame (so that we can | |
6497 | complete on local vars. */ | |
6498 | ||
6499 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6500 | { | |
6501 | if (!BLOCK_SUPERBLOCK (b)) | |
6502 | surrounding_static_block = b; /* For elmin of dups */ | |
6503 | ||
6504 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6505 | { | |
f9d67a22 PA |
6506 | if (completion_skip_symbol (mode, sym)) |
6507 | continue; | |
6508 | ||
b5ec771e PA |
6509 | completion_list_add_name (tracker, |
6510 | SYMBOL_LANGUAGE (sym), | |
6511 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6512 | lookup_name, text, word); |
41d27058 JB |
6513 | } |
6514 | } | |
6515 | ||
6516 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6517 | symbols which match. */ |
41d27058 | 6518 | |
43f3e411 | 6519 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6520 | { |
6521 | QUIT; | |
43f3e411 | 6522 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6523 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6524 | { | |
f9d67a22 PA |
6525 | if (completion_skip_symbol (mode, sym)) |
6526 | continue; | |
6527 | ||
b5ec771e PA |
6528 | completion_list_add_name (tracker, |
6529 | SYMBOL_LANGUAGE (sym), | |
6530 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6531 | lookup_name, text, word); |
41d27058 JB |
6532 | } |
6533 | } | |
6534 | ||
43f3e411 | 6535 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6536 | { |
6537 | QUIT; | |
43f3e411 | 6538 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6539 | /* Don't do this block twice. */ |
6540 | if (b == surrounding_static_block) | |
6541 | continue; | |
6542 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6543 | { | |
f9d67a22 PA |
6544 | if (completion_skip_symbol (mode, sym)) |
6545 | continue; | |
6546 | ||
b5ec771e PA |
6547 | completion_list_add_name (tracker, |
6548 | SYMBOL_LANGUAGE (sym), | |
6549 | SYMBOL_LINKAGE_NAME (sym), | |
1b026119 | 6550 | lookup_name, text, word); |
41d27058 JB |
6551 | } |
6552 | } | |
6553 | ||
b8fea896 | 6554 | do_cleanups (old_chain); |
41d27058 JB |
6555 | } |
6556 | ||
963a6417 | 6557 | /* Field Access */ |
96d887e8 | 6558 | |
73fb9985 JB |
6559 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6560 | for tagged types. */ | |
6561 | ||
6562 | static int | |
6563 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6564 | { | |
0d5cff50 | 6565 | const char *name; |
73fb9985 JB |
6566 | |
6567 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6568 | return 0; | |
6569 | ||
6570 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6571 | if (name == NULL) | |
6572 | return 0; | |
6573 | ||
6574 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6575 | } | |
6576 | ||
ac4a2da4 JG |
6577 | /* Return non-zero if TYPE is an interface tag. */ |
6578 | ||
6579 | static int | |
6580 | ada_is_interface_tag (struct type *type) | |
6581 | { | |
6582 | const char *name = TYPE_NAME (type); | |
6583 | ||
6584 | if (name == NULL) | |
6585 | return 0; | |
6586 | ||
6587 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6588 | } | |
6589 | ||
963a6417 PH |
6590 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6591 | to be invisible to users. */ | |
96d887e8 | 6592 | |
963a6417 PH |
6593 | int |
6594 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6595 | { |
963a6417 PH |
6596 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6597 | return 1; | |
ffde82bf | 6598 | |
73fb9985 JB |
6599 | /* Check the name of that field. */ |
6600 | { | |
6601 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6602 | ||
6603 | /* Anonymous field names should not be printed. | |
6604 | brobecker/2007-02-20: I don't think this can actually happen | |
6605 | but we don't want to print the value of annonymous fields anyway. */ | |
6606 | if (name == NULL) | |
6607 | return 1; | |
6608 | ||
ffde82bf JB |
6609 | /* Normally, fields whose name start with an underscore ("_") |
6610 | are fields that have been internally generated by the compiler, | |
6611 | and thus should not be printed. The "_parent" field is special, | |
6612 | however: This is a field internally generated by the compiler | |
6613 | for tagged types, and it contains the components inherited from | |
6614 | the parent type. This field should not be printed as is, but | |
6615 | should not be ignored either. */ | |
61012eef | 6616 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6617 | return 1; |
6618 | } | |
6619 | ||
ac4a2da4 JG |
6620 | /* If this is the dispatch table of a tagged type or an interface tag, |
6621 | then ignore. */ | |
73fb9985 | 6622 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6623 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6624 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6625 | return 1; |
6626 | ||
6627 | /* Not a special field, so it should not be ignored. */ | |
6628 | return 0; | |
963a6417 | 6629 | } |
96d887e8 | 6630 | |
963a6417 | 6631 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6632 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6633 | |
963a6417 PH |
6634 | int |
6635 | ada_is_tagged_type (struct type *type, int refok) | |
6636 | { | |
988f6b3d | 6637 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6638 | } |
96d887e8 | 6639 | |
963a6417 | 6640 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6641 | |
963a6417 PH |
6642 | int |
6643 | ada_is_tag_type (struct type *type) | |
6644 | { | |
460efde1 JB |
6645 | type = ada_check_typedef (type); |
6646 | ||
963a6417 PH |
6647 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6648 | return 0; | |
6649 | else | |
96d887e8 | 6650 | { |
963a6417 | 6651 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6652 | |
963a6417 PH |
6653 | return (name != NULL |
6654 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6655 | } |
96d887e8 PH |
6656 | } |
6657 | ||
963a6417 | 6658 | /* The type of the tag on VAL. */ |
76a01679 | 6659 | |
963a6417 PH |
6660 | struct type * |
6661 | ada_tag_type (struct value *val) | |
96d887e8 | 6662 | { |
988f6b3d | 6663 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6664 | } |
96d887e8 | 6665 | |
b50d69b5 JG |
6666 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6667 | retired at Ada 05). */ | |
6668 | ||
6669 | static int | |
6670 | is_ada95_tag (struct value *tag) | |
6671 | { | |
6672 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6673 | } | |
6674 | ||
963a6417 | 6675 | /* The value of the tag on VAL. */ |
96d887e8 | 6676 | |
963a6417 PH |
6677 | struct value * |
6678 | ada_value_tag (struct value *val) | |
6679 | { | |
03ee6b2e | 6680 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6681 | } |
6682 | ||
963a6417 PH |
6683 | /* The value of the tag on the object of type TYPE whose contents are |
6684 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6685 | ADDRESS. */ |
96d887e8 | 6686 | |
963a6417 | 6687 | static struct value * |
10a2c479 | 6688 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6689 | const gdb_byte *valaddr, |
963a6417 | 6690 | CORE_ADDR address) |
96d887e8 | 6691 | { |
b5385fc0 | 6692 | int tag_byte_offset; |
963a6417 | 6693 | struct type *tag_type; |
5b4ee69b | 6694 | |
963a6417 | 6695 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6696 | NULL, NULL, NULL)) |
96d887e8 | 6697 | { |
fc1a4b47 | 6698 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6699 | ? NULL |
6700 | : valaddr + tag_byte_offset); | |
963a6417 | 6701 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6702 | |
963a6417 | 6703 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6704 | } |
963a6417 PH |
6705 | return NULL; |
6706 | } | |
96d887e8 | 6707 | |
963a6417 PH |
6708 | static struct type * |
6709 | type_from_tag (struct value *tag) | |
6710 | { | |
6711 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6712 | |
963a6417 PH |
6713 | if (type_name != NULL) |
6714 | return ada_find_any_type (ada_encode (type_name)); | |
6715 | return NULL; | |
6716 | } | |
96d887e8 | 6717 | |
b50d69b5 JG |
6718 | /* Given a value OBJ of a tagged type, return a value of this |
6719 | type at the base address of the object. The base address, as | |
6720 | defined in Ada.Tags, it is the address of the primary tag of | |
6721 | the object, and therefore where the field values of its full | |
6722 | view can be fetched. */ | |
6723 | ||
6724 | struct value * | |
6725 | ada_tag_value_at_base_address (struct value *obj) | |
6726 | { | |
b50d69b5 JG |
6727 | struct value *val; |
6728 | LONGEST offset_to_top = 0; | |
6729 | struct type *ptr_type, *obj_type; | |
6730 | struct value *tag; | |
6731 | CORE_ADDR base_address; | |
6732 | ||
6733 | obj_type = value_type (obj); | |
6734 | ||
6735 | /* It is the responsability of the caller to deref pointers. */ | |
6736 | ||
6737 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6738 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6739 | return obj; | |
6740 | ||
6741 | tag = ada_value_tag (obj); | |
6742 | if (!tag) | |
6743 | return obj; | |
6744 | ||
6745 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6746 | ||
6747 | if (is_ada95_tag (tag)) | |
6748 | return obj; | |
6749 | ||
08f49010 XR |
6750 | ptr_type = language_lookup_primitive_type |
6751 | (language_def (language_ada), target_gdbarch(), "storage_offset"); | |
b50d69b5 JG |
6752 | ptr_type = lookup_pointer_type (ptr_type); |
6753 | val = value_cast (ptr_type, tag); | |
6754 | if (!val) | |
6755 | return obj; | |
6756 | ||
6757 | /* It is perfectly possible that an exception be raised while | |
6758 | trying to determine the base address, just like for the tag; | |
6759 | see ada_tag_name for more details. We do not print the error | |
6760 | message for the same reason. */ | |
6761 | ||
492d29ea | 6762 | TRY |
b50d69b5 JG |
6763 | { |
6764 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6765 | } | |
6766 | ||
492d29ea PA |
6767 | CATCH (e, RETURN_MASK_ERROR) |
6768 | { | |
6769 | return obj; | |
6770 | } | |
6771 | END_CATCH | |
b50d69b5 JG |
6772 | |
6773 | /* If offset is null, nothing to do. */ | |
6774 | ||
6775 | if (offset_to_top == 0) | |
6776 | return obj; | |
6777 | ||
6778 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6779 | is not quite clear from the documentation. So do nothing for | |
6780 | now. */ | |
6781 | ||
6782 | if (offset_to_top == -1) | |
6783 | return obj; | |
6784 | ||
08f49010 XR |
6785 | /* OFFSET_TO_TOP used to be a positive value to be subtracted |
6786 | from the base address. This was however incompatible with | |
6787 | C++ dispatch table: C++ uses a *negative* value to *add* | |
6788 | to the base address. Ada's convention has therefore been | |
6789 | changed in GNAT 19.0w 20171023: since then, C++ and Ada | |
6790 | use the same convention. Here, we support both cases by | |
6791 | checking the sign of OFFSET_TO_TOP. */ | |
6792 | ||
6793 | if (offset_to_top > 0) | |
6794 | offset_to_top = -offset_to_top; | |
6795 | ||
6796 | base_address = value_address (obj) + offset_to_top; | |
b50d69b5 JG |
6797 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
6798 | ||
6799 | /* Make sure that we have a proper tag at the new address. | |
6800 | Otherwise, offset_to_top is bogus (which can happen when | |
6801 | the object is not initialized yet). */ | |
6802 | ||
6803 | if (!tag) | |
6804 | return obj; | |
6805 | ||
6806 | obj_type = type_from_tag (tag); | |
6807 | ||
6808 | if (!obj_type) | |
6809 | return obj; | |
6810 | ||
6811 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6812 | } | |
6813 | ||
1b611343 JB |
6814 | /* Return the "ada__tags__type_specific_data" type. */ |
6815 | ||
6816 | static struct type * | |
6817 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6818 | { |
1b611343 | 6819 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6820 | |
1b611343 JB |
6821 | if (data->tsd_type == 0) |
6822 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6823 | return data->tsd_type; | |
6824 | } | |
529cad9c | 6825 | |
1b611343 JB |
6826 | /* Return the TSD (type-specific data) associated to the given TAG. |
6827 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6828 | |
1b611343 | 6829 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6830 | |
1b611343 JB |
6831 | static struct value * |
6832 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6833 | { |
4c4b4cd2 | 6834 | struct value *val; |
1b611343 | 6835 | struct type *type; |
5b4ee69b | 6836 | |
1b611343 JB |
6837 | /* First option: The TSD is simply stored as a field of our TAG. |
6838 | Only older versions of GNAT would use this format, but we have | |
6839 | to test it first, because there are no visible markers for | |
6840 | the current approach except the absence of that field. */ | |
529cad9c | 6841 | |
1b611343 JB |
6842 | val = ada_value_struct_elt (tag, "tsd", 1); |
6843 | if (val) | |
6844 | return val; | |
e802dbe0 | 6845 | |
1b611343 JB |
6846 | /* Try the second representation for the dispatch table (in which |
6847 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6848 | and instead the tsd pointer is stored just before the dispatch | |
6849 | table. */ | |
e802dbe0 | 6850 | |
1b611343 JB |
6851 | type = ada_get_tsd_type (current_inferior()); |
6852 | if (type == NULL) | |
6853 | return NULL; | |
6854 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6855 | val = value_cast (type, tag); | |
6856 | if (val == NULL) | |
6857 | return NULL; | |
6858 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6859 | } |
6860 | ||
1b611343 JB |
6861 | /* Given the TSD of a tag (type-specific data), return a string |
6862 | containing the name of the associated type. | |
6863 | ||
6864 | The returned value is good until the next call. May return NULL | |
6865 | if we are unable to determine the tag name. */ | |
6866 | ||
6867 | static char * | |
6868 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6869 | { |
529cad9c PH |
6870 | static char name[1024]; |
6871 | char *p; | |
1b611343 | 6872 | struct value *val; |
529cad9c | 6873 | |
1b611343 | 6874 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6875 | if (val == NULL) |
1b611343 | 6876 | return NULL; |
4c4b4cd2 PH |
6877 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6878 | for (p = name; *p != '\0'; p += 1) | |
6879 | if (isalpha (*p)) | |
6880 | *p = tolower (*p); | |
1b611343 | 6881 | return name; |
4c4b4cd2 PH |
6882 | } |
6883 | ||
6884 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6885 | a C string. |
6886 | ||
6887 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6888 | determine the name of that tag. The result is good until the next | |
6889 | call. */ | |
4c4b4cd2 PH |
6890 | |
6891 | const char * | |
6892 | ada_tag_name (struct value *tag) | |
6893 | { | |
1b611343 | 6894 | char *name = NULL; |
5b4ee69b | 6895 | |
df407dfe | 6896 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6897 | return NULL; |
1b611343 JB |
6898 | |
6899 | /* It is perfectly possible that an exception be raised while trying | |
6900 | to determine the TAG's name, even under normal circumstances: | |
6901 | The associated variable may be uninitialized or corrupted, for | |
6902 | instance. We do not let any exception propagate past this point. | |
6903 | instead we return NULL. | |
6904 | ||
6905 | We also do not print the error message either (which often is very | |
6906 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6907 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6908 | TRY |
1b611343 JB |
6909 | { |
6910 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6911 | ||
6912 | if (tsd != NULL) | |
6913 | name = ada_tag_name_from_tsd (tsd); | |
6914 | } | |
492d29ea PA |
6915 | CATCH (e, RETURN_MASK_ERROR) |
6916 | { | |
6917 | } | |
6918 | END_CATCH | |
1b611343 JB |
6919 | |
6920 | return name; | |
4c4b4cd2 PH |
6921 | } |
6922 | ||
6923 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6924 | |
d2e4a39e | 6925 | struct type * |
ebf56fd3 | 6926 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6927 | { |
6928 | int i; | |
6929 | ||
61ee279c | 6930 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6931 | |
6932 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6933 | return NULL; | |
6934 | ||
6935 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6936 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6937 | { |
6938 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6939 | ||
6940 | /* If the _parent field is a pointer, then dereference it. */ | |
6941 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6942 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6943 | /* If there is a parallel XVS type, get the actual base type. */ | |
6944 | parent_type = ada_get_base_type (parent_type); | |
6945 | ||
6946 | return ada_check_typedef (parent_type); | |
6947 | } | |
14f9c5c9 AS |
6948 | |
6949 | return NULL; | |
6950 | } | |
6951 | ||
4c4b4cd2 PH |
6952 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6953 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6954 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6955 | |
6956 | int | |
ebf56fd3 | 6957 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6958 | { |
61ee279c | 6959 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6960 | |
4c4b4cd2 | 6961 | return (name != NULL |
61012eef GB |
6962 | && (startswith (name, "PARENT") |
6963 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6964 | } |
6965 | ||
4c4b4cd2 | 6966 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6967 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6968 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6969 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6970 | structures. */ |
14f9c5c9 AS |
6971 | |
6972 | int | |
ebf56fd3 | 6973 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6974 | { |
d2e4a39e | 6975 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6976 | |
dddc0e16 JB |
6977 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
6978 | { | |
6979 | /* This happens in functions with "out" or "in out" parameters | |
6980 | which are passed by copy. For such functions, GNAT describes | |
6981 | the function's return type as being a struct where the return | |
6982 | value is in a field called RETVAL, and where the other "out" | |
6983 | or "in out" parameters are fields of that struct. This is not | |
6984 | a wrapper. */ | |
6985 | return 0; | |
6986 | } | |
6987 | ||
d2e4a39e | 6988 | return (name != NULL |
61012eef | 6989 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6990 | || strcmp (name, "REP") == 0 |
61012eef | 6991 | || startswith (name, "_parent") |
4c4b4cd2 | 6992 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6993 | } |
6994 | ||
4c4b4cd2 PH |
6995 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6996 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6997 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6998 | |
6999 | int | |
ebf56fd3 | 7000 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 7001 | { |
d2e4a39e | 7002 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 7003 | |
14f9c5c9 | 7004 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 7005 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
7006 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
7007 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
7008 | } |
7009 | ||
7010 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 7011 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
7012 | returns the type of the controlling discriminant for the variant. |
7013 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 7014 | |
d2e4a39e | 7015 | struct type * |
ebf56fd3 | 7016 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 7017 | { |
a121b7c1 | 7018 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7019 | |
988f6b3d | 7020 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
7021 | } |
7022 | ||
4c4b4cd2 | 7023 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 7024 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 7025 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
7026 | |
7027 | int | |
ebf56fd3 | 7028 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 7029 | { |
d2e4a39e | 7030 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7031 | |
14f9c5c9 AS |
7032 | return (name != NULL && name[0] == 'O'); |
7033 | } | |
7034 | ||
7035 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7036 | returns the name of the discriminant controlling the variant. |
7037 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7038 | |
a121b7c1 | 7039 | const char * |
ebf56fd3 | 7040 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7041 | { |
d2e4a39e | 7042 | static char *result = NULL; |
14f9c5c9 | 7043 | static size_t result_len = 0; |
d2e4a39e AS |
7044 | struct type *type; |
7045 | const char *name; | |
7046 | const char *discrim_end; | |
7047 | const char *discrim_start; | |
14f9c5c9 AS |
7048 | |
7049 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7050 | type = TYPE_TARGET_TYPE (type0); | |
7051 | else | |
7052 | type = type0; | |
7053 | ||
7054 | name = ada_type_name (type); | |
7055 | ||
7056 | if (name == NULL || name[0] == '\000') | |
7057 | return ""; | |
7058 | ||
7059 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7060 | discrim_end -= 1) | |
7061 | { | |
61012eef | 7062 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7063 | break; |
14f9c5c9 AS |
7064 | } |
7065 | if (discrim_end == name) | |
7066 | return ""; | |
7067 | ||
d2e4a39e | 7068 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7069 | discrim_start -= 1) |
7070 | { | |
d2e4a39e | 7071 | if (discrim_start == name + 1) |
4c4b4cd2 | 7072 | return ""; |
76a01679 | 7073 | if ((discrim_start > name + 3 |
61012eef | 7074 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7075 | || discrim_start[-1] == '.') |
7076 | break; | |
14f9c5c9 AS |
7077 | } |
7078 | ||
7079 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7080 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7081 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7082 | return result; |
7083 | } | |
7084 | ||
4c4b4cd2 PH |
7085 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7086 | Put the position of the character just past the number scanned in | |
7087 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7088 | Return 1 if there was a valid number at the given position, and 0 | |
7089 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7090 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7091 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7092 | |
7093 | int | |
d2e4a39e | 7094 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7095 | { |
7096 | ULONGEST RU; | |
7097 | ||
d2e4a39e | 7098 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7099 | return 0; |
7100 | ||
4c4b4cd2 | 7101 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7102 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7103 | LONGEST. */ |
14f9c5c9 AS |
7104 | RU = 0; |
7105 | while (isdigit (str[k])) | |
7106 | { | |
d2e4a39e | 7107 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7108 | k += 1; |
7109 | } | |
7110 | ||
d2e4a39e | 7111 | if (str[k] == 'm') |
14f9c5c9 AS |
7112 | { |
7113 | if (R != NULL) | |
4c4b4cd2 | 7114 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7115 | k += 1; |
7116 | } | |
7117 | else if (R != NULL) | |
7118 | *R = (LONGEST) RU; | |
7119 | ||
4c4b4cd2 | 7120 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7121 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7122 | number representable as a LONGEST (although either would probably work | |
7123 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7124 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7125 | |
7126 | if (new_k != NULL) | |
7127 | *new_k = k; | |
7128 | return 1; | |
7129 | } | |
7130 | ||
4c4b4cd2 PH |
7131 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7132 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7133 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7134 | |
d2e4a39e | 7135 | int |
ebf56fd3 | 7136 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7137 | { |
d2e4a39e | 7138 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7139 | int p; |
7140 | ||
7141 | p = 0; | |
7142 | while (1) | |
7143 | { | |
d2e4a39e | 7144 | switch (name[p]) |
4c4b4cd2 PH |
7145 | { |
7146 | case '\0': | |
7147 | return 0; | |
7148 | case 'S': | |
7149 | { | |
7150 | LONGEST W; | |
5b4ee69b | 7151 | |
4c4b4cd2 PH |
7152 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7153 | return 0; | |
7154 | if (val == W) | |
7155 | return 1; | |
7156 | break; | |
7157 | } | |
7158 | case 'R': | |
7159 | { | |
7160 | LONGEST L, U; | |
5b4ee69b | 7161 | |
4c4b4cd2 PH |
7162 | if (!ada_scan_number (name, p + 1, &L, &p) |
7163 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7164 | return 0; | |
7165 | if (val >= L && val <= U) | |
7166 | return 1; | |
7167 | break; | |
7168 | } | |
7169 | case 'O': | |
7170 | return 1; | |
7171 | default: | |
7172 | return 0; | |
7173 | } | |
7174 | } | |
7175 | } | |
7176 | ||
0963b4bd | 7177 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7178 | |
7179 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7180 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7181 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7182 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7183 | |
4c4b4cd2 | 7184 | static struct value * |
d2e4a39e | 7185 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7186 | struct type *arg_type) |
14f9c5c9 | 7187 | { |
14f9c5c9 AS |
7188 | struct type *type; |
7189 | ||
61ee279c | 7190 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7191 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7192 | ||
4c4b4cd2 | 7193 | /* Handle packed fields. */ |
14f9c5c9 AS |
7194 | |
7195 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7196 | { | |
7197 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7198 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7199 | |
0fd88904 | 7200 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7201 | offset + bit_pos / 8, |
7202 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7203 | } |
7204 | else | |
7205 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7206 | } | |
7207 | ||
52ce6436 PH |
7208 | /* Find field with name NAME in object of type TYPE. If found, |
7209 | set the following for each argument that is non-null: | |
7210 | - *FIELD_TYPE_P to the field's type; | |
7211 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7212 | an object of that type; | |
7213 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7214 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7215 | 0 otherwise; | |
7216 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7217 | fields up to but not including the desired field, or by the total | |
7218 | number of fields if not found. A NULL value of NAME never | |
7219 | matches; the function just counts visible fields in this case. | |
7220 | ||
828d5846 XR |
7221 | Notice that we need to handle when a tagged record hierarchy |
7222 | has some components with the same name, like in this scenario: | |
7223 | ||
7224 | type Top_T is tagged record | |
7225 | N : Integer := 1; | |
7226 | U : Integer := 974; | |
7227 | A : Integer := 48; | |
7228 | end record; | |
7229 | ||
7230 | type Middle_T is new Top.Top_T with record | |
7231 | N : Character := 'a'; | |
7232 | C : Integer := 3; | |
7233 | end record; | |
7234 | ||
7235 | type Bottom_T is new Middle.Middle_T with record | |
7236 | N : Float := 4.0; | |
7237 | C : Character := '5'; | |
7238 | X : Integer := 6; | |
7239 | A : Character := 'J'; | |
7240 | end record; | |
7241 | ||
7242 | Let's say we now have a variable declared and initialized as follow: | |
7243 | ||
7244 | TC : Top_A := new Bottom_T; | |
7245 | ||
7246 | And then we use this variable to call this function | |
7247 | ||
7248 | procedure Assign (Obj: in out Top_T; TV : Integer); | |
7249 | ||
7250 | as follow: | |
7251 | ||
7252 | Assign (Top_T (B), 12); | |
7253 | ||
7254 | Now, we're in the debugger, and we're inside that procedure | |
7255 | then and we want to print the value of obj.c: | |
7256 | ||
7257 | Usually, the tagged record or one of the parent type owns the | |
7258 | component to print and there's no issue but in this particular | |
7259 | case, what does it mean to ask for Obj.C? Since the actual | |
7260 | type for object is type Bottom_T, it could mean two things: type | |
7261 | component C from the Middle_T view, but also component C from | |
7262 | Bottom_T. So in that "undefined" case, when the component is | |
7263 | not found in the non-resolved type (which includes all the | |
7264 | components of the parent type), then resolve it and see if we | |
7265 | get better luck once expanded. | |
7266 | ||
7267 | In the case of homonyms in the derived tagged type, we don't | |
7268 | guaranty anything, and pick the one that's easiest for us | |
7269 | to program. | |
7270 | ||
0963b4bd | 7271 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7272 | |
4c4b4cd2 | 7273 | static int |
0d5cff50 | 7274 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7275 | struct type **field_type_p, |
52ce6436 PH |
7276 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7277 | int *index_p) | |
4c4b4cd2 PH |
7278 | { |
7279 | int i; | |
828d5846 | 7280 | int parent_offset = -1; |
4c4b4cd2 | 7281 | |
61ee279c | 7282 | type = ada_check_typedef (type); |
76a01679 | 7283 | |
52ce6436 PH |
7284 | if (field_type_p != NULL) |
7285 | *field_type_p = NULL; | |
7286 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7287 | *byte_offset_p = 0; |
52ce6436 PH |
7288 | if (bit_offset_p != NULL) |
7289 | *bit_offset_p = 0; | |
7290 | if (bit_size_p != NULL) | |
7291 | *bit_size_p = 0; | |
7292 | ||
7293 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7294 | { |
7295 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7296 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7297 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7298 | |
4c4b4cd2 PH |
7299 | if (t_field_name == NULL) |
7300 | continue; | |
7301 | ||
828d5846 XR |
7302 | else if (ada_is_parent_field (type, i)) |
7303 | { | |
7304 | /* This is a field pointing us to the parent type of a tagged | |
7305 | type. As hinted in this function's documentation, we give | |
7306 | preference to fields in the current record first, so what | |
7307 | we do here is just record the index of this field before | |
7308 | we skip it. If it turns out we couldn't find our field | |
7309 | in the current record, then we'll get back to it and search | |
7310 | inside it whether the field might exist in the parent. */ | |
7311 | ||
7312 | parent_offset = i; | |
7313 | continue; | |
7314 | } | |
7315 | ||
52ce6436 | 7316 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7317 | { |
7318 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7319 | |
52ce6436 PH |
7320 | if (field_type_p != NULL) |
7321 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7322 | if (byte_offset_p != NULL) | |
7323 | *byte_offset_p = fld_offset; | |
7324 | if (bit_offset_p != NULL) | |
7325 | *bit_offset_p = bit_pos % 8; | |
7326 | if (bit_size_p != NULL) | |
7327 | *bit_size_p = bit_size; | |
76a01679 JB |
7328 | return 1; |
7329 | } | |
4c4b4cd2 PH |
7330 | else if (ada_is_wrapper_field (type, i)) |
7331 | { | |
52ce6436 PH |
7332 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7333 | field_type_p, byte_offset_p, bit_offset_p, | |
7334 | bit_size_p, index_p)) | |
76a01679 JB |
7335 | return 1; |
7336 | } | |
4c4b4cd2 PH |
7337 | else if (ada_is_variant_part (type, i)) |
7338 | { | |
52ce6436 PH |
7339 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7340 | fixed type?? */ | |
4c4b4cd2 | 7341 | int j; |
52ce6436 PH |
7342 | struct type *field_type |
7343 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7344 | |
52ce6436 | 7345 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7346 | { |
76a01679 JB |
7347 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7348 | fld_offset | |
7349 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7350 | field_type_p, byte_offset_p, | |
52ce6436 | 7351 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7352 | return 1; |
4c4b4cd2 PH |
7353 | } |
7354 | } | |
52ce6436 PH |
7355 | else if (index_p != NULL) |
7356 | *index_p += 1; | |
4c4b4cd2 | 7357 | } |
828d5846 XR |
7358 | |
7359 | /* Field not found so far. If this is a tagged type which | |
7360 | has a parent, try finding that field in the parent now. */ | |
7361 | ||
7362 | if (parent_offset != -1) | |
7363 | { | |
7364 | int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset); | |
7365 | int fld_offset = offset + bit_pos / 8; | |
7366 | ||
7367 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset), | |
7368 | fld_offset, field_type_p, byte_offset_p, | |
7369 | bit_offset_p, bit_size_p, index_p)) | |
7370 | return 1; | |
7371 | } | |
7372 | ||
4c4b4cd2 PH |
7373 | return 0; |
7374 | } | |
7375 | ||
0963b4bd | 7376 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7377 | |
52ce6436 PH |
7378 | static int |
7379 | num_visible_fields (struct type *type) | |
7380 | { | |
7381 | int n; | |
5b4ee69b | 7382 | |
52ce6436 PH |
7383 | n = 0; |
7384 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7385 | return n; | |
7386 | } | |
14f9c5c9 | 7387 | |
4c4b4cd2 | 7388 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7389 | and search in it assuming it has (class) type TYPE. |
7390 | If found, return value, else return NULL. | |
7391 | ||
828d5846 XR |
7392 | Searches recursively through wrapper fields (e.g., '_parent'). |
7393 | ||
7394 | In the case of homonyms in the tagged types, please refer to the | |
7395 | long explanation in find_struct_field's function documentation. */ | |
14f9c5c9 | 7396 | |
4c4b4cd2 | 7397 | static struct value * |
108d56a4 | 7398 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7399 | struct type *type) |
14f9c5c9 AS |
7400 | { |
7401 | int i; | |
828d5846 | 7402 | int parent_offset = -1; |
14f9c5c9 | 7403 | |
5b4ee69b | 7404 | type = ada_check_typedef (type); |
52ce6436 | 7405 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7406 | { |
0d5cff50 | 7407 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7408 | |
7409 | if (t_field_name == NULL) | |
4c4b4cd2 | 7410 | continue; |
14f9c5c9 | 7411 | |
828d5846 XR |
7412 | else if (ada_is_parent_field (type, i)) |
7413 | { | |
7414 | /* This is a field pointing us to the parent type of a tagged | |
7415 | type. As hinted in this function's documentation, we give | |
7416 | preference to fields in the current record first, so what | |
7417 | we do here is just record the index of this field before | |
7418 | we skip it. If it turns out we couldn't find our field | |
7419 | in the current record, then we'll get back to it and search | |
7420 | inside it whether the field might exist in the parent. */ | |
7421 | ||
7422 | parent_offset = i; | |
7423 | continue; | |
7424 | } | |
7425 | ||
14f9c5c9 | 7426 | else if (field_name_match (t_field_name, name)) |
4c4b4cd2 | 7427 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7428 | |
7429 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7430 | { |
0963b4bd | 7431 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7432 | ada_search_struct_field (name, arg, |
7433 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7434 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7435 | |
4c4b4cd2 PH |
7436 | if (v != NULL) |
7437 | return v; | |
7438 | } | |
14f9c5c9 AS |
7439 | |
7440 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7441 | { |
0963b4bd | 7442 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7443 | int j; |
5b4ee69b MS |
7444 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7445 | i)); | |
4c4b4cd2 PH |
7446 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7447 | ||
52ce6436 | 7448 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7449 | { |
0963b4bd MS |
7450 | struct value *v = ada_search_struct_field /* Force line |
7451 | break. */ | |
06d5cf63 JB |
7452 | (name, arg, |
7453 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7454 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7455 | |
4c4b4cd2 PH |
7456 | if (v != NULL) |
7457 | return v; | |
7458 | } | |
7459 | } | |
14f9c5c9 | 7460 | } |
828d5846 XR |
7461 | |
7462 | /* Field not found so far. If this is a tagged type which | |
7463 | has a parent, try finding that field in the parent now. */ | |
7464 | ||
7465 | if (parent_offset != -1) | |
7466 | { | |
7467 | struct value *v = ada_search_struct_field ( | |
7468 | name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8, | |
7469 | TYPE_FIELD_TYPE (type, parent_offset)); | |
7470 | ||
7471 | if (v != NULL) | |
7472 | return v; | |
7473 | } | |
7474 | ||
14f9c5c9 AS |
7475 | return NULL; |
7476 | } | |
d2e4a39e | 7477 | |
52ce6436 PH |
7478 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7479 | int, struct type *); | |
7480 | ||
7481 | ||
7482 | /* Return field #INDEX in ARG, where the index is that returned by | |
7483 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7484 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7485 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7486 | |
7487 | static struct value * | |
7488 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7489 | struct type *type) | |
7490 | { | |
7491 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7492 | } | |
7493 | ||
7494 | ||
7495 | /* Auxiliary function for ada_index_struct_field. Like | |
7496 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7497 | * *INDEX_P. */ |
52ce6436 PH |
7498 | |
7499 | static struct value * | |
7500 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7501 | struct type *type) | |
7502 | { | |
7503 | int i; | |
7504 | type = ada_check_typedef (type); | |
7505 | ||
7506 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7507 | { | |
7508 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7509 | continue; | |
7510 | else if (ada_is_wrapper_field (type, i)) | |
7511 | { | |
0963b4bd | 7512 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7513 | ada_index_struct_field_1 (index_p, arg, |
7514 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7515 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7516 | |
52ce6436 PH |
7517 | if (v != NULL) |
7518 | return v; | |
7519 | } | |
7520 | ||
7521 | else if (ada_is_variant_part (type, i)) | |
7522 | { | |
7523 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7524 | find_struct_field. */ |
52ce6436 PH |
7525 | error (_("Cannot assign this kind of variant record")); |
7526 | } | |
7527 | else if (*index_p == 0) | |
7528 | return ada_value_primitive_field (arg, offset, i, type); | |
7529 | else | |
7530 | *index_p -= 1; | |
7531 | } | |
7532 | return NULL; | |
7533 | } | |
7534 | ||
4c4b4cd2 PH |
7535 | /* Given ARG, a value of type (pointer or reference to a)* |
7536 | structure/union, extract the component named NAME from the ultimate | |
7537 | target structure/union and return it as a value with its | |
f5938064 | 7538 | appropriate type. |
14f9c5c9 | 7539 | |
4c4b4cd2 PH |
7540 | The routine searches for NAME among all members of the structure itself |
7541 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7542 | (e.g., '_parent'). |
7543 | ||
03ee6b2e PH |
7544 | If NO_ERR, then simply return NULL in case of error, rather than |
7545 | calling error. */ | |
14f9c5c9 | 7546 | |
d2e4a39e | 7547 | struct value * |
a121b7c1 | 7548 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7549 | { |
4c4b4cd2 | 7550 | struct type *t, *t1; |
d2e4a39e | 7551 | struct value *v; |
14f9c5c9 | 7552 | |
4c4b4cd2 | 7553 | v = NULL; |
df407dfe | 7554 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7555 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7556 | { | |
7557 | t1 = TYPE_TARGET_TYPE (t); | |
7558 | if (t1 == NULL) | |
03ee6b2e | 7559 | goto BadValue; |
61ee279c | 7560 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7561 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7562 | { |
994b9211 | 7563 | arg = coerce_ref (arg); |
76a01679 JB |
7564 | t = t1; |
7565 | } | |
4c4b4cd2 | 7566 | } |
14f9c5c9 | 7567 | |
4c4b4cd2 PH |
7568 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7569 | { | |
7570 | t1 = TYPE_TARGET_TYPE (t); | |
7571 | if (t1 == NULL) | |
03ee6b2e | 7572 | goto BadValue; |
61ee279c | 7573 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7574 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7575 | { |
7576 | arg = value_ind (arg); | |
7577 | t = t1; | |
7578 | } | |
4c4b4cd2 | 7579 | else |
76a01679 | 7580 | break; |
4c4b4cd2 | 7581 | } |
14f9c5c9 | 7582 | |
4c4b4cd2 | 7583 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7584 | goto BadValue; |
14f9c5c9 | 7585 | |
4c4b4cd2 PH |
7586 | if (t1 == t) |
7587 | v = ada_search_struct_field (name, arg, 0, t); | |
7588 | else | |
7589 | { | |
7590 | int bit_offset, bit_size, byte_offset; | |
7591 | struct type *field_type; | |
7592 | CORE_ADDR address; | |
7593 | ||
76a01679 | 7594 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7595 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7596 | else |
b50d69b5 | 7597 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7598 | |
828d5846 XR |
7599 | /* Check to see if this is a tagged type. We also need to handle |
7600 | the case where the type is a reference to a tagged type, but | |
7601 | we have to be careful to exclude pointers to tagged types. | |
7602 | The latter should be shown as usual (as a pointer), whereas | |
7603 | a reference should mostly be transparent to the user. */ | |
7604 | ||
7605 | if (ada_is_tagged_type (t1, 0) | |
7606 | || (TYPE_CODE (t1) == TYPE_CODE_REF | |
7607 | && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) | |
7608 | { | |
7609 | /* We first try to find the searched field in the current type. | |
7610 | If not found then let's look in the fixed type. */ | |
7611 | ||
7612 | if (!find_struct_field (name, t1, 0, | |
7613 | &field_type, &byte_offset, &bit_offset, | |
7614 | &bit_size, NULL)) | |
7615 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
7616 | address, NULL, 1); | |
7617 | } | |
7618 | else | |
7619 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
7620 | address, NULL, 1); | |
7621 | ||
76a01679 JB |
7622 | if (find_struct_field (name, t1, 0, |
7623 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7624 | &bit_size, NULL)) |
76a01679 JB |
7625 | { |
7626 | if (bit_size != 0) | |
7627 | { | |
714e53ab PH |
7628 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7629 | arg = ada_coerce_ref (arg); | |
7630 | else | |
7631 | arg = ada_value_ind (arg); | |
76a01679 JB |
7632 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7633 | bit_offset, bit_size, | |
7634 | field_type); | |
7635 | } | |
7636 | else | |
f5938064 | 7637 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7638 | } |
7639 | } | |
7640 | ||
03ee6b2e PH |
7641 | if (v != NULL || no_err) |
7642 | return v; | |
7643 | else | |
323e0a4a | 7644 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7645 | |
03ee6b2e PH |
7646 | BadValue: |
7647 | if (no_err) | |
7648 | return NULL; | |
7649 | else | |
0963b4bd MS |
7650 | error (_("Attempt to extract a component of " |
7651 | "a value that is not a record.")); | |
14f9c5c9 AS |
7652 | } |
7653 | ||
3b4de39c | 7654 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7655 | |
3b4de39c | 7656 | static std::string |
99bbb428 PA |
7657 | type_as_string (struct type *type) |
7658 | { | |
d7e74731 | 7659 | string_file tmp_stream; |
99bbb428 | 7660 | |
d7e74731 | 7661 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7662 | |
d7e74731 | 7663 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7664 | } |
7665 | ||
14f9c5c9 | 7666 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7667 | If DISPP is non-null, add its byte displacement from the beginning of a |
7668 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7669 | work for packed fields). |
7670 | ||
7671 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7672 | followed by "___". |
14f9c5c9 | 7673 | |
0963b4bd | 7674 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7675 | be a (pointer or reference)+ to a struct or union, and the |
7676 | ultimate target type will be searched. | |
14f9c5c9 AS |
7677 | |
7678 | Looks recursively into variant clauses and parent types. | |
7679 | ||
828d5846 XR |
7680 | In the case of homonyms in the tagged types, please refer to the |
7681 | long explanation in find_struct_field's function documentation. | |
7682 | ||
4c4b4cd2 PH |
7683 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7684 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7685 | |
4c4b4cd2 | 7686 | static struct type * |
a121b7c1 | 7687 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7688 | int noerr) |
14f9c5c9 AS |
7689 | { |
7690 | int i; | |
828d5846 | 7691 | int parent_offset = -1; |
14f9c5c9 AS |
7692 | |
7693 | if (name == NULL) | |
7694 | goto BadName; | |
7695 | ||
76a01679 | 7696 | if (refok && type != NULL) |
4c4b4cd2 PH |
7697 | while (1) |
7698 | { | |
61ee279c | 7699 | type = ada_check_typedef (type); |
76a01679 JB |
7700 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7701 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7702 | break; | |
7703 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7704 | } |
14f9c5c9 | 7705 | |
76a01679 | 7706 | if (type == NULL |
1265e4aa JB |
7707 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7708 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7709 | { |
4c4b4cd2 | 7710 | if (noerr) |
76a01679 | 7711 | return NULL; |
99bbb428 | 7712 | |
3b4de39c PA |
7713 | error (_("Type %s is not a structure or union type"), |
7714 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7715 | } |
7716 | ||
7717 | type = to_static_fixed_type (type); | |
7718 | ||
7719 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7720 | { | |
0d5cff50 | 7721 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7722 | struct type *t; |
d2e4a39e | 7723 | |
14f9c5c9 | 7724 | if (t_field_name == NULL) |
4c4b4cd2 | 7725 | continue; |
14f9c5c9 | 7726 | |
828d5846 XR |
7727 | else if (ada_is_parent_field (type, i)) |
7728 | { | |
7729 | /* This is a field pointing us to the parent type of a tagged | |
7730 | type. As hinted in this function's documentation, we give | |
7731 | preference to fields in the current record first, so what | |
7732 | we do here is just record the index of this field before | |
7733 | we skip it. If it turns out we couldn't find our field | |
7734 | in the current record, then we'll get back to it and search | |
7735 | inside it whether the field might exist in the parent. */ | |
7736 | ||
7737 | parent_offset = i; | |
7738 | continue; | |
7739 | } | |
7740 | ||
14f9c5c9 | 7741 | else if (field_name_match (t_field_name, name)) |
988f6b3d | 7742 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7743 | |
7744 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7745 | { |
4c4b4cd2 | 7746 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7747 | 0, 1); |
4c4b4cd2 | 7748 | if (t != NULL) |
988f6b3d | 7749 | return t; |
4c4b4cd2 | 7750 | } |
14f9c5c9 AS |
7751 | |
7752 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7753 | { |
7754 | int j; | |
5b4ee69b MS |
7755 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7756 | i)); | |
4c4b4cd2 PH |
7757 | |
7758 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7759 | { | |
b1f33ddd JB |
7760 | /* FIXME pnh 2008/01/26: We check for a field that is |
7761 | NOT wrapped in a struct, since the compiler sometimes | |
7762 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7763 | if the compiler changes this practice. */ |
0d5cff50 | 7764 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7765 | |
b1f33ddd JB |
7766 | if (v_field_name != NULL |
7767 | && field_name_match (v_field_name, name)) | |
460efde1 | 7768 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7769 | else |
0963b4bd MS |
7770 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7771 | j), | |
988f6b3d | 7772 | name, 0, 1); |
b1f33ddd | 7773 | |
4c4b4cd2 | 7774 | if (t != NULL) |
988f6b3d | 7775 | return t; |
4c4b4cd2 PH |
7776 | } |
7777 | } | |
14f9c5c9 AS |
7778 | |
7779 | } | |
7780 | ||
828d5846 XR |
7781 | /* Field not found so far. If this is a tagged type which |
7782 | has a parent, try finding that field in the parent now. */ | |
7783 | ||
7784 | if (parent_offset != -1) | |
7785 | { | |
7786 | struct type *t; | |
7787 | ||
7788 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset), | |
7789 | name, 0, 1); | |
7790 | if (t != NULL) | |
7791 | return t; | |
7792 | } | |
7793 | ||
14f9c5c9 | 7794 | BadName: |
d2e4a39e | 7795 | if (!noerr) |
14f9c5c9 | 7796 | { |
2b2798cc | 7797 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7798 | |
7799 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7800 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7801 | } |
7802 | ||
7803 | return NULL; | |
7804 | } | |
7805 | ||
b1f33ddd JB |
7806 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7807 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7808 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7809 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7810 | |
7811 | static int | |
7812 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7813 | { | |
a121b7c1 | 7814 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7815 | |
988f6b3d | 7816 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7817 | } |
7818 | ||
7819 | ||
14f9c5c9 AS |
7820 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7821 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7822 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7823 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7824 | |
d2e4a39e | 7825 | int |
ebf56fd3 | 7826 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7827 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7828 | { |
7829 | int others_clause; | |
7830 | int i; | |
a121b7c1 | 7831 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7832 | struct value *outer; |
7833 | struct value *discrim; | |
14f9c5c9 AS |
7834 | LONGEST discrim_val; |
7835 | ||
012370f6 TT |
7836 | /* Using plain value_from_contents_and_address here causes problems |
7837 | because we will end up trying to resolve a type that is currently | |
7838 | being constructed. */ | |
7839 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7840 | outer_valaddr, 0); | |
0c281816 JB |
7841 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7842 | if (discrim == NULL) | |
14f9c5c9 | 7843 | return -1; |
0c281816 | 7844 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7845 | |
7846 | others_clause = -1; | |
7847 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7848 | { | |
7849 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7850 | others_clause = i; |
14f9c5c9 | 7851 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7852 | return i; |
14f9c5c9 AS |
7853 | } |
7854 | ||
7855 | return others_clause; | |
7856 | } | |
d2e4a39e | 7857 | \f |
14f9c5c9 AS |
7858 | |
7859 | ||
4c4b4cd2 | 7860 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7861 | |
7862 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7863 | (i.e., a size that is not statically recorded in the debugging | |
7864 | data) does not accurately reflect the size or layout of the value. | |
7865 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7866 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7867 | |
7868 | /* There is a subtle and tricky problem here. In general, we cannot | |
7869 | determine the size of dynamic records without its data. However, | |
7870 | the 'struct value' data structure, which GDB uses to represent | |
7871 | quantities in the inferior process (the target), requires the size | |
7872 | of the type at the time of its allocation in order to reserve space | |
7873 | for GDB's internal copy of the data. That's why the | |
7874 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7875 | rather than struct value*s. |
14f9c5c9 AS |
7876 | |
7877 | However, GDB's internal history variables ($1, $2, etc.) are | |
7878 | struct value*s containing internal copies of the data that are not, in | |
7879 | general, the same as the data at their corresponding addresses in | |
7880 | the target. Fortunately, the types we give to these values are all | |
7881 | conventional, fixed-size types (as per the strategy described | |
7882 | above), so that we don't usually have to perform the | |
7883 | 'to_fixed_xxx_type' conversions to look at their values. | |
7884 | Unfortunately, there is one exception: if one of the internal | |
7885 | history variables is an array whose elements are unconstrained | |
7886 | records, then we will need to create distinct fixed types for each | |
7887 | element selected. */ | |
7888 | ||
7889 | /* The upshot of all of this is that many routines take a (type, host | |
7890 | address, target address) triple as arguments to represent a value. | |
7891 | The host address, if non-null, is supposed to contain an internal | |
7892 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7893 | target at the target address. */ |
14f9c5c9 AS |
7894 | |
7895 | /* Assuming that VAL0 represents a pointer value, the result of | |
7896 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7897 | dynamic-sized types. */ |
14f9c5c9 | 7898 | |
d2e4a39e AS |
7899 | struct value * |
7900 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7901 | { |
c48db5ca | 7902 | struct value *val = value_ind (val0); |
5b4ee69b | 7903 | |
b50d69b5 JG |
7904 | if (ada_is_tagged_type (value_type (val), 0)) |
7905 | val = ada_tag_value_at_base_address (val); | |
7906 | ||
4c4b4cd2 | 7907 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7908 | } |
7909 | ||
7910 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7911 | qualifiers on VAL0. */ |
7912 | ||
d2e4a39e AS |
7913 | static struct value * |
7914 | ada_coerce_ref (struct value *val0) | |
7915 | { | |
df407dfe | 7916 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7917 | { |
7918 | struct value *val = val0; | |
5b4ee69b | 7919 | |
994b9211 | 7920 | val = coerce_ref (val); |
b50d69b5 JG |
7921 | |
7922 | if (ada_is_tagged_type (value_type (val), 0)) | |
7923 | val = ada_tag_value_at_base_address (val); | |
7924 | ||
4c4b4cd2 | 7925 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7926 | } |
7927 | else | |
14f9c5c9 AS |
7928 | return val0; |
7929 | } | |
7930 | ||
7931 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7932 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7933 | |
7934 | static unsigned int | |
ebf56fd3 | 7935 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7936 | { |
7937 | return (off + alignment - 1) & ~(alignment - 1); | |
7938 | } | |
7939 | ||
4c4b4cd2 | 7940 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7941 | |
7942 | static unsigned int | |
ebf56fd3 | 7943 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7944 | { |
d2e4a39e | 7945 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7946 | int len; |
14f9c5c9 AS |
7947 | int align_offset; |
7948 | ||
64a1bf19 JB |
7949 | /* The field name should never be null, unless the debugging information |
7950 | is somehow malformed. In this case, we assume the field does not | |
7951 | require any alignment. */ | |
7952 | if (name == NULL) | |
7953 | return 1; | |
7954 | ||
7955 | len = strlen (name); | |
7956 | ||
4c4b4cd2 PH |
7957 | if (!isdigit (name[len - 1])) |
7958 | return 1; | |
14f9c5c9 | 7959 | |
d2e4a39e | 7960 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7961 | align_offset = len - 2; |
7962 | else | |
7963 | align_offset = len - 1; | |
7964 | ||
61012eef | 7965 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7966 | return TARGET_CHAR_BIT; |
7967 | ||
4c4b4cd2 PH |
7968 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7969 | } | |
7970 | ||
852dff6c | 7971 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7972 | |
852dff6c JB |
7973 | static struct symbol * |
7974 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7975 | { |
7976 | struct symbol *sym; | |
7977 | ||
7978 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7979 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7980 | return sym; |
7981 | ||
4186eb54 KS |
7982 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7983 | return sym; | |
14f9c5c9 AS |
7984 | } |
7985 | ||
dddfab26 UW |
7986 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7987 | solely for types defined by debug info, it will not search the GDB | |
7988 | primitive types. */ | |
4c4b4cd2 | 7989 | |
852dff6c | 7990 | static struct type * |
ebf56fd3 | 7991 | ada_find_any_type (const char *name) |
14f9c5c9 | 7992 | { |
852dff6c | 7993 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7994 | |
14f9c5c9 | 7995 | if (sym != NULL) |
dddfab26 | 7996 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7997 | |
dddfab26 | 7998 | return NULL; |
14f9c5c9 AS |
7999 | } |
8000 | ||
739593e0 JB |
8001 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
8002 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
8003 | symbol, in which case it is returned. Otherwise, this looks for | |
8004 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
8005 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
8006 | |
8007 | struct symbol * | |
270140bd | 8008 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 8009 | { |
739593e0 | 8010 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
8011 | struct symbol *sym; |
8012 | ||
739593e0 JB |
8013 | if (strstr (name, "___XR") != NULL) |
8014 | return name_sym; | |
8015 | ||
aeb5907d JB |
8016 | sym = find_old_style_renaming_symbol (name, block); |
8017 | ||
8018 | if (sym != NULL) | |
8019 | return sym; | |
8020 | ||
0963b4bd | 8021 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 8022 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
8023 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
8024 | return sym; | |
8025 | else | |
8026 | return NULL; | |
8027 | } | |
8028 | ||
8029 | static struct symbol * | |
270140bd | 8030 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 8031 | { |
7f0df278 | 8032 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
8033 | char *rename; |
8034 | ||
8035 | if (function_sym != NULL) | |
8036 | { | |
8037 | /* If the symbol is defined inside a function, NAME is not fully | |
8038 | qualified. This means we need to prepend the function name | |
8039 | as well as adding the ``___XR'' suffix to build the name of | |
8040 | the associated renaming symbol. */ | |
0d5cff50 | 8041 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
8042 | /* Function names sometimes contain suffixes used |
8043 | for instance to qualify nested subprograms. When building | |
8044 | the XR type name, we need to make sure that this suffix is | |
8045 | not included. So do not include any suffix in the function | |
8046 | name length below. */ | |
69fadcdf | 8047 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
8048 | const int rename_len = function_name_len + 2 /* "__" */ |
8049 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 8050 | |
529cad9c | 8051 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
8052 | ada_remove_trailing_digits (function_name, &function_name_len); |
8053 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
8054 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 8055 | |
4c4b4cd2 PH |
8056 | /* Library-level functions are a special case, as GNAT adds |
8057 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 8058 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
8059 | have this prefix, so we need to skip this prefix if present. */ |
8060 | if (function_name_len > 5 /* "_ada_" */ | |
8061 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
8062 | { |
8063 | function_name += 5; | |
8064 | function_name_len -= 5; | |
8065 | } | |
4c4b4cd2 PH |
8066 | |
8067 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
8068 | strncpy (rename, function_name, function_name_len); |
8069 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
8070 | "__%s___XR", name); | |
4c4b4cd2 PH |
8071 | } |
8072 | else | |
8073 | { | |
8074 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 8075 | |
4c4b4cd2 | 8076 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 8077 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
8078 | } |
8079 | ||
852dff6c | 8080 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
8081 | } |
8082 | ||
14f9c5c9 | 8083 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 8084 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 8085 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
8086 | otherwise return 0. */ |
8087 | ||
14f9c5c9 | 8088 | int |
d2e4a39e | 8089 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
8090 | { |
8091 | if (type1 == NULL) | |
8092 | return 1; | |
8093 | else if (type0 == NULL) | |
8094 | return 0; | |
8095 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
8096 | return 1; | |
8097 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
8098 | return 0; | |
4c4b4cd2 PH |
8099 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
8100 | return 1; | |
ad82864c | 8101 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 8102 | return 1; |
4c4b4cd2 PH |
8103 | else if (ada_is_array_descriptor_type (type0) |
8104 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 8105 | return 1; |
aeb5907d JB |
8106 | else |
8107 | { | |
8108 | const char *type0_name = type_name_no_tag (type0); | |
8109 | const char *type1_name = type_name_no_tag (type1); | |
8110 | ||
8111 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
8112 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
8113 | return 1; | |
8114 | } | |
14f9c5c9 AS |
8115 | return 0; |
8116 | } | |
8117 | ||
8118 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
8119 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
8120 | ||
0d5cff50 | 8121 | const char * |
d2e4a39e | 8122 | ada_type_name (struct type *type) |
14f9c5c9 | 8123 | { |
d2e4a39e | 8124 | if (type == NULL) |
14f9c5c9 AS |
8125 | return NULL; |
8126 | else if (TYPE_NAME (type) != NULL) | |
8127 | return TYPE_NAME (type); | |
8128 | else | |
8129 | return TYPE_TAG_NAME (type); | |
8130 | } | |
8131 | ||
b4ba55a1 JB |
8132 | /* Search the list of "descriptive" types associated to TYPE for a type |
8133 | whose name is NAME. */ | |
8134 | ||
8135 | static struct type * | |
8136 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8137 | { | |
931e5bc3 | 8138 | struct type *result, *tmp; |
b4ba55a1 | 8139 | |
c6044dd1 JB |
8140 | if (ada_ignore_descriptive_types_p) |
8141 | return NULL; | |
8142 | ||
b4ba55a1 JB |
8143 | /* If there no descriptive-type info, then there is no parallel type |
8144 | to be found. */ | |
8145 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8146 | return NULL; | |
8147 | ||
8148 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8149 | while (result != NULL) | |
8150 | { | |
0d5cff50 | 8151 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8152 | |
8153 | if (result_name == NULL) | |
8154 | { | |
8155 | warning (_("unexpected null name on descriptive type")); | |
8156 | return NULL; | |
8157 | } | |
8158 | ||
8159 | /* If the names match, stop. */ | |
8160 | if (strcmp (result_name, name) == 0) | |
8161 | break; | |
8162 | ||
8163 | /* Otherwise, look at the next item on the list, if any. */ | |
8164 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8165 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8166 | else | |
8167 | tmp = NULL; | |
8168 | ||
8169 | /* If not found either, try after having resolved the typedef. */ | |
8170 | if (tmp != NULL) | |
8171 | result = tmp; | |
b4ba55a1 | 8172 | else |
931e5bc3 | 8173 | { |
f168693b | 8174 | result = check_typedef (result); |
931e5bc3 JG |
8175 | if (HAVE_GNAT_AUX_INFO (result)) |
8176 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8177 | else | |
8178 | result = NULL; | |
8179 | } | |
b4ba55a1 JB |
8180 | } |
8181 | ||
8182 | /* If we didn't find a match, see whether this is a packed array. With | |
8183 | older compilers, the descriptive type information is either absent or | |
8184 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8185 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8186 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8187 | return ada_find_any_type (name); |
8188 | ||
8189 | return result; | |
8190 | } | |
8191 | ||
8192 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8193 | descriptive type taken from the debugging information, if available, | |
8194 | and otherwise using the (slower) name-based method. */ | |
8195 | ||
8196 | static struct type * | |
8197 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8198 | { | |
8199 | struct type *result = NULL; | |
8200 | ||
8201 | if (HAVE_GNAT_AUX_INFO (type)) | |
8202 | result = find_parallel_type_by_descriptive_type (type, name); | |
8203 | else | |
8204 | result = ada_find_any_type (name); | |
8205 | ||
8206 | return result; | |
8207 | } | |
8208 | ||
8209 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8210 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8211 | |
d2e4a39e | 8212 | struct type * |
ebf56fd3 | 8213 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8214 | { |
0d5cff50 | 8215 | char *name; |
fe978cb0 | 8216 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8217 | int len; |
d2e4a39e | 8218 | |
fe978cb0 | 8219 | if (type_name == NULL) |
14f9c5c9 AS |
8220 | return NULL; |
8221 | ||
fe978cb0 | 8222 | len = strlen (type_name); |
14f9c5c9 | 8223 | |
b4ba55a1 | 8224 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8225 | |
fe978cb0 | 8226 | strcpy (name, type_name); |
14f9c5c9 AS |
8227 | strcpy (name + len, suffix); |
8228 | ||
b4ba55a1 | 8229 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8230 | } |
8231 | ||
14f9c5c9 | 8232 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8233 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8234 | |
d2e4a39e AS |
8235 | static struct type * |
8236 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8237 | { |
61ee279c | 8238 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8239 | |
8240 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8241 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8242 | return NULL; |
d2e4a39e | 8243 | else |
14f9c5c9 AS |
8244 | { |
8245 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8246 | |
4c4b4cd2 PH |
8247 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8248 | return type; | |
14f9c5c9 | 8249 | else |
4c4b4cd2 | 8250 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8251 | } |
8252 | } | |
8253 | ||
8254 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8255 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8256 | |
d2e4a39e AS |
8257 | static int |
8258 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8259 | { |
8260 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8261 | |
d2e4a39e | 8262 | return name != NULL |
14f9c5c9 AS |
8263 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8264 | && strstr (name, "___XVL") != NULL; | |
8265 | } | |
8266 | ||
4c4b4cd2 PH |
8267 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8268 | represent a variant record type. */ | |
14f9c5c9 | 8269 | |
d2e4a39e | 8270 | static int |
4c4b4cd2 | 8271 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8272 | { |
8273 | int f; | |
8274 | ||
4c4b4cd2 PH |
8275 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8276 | return -1; | |
8277 | ||
8278 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8279 | { | |
8280 | if (ada_is_variant_part (type, f)) | |
8281 | return f; | |
8282 | } | |
8283 | return -1; | |
14f9c5c9 AS |
8284 | } |
8285 | ||
4c4b4cd2 PH |
8286 | /* A record type with no fields. */ |
8287 | ||
d2e4a39e | 8288 | static struct type * |
fe978cb0 | 8289 | empty_record (struct type *templ) |
14f9c5c9 | 8290 | { |
fe978cb0 | 8291 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8292 | |
14f9c5c9 AS |
8293 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8294 | TYPE_NFIELDS (type) = 0; | |
8295 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8296 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
8297 | TYPE_NAME (type) = "<empty>"; |
8298 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
8299 | TYPE_LENGTH (type) = 0; |
8300 | return type; | |
8301 | } | |
8302 | ||
8303 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8304 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8305 | the beginning of this section) VAL according to GNAT conventions. | |
8306 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8307 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8308 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8309 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8310 | of the variant. |
14f9c5c9 | 8311 | |
4c4b4cd2 PH |
8312 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8313 | length are not statically known are discarded. As a consequence, | |
8314 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8315 | ||
8316 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8317 | variants occupy whole numbers of bytes. However, they need not be | |
8318 | byte-aligned. */ | |
8319 | ||
8320 | struct type * | |
10a2c479 | 8321 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8322 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8323 | CORE_ADDR address, struct value *dval0, |
8324 | int keep_dynamic_fields) | |
14f9c5c9 | 8325 | { |
d2e4a39e AS |
8326 | struct value *mark = value_mark (); |
8327 | struct value *dval; | |
8328 | struct type *rtype; | |
14f9c5c9 | 8329 | int nfields, bit_len; |
4c4b4cd2 | 8330 | int variant_field; |
14f9c5c9 | 8331 | long off; |
d94e4f4f | 8332 | int fld_bit_len; |
14f9c5c9 AS |
8333 | int f; |
8334 | ||
4c4b4cd2 PH |
8335 | /* Compute the number of fields in this record type that are going |
8336 | to be processed: unless keep_dynamic_fields, this includes only | |
8337 | fields whose position and length are static will be processed. */ | |
8338 | if (keep_dynamic_fields) | |
8339 | nfields = TYPE_NFIELDS (type); | |
8340 | else | |
8341 | { | |
8342 | nfields = 0; | |
76a01679 | 8343 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8344 | && !ada_is_variant_part (type, nfields) |
8345 | && !is_dynamic_field (type, nfields)) | |
8346 | nfields++; | |
8347 | } | |
8348 | ||
e9bb382b | 8349 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8350 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8351 | INIT_CPLUS_SPECIFIC (rtype); | |
8352 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8353 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8354 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8355 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8356 | TYPE_NAME (rtype) = ada_type_name (type); | |
8357 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8358 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8359 | |
d2e4a39e AS |
8360 | off = 0; |
8361 | bit_len = 0; | |
4c4b4cd2 PH |
8362 | variant_field = -1; |
8363 | ||
14f9c5c9 AS |
8364 | for (f = 0; f < nfields; f += 1) |
8365 | { | |
6c038f32 PH |
8366 | off = align_value (off, field_alignment (type, f)) |
8367 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8368 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8369 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8370 | |
d2e4a39e | 8371 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8372 | { |
8373 | variant_field = f; | |
d94e4f4f | 8374 | fld_bit_len = 0; |
4c4b4cd2 | 8375 | } |
14f9c5c9 | 8376 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8377 | { |
284614f0 JB |
8378 | const gdb_byte *field_valaddr = valaddr; |
8379 | CORE_ADDR field_address = address; | |
8380 | struct type *field_type = | |
8381 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8382 | ||
4c4b4cd2 | 8383 | if (dval0 == NULL) |
b5304971 JG |
8384 | { |
8385 | /* rtype's length is computed based on the run-time | |
8386 | value of discriminants. If the discriminants are not | |
8387 | initialized, the type size may be completely bogus and | |
0963b4bd | 8388 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8389 | size first before creating the value. */ |
c1b5a1a6 | 8390 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8391 | /* Using plain value_from_contents_and_address here |
8392 | causes problems because we will end up trying to | |
8393 | resolve a type that is currently being | |
8394 | constructed. */ | |
8395 | dval = value_from_contents_and_address_unresolved (rtype, | |
8396 | valaddr, | |
8397 | address); | |
9f1f738a | 8398 | rtype = value_type (dval); |
b5304971 | 8399 | } |
4c4b4cd2 PH |
8400 | else |
8401 | dval = dval0; | |
8402 | ||
284614f0 JB |
8403 | /* If the type referenced by this field is an aligner type, we need |
8404 | to unwrap that aligner type, because its size might not be set. | |
8405 | Keeping the aligner type would cause us to compute the wrong | |
8406 | size for this field, impacting the offset of the all the fields | |
8407 | that follow this one. */ | |
8408 | if (ada_is_aligner_type (field_type)) | |
8409 | { | |
8410 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8411 | ||
8412 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8413 | field_address = cond_offset_target (field_address, field_offset); | |
8414 | field_type = ada_aligned_type (field_type); | |
8415 | } | |
8416 | ||
8417 | field_valaddr = cond_offset_host (field_valaddr, | |
8418 | off / TARGET_CHAR_BIT); | |
8419 | field_address = cond_offset_target (field_address, | |
8420 | off / TARGET_CHAR_BIT); | |
8421 | ||
8422 | /* Get the fixed type of the field. Note that, in this case, | |
8423 | we do not want to get the real type out of the tag: if | |
8424 | the current field is the parent part of a tagged record, | |
8425 | we will get the tag of the object. Clearly wrong: the real | |
8426 | type of the parent is not the real type of the child. We | |
8427 | would end up in an infinite loop. */ | |
8428 | field_type = ada_get_base_type (field_type); | |
8429 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8430 | field_address, dval, 0); | |
27f2a97b JB |
8431 | /* If the field size is already larger than the maximum |
8432 | object size, then the record itself will necessarily | |
8433 | be larger than the maximum object size. We need to make | |
8434 | this check now, because the size might be so ridiculously | |
8435 | large (due to an uninitialized variable in the inferior) | |
8436 | that it would cause an overflow when adding it to the | |
8437 | record size. */ | |
c1b5a1a6 | 8438 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8439 | |
8440 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8441 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8442 | /* The multiplication can potentially overflow. But because |
8443 | the field length has been size-checked just above, and | |
8444 | assuming that the maximum size is a reasonable value, | |
8445 | an overflow should not happen in practice. So rather than | |
8446 | adding overflow recovery code to this already complex code, | |
8447 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8448 | fld_bit_len = |
4c4b4cd2 PH |
8449 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8450 | } | |
14f9c5c9 | 8451 | else |
4c4b4cd2 | 8452 | { |
5ded5331 JB |
8453 | /* Note: If this field's type is a typedef, it is important |
8454 | to preserve the typedef layer. | |
8455 | ||
8456 | Otherwise, we might be transforming a typedef to a fat | |
8457 | pointer (encoding a pointer to an unconstrained array), | |
8458 | into a basic fat pointer (encoding an unconstrained | |
8459 | array). As both types are implemented using the same | |
8460 | structure, the typedef is the only clue which allows us | |
8461 | to distinguish between the two options. Stripping it | |
8462 | would prevent us from printing this field appropriately. */ | |
8463 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8464 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8465 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8466 | fld_bit_len = |
4c4b4cd2 PH |
8467 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8468 | else | |
5ded5331 JB |
8469 | { |
8470 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8471 | ||
8472 | /* We need to be careful of typedefs when computing | |
8473 | the length of our field. If this is a typedef, | |
8474 | get the length of the target type, not the length | |
8475 | of the typedef. */ | |
8476 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8477 | field_type = ada_typedef_target_type (field_type); | |
8478 | ||
8479 | fld_bit_len = | |
8480 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8481 | } | |
4c4b4cd2 | 8482 | } |
14f9c5c9 | 8483 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8484 | bit_len = off + fld_bit_len; |
d94e4f4f | 8485 | off += fld_bit_len; |
4c4b4cd2 PH |
8486 | TYPE_LENGTH (rtype) = |
8487 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8488 | } |
4c4b4cd2 PH |
8489 | |
8490 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8491 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8492 | the record. This can happen in the presence of representation |
8493 | clauses. */ | |
8494 | if (variant_field >= 0) | |
8495 | { | |
8496 | struct type *branch_type; | |
8497 | ||
8498 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8499 | ||
8500 | if (dval0 == NULL) | |
9f1f738a | 8501 | { |
012370f6 TT |
8502 | /* Using plain value_from_contents_and_address here causes |
8503 | problems because we will end up trying to resolve a type | |
8504 | that is currently being constructed. */ | |
8505 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8506 | address); | |
9f1f738a SA |
8507 | rtype = value_type (dval); |
8508 | } | |
4c4b4cd2 PH |
8509 | else |
8510 | dval = dval0; | |
8511 | ||
8512 | branch_type = | |
8513 | to_fixed_variant_branch_type | |
8514 | (TYPE_FIELD_TYPE (type, variant_field), | |
8515 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8516 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8517 | if (branch_type == NULL) | |
8518 | { | |
8519 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8520 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8521 | TYPE_NFIELDS (rtype) -= 1; | |
8522 | } | |
8523 | else | |
8524 | { | |
8525 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8526 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8527 | fld_bit_len = | |
8528 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8529 | TARGET_CHAR_BIT; | |
8530 | if (off + fld_bit_len > bit_len) | |
8531 | bit_len = off + fld_bit_len; | |
8532 | TYPE_LENGTH (rtype) = | |
8533 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8534 | } | |
8535 | } | |
8536 | ||
714e53ab PH |
8537 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8538 | should contain the alignment of that record, which should be a strictly | |
8539 | positive value. If null or negative, then something is wrong, most | |
8540 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8541 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8542 | the current RTYPE length might be good enough for our purposes. */ |
8543 | if (TYPE_LENGTH (type) <= 0) | |
8544 | { | |
323e0a4a AC |
8545 | if (TYPE_NAME (rtype)) |
8546 | warning (_("Invalid type size for `%s' detected: %d."), | |
8547 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8548 | else | |
8549 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8550 | TYPE_LENGTH (type)); | |
714e53ab PH |
8551 | } |
8552 | else | |
8553 | { | |
8554 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8555 | TYPE_LENGTH (type)); | |
8556 | } | |
14f9c5c9 AS |
8557 | |
8558 | value_free_to_mark (mark); | |
d2e4a39e | 8559 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8560 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8561 | return rtype; |
8562 | } | |
8563 | ||
4c4b4cd2 PH |
8564 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8565 | of 1. */ | |
14f9c5c9 | 8566 | |
d2e4a39e | 8567 | static struct type * |
fc1a4b47 | 8568 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8569 | CORE_ADDR address, struct value *dval0) |
8570 | { | |
8571 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8572 | address, dval0, 1); | |
8573 | } | |
8574 | ||
8575 | /* An ordinary record type in which ___XVL-convention fields and | |
8576 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8577 | static approximations, containing all possible fields. Uses | |
8578 | no runtime values. Useless for use in values, but that's OK, | |
8579 | since the results are used only for type determinations. Works on both | |
8580 | structs and unions. Representation note: to save space, we memorize | |
8581 | the result of this function in the TYPE_TARGET_TYPE of the | |
8582 | template type. */ | |
8583 | ||
8584 | static struct type * | |
8585 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8586 | { |
8587 | struct type *type; | |
8588 | int nfields; | |
8589 | int f; | |
8590 | ||
9e195661 PMR |
8591 | /* No need no do anything if the input type is already fixed. */ |
8592 | if (TYPE_FIXED_INSTANCE (type0)) | |
8593 | return type0; | |
8594 | ||
8595 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8596 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8597 | return TYPE_TARGET_TYPE (type0); | |
8598 | ||
9e195661 | 8599 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8600 | type = type0; |
9e195661 PMR |
8601 | nfields = TYPE_NFIELDS (type0); |
8602 | ||
8603 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8604 | recompute all over next time. */ | |
8605 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8606 | |
8607 | for (f = 0; f < nfields; f += 1) | |
8608 | { | |
460efde1 | 8609 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8610 | struct type *new_type; |
14f9c5c9 | 8611 | |
4c4b4cd2 | 8612 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8613 | { |
8614 | field_type = ada_check_typedef (field_type); | |
8615 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8616 | } | |
14f9c5c9 | 8617 | else |
f192137b | 8618 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8619 | |
8620 | if (new_type != field_type) | |
8621 | { | |
8622 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8623 | if (type == type0) | |
8624 | { | |
8625 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8626 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8627 | INIT_CPLUS_SPECIFIC (type); | |
8628 | TYPE_NFIELDS (type) = nfields; | |
8629 | TYPE_FIELDS (type) = (struct field *) | |
8630 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8631 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8632 | sizeof (struct field) * nfields); | |
8633 | TYPE_NAME (type) = ada_type_name (type0); | |
8634 | TYPE_TAG_NAME (type) = NULL; | |
8635 | TYPE_FIXED_INSTANCE (type) = 1; | |
8636 | TYPE_LENGTH (type) = 0; | |
8637 | } | |
8638 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8639 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8640 | } | |
14f9c5c9 | 8641 | } |
9e195661 | 8642 | |
14f9c5c9 AS |
8643 | return type; |
8644 | } | |
8645 | ||
4c4b4cd2 | 8646 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8647 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8648 | which should be a non-dynamic-sized record, in which the variant | |
8649 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8650 | for discriminant values in DVAL0, which can be NULL if the record |
8651 | contains the necessary discriminant values. */ | |
8652 | ||
d2e4a39e | 8653 | static struct type * |
fc1a4b47 | 8654 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8655 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8656 | { |
d2e4a39e | 8657 | struct value *mark = value_mark (); |
4c4b4cd2 | 8658 | struct value *dval; |
d2e4a39e | 8659 | struct type *rtype; |
14f9c5c9 AS |
8660 | struct type *branch_type; |
8661 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8662 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8663 | |
4c4b4cd2 | 8664 | if (variant_field == -1) |
14f9c5c9 AS |
8665 | return type; |
8666 | ||
4c4b4cd2 | 8667 | if (dval0 == NULL) |
9f1f738a SA |
8668 | { |
8669 | dval = value_from_contents_and_address (type, valaddr, address); | |
8670 | type = value_type (dval); | |
8671 | } | |
4c4b4cd2 PH |
8672 | else |
8673 | dval = dval0; | |
8674 | ||
e9bb382b | 8675 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8676 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8677 | INIT_CPLUS_SPECIFIC (rtype); |
8678 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8679 | TYPE_FIELDS (rtype) = |
8680 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8681 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8682 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8683 | TYPE_NAME (rtype) = ada_type_name (type); |
8684 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8685 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8686 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8687 | ||
4c4b4cd2 PH |
8688 | branch_type = to_fixed_variant_branch_type |
8689 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8690 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8691 | TYPE_FIELD_BITPOS (type, variant_field) |
8692 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8693 | cond_offset_target (address, |
4c4b4cd2 PH |
8694 | TYPE_FIELD_BITPOS (type, variant_field) |
8695 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8696 | if (branch_type == NULL) |
14f9c5c9 | 8697 | { |
4c4b4cd2 | 8698 | int f; |
5b4ee69b | 8699 | |
4c4b4cd2 PH |
8700 | for (f = variant_field + 1; f < nfields; f += 1) |
8701 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8702 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8703 | } |
8704 | else | |
8705 | { | |
4c4b4cd2 PH |
8706 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8707 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8708 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8709 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8710 | } |
4c4b4cd2 | 8711 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8712 | |
4c4b4cd2 | 8713 | value_free_to_mark (mark); |
14f9c5c9 AS |
8714 | return rtype; |
8715 | } | |
8716 | ||
8717 | /* An ordinary record type (with fixed-length fields) that describes | |
8718 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8719 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8720 | should be in DVAL, a record value; it may be NULL if the object |
8721 | at ADDR itself contains any necessary discriminant values. | |
8722 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8723 | values from the record are needed. Except in the case that DVAL, | |
8724 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8725 | unchecked) is replaced by a particular branch of the variant. | |
8726 | ||
8727 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8728 | is questionable and may be removed. It can arise during the | |
8729 | processing of an unconstrained-array-of-record type where all the | |
8730 | variant branches have exactly the same size. This is because in | |
8731 | such cases, the compiler does not bother to use the XVS convention | |
8732 | when encoding the record. I am currently dubious of this | |
8733 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8734 | |
d2e4a39e | 8735 | static struct type * |
fc1a4b47 | 8736 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8737 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8738 | { |
d2e4a39e | 8739 | struct type *templ_type; |
14f9c5c9 | 8740 | |
876cecd0 | 8741 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8742 | return type0; |
8743 | ||
d2e4a39e | 8744 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8745 | |
8746 | if (templ_type != NULL) | |
8747 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8748 | else if (variant_field_index (type0) >= 0) |
8749 | { | |
8750 | if (dval == NULL && valaddr == NULL && address == 0) | |
8751 | return type0; | |
8752 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8753 | dval); | |
8754 | } | |
14f9c5c9 AS |
8755 | else |
8756 | { | |
876cecd0 | 8757 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8758 | return type0; |
8759 | } | |
8760 | ||
8761 | } | |
8762 | ||
8763 | /* An ordinary record type (with fixed-length fields) that describes | |
8764 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8765 | union type. Any necessary discriminants' values should be in DVAL, | |
8766 | a record value. That is, this routine selects the appropriate | |
8767 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8768 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8769 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8770 | |
d2e4a39e | 8771 | static struct type * |
fc1a4b47 | 8772 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8773 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8774 | { |
8775 | int which; | |
d2e4a39e AS |
8776 | struct type *templ_type; |
8777 | struct type *var_type; | |
14f9c5c9 AS |
8778 | |
8779 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8780 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8781 | else |
14f9c5c9 AS |
8782 | var_type = var_type0; |
8783 | ||
8784 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8785 | ||
8786 | if (templ_type != NULL) | |
8787 | var_type = templ_type; | |
8788 | ||
b1f33ddd JB |
8789 | if (is_unchecked_variant (var_type, value_type (dval))) |
8790 | return var_type0; | |
d2e4a39e AS |
8791 | which = |
8792 | ada_which_variant_applies (var_type, | |
0fd88904 | 8793 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8794 | |
8795 | if (which < 0) | |
e9bb382b | 8796 | return empty_record (var_type); |
14f9c5c9 | 8797 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8798 | return to_fixed_record_type |
d2e4a39e AS |
8799 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8800 | valaddr, address, dval); | |
4c4b4cd2 | 8801 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8802 | return |
8803 | to_fixed_record_type | |
8804 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8805 | else |
8806 | return TYPE_FIELD_TYPE (var_type, which); | |
8807 | } | |
8808 | ||
8908fca5 JB |
8809 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8810 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8811 | type encodings, only carries redundant information. */ | |
8812 | ||
8813 | static int | |
8814 | ada_is_redundant_range_encoding (struct type *range_type, | |
8815 | struct type *encoding_type) | |
8816 | { | |
108d56a4 | 8817 | const char *bounds_str; |
8908fca5 JB |
8818 | int n; |
8819 | LONGEST lo, hi; | |
8820 | ||
8821 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8822 | ||
005e2509 JB |
8823 | if (TYPE_CODE (get_base_type (range_type)) |
8824 | != TYPE_CODE (get_base_type (encoding_type))) | |
8825 | { | |
8826 | /* The compiler probably used a simple base type to describe | |
8827 | the range type instead of the range's actual base type, | |
8828 | expecting us to get the real base type from the encoding | |
8829 | anyway. In this situation, the encoding cannot be ignored | |
8830 | as redundant. */ | |
8831 | return 0; | |
8832 | } | |
8833 | ||
8908fca5 JB |
8834 | if (is_dynamic_type (range_type)) |
8835 | return 0; | |
8836 | ||
8837 | if (TYPE_NAME (encoding_type) == NULL) | |
8838 | return 0; | |
8839 | ||
8840 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8841 | if (bounds_str == NULL) | |
8842 | return 0; | |
8843 | ||
8844 | n = 8; /* Skip "___XDLU_". */ | |
8845 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8846 | return 0; | |
8847 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8848 | return 0; | |
8849 | ||
8850 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8851 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8852 | return 0; | |
8853 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8854 | return 0; | |
8855 | ||
8856 | return 1; | |
8857 | } | |
8858 | ||
8859 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8860 | a type following the GNAT encoding for describing array type | |
8861 | indices, only carries redundant information. */ | |
8862 | ||
8863 | static int | |
8864 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8865 | struct type *desc_type) | |
8866 | { | |
8867 | struct type *this_layer = check_typedef (array_type); | |
8868 | int i; | |
8869 | ||
8870 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8871 | { | |
8872 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8873 | TYPE_FIELD_TYPE (desc_type, i))) | |
8874 | return 0; | |
8875 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8876 | } | |
8877 | ||
8878 | return 1; | |
8879 | } | |
8880 | ||
14f9c5c9 AS |
8881 | /* Assuming that TYPE0 is an array type describing the type of a value |
8882 | at ADDR, and that DVAL describes a record containing any | |
8883 | discriminants used in TYPE0, returns a type for the value that | |
8884 | contains no dynamic components (that is, no components whose sizes | |
8885 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8886 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8887 | varsize_limit. */ |
14f9c5c9 | 8888 | |
d2e4a39e AS |
8889 | static struct type * |
8890 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8891 | int ignore_too_big) |
14f9c5c9 | 8892 | { |
d2e4a39e AS |
8893 | struct type *index_type_desc; |
8894 | struct type *result; | |
ad82864c | 8895 | int constrained_packed_array_p; |
931e5bc3 | 8896 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8897 | |
b0dd7688 | 8898 | type0 = ada_check_typedef (type0); |
284614f0 | 8899 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8900 | return type0; |
14f9c5c9 | 8901 | |
ad82864c JB |
8902 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8903 | if (constrained_packed_array_p) | |
8904 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8905 | |
931e5bc3 JG |
8906 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8907 | ||
8908 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8909 | encoding suffixed with 'P' may still be generated. If so, | |
8910 | it should be used to find the XA type. */ | |
8911 | ||
8912 | if (index_type_desc == NULL) | |
8913 | { | |
1da0522e | 8914 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8915 | |
1da0522e | 8916 | if (type_name != NULL) |
931e5bc3 | 8917 | { |
1da0522e | 8918 | const int len = strlen (type_name); |
931e5bc3 JG |
8919 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8920 | ||
1da0522e | 8921 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8922 | { |
1da0522e | 8923 | strcpy (name, type_name); |
931e5bc3 JG |
8924 | strcpy (name + len - 1, xa_suffix); |
8925 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8926 | } | |
8927 | } | |
8928 | } | |
8929 | ||
28c85d6c | 8930 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8931 | if (index_type_desc != NULL |
8932 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8933 | { | |
8934 | /* Ignore this ___XA parallel type, as it does not bring any | |
8935 | useful information. This allows us to avoid creating fixed | |
8936 | versions of the array's index types, which would be identical | |
8937 | to the original ones. This, in turn, can also help avoid | |
8938 | the creation of fixed versions of the array itself. */ | |
8939 | index_type_desc = NULL; | |
8940 | } | |
8941 | ||
14f9c5c9 AS |
8942 | if (index_type_desc == NULL) |
8943 | { | |
61ee279c | 8944 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8945 | |
14f9c5c9 | 8946 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8947 | depend on the contents of the array in properly constructed |
8948 | debugging data. */ | |
529cad9c PH |
8949 | /* Create a fixed version of the array element type. |
8950 | We're not providing the address of an element here, | |
e1d5a0d2 | 8951 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8952 | the conversion. This should not be a problem, since arrays of |
8953 | unconstrained objects are not allowed. In particular, all | |
8954 | the elements of an array of a tagged type should all be of | |
8955 | the same type specified in the debugging info. No need to | |
8956 | consult the object tag. */ | |
1ed6ede0 | 8957 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8958 | |
284614f0 JB |
8959 | /* Make sure we always create a new array type when dealing with |
8960 | packed array types, since we're going to fix-up the array | |
8961 | type length and element bitsize a little further down. */ | |
ad82864c | 8962 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8963 | result = type0; |
14f9c5c9 | 8964 | else |
e9bb382b | 8965 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8966 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8967 | } |
8968 | else | |
8969 | { | |
8970 | int i; | |
8971 | struct type *elt_type0; | |
8972 | ||
8973 | elt_type0 = type0; | |
8974 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8975 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8976 | |
8977 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8978 | depend on the contents of the array in properly constructed |
8979 | debugging data. */ | |
529cad9c PH |
8980 | /* Create a fixed version of the array element type. |
8981 | We're not providing the address of an element here, | |
e1d5a0d2 | 8982 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8983 | the conversion. This should not be a problem, since arrays of |
8984 | unconstrained objects are not allowed. In particular, all | |
8985 | the elements of an array of a tagged type should all be of | |
8986 | the same type specified in the debugging info. No need to | |
8987 | consult the object tag. */ | |
1ed6ede0 JB |
8988 | result = |
8989 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8990 | |
8991 | elt_type0 = type0; | |
14f9c5c9 | 8992 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8993 | { |
8994 | struct type *range_type = | |
28c85d6c | 8995 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8996 | |
e9bb382b | 8997 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8998 | result, range_type); |
1ce677a4 | 8999 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 9000 | } |
d2e4a39e | 9001 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 9002 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
9003 | } |
9004 | ||
2e6fda7d JB |
9005 | /* We want to preserve the type name. This can be useful when |
9006 | trying to get the type name of a value that has already been | |
9007 | printed (for instance, if the user did "print VAR; whatis $". */ | |
9008 | TYPE_NAME (result) = TYPE_NAME (type0); | |
9009 | ||
ad82864c | 9010 | if (constrained_packed_array_p) |
284614f0 JB |
9011 | { |
9012 | /* So far, the resulting type has been created as if the original | |
9013 | type was a regular (non-packed) array type. As a result, the | |
9014 | bitsize of the array elements needs to be set again, and the array | |
9015 | length needs to be recomputed based on that bitsize. */ | |
9016 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
9017 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
9018 | ||
9019 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
9020 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
9021 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
9022 | TYPE_LENGTH (result)++; | |
9023 | } | |
9024 | ||
876cecd0 | 9025 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 9026 | return result; |
d2e4a39e | 9027 | } |
14f9c5c9 AS |
9028 | |
9029 | ||
9030 | /* A standard type (containing no dynamically sized components) | |
9031 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
9032 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 9033 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
9034 | ADDRESS or in VALADDR contains these discriminants. |
9035 | ||
1ed6ede0 JB |
9036 | If CHECK_TAG is not null, in the case of tagged types, this function |
9037 | attempts to locate the object's tag and use it to compute the actual | |
9038 | type. However, when ADDRESS is null, we cannot use it to determine the | |
9039 | location of the tag, and therefore compute the tagged type's actual type. | |
9040 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 9041 | |
f192137b JB |
9042 | static struct type * |
9043 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 9044 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 9045 | { |
61ee279c | 9046 | type = ada_check_typedef (type); |
d2e4a39e AS |
9047 | switch (TYPE_CODE (type)) |
9048 | { | |
9049 | default: | |
14f9c5c9 | 9050 | return type; |
d2e4a39e | 9051 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 9052 | { |
76a01679 | 9053 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
9054 | struct type *fixed_record_type = |
9055 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 9056 | |
529cad9c PH |
9057 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
9058 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 9059 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
9060 | type (the parent part of the record may have dynamic fields |
9061 | and the way the location of _tag is expressed may depend on | |
9062 | them). */ | |
529cad9c | 9063 | |
1ed6ede0 | 9064 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 9065 | { |
b50d69b5 JG |
9066 | struct value *tag = |
9067 | value_tag_from_contents_and_address | |
9068 | (fixed_record_type, | |
9069 | valaddr, | |
9070 | address); | |
9071 | struct type *real_type = type_from_tag (tag); | |
9072 | struct value *obj = | |
9073 | value_from_contents_and_address (fixed_record_type, | |
9074 | valaddr, | |
9075 | address); | |
9f1f738a | 9076 | fixed_record_type = value_type (obj); |
76a01679 | 9077 | if (real_type != NULL) |
b50d69b5 JG |
9078 | return to_fixed_record_type |
9079 | (real_type, NULL, | |
9080 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 9081 | } |
4af88198 JB |
9082 | |
9083 | /* Check to see if there is a parallel ___XVZ variable. | |
9084 | If there is, then it provides the actual size of our type. */ | |
9085 | else if (ada_type_name (fixed_record_type) != NULL) | |
9086 | { | |
0d5cff50 | 9087 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
9088 | char *xvz_name |
9089 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
eccab96d | 9090 | bool xvz_found = false; |
4af88198 JB |
9091 | LONGEST size; |
9092 | ||
88c15c34 | 9093 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
eccab96d JB |
9094 | TRY |
9095 | { | |
9096 | xvz_found = get_int_var_value (xvz_name, size); | |
9097 | } | |
9098 | CATCH (except, RETURN_MASK_ERROR) | |
9099 | { | |
9100 | /* We found the variable, but somehow failed to read | |
9101 | its value. Rethrow the same error, but with a little | |
9102 | bit more information, to help the user understand | |
9103 | what went wrong (Eg: the variable might have been | |
9104 | optimized out). */ | |
9105 | throw_error (except.error, | |
9106 | _("unable to read value of %s (%s)"), | |
9107 | xvz_name, except.message); | |
9108 | } | |
9109 | END_CATCH | |
9110 | ||
9111 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
9112 | { |
9113 | fixed_record_type = copy_type (fixed_record_type); | |
9114 | TYPE_LENGTH (fixed_record_type) = size; | |
9115 | ||
9116 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
9117 | observed this when the debugging info is STABS, and | |
9118 | apparently it is something that is hard to fix. | |
9119 | ||
9120 | In practice, we don't need the actual type definition | |
9121 | at all, because the presence of the XVZ variable allows us | |
9122 | to assume that there must be a XVS type as well, which we | |
9123 | should be able to use later, when we need the actual type | |
9124 | definition. | |
9125 | ||
9126 | In the meantime, pretend that the "fixed" type we are | |
9127 | returning is NOT a stub, because this can cause trouble | |
9128 | when using this type to create new types targeting it. | |
9129 | Indeed, the associated creation routines often check | |
9130 | whether the target type is a stub and will try to replace | |
0963b4bd | 9131 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9132 | might cause the new type to have the wrong size too. |
9133 | Consider the case of an array, for instance, where the size | |
9134 | of the array is computed from the number of elements in | |
9135 | our array multiplied by the size of its element. */ | |
9136 | TYPE_STUB (fixed_record_type) = 0; | |
9137 | } | |
9138 | } | |
1ed6ede0 | 9139 | return fixed_record_type; |
4c4b4cd2 | 9140 | } |
d2e4a39e | 9141 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9142 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9143 | case TYPE_CODE_UNION: |
9144 | if (dval == NULL) | |
4c4b4cd2 | 9145 | return type; |
d2e4a39e | 9146 | else |
4c4b4cd2 | 9147 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9148 | } |
14f9c5c9 AS |
9149 | } |
9150 | ||
f192137b JB |
9151 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9152 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9153 | |
9154 | The typedef layer needs be preserved in order to differentiate between | |
9155 | arrays and array pointers when both types are implemented using the same | |
9156 | fat pointer. In the array pointer case, the pointer is encoded as | |
9157 | a typedef of the pointer type. For instance, considering: | |
9158 | ||
9159 | type String_Access is access String; | |
9160 | S1 : String_Access := null; | |
9161 | ||
9162 | To the debugger, S1 is defined as a typedef of type String. But | |
9163 | to the user, it is a pointer. So if the user tries to print S1, | |
9164 | we should not dereference the array, but print the array address | |
9165 | instead. | |
9166 | ||
9167 | If we didn't preserve the typedef layer, we would lose the fact that | |
9168 | the type is to be presented as a pointer (needs de-reference before | |
9169 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9170 | |
9171 | struct type * | |
9172 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9173 | CORE_ADDR address, struct value *dval, int check_tag) | |
9174 | ||
9175 | { | |
9176 | struct type *fixed_type = | |
9177 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9178 | ||
96dbd2c1 JB |
9179 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9180 | then preserve the typedef layer. | |
9181 | ||
9182 | Implementation note: We can only check the main-type portion of | |
9183 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9184 | from TYPE now returns a type that has the same instance flags | |
9185 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9186 | target type is a "struct", then the typedef elimination will return | |
9187 | a "const" version of the target type. See check_typedef for more | |
9188 | details about how the typedef layer elimination is done. | |
9189 | ||
9190 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9191 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9192 | Perhaps, we could add a check for that and preserve the typedef layer | |
9193 | only in that situation. But this seems unecessary so far, probably | |
9194 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9195 | */ | |
f192137b | 9196 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9197 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9198 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9199 | return type; |
9200 | ||
9201 | return fixed_type; | |
9202 | } | |
9203 | ||
14f9c5c9 | 9204 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9205 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9206 | |
d2e4a39e AS |
9207 | static struct type * |
9208 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9209 | { |
d2e4a39e | 9210 | struct type *type; |
14f9c5c9 AS |
9211 | |
9212 | if (type0 == NULL) | |
9213 | return NULL; | |
9214 | ||
876cecd0 | 9215 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9216 | return type0; |
9217 | ||
61ee279c | 9218 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9219 | |
14f9c5c9 AS |
9220 | switch (TYPE_CODE (type0)) |
9221 | { | |
9222 | default: | |
9223 | return type0; | |
9224 | case TYPE_CODE_STRUCT: | |
9225 | type = dynamic_template_type (type0); | |
d2e4a39e | 9226 | if (type != NULL) |
4c4b4cd2 PH |
9227 | return template_to_static_fixed_type (type); |
9228 | else | |
9229 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9230 | case TYPE_CODE_UNION: |
9231 | type = ada_find_parallel_type (type0, "___XVU"); | |
9232 | if (type != NULL) | |
4c4b4cd2 PH |
9233 | return template_to_static_fixed_type (type); |
9234 | else | |
9235 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9236 | } |
9237 | } | |
9238 | ||
4c4b4cd2 PH |
9239 | /* A static approximation of TYPE with all type wrappers removed. */ |
9240 | ||
d2e4a39e AS |
9241 | static struct type * |
9242 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9243 | { |
9244 | if (ada_is_aligner_type (type)) | |
9245 | { | |
61ee279c | 9246 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9247 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9248 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9249 | |
9250 | return static_unwrap_type (type1); | |
9251 | } | |
d2e4a39e | 9252 | else |
14f9c5c9 | 9253 | { |
d2e4a39e | 9254 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9255 | |
d2e4a39e | 9256 | if (raw_real_type == type) |
4c4b4cd2 | 9257 | return type; |
14f9c5c9 | 9258 | else |
4c4b4cd2 | 9259 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9260 | } |
9261 | } | |
9262 | ||
9263 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9264 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9265 | type Foo; |
9266 | type FooP is access Foo; | |
9267 | V: FooP; | |
9268 | type Foo is array ...; | |
4c4b4cd2 | 9269 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9270 | cross-references to such types, we instead substitute for FooP a |
9271 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9272 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9273 | |
9274 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9275 | exists, otherwise TYPE. */ |
9276 | ||
d2e4a39e | 9277 | struct type * |
61ee279c | 9278 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9279 | { |
727e3d2e JB |
9280 | if (type == NULL) |
9281 | return NULL; | |
9282 | ||
720d1a40 JB |
9283 | /* If our type is a typedef type of a fat pointer, then we're done. |
9284 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
9285 | what allows us to distinguish between fat pointers that represent | |
9286 | array types, and fat pointers that represent array access types | |
9287 | (in both cases, the compiler implements them as fat pointers). */ | |
9288 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
9289 | && is_thick_pntr (ada_typedef_target_type (type))) | |
9290 | return type; | |
9291 | ||
f168693b | 9292 | type = check_typedef (type); |
14f9c5c9 | 9293 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9294 | || !TYPE_STUB (type) |
14f9c5c9 AS |
9295 | || TYPE_TAG_NAME (type) == NULL) |
9296 | return type; | |
d2e4a39e | 9297 | else |
14f9c5c9 | 9298 | { |
0d5cff50 | 9299 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 9300 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9301 | |
05e522ef JB |
9302 | if (type1 == NULL) |
9303 | return type; | |
9304 | ||
9305 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9306 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9307 | types, only for the typedef-to-array types). If that's the case, |
9308 | strip the typedef layer. */ | |
9309 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9310 | type1 = ada_check_typedef (type1); | |
9311 | ||
9312 | return type1; | |
14f9c5c9 AS |
9313 | } |
9314 | } | |
9315 | ||
9316 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9317 | type TYPE0, but with a standard (static-sized) type that correctly | |
9318 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9319 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9320 | creation of struct values]. */ |
14f9c5c9 | 9321 | |
4c4b4cd2 PH |
9322 | static struct value * |
9323 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9324 | struct value *val0) | |
14f9c5c9 | 9325 | { |
1ed6ede0 | 9326 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9327 | |
14f9c5c9 AS |
9328 | if (type == type0 && val0 != NULL) |
9329 | return val0; | |
cc0e770c JB |
9330 | |
9331 | if (VALUE_LVAL (val0) != lval_memory) | |
9332 | { | |
9333 | /* Our value does not live in memory; it could be a convenience | |
9334 | variable, for instance. Create a not_lval value using val0's | |
9335 | contents. */ | |
9336 | return value_from_contents (type, value_contents (val0)); | |
9337 | } | |
9338 | ||
9339 | return value_from_contents_and_address (type, 0, address); | |
4c4b4cd2 PH |
9340 | } |
9341 | ||
9342 | /* A value representing VAL, but with a standard (static-sized) type | |
9343 | that correctly describes it. Does not necessarily create a new | |
9344 | value. */ | |
9345 | ||
0c3acc09 | 9346 | struct value * |
4c4b4cd2 PH |
9347 | ada_to_fixed_value (struct value *val) |
9348 | { | |
c48db5ca JB |
9349 | val = unwrap_value (val); |
9350 | val = ada_to_fixed_value_create (value_type (val), | |
9351 | value_address (val), | |
9352 | val); | |
9353 | return val; | |
14f9c5c9 | 9354 | } |
d2e4a39e | 9355 | \f |
14f9c5c9 | 9356 | |
14f9c5c9 AS |
9357 | /* Attributes */ |
9358 | ||
4c4b4cd2 PH |
9359 | /* Table mapping attribute numbers to names. |
9360 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9361 | |
d2e4a39e | 9362 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9363 | "<?>", |
9364 | ||
d2e4a39e | 9365 | "first", |
14f9c5c9 AS |
9366 | "last", |
9367 | "length", | |
9368 | "image", | |
14f9c5c9 AS |
9369 | "max", |
9370 | "min", | |
4c4b4cd2 PH |
9371 | "modulus", |
9372 | "pos", | |
9373 | "size", | |
9374 | "tag", | |
14f9c5c9 | 9375 | "val", |
14f9c5c9 AS |
9376 | 0 |
9377 | }; | |
9378 | ||
d2e4a39e | 9379 | const char * |
4c4b4cd2 | 9380 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9381 | { |
4c4b4cd2 PH |
9382 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9383 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9384 | else |
9385 | return attribute_names[0]; | |
9386 | } | |
9387 | ||
4c4b4cd2 | 9388 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9389 | |
4c4b4cd2 PH |
9390 | static LONGEST |
9391 | pos_atr (struct value *arg) | |
14f9c5c9 | 9392 | { |
24209737 PH |
9393 | struct value *val = coerce_ref (arg); |
9394 | struct type *type = value_type (val); | |
aa715135 | 9395 | LONGEST result; |
14f9c5c9 | 9396 | |
d2e4a39e | 9397 | if (!discrete_type_p (type)) |
323e0a4a | 9398 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9399 | |
aa715135 JG |
9400 | if (!discrete_position (type, value_as_long (val), &result)) |
9401 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9402 | |
aa715135 | 9403 | return result; |
4c4b4cd2 PH |
9404 | } |
9405 | ||
9406 | static struct value * | |
3cb382c9 | 9407 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9408 | { |
3cb382c9 | 9409 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9410 | } |
9411 | ||
4c4b4cd2 | 9412 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9413 | |
d2e4a39e AS |
9414 | static struct value * |
9415 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9416 | { |
d2e4a39e | 9417 | if (!discrete_type_p (type)) |
323e0a4a | 9418 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9419 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9420 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9421 | |
9422 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9423 | { | |
9424 | long pos = value_as_long (arg); | |
5b4ee69b | 9425 | |
14f9c5c9 | 9426 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9427 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9428 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9429 | } |
9430 | else | |
9431 | return value_from_longest (type, value_as_long (arg)); | |
9432 | } | |
14f9c5c9 | 9433 | \f |
d2e4a39e | 9434 | |
4c4b4cd2 | 9435 | /* Evaluation */ |
14f9c5c9 | 9436 | |
4c4b4cd2 PH |
9437 | /* True if TYPE appears to be an Ada character type. |
9438 | [At the moment, this is true only for Character and Wide_Character; | |
9439 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9440 | |
d2e4a39e AS |
9441 | int |
9442 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9443 | { |
7b9f71f2 JB |
9444 | const char *name; |
9445 | ||
9446 | /* If the type code says it's a character, then assume it really is, | |
9447 | and don't check any further. */ | |
9448 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9449 | return 1; | |
9450 | ||
9451 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9452 | with a known character type name. */ | |
9453 | name = ada_type_name (type); | |
9454 | return (name != NULL | |
9455 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9456 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9457 | && (strcmp (name, "character") == 0 | |
9458 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9459 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9460 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9461 | } |
9462 | ||
4c4b4cd2 | 9463 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9464 | |
9465 | int | |
ebf56fd3 | 9466 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9467 | { |
61ee279c | 9468 | type = ada_check_typedef (type); |
d2e4a39e | 9469 | if (type != NULL |
14f9c5c9 | 9470 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9471 | && (ada_is_simple_array_type (type) |
9472 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9473 | && ada_array_arity (type) == 1) |
9474 | { | |
9475 | struct type *elttype = ada_array_element_type (type, 1); | |
9476 | ||
9477 | return ada_is_character_type (elttype); | |
9478 | } | |
d2e4a39e | 9479 | else |
14f9c5c9 AS |
9480 | return 0; |
9481 | } | |
9482 | ||
5bf03f13 JB |
9483 | /* The compiler sometimes provides a parallel XVS type for a given |
9484 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9485 | but older versions of the compiler have a bug that causes the offset | |
9486 | of its "F" field to be wrong. Following that field in that case | |
9487 | would lead to incorrect results, but this can be worked around | |
9488 | by ignoring the PAD type and using the associated XVS type instead. | |
9489 | ||
9490 | Set to True if the debugger should trust the contents of PAD types. | |
9491 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9492 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9493 | |
9494 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9495 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9496 | distinctive name. */ |
14f9c5c9 AS |
9497 | |
9498 | int | |
ebf56fd3 | 9499 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9500 | { |
61ee279c | 9501 | type = ada_check_typedef (type); |
714e53ab | 9502 | |
5bf03f13 | 9503 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9504 | return 0; |
9505 | ||
14f9c5c9 | 9506 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9507 | && TYPE_NFIELDS (type) == 1 |
9508 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9509 | } |
9510 | ||
9511 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9512 | the parallel type. */ |
14f9c5c9 | 9513 | |
d2e4a39e AS |
9514 | struct type * |
9515 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9516 | { |
d2e4a39e AS |
9517 | struct type *real_type_namer; |
9518 | struct type *raw_real_type; | |
14f9c5c9 AS |
9519 | |
9520 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9521 | return raw_type; | |
9522 | ||
284614f0 JB |
9523 | if (ada_is_aligner_type (raw_type)) |
9524 | /* The encoding specifies that we should always use the aligner type. | |
9525 | So, even if this aligner type has an associated XVS type, we should | |
9526 | simply ignore it. | |
9527 | ||
9528 | According to the compiler gurus, an XVS type parallel to an aligner | |
9529 | type may exist because of a stabs limitation. In stabs, aligner | |
9530 | types are empty because the field has a variable-sized type, and | |
9531 | thus cannot actually be used as an aligner type. As a result, | |
9532 | we need the associated parallel XVS type to decode the type. | |
9533 | Since the policy in the compiler is to not change the internal | |
9534 | representation based on the debugging info format, we sometimes | |
9535 | end up having a redundant XVS type parallel to the aligner type. */ | |
9536 | return raw_type; | |
9537 | ||
14f9c5c9 | 9538 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9539 | if (real_type_namer == NULL |
14f9c5c9 AS |
9540 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9541 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9542 | return raw_type; | |
9543 | ||
f80d3ff2 JB |
9544 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9545 | { | |
9546 | /* This is an older encoding form where the base type needs to be | |
9547 | looked up by name. We prefer the newer enconding because it is | |
9548 | more efficient. */ | |
9549 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9550 | if (raw_real_type == NULL) | |
9551 | return raw_type; | |
9552 | else | |
9553 | return raw_real_type; | |
9554 | } | |
9555 | ||
9556 | /* The field in our XVS type is a reference to the base type. */ | |
9557 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9558 | } |
14f9c5c9 | 9559 | |
4c4b4cd2 | 9560 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9561 | |
d2e4a39e AS |
9562 | struct type * |
9563 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9564 | { |
9565 | if (ada_is_aligner_type (type)) | |
9566 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9567 | else | |
9568 | return ada_get_base_type (type); | |
9569 | } | |
9570 | ||
9571 | ||
9572 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9573 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9574 | |
fc1a4b47 AC |
9575 | const gdb_byte * |
9576 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9577 | { |
d2e4a39e | 9578 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9579 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9580 | valaddr + |
9581 | TYPE_FIELD_BITPOS (type, | |
9582 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9583 | else |
9584 | return valaddr; | |
9585 | } | |
9586 | ||
4c4b4cd2 PH |
9587 | |
9588 | ||
14f9c5c9 | 9589 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9590 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9591 | const char * |
9592 | ada_enum_name (const char *name) | |
14f9c5c9 | 9593 | { |
4c4b4cd2 PH |
9594 | static char *result; |
9595 | static size_t result_len = 0; | |
e6a959d6 | 9596 | const char *tmp; |
14f9c5c9 | 9597 | |
4c4b4cd2 PH |
9598 | /* First, unqualify the enumeration name: |
9599 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9600 | all the preceding characters, the unqualified name starts |
76a01679 | 9601 | right after that dot. |
4c4b4cd2 | 9602 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9603 | translates dots into "__". Search forward for double underscores, |
9604 | but stop searching when we hit an overloading suffix, which is | |
9605 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9606 | |
c3e5cd34 PH |
9607 | tmp = strrchr (name, '.'); |
9608 | if (tmp != NULL) | |
4c4b4cd2 PH |
9609 | name = tmp + 1; |
9610 | else | |
14f9c5c9 | 9611 | { |
4c4b4cd2 PH |
9612 | while ((tmp = strstr (name, "__")) != NULL) |
9613 | { | |
9614 | if (isdigit (tmp[2])) | |
9615 | break; | |
9616 | else | |
9617 | name = tmp + 2; | |
9618 | } | |
14f9c5c9 AS |
9619 | } |
9620 | ||
9621 | if (name[0] == 'Q') | |
9622 | { | |
14f9c5c9 | 9623 | int v; |
5b4ee69b | 9624 | |
14f9c5c9 | 9625 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9626 | { |
9627 | if (sscanf (name + 2, "%x", &v) != 1) | |
9628 | return name; | |
9629 | } | |
14f9c5c9 | 9630 | else |
4c4b4cd2 | 9631 | return name; |
14f9c5c9 | 9632 | |
4c4b4cd2 | 9633 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9634 | if (isascii (v) && isprint (v)) |
88c15c34 | 9635 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9636 | else if (name[1] == 'U') |
88c15c34 | 9637 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9638 | else |
88c15c34 | 9639 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9640 | |
9641 | return result; | |
9642 | } | |
d2e4a39e | 9643 | else |
4c4b4cd2 | 9644 | { |
c3e5cd34 PH |
9645 | tmp = strstr (name, "__"); |
9646 | if (tmp == NULL) | |
9647 | tmp = strstr (name, "$"); | |
9648 | if (tmp != NULL) | |
4c4b4cd2 PH |
9649 | { |
9650 | GROW_VECT (result, result_len, tmp - name + 1); | |
9651 | strncpy (result, name, tmp - name); | |
9652 | result[tmp - name] = '\0'; | |
9653 | return result; | |
9654 | } | |
9655 | ||
9656 | return name; | |
9657 | } | |
14f9c5c9 AS |
9658 | } |
9659 | ||
14f9c5c9 AS |
9660 | /* Evaluate the subexpression of EXP starting at *POS as for |
9661 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9662 | expression. */ |
14f9c5c9 | 9663 | |
d2e4a39e AS |
9664 | static struct value * |
9665 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9666 | { |
4b27a620 | 9667 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9668 | } |
9669 | ||
9670 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9671 | value it wraps. */ |
14f9c5c9 | 9672 | |
d2e4a39e AS |
9673 | static struct value * |
9674 | unwrap_value (struct value *val) | |
14f9c5c9 | 9675 | { |
df407dfe | 9676 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9677 | |
14f9c5c9 AS |
9678 | if (ada_is_aligner_type (type)) |
9679 | { | |
de4d072f | 9680 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9681 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9682 | |
14f9c5c9 | 9683 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9684 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9685 | |
9686 | return unwrap_value (v); | |
9687 | } | |
d2e4a39e | 9688 | else |
14f9c5c9 | 9689 | { |
d2e4a39e | 9690 | struct type *raw_real_type = |
61ee279c | 9691 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9692 | |
5bf03f13 JB |
9693 | /* If there is no parallel XVS or XVE type, then the value is |
9694 | already unwrapped. Return it without further modification. */ | |
9695 | if ((type == raw_real_type) | |
9696 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9697 | return val; | |
14f9c5c9 | 9698 | |
d2e4a39e | 9699 | return |
4c4b4cd2 PH |
9700 | coerce_unspec_val_to_type |
9701 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9702 | value_address (val), |
1ed6ede0 | 9703 | NULL, 1)); |
14f9c5c9 AS |
9704 | } |
9705 | } | |
d2e4a39e AS |
9706 | |
9707 | static struct value * | |
50eff16b | 9708 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9709 | { |
50eff16b UW |
9710 | struct value *scale = ada_scaling_factor (value_type (arg)); |
9711 | arg = value_cast (value_type (scale), arg); | |
14f9c5c9 | 9712 | |
50eff16b UW |
9713 | arg = value_binop (arg, scale, BINOP_MUL); |
9714 | return value_cast (type, arg); | |
14f9c5c9 AS |
9715 | } |
9716 | ||
d2e4a39e | 9717 | static struct value * |
50eff16b | 9718 | cast_to_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9719 | { |
50eff16b UW |
9720 | if (type == value_type (arg)) |
9721 | return arg; | |
5b4ee69b | 9722 | |
50eff16b UW |
9723 | struct value *scale = ada_scaling_factor (type); |
9724 | if (ada_is_fixed_point_type (value_type (arg))) | |
9725 | arg = cast_from_fixed (value_type (scale), arg); | |
9726 | else | |
9727 | arg = value_cast (value_type (scale), arg); | |
9728 | ||
9729 | arg = value_binop (arg, scale, BINOP_DIV); | |
9730 | return value_cast (type, arg); | |
14f9c5c9 AS |
9731 | } |
9732 | ||
d99dcf51 JB |
9733 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9734 | contain the same number of elements. */ | |
9735 | ||
9736 | static int | |
9737 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9738 | { | |
9739 | LONGEST lo1, hi1, lo2, hi2; | |
9740 | ||
9741 | /* Get the array bounds in order to verify that the size of | |
9742 | the two arrays match. */ | |
9743 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9744 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9745 | error (_("unable to determine array bounds")); | |
9746 | ||
9747 | /* To make things easier for size comparison, normalize a bit | |
9748 | the case of empty arrays by making sure that the difference | |
9749 | between upper bound and lower bound is always -1. */ | |
9750 | if (lo1 > hi1) | |
9751 | hi1 = lo1 - 1; | |
9752 | if (lo2 > hi2) | |
9753 | hi2 = lo2 - 1; | |
9754 | ||
9755 | return (hi1 - lo1 == hi2 - lo2); | |
9756 | } | |
9757 | ||
9758 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9759 | an array with the same number of elements, but with wider integral | |
9760 | elements, return an array "casted" to TYPE. In practice, this | |
9761 | means that the returned array is built by casting each element | |
9762 | of the original array into TYPE's (wider) element type. */ | |
9763 | ||
9764 | static struct value * | |
9765 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9766 | { | |
9767 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9768 | LONGEST lo, hi; | |
9769 | struct value *res; | |
9770 | LONGEST i; | |
9771 | ||
9772 | /* Verify that both val and type are arrays of scalars, and | |
9773 | that the size of val's elements is smaller than the size | |
9774 | of type's element. */ | |
9775 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9776 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9777 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9778 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9779 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9780 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9781 | ||
9782 | if (!get_array_bounds (type, &lo, &hi)) | |
9783 | error (_("unable to determine array bounds")); | |
9784 | ||
9785 | res = allocate_value (type); | |
9786 | ||
9787 | /* Promote each array element. */ | |
9788 | for (i = 0; i < hi - lo + 1; i++) | |
9789 | { | |
9790 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9791 | ||
9792 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9793 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9794 | } | |
9795 | ||
9796 | return res; | |
9797 | } | |
9798 | ||
4c4b4cd2 PH |
9799 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9800 | return the converted value. */ | |
9801 | ||
d2e4a39e AS |
9802 | static struct value * |
9803 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9804 | { |
df407dfe | 9805 | struct type *type2 = value_type (val); |
5b4ee69b | 9806 | |
14f9c5c9 AS |
9807 | if (type == type2) |
9808 | return val; | |
9809 | ||
61ee279c PH |
9810 | type2 = ada_check_typedef (type2); |
9811 | type = ada_check_typedef (type); | |
14f9c5c9 | 9812 | |
d2e4a39e AS |
9813 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9814 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9815 | { |
9816 | val = ada_value_ind (val); | |
df407dfe | 9817 | type2 = value_type (val); |
14f9c5c9 AS |
9818 | } |
9819 | ||
d2e4a39e | 9820 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9821 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9822 | { | |
d99dcf51 JB |
9823 | if (!ada_same_array_size_p (type, type2)) |
9824 | error (_("cannot assign arrays of different length")); | |
9825 | ||
9826 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9827 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9828 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9829 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9830 | { | |
9831 | /* Allow implicit promotion of the array elements to | |
9832 | a wider type. */ | |
9833 | return ada_promote_array_of_integrals (type, val); | |
9834 | } | |
9835 | ||
9836 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9837 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9838 | error (_("Incompatible types in assignment")); |
04624583 | 9839 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9840 | } |
d2e4a39e | 9841 | return val; |
14f9c5c9 AS |
9842 | } |
9843 | ||
4c4b4cd2 PH |
9844 | static struct value * |
9845 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9846 | { | |
9847 | struct value *val; | |
9848 | struct type *type1, *type2; | |
9849 | LONGEST v, v1, v2; | |
9850 | ||
994b9211 AC |
9851 | arg1 = coerce_ref (arg1); |
9852 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9853 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9854 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9855 | |
76a01679 JB |
9856 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9857 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9858 | return value_binop (arg1, arg2, op); |
9859 | ||
76a01679 | 9860 | switch (op) |
4c4b4cd2 PH |
9861 | { |
9862 | case BINOP_MOD: | |
9863 | case BINOP_DIV: | |
9864 | case BINOP_REM: | |
9865 | break; | |
9866 | default: | |
9867 | return value_binop (arg1, arg2, op); | |
9868 | } | |
9869 | ||
9870 | v2 = value_as_long (arg2); | |
9871 | if (v2 == 0) | |
323e0a4a | 9872 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9873 | |
9874 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9875 | return value_binop (arg1, arg2, op); | |
9876 | ||
9877 | v1 = value_as_long (arg1); | |
9878 | switch (op) | |
9879 | { | |
9880 | case BINOP_DIV: | |
9881 | v = v1 / v2; | |
76a01679 JB |
9882 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9883 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9884 | break; |
9885 | case BINOP_REM: | |
9886 | v = v1 % v2; | |
76a01679 JB |
9887 | if (v * v1 < 0) |
9888 | v -= v2; | |
4c4b4cd2 PH |
9889 | break; |
9890 | default: | |
9891 | /* Should not reach this point. */ | |
9892 | v = 0; | |
9893 | } | |
9894 | ||
9895 | val = allocate_value (type1); | |
990a07ab | 9896 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9897 | TYPE_LENGTH (value_type (val)), |
9898 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9899 | return val; |
9900 | } | |
9901 | ||
9902 | static int | |
9903 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9904 | { | |
df407dfe AC |
9905 | if (ada_is_direct_array_type (value_type (arg1)) |
9906 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9907 | { |
79e8fcaa JB |
9908 | struct type *arg1_type, *arg2_type; |
9909 | ||
f58b38bf JB |
9910 | /* Automatically dereference any array reference before |
9911 | we attempt to perform the comparison. */ | |
9912 | arg1 = ada_coerce_ref (arg1); | |
9913 | arg2 = ada_coerce_ref (arg2); | |
79e8fcaa | 9914 | |
4c4b4cd2 PH |
9915 | arg1 = ada_coerce_to_simple_array (arg1); |
9916 | arg2 = ada_coerce_to_simple_array (arg2); | |
79e8fcaa JB |
9917 | |
9918 | arg1_type = ada_check_typedef (value_type (arg1)); | |
9919 | arg2_type = ada_check_typedef (value_type (arg2)); | |
9920 | ||
9921 | if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY | |
9922 | || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 9923 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9924 | /* FIXME: The following works only for types whose |
76a01679 JB |
9925 | representations use all bits (no padding or undefined bits) |
9926 | and do not have user-defined equality. */ | |
79e8fcaa JB |
9927 | return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
9928 | && memcmp (value_contents (arg1), value_contents (arg2), | |
9929 | TYPE_LENGTH (arg1_type)) == 0); | |
4c4b4cd2 PH |
9930 | } |
9931 | return value_equal (arg1, arg2); | |
9932 | } | |
9933 | ||
52ce6436 PH |
9934 | /* Total number of component associations in the aggregate starting at |
9935 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9936 | OP_AGGREGATE. */ |
52ce6436 PH |
9937 | |
9938 | static int | |
9939 | num_component_specs (struct expression *exp, int pc) | |
9940 | { | |
9941 | int n, m, i; | |
5b4ee69b | 9942 | |
52ce6436 PH |
9943 | m = exp->elts[pc + 1].longconst; |
9944 | pc += 3; | |
9945 | n = 0; | |
9946 | for (i = 0; i < m; i += 1) | |
9947 | { | |
9948 | switch (exp->elts[pc].opcode) | |
9949 | { | |
9950 | default: | |
9951 | n += 1; | |
9952 | break; | |
9953 | case OP_CHOICES: | |
9954 | n += exp->elts[pc + 1].longconst; | |
9955 | break; | |
9956 | } | |
9957 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9958 | } | |
9959 | return n; | |
9960 | } | |
9961 | ||
9962 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9963 | component of LHS (a simple array or a record), updating *POS past | |
9964 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9965 | not modify the inferior's memory, nor does it modify LHS (unless | |
9966 | LHS == CONTAINER). */ | |
9967 | ||
9968 | static void | |
9969 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9970 | struct expression *exp, int *pos) | |
9971 | { | |
9972 | struct value *mark = value_mark (); | |
9973 | struct value *elt; | |
0e2da9f0 | 9974 | struct type *lhs_type = check_typedef (value_type (lhs)); |
5b4ee69b | 9975 | |
0e2da9f0 | 9976 | if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY) |
52ce6436 | 9977 | { |
22601c15 UW |
9978 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9979 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9980 | |
52ce6436 PH |
9981 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9982 | } | |
9983 | else | |
9984 | { | |
9985 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9986 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9987 | } |
9988 | ||
9989 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9990 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9991 | else | |
9992 | value_assign_to_component (container, elt, | |
9993 | ada_evaluate_subexp (NULL, exp, pos, | |
9994 | EVAL_NORMAL)); | |
9995 | ||
9996 | value_free_to_mark (mark); | |
9997 | } | |
9998 | ||
9999 | /* Assuming that LHS represents an lvalue having a record or array | |
10000 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
10001 | of that aggregate's value to LHS, advancing *POS past the | |
10002 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
10003 | lvalue containing LHS (possibly LHS itself). Does not modify | |
10004 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 10005 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
10006 | |
10007 | static struct value * | |
10008 | assign_aggregate (struct value *container, | |
10009 | struct value *lhs, struct expression *exp, | |
10010 | int *pos, enum noside noside) | |
10011 | { | |
10012 | struct type *lhs_type; | |
10013 | int n = exp->elts[*pos+1].longconst; | |
10014 | LONGEST low_index, high_index; | |
10015 | int num_specs; | |
10016 | LONGEST *indices; | |
10017 | int max_indices, num_indices; | |
52ce6436 | 10018 | int i; |
52ce6436 PH |
10019 | |
10020 | *pos += 3; | |
10021 | if (noside != EVAL_NORMAL) | |
10022 | { | |
52ce6436 PH |
10023 | for (i = 0; i < n; i += 1) |
10024 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10025 | return container; | |
10026 | } | |
10027 | ||
10028 | container = ada_coerce_ref (container); | |
10029 | if (ada_is_direct_array_type (value_type (container))) | |
10030 | container = ada_coerce_to_simple_array (container); | |
10031 | lhs = ada_coerce_ref (lhs); | |
10032 | if (!deprecated_value_modifiable (lhs)) | |
10033 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
10034 | ||
0e2da9f0 | 10035 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
10036 | if (ada_is_direct_array_type (lhs_type)) |
10037 | { | |
10038 | lhs = ada_coerce_to_simple_array (lhs); | |
0e2da9f0 | 10039 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
10040 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); |
10041 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
10042 | } |
10043 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
10044 | { | |
10045 | low_index = 0; | |
10046 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
10047 | } |
10048 | else | |
10049 | error (_("Left-hand side must be array or record.")); | |
10050 | ||
10051 | num_specs = num_component_specs (exp, *pos - 3); | |
10052 | max_indices = 4 * num_specs + 4; | |
8d749320 | 10053 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
10054 | indices[0] = indices[1] = low_index - 1; |
10055 | indices[2] = indices[3] = high_index + 1; | |
10056 | num_indices = 4; | |
10057 | ||
10058 | for (i = 0; i < n; i += 1) | |
10059 | { | |
10060 | switch (exp->elts[*pos].opcode) | |
10061 | { | |
1fbf5ada JB |
10062 | case OP_CHOICES: |
10063 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
10064 | &num_indices, max_indices, | |
10065 | low_index, high_index); | |
10066 | break; | |
10067 | case OP_POSITIONAL: | |
10068 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
10069 | &num_indices, max_indices, |
10070 | low_index, high_index); | |
1fbf5ada JB |
10071 | break; |
10072 | case OP_OTHERS: | |
10073 | if (i != n-1) | |
10074 | error (_("Misplaced 'others' clause")); | |
10075 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
10076 | num_indices, low_index, high_index); | |
10077 | break; | |
10078 | default: | |
10079 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
10080 | } |
10081 | } | |
10082 | ||
10083 | return container; | |
10084 | } | |
10085 | ||
10086 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
10087 | construct at *POS, updating *POS past the construct, given that | |
10088 | the positions are relative to lower bound LOW, where HIGH is the | |
10089 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
10090 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 10091 | assign_aggregate. */ |
52ce6436 PH |
10092 | static void |
10093 | aggregate_assign_positional (struct value *container, | |
10094 | struct value *lhs, struct expression *exp, | |
10095 | int *pos, LONGEST *indices, int *num_indices, | |
10096 | int max_indices, LONGEST low, LONGEST high) | |
10097 | { | |
10098 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
10099 | ||
10100 | if (ind - 1 == high) | |
e1d5a0d2 | 10101 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
10102 | if (ind <= high) |
10103 | { | |
10104 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
10105 | *pos += 3; | |
10106 | assign_component (container, lhs, ind, exp, pos); | |
10107 | } | |
10108 | else | |
10109 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10110 | } | |
10111 | ||
10112 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
10113 | construct at *POS, updating *POS past the construct, given that | |
10114 | the allowable indices are LOW..HIGH. Record the indices assigned | |
10115 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 10116 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10117 | static void |
10118 | aggregate_assign_from_choices (struct value *container, | |
10119 | struct value *lhs, struct expression *exp, | |
10120 | int *pos, LONGEST *indices, int *num_indices, | |
10121 | int max_indices, LONGEST low, LONGEST high) | |
10122 | { | |
10123 | int j; | |
10124 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
10125 | int choice_pos, expr_pc; | |
10126 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
10127 | ||
10128 | choice_pos = *pos += 3; | |
10129 | ||
10130 | for (j = 0; j < n_choices; j += 1) | |
10131 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10132 | expr_pc = *pos; | |
10133 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10134 | ||
10135 | for (j = 0; j < n_choices; j += 1) | |
10136 | { | |
10137 | LONGEST lower, upper; | |
10138 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 10139 | |
52ce6436 PH |
10140 | if (op == OP_DISCRETE_RANGE) |
10141 | { | |
10142 | choice_pos += 1; | |
10143 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10144 | EVAL_NORMAL)); | |
10145 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10146 | EVAL_NORMAL)); | |
10147 | } | |
10148 | else if (is_array) | |
10149 | { | |
10150 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10151 | EVAL_NORMAL)); | |
10152 | upper = lower; | |
10153 | } | |
10154 | else | |
10155 | { | |
10156 | int ind; | |
0d5cff50 | 10157 | const char *name; |
5b4ee69b | 10158 | |
52ce6436 PH |
10159 | switch (op) |
10160 | { | |
10161 | case OP_NAME: | |
10162 | name = &exp->elts[choice_pos + 2].string; | |
10163 | break; | |
10164 | case OP_VAR_VALUE: | |
10165 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10166 | break; | |
10167 | default: | |
10168 | error (_("Invalid record component association.")); | |
10169 | } | |
10170 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10171 | ind = 0; | |
10172 | if (! find_struct_field (name, value_type (lhs), 0, | |
10173 | NULL, NULL, NULL, NULL, &ind)) | |
10174 | error (_("Unknown component name: %s."), name); | |
10175 | lower = upper = ind; | |
10176 | } | |
10177 | ||
10178 | if (lower <= upper && (lower < low || upper > high)) | |
10179 | error (_("Index in component association out of bounds.")); | |
10180 | ||
10181 | add_component_interval (lower, upper, indices, num_indices, | |
10182 | max_indices); | |
10183 | while (lower <= upper) | |
10184 | { | |
10185 | int pos1; | |
5b4ee69b | 10186 | |
52ce6436 PH |
10187 | pos1 = expr_pc; |
10188 | assign_component (container, lhs, lower, exp, &pos1); | |
10189 | lower += 1; | |
10190 | } | |
10191 | } | |
10192 | } | |
10193 | ||
10194 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10195 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10196 | have not been previously assigned. The index intervals already assigned | |
10197 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10198 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10199 | static void |
10200 | aggregate_assign_others (struct value *container, | |
10201 | struct value *lhs, struct expression *exp, | |
10202 | int *pos, LONGEST *indices, int num_indices, | |
10203 | LONGEST low, LONGEST high) | |
10204 | { | |
10205 | int i; | |
5ce64950 | 10206 | int expr_pc = *pos + 1; |
52ce6436 PH |
10207 | |
10208 | for (i = 0; i < num_indices - 2; i += 2) | |
10209 | { | |
10210 | LONGEST ind; | |
5b4ee69b | 10211 | |
52ce6436 PH |
10212 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10213 | { | |
5ce64950 | 10214 | int localpos; |
5b4ee69b | 10215 | |
5ce64950 MS |
10216 | localpos = expr_pc; |
10217 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10218 | } |
10219 | } | |
10220 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10221 | } | |
10222 | ||
10223 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10224 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10225 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10226 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10227 | static void | |
10228 | add_component_interval (LONGEST low, LONGEST high, | |
10229 | LONGEST* indices, int *size, int max_size) | |
10230 | { | |
10231 | int i, j; | |
5b4ee69b | 10232 | |
52ce6436 PH |
10233 | for (i = 0; i < *size; i += 2) { |
10234 | if (high >= indices[i] && low <= indices[i + 1]) | |
10235 | { | |
10236 | int kh; | |
5b4ee69b | 10237 | |
52ce6436 PH |
10238 | for (kh = i + 2; kh < *size; kh += 2) |
10239 | if (high < indices[kh]) | |
10240 | break; | |
10241 | if (low < indices[i]) | |
10242 | indices[i] = low; | |
10243 | indices[i + 1] = indices[kh - 1]; | |
10244 | if (high > indices[i + 1]) | |
10245 | indices[i + 1] = high; | |
10246 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10247 | *size -= kh - i - 2; | |
10248 | return; | |
10249 | } | |
10250 | else if (high < indices[i]) | |
10251 | break; | |
10252 | } | |
10253 | ||
10254 | if (*size == max_size) | |
10255 | error (_("Internal error: miscounted aggregate components.")); | |
10256 | *size += 2; | |
10257 | for (j = *size-1; j >= i+2; j -= 1) | |
10258 | indices[j] = indices[j - 2]; | |
10259 | indices[i] = low; | |
10260 | indices[i + 1] = high; | |
10261 | } | |
10262 | ||
6e48bd2c JB |
10263 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10264 | is different. */ | |
10265 | ||
10266 | static struct value * | |
b7e22850 | 10267 | ada_value_cast (struct type *type, struct value *arg2) |
6e48bd2c JB |
10268 | { |
10269 | if (type == ada_check_typedef (value_type (arg2))) | |
10270 | return arg2; | |
10271 | ||
10272 | if (ada_is_fixed_point_type (type)) | |
10273 | return (cast_to_fixed (type, arg2)); | |
10274 | ||
10275 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10276 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10277 | |
10278 | return value_cast (type, arg2); | |
10279 | } | |
10280 | ||
284614f0 JB |
10281 | /* Evaluating Ada expressions, and printing their result. |
10282 | ------------------------------------------------------ | |
10283 | ||
21649b50 JB |
10284 | 1. Introduction: |
10285 | ---------------- | |
10286 | ||
284614f0 JB |
10287 | We usually evaluate an Ada expression in order to print its value. |
10288 | We also evaluate an expression in order to print its type, which | |
10289 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10290 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10291 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10292 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10293 | similar. | |
10294 | ||
10295 | Evaluating expressions is a little more complicated for Ada entities | |
10296 | than it is for entities in languages such as C. The main reason for | |
10297 | this is that Ada provides types whose definition might be dynamic. | |
10298 | One example of such types is variant records. Or another example | |
10299 | would be an array whose bounds can only be known at run time. | |
10300 | ||
10301 | The following description is a general guide as to what should be | |
10302 | done (and what should NOT be done) in order to evaluate an expression | |
10303 | involving such types, and when. This does not cover how the semantic | |
10304 | information is encoded by GNAT as this is covered separatly. For the | |
10305 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10306 | in the GNAT sources. | |
10307 | ||
10308 | Ideally, we should embed each part of this description next to its | |
10309 | associated code. Unfortunately, the amount of code is so vast right | |
10310 | now that it's hard to see whether the code handling a particular | |
10311 | situation might be duplicated or not. One day, when the code is | |
10312 | cleaned up, this guide might become redundant with the comments | |
10313 | inserted in the code, and we might want to remove it. | |
10314 | ||
21649b50 JB |
10315 | 2. ``Fixing'' an Entity, the Simple Case: |
10316 | ----------------------------------------- | |
10317 | ||
284614f0 JB |
10318 | When evaluating Ada expressions, the tricky issue is that they may |
10319 | reference entities whose type contents and size are not statically | |
10320 | known. Consider for instance a variant record: | |
10321 | ||
10322 | type Rec (Empty : Boolean := True) is record | |
10323 | case Empty is | |
10324 | when True => null; | |
10325 | when False => Value : Integer; | |
10326 | end case; | |
10327 | end record; | |
10328 | Yes : Rec := (Empty => False, Value => 1); | |
10329 | No : Rec := (empty => True); | |
10330 | ||
10331 | The size and contents of that record depends on the value of the | |
10332 | descriminant (Rec.Empty). At this point, neither the debugging | |
10333 | information nor the associated type structure in GDB are able to | |
10334 | express such dynamic types. So what the debugger does is to create | |
10335 | "fixed" versions of the type that applies to the specific object. | |
10336 | We also informally refer to this opperation as "fixing" an object, | |
10337 | which means creating its associated fixed type. | |
10338 | ||
10339 | Example: when printing the value of variable "Yes" above, its fixed | |
10340 | type would look like this: | |
10341 | ||
10342 | type Rec is record | |
10343 | Empty : Boolean; | |
10344 | Value : Integer; | |
10345 | end record; | |
10346 | ||
10347 | On the other hand, if we printed the value of "No", its fixed type | |
10348 | would become: | |
10349 | ||
10350 | type Rec is record | |
10351 | Empty : Boolean; | |
10352 | end record; | |
10353 | ||
10354 | Things become a little more complicated when trying to fix an entity | |
10355 | with a dynamic type that directly contains another dynamic type, | |
10356 | such as an array of variant records, for instance. There are | |
10357 | two possible cases: Arrays, and records. | |
10358 | ||
21649b50 JB |
10359 | 3. ``Fixing'' Arrays: |
10360 | --------------------- | |
10361 | ||
10362 | The type structure in GDB describes an array in terms of its bounds, | |
10363 | and the type of its elements. By design, all elements in the array | |
10364 | have the same type and we cannot represent an array of variant elements | |
10365 | using the current type structure in GDB. When fixing an array, | |
10366 | we cannot fix the array element, as we would potentially need one | |
10367 | fixed type per element of the array. As a result, the best we can do | |
10368 | when fixing an array is to produce an array whose bounds and size | |
10369 | are correct (allowing us to read it from memory), but without having | |
10370 | touched its element type. Fixing each element will be done later, | |
10371 | when (if) necessary. | |
10372 | ||
10373 | Arrays are a little simpler to handle than records, because the same | |
10374 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10375 | the amount of space actually used by each element differs from element |
21649b50 | 10376 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10377 | |
10378 | type Rec_Array is array (1 .. 2) of Rec; | |
10379 | ||
1b536f04 JB |
10380 | The actual amount of memory occupied by each element might be different |
10381 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10382 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10383 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10384 | the debugging information available, from which we can then determine |
10385 | the array size (we multiply the number of elements of the array by | |
10386 | the size of each element). | |
10387 | ||
10388 | The simplest case is when we have an array of a constrained element | |
10389 | type. For instance, consider the following type declarations: | |
10390 | ||
10391 | type Bounded_String (Max_Size : Integer) is | |
10392 | Length : Integer; | |
10393 | Buffer : String (1 .. Max_Size); | |
10394 | end record; | |
10395 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10396 | ||
10397 | In this case, the compiler describes the array as an array of | |
10398 | variable-size elements (identified by its XVS suffix) for which | |
10399 | the size can be read in the parallel XVZ variable. | |
10400 | ||
10401 | In the case of an array of an unconstrained element type, the compiler | |
10402 | wraps the array element inside a private PAD type. This type should not | |
10403 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10404 | that we also use the adjective "aligner" in our code to designate |
10405 | these wrapper types. | |
10406 | ||
1b536f04 | 10407 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10408 | known. In that case, the PAD type already has the correct size, |
10409 | and the array element should remain unfixed. | |
10410 | ||
10411 | But there are cases when this size is not statically known. | |
10412 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10413 | |
10414 | type Dynamic is array (1 .. Five) of Integer; | |
10415 | type Wrapper (Has_Length : Boolean := False) is record | |
10416 | Data : Dynamic; | |
10417 | case Has_Length is | |
10418 | when True => Length : Integer; | |
10419 | when False => null; | |
10420 | end case; | |
10421 | end record; | |
10422 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10423 | ||
10424 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10425 | Data => (others => 17), | |
10426 | Length => 1)); | |
10427 | ||
10428 | ||
10429 | The debugging info would describe variable Hello as being an | |
10430 | array of a PAD type. The size of that PAD type is not statically | |
10431 | known, but can be determined using a parallel XVZ variable. | |
10432 | In that case, a copy of the PAD type with the correct size should | |
10433 | be used for the fixed array. | |
10434 | ||
21649b50 JB |
10435 | 3. ``Fixing'' record type objects: |
10436 | ---------------------------------- | |
10437 | ||
10438 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10439 | record types. In this case, in order to compute the associated |
10440 | fixed type, we need to determine the size and offset of each of | |
10441 | its components. This, in turn, requires us to compute the fixed | |
10442 | type of each of these components. | |
10443 | ||
10444 | Consider for instance the example: | |
10445 | ||
10446 | type Bounded_String (Max_Size : Natural) is record | |
10447 | Str : String (1 .. Max_Size); | |
10448 | Length : Natural; | |
10449 | end record; | |
10450 | My_String : Bounded_String (Max_Size => 10); | |
10451 | ||
10452 | In that case, the position of field "Length" depends on the size | |
10453 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10454 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10455 | we need to fix the type of field Str. Therefore, fixing a variant |
10456 | record requires us to fix each of its components. | |
10457 | ||
10458 | However, if a component does not have a dynamic size, the component | |
10459 | should not be fixed. In particular, fields that use a PAD type | |
10460 | should not fixed. Here is an example where this might happen | |
10461 | (assuming type Rec above): | |
10462 | ||
10463 | type Container (Big : Boolean) is record | |
10464 | First : Rec; | |
10465 | After : Integer; | |
10466 | case Big is | |
10467 | when True => Another : Integer; | |
10468 | when False => null; | |
10469 | end case; | |
10470 | end record; | |
10471 | My_Container : Container := (Big => False, | |
10472 | First => (Empty => True), | |
10473 | After => 42); | |
10474 | ||
10475 | In that example, the compiler creates a PAD type for component First, | |
10476 | whose size is constant, and then positions the component After just | |
10477 | right after it. The offset of component After is therefore constant | |
10478 | in this case. | |
10479 | ||
10480 | The debugger computes the position of each field based on an algorithm | |
10481 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10482 | preceding it. Let's now imagine that the user is trying to print |
10483 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10484 | end up computing the offset of field After based on the size of the |
10485 | fixed version of field First. And since in our example First has | |
10486 | only one actual field, the size of the fixed type is actually smaller | |
10487 | than the amount of space allocated to that field, and thus we would | |
10488 | compute the wrong offset of field After. | |
10489 | ||
21649b50 JB |
10490 | To make things more complicated, we need to watch out for dynamic |
10491 | components of variant records (identified by the ___XVL suffix in | |
10492 | the component name). Even if the target type is a PAD type, the size | |
10493 | of that type might not be statically known. So the PAD type needs | |
10494 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10495 | we might end up with the wrong size for our component. This can be | |
10496 | observed with the following type declarations: | |
284614f0 JB |
10497 | |
10498 | type Octal is new Integer range 0 .. 7; | |
10499 | type Octal_Array is array (Positive range <>) of Octal; | |
10500 | pragma Pack (Octal_Array); | |
10501 | ||
10502 | type Octal_Buffer (Size : Positive) is record | |
10503 | Buffer : Octal_Array (1 .. Size); | |
10504 | Length : Integer; | |
10505 | end record; | |
10506 | ||
10507 | In that case, Buffer is a PAD type whose size is unset and needs | |
10508 | to be computed by fixing the unwrapped type. | |
10509 | ||
21649b50 JB |
10510 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10511 | ---------------------------------------------------------- | |
10512 | ||
10513 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10514 | thus far, be actually fixed? |
10515 | ||
10516 | The answer is: Only when referencing that element. For instance | |
10517 | when selecting one component of a record, this specific component | |
10518 | should be fixed at that point in time. Or when printing the value | |
10519 | of a record, each component should be fixed before its value gets | |
10520 | printed. Similarly for arrays, the element of the array should be | |
10521 | fixed when printing each element of the array, or when extracting | |
10522 | one element out of that array. On the other hand, fixing should | |
10523 | not be performed on the elements when taking a slice of an array! | |
10524 | ||
31432a67 | 10525 | Note that one of the side effects of miscomputing the offset and |
284614f0 JB |
10526 | size of each field is that we end up also miscomputing the size |
10527 | of the containing type. This can have adverse results when computing | |
10528 | the value of an entity. GDB fetches the value of an entity based | |
10529 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10530 | the wrong amount of memory. In the case where the computed size is | |
10531 | too small, GDB fetches too little data to print the value of our | |
31432a67 | 10532 | entity. Results in this case are unpredictable, as we usually read |
284614f0 JB |
10533 | past the buffer containing the data =:-o. */ |
10534 | ||
ced9779b JB |
10535 | /* Evaluate a subexpression of EXP, at index *POS, and return a value |
10536 | for that subexpression cast to TO_TYPE. Advance *POS over the | |
10537 | subexpression. */ | |
10538 | ||
10539 | static value * | |
10540 | ada_evaluate_subexp_for_cast (expression *exp, int *pos, | |
10541 | enum noside noside, struct type *to_type) | |
10542 | { | |
10543 | int pc = *pos; | |
10544 | ||
10545 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE | |
10546 | || exp->elts[pc].opcode == OP_VAR_VALUE) | |
10547 | { | |
10548 | (*pos) += 4; | |
10549 | ||
10550 | value *val; | |
10551 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) | |
10552 | { | |
10553 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10554 | return value_zero (to_type, not_lval); | |
10555 | ||
10556 | val = evaluate_var_msym_value (noside, | |
10557 | exp->elts[pc + 1].objfile, | |
10558 | exp->elts[pc + 2].msymbol); | |
10559 | } | |
10560 | else | |
10561 | val = evaluate_var_value (noside, | |
10562 | exp->elts[pc + 1].block, | |
10563 | exp->elts[pc + 2].symbol); | |
10564 | ||
10565 | if (noside == EVAL_SKIP) | |
10566 | return eval_skip_value (exp); | |
10567 | ||
10568 | val = ada_value_cast (to_type, val); | |
10569 | ||
10570 | /* Follow the Ada language semantics that do not allow taking | |
10571 | an address of the result of a cast (view conversion in Ada). */ | |
10572 | if (VALUE_LVAL (val) == lval_memory) | |
10573 | { | |
10574 | if (value_lazy (val)) | |
10575 | value_fetch_lazy (val); | |
10576 | VALUE_LVAL (val) = not_lval; | |
10577 | } | |
10578 | return val; | |
10579 | } | |
10580 | ||
10581 | value *val = evaluate_subexp (to_type, exp, pos, noside); | |
10582 | if (noside == EVAL_SKIP) | |
10583 | return eval_skip_value (exp); | |
10584 | return ada_value_cast (to_type, val); | |
10585 | } | |
10586 | ||
284614f0 JB |
10587 | /* Implement the evaluate_exp routine in the exp_descriptor structure |
10588 | for the Ada language. */ | |
10589 | ||
52ce6436 | 10590 | static struct value * |
ebf56fd3 | 10591 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10592 | int *pos, enum noside noside) |
14f9c5c9 AS |
10593 | { |
10594 | enum exp_opcode op; | |
b5385fc0 | 10595 | int tem; |
14f9c5c9 | 10596 | int pc; |
5ec18f2b | 10597 | int preeval_pos; |
14f9c5c9 AS |
10598 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10599 | struct type *type; | |
52ce6436 | 10600 | int nargs, oplen; |
d2e4a39e | 10601 | struct value **argvec; |
14f9c5c9 | 10602 | |
d2e4a39e AS |
10603 | pc = *pos; |
10604 | *pos += 1; | |
14f9c5c9 AS |
10605 | op = exp->elts[pc].opcode; |
10606 | ||
d2e4a39e | 10607 | switch (op) |
14f9c5c9 AS |
10608 | { |
10609 | default: | |
10610 | *pos -= 1; | |
6e48bd2c | 10611 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10612 | |
10613 | if (noside == EVAL_NORMAL) | |
10614 | arg1 = unwrap_value (arg1); | |
6e48bd2c | 10615 | |
edd079d9 | 10616 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
6e48bd2c JB |
10617 | then we need to perform the conversion manually, because |
10618 | evaluate_subexp_standard doesn't do it. This conversion is | |
10619 | necessary in Ada because the different kinds of float/fixed | |
10620 | types in Ada have different representations. | |
10621 | ||
10622 | Similarly, we need to perform the conversion from OP_LONG | |
10623 | ourselves. */ | |
edd079d9 | 10624 | if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL) |
b7e22850 | 10625 | arg1 = ada_value_cast (expect_type, arg1); |
6e48bd2c JB |
10626 | |
10627 | return arg1; | |
4c4b4cd2 PH |
10628 | |
10629 | case OP_STRING: | |
10630 | { | |
76a01679 | 10631 | struct value *result; |
5b4ee69b | 10632 | |
76a01679 JB |
10633 | *pos -= 1; |
10634 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10635 | /* The result type will have code OP_STRING, bashed there from | |
10636 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10637 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10638 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10639 | return result; |
4c4b4cd2 | 10640 | } |
14f9c5c9 AS |
10641 | |
10642 | case UNOP_CAST: | |
10643 | (*pos) += 2; | |
10644 | type = exp->elts[pc + 1].type; | |
ced9779b | 10645 | return ada_evaluate_subexp_for_cast (exp, pos, noside, type); |
14f9c5c9 | 10646 | |
4c4b4cd2 PH |
10647 | case UNOP_QUAL: |
10648 | (*pos) += 2; | |
10649 | type = exp->elts[pc + 1].type; | |
10650 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10651 | ||
14f9c5c9 AS |
10652 | case BINOP_ASSIGN: |
10653 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10654 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10655 | { | |
10656 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10657 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10658 | return arg1; | |
10659 | return ada_value_assign (arg1, arg1); | |
10660 | } | |
003f3813 JB |
10661 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10662 | except if the lhs of our assignment is a convenience variable. | |
10663 | In the case of assigning to a convenience variable, the lhs | |
10664 | should be exactly the result of the evaluation of the rhs. */ | |
10665 | type = value_type (arg1); | |
10666 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10667 | type = NULL; | |
10668 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10669 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10670 | return arg1; |
df407dfe AC |
10671 | if (ada_is_fixed_point_type (value_type (arg1))) |
10672 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10673 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10674 | error |
323e0a4a | 10675 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10676 | else |
df407dfe | 10677 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10678 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10679 | |
10680 | case BINOP_ADD: | |
10681 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10682 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10683 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10684 | goto nosideret; |
2ac8a782 JB |
10685 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10686 | return (value_from_longest | |
10687 | (value_type (arg1), | |
10688 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10689 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10690 | return (value_from_longest | |
10691 | (value_type (arg2), | |
10692 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10693 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10694 | || ada_is_fixed_point_type (value_type (arg2))) | |
10695 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10696 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10697 | /* Do the addition, and cast the result to the type of the first |
10698 | argument. We cannot cast the result to a reference type, so if | |
10699 | ARG1 is a reference type, find its underlying type. */ | |
10700 | type = value_type (arg1); | |
10701 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10702 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10703 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10704 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10705 | |
10706 | case BINOP_SUB: | |
10707 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10708 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10709 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10710 | goto nosideret; |
2ac8a782 JB |
10711 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10712 | return (value_from_longest | |
10713 | (value_type (arg1), | |
10714 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10715 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10716 | return (value_from_longest | |
10717 | (value_type (arg2), | |
10718 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10719 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10720 | || ada_is_fixed_point_type (value_type (arg2))) | |
10721 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10722 | error (_("Operands of fixed-point subtraction " |
10723 | "must have the same type")); | |
b7789565 JB |
10724 | /* Do the substraction, and cast the result to the type of the first |
10725 | argument. We cannot cast the result to a reference type, so if | |
10726 | ARG1 is a reference type, find its underlying type. */ | |
10727 | type = value_type (arg1); | |
10728 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10729 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10730 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10731 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10732 | |
10733 | case BINOP_MUL: | |
10734 | case BINOP_DIV: | |
e1578042 JB |
10735 | case BINOP_REM: |
10736 | case BINOP_MOD: | |
14f9c5c9 AS |
10737 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10738 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10739 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10740 | goto nosideret; |
e1578042 | 10741 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10742 | { |
10743 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10744 | return value_zero (value_type (arg1), not_lval); | |
10745 | } | |
14f9c5c9 | 10746 | else |
4c4b4cd2 | 10747 | { |
a53b7a21 | 10748 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10749 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10750 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10751 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10752 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10753 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10754 | return ada_value_binop (arg1, arg2, op); |
10755 | } | |
10756 | ||
4c4b4cd2 PH |
10757 | case BINOP_EQUAL: |
10758 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10759 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10760 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10761 | if (noside == EVAL_SKIP) |
76a01679 | 10762 | goto nosideret; |
4c4b4cd2 | 10763 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10764 | tem = 0; |
4c4b4cd2 | 10765 | else |
f44316fa UW |
10766 | { |
10767 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10768 | tem = ada_value_equal (arg1, arg2); | |
10769 | } | |
4c4b4cd2 | 10770 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10771 | tem = !tem; |
fbb06eb1 UW |
10772 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10773 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10774 | |
10775 | case UNOP_NEG: | |
10776 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10777 | if (noside == EVAL_SKIP) | |
10778 | goto nosideret; | |
df407dfe AC |
10779 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10780 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10781 | else |
f44316fa UW |
10782 | { |
10783 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10784 | return value_neg (arg1); | |
10785 | } | |
4c4b4cd2 | 10786 | |
2330c6c6 JB |
10787 | case BINOP_LOGICAL_AND: |
10788 | case BINOP_LOGICAL_OR: | |
10789 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10790 | { |
10791 | struct value *val; | |
10792 | ||
10793 | *pos -= 1; | |
10794 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10795 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10796 | return value_cast (type, val); | |
000d5124 | 10797 | } |
2330c6c6 JB |
10798 | |
10799 | case BINOP_BITWISE_AND: | |
10800 | case BINOP_BITWISE_IOR: | |
10801 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10802 | { |
10803 | struct value *val; | |
10804 | ||
10805 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10806 | *pos = pc; | |
10807 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10808 | ||
10809 | return value_cast (value_type (arg1), val); | |
10810 | } | |
2330c6c6 | 10811 | |
14f9c5c9 AS |
10812 | case OP_VAR_VALUE: |
10813 | *pos -= 1; | |
6799def4 | 10814 | |
14f9c5c9 | 10815 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10816 | { |
10817 | *pos += 4; | |
10818 | goto nosideret; | |
10819 | } | |
da5c522f JB |
10820 | |
10821 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10822 | /* Only encountered when an unresolved symbol occurs in a |
10823 | context other than a function call, in which case, it is | |
52ce6436 | 10824 | invalid. */ |
323e0a4a | 10825 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10826 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10827 | |
10828 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10829 | { |
0c1f74cf | 10830 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10831 | /* Check to see if this is a tagged type. We also need to handle |
10832 | the case where the type is a reference to a tagged type, but | |
10833 | we have to be careful to exclude pointers to tagged types. | |
10834 | The latter should be shown as usual (as a pointer), whereas | |
10835 | a reference should mostly be transparent to the user. */ | |
10836 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10837 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10838 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10839 | { |
10840 | /* Tagged types are a little special in the fact that the real | |
10841 | type is dynamic and can only be determined by inspecting the | |
10842 | object's tag. This means that we need to get the object's | |
10843 | value first (EVAL_NORMAL) and then extract the actual object | |
10844 | type from its tag. | |
10845 | ||
10846 | Note that we cannot skip the final step where we extract | |
10847 | the object type from its tag, because the EVAL_NORMAL phase | |
10848 | results in dynamic components being resolved into fixed ones. | |
10849 | This can cause problems when trying to print the type | |
10850 | description of tagged types whose parent has a dynamic size: | |
10851 | We use the type name of the "_parent" component in order | |
10852 | to print the name of the ancestor type in the type description. | |
10853 | If that component had a dynamic size, the resolution into | |
10854 | a fixed type would result in the loss of that type name, | |
10855 | thus preventing us from printing the name of the ancestor | |
10856 | type in the type description. */ | |
10857 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10858 | ||
10859 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10860 | { | |
10861 | struct type *actual_type; | |
10862 | ||
10863 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10864 | if (actual_type == NULL) | |
10865 | /* If, for some reason, we were unable to determine | |
10866 | the actual type from the tag, then use the static | |
10867 | approximation that we just computed as a fallback. | |
10868 | This can happen if the debugging information is | |
10869 | incomplete, for instance. */ | |
10870 | actual_type = type; | |
10871 | return value_zero (actual_type, not_lval); | |
10872 | } | |
10873 | else | |
10874 | { | |
10875 | /* In the case of a ref, ada_coerce_ref takes care | |
10876 | of determining the actual type. But the evaluation | |
10877 | should return a ref as it should be valid to ask | |
10878 | for its address; so rebuild a ref after coerce. */ | |
10879 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10880 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10881 | } |
10882 | } | |
0c1f74cf | 10883 | |
84754697 JB |
10884 | /* Records and unions for which GNAT encodings have been |
10885 | generated need to be statically fixed as well. | |
10886 | Otherwise, non-static fixing produces a type where | |
10887 | all dynamic properties are removed, which prevents "ptype" | |
10888 | from being able to completely describe the type. | |
10889 | For instance, a case statement in a variant record would be | |
10890 | replaced by the relevant components based on the actual | |
10891 | value of the discriminants. */ | |
10892 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10893 | && dynamic_template_type (type) != NULL) | |
10894 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10895 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10896 | { | |
10897 | *pos += 4; | |
10898 | return value_zero (to_static_fixed_type (type), not_lval); | |
10899 | } | |
4c4b4cd2 | 10900 | } |
da5c522f JB |
10901 | |
10902 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10903 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10904 | |
10905 | case OP_FUNCALL: | |
10906 | (*pos) += 2; | |
10907 | ||
10908 | /* Allocate arg vector, including space for the function to be | |
10909 | called in argvec[0] and a terminating NULL. */ | |
10910 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10911 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10912 | |
10913 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10914 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10915 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10916 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10917 | else | |
10918 | { | |
10919 | for (tem = 0; tem <= nargs; tem += 1) | |
10920 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10921 | argvec[tem] = 0; | |
10922 | ||
10923 | if (noside == EVAL_SKIP) | |
10924 | goto nosideret; | |
10925 | } | |
10926 | ||
ad82864c JB |
10927 | if (ada_is_constrained_packed_array_type |
10928 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10929 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10930 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10931 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10932 | /* This is a packed array that has already been fixed, and | |
10933 | therefore already coerced to a simple array. Nothing further | |
10934 | to do. */ | |
10935 | ; | |
e6c2c623 PMR |
10936 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10937 | { | |
10938 | /* Make sure we dereference references so that all the code below | |
10939 | feels like it's really handling the referenced value. Wrapping | |
10940 | types (for alignment) may be there, so make sure we strip them as | |
10941 | well. */ | |
10942 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10943 | } | |
10944 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10945 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10946 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10947 | |
df407dfe | 10948 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10949 | |
10950 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10951 | them. So, if this is an array typedef (encoding use for array |
10952 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10953 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10954 | type = ada_typedef_target_type (type); | |
10955 | ||
4c4b4cd2 PH |
10956 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10957 | { | |
61ee279c | 10958 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10959 | { |
10960 | case TYPE_CODE_FUNC: | |
61ee279c | 10961 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10962 | break; |
10963 | case TYPE_CODE_ARRAY: | |
10964 | break; | |
10965 | case TYPE_CODE_STRUCT: | |
10966 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10967 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10968 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10969 | break; |
10970 | default: | |
323e0a4a | 10971 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10972 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10973 | break; |
10974 | } | |
10975 | } | |
10976 | ||
10977 | switch (TYPE_CODE (type)) | |
10978 | { | |
10979 | case TYPE_CODE_FUNC: | |
10980 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10981 | { |
7022349d PA |
10982 | if (TYPE_TARGET_TYPE (type) == NULL) |
10983 | error_call_unknown_return_type (NULL); | |
10984 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10985 | } |
7022349d | 10986 | return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1); |
c8ea1972 PH |
10987 | case TYPE_CODE_INTERNAL_FUNCTION: |
10988 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10989 | /* We don't know anything about what the internal | |
10990 | function might return, but we have to return | |
10991 | something. */ | |
10992 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10993 | not_lval); | |
10994 | else | |
10995 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10996 | argvec[0], nargs, argvec + 1); | |
10997 | ||
4c4b4cd2 PH |
10998 | case TYPE_CODE_STRUCT: |
10999 | { | |
11000 | int arity; | |
11001 | ||
4c4b4cd2 PH |
11002 | arity = ada_array_arity (type); |
11003 | type = ada_array_element_type (type, nargs); | |
11004 | if (type == NULL) | |
323e0a4a | 11005 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 11006 | if (arity != nargs) |
323e0a4a | 11007 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 11008 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 11009 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
11010 | return |
11011 | unwrap_value (ada_value_subscript | |
11012 | (argvec[0], nargs, argvec + 1)); | |
11013 | } | |
11014 | case TYPE_CODE_ARRAY: | |
11015 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11016 | { | |
11017 | type = ada_array_element_type (type, nargs); | |
11018 | if (type == NULL) | |
323e0a4a | 11019 | error (_("element type of array unknown")); |
4c4b4cd2 | 11020 | else |
0a07e705 | 11021 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
11022 | } |
11023 | return | |
11024 | unwrap_value (ada_value_subscript | |
11025 | (ada_coerce_to_simple_array (argvec[0]), | |
11026 | nargs, argvec + 1)); | |
11027 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
11028 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11029 | { | |
deede10c | 11030 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
11031 | type = ada_array_element_type (type, nargs); |
11032 | if (type == NULL) | |
323e0a4a | 11033 | error (_("element type of array unknown")); |
4c4b4cd2 | 11034 | else |
0a07e705 | 11035 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
11036 | } |
11037 | return | |
deede10c JB |
11038 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
11039 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
11040 | |
11041 | default: | |
e1d5a0d2 PH |
11042 | error (_("Attempt to index or call something other than an " |
11043 | "array or function")); | |
4c4b4cd2 PH |
11044 | } |
11045 | ||
11046 | case TERNOP_SLICE: | |
11047 | { | |
11048 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11049 | struct value *low_bound_val = | |
11050 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
11051 | struct value *high_bound_val = |
11052 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11053 | LONGEST low_bound; | |
11054 | LONGEST high_bound; | |
5b4ee69b | 11055 | |
994b9211 AC |
11056 | low_bound_val = coerce_ref (low_bound_val); |
11057 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
11058 | low_bound = value_as_long (low_bound_val); |
11059 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 11060 | |
4c4b4cd2 PH |
11061 | if (noside == EVAL_SKIP) |
11062 | goto nosideret; | |
11063 | ||
4c4b4cd2 PH |
11064 | /* If this is a reference to an aligner type, then remove all |
11065 | the aligners. */ | |
df407dfe AC |
11066 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11067 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
11068 | TYPE_TARGET_TYPE (value_type (array)) = | |
11069 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 11070 | |
ad82864c | 11071 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 11072 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
11073 | |
11074 | /* If this is a reference to an array or an array lvalue, | |
11075 | convert to a pointer. */ | |
df407dfe AC |
11076 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
11077 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
11078 | && VALUE_LVAL (array) == lval_memory)) |
11079 | array = value_addr (array); | |
11080 | ||
1265e4aa | 11081 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 11082 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 11083 | (value_type (array)))) |
0b5d8877 | 11084 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
11085 | |
11086 | array = ada_coerce_to_simple_array_ptr (array); | |
11087 | ||
714e53ab PH |
11088 | /* If we have more than one level of pointer indirection, |
11089 | dereference the value until we get only one level. */ | |
df407dfe AC |
11090 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
11091 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
11092 | == TYPE_CODE_PTR)) |
11093 | array = value_ind (array); | |
11094 | ||
11095 | /* Make sure we really do have an array type before going further, | |
11096 | to avoid a SEGV when trying to get the index type or the target | |
11097 | type later down the road if the debug info generated by | |
11098 | the compiler is incorrect or incomplete. */ | |
df407dfe | 11099 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 11100 | error (_("cannot take slice of non-array")); |
714e53ab | 11101 | |
828292f2 JB |
11102 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
11103 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 11104 | { |
828292f2 JB |
11105 | struct type *type0 = ada_check_typedef (value_type (array)); |
11106 | ||
0b5d8877 | 11107 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 11108 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
11109 | else |
11110 | { | |
11111 | struct type *arr_type0 = | |
828292f2 | 11112 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 11113 | |
f5938064 JG |
11114 | return ada_value_slice_from_ptr (array, arr_type0, |
11115 | longest_to_int (low_bound), | |
11116 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
11117 | } |
11118 | } | |
11119 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11120 | return array; | |
11121 | else if (high_bound < low_bound) | |
df407dfe | 11122 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 11123 | else |
529cad9c PH |
11124 | return ada_value_slice (array, longest_to_int (low_bound), |
11125 | longest_to_int (high_bound)); | |
4c4b4cd2 | 11126 | } |
14f9c5c9 | 11127 | |
4c4b4cd2 PH |
11128 | case UNOP_IN_RANGE: |
11129 | (*pos) += 2; | |
11130 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 11131 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 11132 | |
14f9c5c9 | 11133 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11134 | goto nosideret; |
14f9c5c9 | 11135 | |
4c4b4cd2 PH |
11136 | switch (TYPE_CODE (type)) |
11137 | { | |
11138 | default: | |
e1d5a0d2 PH |
11139 | lim_warning (_("Membership test incompletely implemented; " |
11140 | "always returns true")); | |
fbb06eb1 UW |
11141 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11142 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
11143 | |
11144 | case TYPE_CODE_RANGE: | |
030b4912 UW |
11145 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
11146 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
11147 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11148 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
11149 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
11150 | return | |
11151 | value_from_longest (type, | |
4c4b4cd2 PH |
11152 | (value_less (arg1, arg3) |
11153 | || value_equal (arg1, arg3)) | |
11154 | && (value_less (arg2, arg1) | |
11155 | || value_equal (arg2, arg1))); | |
11156 | } | |
11157 | ||
11158 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 11159 | (*pos) += 2; |
4c4b4cd2 PH |
11160 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11161 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 11162 | |
4c4b4cd2 PH |
11163 | if (noside == EVAL_SKIP) |
11164 | goto nosideret; | |
14f9c5c9 | 11165 | |
4c4b4cd2 | 11166 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
11167 | { |
11168 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
11169 | return value_zero (type, not_lval); | |
11170 | } | |
14f9c5c9 | 11171 | |
4c4b4cd2 | 11172 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 11173 | |
1eea4ebd UW |
11174 | type = ada_index_type (value_type (arg2), tem, "range"); |
11175 | if (!type) | |
11176 | type = value_type (arg1); | |
14f9c5c9 | 11177 | |
1eea4ebd UW |
11178 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
11179 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 11180 | |
f44316fa UW |
11181 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11182 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11183 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11184 | return |
fbb06eb1 | 11185 | value_from_longest (type, |
4c4b4cd2 PH |
11186 | (value_less (arg1, arg3) |
11187 | || value_equal (arg1, arg3)) | |
11188 | && (value_less (arg2, arg1) | |
11189 | || value_equal (arg2, arg1))); | |
11190 | ||
11191 | case TERNOP_IN_RANGE: | |
11192 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11193 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11194 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11195 | ||
11196 | if (noside == EVAL_SKIP) | |
11197 | goto nosideret; | |
11198 | ||
f44316fa UW |
11199 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11200 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11201 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11202 | return |
fbb06eb1 | 11203 | value_from_longest (type, |
4c4b4cd2 PH |
11204 | (value_less (arg1, arg3) |
11205 | || value_equal (arg1, arg3)) | |
11206 | && (value_less (arg2, arg1) | |
11207 | || value_equal (arg2, arg1))); | |
11208 | ||
11209 | case OP_ATR_FIRST: | |
11210 | case OP_ATR_LAST: | |
11211 | case OP_ATR_LENGTH: | |
11212 | { | |
76a01679 | 11213 | struct type *type_arg; |
5b4ee69b | 11214 | |
76a01679 JB |
11215 | if (exp->elts[*pos].opcode == OP_TYPE) |
11216 | { | |
11217 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11218 | arg1 = NULL; | |
5bc23cb3 | 11219 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11220 | } |
11221 | else | |
11222 | { | |
11223 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11224 | type_arg = NULL; | |
11225 | } | |
11226 | ||
11227 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11228 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11229 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11230 | *pos += 4; | |
11231 | ||
11232 | if (noside == EVAL_SKIP) | |
11233 | goto nosideret; | |
11234 | ||
11235 | if (type_arg == NULL) | |
11236 | { | |
11237 | arg1 = ada_coerce_ref (arg1); | |
11238 | ||
ad82864c | 11239 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11240 | arg1 = ada_coerce_to_simple_array (arg1); |
11241 | ||
aa4fb036 | 11242 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11243 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11244 | else |
11245 | { | |
11246 | type = ada_index_type (value_type (arg1), tem, | |
11247 | ada_attribute_name (op)); | |
11248 | if (type == NULL) | |
11249 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11250 | } | |
76a01679 JB |
11251 | |
11252 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11253 | return allocate_value (type); |
76a01679 JB |
11254 | |
11255 | switch (op) | |
11256 | { | |
11257 | default: /* Should never happen. */ | |
323e0a4a | 11258 | error (_("unexpected attribute encountered")); |
76a01679 | 11259 | case OP_ATR_FIRST: |
1eea4ebd UW |
11260 | return value_from_longest |
11261 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11262 | case OP_ATR_LAST: |
1eea4ebd UW |
11263 | return value_from_longest |
11264 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11265 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11266 | return value_from_longest |
11267 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11268 | } |
11269 | } | |
11270 | else if (discrete_type_p (type_arg)) | |
11271 | { | |
11272 | struct type *range_type; | |
0d5cff50 | 11273 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11274 | |
76a01679 JB |
11275 | range_type = NULL; |
11276 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11277 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11278 | if (range_type == NULL) |
11279 | range_type = type_arg; | |
11280 | switch (op) | |
11281 | { | |
11282 | default: | |
323e0a4a | 11283 | error (_("unexpected attribute encountered")); |
76a01679 | 11284 | case OP_ATR_FIRST: |
690cc4eb | 11285 | return value_from_longest |
43bbcdc2 | 11286 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11287 | case OP_ATR_LAST: |
690cc4eb | 11288 | return value_from_longest |
43bbcdc2 | 11289 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11290 | case OP_ATR_LENGTH: |
323e0a4a | 11291 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11292 | } |
11293 | } | |
11294 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11295 | error (_("unimplemented type attribute")); |
76a01679 JB |
11296 | else |
11297 | { | |
11298 | LONGEST low, high; | |
11299 | ||
ad82864c JB |
11300 | if (ada_is_constrained_packed_array_type (type_arg)) |
11301 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11302 | |
aa4fb036 | 11303 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11304 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11305 | else |
11306 | { | |
11307 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11308 | if (type == NULL) | |
11309 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11310 | } | |
1eea4ebd | 11311 | |
76a01679 JB |
11312 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11313 | return allocate_value (type); | |
11314 | ||
11315 | switch (op) | |
11316 | { | |
11317 | default: | |
323e0a4a | 11318 | error (_("unexpected attribute encountered")); |
76a01679 | 11319 | case OP_ATR_FIRST: |
1eea4ebd | 11320 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11321 | return value_from_longest (type, low); |
11322 | case OP_ATR_LAST: | |
1eea4ebd | 11323 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11324 | return value_from_longest (type, high); |
11325 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11326 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11327 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11328 | return value_from_longest (type, high - low + 1); |
11329 | } | |
11330 | } | |
14f9c5c9 AS |
11331 | } |
11332 | ||
4c4b4cd2 PH |
11333 | case OP_ATR_TAG: |
11334 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11335 | if (noside == EVAL_SKIP) | |
76a01679 | 11336 | goto nosideret; |
4c4b4cd2 PH |
11337 | |
11338 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11339 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11340 | |
11341 | return ada_value_tag (arg1); | |
11342 | ||
11343 | case OP_ATR_MIN: | |
11344 | case OP_ATR_MAX: | |
11345 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11346 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11347 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11348 | if (noside == EVAL_SKIP) | |
76a01679 | 11349 | goto nosideret; |
d2e4a39e | 11350 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11351 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11352 | else |
f44316fa UW |
11353 | { |
11354 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11355 | return value_binop (arg1, arg2, | |
11356 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11357 | } | |
14f9c5c9 | 11358 | |
4c4b4cd2 PH |
11359 | case OP_ATR_MODULUS: |
11360 | { | |
31dedfee | 11361 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11362 | |
5b4ee69b | 11363 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11364 | if (noside == EVAL_SKIP) |
11365 | goto nosideret; | |
4c4b4cd2 | 11366 | |
76a01679 | 11367 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11368 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11369 | |
76a01679 JB |
11370 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11371 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11372 | } |
11373 | ||
11374 | ||
11375 | case OP_ATR_POS: | |
11376 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11377 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11378 | if (noside == EVAL_SKIP) | |
76a01679 | 11379 | goto nosideret; |
3cb382c9 UW |
11380 | type = builtin_type (exp->gdbarch)->builtin_int; |
11381 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11382 | return value_zero (type, not_lval); | |
14f9c5c9 | 11383 | else |
3cb382c9 | 11384 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11385 | |
4c4b4cd2 PH |
11386 | case OP_ATR_SIZE: |
11387 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11388 | type = value_type (arg1); |
11389 | ||
11390 | /* If the argument is a reference, then dereference its type, since | |
11391 | the user is really asking for the size of the actual object, | |
11392 | not the size of the pointer. */ | |
11393 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11394 | type = TYPE_TARGET_TYPE (type); | |
11395 | ||
4c4b4cd2 | 11396 | if (noside == EVAL_SKIP) |
76a01679 | 11397 | goto nosideret; |
4c4b4cd2 | 11398 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11399 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11400 | else |
22601c15 | 11401 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11402 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11403 | |
11404 | case OP_ATR_VAL: | |
11405 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11406 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11407 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11408 | if (noside == EVAL_SKIP) |
76a01679 | 11409 | goto nosideret; |
4c4b4cd2 | 11410 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11411 | return value_zero (type, not_lval); |
4c4b4cd2 | 11412 | else |
76a01679 | 11413 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11414 | |
11415 | case BINOP_EXP: | |
11416 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11417 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11418 | if (noside == EVAL_SKIP) | |
11419 | goto nosideret; | |
11420 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11421 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11422 | else |
f44316fa UW |
11423 | { |
11424 | /* For integer exponentiation operations, | |
11425 | only promote the first argument. */ | |
11426 | if (is_integral_type (value_type (arg2))) | |
11427 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11428 | else | |
11429 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11430 | ||
11431 | return value_binop (arg1, arg2, op); | |
11432 | } | |
4c4b4cd2 PH |
11433 | |
11434 | case UNOP_PLUS: | |
11435 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11436 | if (noside == EVAL_SKIP) | |
11437 | goto nosideret; | |
11438 | else | |
11439 | return arg1; | |
11440 | ||
11441 | case UNOP_ABS: | |
11442 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11443 | if (noside == EVAL_SKIP) | |
11444 | goto nosideret; | |
f44316fa | 11445 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11446 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11447 | return value_neg (arg1); |
14f9c5c9 | 11448 | else |
4c4b4cd2 | 11449 | return arg1; |
14f9c5c9 AS |
11450 | |
11451 | case UNOP_IND: | |
5ec18f2b | 11452 | preeval_pos = *pos; |
6b0d7253 | 11453 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11454 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11455 | goto nosideret; |
df407dfe | 11456 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11457 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11458 | { |
11459 | if (ada_is_array_descriptor_type (type)) | |
11460 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11461 | { | |
11462 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11463 | |
4c4b4cd2 | 11464 | if (arrType == NULL) |
323e0a4a | 11465 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11466 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11467 | } |
11468 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11469 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11470 | /* In C you can dereference an array to get the 1st elt. */ | |
11471 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11472 | { |
5ec18f2b JG |
11473 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11474 | only be determined by inspecting the object's tag. | |
11475 | This means that we need to evaluate completely the | |
11476 | expression in order to get its type. */ | |
11477 | ||
023db19c JB |
11478 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11479 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11480 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11481 | { | |
11482 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11483 | EVAL_NORMAL); | |
11484 | type = value_type (ada_value_ind (arg1)); | |
11485 | } | |
11486 | else | |
11487 | { | |
11488 | type = to_static_fixed_type | |
11489 | (ada_aligned_type | |
11490 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11491 | } | |
c1b5a1a6 | 11492 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11493 | return value_zero (type, lval_memory); |
11494 | } | |
4c4b4cd2 | 11495 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11496 | { |
11497 | /* GDB allows dereferencing an int. */ | |
11498 | if (expect_type == NULL) | |
11499 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11500 | lval_memory); | |
11501 | else | |
11502 | { | |
11503 | expect_type = | |
11504 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11505 | return value_zero (expect_type, lval_memory); | |
11506 | } | |
11507 | } | |
4c4b4cd2 | 11508 | else |
323e0a4a | 11509 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11510 | } |
0963b4bd | 11511 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11512 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11513 | |
96967637 JB |
11514 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11515 | /* GDB allows dereferencing an int. If we were given | |
11516 | the expect_type, then use that as the target type. | |
11517 | Otherwise, assume that the target type is an int. */ | |
11518 | { | |
11519 | if (expect_type != NULL) | |
11520 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11521 | arg1)); | |
11522 | else | |
11523 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11524 | (CORE_ADDR) value_as_address (arg1)); | |
11525 | } | |
6b0d7253 | 11526 | |
4c4b4cd2 PH |
11527 | if (ada_is_array_descriptor_type (type)) |
11528 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11529 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11530 | else |
4c4b4cd2 | 11531 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11532 | |
11533 | case STRUCTOP_STRUCT: | |
11534 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11535 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11536 | preeval_pos = *pos; |
14f9c5c9 AS |
11537 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11538 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11539 | goto nosideret; |
14f9c5c9 | 11540 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11541 | { |
df407dfe | 11542 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11543 | |
76a01679 JB |
11544 | if (ada_is_tagged_type (type1, 1)) |
11545 | { | |
11546 | type = ada_lookup_struct_elt_type (type1, | |
11547 | &exp->elts[pc + 2].string, | |
988f6b3d | 11548 | 1, 1); |
5ec18f2b JG |
11549 | |
11550 | /* If the field is not found, check if it exists in the | |
11551 | extension of this object's type. This means that we | |
11552 | need to evaluate completely the expression. */ | |
11553 | ||
76a01679 | 11554 | if (type == NULL) |
5ec18f2b JG |
11555 | { |
11556 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11557 | EVAL_NORMAL); | |
11558 | arg1 = ada_value_struct_elt (arg1, | |
11559 | &exp->elts[pc + 2].string, | |
11560 | 0); | |
11561 | arg1 = unwrap_value (arg1); | |
11562 | type = value_type (ada_to_fixed_value (arg1)); | |
11563 | } | |
76a01679 JB |
11564 | } |
11565 | else | |
11566 | type = | |
11567 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11568 | 0); |
76a01679 JB |
11569 | |
11570 | return value_zero (ada_aligned_type (type), lval_memory); | |
11571 | } | |
14f9c5c9 | 11572 | else |
a579cd9a MW |
11573 | { |
11574 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11575 | arg1 = unwrap_value (arg1); | |
11576 | return ada_to_fixed_value (arg1); | |
11577 | } | |
284614f0 | 11578 | |
14f9c5c9 | 11579 | case OP_TYPE: |
4c4b4cd2 PH |
11580 | /* The value is not supposed to be used. This is here to make it |
11581 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11582 | (*pos) += 2; |
11583 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11584 | goto nosideret; |
14f9c5c9 | 11585 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11586 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11587 | else |
323e0a4a | 11588 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11589 | |
11590 | case OP_AGGREGATE: | |
11591 | case OP_CHOICES: | |
11592 | case OP_OTHERS: | |
11593 | case OP_DISCRETE_RANGE: | |
11594 | case OP_POSITIONAL: | |
11595 | case OP_NAME: | |
11596 | if (noside == EVAL_NORMAL) | |
11597 | switch (op) | |
11598 | { | |
11599 | case OP_NAME: | |
11600 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11601 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11602 | case OP_AGGREGATE: |
11603 | error (_("Aggregates only allowed on the right of an assignment")); | |
11604 | default: | |
0963b4bd MS |
11605 | internal_error (__FILE__, __LINE__, |
11606 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11607 | } |
11608 | ||
11609 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11610 | *pos += oplen - 1; | |
11611 | for (tem = 0; tem < nargs; tem += 1) | |
11612 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11613 | goto nosideret; | |
14f9c5c9 AS |
11614 | } |
11615 | ||
11616 | nosideret: | |
ced9779b | 11617 | return eval_skip_value (exp); |
14f9c5c9 | 11618 | } |
14f9c5c9 | 11619 | \f |
d2e4a39e | 11620 | |
4c4b4cd2 | 11621 | /* Fixed point */ |
14f9c5c9 AS |
11622 | |
11623 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11624 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11625 | Otherwise, return NULL. */ |
14f9c5c9 | 11626 | |
d2e4a39e | 11627 | static const char * |
ebf56fd3 | 11628 | fixed_type_info (struct type *type) |
14f9c5c9 | 11629 | { |
d2e4a39e | 11630 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11631 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11632 | ||
d2e4a39e AS |
11633 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11634 | { | |
14f9c5c9 | 11635 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11636 | |
14f9c5c9 | 11637 | if (tail == NULL) |
4c4b4cd2 | 11638 | return NULL; |
d2e4a39e | 11639 | else |
4c4b4cd2 | 11640 | return tail + 5; |
14f9c5c9 AS |
11641 | } |
11642 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11643 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11644 | else | |
11645 | return NULL; | |
11646 | } | |
11647 | ||
4c4b4cd2 | 11648 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11649 | |
11650 | int | |
ebf56fd3 | 11651 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11652 | { |
11653 | return fixed_type_info (type) != NULL; | |
11654 | } | |
11655 | ||
4c4b4cd2 PH |
11656 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11657 | ||
11658 | int | |
11659 | ada_is_system_address_type (struct type *type) | |
11660 | { | |
11661 | return (TYPE_NAME (type) | |
11662 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11663 | } | |
11664 | ||
14f9c5c9 | 11665 | /* Assuming that TYPE is the representation of an Ada fixed-point |
50eff16b UW |
11666 | type, return the target floating-point type to be used to represent |
11667 | of this type during internal computation. */ | |
11668 | ||
11669 | static struct type * | |
11670 | ada_scaling_type (struct type *type) | |
11671 | { | |
11672 | return builtin_type (get_type_arch (type))->builtin_long_double; | |
11673 | } | |
11674 | ||
11675 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
11676 | type, return its delta, or NULL if the type is malformed and the | |
4c4b4cd2 | 11677 | delta cannot be determined. */ |
14f9c5c9 | 11678 | |
50eff16b | 11679 | struct value * |
ebf56fd3 | 11680 | ada_delta (struct type *type) |
14f9c5c9 AS |
11681 | { |
11682 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11683 | struct type *scale_type = ada_scaling_type (type); |
11684 | ||
11685 | long long num, den; | |
11686 | ||
11687 | if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2) | |
11688 | return nullptr; | |
d2e4a39e | 11689 | else |
50eff16b UW |
11690 | return value_binop (value_from_longest (scale_type, num), |
11691 | value_from_longest (scale_type, den), BINOP_DIV); | |
14f9c5c9 AS |
11692 | } |
11693 | ||
11694 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11695 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 | 11696 | |
50eff16b UW |
11697 | struct value * |
11698 | ada_scaling_factor (struct type *type) | |
14f9c5c9 AS |
11699 | { |
11700 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11701 | struct type *scale_type = ada_scaling_type (type); |
11702 | ||
11703 | long long num0, den0, num1, den1; | |
14f9c5c9 | 11704 | int n; |
d2e4a39e | 11705 | |
50eff16b | 11706 | n = sscanf (encoding, "_%lld_%lld_%lld_%lld", |
facc390f | 11707 | &num0, &den0, &num1, &den1); |
14f9c5c9 AS |
11708 | |
11709 | if (n < 2) | |
50eff16b | 11710 | return value_from_longest (scale_type, 1); |
14f9c5c9 | 11711 | else if (n == 4) |
50eff16b UW |
11712 | return value_binop (value_from_longest (scale_type, num1), |
11713 | value_from_longest (scale_type, den1), BINOP_DIV); | |
d2e4a39e | 11714 | else |
50eff16b UW |
11715 | return value_binop (value_from_longest (scale_type, num0), |
11716 | value_from_longest (scale_type, den0), BINOP_DIV); | |
14f9c5c9 AS |
11717 | } |
11718 | ||
14f9c5c9 | 11719 | \f |
d2e4a39e | 11720 | |
4c4b4cd2 | 11721 | /* Range types */ |
14f9c5c9 AS |
11722 | |
11723 | /* Scan STR beginning at position K for a discriminant name, and | |
11724 | return the value of that discriminant field of DVAL in *PX. If | |
11725 | PNEW_K is not null, put the position of the character beyond the | |
11726 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11727 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11728 | |
11729 | static int | |
108d56a4 | 11730 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11731 | int *pnew_k) |
14f9c5c9 AS |
11732 | { |
11733 | static char *bound_buffer = NULL; | |
11734 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11735 | const char *pstart, *pend, *bound; |
d2e4a39e | 11736 | struct value *bound_val; |
14f9c5c9 AS |
11737 | |
11738 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11739 | return 0; | |
11740 | ||
5da1a4d3 SM |
11741 | pstart = str + k; |
11742 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11743 | if (pend == NULL) |
11744 | { | |
5da1a4d3 | 11745 | bound = pstart; |
14f9c5c9 AS |
11746 | k += strlen (bound); |
11747 | } | |
d2e4a39e | 11748 | else |
14f9c5c9 | 11749 | { |
5da1a4d3 SM |
11750 | int len = pend - pstart; |
11751 | ||
11752 | /* Strip __ and beyond. */ | |
11753 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11754 | strncpy (bound_buffer, pstart, len); | |
11755 | bound_buffer[len] = '\0'; | |
11756 | ||
14f9c5c9 | 11757 | bound = bound_buffer; |
d2e4a39e | 11758 | k = pend - str; |
14f9c5c9 | 11759 | } |
d2e4a39e | 11760 | |
df407dfe | 11761 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11762 | if (bound_val == NULL) |
11763 | return 0; | |
11764 | ||
11765 | *px = value_as_long (bound_val); | |
11766 | if (pnew_k != NULL) | |
11767 | *pnew_k = k; | |
11768 | return 1; | |
11769 | } | |
11770 | ||
11771 | /* Value of variable named NAME in the current environment. If | |
11772 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11773 | otherwise causes an error with message ERR_MSG. */ |
11774 | ||
d2e4a39e | 11775 | static struct value * |
edb0c9cb | 11776 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11777 | { |
b5ec771e | 11778 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
14f9c5c9 | 11779 | |
b5ec771e PA |
11780 | struct block_symbol *syms; |
11781 | int nsyms = ada_lookup_symbol_list_worker (lookup_name, | |
11782 | get_selected_block (0), | |
11783 | VAR_DOMAIN, &syms, 1); | |
ec6a20c2 | 11784 | struct cleanup *old_chain = make_cleanup (xfree, syms); |
14f9c5c9 AS |
11785 | |
11786 | if (nsyms != 1) | |
11787 | { | |
ec6a20c2 | 11788 | do_cleanups (old_chain); |
14f9c5c9 | 11789 | if (err_msg == NULL) |
4c4b4cd2 | 11790 | return 0; |
14f9c5c9 | 11791 | else |
8a3fe4f8 | 11792 | error (("%s"), err_msg); |
14f9c5c9 AS |
11793 | } |
11794 | ||
ec6a20c2 JB |
11795 | struct value *result = value_of_variable (syms[0].symbol, syms[0].block); |
11796 | do_cleanups (old_chain); | |
11797 | return result; | |
14f9c5c9 | 11798 | } |
d2e4a39e | 11799 | |
edb0c9cb PA |
11800 | /* Value of integer variable named NAME in the current environment. |
11801 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11802 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11803 | |
edb0c9cb PA |
11804 | bool |
11805 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11806 | { |
4c4b4cd2 | 11807 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11808 | |
14f9c5c9 | 11809 | if (var_val == 0) |
edb0c9cb PA |
11810 | return false; |
11811 | ||
11812 | value = value_as_long (var_val); | |
11813 | return true; | |
14f9c5c9 | 11814 | } |
d2e4a39e | 11815 | |
14f9c5c9 AS |
11816 | |
11817 | /* Return a range type whose base type is that of the range type named | |
11818 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11819 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11820 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11821 | corresponding range type from debug information; fall back to using it | |
11822 | if symbol lookup fails. If a new type must be created, allocate it | |
11823 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11824 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11825 | |
d2e4a39e | 11826 | static struct type * |
28c85d6c | 11827 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11828 | { |
0d5cff50 | 11829 | const char *name; |
14f9c5c9 | 11830 | struct type *base_type; |
108d56a4 | 11831 | const char *subtype_info; |
14f9c5c9 | 11832 | |
28c85d6c JB |
11833 | gdb_assert (raw_type != NULL); |
11834 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11835 | |
1ce677a4 | 11836 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11837 | base_type = TYPE_TARGET_TYPE (raw_type); |
11838 | else | |
11839 | base_type = raw_type; | |
11840 | ||
28c85d6c | 11841 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11842 | subtype_info = strstr (name, "___XD"); |
11843 | if (subtype_info == NULL) | |
690cc4eb | 11844 | { |
43bbcdc2 PH |
11845 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11846 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11847 | |
690cc4eb PH |
11848 | if (L < INT_MIN || U > INT_MAX) |
11849 | return raw_type; | |
11850 | else | |
0c9c3474 SA |
11851 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11852 | L, U); | |
690cc4eb | 11853 | } |
14f9c5c9 AS |
11854 | else |
11855 | { | |
11856 | static char *name_buf = NULL; | |
11857 | static size_t name_len = 0; | |
11858 | int prefix_len = subtype_info - name; | |
11859 | LONGEST L, U; | |
11860 | struct type *type; | |
108d56a4 | 11861 | const char *bounds_str; |
14f9c5c9 AS |
11862 | int n; |
11863 | ||
11864 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11865 | strncpy (name_buf, name, prefix_len); | |
11866 | name_buf[prefix_len] = '\0'; | |
11867 | ||
11868 | subtype_info += 5; | |
11869 | bounds_str = strchr (subtype_info, '_'); | |
11870 | n = 1; | |
11871 | ||
d2e4a39e | 11872 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11873 | { |
11874 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11875 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11876 | return raw_type; | |
11877 | if (bounds_str[n] == '_') | |
11878 | n += 2; | |
0963b4bd | 11879 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11880 | n += 1; |
11881 | subtype_info += 1; | |
11882 | } | |
d2e4a39e | 11883 | else |
4c4b4cd2 | 11884 | { |
4c4b4cd2 | 11885 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11886 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11887 | { |
323e0a4a | 11888 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11889 | L = 1; |
11890 | } | |
11891 | } | |
14f9c5c9 | 11892 | |
d2e4a39e | 11893 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11894 | { |
11895 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11896 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11897 | return raw_type; | |
11898 | } | |
d2e4a39e | 11899 | else |
4c4b4cd2 | 11900 | { |
4c4b4cd2 | 11901 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11902 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11903 | { |
323e0a4a | 11904 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11905 | U = L; |
11906 | } | |
11907 | } | |
14f9c5c9 | 11908 | |
0c9c3474 SA |
11909 | type = create_static_range_type (alloc_type_copy (raw_type), |
11910 | base_type, L, U); | |
f5a91472 JB |
11911 | /* create_static_range_type alters the resulting type's length |
11912 | to match the size of the base_type, which is not what we want. | |
11913 | Set it back to the original range type's length. */ | |
11914 | TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); | |
d2e4a39e | 11915 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11916 | return type; |
11917 | } | |
11918 | } | |
11919 | ||
4c4b4cd2 PH |
11920 | /* True iff NAME is the name of a range type. */ |
11921 | ||
14f9c5c9 | 11922 | int |
d2e4a39e | 11923 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11924 | { |
11925 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11926 | } |
14f9c5c9 | 11927 | \f |
d2e4a39e | 11928 | |
4c4b4cd2 PH |
11929 | /* Modular types */ |
11930 | ||
11931 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11932 | |
14f9c5c9 | 11933 | int |
d2e4a39e | 11934 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11935 | { |
18af8284 | 11936 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11937 | |
11938 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11939 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11940 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11941 | } |
11942 | ||
4c4b4cd2 PH |
11943 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11944 | ||
61ee279c | 11945 | ULONGEST |
0056e4d5 | 11946 | ada_modulus (struct type *type) |
14f9c5c9 | 11947 | { |
43bbcdc2 | 11948 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11949 | } |
d2e4a39e | 11950 | \f |
f7f9143b JB |
11951 | |
11952 | /* Ada exception catchpoint support: | |
11953 | --------------------------------- | |
11954 | ||
11955 | We support 3 kinds of exception catchpoints: | |
11956 | . catchpoints on Ada exceptions | |
11957 | . catchpoints on unhandled Ada exceptions | |
11958 | . catchpoints on failed assertions | |
11959 | ||
11960 | Exceptions raised during failed assertions, or unhandled exceptions | |
11961 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11962 | However, we can easily differentiate these two special cases, and having | |
11963 | the option to distinguish these two cases from the rest can be useful | |
11964 | to zero-in on certain situations. | |
11965 | ||
11966 | Exception catchpoints are a specialized form of breakpoint, | |
11967 | since they rely on inserting breakpoints inside known routines | |
11968 | of the GNAT runtime. The implementation therefore uses a standard | |
11969 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11970 | of breakpoint_ops. | |
11971 | ||
0259addd JB |
11972 | Support in the runtime for exception catchpoints have been changed |
11973 | a few times already, and these changes affect the implementation | |
11974 | of these catchpoints. In order to be able to support several | |
11975 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11976 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11977 | |
82eacd52 JB |
11978 | /* Ada's standard exceptions. |
11979 | ||
11980 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11981 | situations where it was unclear from the Ada 83 Reference Manual | |
11982 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11983 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11984 | Interpretation saying that anytime the RM says that Numeric_Error | |
11985 | should be raised, the implementation may raise Constraint_Error. | |
11986 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11987 | from the list of standard exceptions (it made it a renaming of | |
11988 | Constraint_Error, to help preserve compatibility when compiling | |
11989 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11990 | this list of standard exceptions. */ | |
3d0b0fa3 | 11991 | |
a121b7c1 | 11992 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11993 | "constraint_error", |
11994 | "program_error", | |
11995 | "storage_error", | |
11996 | "tasking_error" | |
11997 | }; | |
11998 | ||
0259addd JB |
11999 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
12000 | ||
12001 | /* A structure that describes how to support exception catchpoints | |
12002 | for a given executable. */ | |
12003 | ||
12004 | struct exception_support_info | |
12005 | { | |
12006 | /* The name of the symbol to break on in order to insert | |
12007 | a catchpoint on exceptions. */ | |
12008 | const char *catch_exception_sym; | |
12009 | ||
12010 | /* The name of the symbol to break on in order to insert | |
12011 | a catchpoint on unhandled exceptions. */ | |
12012 | const char *catch_exception_unhandled_sym; | |
12013 | ||
12014 | /* The name of the symbol to break on in order to insert | |
12015 | a catchpoint on failed assertions. */ | |
12016 | const char *catch_assert_sym; | |
12017 | ||
9f757bf7 XR |
12018 | /* The name of the symbol to break on in order to insert |
12019 | a catchpoint on exception handling. */ | |
12020 | const char *catch_handlers_sym; | |
12021 | ||
0259addd JB |
12022 | /* Assuming that the inferior just triggered an unhandled exception |
12023 | catchpoint, this function is responsible for returning the address | |
12024 | in inferior memory where the name of that exception is stored. | |
12025 | Return zero if the address could not be computed. */ | |
12026 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
12027 | }; | |
12028 | ||
12029 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
12030 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
12031 | ||
12032 | /* The following exception support info structure describes how to | |
12033 | implement exception catchpoints with the latest version of the | |
12034 | Ada runtime (as of 2007-03-06). */ | |
12035 | ||
12036 | static const struct exception_support_info default_exception_support_info = | |
12037 | { | |
12038 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
12039 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
12040 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 12041 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
12042 | ada_unhandled_exception_name_addr |
12043 | }; | |
12044 | ||
12045 | /* The following exception support info structure describes how to | |
12046 | implement exception catchpoints with a slightly older version | |
12047 | of the Ada runtime. */ | |
12048 | ||
12049 | static const struct exception_support_info exception_support_info_fallback = | |
12050 | { | |
12051 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
12052 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
12053 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 12054 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
12055 | ada_unhandled_exception_name_addr_from_raise |
12056 | }; | |
12057 | ||
f17011e0 JB |
12058 | /* Return nonzero if we can detect the exception support routines |
12059 | described in EINFO. | |
12060 | ||
12061 | This function errors out if an abnormal situation is detected | |
12062 | (for instance, if we find the exception support routines, but | |
12063 | that support is found to be incomplete). */ | |
12064 | ||
12065 | static int | |
12066 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
12067 | { | |
12068 | struct symbol *sym; | |
12069 | ||
12070 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
12071 | that should be compiled with debugging information. As a result, we | |
12072 | expect to find that symbol in the symtabs. */ | |
12073 | ||
12074 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
12075 | if (sym == NULL) | |
a6af7abe JB |
12076 | { |
12077 | /* Perhaps we did not find our symbol because the Ada runtime was | |
12078 | compiled without debugging info, or simply stripped of it. | |
12079 | It happens on some GNU/Linux distributions for instance, where | |
12080 | users have to install a separate debug package in order to get | |
12081 | the runtime's debugging info. In that situation, let the user | |
12082 | know why we cannot insert an Ada exception catchpoint. | |
12083 | ||
12084 | Note: Just for the purpose of inserting our Ada exception | |
12085 | catchpoint, we could rely purely on the associated minimal symbol. | |
12086 | But we would be operating in degraded mode anyway, since we are | |
12087 | still lacking the debugging info needed later on to extract | |
12088 | the name of the exception being raised (this name is printed in | |
12089 | the catchpoint message, and is also used when trying to catch | |
12090 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 12091 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
12092 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
12093 | ||
3b7344d5 | 12094 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
12095 | error (_("Your Ada runtime appears to be missing some debugging " |
12096 | "information.\nCannot insert Ada exception catchpoint " | |
12097 | "in this configuration.")); | |
12098 | ||
12099 | return 0; | |
12100 | } | |
f17011e0 JB |
12101 | |
12102 | /* Make sure that the symbol we found corresponds to a function. */ | |
12103 | ||
12104 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
12105 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
12106 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
12107 | ||
12108 | return 1; | |
12109 | } | |
12110 | ||
0259addd JB |
12111 | /* Inspect the Ada runtime and determine which exception info structure |
12112 | should be used to provide support for exception catchpoints. | |
12113 | ||
3eecfa55 JB |
12114 | This function will always set the per-inferior exception_info, |
12115 | or raise an error. */ | |
0259addd JB |
12116 | |
12117 | static void | |
12118 | ada_exception_support_info_sniffer (void) | |
12119 | { | |
3eecfa55 | 12120 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
12121 | |
12122 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 12123 | if (data->exception_info != NULL) |
0259addd JB |
12124 | return; |
12125 | ||
12126 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 12127 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 12128 | { |
3eecfa55 | 12129 | data->exception_info = &default_exception_support_info; |
0259addd JB |
12130 | return; |
12131 | } | |
12132 | ||
12133 | /* Try our fallback exception suport info. */ | |
f17011e0 | 12134 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 12135 | { |
3eecfa55 | 12136 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
12137 | return; |
12138 | } | |
12139 | ||
12140 | /* Sometimes, it is normal for us to not be able to find the routine | |
12141 | we are looking for. This happens when the program is linked with | |
12142 | the shared version of the GNAT runtime, and the program has not been | |
12143 | started yet. Inform the user of these two possible causes if | |
12144 | applicable. */ | |
12145 | ||
ccefe4c4 | 12146 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
12147 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
12148 | ||
12149 | /* If the symbol does not exist, then check that the program is | |
12150 | already started, to make sure that shared libraries have been | |
12151 | loaded. If it is not started, this may mean that the symbol is | |
12152 | in a shared library. */ | |
12153 | ||
12154 | if (ptid_get_pid (inferior_ptid) == 0) | |
12155 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
12156 | ||
12157 | /* At this point, we know that we are debugging an Ada program and | |
12158 | that the inferior has been started, but we still are not able to | |
0963b4bd | 12159 | find the run-time symbols. That can mean that we are in |
0259addd JB |
12160 | configurable run time mode, or that a-except as been optimized |
12161 | out by the linker... In any case, at this point it is not worth | |
12162 | supporting this feature. */ | |
12163 | ||
7dda8cff | 12164 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
12165 | } |
12166 | ||
f7f9143b JB |
12167 | /* True iff FRAME is very likely to be that of a function that is |
12168 | part of the runtime system. This is all very heuristic, but is | |
12169 | intended to be used as advice as to what frames are uninteresting | |
12170 | to most users. */ | |
12171 | ||
12172 | static int | |
12173 | is_known_support_routine (struct frame_info *frame) | |
12174 | { | |
692465f1 | 12175 | enum language func_lang; |
f7f9143b | 12176 | int i; |
f35a17b5 | 12177 | const char *fullname; |
f7f9143b | 12178 | |
4ed6b5be JB |
12179 | /* If this code does not have any debugging information (no symtab), |
12180 | This cannot be any user code. */ | |
f7f9143b | 12181 | |
51abb421 | 12182 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
12183 | if (sal.symtab == NULL) |
12184 | return 1; | |
12185 | ||
4ed6b5be JB |
12186 | /* If there is a symtab, but the associated source file cannot be |
12187 | located, then assume this is not user code: Selecting a frame | |
12188 | for which we cannot display the code would not be very helpful | |
12189 | for the user. This should also take care of case such as VxWorks | |
12190 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 12191 | |
f35a17b5 JK |
12192 | fullname = symtab_to_fullname (sal.symtab); |
12193 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12194 | return 1; |
12195 | ||
4ed6b5be JB |
12196 | /* Check the unit filename againt the Ada runtime file naming. |
12197 | We also check the name of the objfile against the name of some | |
12198 | known system libraries that sometimes come with debugging info | |
12199 | too. */ | |
12200 | ||
f7f9143b JB |
12201 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12202 | { | |
12203 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12204 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12205 | return 1; |
eb822aa6 DE |
12206 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12207 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12208 | return 1; |
f7f9143b JB |
12209 | } |
12210 | ||
4ed6b5be | 12211 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12212 | |
c6dc63a1 TT |
12213 | gdb::unique_xmalloc_ptr<char> func_name |
12214 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
12215 | if (func_name == NULL) |
12216 | return 1; | |
12217 | ||
12218 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12219 | { | |
12220 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
12221 | if (re_exec (func_name.get ())) |
12222 | return 1; | |
f7f9143b JB |
12223 | } |
12224 | ||
12225 | return 0; | |
12226 | } | |
12227 | ||
12228 | /* Find the first frame that contains debugging information and that is not | |
12229 | part of the Ada run-time, starting from FI and moving upward. */ | |
12230 | ||
0ef643c8 | 12231 | void |
f7f9143b JB |
12232 | ada_find_printable_frame (struct frame_info *fi) |
12233 | { | |
12234 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12235 | { | |
12236 | if (!is_known_support_routine (fi)) | |
12237 | { | |
12238 | select_frame (fi); | |
12239 | break; | |
12240 | } | |
12241 | } | |
12242 | ||
12243 | } | |
12244 | ||
12245 | /* Assuming that the inferior just triggered an unhandled exception | |
12246 | catchpoint, return the address in inferior memory where the name | |
12247 | of the exception is stored. | |
12248 | ||
12249 | Return zero if the address could not be computed. */ | |
12250 | ||
12251 | static CORE_ADDR | |
12252 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12253 | { |
12254 | return parse_and_eval_address ("e.full_name"); | |
12255 | } | |
12256 | ||
12257 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12258 | should be used when the inferior uses an older version of the runtime, | |
12259 | where the exception name needs to be extracted from a specific frame | |
12260 | several frames up in the callstack. */ | |
12261 | ||
12262 | static CORE_ADDR | |
12263 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12264 | { |
12265 | int frame_level; | |
12266 | struct frame_info *fi; | |
3eecfa55 | 12267 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
12268 | |
12269 | /* To determine the name of this exception, we need to select | |
12270 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12271 | at least 3 levels up, so we simply skip the first 3 frames | |
12272 | without checking the name of their associated function. */ | |
12273 | fi = get_current_frame (); | |
12274 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12275 | if (fi != NULL) | |
12276 | fi = get_prev_frame (fi); | |
12277 | ||
12278 | while (fi != NULL) | |
12279 | { | |
692465f1 JB |
12280 | enum language func_lang; |
12281 | ||
c6dc63a1 TT |
12282 | gdb::unique_xmalloc_ptr<char> func_name |
12283 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
12284 | if (func_name != NULL) |
12285 | { | |
c6dc63a1 | 12286 | if (strcmp (func_name.get (), |
55b87a52 KS |
12287 | data->exception_info->catch_exception_sym) == 0) |
12288 | break; /* We found the frame we were looking for... */ | |
12289 | fi = get_prev_frame (fi); | |
12290 | } | |
f7f9143b JB |
12291 | } |
12292 | ||
12293 | if (fi == NULL) | |
12294 | return 0; | |
12295 | ||
12296 | select_frame (fi); | |
12297 | return parse_and_eval_address ("id.full_name"); | |
12298 | } | |
12299 | ||
12300 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12301 | (of any type), return the address in inferior memory where the name | |
12302 | of the exception is stored, if applicable. | |
12303 | ||
45db7c09 PA |
12304 | Assumes the selected frame is the current frame. |
12305 | ||
f7f9143b JB |
12306 | Return zero if the address could not be computed, or if not relevant. */ |
12307 | ||
12308 | static CORE_ADDR | |
761269c8 | 12309 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12310 | struct breakpoint *b) |
12311 | { | |
3eecfa55 JB |
12312 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12313 | ||
f7f9143b JB |
12314 | switch (ex) |
12315 | { | |
761269c8 | 12316 | case ada_catch_exception: |
f7f9143b JB |
12317 | return (parse_and_eval_address ("e.full_name")); |
12318 | break; | |
12319 | ||
761269c8 | 12320 | case ada_catch_exception_unhandled: |
3eecfa55 | 12321 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b | 12322 | break; |
9f757bf7 XR |
12323 | |
12324 | case ada_catch_handlers: | |
12325 | return 0; /* The runtimes does not provide access to the exception | |
12326 | name. */ | |
12327 | break; | |
12328 | ||
761269c8 | 12329 | case ada_catch_assert: |
f7f9143b JB |
12330 | return 0; /* Exception name is not relevant in this case. */ |
12331 | break; | |
12332 | ||
12333 | default: | |
12334 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12335 | break; | |
12336 | } | |
12337 | ||
12338 | return 0; /* Should never be reached. */ | |
12339 | } | |
12340 | ||
e547c119 JB |
12341 | /* Assuming the inferior is stopped at an exception catchpoint, |
12342 | return the message which was associated to the exception, if | |
12343 | available. Return NULL if the message could not be retrieved. | |
12344 | ||
12345 | The caller must xfree the string after use. | |
12346 | ||
12347 | Note: The exception message can be associated to an exception | |
12348 | either through the use of the Raise_Exception function, or | |
12349 | more simply (Ada 2005 and later), via: | |
12350 | ||
12351 | raise Exception_Name with "exception message"; | |
12352 | ||
12353 | */ | |
12354 | ||
12355 | static char * | |
12356 | ada_exception_message_1 (void) | |
12357 | { | |
12358 | struct value *e_msg_val; | |
12359 | char *e_msg = NULL; | |
12360 | int e_msg_len; | |
12361 | struct cleanup *cleanups; | |
12362 | ||
12363 | /* For runtimes that support this feature, the exception message | |
12364 | is passed as an unbounded string argument called "message". */ | |
12365 | e_msg_val = parse_and_eval ("message"); | |
12366 | if (e_msg_val == NULL) | |
12367 | return NULL; /* Exception message not supported. */ | |
12368 | ||
12369 | e_msg_val = ada_coerce_to_simple_array (e_msg_val); | |
12370 | gdb_assert (e_msg_val != NULL); | |
12371 | e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); | |
12372 | ||
12373 | /* If the message string is empty, then treat it as if there was | |
12374 | no exception message. */ | |
12375 | if (e_msg_len <= 0) | |
12376 | return NULL; | |
12377 | ||
12378 | e_msg = (char *) xmalloc (e_msg_len + 1); | |
12379 | cleanups = make_cleanup (xfree, e_msg); | |
12380 | read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1); | |
12381 | e_msg[e_msg_len] = '\0'; | |
12382 | ||
12383 | discard_cleanups (cleanups); | |
12384 | return e_msg; | |
12385 | } | |
12386 | ||
12387 | /* Same as ada_exception_message_1, except that all exceptions are | |
12388 | contained here (returning NULL instead). */ | |
12389 | ||
12390 | static char * | |
12391 | ada_exception_message (void) | |
12392 | { | |
12393 | char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */ | |
12394 | ||
12395 | TRY | |
12396 | { | |
12397 | e_msg = ada_exception_message_1 (); | |
12398 | } | |
12399 | CATCH (e, RETURN_MASK_ERROR) | |
12400 | { | |
12401 | e_msg = NULL; | |
12402 | } | |
12403 | END_CATCH | |
12404 | ||
12405 | return e_msg; | |
12406 | } | |
12407 | ||
f7f9143b JB |
12408 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
12409 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12410 | When an error is intercepted, a warning with the error message is printed, | |
12411 | and zero is returned. */ | |
12412 | ||
12413 | static CORE_ADDR | |
761269c8 | 12414 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12415 | struct breakpoint *b) |
12416 | { | |
f7f9143b JB |
12417 | CORE_ADDR result = 0; |
12418 | ||
492d29ea | 12419 | TRY |
f7f9143b JB |
12420 | { |
12421 | result = ada_exception_name_addr_1 (ex, b); | |
12422 | } | |
12423 | ||
492d29ea | 12424 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12425 | { |
12426 | warning (_("failed to get exception name: %s"), e.message); | |
12427 | return 0; | |
12428 | } | |
492d29ea | 12429 | END_CATCH |
f7f9143b JB |
12430 | |
12431 | return result; | |
12432 | } | |
12433 | ||
cb7de75e | 12434 | static std::string ada_exception_catchpoint_cond_string |
9f757bf7 XR |
12435 | (const char *excep_string, |
12436 | enum ada_exception_catchpoint_kind ex); | |
28010a5d PA |
12437 | |
12438 | /* Ada catchpoints. | |
12439 | ||
12440 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12441 | stop the target on every exception the program throws. When a user | |
12442 | specifies the name of a specific exception, we translate this | |
12443 | request into a condition expression (in text form), and then parse | |
12444 | it into an expression stored in each of the catchpoint's locations. | |
12445 | We then use this condition to check whether the exception that was | |
12446 | raised is the one the user is interested in. If not, then the | |
12447 | target is resumed again. We store the name of the requested | |
12448 | exception, in order to be able to re-set the condition expression | |
12449 | when symbols change. */ | |
12450 | ||
12451 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12452 | breakpoint location. */ |
28010a5d | 12453 | |
5625a286 | 12454 | class ada_catchpoint_location : public bp_location |
28010a5d | 12455 | { |
5625a286 PA |
12456 | public: |
12457 | ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner) | |
12458 | : bp_location (ops, owner) | |
12459 | {} | |
28010a5d PA |
12460 | |
12461 | /* The condition that checks whether the exception that was raised | |
12462 | is the specific exception the user specified on catchpoint | |
12463 | creation. */ | |
4d01a485 | 12464 | expression_up excep_cond_expr; |
28010a5d PA |
12465 | }; |
12466 | ||
12467 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12468 | Ada exception catchpoint kinds. */ | |
12469 | ||
12470 | static void | |
12471 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12472 | { | |
12473 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12474 | ||
4d01a485 | 12475 | al->excep_cond_expr.reset (); |
28010a5d PA |
12476 | } |
12477 | ||
12478 | /* The vtable to be used in Ada catchpoint locations. */ | |
12479 | ||
12480 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12481 | { | |
12482 | ada_catchpoint_location_dtor | |
12483 | }; | |
12484 | ||
c1fc2657 | 12485 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12486 | |
c1fc2657 | 12487 | struct ada_catchpoint : public breakpoint |
28010a5d | 12488 | { |
c1fc2657 | 12489 | ~ada_catchpoint () override; |
28010a5d PA |
12490 | |
12491 | /* The name of the specific exception the user specified. */ | |
12492 | char *excep_string; | |
12493 | }; | |
12494 | ||
12495 | /* Parse the exception condition string in the context of each of the | |
12496 | catchpoint's locations, and store them for later evaluation. */ | |
12497 | ||
12498 | static void | |
9f757bf7 XR |
12499 | create_excep_cond_exprs (struct ada_catchpoint *c, |
12500 | enum ada_exception_catchpoint_kind ex) | |
28010a5d | 12501 | { |
28010a5d | 12502 | struct bp_location *bl; |
28010a5d PA |
12503 | |
12504 | /* Nothing to do if there's no specific exception to catch. */ | |
12505 | if (c->excep_string == NULL) | |
12506 | return; | |
12507 | ||
12508 | /* Same if there are no locations... */ | |
c1fc2657 | 12509 | if (c->loc == NULL) |
28010a5d PA |
12510 | return; |
12511 | ||
12512 | /* Compute the condition expression in text form, from the specific | |
12513 | expection we want to catch. */ | |
cb7de75e TT |
12514 | std::string cond_string |
12515 | = ada_exception_catchpoint_cond_string (c->excep_string, ex); | |
28010a5d PA |
12516 | |
12517 | /* Iterate over all the catchpoint's locations, and parse an | |
12518 | expression for each. */ | |
c1fc2657 | 12519 | for (bl = c->loc; bl != NULL; bl = bl->next) |
28010a5d PA |
12520 | { |
12521 | struct ada_catchpoint_location *ada_loc | |
12522 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12523 | expression_up exp; |
28010a5d PA |
12524 | |
12525 | if (!bl->shlib_disabled) | |
12526 | { | |
bbc13ae3 | 12527 | const char *s; |
28010a5d | 12528 | |
cb7de75e | 12529 | s = cond_string.c_str (); |
492d29ea | 12530 | TRY |
28010a5d | 12531 | { |
036e657b JB |
12532 | exp = parse_exp_1 (&s, bl->address, |
12533 | block_for_pc (bl->address), | |
12534 | 0); | |
28010a5d | 12535 | } |
492d29ea | 12536 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12537 | { |
12538 | warning (_("failed to reevaluate internal exception condition " | |
12539 | "for catchpoint %d: %s"), | |
c1fc2657 | 12540 | c->number, e.message); |
849f2b52 | 12541 | } |
492d29ea | 12542 | END_CATCH |
28010a5d PA |
12543 | } |
12544 | ||
b22e99fd | 12545 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d | 12546 | } |
28010a5d PA |
12547 | } |
12548 | ||
c1fc2657 | 12549 | /* ada_catchpoint destructor. */ |
28010a5d | 12550 | |
c1fc2657 | 12551 | ada_catchpoint::~ada_catchpoint () |
28010a5d | 12552 | { |
c1fc2657 | 12553 | xfree (this->excep_string); |
28010a5d PA |
12554 | } |
12555 | ||
12556 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12557 | structure for all exception catchpoint kinds. */ | |
12558 | ||
12559 | static struct bp_location * | |
761269c8 | 12560 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12561 | struct breakpoint *self) |
12562 | { | |
5625a286 | 12563 | return new ada_catchpoint_location (&ada_catchpoint_location_ops, self); |
28010a5d PA |
12564 | } |
12565 | ||
12566 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12567 | exception catchpoint kinds. */ | |
12568 | ||
12569 | static void | |
761269c8 | 12570 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12571 | { |
12572 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12573 | ||
12574 | /* Call the base class's method. This updates the catchpoint's | |
12575 | locations. */ | |
2060206e | 12576 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12577 | |
12578 | /* Reparse the exception conditional expressions. One for each | |
12579 | location. */ | |
9f757bf7 | 12580 | create_excep_cond_exprs (c, ex); |
28010a5d PA |
12581 | } |
12582 | ||
12583 | /* Returns true if we should stop for this breakpoint hit. If the | |
12584 | user specified a specific exception, we only want to cause a stop | |
12585 | if the program thrown that exception. */ | |
12586 | ||
12587 | static int | |
12588 | should_stop_exception (const struct bp_location *bl) | |
12589 | { | |
12590 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12591 | const struct ada_catchpoint_location *ada_loc | |
12592 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12593 | int stop; |
12594 | ||
12595 | /* With no specific exception, should always stop. */ | |
12596 | if (c->excep_string == NULL) | |
12597 | return 1; | |
12598 | ||
12599 | if (ada_loc->excep_cond_expr == NULL) | |
12600 | { | |
12601 | /* We will have a NULL expression if back when we were creating | |
12602 | the expressions, this location's had failed to parse. */ | |
12603 | return 1; | |
12604 | } | |
12605 | ||
12606 | stop = 1; | |
492d29ea | 12607 | TRY |
28010a5d PA |
12608 | { |
12609 | struct value *mark; | |
12610 | ||
12611 | mark = value_mark (); | |
4d01a485 | 12612 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12613 | value_free_to_mark (mark); |
12614 | } | |
492d29ea PA |
12615 | CATCH (ex, RETURN_MASK_ALL) |
12616 | { | |
12617 | exception_fprintf (gdb_stderr, ex, | |
12618 | _("Error in testing exception condition:\n")); | |
12619 | } | |
12620 | END_CATCH | |
12621 | ||
28010a5d PA |
12622 | return stop; |
12623 | } | |
12624 | ||
12625 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12626 | for all exception catchpoint kinds. */ | |
12627 | ||
12628 | static void | |
761269c8 | 12629 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12630 | { |
12631 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12632 | } | |
12633 | ||
f7f9143b JB |
12634 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12635 | for all exception catchpoint kinds. */ | |
12636 | ||
12637 | static enum print_stop_action | |
761269c8 | 12638 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12639 | { |
79a45e25 | 12640 | struct ui_out *uiout = current_uiout; |
348d480f | 12641 | struct breakpoint *b = bs->breakpoint_at; |
e547c119 | 12642 | char *exception_message; |
348d480f | 12643 | |
956a9fb9 | 12644 | annotate_catchpoint (b->number); |
f7f9143b | 12645 | |
112e8700 | 12646 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12647 | { |
112e8700 | 12648 | uiout->field_string ("reason", |
956a9fb9 | 12649 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12650 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12651 | } |
12652 | ||
112e8700 SM |
12653 | uiout->text (b->disposition == disp_del |
12654 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12655 | uiout->field_int ("bkptno", b->number); | |
12656 | uiout->text (", "); | |
f7f9143b | 12657 | |
45db7c09 PA |
12658 | /* ada_exception_name_addr relies on the selected frame being the |
12659 | current frame. Need to do this here because this function may be | |
12660 | called more than once when printing a stop, and below, we'll | |
12661 | select the first frame past the Ada run-time (see | |
12662 | ada_find_printable_frame). */ | |
12663 | select_frame (get_current_frame ()); | |
12664 | ||
f7f9143b JB |
12665 | switch (ex) |
12666 | { | |
761269c8 JB |
12667 | case ada_catch_exception: |
12668 | case ada_catch_exception_unhandled: | |
9f757bf7 | 12669 | case ada_catch_handlers: |
956a9fb9 JB |
12670 | { |
12671 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12672 | char exception_name[256]; | |
12673 | ||
12674 | if (addr != 0) | |
12675 | { | |
c714b426 PA |
12676 | read_memory (addr, (gdb_byte *) exception_name, |
12677 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12678 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12679 | } | |
12680 | else | |
12681 | { | |
12682 | /* For some reason, we were unable to read the exception | |
12683 | name. This could happen if the Runtime was compiled | |
12684 | without debugging info, for instance. In that case, | |
12685 | just replace the exception name by the generic string | |
12686 | "exception" - it will read as "an exception" in the | |
12687 | notification we are about to print. */ | |
967cff16 | 12688 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12689 | } |
12690 | /* In the case of unhandled exception breakpoints, we print | |
12691 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12692 | it clearer to the user which kind of catchpoint just got | |
12693 | hit. We used ui_out_text to make sure that this extra | |
12694 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12695 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12696 | uiout->text ("unhandled "); |
12697 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12698 | } |
12699 | break; | |
761269c8 | 12700 | case ada_catch_assert: |
956a9fb9 JB |
12701 | /* In this case, the name of the exception is not really |
12702 | important. Just print "failed assertion" to make it clearer | |
12703 | that his program just hit an assertion-failure catchpoint. | |
12704 | We used ui_out_text because this info does not belong in | |
12705 | the MI output. */ | |
112e8700 | 12706 | uiout->text ("failed assertion"); |
956a9fb9 | 12707 | break; |
f7f9143b | 12708 | } |
e547c119 JB |
12709 | |
12710 | exception_message = ada_exception_message (); | |
12711 | if (exception_message != NULL) | |
12712 | { | |
12713 | struct cleanup *cleanups = make_cleanup (xfree, exception_message); | |
12714 | ||
12715 | uiout->text (" ("); | |
12716 | uiout->field_string ("exception-message", exception_message); | |
12717 | uiout->text (")"); | |
12718 | ||
12719 | do_cleanups (cleanups); | |
12720 | } | |
12721 | ||
112e8700 | 12722 | uiout->text (" at "); |
956a9fb9 | 12723 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12724 | |
12725 | return PRINT_SRC_AND_LOC; | |
12726 | } | |
12727 | ||
12728 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12729 | for all exception catchpoint kinds. */ | |
12730 | ||
12731 | static void | |
761269c8 | 12732 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12733 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12734 | { |
79a45e25 | 12735 | struct ui_out *uiout = current_uiout; |
28010a5d | 12736 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12737 | struct value_print_options opts; |
12738 | ||
12739 | get_user_print_options (&opts); | |
12740 | if (opts.addressprint) | |
f7f9143b JB |
12741 | { |
12742 | annotate_field (4); | |
112e8700 | 12743 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12744 | } |
12745 | ||
12746 | annotate_field (5); | |
a6d9a66e | 12747 | *last_loc = b->loc; |
f7f9143b JB |
12748 | switch (ex) |
12749 | { | |
761269c8 | 12750 | case ada_catch_exception: |
28010a5d | 12751 | if (c->excep_string != NULL) |
f7f9143b | 12752 | { |
28010a5d PA |
12753 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12754 | ||
112e8700 | 12755 | uiout->field_string ("what", msg); |
f7f9143b JB |
12756 | xfree (msg); |
12757 | } | |
12758 | else | |
112e8700 | 12759 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12760 | |
12761 | break; | |
12762 | ||
761269c8 | 12763 | case ada_catch_exception_unhandled: |
112e8700 | 12764 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12765 | break; |
12766 | ||
9f757bf7 XR |
12767 | case ada_catch_handlers: |
12768 | if (c->excep_string != NULL) | |
12769 | { | |
12770 | uiout->field_fmt ("what", | |
12771 | _("`%s' Ada exception handlers"), | |
12772 | c->excep_string); | |
12773 | } | |
12774 | else | |
12775 | uiout->field_string ("what", "all Ada exceptions handlers"); | |
12776 | break; | |
12777 | ||
761269c8 | 12778 | case ada_catch_assert: |
112e8700 | 12779 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12780 | break; |
12781 | ||
12782 | default: | |
12783 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12784 | break; | |
12785 | } | |
12786 | } | |
12787 | ||
12788 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12789 | for all exception catchpoint kinds. */ | |
12790 | ||
12791 | static void | |
761269c8 | 12792 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12793 | struct breakpoint *b) |
12794 | { | |
28010a5d | 12795 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12796 | struct ui_out *uiout = current_uiout; |
28010a5d | 12797 | |
112e8700 | 12798 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12799 | : _("Catchpoint ")); |
112e8700 SM |
12800 | uiout->field_int ("bkptno", b->number); |
12801 | uiout->text (": "); | |
00eb2c4a | 12802 | |
f7f9143b JB |
12803 | switch (ex) |
12804 | { | |
761269c8 | 12805 | case ada_catch_exception: |
28010a5d | 12806 | if (c->excep_string != NULL) |
00eb2c4a JB |
12807 | { |
12808 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12809 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12810 | ||
112e8700 | 12811 | uiout->text (info); |
00eb2c4a JB |
12812 | do_cleanups (old_chain); |
12813 | } | |
f7f9143b | 12814 | else |
112e8700 | 12815 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12816 | break; |
12817 | ||
761269c8 | 12818 | case ada_catch_exception_unhandled: |
112e8700 | 12819 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b | 12820 | break; |
9f757bf7 XR |
12821 | |
12822 | case ada_catch_handlers: | |
12823 | if (c->excep_string != NULL) | |
12824 | { | |
12825 | std::string info | |
12826 | = string_printf (_("`%s' Ada exception handlers"), | |
12827 | c->excep_string); | |
12828 | uiout->text (info.c_str ()); | |
12829 | } | |
12830 | else | |
12831 | uiout->text (_("all Ada exceptions handlers")); | |
12832 | break; | |
12833 | ||
761269c8 | 12834 | case ada_catch_assert: |
112e8700 | 12835 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12836 | break; |
12837 | ||
12838 | default: | |
12839 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12840 | break; | |
12841 | } | |
12842 | } | |
12843 | ||
6149aea9 PA |
12844 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12845 | for all exception catchpoint kinds. */ | |
12846 | ||
12847 | static void | |
761269c8 | 12848 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12849 | struct breakpoint *b, struct ui_file *fp) |
12850 | { | |
28010a5d PA |
12851 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12852 | ||
6149aea9 PA |
12853 | switch (ex) |
12854 | { | |
761269c8 | 12855 | case ada_catch_exception: |
6149aea9 | 12856 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12857 | if (c->excep_string != NULL) |
12858 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12859 | break; |
12860 | ||
761269c8 | 12861 | case ada_catch_exception_unhandled: |
78076abc | 12862 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12863 | break; |
12864 | ||
9f757bf7 XR |
12865 | case ada_catch_handlers: |
12866 | fprintf_filtered (fp, "catch handlers"); | |
12867 | break; | |
12868 | ||
761269c8 | 12869 | case ada_catch_assert: |
6149aea9 PA |
12870 | fprintf_filtered (fp, "catch assert"); |
12871 | break; | |
12872 | ||
12873 | default: | |
12874 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12875 | } | |
d9b3f62e | 12876 | print_recreate_thread (b, fp); |
6149aea9 PA |
12877 | } |
12878 | ||
f7f9143b JB |
12879 | /* Virtual table for "catch exception" breakpoints. */ |
12880 | ||
28010a5d PA |
12881 | static struct bp_location * |
12882 | allocate_location_catch_exception (struct breakpoint *self) | |
12883 | { | |
761269c8 | 12884 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12885 | } |
12886 | ||
12887 | static void | |
12888 | re_set_catch_exception (struct breakpoint *b) | |
12889 | { | |
761269c8 | 12890 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12891 | } |
12892 | ||
12893 | static void | |
12894 | check_status_catch_exception (bpstat bs) | |
12895 | { | |
761269c8 | 12896 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12897 | } |
12898 | ||
f7f9143b | 12899 | static enum print_stop_action |
348d480f | 12900 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12901 | { |
761269c8 | 12902 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12903 | } |
12904 | ||
12905 | static void | |
a6d9a66e | 12906 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12907 | { |
761269c8 | 12908 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12909 | } |
12910 | ||
12911 | static void | |
12912 | print_mention_catch_exception (struct breakpoint *b) | |
12913 | { | |
761269c8 | 12914 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12915 | } |
12916 | ||
6149aea9 PA |
12917 | static void |
12918 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12919 | { | |
761269c8 | 12920 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12921 | } |
12922 | ||
2060206e | 12923 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12924 | |
12925 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12926 | ||
28010a5d PA |
12927 | static struct bp_location * |
12928 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12929 | { | |
761269c8 | 12930 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12931 | } |
12932 | ||
12933 | static void | |
12934 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12935 | { | |
761269c8 | 12936 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12937 | } |
12938 | ||
12939 | static void | |
12940 | check_status_catch_exception_unhandled (bpstat bs) | |
12941 | { | |
761269c8 | 12942 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12943 | } |
12944 | ||
f7f9143b | 12945 | static enum print_stop_action |
348d480f | 12946 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12947 | { |
761269c8 | 12948 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12949 | } |
12950 | ||
12951 | static void | |
a6d9a66e UW |
12952 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12953 | struct bp_location **last_loc) | |
f7f9143b | 12954 | { |
761269c8 | 12955 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12956 | } |
12957 | ||
12958 | static void | |
12959 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12960 | { | |
761269c8 | 12961 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12962 | } |
12963 | ||
6149aea9 PA |
12964 | static void |
12965 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12966 | struct ui_file *fp) | |
12967 | { | |
761269c8 | 12968 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12969 | } |
12970 | ||
2060206e | 12971 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12972 | |
12973 | /* Virtual table for "catch assert" breakpoints. */ | |
12974 | ||
28010a5d PA |
12975 | static struct bp_location * |
12976 | allocate_location_catch_assert (struct breakpoint *self) | |
12977 | { | |
761269c8 | 12978 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12979 | } |
12980 | ||
12981 | static void | |
12982 | re_set_catch_assert (struct breakpoint *b) | |
12983 | { | |
761269c8 | 12984 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12985 | } |
12986 | ||
12987 | static void | |
12988 | check_status_catch_assert (bpstat bs) | |
12989 | { | |
761269c8 | 12990 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12991 | } |
12992 | ||
f7f9143b | 12993 | static enum print_stop_action |
348d480f | 12994 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12995 | { |
761269c8 | 12996 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12997 | } |
12998 | ||
12999 | static void | |
a6d9a66e | 13000 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 13001 | { |
761269c8 | 13002 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
13003 | } |
13004 | ||
13005 | static void | |
13006 | print_mention_catch_assert (struct breakpoint *b) | |
13007 | { | |
761269c8 | 13008 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
13009 | } |
13010 | ||
6149aea9 PA |
13011 | static void |
13012 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
13013 | { | |
761269c8 | 13014 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
13015 | } |
13016 | ||
2060206e | 13017 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 13018 | |
9f757bf7 XR |
13019 | /* Virtual table for "catch handlers" breakpoints. */ |
13020 | ||
13021 | static struct bp_location * | |
13022 | allocate_location_catch_handlers (struct breakpoint *self) | |
13023 | { | |
13024 | return allocate_location_exception (ada_catch_handlers, self); | |
13025 | } | |
13026 | ||
13027 | static void | |
13028 | re_set_catch_handlers (struct breakpoint *b) | |
13029 | { | |
13030 | re_set_exception (ada_catch_handlers, b); | |
13031 | } | |
13032 | ||
13033 | static void | |
13034 | check_status_catch_handlers (bpstat bs) | |
13035 | { | |
13036 | check_status_exception (ada_catch_handlers, bs); | |
13037 | } | |
13038 | ||
13039 | static enum print_stop_action | |
13040 | print_it_catch_handlers (bpstat bs) | |
13041 | { | |
13042 | return print_it_exception (ada_catch_handlers, bs); | |
13043 | } | |
13044 | ||
13045 | static void | |
13046 | print_one_catch_handlers (struct breakpoint *b, | |
13047 | struct bp_location **last_loc) | |
13048 | { | |
13049 | print_one_exception (ada_catch_handlers, b, last_loc); | |
13050 | } | |
13051 | ||
13052 | static void | |
13053 | print_mention_catch_handlers (struct breakpoint *b) | |
13054 | { | |
13055 | print_mention_exception (ada_catch_handlers, b); | |
13056 | } | |
13057 | ||
13058 | static void | |
13059 | print_recreate_catch_handlers (struct breakpoint *b, | |
13060 | struct ui_file *fp) | |
13061 | { | |
13062 | print_recreate_exception (ada_catch_handlers, b, fp); | |
13063 | } | |
13064 | ||
13065 | static struct breakpoint_ops catch_handlers_breakpoint_ops; | |
13066 | ||
f7f9143b JB |
13067 | /* Return a newly allocated copy of the first space-separated token |
13068 | in ARGSP, and then adjust ARGSP to point immediately after that | |
13069 | token. | |
13070 | ||
13071 | Return NULL if ARGPS does not contain any more tokens. */ | |
13072 | ||
13073 | static char * | |
a121b7c1 | 13074 | ada_get_next_arg (const char **argsp) |
f7f9143b | 13075 | { |
a121b7c1 PA |
13076 | const char *args = *argsp; |
13077 | const char *end; | |
f7f9143b JB |
13078 | char *result; |
13079 | ||
f1735a53 | 13080 | args = skip_spaces (args); |
f7f9143b JB |
13081 | if (args[0] == '\0') |
13082 | return NULL; /* No more arguments. */ | |
13083 | ||
13084 | /* Find the end of the current argument. */ | |
13085 | ||
f1735a53 | 13086 | end = skip_to_space (args); |
f7f9143b JB |
13087 | |
13088 | /* Adjust ARGSP to point to the start of the next argument. */ | |
13089 | ||
13090 | *argsp = end; | |
13091 | ||
13092 | /* Make a copy of the current argument and return it. */ | |
13093 | ||
224c3ddb | 13094 | result = (char *) xmalloc (end - args + 1); |
f7f9143b JB |
13095 | strncpy (result, args, end - args); |
13096 | result[end - args] = '\0'; | |
13097 | ||
13098 | return result; | |
13099 | } | |
13100 | ||
13101 | /* Split the arguments specified in a "catch exception" command. | |
13102 | Set EX to the appropriate catchpoint type. | |
28010a5d | 13103 | Set EXCEP_STRING to the name of the specific exception if |
5845583d | 13104 | specified by the user. |
9f757bf7 XR |
13105 | IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
13106 | "catch handlers" command. False otherwise. | |
5845583d JB |
13107 | If a condition is found at the end of the arguments, the condition |
13108 | expression is stored in COND_STRING (memory must be deallocated | |
13109 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
13110 | |
13111 | static void | |
a121b7c1 | 13112 | catch_ada_exception_command_split (const char *args, |
9f757bf7 | 13113 | bool is_catch_handlers_cmd, |
761269c8 | 13114 | enum ada_exception_catchpoint_kind *ex, |
5845583d | 13115 | char **excep_string, |
56ecd069 | 13116 | std::string &cond_string) |
f7f9143b JB |
13117 | { |
13118 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
13119 | char *exception_name; | |
5845583d | 13120 | char *cond = NULL; |
f7f9143b JB |
13121 | |
13122 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
13123 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
13124 | { | |
13125 | /* This is not an exception name; this is the start of a condition | |
13126 | expression for a catchpoint on all exceptions. So, "un-get" | |
13127 | this token, and set exception_name to NULL. */ | |
13128 | xfree (exception_name); | |
13129 | exception_name = NULL; | |
13130 | args -= 2; | |
13131 | } | |
f7f9143b JB |
13132 | make_cleanup (xfree, exception_name); |
13133 | ||
5845583d | 13134 | /* Check to see if we have a condition. */ |
f7f9143b | 13135 | |
f1735a53 | 13136 | args = skip_spaces (args); |
61012eef | 13137 | if (startswith (args, "if") |
5845583d JB |
13138 | && (isspace (args[2]) || args[2] == '\0')) |
13139 | { | |
13140 | args += 2; | |
f1735a53 | 13141 | args = skip_spaces (args); |
5845583d JB |
13142 | |
13143 | if (args[0] == '\0') | |
13144 | error (_("Condition missing after `if' keyword")); | |
13145 | cond = xstrdup (args); | |
13146 | make_cleanup (xfree, cond); | |
13147 | ||
13148 | args += strlen (args); | |
13149 | } | |
13150 | ||
13151 | /* Check that we do not have any more arguments. Anything else | |
13152 | is unexpected. */ | |
f7f9143b JB |
13153 | |
13154 | if (args[0] != '\0') | |
13155 | error (_("Junk at end of expression")); | |
13156 | ||
13157 | discard_cleanups (old_chain); | |
13158 | ||
9f757bf7 XR |
13159 | if (is_catch_handlers_cmd) |
13160 | { | |
13161 | /* Catch handling of exceptions. */ | |
13162 | *ex = ada_catch_handlers; | |
13163 | *excep_string = exception_name; | |
13164 | } | |
13165 | else if (exception_name == NULL) | |
f7f9143b JB |
13166 | { |
13167 | /* Catch all exceptions. */ | |
761269c8 | 13168 | *ex = ada_catch_exception; |
28010a5d | 13169 | *excep_string = NULL; |
f7f9143b JB |
13170 | } |
13171 | else if (strcmp (exception_name, "unhandled") == 0) | |
13172 | { | |
13173 | /* Catch unhandled exceptions. */ | |
761269c8 | 13174 | *ex = ada_catch_exception_unhandled; |
28010a5d | 13175 | *excep_string = NULL; |
f7f9143b JB |
13176 | } |
13177 | else | |
13178 | { | |
13179 | /* Catch a specific exception. */ | |
761269c8 | 13180 | *ex = ada_catch_exception; |
28010a5d | 13181 | *excep_string = exception_name; |
f7f9143b | 13182 | } |
56ecd069 XR |
13183 | if (cond != NULL) |
13184 | cond_string.assign (cond); | |
f7f9143b JB |
13185 | } |
13186 | ||
13187 | /* Return the name of the symbol on which we should break in order to | |
13188 | implement a catchpoint of the EX kind. */ | |
13189 | ||
13190 | static const char * | |
761269c8 | 13191 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 13192 | { |
3eecfa55 JB |
13193 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
13194 | ||
13195 | gdb_assert (data->exception_info != NULL); | |
0259addd | 13196 | |
f7f9143b JB |
13197 | switch (ex) |
13198 | { | |
761269c8 | 13199 | case ada_catch_exception: |
3eecfa55 | 13200 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 13201 | break; |
761269c8 | 13202 | case ada_catch_exception_unhandled: |
3eecfa55 | 13203 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 13204 | break; |
761269c8 | 13205 | case ada_catch_assert: |
3eecfa55 | 13206 | return (data->exception_info->catch_assert_sym); |
f7f9143b | 13207 | break; |
9f757bf7 XR |
13208 | case ada_catch_handlers: |
13209 | return (data->exception_info->catch_handlers_sym); | |
13210 | break; | |
f7f9143b JB |
13211 | default: |
13212 | internal_error (__FILE__, __LINE__, | |
13213 | _("unexpected catchpoint kind (%d)"), ex); | |
13214 | } | |
13215 | } | |
13216 | ||
13217 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
13218 | of the EX kind. */ | |
13219 | ||
c0a91b2b | 13220 | static const struct breakpoint_ops * |
761269c8 | 13221 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
13222 | { |
13223 | switch (ex) | |
13224 | { | |
761269c8 | 13225 | case ada_catch_exception: |
f7f9143b JB |
13226 | return (&catch_exception_breakpoint_ops); |
13227 | break; | |
761269c8 | 13228 | case ada_catch_exception_unhandled: |
f7f9143b JB |
13229 | return (&catch_exception_unhandled_breakpoint_ops); |
13230 | break; | |
761269c8 | 13231 | case ada_catch_assert: |
f7f9143b JB |
13232 | return (&catch_assert_breakpoint_ops); |
13233 | break; | |
9f757bf7 XR |
13234 | case ada_catch_handlers: |
13235 | return (&catch_handlers_breakpoint_ops); | |
13236 | break; | |
f7f9143b JB |
13237 | default: |
13238 | internal_error (__FILE__, __LINE__, | |
13239 | _("unexpected catchpoint kind (%d)"), ex); | |
13240 | } | |
13241 | } | |
13242 | ||
13243 | /* Return the condition that will be used to match the current exception | |
13244 | being raised with the exception that the user wants to catch. This | |
13245 | assumes that this condition is used when the inferior just triggered | |
13246 | an exception catchpoint. | |
cb7de75e | 13247 | EX: the type of catchpoints used for catching Ada exceptions. */ |
f7f9143b | 13248 | |
cb7de75e | 13249 | static std::string |
9f757bf7 XR |
13250 | ada_exception_catchpoint_cond_string (const char *excep_string, |
13251 | enum ada_exception_catchpoint_kind ex) | |
f7f9143b | 13252 | { |
3d0b0fa3 | 13253 | int i; |
9f757bf7 | 13254 | bool is_standard_exc = false; |
cb7de75e | 13255 | std::string result; |
9f757bf7 XR |
13256 | |
13257 | if (ex == ada_catch_handlers) | |
13258 | { | |
13259 | /* For exception handlers catchpoints, the condition string does | |
13260 | not use the same parameter as for the other exceptions. */ | |
cb7de75e TT |
13261 | result = ("long_integer (GNAT_GCC_exception_Access" |
13262 | "(gcc_exception).all.occurrence.id)"); | |
9f757bf7 XR |
13263 | } |
13264 | else | |
cb7de75e | 13265 | result = "long_integer (e)"; |
3d0b0fa3 | 13266 | |
0963b4bd | 13267 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 13268 | runtime units that have been compiled without debugging info; if |
28010a5d | 13269 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
13270 | exception (e.g. "constraint_error") then, during the evaluation |
13271 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 13272 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
13273 | may then be set only on user-defined exceptions which have the |
13274 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
13275 | ||
13276 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 13277 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
13278 | exception constraint_error" is rewritten into "catch exception |
13279 | standard.constraint_error". | |
13280 | ||
13281 | If an exception named contraint_error is defined in another package of | |
13282 | the inferior program, then the only way to specify this exception as a | |
13283 | breakpoint condition is to use its fully-qualified named: | |
13284 | e.g. my_package.constraint_error. */ | |
13285 | ||
13286 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
13287 | { | |
28010a5d | 13288 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 | 13289 | { |
9f757bf7 XR |
13290 | is_standard_exc = true; |
13291 | break; | |
3d0b0fa3 JB |
13292 | } |
13293 | } | |
9f757bf7 | 13294 | |
cb7de75e TT |
13295 | result += " = "; |
13296 | ||
9f757bf7 | 13297 | if (is_standard_exc) |
cb7de75e | 13298 | string_appendf (result, "long_integer (&standard.%s)", excep_string); |
9f757bf7 | 13299 | else |
cb7de75e | 13300 | string_appendf (result, "long_integer (&%s)", excep_string); |
9f757bf7 | 13301 | |
9f757bf7 | 13302 | return result; |
f7f9143b JB |
13303 | } |
13304 | ||
13305 | /* Return the symtab_and_line that should be used to insert an exception | |
13306 | catchpoint of the TYPE kind. | |
13307 | ||
28010a5d PA |
13308 | EXCEP_STRING should contain the name of a specific exception that |
13309 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 13310 | |
28010a5d PA |
13311 | ADDR_STRING returns the name of the function where the real |
13312 | breakpoint that implements the catchpoints is set, depending on the | |
13313 | type of catchpoint we need to create. */ | |
f7f9143b JB |
13314 | |
13315 | static struct symtab_and_line | |
761269c8 | 13316 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
f2fc3015 | 13317 | const char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
13318 | { |
13319 | const char *sym_name; | |
13320 | struct symbol *sym; | |
f7f9143b | 13321 | |
0259addd JB |
13322 | /* First, find out which exception support info to use. */ |
13323 | ada_exception_support_info_sniffer (); | |
13324 | ||
13325 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 13326 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
13327 | sym_name = ada_exception_sym_name (ex); |
13328 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
13329 | ||
f17011e0 JB |
13330 | /* We can assume that SYM is not NULL at this stage. If the symbol |
13331 | did not exist, ada_exception_support_info_sniffer would have | |
13332 | raised an exception. | |
f7f9143b | 13333 | |
f17011e0 JB |
13334 | Also, ada_exception_support_info_sniffer should have already |
13335 | verified that SYM is a function symbol. */ | |
13336 | gdb_assert (sym != NULL); | |
13337 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
13338 | |
13339 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
13340 | *addr_string = xstrdup (sym_name); |
13341 | ||
f7f9143b | 13342 | /* Set OPS. */ |
4b9eee8c | 13343 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 13344 | |
f17011e0 | 13345 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
13346 | } |
13347 | ||
b4a5b78b | 13348 | /* Create an Ada exception catchpoint. |
f7f9143b | 13349 | |
b4a5b78b | 13350 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 13351 | |
2df4d1d5 JB |
13352 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
13353 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
13354 | of the exception to which this catchpoint applies. When not NULL, | |
13355 | the string must be allocated on the heap, and its deallocation | |
13356 | is no longer the responsibility of the caller. | |
13357 | ||
13358 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
13359 | must be allocated on the heap, and its deallocation is no longer | |
13360 | the responsibility of the caller. | |
f7f9143b | 13361 | |
b4a5b78b JB |
13362 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
13363 | should be temporary. | |
28010a5d | 13364 | |
b4a5b78b | 13365 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 13366 | |
349774ef | 13367 | void |
28010a5d | 13368 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 13369 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 13370 | char *excep_string, |
56ecd069 | 13371 | const std::string &cond_string, |
28010a5d | 13372 | int tempflag, |
349774ef | 13373 | int disabled, |
28010a5d PA |
13374 | int from_tty) |
13375 | { | |
f2fc3015 | 13376 | const char *addr_string = NULL; |
b4a5b78b JB |
13377 | const struct breakpoint_ops *ops = NULL; |
13378 | struct symtab_and_line sal | |
13379 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d | 13380 | |
b270e6f9 TT |
13381 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ()); |
13382 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string, | |
349774ef | 13383 | ops, tempflag, disabled, from_tty); |
28010a5d | 13384 | c->excep_string = excep_string; |
9f757bf7 | 13385 | create_excep_cond_exprs (c.get (), ex_kind); |
56ecd069 XR |
13386 | if (!cond_string.empty ()) |
13387 | set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty); | |
b270e6f9 | 13388 | install_breakpoint (0, std::move (c), 1); |
f7f9143b JB |
13389 | } |
13390 | ||
9ac4176b PA |
13391 | /* Implement the "catch exception" command. */ |
13392 | ||
13393 | static void | |
eb4c3f4a | 13394 | catch_ada_exception_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13395 | struct cmd_list_element *command) |
13396 | { | |
a121b7c1 | 13397 | const char *arg = arg_entry; |
9ac4176b PA |
13398 | struct gdbarch *gdbarch = get_current_arch (); |
13399 | int tempflag; | |
761269c8 | 13400 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 13401 | char *excep_string = NULL; |
56ecd069 | 13402 | std::string cond_string; |
9ac4176b PA |
13403 | |
13404 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13405 | ||
13406 | if (!arg) | |
13407 | arg = ""; | |
9f757bf7 | 13408 | catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
56ecd069 | 13409 | cond_string); |
9f757bf7 XR |
13410 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13411 | excep_string, cond_string, | |
13412 | tempflag, 1 /* enabled */, | |
13413 | from_tty); | |
13414 | } | |
13415 | ||
13416 | /* Implement the "catch handlers" command. */ | |
13417 | ||
13418 | static void | |
13419 | catch_ada_handlers_command (const char *arg_entry, int from_tty, | |
13420 | struct cmd_list_element *command) | |
13421 | { | |
13422 | const char *arg = arg_entry; | |
13423 | struct gdbarch *gdbarch = get_current_arch (); | |
13424 | int tempflag; | |
13425 | enum ada_exception_catchpoint_kind ex_kind; | |
13426 | char *excep_string = NULL; | |
56ecd069 | 13427 | std::string cond_string; |
9f757bf7 XR |
13428 | |
13429 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13430 | ||
13431 | if (!arg) | |
13432 | arg = ""; | |
13433 | catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, | |
56ecd069 | 13434 | cond_string); |
b4a5b78b JB |
13435 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13436 | excep_string, cond_string, | |
349774ef JB |
13437 | tempflag, 1 /* enabled */, |
13438 | from_tty); | |
9ac4176b PA |
13439 | } |
13440 | ||
b4a5b78b | 13441 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13442 | |
b4a5b78b JB |
13443 | ARGS contains the command's arguments (or the empty string if |
13444 | no arguments were passed). | |
5845583d JB |
13445 | |
13446 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13447 | (the memory needs to be deallocated after use). */ |
5845583d | 13448 | |
b4a5b78b | 13449 | static void |
56ecd069 | 13450 | catch_ada_assert_command_split (const char *args, std::string &cond_string) |
f7f9143b | 13451 | { |
f1735a53 | 13452 | args = skip_spaces (args); |
f7f9143b | 13453 | |
5845583d | 13454 | /* Check whether a condition was provided. */ |
61012eef | 13455 | if (startswith (args, "if") |
5845583d | 13456 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13457 | { |
5845583d | 13458 | args += 2; |
f1735a53 | 13459 | args = skip_spaces (args); |
5845583d JB |
13460 | if (args[0] == '\0') |
13461 | error (_("condition missing after `if' keyword")); | |
56ecd069 | 13462 | cond_string.assign (args); |
f7f9143b JB |
13463 | } |
13464 | ||
5845583d JB |
13465 | /* Otherwise, there should be no other argument at the end of |
13466 | the command. */ | |
13467 | else if (args[0] != '\0') | |
13468 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13469 | } |
13470 | ||
9ac4176b PA |
13471 | /* Implement the "catch assert" command. */ |
13472 | ||
13473 | static void | |
eb4c3f4a | 13474 | catch_assert_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13475 | struct cmd_list_element *command) |
13476 | { | |
a121b7c1 | 13477 | const char *arg = arg_entry; |
9ac4176b PA |
13478 | struct gdbarch *gdbarch = get_current_arch (); |
13479 | int tempflag; | |
56ecd069 | 13480 | std::string cond_string; |
9ac4176b PA |
13481 | |
13482 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13483 | ||
13484 | if (!arg) | |
13485 | arg = ""; | |
56ecd069 | 13486 | catch_ada_assert_command_split (arg, cond_string); |
761269c8 | 13487 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 13488 | NULL, cond_string, |
349774ef JB |
13489 | tempflag, 1 /* enabled */, |
13490 | from_tty); | |
9ac4176b | 13491 | } |
778865d3 JB |
13492 | |
13493 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13494 | ||
13495 | static int | |
13496 | ada_is_exception_sym (struct symbol *sym) | |
13497 | { | |
13498 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
13499 | ||
13500 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13501 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13502 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13503 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13504 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13505 | } | |
13506 | ||
13507 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13508 | Ada exception object. This matches all exceptions except the ones | |
13509 | defined by the Ada language. */ | |
13510 | ||
13511 | static int | |
13512 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13513 | { | |
13514 | int i; | |
13515 | ||
13516 | if (!ada_is_exception_sym (sym)) | |
13517 | return 0; | |
13518 | ||
13519 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13520 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13521 | return 0; /* A standard exception. */ | |
13522 | ||
13523 | /* Numeric_Error is also a standard exception, so exclude it. | |
13524 | See the STANDARD_EXC description for more details as to why | |
13525 | this exception is not listed in that array. */ | |
13526 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13527 | return 0; | |
13528 | ||
13529 | return 1; | |
13530 | } | |
13531 | ||
ab816a27 | 13532 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
13533 | objects. |
13534 | ||
13535 | The comparison is determined first by exception name, and then | |
13536 | by exception address. */ | |
13537 | ||
ab816a27 | 13538 | bool |
cc536b21 | 13539 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 13540 | { |
778865d3 JB |
13541 | int result; |
13542 | ||
ab816a27 TT |
13543 | result = strcmp (name, other.name); |
13544 | if (result < 0) | |
13545 | return true; | |
13546 | if (result == 0 && addr < other.addr) | |
13547 | return true; | |
13548 | return false; | |
13549 | } | |
778865d3 | 13550 | |
ab816a27 | 13551 | bool |
cc536b21 | 13552 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
13553 | { |
13554 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
13555 | } |
13556 | ||
13557 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13558 | routine, but keeping the first SKIP elements untouched. | |
13559 | ||
13560 | All duplicates are also removed. */ | |
13561 | ||
13562 | static void | |
ab816a27 | 13563 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
13564 | int skip) |
13565 | { | |
ab816a27 TT |
13566 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
13567 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
13568 | exceptions->end ()); | |
778865d3 JB |
13569 | } |
13570 | ||
778865d3 JB |
13571 | /* Add all exceptions defined by the Ada standard whose name match |
13572 | a regular expression. | |
13573 | ||
13574 | If PREG is not NULL, then this regexp_t object is used to | |
13575 | perform the symbol name matching. Otherwise, no name-based | |
13576 | filtering is performed. | |
13577 | ||
13578 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13579 | gets pushed. */ | |
13580 | ||
13581 | static void | |
2d7cc5c7 | 13582 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 13583 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13584 | { |
13585 | int i; | |
13586 | ||
13587 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13588 | { | |
13589 | if (preg == NULL | |
2d7cc5c7 | 13590 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13591 | { |
13592 | struct bound_minimal_symbol msymbol | |
13593 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13594 | ||
13595 | if (msymbol.minsym != NULL) | |
13596 | { | |
13597 | struct ada_exc_info info | |
77e371c0 | 13598 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 13599 | |
ab816a27 | 13600 | exceptions->push_back (info); |
778865d3 JB |
13601 | } |
13602 | } | |
13603 | } | |
13604 | } | |
13605 | ||
13606 | /* Add all Ada exceptions defined locally and accessible from the given | |
13607 | FRAME. | |
13608 | ||
13609 | If PREG is not NULL, then this regexp_t object is used to | |
13610 | perform the symbol name matching. Otherwise, no name-based | |
13611 | filtering is performed. | |
13612 | ||
13613 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13614 | gets pushed. */ | |
13615 | ||
13616 | static void | |
2d7cc5c7 PA |
13617 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13618 | struct frame_info *frame, | |
ab816a27 | 13619 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13620 | { |
3977b71f | 13621 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13622 | |
13623 | while (block != 0) | |
13624 | { | |
13625 | struct block_iterator iter; | |
13626 | struct symbol *sym; | |
13627 | ||
13628 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13629 | { | |
13630 | switch (SYMBOL_CLASS (sym)) | |
13631 | { | |
13632 | case LOC_TYPEDEF: | |
13633 | case LOC_BLOCK: | |
13634 | case LOC_CONST: | |
13635 | break; | |
13636 | default: | |
13637 | if (ada_is_exception_sym (sym)) | |
13638 | { | |
13639 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13640 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13641 | ||
ab816a27 | 13642 | exceptions->push_back (info); |
778865d3 JB |
13643 | } |
13644 | } | |
13645 | } | |
13646 | if (BLOCK_FUNCTION (block) != NULL) | |
13647 | break; | |
13648 | block = BLOCK_SUPERBLOCK (block); | |
13649 | } | |
13650 | } | |
13651 | ||
14bc53a8 PA |
13652 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13653 | ||
13654 | static bool | |
2d7cc5c7 | 13655 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13656 | { |
13657 | return (preg == NULL | |
2d7cc5c7 | 13658 | || preg->exec (ada_decode (name), 0, NULL, 0) == 0); |
14bc53a8 PA |
13659 | } |
13660 | ||
778865d3 JB |
13661 | /* Add all exceptions defined globally whose name name match |
13662 | a regular expression, excluding standard exceptions. | |
13663 | ||
13664 | The reason we exclude standard exceptions is that they need | |
13665 | to be handled separately: Standard exceptions are defined inside | |
13666 | a runtime unit which is normally not compiled with debugging info, | |
13667 | and thus usually do not show up in our symbol search. However, | |
13668 | if the unit was in fact built with debugging info, we need to | |
13669 | exclude them because they would duplicate the entry we found | |
13670 | during the special loop that specifically searches for those | |
13671 | standard exceptions. | |
13672 | ||
13673 | If PREG is not NULL, then this regexp_t object is used to | |
13674 | perform the symbol name matching. Otherwise, no name-based | |
13675 | filtering is performed. | |
13676 | ||
13677 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13678 | gets pushed. */ | |
13679 | ||
13680 | static void | |
2d7cc5c7 | 13681 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 13682 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13683 | { |
13684 | struct objfile *objfile; | |
43f3e411 | 13685 | struct compunit_symtab *s; |
778865d3 | 13686 | |
14bc53a8 PA |
13687 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13688 | regular expression used to do the matching refers to the natural | |
13689 | name. So match against the decoded name. */ | |
13690 | expand_symtabs_matching (NULL, | |
b5ec771e | 13691 | lookup_name_info::match_any (), |
14bc53a8 PA |
13692 | [&] (const char *search_name) |
13693 | { | |
13694 | const char *decoded = ada_decode (search_name); | |
13695 | return name_matches_regex (decoded, preg); | |
13696 | }, | |
13697 | NULL, | |
13698 | VARIABLES_DOMAIN); | |
778865d3 | 13699 | |
43f3e411 | 13700 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13701 | { |
43f3e411 | 13702 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13703 | int i; |
13704 | ||
13705 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13706 | { | |
13707 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13708 | struct block_iterator iter; | |
13709 | struct symbol *sym; | |
13710 | ||
13711 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13712 | if (ada_is_non_standard_exception_sym (sym) | |
14bc53a8 | 13713 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) |
778865d3 JB |
13714 | { |
13715 | struct ada_exc_info info | |
13716 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13717 | ||
ab816a27 | 13718 | exceptions->push_back (info); |
778865d3 JB |
13719 | } |
13720 | } | |
13721 | } | |
13722 | } | |
13723 | ||
13724 | /* Implements ada_exceptions_list with the regular expression passed | |
13725 | as a regex_t, rather than a string. | |
13726 | ||
13727 | If not NULL, PREG is used to filter out exceptions whose names | |
13728 | do not match. Otherwise, all exceptions are listed. */ | |
13729 | ||
ab816a27 | 13730 | static std::vector<ada_exc_info> |
2d7cc5c7 | 13731 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 13732 | { |
ab816a27 | 13733 | std::vector<ada_exc_info> result; |
778865d3 JB |
13734 | int prev_len; |
13735 | ||
13736 | /* First, list the known standard exceptions. These exceptions | |
13737 | need to be handled separately, as they are usually defined in | |
13738 | runtime units that have been compiled without debugging info. */ | |
13739 | ||
13740 | ada_add_standard_exceptions (preg, &result); | |
13741 | ||
13742 | /* Next, find all exceptions whose scope is local and accessible | |
13743 | from the currently selected frame. */ | |
13744 | ||
13745 | if (has_stack_frames ()) | |
13746 | { | |
ab816a27 | 13747 | prev_len = result.size (); |
778865d3 JB |
13748 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
13749 | &result); | |
ab816a27 | 13750 | if (result.size () > prev_len) |
778865d3 JB |
13751 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13752 | } | |
13753 | ||
13754 | /* Add all exceptions whose scope is global. */ | |
13755 | ||
ab816a27 | 13756 | prev_len = result.size (); |
778865d3 | 13757 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 13758 | if (result.size () > prev_len) |
778865d3 JB |
13759 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13760 | ||
778865d3 JB |
13761 | return result; |
13762 | } | |
13763 | ||
13764 | /* Return a vector of ada_exc_info. | |
13765 | ||
13766 | If REGEXP is NULL, all exceptions are included in the result. | |
13767 | Otherwise, it should contain a valid regular expression, | |
13768 | and only the exceptions whose names match that regular expression | |
13769 | are included in the result. | |
13770 | ||
13771 | The exceptions are sorted in the following order: | |
13772 | - Standard exceptions (defined by the Ada language), in | |
13773 | alphabetical order; | |
13774 | - Exceptions only visible from the current frame, in | |
13775 | alphabetical order; | |
13776 | - Exceptions whose scope is global, in alphabetical order. */ | |
13777 | ||
ab816a27 | 13778 | std::vector<ada_exc_info> |
778865d3 JB |
13779 | ada_exceptions_list (const char *regexp) |
13780 | { | |
2d7cc5c7 PA |
13781 | if (regexp == NULL) |
13782 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13783 | |
2d7cc5c7 PA |
13784 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13785 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13786 | } |
13787 | ||
13788 | /* Implement the "info exceptions" command. */ | |
13789 | ||
13790 | static void | |
1d12d88f | 13791 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 13792 | { |
778865d3 | 13793 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 13794 | |
ab816a27 | 13795 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
13796 | |
13797 | if (regexp != NULL) | |
13798 | printf_filtered | |
13799 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13800 | else | |
13801 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13802 | ||
ab816a27 TT |
13803 | for (const ada_exc_info &info : exceptions) |
13804 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
13805 | } |
13806 | ||
4c4b4cd2 PH |
13807 | /* Operators */ |
13808 | /* Information about operators given special treatment in functions | |
13809 | below. */ | |
13810 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13811 | ||
13812 | #define ADA_OPERATORS \ | |
13813 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13814 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13815 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13816 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13817 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13818 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13819 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13820 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13821 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13822 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13823 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13824 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13825 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13826 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13827 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13828 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13829 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13830 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13831 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13832 | |
13833 | static void | |
554794dc SDJ |
13834 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13835 | int *argsp) | |
4c4b4cd2 PH |
13836 | { |
13837 | switch (exp->elts[pc - 1].opcode) | |
13838 | { | |
76a01679 | 13839 | default: |
4c4b4cd2 PH |
13840 | operator_length_standard (exp, pc, oplenp, argsp); |
13841 | break; | |
13842 | ||
13843 | #define OP_DEFN(op, len, args, binop) \ | |
13844 | case op: *oplenp = len; *argsp = args; break; | |
13845 | ADA_OPERATORS; | |
13846 | #undef OP_DEFN | |
52ce6436 PH |
13847 | |
13848 | case OP_AGGREGATE: | |
13849 | *oplenp = 3; | |
13850 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13851 | break; | |
13852 | ||
13853 | case OP_CHOICES: | |
13854 | *oplenp = 3; | |
13855 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13856 | break; | |
4c4b4cd2 PH |
13857 | } |
13858 | } | |
13859 | ||
c0201579 JK |
13860 | /* Implementation of the exp_descriptor method operator_check. */ |
13861 | ||
13862 | static int | |
13863 | ada_operator_check (struct expression *exp, int pos, | |
13864 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13865 | void *data) | |
13866 | { | |
13867 | const union exp_element *const elts = exp->elts; | |
13868 | struct type *type = NULL; | |
13869 | ||
13870 | switch (elts[pos].opcode) | |
13871 | { | |
13872 | case UNOP_IN_RANGE: | |
13873 | case UNOP_QUAL: | |
13874 | type = elts[pos + 1].type; | |
13875 | break; | |
13876 | ||
13877 | default: | |
13878 | return operator_check_standard (exp, pos, objfile_func, data); | |
13879 | } | |
13880 | ||
13881 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13882 | ||
13883 | if (type && TYPE_OBJFILE (type) | |
13884 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13885 | return 1; | |
13886 | ||
13887 | return 0; | |
13888 | } | |
13889 | ||
a121b7c1 | 13890 | static const char * |
4c4b4cd2 PH |
13891 | ada_op_name (enum exp_opcode opcode) |
13892 | { | |
13893 | switch (opcode) | |
13894 | { | |
76a01679 | 13895 | default: |
4c4b4cd2 | 13896 | return op_name_standard (opcode); |
52ce6436 | 13897 | |
4c4b4cd2 PH |
13898 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13899 | ADA_OPERATORS; | |
13900 | #undef OP_DEFN | |
52ce6436 PH |
13901 | |
13902 | case OP_AGGREGATE: | |
13903 | return "OP_AGGREGATE"; | |
13904 | case OP_CHOICES: | |
13905 | return "OP_CHOICES"; | |
13906 | case OP_NAME: | |
13907 | return "OP_NAME"; | |
4c4b4cd2 PH |
13908 | } |
13909 | } | |
13910 | ||
13911 | /* As for operator_length, but assumes PC is pointing at the first | |
13912 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13913 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13914 | |
13915 | static void | |
76a01679 JB |
13916 | ada_forward_operator_length (struct expression *exp, int pc, |
13917 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13918 | { |
76a01679 | 13919 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13920 | { |
13921 | default: | |
13922 | *oplenp = *argsp = 0; | |
13923 | break; | |
52ce6436 | 13924 | |
4c4b4cd2 PH |
13925 | #define OP_DEFN(op, len, args, binop) \ |
13926 | case op: *oplenp = len; *argsp = args; break; | |
13927 | ADA_OPERATORS; | |
13928 | #undef OP_DEFN | |
52ce6436 PH |
13929 | |
13930 | case OP_AGGREGATE: | |
13931 | *oplenp = 3; | |
13932 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13933 | break; | |
13934 | ||
13935 | case OP_CHOICES: | |
13936 | *oplenp = 3; | |
13937 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13938 | break; | |
13939 | ||
13940 | case OP_STRING: | |
13941 | case OP_NAME: | |
13942 | { | |
13943 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13944 | |
52ce6436 PH |
13945 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13946 | *argsp = 0; | |
13947 | break; | |
13948 | } | |
4c4b4cd2 PH |
13949 | } |
13950 | } | |
13951 | ||
13952 | static int | |
13953 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13954 | { | |
13955 | enum exp_opcode op = exp->elts[elt].opcode; | |
13956 | int oplen, nargs; | |
13957 | int pc = elt; | |
13958 | int i; | |
76a01679 | 13959 | |
4c4b4cd2 PH |
13960 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13961 | ||
76a01679 | 13962 | switch (op) |
4c4b4cd2 | 13963 | { |
76a01679 | 13964 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13965 | case OP_ATR_FIRST: |
13966 | case OP_ATR_LAST: | |
13967 | case OP_ATR_LENGTH: | |
13968 | case OP_ATR_IMAGE: | |
13969 | case OP_ATR_MAX: | |
13970 | case OP_ATR_MIN: | |
13971 | case OP_ATR_MODULUS: | |
13972 | case OP_ATR_POS: | |
13973 | case OP_ATR_SIZE: | |
13974 | case OP_ATR_TAG: | |
13975 | case OP_ATR_VAL: | |
13976 | break; | |
13977 | ||
13978 | case UNOP_IN_RANGE: | |
13979 | case UNOP_QUAL: | |
323e0a4a AC |
13980 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13981 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13982 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13983 | fprintf_filtered (stream, " ("); | |
13984 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13985 | fprintf_filtered (stream, ")"); | |
13986 | break; | |
13987 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13988 | fprintf_filtered (stream, " (%d)", |
13989 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13990 | break; |
13991 | case TERNOP_IN_RANGE: | |
13992 | break; | |
13993 | ||
52ce6436 PH |
13994 | case OP_AGGREGATE: |
13995 | case OP_OTHERS: | |
13996 | case OP_DISCRETE_RANGE: | |
13997 | case OP_POSITIONAL: | |
13998 | case OP_CHOICES: | |
13999 | break; | |
14000 | ||
14001 | case OP_NAME: | |
14002 | case OP_STRING: | |
14003 | { | |
14004 | char *name = &exp->elts[elt + 2].string; | |
14005 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 14006 | |
52ce6436 PH |
14007 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
14008 | break; | |
14009 | } | |
14010 | ||
4c4b4cd2 PH |
14011 | default: |
14012 | return dump_subexp_body_standard (exp, stream, elt); | |
14013 | } | |
14014 | ||
14015 | elt += oplen; | |
14016 | for (i = 0; i < nargs; i += 1) | |
14017 | elt = dump_subexp (exp, stream, elt); | |
14018 | ||
14019 | return elt; | |
14020 | } | |
14021 | ||
14022 | /* The Ada extension of print_subexp (q.v.). */ | |
14023 | ||
76a01679 JB |
14024 | static void |
14025 | ada_print_subexp (struct expression *exp, int *pos, | |
14026 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 14027 | { |
52ce6436 | 14028 | int oplen, nargs, i; |
4c4b4cd2 PH |
14029 | int pc = *pos; |
14030 | enum exp_opcode op = exp->elts[pc].opcode; | |
14031 | ||
14032 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
14033 | ||
52ce6436 | 14034 | *pos += oplen; |
4c4b4cd2 PH |
14035 | switch (op) |
14036 | { | |
14037 | default: | |
52ce6436 | 14038 | *pos -= oplen; |
4c4b4cd2 PH |
14039 | print_subexp_standard (exp, pos, stream, prec); |
14040 | return; | |
14041 | ||
14042 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
14043 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
14044 | return; | |
14045 | ||
14046 | case BINOP_IN_BOUNDS: | |
323e0a4a | 14047 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 14048 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 14049 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 14050 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 14051 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 14052 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
14053 | fprintf_filtered (stream, "(%ld)", |
14054 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
14055 | return; |
14056 | ||
14057 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 14058 | if (prec >= PREC_EQUAL) |
76a01679 | 14059 | fputs_filtered ("(", stream); |
323e0a4a | 14060 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 14061 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 14062 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
14063 | print_subexp (exp, pos, stream, PREC_EQUAL); |
14064 | fputs_filtered (" .. ", stream); | |
14065 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
14066 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
14067 | fputs_filtered (")", stream); |
14068 | return; | |
4c4b4cd2 PH |
14069 | |
14070 | case OP_ATR_FIRST: | |
14071 | case OP_ATR_LAST: | |
14072 | case OP_ATR_LENGTH: | |
14073 | case OP_ATR_IMAGE: | |
14074 | case OP_ATR_MAX: | |
14075 | case OP_ATR_MIN: | |
14076 | case OP_ATR_MODULUS: | |
14077 | case OP_ATR_POS: | |
14078 | case OP_ATR_SIZE: | |
14079 | case OP_ATR_TAG: | |
14080 | case OP_ATR_VAL: | |
4c4b4cd2 | 14081 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
14082 | { |
14083 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
14084 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
14085 | &type_print_raw_options); | |
76a01679 JB |
14086 | *pos += 3; |
14087 | } | |
4c4b4cd2 | 14088 | else |
76a01679 | 14089 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
14090 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
14091 | if (nargs > 1) | |
76a01679 JB |
14092 | { |
14093 | int tem; | |
5b4ee69b | 14094 | |
76a01679 JB |
14095 | for (tem = 1; tem < nargs; tem += 1) |
14096 | { | |
14097 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
14098 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
14099 | } | |
14100 | fputs_filtered (")", stream); | |
14101 | } | |
4c4b4cd2 | 14102 | return; |
14f9c5c9 | 14103 | |
4c4b4cd2 | 14104 | case UNOP_QUAL: |
4c4b4cd2 PH |
14105 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
14106 | fputs_filtered ("'(", stream); | |
14107 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
14108 | fputs_filtered (")", stream); | |
14109 | return; | |
14f9c5c9 | 14110 | |
4c4b4cd2 | 14111 | case UNOP_IN_RANGE: |
323e0a4a | 14112 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 14113 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 14114 | fputs_filtered (" in ", stream); |
79d43c61 TT |
14115 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
14116 | &type_print_raw_options); | |
4c4b4cd2 | 14117 | return; |
52ce6436 PH |
14118 | |
14119 | case OP_DISCRETE_RANGE: | |
14120 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14121 | fputs_filtered ("..", stream); | |
14122 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14123 | return; | |
14124 | ||
14125 | case OP_OTHERS: | |
14126 | fputs_filtered ("others => ", stream); | |
14127 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14128 | return; | |
14129 | ||
14130 | case OP_CHOICES: | |
14131 | for (i = 0; i < nargs-1; i += 1) | |
14132 | { | |
14133 | if (i > 0) | |
14134 | fputs_filtered ("|", stream); | |
14135 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14136 | } | |
14137 | fputs_filtered (" => ", stream); | |
14138 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14139 | return; | |
14140 | ||
14141 | case OP_POSITIONAL: | |
14142 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14143 | return; | |
14144 | ||
14145 | case OP_AGGREGATE: | |
14146 | fputs_filtered ("(", stream); | |
14147 | for (i = 0; i < nargs; i += 1) | |
14148 | { | |
14149 | if (i > 0) | |
14150 | fputs_filtered (", ", stream); | |
14151 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
14152 | } | |
14153 | fputs_filtered (")", stream); | |
14154 | return; | |
4c4b4cd2 PH |
14155 | } |
14156 | } | |
14f9c5c9 AS |
14157 | |
14158 | /* Table mapping opcodes into strings for printing operators | |
14159 | and precedences of the operators. */ | |
14160 | ||
d2e4a39e AS |
14161 | static const struct op_print ada_op_print_tab[] = { |
14162 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
14163 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
14164 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
14165 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
14166 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
14167 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
14168 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
14169 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
14170 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
14171 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
14172 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
14173 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
14174 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
14175 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
14176 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
14177 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
14178 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
14179 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
14180 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
14181 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
14182 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
14183 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
14184 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
14185 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
14186 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
14187 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
14188 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
14189 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
14190 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
14191 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
14192 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 14193 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
14194 | }; |
14195 | \f | |
72d5681a PH |
14196 | enum ada_primitive_types { |
14197 | ada_primitive_type_int, | |
14198 | ada_primitive_type_long, | |
14199 | ada_primitive_type_short, | |
14200 | ada_primitive_type_char, | |
14201 | ada_primitive_type_float, | |
14202 | ada_primitive_type_double, | |
14203 | ada_primitive_type_void, | |
14204 | ada_primitive_type_long_long, | |
14205 | ada_primitive_type_long_double, | |
14206 | ada_primitive_type_natural, | |
14207 | ada_primitive_type_positive, | |
14208 | ada_primitive_type_system_address, | |
08f49010 | 14209 | ada_primitive_type_storage_offset, |
72d5681a PH |
14210 | nr_ada_primitive_types |
14211 | }; | |
6c038f32 PH |
14212 | |
14213 | static void | |
d4a9a881 | 14214 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
14215 | struct language_arch_info *lai) |
14216 | { | |
d4a9a881 | 14217 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 14218 | |
72d5681a | 14219 | lai->primitive_type_vector |
d4a9a881 | 14220 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 14221 | struct type *); |
e9bb382b UW |
14222 | |
14223 | lai->primitive_type_vector [ada_primitive_type_int] | |
14224 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14225 | 0, "integer"); | |
14226 | lai->primitive_type_vector [ada_primitive_type_long] | |
14227 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
14228 | 0, "long_integer"); | |
14229 | lai->primitive_type_vector [ada_primitive_type_short] | |
14230 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
14231 | 0, "short_integer"); | |
14232 | lai->string_char_type | |
14233 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 14234 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
14235 | lai->primitive_type_vector [ada_primitive_type_float] |
14236 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 14237 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
14238 | lai->primitive_type_vector [ada_primitive_type_double] |
14239 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 14240 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
14241 | lai->primitive_type_vector [ada_primitive_type_long_long] |
14242 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
14243 | 0, "long_long_integer"); | |
14244 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 14245 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 14246 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
14247 | lai->primitive_type_vector [ada_primitive_type_natural] |
14248 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14249 | 0, "natural"); | |
14250 | lai->primitive_type_vector [ada_primitive_type_positive] | |
14251 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
14252 | 0, "positive"); | |
14253 | lai->primitive_type_vector [ada_primitive_type_void] | |
14254 | = builtin->builtin_void; | |
14255 | ||
14256 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
77b7c781 UW |
14257 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
14258 | "void")); | |
72d5681a PH |
14259 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
14260 | = "system__address"; | |
fbb06eb1 | 14261 | |
08f49010 XR |
14262 | /* Create the equivalent of the System.Storage_Elements.Storage_Offset |
14263 | type. This is a signed integral type whose size is the same as | |
14264 | the size of addresses. */ | |
14265 | { | |
14266 | unsigned int addr_length = TYPE_LENGTH | |
14267 | (lai->primitive_type_vector [ada_primitive_type_system_address]); | |
14268 | ||
14269 | lai->primitive_type_vector [ada_primitive_type_storage_offset] | |
14270 | = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, | |
14271 | "storage_offset"); | |
14272 | } | |
14273 | ||
47e729a8 | 14274 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 14275 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 14276 | } |
6c038f32 PH |
14277 | \f |
14278 | /* Language vector */ | |
14279 | ||
14280 | /* Not really used, but needed in the ada_language_defn. */ | |
14281 | ||
14282 | static void | |
6c7a06a3 | 14283 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 14284 | { |
6c7a06a3 | 14285 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
14286 | } |
14287 | ||
14288 | static int | |
410a0ff2 | 14289 | parse (struct parser_state *ps) |
6c038f32 PH |
14290 | { |
14291 | warnings_issued = 0; | |
410a0ff2 | 14292 | return ada_parse (ps); |
6c038f32 PH |
14293 | } |
14294 | ||
14295 | static const struct exp_descriptor ada_exp_descriptor = { | |
14296 | ada_print_subexp, | |
14297 | ada_operator_length, | |
c0201579 | 14298 | ada_operator_check, |
6c038f32 PH |
14299 | ada_op_name, |
14300 | ada_dump_subexp_body, | |
14301 | ada_evaluate_subexp | |
14302 | }; | |
14303 | ||
b5ec771e PA |
14304 | /* symbol_name_matcher_ftype adapter for wild_match. */ |
14305 | ||
14306 | static bool | |
14307 | do_wild_match (const char *symbol_search_name, | |
14308 | const lookup_name_info &lookup_name, | |
a207cff2 | 14309 | completion_match_result *comp_match_res) |
b5ec771e PA |
14310 | { |
14311 | return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14312 | } | |
14313 | ||
14314 | /* symbol_name_matcher_ftype adapter for full_match. */ | |
14315 | ||
14316 | static bool | |
14317 | do_full_match (const char *symbol_search_name, | |
14318 | const lookup_name_info &lookup_name, | |
a207cff2 | 14319 | completion_match_result *comp_match_res) |
b5ec771e PA |
14320 | { |
14321 | return full_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
14322 | } | |
14323 | ||
14324 | /* Build the Ada lookup name for LOOKUP_NAME. */ | |
14325 | ||
14326 | ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) | |
14327 | { | |
14328 | const std::string &user_name = lookup_name.name (); | |
14329 | ||
14330 | if (user_name[0] == '<') | |
14331 | { | |
14332 | if (user_name.back () == '>') | |
14333 | m_encoded_name = user_name.substr (1, user_name.size () - 2); | |
14334 | else | |
14335 | m_encoded_name = user_name.substr (1, user_name.size () - 1); | |
14336 | m_encoded_p = true; | |
14337 | m_verbatim_p = true; | |
14338 | m_wild_match_p = false; | |
14339 | m_standard_p = false; | |
14340 | } | |
14341 | else | |
14342 | { | |
14343 | m_verbatim_p = false; | |
14344 | ||
14345 | m_encoded_p = user_name.find ("__") != std::string::npos; | |
14346 | ||
14347 | if (!m_encoded_p) | |
14348 | { | |
14349 | const char *folded = ada_fold_name (user_name.c_str ()); | |
14350 | const char *encoded = ada_encode_1 (folded, false); | |
14351 | if (encoded != NULL) | |
14352 | m_encoded_name = encoded; | |
14353 | else | |
14354 | m_encoded_name = user_name; | |
14355 | } | |
14356 | else | |
14357 | m_encoded_name = user_name; | |
14358 | ||
14359 | /* Handle the 'package Standard' special case. See description | |
14360 | of m_standard_p. */ | |
14361 | if (startswith (m_encoded_name.c_str (), "standard__")) | |
14362 | { | |
14363 | m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); | |
14364 | m_standard_p = true; | |
14365 | } | |
14366 | else | |
14367 | m_standard_p = false; | |
74ccd7f5 | 14368 | |
b5ec771e PA |
14369 | /* If the name contains a ".", then the user is entering a fully |
14370 | qualified entity name, and the match must not be done in wild | |
14371 | mode. Similarly, if the user wants to complete what looks | |
14372 | like an encoded name, the match must not be done in wild | |
14373 | mode. Also, in the standard__ special case always do | |
14374 | non-wild matching. */ | |
14375 | m_wild_match_p | |
14376 | = (lookup_name.match_type () != symbol_name_match_type::FULL | |
14377 | && !m_encoded_p | |
14378 | && !m_standard_p | |
14379 | && user_name.find ('.') == std::string::npos); | |
14380 | } | |
14381 | } | |
14382 | ||
14383 | /* symbol_name_matcher_ftype method for Ada. This only handles | |
14384 | completion mode. */ | |
14385 | ||
14386 | static bool | |
14387 | ada_symbol_name_matches (const char *symbol_search_name, | |
14388 | const lookup_name_info &lookup_name, | |
a207cff2 | 14389 | completion_match_result *comp_match_res) |
74ccd7f5 | 14390 | { |
b5ec771e PA |
14391 | return lookup_name.ada ().matches (symbol_search_name, |
14392 | lookup_name.match_type (), | |
a207cff2 | 14393 | comp_match_res); |
b5ec771e PA |
14394 | } |
14395 | ||
de63c46b PA |
14396 | /* A name matcher that matches the symbol name exactly, with |
14397 | strcmp. */ | |
14398 | ||
14399 | static bool | |
14400 | literal_symbol_name_matcher (const char *symbol_search_name, | |
14401 | const lookup_name_info &lookup_name, | |
14402 | completion_match_result *comp_match_res) | |
14403 | { | |
14404 | const std::string &name = lookup_name.name (); | |
14405 | ||
14406 | int cmp = (lookup_name.completion_mode () | |
14407 | ? strncmp (symbol_search_name, name.c_str (), name.size ()) | |
14408 | : strcmp (symbol_search_name, name.c_str ())); | |
14409 | if (cmp == 0) | |
14410 | { | |
14411 | if (comp_match_res != NULL) | |
14412 | comp_match_res->set_match (symbol_search_name); | |
14413 | return true; | |
14414 | } | |
14415 | else | |
14416 | return false; | |
14417 | } | |
14418 | ||
b5ec771e PA |
14419 | /* Implement the "la_get_symbol_name_matcher" language_defn method for |
14420 | Ada. */ | |
14421 | ||
14422 | static symbol_name_matcher_ftype * | |
14423 | ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) | |
14424 | { | |
de63c46b PA |
14425 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
14426 | return literal_symbol_name_matcher; | |
14427 | ||
b5ec771e PA |
14428 | if (lookup_name.completion_mode ()) |
14429 | return ada_symbol_name_matches; | |
74ccd7f5 | 14430 | else |
b5ec771e PA |
14431 | { |
14432 | if (lookup_name.ada ().wild_match_p ()) | |
14433 | return do_wild_match; | |
14434 | else | |
14435 | return do_full_match; | |
14436 | } | |
74ccd7f5 JB |
14437 | } |
14438 | ||
a5ee536b JB |
14439 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
14440 | ||
14441 | static struct value * | |
63e43d3a PMR |
14442 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
14443 | struct frame_info *frame) | |
a5ee536b | 14444 | { |
3977b71f | 14445 | const struct block *frame_block = NULL; |
a5ee536b JB |
14446 | struct symbol *renaming_sym = NULL; |
14447 | ||
14448 | /* The only case where default_read_var_value is not sufficient | |
14449 | is when VAR is a renaming... */ | |
14450 | if (frame) | |
14451 | frame_block = get_frame_block (frame, NULL); | |
14452 | if (frame_block) | |
14453 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
14454 | if (renaming_sym != NULL) | |
14455 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
14456 | ||
14457 | /* This is a typical case where we expect the default_read_var_value | |
14458 | function to work. */ | |
63e43d3a | 14459 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
14460 | } |
14461 | ||
56618e20 TT |
14462 | static const char *ada_extensions[] = |
14463 | { | |
14464 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
14465 | }; | |
14466 | ||
47e77640 | 14467 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 14468 | "ada", /* Language name */ |
6abde28f | 14469 | "Ada", |
6c038f32 | 14470 | language_ada, |
6c038f32 | 14471 | range_check_off, |
6c038f32 PH |
14472 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
14473 | that's not quite what this means. */ | |
6c038f32 | 14474 | array_row_major, |
9a044a89 | 14475 | macro_expansion_no, |
56618e20 | 14476 | ada_extensions, |
6c038f32 PH |
14477 | &ada_exp_descriptor, |
14478 | parse, | |
b3f11165 | 14479 | ada_yyerror, |
6c038f32 PH |
14480 | resolve, |
14481 | ada_printchar, /* Print a character constant */ | |
14482 | ada_printstr, /* Function to print string constant */ | |
14483 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 14484 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 14485 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
14486 | ada_val_print, /* Print a value using appropriate syntax */ |
14487 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 14488 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 14489 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 14490 | NULL, /* name_of_this */ |
59cc4834 | 14491 | true, /* la_store_sym_names_in_linkage_form_p */ |
6c038f32 PH |
14492 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
14493 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
14494 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 14495 | ada_sniff_from_mangled_name, |
0963b4bd MS |
14496 | NULL, /* Language specific |
14497 | class_name_from_physname */ | |
6c038f32 PH |
14498 | ada_op_print_tab, /* expression operators for printing */ |
14499 | 0, /* c-style arrays */ | |
14500 | 1, /* String lower bound */ | |
6c038f32 | 14501 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 14502 | ada_collect_symbol_completion_matches, |
72d5681a | 14503 | ada_language_arch_info, |
e79af960 | 14504 | ada_print_array_index, |
41f1b697 | 14505 | default_pass_by_reference, |
ae6a3a4c | 14506 | c_get_string, |
43cc5389 | 14507 | c_watch_location_expression, |
b5ec771e | 14508 | ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */ |
f8eba3c6 | 14509 | ada_iterate_over_symbols, |
5ffa0793 | 14510 | default_search_name_hash, |
a53b64ea | 14511 | &ada_varobj_ops, |
bb2ec1b3 TT |
14512 | NULL, |
14513 | NULL, | |
6c038f32 PH |
14514 | LANG_MAGIC |
14515 | }; | |
14516 | ||
5bf03f13 JB |
14517 | /* Command-list for the "set/show ada" prefix command. */ |
14518 | static struct cmd_list_element *set_ada_list; | |
14519 | static struct cmd_list_element *show_ada_list; | |
14520 | ||
14521 | /* Implement the "set ada" prefix command. */ | |
14522 | ||
14523 | static void | |
981a3fb3 | 14524 | set_ada_command (const char *arg, int from_tty) |
5bf03f13 JB |
14525 | { |
14526 | printf_unfiltered (_(\ | |
14527 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14528 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14529 | } |
14530 | ||
14531 | /* Implement the "show ada" prefix command. */ | |
14532 | ||
14533 | static void | |
981a3fb3 | 14534 | show_ada_command (const char *args, int from_tty) |
5bf03f13 JB |
14535 | { |
14536 | cmd_show_list (show_ada_list, from_tty, ""); | |
14537 | } | |
14538 | ||
2060206e PA |
14539 | static void |
14540 | initialize_ada_catchpoint_ops (void) | |
14541 | { | |
14542 | struct breakpoint_ops *ops; | |
14543 | ||
14544 | initialize_breakpoint_ops (); | |
14545 | ||
14546 | ops = &catch_exception_breakpoint_ops; | |
14547 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14548 | ops->allocate_location = allocate_location_catch_exception; |
14549 | ops->re_set = re_set_catch_exception; | |
14550 | ops->check_status = check_status_catch_exception; | |
14551 | ops->print_it = print_it_catch_exception; | |
14552 | ops->print_one = print_one_catch_exception; | |
14553 | ops->print_mention = print_mention_catch_exception; | |
14554 | ops->print_recreate = print_recreate_catch_exception; | |
14555 | ||
14556 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14557 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14558 | ops->allocate_location = allocate_location_catch_exception_unhandled; |
14559 | ops->re_set = re_set_catch_exception_unhandled; | |
14560 | ops->check_status = check_status_catch_exception_unhandled; | |
14561 | ops->print_it = print_it_catch_exception_unhandled; | |
14562 | ops->print_one = print_one_catch_exception_unhandled; | |
14563 | ops->print_mention = print_mention_catch_exception_unhandled; | |
14564 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
14565 | ||
14566 | ops = &catch_assert_breakpoint_ops; | |
14567 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14568 | ops->allocate_location = allocate_location_catch_assert; |
14569 | ops->re_set = re_set_catch_assert; | |
14570 | ops->check_status = check_status_catch_assert; | |
14571 | ops->print_it = print_it_catch_assert; | |
14572 | ops->print_one = print_one_catch_assert; | |
14573 | ops->print_mention = print_mention_catch_assert; | |
14574 | ops->print_recreate = print_recreate_catch_assert; | |
9f757bf7 XR |
14575 | |
14576 | ops = &catch_handlers_breakpoint_ops; | |
14577 | *ops = bkpt_breakpoint_ops; | |
14578 | ops->allocate_location = allocate_location_catch_handlers; | |
14579 | ops->re_set = re_set_catch_handlers; | |
14580 | ops->check_status = check_status_catch_handlers; | |
14581 | ops->print_it = print_it_catch_handlers; | |
14582 | ops->print_one = print_one_catch_handlers; | |
14583 | ops->print_mention = print_mention_catch_handlers; | |
14584 | ops->print_recreate = print_recreate_catch_handlers; | |
2060206e PA |
14585 | } |
14586 | ||
3d9434b5 JB |
14587 | /* This module's 'new_objfile' observer. */ |
14588 | ||
14589 | static void | |
14590 | ada_new_objfile_observer (struct objfile *objfile) | |
14591 | { | |
14592 | ada_clear_symbol_cache (); | |
14593 | } | |
14594 | ||
14595 | /* This module's 'free_objfile' observer. */ | |
14596 | ||
14597 | static void | |
14598 | ada_free_objfile_observer (struct objfile *objfile) | |
14599 | { | |
14600 | ada_clear_symbol_cache (); | |
14601 | } | |
14602 | ||
d2e4a39e | 14603 | void |
6c038f32 | 14604 | _initialize_ada_language (void) |
14f9c5c9 | 14605 | { |
2060206e PA |
14606 | initialize_ada_catchpoint_ops (); |
14607 | ||
5bf03f13 JB |
14608 | add_prefix_cmd ("ada", no_class, set_ada_command, |
14609 | _("Prefix command for changing Ada-specfic settings"), | |
14610 | &set_ada_list, "set ada ", 0, &setlist); | |
14611 | ||
14612 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14613 | _("Generic command for showing Ada-specific settings."), | |
14614 | &show_ada_list, "show ada ", 0, &showlist); | |
14615 | ||
14616 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14617 | &trust_pad_over_xvs, _("\ | |
14618 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14619 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14620 | _("\ | |
14621 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14622 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14623 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14624 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14625 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14626 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14627 | this option to \"off\" unless necessary."), | |
14628 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14629 | ||
d72413e6 PMR |
14630 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14631 | &print_signatures, _("\ | |
14632 | Enable or disable the output of formal and return types for functions in the \ | |
14633 | overloads selection menu"), _("\ | |
14634 | Show whether the output of formal and return types for functions in the \ | |
14635 | overloads selection menu is activated"), | |
14636 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14637 | ||
9ac4176b PA |
14638 | add_catch_command ("exception", _("\ |
14639 | Catch Ada exceptions, when raised.\n\ | |
14640 | With an argument, catch only exceptions with the given name."), | |
14641 | catch_ada_exception_command, | |
14642 | NULL, | |
14643 | CATCH_PERMANENT, | |
14644 | CATCH_TEMPORARY); | |
9f757bf7 XR |
14645 | |
14646 | add_catch_command ("handlers", _("\ | |
14647 | Catch Ada exceptions, when handled.\n\ | |
14648 | With an argument, catch only exceptions with the given name."), | |
14649 | catch_ada_handlers_command, | |
14650 | NULL, | |
14651 | CATCH_PERMANENT, | |
14652 | CATCH_TEMPORARY); | |
9ac4176b PA |
14653 | add_catch_command ("assert", _("\ |
14654 | Catch failed Ada assertions, when raised.\n\ | |
14655 | With an argument, catch only exceptions with the given name."), | |
14656 | catch_assert_command, | |
14657 | NULL, | |
14658 | CATCH_PERMANENT, | |
14659 | CATCH_TEMPORARY); | |
14660 | ||
6c038f32 | 14661 | varsize_limit = 65536; |
3fcded8f JB |
14662 | add_setshow_uinteger_cmd ("varsize-limit", class_support, |
14663 | &varsize_limit, _("\ | |
14664 | Set the maximum number of bytes allowed in a variable-size object."), _("\ | |
14665 | Show the maximum number of bytes allowed in a variable-size object."), _("\ | |
14666 | Attempts to access an object whose size is not a compile-time constant\n\ | |
14667 | and exceeds this limit will cause an error."), | |
14668 | NULL, NULL, &setlist, &showlist); | |
6c038f32 | 14669 | |
778865d3 JB |
14670 | add_info ("exceptions", info_exceptions_command, |
14671 | _("\ | |
14672 | List all Ada exception names.\n\ | |
14673 | If a regular expression is passed as an argument, only those matching\n\ | |
14674 | the regular expression are listed.")); | |
14675 | ||
c6044dd1 JB |
14676 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14677 | _("Set Ada maintenance-related variables."), | |
14678 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14679 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14680 | ||
14681 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14682 | _("Show Ada maintenance-related variables"), | |
14683 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14684 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14685 | ||
14686 | add_setshow_boolean_cmd | |
14687 | ("ignore-descriptive-types", class_maintenance, | |
14688 | &ada_ignore_descriptive_types_p, | |
14689 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14690 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14691 | _("\ | |
14692 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14693 | DWARF attribute."), | |
14694 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14695 | ||
459a2e4c TT |
14696 | decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash, |
14697 | NULL, xcalloc, xfree); | |
6b69afc4 | 14698 | |
3d9434b5 | 14699 | /* The ada-lang observers. */ |
76727919 TT |
14700 | gdb::observers::new_objfile.attach (ada_new_objfile_observer); |
14701 | gdb::observers::free_objfile.attach (ada_free_objfile_observer); | |
14702 | gdb::observers::inferior_exit.attach (ada_inferior_exit); | |
ee01b665 JB |
14703 | |
14704 | /* Setup various context-specific data. */ | |
e802dbe0 | 14705 | ada_inferior_data |
8e260fc0 | 14706 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14707 | ada_pspace_data_handle |
14708 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14709 | } |