]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
memory error printing component of record from convenience variable
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2913 struct type *slice_type = create_array_type_with_stride
2914 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2915 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2916 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2917 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2918 LONGEST base_low_pos, low_pos;
2919 CORE_ADDR base;
2920
2921 if (!discrete_position (base_index_type, low, &low_pos)
2922 || !discrete_position (base_index_type, base_low, &base_low_pos))
2923 {
2924 warning (_("unable to get positions in slice, use bounds instead"));
2925 low_pos = low;
2926 base_low_pos = base_low;
2927 }
5b4ee69b 2928
aa715135
JG
2929 base = value_as_address (array_ptr)
2930 + ((low_pos - base_low_pos)
2931 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2932 return value_at_lazy (slice_type, base);
0b5d8877
PH
2933}
2934
2935
2936static struct value *
2937ada_value_slice (struct value *array, int low, int high)
2938{
b0dd7688 2939 struct type *type = ada_check_typedef (value_type (array));
aa715135 2940 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2941 struct type *index_type
2942 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2943 struct type *slice_type = create_array_type_with_stride
2944 (NULL, TYPE_TARGET_TYPE (type), index_type,
2945 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2946 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2947 LONGEST low_pos, high_pos;
5b4ee69b 2948
aa715135
JG
2949 if (!discrete_position (base_index_type, low, &low_pos)
2950 || !discrete_position (base_index_type, high, &high_pos))
2951 {
2952 warning (_("unable to get positions in slice, use bounds instead"));
2953 low_pos = low;
2954 high_pos = high;
2955 }
2956
2957 return value_cast (slice_type,
2958 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2959}
2960
14f9c5c9
AS
2961/* If type is a record type in the form of a standard GNAT array
2962 descriptor, returns the number of dimensions for type. If arr is a
2963 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2964 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2965
2966int
d2e4a39e 2967ada_array_arity (struct type *type)
14f9c5c9
AS
2968{
2969 int arity;
2970
2971 if (type == NULL)
2972 return 0;
2973
2974 type = desc_base_type (type);
2975
2976 arity = 0;
d2e4a39e 2977 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2978 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2979 else
2980 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2981 {
4c4b4cd2 2982 arity += 1;
61ee279c 2983 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2984 }
d2e4a39e 2985
14f9c5c9
AS
2986 return arity;
2987}
2988
2989/* If TYPE is a record type in the form of a standard GNAT array
2990 descriptor or a simple array type, returns the element type for
2991 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2992 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2993
d2e4a39e
AS
2994struct type *
2995ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2996{
2997 type = desc_base_type (type);
2998
d2e4a39e 2999 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3000 {
3001 int k;
d2e4a39e 3002 struct type *p_array_type;
14f9c5c9 3003
556bdfd4 3004 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3005
3006 k = ada_array_arity (type);
3007 if (k == 0)
4c4b4cd2 3008 return NULL;
d2e4a39e 3009
4c4b4cd2 3010 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3011 if (nindices >= 0 && k > nindices)
4c4b4cd2 3012 k = nindices;
d2e4a39e 3013 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3014 {
61ee279c 3015 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3016 k -= 1;
3017 }
14f9c5c9
AS
3018 return p_array_type;
3019 }
3020 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3021 {
3022 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3023 {
3024 type = TYPE_TARGET_TYPE (type);
3025 nindices -= 1;
3026 }
14f9c5c9
AS
3027 return type;
3028 }
3029
3030 return NULL;
3031}
3032
4c4b4cd2 3033/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3034 Does not examine memory. Throws an error if N is invalid or TYPE
3035 is not an array type. NAME is the name of the Ada attribute being
3036 evaluated ('range, 'first, 'last, or 'length); it is used in building
3037 the error message. */
14f9c5c9 3038
1eea4ebd
UW
3039static struct type *
3040ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3041{
4c4b4cd2
PH
3042 struct type *result_type;
3043
14f9c5c9
AS
3044 type = desc_base_type (type);
3045
1eea4ebd
UW
3046 if (n < 0 || n > ada_array_arity (type))
3047 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3048
4c4b4cd2 3049 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3050 {
3051 int i;
3052
3053 for (i = 1; i < n; i += 1)
4c4b4cd2 3054 type = TYPE_TARGET_TYPE (type);
262452ec 3055 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3056 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3057 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3058 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3059 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = NULL;
14f9c5c9 3061 }
d2e4a39e 3062 else
1eea4ebd
UW
3063 {
3064 result_type = desc_index_type (desc_bounds_type (type), n);
3065 if (result_type == NULL)
3066 error (_("attempt to take bound of something that is not an array"));
3067 }
3068
3069 return result_type;
14f9c5c9
AS
3070}
3071
3072/* Given that arr is an array type, returns the lower bound of the
3073 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3074 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3075 array-descriptor type. It works for other arrays with bounds supplied
3076 by run-time quantities other than discriminants. */
14f9c5c9 3077
abb68b3e 3078static LONGEST
fb5e3d5c 3079ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3080{
8a48ac95 3081 struct type *type, *index_type_desc, *index_type;
1ce677a4 3082 int i;
262452ec
JK
3083
3084 gdb_assert (which == 0 || which == 1);
14f9c5c9 3085
ad82864c
JB
3086 if (ada_is_constrained_packed_array_type (arr_type))
3087 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3088
4c4b4cd2 3089 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3090 return (LONGEST) - which;
14f9c5c9
AS
3091
3092 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3093 type = TYPE_TARGET_TYPE (arr_type);
3094 else
3095 type = arr_type;
3096
bafffb51
JB
3097 if (TYPE_FIXED_INSTANCE (type))
3098 {
3099 /* The array has already been fixed, so we do not need to
3100 check the parallel ___XA type again. That encoding has
3101 already been applied, so ignore it now. */
3102 index_type_desc = NULL;
3103 }
3104 else
3105 {
3106 index_type_desc = ada_find_parallel_type (type, "___XA");
3107 ada_fixup_array_indexes_type (index_type_desc);
3108 }
3109
262452ec 3110 if (index_type_desc != NULL)
28c85d6c
JB
3111 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3112 NULL);
262452ec 3113 else
8a48ac95
JB
3114 {
3115 struct type *elt_type = check_typedef (type);
3116
3117 for (i = 1; i < n; i++)
3118 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3119
3120 index_type = TYPE_INDEX_TYPE (elt_type);
3121 }
262452ec 3122
43bbcdc2
PH
3123 return
3124 (LONGEST) (which == 0
3125 ? ada_discrete_type_low_bound (index_type)
3126 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3127}
3128
3129/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3130 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3131 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3132 supplied by run-time quantities other than discriminants. */
14f9c5c9 3133
1eea4ebd 3134static LONGEST
4dc81987 3135ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3136{
eb479039
JB
3137 struct type *arr_type;
3138
3139 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3140 arr = value_ind (arr);
3141 arr_type = value_enclosing_type (arr);
14f9c5c9 3142
ad82864c
JB
3143 if (ada_is_constrained_packed_array_type (arr_type))
3144 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3145 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3146 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3147 else
1eea4ebd 3148 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3149}
3150
3151/* Given that arr is an array value, returns the length of the
3152 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3153 supplied by run-time quantities other than discriminants.
3154 Does not work for arrays indexed by enumeration types with representation
3155 clauses at the moment. */
14f9c5c9 3156
1eea4ebd 3157static LONGEST
d2e4a39e 3158ada_array_length (struct value *arr, int n)
14f9c5c9 3159{
aa715135
JG
3160 struct type *arr_type, *index_type;
3161 int low, high;
eb479039
JB
3162
3163 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3164 arr = value_ind (arr);
3165 arr_type = value_enclosing_type (arr);
14f9c5c9 3166
ad82864c
JB
3167 if (ada_is_constrained_packed_array_type (arr_type))
3168 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3169
4c4b4cd2 3170 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3171 {
3172 low = ada_array_bound_from_type (arr_type, n, 0);
3173 high = ada_array_bound_from_type (arr_type, n, 1);
3174 }
14f9c5c9 3175 else
aa715135
JG
3176 {
3177 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3178 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3179 }
3180
f168693b 3181 arr_type = check_typedef (arr_type);
aa715135
JG
3182 index_type = TYPE_INDEX_TYPE (arr_type);
3183 if (index_type != NULL)
3184 {
3185 struct type *base_type;
3186 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3187 base_type = TYPE_TARGET_TYPE (index_type);
3188 else
3189 base_type = index_type;
3190
3191 low = pos_atr (value_from_longest (base_type, low));
3192 high = pos_atr (value_from_longest (base_type, high));
3193 }
3194 return high - low + 1;
4c4b4cd2
PH
3195}
3196
3197/* An empty array whose type is that of ARR_TYPE (an array type),
3198 with bounds LOW to LOW-1. */
3199
3200static struct value *
3201empty_array (struct type *arr_type, int low)
3202{
b0dd7688 3203 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3204 struct type *index_type
3205 = create_static_range_type
3206 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3207 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3208
0b5d8877 3209 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3210}
14f9c5c9 3211\f
d2e4a39e 3212
4c4b4cd2 3213 /* Name resolution */
14f9c5c9 3214
4c4b4cd2
PH
3215/* The "decoded" name for the user-definable Ada operator corresponding
3216 to OP. */
14f9c5c9 3217
d2e4a39e 3218static const char *
4c4b4cd2 3219ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3220{
3221 int i;
3222
4c4b4cd2 3223 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3224 {
3225 if (ada_opname_table[i].op == op)
4c4b4cd2 3226 return ada_opname_table[i].decoded;
14f9c5c9 3227 }
323e0a4a 3228 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3229}
3230
3231
4c4b4cd2
PH
3232/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3233 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3234 undefined namespace) and converts operators that are
3235 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3236 non-null, it provides a preferred result type [at the moment, only
3237 type void has any effect---causing procedures to be preferred over
3238 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3239 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3240
4c4b4cd2 3241static void
e9d9f57e 3242resolve (expression_up *expp, int void_context_p)
14f9c5c9 3243{
30b15541
UW
3244 struct type *context_type = NULL;
3245 int pc = 0;
3246
3247 if (void_context_p)
3248 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3249
3250 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3251}
3252
4c4b4cd2
PH
3253/* Resolve the operator of the subexpression beginning at
3254 position *POS of *EXPP. "Resolving" consists of replacing
3255 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3256 with their resolutions, replacing built-in operators with
3257 function calls to user-defined operators, where appropriate, and,
3258 when DEPROCEDURE_P is non-zero, converting function-valued variables
3259 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3260 are as in ada_resolve, above. */
14f9c5c9 3261
d2e4a39e 3262static struct value *
e9d9f57e 3263resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3264 struct type *context_type)
14f9c5c9
AS
3265{
3266 int pc = *pos;
3267 int i;
4c4b4cd2 3268 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3269 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3270 struct value **argvec; /* Vector of operand types (alloca'ed). */
3271 int nargs; /* Number of operands. */
52ce6436 3272 int oplen;
ec6a20c2 3273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3274
3275 argvec = NULL;
3276 nargs = 0;
e9d9f57e 3277 exp = expp->get ();
14f9c5c9 3278
52ce6436
PH
3279 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if needed. */
14f9c5c9
AS
3281 switch (op)
3282 {
4c4b4cd2
PH
3283 case OP_FUNCALL:
3284 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3285 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 *pos += 7;
4c4b4cd2
PH
3287 else
3288 {
3289 *pos += 3;
3290 resolve_subexp (expp, pos, 0, NULL);
3291 }
3292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3293 break;
3294
14f9c5c9 3295 case UNOP_ADDR:
4c4b4cd2
PH
3296 *pos += 1;
3297 resolve_subexp (expp, pos, 0, NULL);
3298 break;
3299
52ce6436
PH
3300 case UNOP_QUAL:
3301 *pos += 3;
17466c1a 3302 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3303 break;
3304
52ce6436 3305 case OP_ATR_MODULUS:
4c4b4cd2
PH
3306 case OP_ATR_SIZE:
3307 case OP_ATR_TAG:
4c4b4cd2
PH
3308 case OP_ATR_FIRST:
3309 case OP_ATR_LAST:
3310 case OP_ATR_LENGTH:
3311 case OP_ATR_POS:
3312 case OP_ATR_VAL:
4c4b4cd2
PH
3313 case OP_ATR_MIN:
3314 case OP_ATR_MAX:
52ce6436
PH
3315 case TERNOP_IN_RANGE:
3316 case BINOP_IN_BOUNDS:
3317 case UNOP_IN_RANGE:
3318 case OP_AGGREGATE:
3319 case OP_OTHERS:
3320 case OP_CHOICES:
3321 case OP_POSITIONAL:
3322 case OP_DISCRETE_RANGE:
3323 case OP_NAME:
3324 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3325 *pos += oplen;
14f9c5c9
AS
3326 break;
3327
3328 case BINOP_ASSIGN:
3329 {
4c4b4cd2
PH
3330 struct value *arg1;
3331
3332 *pos += 1;
3333 arg1 = resolve_subexp (expp, pos, 0, NULL);
3334 if (arg1 == NULL)
3335 resolve_subexp (expp, pos, 1, NULL);
3336 else
df407dfe 3337 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3338 break;
14f9c5c9
AS
3339 }
3340
4c4b4cd2 3341 case UNOP_CAST:
4c4b4cd2
PH
3342 *pos += 3;
3343 nargs = 1;
3344 break;
14f9c5c9 3345
4c4b4cd2
PH
3346 case BINOP_ADD:
3347 case BINOP_SUB:
3348 case BINOP_MUL:
3349 case BINOP_DIV:
3350 case BINOP_REM:
3351 case BINOP_MOD:
3352 case BINOP_EXP:
3353 case BINOP_CONCAT:
3354 case BINOP_LOGICAL_AND:
3355 case BINOP_LOGICAL_OR:
3356 case BINOP_BITWISE_AND:
3357 case BINOP_BITWISE_IOR:
3358 case BINOP_BITWISE_XOR:
14f9c5c9 3359
4c4b4cd2
PH
3360 case BINOP_EQUAL:
3361 case BINOP_NOTEQUAL:
3362 case BINOP_LESS:
3363 case BINOP_GTR:
3364 case BINOP_LEQ:
3365 case BINOP_GEQ:
14f9c5c9 3366
4c4b4cd2
PH
3367 case BINOP_REPEAT:
3368 case BINOP_SUBSCRIPT:
3369 case BINOP_COMMA:
40c8aaa9
JB
3370 *pos += 1;
3371 nargs = 2;
3372 break;
14f9c5c9 3373
4c4b4cd2
PH
3374 case UNOP_NEG:
3375 case UNOP_PLUS:
3376 case UNOP_LOGICAL_NOT:
3377 case UNOP_ABS:
3378 case UNOP_IND:
3379 *pos += 1;
3380 nargs = 1;
3381 break;
14f9c5c9 3382
4c4b4cd2 3383 case OP_LONG:
edd079d9 3384 case OP_FLOAT:
4c4b4cd2 3385 case OP_VAR_VALUE:
74ea4be4 3386 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3387 *pos += 4;
3388 break;
14f9c5c9 3389
4c4b4cd2
PH
3390 case OP_TYPE:
3391 case OP_BOOL:
3392 case OP_LAST:
4c4b4cd2
PH
3393 case OP_INTERNALVAR:
3394 *pos += 3;
3395 break;
14f9c5c9 3396
4c4b4cd2
PH
3397 case UNOP_MEMVAL:
3398 *pos += 3;
3399 nargs = 1;
3400 break;
3401
67f3407f
DJ
3402 case OP_REGISTER:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 break;
3405
4c4b4cd2
PH
3406 case STRUCTOP_STRUCT:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 nargs = 1;
3409 break;
3410
4c4b4cd2 3411 case TERNOP_SLICE:
4c4b4cd2
PH
3412 *pos += 1;
3413 nargs = 3;
3414 break;
3415
52ce6436 3416 case OP_STRING:
14f9c5c9 3417 break;
4c4b4cd2
PH
3418
3419 default:
323e0a4a 3420 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3421 }
3422
8d749320 3423 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3424 for (i = 0; i < nargs; i += 1)
3425 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3426 argvec[i] = NULL;
e9d9f57e 3427 exp = expp->get ();
4c4b4cd2
PH
3428
3429 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3430 switch (op)
3431 {
3432 default:
3433 break;
3434
14f9c5c9 3435 case OP_VAR_VALUE:
4c4b4cd2 3436 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3437 {
d12307c1 3438 struct block_symbol *candidates;
76a01679
JB
3439 int n_candidates;
3440
3441 n_candidates =
3442 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3443 (exp->elts[pc + 2].symbol),
3444 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3445 &candidates);
ec6a20c2 3446 make_cleanup (xfree, candidates);
76a01679
JB
3447
3448 if (n_candidates > 1)
3449 {
3450 /* Types tend to get re-introduced locally, so if there
3451 are any local symbols that are not types, first filter
3452 out all types. */
3453 int j;
3454 for (j = 0; j < n_candidates; j += 1)
d12307c1 3455 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3456 {
3457 case LOC_REGISTER:
3458 case LOC_ARG:
3459 case LOC_REF_ARG:
76a01679
JB
3460 case LOC_REGPARM_ADDR:
3461 case LOC_LOCAL:
76a01679 3462 case LOC_COMPUTED:
76a01679
JB
3463 goto FoundNonType;
3464 default:
3465 break;
3466 }
3467 FoundNonType:
3468 if (j < n_candidates)
3469 {
3470 j = 0;
3471 while (j < n_candidates)
3472 {
d12307c1 3473 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3474 {
3475 candidates[j] = candidates[n_candidates - 1];
3476 n_candidates -= 1;
3477 }
3478 else
3479 j += 1;
3480 }
3481 }
3482 }
3483
3484 if (n_candidates == 0)
323e0a4a 3485 error (_("No definition found for %s"),
76a01679
JB
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 else if (n_candidates == 1)
3488 i = 0;
3489 else if (deprocedure_p
3490 && !is_nonfunction (candidates, n_candidates))
3491 {
06d5cf63
JB
3492 i = ada_resolve_function
3493 (candidates, n_candidates, NULL, 0,
3494 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3495 context_type);
76a01679 3496 if (i < 0)
323e0a4a 3497 error (_("Could not find a match for %s"),
76a01679
JB
3498 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3499 }
3500 else
3501 {
323e0a4a 3502 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3503 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 user_select_syms (candidates, n_candidates, 1);
3505 i = 0;
3506 }
3507
3508 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3509 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3510 if (innermost_block == NULL
3511 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3512 innermost_block = candidates[i].block;
3513 }
3514
3515 if (deprocedure_p
3516 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3517 == TYPE_CODE_FUNC))
3518 {
3519 replace_operator_with_call (expp, pc, 0, 0,
3520 exp->elts[pc + 2].symbol,
3521 exp->elts[pc + 1].block);
e9d9f57e 3522 exp = expp->get ();
76a01679 3523 }
14f9c5c9
AS
3524 break;
3525
3526 case OP_FUNCALL:
3527 {
4c4b4cd2 3528 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3529 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3530 {
d12307c1 3531 struct block_symbol *candidates;
4c4b4cd2
PH
3532 int n_candidates;
3533
3534 n_candidates =
76a01679
JB
3535 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3536 (exp->elts[pc + 5].symbol),
3537 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3538 &candidates);
ec6a20c2
JB
3539 make_cleanup (xfree, candidates);
3540
4c4b4cd2
PH
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
06d5cf63
JB
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
4c4b4cd2 3550 if (i < 0)
323e0a4a 3551 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3559 innermost_block = candidates[i].block;
3560 }
14f9c5c9
AS
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3585 {
d12307c1 3586 struct block_symbol *candidates;
4c4b4cd2
PH
3587 int n_candidates;
3588
3589 n_candidates =
b5ec771e 3590 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3591 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3592 &candidates);
ec6a20c2
JB
3593 make_cleanup (xfree, candidates);
3594
4c4b4cd2 3595 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3596 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3597 if (i < 0)
3598 break;
3599
d12307c1
PMR
3600 replace_operator_with_call (expp, pc, nargs, 1,
3601 candidates[i].symbol,
3602 candidates[i].block);
e9d9f57e 3603 exp = expp->get ();
4c4b4cd2 3604 }
14f9c5c9 3605 break;
4c4b4cd2
PH
3606
3607 case OP_TYPE:
b3dbf008 3608 case OP_REGISTER:
ec6a20c2 3609 do_cleanups (old_chain);
4c4b4cd2 3610 return NULL;
14f9c5c9
AS
3611 }
3612
3613 *pos = pc;
ec6a20c2 3614 do_cleanups (old_chain);
ced9779b
JB
3615 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3616 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3617 exp->elts[pc + 1].objfile,
3618 exp->elts[pc + 2].msymbol);
3619 else
3620 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3621}
3622
3623/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3624 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3625 a non-pointer. */
14f9c5c9 3626/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3627 liberal. */
14f9c5c9
AS
3628
3629static int
4dc81987 3630ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3631{
61ee279c
PH
3632 ftype = ada_check_typedef (ftype);
3633 atype = ada_check_typedef (atype);
14f9c5c9
AS
3634
3635 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3636 ftype = TYPE_TARGET_TYPE (ftype);
3637 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3638 atype = TYPE_TARGET_TYPE (atype);
3639
d2e4a39e 3640 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3641 {
3642 default:
5b3d5b7d 3643 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3644 case TYPE_CODE_PTR:
3645 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3646 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3647 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3648 else
1265e4aa
JB
3649 return (may_deref
3650 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3651 case TYPE_CODE_INT:
3652 case TYPE_CODE_ENUM:
3653 case TYPE_CODE_RANGE:
3654 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3655 {
3656 case TYPE_CODE_INT:
3657 case TYPE_CODE_ENUM:
3658 case TYPE_CODE_RANGE:
3659 return 1;
3660 default:
3661 return 0;
3662 }
14f9c5c9
AS
3663
3664 case TYPE_CODE_ARRAY:
d2e4a39e 3665 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3666 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3667
3668 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3669 if (ada_is_array_descriptor_type (ftype))
3670 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3671 || ada_is_array_descriptor_type (atype));
14f9c5c9 3672 else
4c4b4cd2
PH
3673 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3674 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3675
3676 case TYPE_CODE_UNION:
3677 case TYPE_CODE_FLT:
3678 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3679 }
3680}
3681
3682/* Return non-zero if the formals of FUNC "sufficiently match" the
3683 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3684 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3685 argument function. */
14f9c5c9
AS
3686
3687static int
d2e4a39e 3688ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3689{
3690 int i;
d2e4a39e 3691 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3692
1265e4aa
JB
3693 if (SYMBOL_CLASS (func) == LOC_CONST
3694 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3695 return (n_actuals == 0);
3696 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3697 return 0;
3698
3699 if (TYPE_NFIELDS (func_type) != n_actuals)
3700 return 0;
3701
3702 for (i = 0; i < n_actuals; i += 1)
3703 {
4c4b4cd2 3704 if (actuals[i] == NULL)
76a01679
JB
3705 return 0;
3706 else
3707 {
5b4ee69b
MS
3708 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3709 i));
df407dfe 3710 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3711
76a01679
JB
3712 if (!ada_type_match (ftype, atype, 1))
3713 return 0;
3714 }
14f9c5c9
AS
3715 }
3716 return 1;
3717}
3718
3719/* False iff function type FUNC_TYPE definitely does not produce a value
3720 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3721 FUNC_TYPE is not a valid function type with a non-null return type
3722 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3723
3724static int
d2e4a39e 3725return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3726{
d2e4a39e 3727 struct type *return_type;
14f9c5c9
AS
3728
3729 if (func_type == NULL)
3730 return 1;
3731
4c4b4cd2 3732 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3733 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3734 else
18af8284 3735 return_type = get_base_type (func_type);
14f9c5c9
AS
3736 if (return_type == NULL)
3737 return 1;
3738
18af8284 3739 context_type = get_base_type (context_type);
14f9c5c9
AS
3740
3741 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3742 return context_type == NULL || return_type == context_type;
3743 else if (context_type == NULL)
3744 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3745 else
3746 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3747}
3748
3749
4c4b4cd2 3750/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3751 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3752 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3753 that returns that type, then eliminate matches that don't. If
3754 CONTEXT_TYPE is void and there is at least one match that does not
3755 return void, eliminate all matches that do.
3756
14f9c5c9
AS
3757 Asks the user if there is more than one match remaining. Returns -1
3758 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3759 solely for messages. May re-arrange and modify SYMS in
3760 the process; the index returned is for the modified vector. */
14f9c5c9 3761
4c4b4cd2 3762static int
d12307c1 3763ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3764 int nsyms, struct value **args, int nargs,
3765 const char *name, struct type *context_type)
14f9c5c9 3766{
30b15541 3767 int fallback;
14f9c5c9 3768 int k;
4c4b4cd2 3769 int m; /* Number of hits */
14f9c5c9 3770
d2e4a39e 3771 m = 0;
30b15541
UW
3772 /* In the first pass of the loop, we only accept functions matching
3773 context_type. If none are found, we add a second pass of the loop
3774 where every function is accepted. */
3775 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3776 {
3777 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3778 {
d12307c1 3779 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3780
d12307c1 3781 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3782 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3783 {
3784 syms[m] = syms[k];
3785 m += 1;
3786 }
3787 }
14f9c5c9
AS
3788 }
3789
dc5c8746
PMR
3790 /* If we got multiple matches, ask the user which one to use. Don't do this
3791 interactive thing during completion, though, as the purpose of the
3792 completion is providing a list of all possible matches. Prompting the
3793 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3794 if (m == 0)
3795 return -1;
dc5c8746 3796 else if (m > 1 && !parse_completion)
14f9c5c9 3797 {
323e0a4a 3798 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3799 user_select_syms (syms, m, 1);
14f9c5c9
AS
3800 return 0;
3801 }
3802 return 0;
3803}
3804
4c4b4cd2
PH
3805/* Returns true (non-zero) iff decoded name N0 should appear before N1
3806 in a listing of choices during disambiguation (see sort_choices, below).
3807 The idea is that overloadings of a subprogram name from the
3808 same package should sort in their source order. We settle for ordering
3809 such symbols by their trailing number (__N or $N). */
3810
14f9c5c9 3811static int
0d5cff50 3812encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3813{
3814 if (N1 == NULL)
3815 return 0;
3816 else if (N0 == NULL)
3817 return 1;
3818 else
3819 {
3820 int k0, k1;
5b4ee69b 3821
d2e4a39e 3822 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3823 ;
d2e4a39e 3824 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3825 ;
d2e4a39e 3826 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3827 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3828 {
3829 int n0, n1;
5b4ee69b 3830
4c4b4cd2
PH
3831 n0 = k0;
3832 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3833 n0 -= 1;
3834 n1 = k1;
3835 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3836 n1 -= 1;
3837 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3838 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3839 }
14f9c5c9
AS
3840 return (strcmp (N0, N1) < 0);
3841 }
3842}
d2e4a39e 3843
4c4b4cd2
PH
3844/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3845 encoded names. */
3846
d2e4a39e 3847static void
d12307c1 3848sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3849{
4c4b4cd2 3850 int i;
5b4ee69b 3851
d2e4a39e 3852 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3853 {
d12307c1 3854 struct block_symbol sym = syms[i];
14f9c5c9
AS
3855 int j;
3856
d2e4a39e 3857 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3858 {
d12307c1
PMR
3859 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3860 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3861 break;
3862 syms[j + 1] = syms[j];
3863 }
d2e4a39e 3864 syms[j + 1] = sym;
14f9c5c9
AS
3865 }
3866}
3867
d72413e6
PMR
3868/* Whether GDB should display formals and return types for functions in the
3869 overloads selection menu. */
3870static int print_signatures = 1;
3871
3872/* Print the signature for SYM on STREAM according to the FLAGS options. For
3873 all but functions, the signature is just the name of the symbol. For
3874 functions, this is the name of the function, the list of types for formals
3875 and the return type (if any). */
3876
3877static void
3878ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3879 const struct type_print_options *flags)
3880{
3881 struct type *type = SYMBOL_TYPE (sym);
3882
3883 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3884 if (!print_signatures
3885 || type == NULL
3886 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3887 return;
3888
3889 if (TYPE_NFIELDS (type) > 0)
3890 {
3891 int i;
3892
3893 fprintf_filtered (stream, " (");
3894 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3895 {
3896 if (i > 0)
3897 fprintf_filtered (stream, "; ");
3898 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3899 flags);
3900 }
3901 fprintf_filtered (stream, ")");
3902 }
3903 if (TYPE_TARGET_TYPE (type) != NULL
3904 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3905 {
3906 fprintf_filtered (stream, " return ");
3907 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3908 }
3909}
3910
4c4b4cd2
PH
3911/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3912 by asking the user (if necessary), returning the number selected,
3913 and setting the first elements of SYMS items. Error if no symbols
3914 selected. */
14f9c5c9
AS
3915
3916/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3917 to be re-integrated one of these days. */
14f9c5c9
AS
3918
3919int
d12307c1 3920user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3921{
3922 int i;
8d749320 3923 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3924 int n_chosen;
3925 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3926 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3927
3928 if (max_results < 1)
323e0a4a 3929 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3930 if (nsyms <= 1)
3931 return nsyms;
3932
717d2f5a
JB
3933 if (select_mode == multiple_symbols_cancel)
3934 error (_("\
3935canceled because the command is ambiguous\n\
3936See set/show multiple-symbol."));
3937
3938 /* If select_mode is "all", then return all possible symbols.
3939 Only do that if more than one symbol can be selected, of course.
3940 Otherwise, display the menu as usual. */
3941 if (select_mode == multiple_symbols_all && max_results > 1)
3942 return nsyms;
3943
323e0a4a 3944 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3945 if (max_results > 1)
323e0a4a 3946 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3947
4c4b4cd2 3948 sort_choices (syms, nsyms);
14f9c5c9
AS
3949
3950 for (i = 0; i < nsyms; i += 1)
3951 {
d12307c1 3952 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3953 continue;
3954
d12307c1 3955 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3956 {
76a01679 3957 struct symtab_and_line sal =
d12307c1 3958 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3959
d72413e6
PMR
3960 printf_unfiltered ("[%d] ", i + first_choice);
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
323e0a4a 3963 if (sal.symtab == NULL)
d72413e6 3964 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3965 sal.line);
3966 else
d72413e6 3967 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3968 symtab_to_filename_for_display (sal.symtab),
3969 sal.line);
4c4b4cd2
PH
3970 continue;
3971 }
d2e4a39e 3972 else
4c4b4cd2
PH
3973 {
3974 int is_enumeral =
d12307c1
PMR
3975 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3976 && SYMBOL_TYPE (syms[i].symbol) != NULL
3977 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3978 struct symtab *symtab = NULL;
3979
d12307c1
PMR
3980 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3981 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3982
d12307c1 3983 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3984 {
3985 printf_unfiltered ("[%d] ", i + first_choice);
3986 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3987 &type_print_raw_options);
3988 printf_unfiltered (_(" at %s:%d\n"),
3989 symtab_to_filename_for_display (symtab),
3990 SYMBOL_LINE (syms[i].symbol));
3991 }
76a01679 3992 else if (is_enumeral
d12307c1 3993 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3994 {
a3f17187 3995 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3996 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3997 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3998 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3999 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 4000 }
d72413e6
PMR
4001 else
4002 {
4003 printf_unfiltered ("[%d] ", i + first_choice);
4004 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4005 &type_print_raw_options);
4006
4007 if (symtab != NULL)
4008 printf_unfiltered (is_enumeral
4009 ? _(" in %s (enumeral)\n")
4010 : _(" at %s:?\n"),
4011 symtab_to_filename_for_display (symtab));
4012 else
4013 printf_unfiltered (is_enumeral
4014 ? _(" (enumeral)\n")
4015 : _(" at ?\n"));
4016 }
4c4b4cd2 4017 }
14f9c5c9 4018 }
d2e4a39e 4019
14f9c5c9 4020 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4021 "overload-choice");
14f9c5c9
AS
4022
4023 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4024 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4025
4026 return n_chosen;
4027}
4028
4029/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4030 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4031 order in CHOICES[0 .. N-1], and return N.
4032
4033 The user types choices as a sequence of numbers on one line
4034 separated by blanks, encoding them as follows:
4035
4c4b4cd2 4036 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4037 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4038 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4039
4c4b4cd2 4040 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4041
4042 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4043 prompts (for use with the -f switch). */
14f9c5c9
AS
4044
4045int
d2e4a39e 4046get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4047 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4048{
d2e4a39e 4049 char *args;
a121b7c1 4050 const char *prompt;
14f9c5c9
AS
4051 int n_chosen;
4052 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4053
14f9c5c9
AS
4054 prompt = getenv ("PS2");
4055 if (prompt == NULL)
0bcd0149 4056 prompt = "> ";
14f9c5c9 4057
0bcd0149 4058 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4059
14f9c5c9 4060 if (args == NULL)
323e0a4a 4061 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4062
4063 n_chosen = 0;
76a01679 4064
4c4b4cd2
PH
4065 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4066 order, as given in args. Choices are validated. */
14f9c5c9
AS
4067 while (1)
4068 {
d2e4a39e 4069 char *args2;
14f9c5c9
AS
4070 int choice, j;
4071
0fcd72ba 4072 args = skip_spaces (args);
14f9c5c9 4073 if (*args == '\0' && n_chosen == 0)
323e0a4a 4074 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4075 else if (*args == '\0')
4c4b4cd2 4076 break;
14f9c5c9
AS
4077
4078 choice = strtol (args, &args2, 10);
d2e4a39e 4079 if (args == args2 || choice < 0
4c4b4cd2 4080 || choice > n_choices + first_choice - 1)
323e0a4a 4081 error (_("Argument must be choice number"));
14f9c5c9
AS
4082 args = args2;
4083
d2e4a39e 4084 if (choice == 0)
323e0a4a 4085 error (_("cancelled"));
14f9c5c9
AS
4086
4087 if (choice < first_choice)
4c4b4cd2
PH
4088 {
4089 n_chosen = n_choices;
4090 for (j = 0; j < n_choices; j += 1)
4091 choices[j] = j;
4092 break;
4093 }
14f9c5c9
AS
4094 choice -= first_choice;
4095
d2e4a39e 4096 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4097 {
4098 }
14f9c5c9
AS
4099
4100 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4101 {
4102 int k;
5b4ee69b 4103
4c4b4cd2
PH
4104 for (k = n_chosen - 1; k > j; k -= 1)
4105 choices[k + 1] = choices[k];
4106 choices[j + 1] = choice;
4107 n_chosen += 1;
4108 }
14f9c5c9
AS
4109 }
4110
4111 if (n_chosen > max_results)
323e0a4a 4112 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4113
14f9c5c9
AS
4114 return n_chosen;
4115}
4116
4c4b4cd2
PH
4117/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4118 on the function identified by SYM and BLOCK, and taking NARGS
4119 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4120
4121static void
e9d9f57e 4122replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4123 int oplen, struct symbol *sym,
270140bd 4124 const struct block *block)
14f9c5c9
AS
4125{
4126 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4127 symbol, -oplen for operator being replaced). */
d2e4a39e 4128 struct expression *newexp = (struct expression *)
8c1a34e7 4129 xzalloc (sizeof (struct expression)
4c4b4cd2 4130 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4131 struct expression *exp = expp->get ();
14f9c5c9
AS
4132
4133 newexp->nelts = exp->nelts + 7 - oplen;
4134 newexp->language_defn = exp->language_defn;
3489610d 4135 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4136 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4137 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4138 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4139
4140 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4141 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4142
4143 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4144 newexp->elts[pc + 4].block = block;
4145 newexp->elts[pc + 5].symbol = sym;
4146
e9d9f57e 4147 expp->reset (newexp);
d2e4a39e 4148}
14f9c5c9
AS
4149
4150/* Type-class predicates */
4151
4c4b4cd2
PH
4152/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4153 or FLOAT). */
14f9c5c9
AS
4154
4155static int
d2e4a39e 4156numeric_type_p (struct type *type)
14f9c5c9
AS
4157{
4158 if (type == NULL)
4159 return 0;
d2e4a39e
AS
4160 else
4161 {
4162 switch (TYPE_CODE (type))
4c4b4cd2
PH
4163 {
4164 case TYPE_CODE_INT:
4165 case TYPE_CODE_FLT:
4166 return 1;
4167 case TYPE_CODE_RANGE:
4168 return (type == TYPE_TARGET_TYPE (type)
4169 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4170 default:
4171 return 0;
4172 }
d2e4a39e 4173 }
14f9c5c9
AS
4174}
4175
4c4b4cd2 4176/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4177
4178static int
d2e4a39e 4179integer_type_p (struct type *type)
14f9c5c9
AS
4180{
4181 if (type == NULL)
4182 return 0;
d2e4a39e
AS
4183 else
4184 {
4185 switch (TYPE_CODE (type))
4c4b4cd2
PH
4186 {
4187 case TYPE_CODE_INT:
4188 return 1;
4189 case TYPE_CODE_RANGE:
4190 return (type == TYPE_TARGET_TYPE (type)
4191 || integer_type_p (TYPE_TARGET_TYPE (type)));
4192 default:
4193 return 0;
4194 }
d2e4a39e 4195 }
14f9c5c9
AS
4196}
4197
4c4b4cd2 4198/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4199
4200static int
d2e4a39e 4201scalar_type_p (struct type *type)
14f9c5c9
AS
4202{
4203 if (type == NULL)
4204 return 0;
d2e4a39e
AS
4205 else
4206 {
4207 switch (TYPE_CODE (type))
4c4b4cd2
PH
4208 {
4209 case TYPE_CODE_INT:
4210 case TYPE_CODE_RANGE:
4211 case TYPE_CODE_ENUM:
4212 case TYPE_CODE_FLT:
4213 return 1;
4214 default:
4215 return 0;
4216 }
d2e4a39e 4217 }
14f9c5c9
AS
4218}
4219
4c4b4cd2 4220/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4221
4222static int
d2e4a39e 4223discrete_type_p (struct type *type)
14f9c5c9
AS
4224{
4225 if (type == NULL)
4226 return 0;
d2e4a39e
AS
4227 else
4228 {
4229 switch (TYPE_CODE (type))
4c4b4cd2
PH
4230 {
4231 case TYPE_CODE_INT:
4232 case TYPE_CODE_RANGE:
4233 case TYPE_CODE_ENUM:
872f0337 4234 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4235 return 1;
4236 default:
4237 return 0;
4238 }
d2e4a39e 4239 }
14f9c5c9
AS
4240}
4241
4c4b4cd2
PH
4242/* Returns non-zero if OP with operands in the vector ARGS could be
4243 a user-defined function. Errs on the side of pre-defined operators
4244 (i.e., result 0). */
14f9c5c9
AS
4245
4246static int
d2e4a39e 4247possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4248{
76a01679 4249 struct type *type0 =
df407dfe 4250 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4251 struct type *type1 =
df407dfe 4252 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4253
4c4b4cd2
PH
4254 if (type0 == NULL)
4255 return 0;
4256
14f9c5c9
AS
4257 switch (op)
4258 {
4259 default:
4260 return 0;
4261
4262 case BINOP_ADD:
4263 case BINOP_SUB:
4264 case BINOP_MUL:
4265 case BINOP_DIV:
d2e4a39e 4266 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4267
4268 case BINOP_REM:
4269 case BINOP_MOD:
4270 case BINOP_BITWISE_AND:
4271 case BINOP_BITWISE_IOR:
4272 case BINOP_BITWISE_XOR:
d2e4a39e 4273 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_EQUAL:
4276 case BINOP_NOTEQUAL:
4277 case BINOP_LESS:
4278 case BINOP_GTR:
4279 case BINOP_LEQ:
4280 case BINOP_GEQ:
d2e4a39e 4281 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4282
4283 case BINOP_CONCAT:
ee90b9ab 4284 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4285
4286 case BINOP_EXP:
d2e4a39e 4287 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4288
4289 case UNOP_NEG:
4290 case UNOP_PLUS:
4291 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4292 case UNOP_ABS:
4293 return (!numeric_type_p (type0));
14f9c5c9
AS
4294
4295 }
4296}
4297\f
4c4b4cd2 4298 /* Renaming */
14f9c5c9 4299
aeb5907d
JB
4300/* NOTES:
4301
4302 1. In the following, we assume that a renaming type's name may
4303 have an ___XD suffix. It would be nice if this went away at some
4304 point.
4305 2. We handle both the (old) purely type-based representation of
4306 renamings and the (new) variable-based encoding. At some point,
4307 it is devoutly to be hoped that the former goes away
4308 (FIXME: hilfinger-2007-07-09).
4309 3. Subprogram renamings are not implemented, although the XRS
4310 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4311
4312/* If SYM encodes a renaming,
4313
4314 <renaming> renames <renamed entity>,
4315
4316 sets *LEN to the length of the renamed entity's name,
4317 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4318 the string describing the subcomponent selected from the renamed
0963b4bd 4319 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4320 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4321 are undefined). Otherwise, returns a value indicating the category
4322 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4323 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4324 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4325 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4326 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4327 may be NULL, in which case they are not assigned.
4328
4329 [Currently, however, GCC does not generate subprogram renamings.] */
4330
4331enum ada_renaming_category
4332ada_parse_renaming (struct symbol *sym,
4333 const char **renamed_entity, int *len,
4334 const char **renaming_expr)
4335{
4336 enum ada_renaming_category kind;
4337 const char *info;
4338 const char *suffix;
4339
4340 if (sym == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (SYMBOL_CLASS (sym))
14f9c5c9 4343 {
aeb5907d
JB
4344 default:
4345 return ADA_NOT_RENAMING;
4346 case LOC_TYPEDEF:
4347 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4348 renamed_entity, len, renaming_expr);
4349 case LOC_LOCAL:
4350 case LOC_STATIC:
4351 case LOC_COMPUTED:
4352 case LOC_OPTIMIZED_OUT:
4353 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4354 if (info == NULL)
4355 return ADA_NOT_RENAMING;
4356 switch (info[5])
4357 {
4358 case '_':
4359 kind = ADA_OBJECT_RENAMING;
4360 info += 6;
4361 break;
4362 case 'E':
4363 kind = ADA_EXCEPTION_RENAMING;
4364 info += 7;
4365 break;
4366 case 'P':
4367 kind = ADA_PACKAGE_RENAMING;
4368 info += 7;
4369 break;
4370 case 'S':
4371 kind = ADA_SUBPROGRAM_RENAMING;
4372 info += 7;
4373 break;
4374 default:
4375 return ADA_NOT_RENAMING;
4376 }
14f9c5c9 4377 }
4c4b4cd2 4378
aeb5907d
JB
4379 if (renamed_entity != NULL)
4380 *renamed_entity = info;
4381 suffix = strstr (info, "___XE");
4382 if (suffix == NULL || suffix == info)
4383 return ADA_NOT_RENAMING;
4384 if (len != NULL)
4385 *len = strlen (info) - strlen (suffix);
4386 suffix += 5;
4387 if (renaming_expr != NULL)
4388 *renaming_expr = suffix;
4389 return kind;
4390}
4391
4392/* Assuming TYPE encodes a renaming according to the old encoding in
4393 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4394 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4395 ADA_NOT_RENAMING otherwise. */
4396static enum ada_renaming_category
4397parse_old_style_renaming (struct type *type,
4398 const char **renamed_entity, int *len,
4399 const char **renaming_expr)
4400{
4401 enum ada_renaming_category kind;
4402 const char *name;
4403 const char *info;
4404 const char *suffix;
14f9c5c9 4405
aeb5907d
JB
4406 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4407 || TYPE_NFIELDS (type) != 1)
4408 return ADA_NOT_RENAMING;
14f9c5c9 4409
aeb5907d
JB
4410 name = type_name_no_tag (type);
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413
4414 name = strstr (name, "___XR");
4415 if (name == NULL)
4416 return ADA_NOT_RENAMING;
4417 switch (name[5])
4418 {
4419 case '\0':
4420 case '_':
4421 kind = ADA_OBJECT_RENAMING;
4422 break;
4423 case 'E':
4424 kind = ADA_EXCEPTION_RENAMING;
4425 break;
4426 case 'P':
4427 kind = ADA_PACKAGE_RENAMING;
4428 break;
4429 case 'S':
4430 kind = ADA_SUBPROGRAM_RENAMING;
4431 break;
4432 default:
4433 return ADA_NOT_RENAMING;
4434 }
14f9c5c9 4435
aeb5907d
JB
4436 info = TYPE_FIELD_NAME (type, 0);
4437 if (info == NULL)
4438 return ADA_NOT_RENAMING;
4439 if (renamed_entity != NULL)
4440 *renamed_entity = info;
4441 suffix = strstr (info, "___XE");
4442 if (renaming_expr != NULL)
4443 *renaming_expr = suffix + 5;
4444 if (suffix == NULL || suffix == info)
4445 return ADA_NOT_RENAMING;
4446 if (len != NULL)
4447 *len = suffix - info;
4448 return kind;
a5ee536b
JB
4449}
4450
4451/* Compute the value of the given RENAMING_SYM, which is expected to
4452 be a symbol encoding a renaming expression. BLOCK is the block
4453 used to evaluate the renaming. */
52ce6436 4454
a5ee536b
JB
4455static struct value *
4456ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4457 const struct block *block)
a5ee536b 4458{
bbc13ae3 4459 const char *sym_name;
a5ee536b 4460
bbc13ae3 4461 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4462 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4463 return evaluate_expression (expr.get ());
a5ee536b 4464}
14f9c5c9 4465\f
d2e4a39e 4466
4c4b4cd2 4467 /* Evaluation: Function Calls */
14f9c5c9 4468
4c4b4cd2 4469/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4470 lvalues, and otherwise has the side-effect of allocating memory
4471 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4472
d2e4a39e 4473static struct value *
40bc484c 4474ensure_lval (struct value *val)
14f9c5c9 4475{
40bc484c
JB
4476 if (VALUE_LVAL (val) == not_lval
4477 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4478 {
df407dfe 4479 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4480 const CORE_ADDR addr =
4481 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4482
a84a8a0d 4483 VALUE_LVAL (val) = lval_memory;
1a088441 4484 set_value_address (val, addr);
40bc484c 4485 write_memory (addr, value_contents (val), len);
c3e5cd34 4486 }
14f9c5c9
AS
4487
4488 return val;
4489}
4490
4491/* Return the value ACTUAL, converted to be an appropriate value for a
4492 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4493 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4494 values not residing in memory, updating it as needed. */
14f9c5c9 4495
a93c0eb6 4496struct value *
40bc484c 4497ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4498{
df407dfe 4499 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4500 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4501 struct type *formal_target =
4502 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4504 struct type *actual_target =
4505 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4506 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4507
4c4b4cd2 4508 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4509 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4510 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4511 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4512 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4513 {
a84a8a0d 4514 struct value *result;
5b4ee69b 4515
14f9c5c9 4516 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4517 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4518 result = desc_data (actual);
cb923fcc 4519 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4520 {
4521 if (VALUE_LVAL (actual) != lval_memory)
4522 {
4523 struct value *val;
5b4ee69b 4524
df407dfe 4525 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4526 val = allocate_value (actual_type);
990a07ab 4527 memcpy ((char *) value_contents_raw (val),
0fd88904 4528 (char *) value_contents (actual),
4c4b4cd2 4529 TYPE_LENGTH (actual_type));
40bc484c 4530 actual = ensure_lval (val);
4c4b4cd2 4531 }
a84a8a0d 4532 result = value_addr (actual);
4c4b4cd2 4533 }
a84a8a0d
JB
4534 else
4535 return actual;
b1af9e97 4536 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4537 }
4538 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4539 return ada_value_ind (actual);
8344af1e
JB
4540 else if (ada_is_aligner_type (formal_type))
4541 {
4542 /* We need to turn this parameter into an aligner type
4543 as well. */
4544 struct value *aligner = allocate_value (formal_type);
4545 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4546
4547 value_assign_to_component (aligner, component, actual);
4548 return aligner;
4549 }
14f9c5c9
AS
4550
4551 return actual;
4552}
4553
438c98a1
JB
4554/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4555 type TYPE. This is usually an inefficient no-op except on some targets
4556 (such as AVR) where the representation of a pointer and an address
4557 differs. */
4558
4559static CORE_ADDR
4560value_pointer (struct value *value, struct type *type)
4561{
4562 struct gdbarch *gdbarch = get_type_arch (type);
4563 unsigned len = TYPE_LENGTH (type);
224c3ddb 4564 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4565 CORE_ADDR addr;
4566
4567 addr = value_address (value);
4568 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4569 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4570 return addr;
4571}
4572
14f9c5c9 4573
4c4b4cd2
PH
4574/* Push a descriptor of type TYPE for array value ARR on the stack at
4575 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4576 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4577 to-descriptor type rather than a descriptor type), a struct value *
4578 representing a pointer to this descriptor. */
14f9c5c9 4579
d2e4a39e 4580static struct value *
40bc484c 4581make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4582{
d2e4a39e
AS
4583 struct type *bounds_type = desc_bounds_type (type);
4584 struct type *desc_type = desc_base_type (type);
4585 struct value *descriptor = allocate_value (desc_type);
4586 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4587 int i;
d2e4a39e 4588
0963b4bd
MS
4589 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4590 i > 0; i -= 1)
14f9c5c9 4591 {
19f220c3
JK
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 0),
4594 desc_bound_bitpos (bounds_type, i, 0),
4595 desc_bound_bitsize (bounds_type, i, 0));
4596 modify_field (value_type (bounds), value_contents_writeable (bounds),
4597 ada_array_bound (arr, i, 1),
4598 desc_bound_bitpos (bounds_type, i, 1),
4599 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4600 }
d2e4a39e 4601
40bc484c 4602 bounds = ensure_lval (bounds);
d2e4a39e 4603
19f220c3
JK
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (ensure_lval (arr),
4607 TYPE_FIELD_TYPE (desc_type, 0)),
4608 fat_pntr_data_bitpos (desc_type),
4609 fat_pntr_data_bitsize (desc_type));
4610
4611 modify_field (value_type (descriptor),
4612 value_contents_writeable (descriptor),
4613 value_pointer (bounds,
4614 TYPE_FIELD_TYPE (desc_type, 1)),
4615 fat_pntr_bounds_bitpos (desc_type),
4616 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4617
40bc484c 4618 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4619
4620 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4621 return value_addr (descriptor);
4622 else
4623 return descriptor;
4624}
14f9c5c9 4625\f
3d9434b5
JB
4626 /* Symbol Cache Module */
4627
3d9434b5 4628/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4629 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4630 on the type of entity being printed, the cache can make it as much
4631 as an order of magnitude faster than without it.
4632
4633 The descriptive type DWARF extension has significantly reduced
4634 the need for this cache, at least when DWARF is being used. However,
4635 even in this case, some expensive name-based symbol searches are still
4636 sometimes necessary - to find an XVZ variable, mostly. */
4637
ee01b665 4638/* Initialize the contents of SYM_CACHE. */
3d9434b5 4639
ee01b665
JB
4640static void
4641ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4642{
4643 obstack_init (&sym_cache->cache_space);
4644 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4645}
3d9434b5 4646
ee01b665
JB
4647/* Free the memory used by SYM_CACHE. */
4648
4649static void
4650ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4651{
ee01b665
JB
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 xfree (sym_cache);
4654}
3d9434b5 4655
ee01b665
JB
4656/* Return the symbol cache associated to the given program space PSPACE.
4657 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4658
ee01b665
JB
4659static struct ada_symbol_cache *
4660ada_get_symbol_cache (struct program_space *pspace)
4661{
4662 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4663
66c168ae 4664 if (pspace_data->sym_cache == NULL)
ee01b665 4665 {
66c168ae
JB
4666 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4667 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4668 }
4669
66c168ae 4670 return pspace_data->sym_cache;
ee01b665 4671}
3d9434b5
JB
4672
4673/* Clear all entries from the symbol cache. */
4674
4675static void
4676ada_clear_symbol_cache (void)
4677{
ee01b665
JB
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680
4681 obstack_free (&sym_cache->cache_space, NULL);
4682 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4683}
4684
fe978cb0 4685/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4686 Return it if found, or NULL otherwise. */
4687
4688static struct cache_entry **
fe978cb0 4689find_entry (const char *name, domain_enum domain)
3d9434b5 4690{
ee01b665
JB
4691 struct ada_symbol_cache *sym_cache
4692 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4693 int h = msymbol_hash (name) % HASH_SIZE;
4694 struct cache_entry **e;
4695
ee01b665 4696 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4697 {
fe978cb0 4698 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4699 return e;
4700 }
4701 return NULL;
4702}
4703
fe978cb0 4704/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4705 Return 1 if found, 0 otherwise.
4706
4707 If an entry was found and SYM is not NULL, set *SYM to the entry's
4708 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4709
96d887e8 4710static int
fe978cb0 4711lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4712 struct symbol **sym, const struct block **block)
96d887e8 4713{
fe978cb0 4714 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4715
4716 if (e == NULL)
4717 return 0;
4718 if (sym != NULL)
4719 *sym = (*e)->sym;
4720 if (block != NULL)
4721 *block = (*e)->block;
4722 return 1;
96d887e8
PH
4723}
4724
3d9434b5 4725/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4726 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4727
96d887e8 4728static void
fe978cb0 4729cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4730 const struct block *block)
96d887e8 4731{
ee01b665
JB
4732 struct ada_symbol_cache *sym_cache
4733 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4734 int h;
4735 char *copy;
4736 struct cache_entry *e;
4737
1994afbf
DE
4738 /* Symbols for builtin types don't have a block.
4739 For now don't cache such symbols. */
4740 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4741 return;
4742
3d9434b5
JB
4743 /* If the symbol is a local symbol, then do not cache it, as a search
4744 for that symbol depends on the context. To determine whether
4745 the symbol is local or not, we check the block where we found it
4746 against the global and static blocks of its associated symtab. */
4747 if (sym
08be3fe3 4748 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4749 GLOBAL_BLOCK) != block
08be3fe3 4750 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4751 STATIC_BLOCK) != block)
3d9434b5
JB
4752 return;
4753
4754 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4755 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4756 sizeof (*e));
4757 e->next = sym_cache->root[h];
4758 sym_cache->root[h] = e;
224c3ddb
SM
4759 e->name = copy
4760 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4761 strcpy (copy, name);
4762 e->sym = sym;
fe978cb0 4763 e->domain = domain;
3d9434b5 4764 e->block = block;
96d887e8 4765}
4c4b4cd2
PH
4766\f
4767 /* Symbol Lookup */
4768
b5ec771e
PA
4769/* Return the symbol name match type that should be used used when
4770 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4771
4772 LOOKUP_NAME is expected to be a symbol name after transformation
4773 for Ada lookups (see ada_name_for_lookup). */
4774
b5ec771e
PA
4775static symbol_name_match_type
4776name_match_type_from_name (const char *lookup_name)
c0431670 4777{
b5ec771e
PA
4778 return (strstr (lookup_name, "__") == NULL
4779 ? symbol_name_match_type::WILD
4780 : symbol_name_match_type::FULL);
c0431670
JB
4781}
4782
4c4b4cd2
PH
4783/* Return the result of a standard (literal, C-like) lookup of NAME in
4784 given DOMAIN, visible from lexical block BLOCK. */
4785
4786static struct symbol *
4787standard_lookup (const char *name, const struct block *block,
4788 domain_enum domain)
4789{
acbd605d 4790 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4791 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4792
d12307c1
PMR
4793 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4794 return sym.symbol;
2570f2b7 4795 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4796 cache_symbol (name, domain, sym.symbol, sym.block);
4797 return sym.symbol;
4c4b4cd2
PH
4798}
4799
4800
4801/* Non-zero iff there is at least one non-function/non-enumeral symbol
4802 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4803 since they contend in overloading in the same way. */
4804static int
d12307c1 4805is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4806{
4807 int i;
4808
4809 for (i = 0; i < n; i += 1)
d12307c1
PMR
4810 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4811 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4812 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4813 return 1;
4814
4815 return 0;
4816}
4817
4818/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4819 struct types. Otherwise, they may not. */
14f9c5c9
AS
4820
4821static int
d2e4a39e 4822equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4823{
d2e4a39e 4824 if (type0 == type1)
14f9c5c9 4825 return 1;
d2e4a39e 4826 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4827 || TYPE_CODE (type0) != TYPE_CODE (type1))
4828 return 0;
d2e4a39e 4829 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4830 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4831 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4832 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4833 return 1;
d2e4a39e 4834
14f9c5c9
AS
4835 return 0;
4836}
4837
4838/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4839 no more defined than that of SYM1. */
14f9c5c9
AS
4840
4841static int
d2e4a39e 4842lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4843{
4844 if (sym0 == sym1)
4845 return 1;
176620f1 4846 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4847 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4848 return 0;
4849
d2e4a39e 4850 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4851 {
4852 case LOC_UNDEF:
4853 return 1;
4854 case LOC_TYPEDEF:
4855 {
4c4b4cd2
PH
4856 struct type *type0 = SYMBOL_TYPE (sym0);
4857 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4858 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4859 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4860 int len0 = strlen (name0);
5b4ee69b 4861
4c4b4cd2
PH
4862 return
4863 TYPE_CODE (type0) == TYPE_CODE (type1)
4864 && (equiv_types (type0, type1)
4865 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4866 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4867 }
4868 case LOC_CONST:
4869 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4870 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4871 default:
4872 return 0;
14f9c5c9
AS
4873 }
4874}
4875
d12307c1 4876/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4877 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4878
4879static void
76a01679
JB
4880add_defn_to_vec (struct obstack *obstackp,
4881 struct symbol *sym,
f0c5f9b2 4882 const struct block *block)
14f9c5c9
AS
4883{
4884 int i;
d12307c1 4885 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4886
529cad9c
PH
4887 /* Do not try to complete stub types, as the debugger is probably
4888 already scanning all symbols matching a certain name at the
4889 time when this function is called. Trying to replace the stub
4890 type by its associated full type will cause us to restart a scan
4891 which may lead to an infinite recursion. Instead, the client
4892 collecting the matching symbols will end up collecting several
4893 matches, with at least one of them complete. It can then filter
4894 out the stub ones if needed. */
4895
4c4b4cd2
PH
4896 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4897 {
d12307c1 4898 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4899 return;
d12307c1 4900 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4901 {
d12307c1 4902 prevDefns[i].symbol = sym;
4c4b4cd2 4903 prevDefns[i].block = block;
4c4b4cd2 4904 return;
76a01679 4905 }
4c4b4cd2
PH
4906 }
4907
4908 {
d12307c1 4909 struct block_symbol info;
4c4b4cd2 4910
d12307c1 4911 info.symbol = sym;
4c4b4cd2 4912 info.block = block;
d12307c1 4913 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4914 }
4915}
4916
d12307c1
PMR
4917/* Number of block_symbol structures currently collected in current vector in
4918 OBSTACKP. */
4c4b4cd2 4919
76a01679
JB
4920static int
4921num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4922{
d12307c1 4923 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4924}
4925
d12307c1
PMR
4926/* Vector of block_symbol structures currently collected in current vector in
4927 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4928
d12307c1 4929static struct block_symbol *
4c4b4cd2
PH
4930defns_collected (struct obstack *obstackp, int finish)
4931{
4932 if (finish)
224c3ddb 4933 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4934 else
d12307c1 4935 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4936}
4937
7c7b6655
TT
4938/* Return a bound minimal symbol matching NAME according to Ada
4939 decoding rules. Returns an invalid symbol if there is no such
4940 minimal symbol. Names prefixed with "standard__" are handled
4941 specially: "standard__" is first stripped off, and only static and
4942 global symbols are searched. */
4c4b4cd2 4943
7c7b6655 4944struct bound_minimal_symbol
96d887e8 4945ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4946{
7c7b6655 4947 struct bound_minimal_symbol result;
4c4b4cd2 4948 struct objfile *objfile;
96d887e8 4949 struct minimal_symbol *msymbol;
4c4b4cd2 4950
7c7b6655
TT
4951 memset (&result, 0, sizeof (result));
4952
b5ec771e
PA
4953 symbol_name_match_type match_type = name_match_type_from_name (name);
4954 lookup_name_info lookup_name (name, match_type);
4955
4956 symbol_name_matcher_ftype *match_name
4957 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4958
96d887e8
PH
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
b5ec771e 4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
96d887e8 4968 }
4c4b4cd2 4969
7c7b6655 4970 return result;
96d887e8 4971}
4c4b4cd2 4972
96d887e8
PH
4973/* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4c4b4cd2 4978
96d887e8
PH
4979static void
4980add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4981 const lookup_name_info &lookup_name,
4982 domain_enum domain)
96d887e8 4983{
96d887e8 4984}
14f9c5c9 4985
96d887e8
PH
4986/* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
14f9c5c9 4988
96d887e8
PH
4989static int
4990is_nondebugging_type (struct type *type)
4991{
0d5cff50 4992 const char *name = ada_type_name (type);
5b4ee69b 4993
96d887e8
PH
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995}
4c4b4cd2 4996
8f17729f
JB
4997/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004static int
5005ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006{
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
0d5cff50
DE
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038}
5039
5040/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060static int
d12307c1 5061symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5062{
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
d12307c1 5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
d12307c1 5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5094 return 0;
5095
5096 return 1;
5097}
5098
96d887e8
PH
5099/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
4c4b4cd2 5105
96d887e8 5106static int
d12307c1 5107remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5108{
5109 int i, j;
4c4b4cd2 5110
8f17729f
JB
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
96d887e8
PH
5117 i = 0;
5118 while (i < nsyms)
5119 {
a35ddb44 5120 int remove_p = 0;
339c13b6
JB
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
d12307c1
PMR
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
d12307c1
PMR
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5135 remove_p = 1;
339c13b6
JB
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
d12307c1
PMR
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
d12307c1
PMR
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5156 remove_p = 1;
4c4b4cd2 5157 }
4c4b4cd2 5158 }
339c13b6 5159
a35ddb44 5160 if (remove_p)
339c13b6
JB
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
96d887e8 5167 i += 1;
14f9c5c9 5168 }
8f17729f
JB
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
96d887e8 5185 return nsyms;
14f9c5c9
AS
5186}
5187
96d887e8
PH
5188/* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5192
96d887e8
PH
5193static char *
5194xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5195{
96d887e8 5196 /* The renaming types adhere to the following convention:
0963b4bd 5197 <scope>__<rename>___<XR extension>.
96d887e8
PH
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
76a01679 5200
96d887e8 5201 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
96d887e8
PH
5204 int scope_len;
5205 char *scope;
14f9c5c9 5206
96d887e8
PH
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5209
96d887e8
PH
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
76a01679 5213
96d887e8 5214 /* Make a copy of scope and return it. */
14f9c5c9 5215
96d887e8
PH
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5218
96d887e8
PH
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
4c4b4cd2 5221
96d887e8 5222 return scope;
4c4b4cd2
PH
5223}
5224
96d887e8 5225/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5226
96d887e8
PH
5227static int
5228is_package_name (const char *name)
4c4b4cd2 5229{
96d887e8
PH
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
4c4b4cd2 5235
96d887e8 5236 char *fun_name;
76a01679 5237
96d887e8
PH
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
14f9c5c9 5245
96d887e8 5246 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5247 functions names cannot contain "__" in them. */
96d887e8
PH
5248 if (strstr (name, "__") != NULL)
5249 return 0;
4c4b4cd2 5250
b435e160 5251 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5252
96d887e8
PH
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254}
14f9c5c9 5255
96d887e8 5256/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5257 not visible from FUNCTION_NAME. */
14f9c5c9 5258
96d887e8 5259static int
0d5cff50 5260old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5261{
aeb5907d 5262 char *scope;
1509e573 5263 struct cleanup *old_chain;
aeb5907d
JB
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5269 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5270
96d887e8
PH
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
1509e573
JB
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
14f9c5c9 5277
96d887e8
PH
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
76a01679 5280
96d887e8
PH
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
61012eef 5285 if (startswith (function_name, "_ada_"))
96d887e8 5286 function_name += 5;
f26caa11 5287
1509e573 5288 {
61012eef 5289 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
f26caa11
PH
5294}
5295
aeb5907d
JB
5296/* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
96d887e8
PH
5301
5302 Rationale:
aeb5907d
JB
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
f26caa11 5315
96d887e8
PH
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
4c4b4cd2 5332
14f9c5c9 5333static int
d12307c1 5334remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5335 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5336{
5337 struct symbol *current_function;
0d5cff50 5338 const char *current_function_name;
4c4b4cd2 5339 int i;
aeb5907d
JB
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
0963b4bd 5344 First, zero out such symbols, then compress. */
aeb5907d
JB
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
d12307c1 5348 struct symbol *sym = syms[i].symbol;
270140bd 5349 const struct block *block = syms[i].block;
aeb5907d
JB
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5b4ee69b 5362
aeb5907d
JB
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5367 name_len) == 0
5368 && block == syms[j].block)
d12307c1 5369 syms[j].symbol = NULL;
aeb5907d
JB
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5377 if (syms[j].symbol != NULL)
aeb5907d
JB
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
4c4b4cd2
PH
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
76a01679 5387
4c4b4cd2
PH
5388 if (current_block == NULL)
5389 return nsyms;
76a01679 5390
7f0df278 5391 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
d12307c1 5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5407 == ADA_OBJECT_RENAMING
d12307c1 5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5409 {
5410 int j;
5b4ee69b 5411
aeb5907d 5412 for (j = i + 1; j < nsyms; j += 1)
76a01679 5413 syms[j - 1] = syms[j];
4c4b4cd2
PH
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421}
5422
339c13b6
JB
5423/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433static void
b5ec771e
PA
5434ada_add_local_symbols (struct obstack *obstackp,
5435 const lookup_name_info &lookup_name,
5436 const struct block *block, domain_enum domain)
339c13b6
JB
5437{
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
b5ec771e 5443 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5444
5445 /* If we found a non-function match, assume that's the one. */
5446 if (is_nonfunction (defns_collected (obstackp, 0),
5447 num_defns_collected (obstackp)))
5448 return;
5449
5450 block = BLOCK_SUPERBLOCK (block);
5451 }
5452
5453 /* If no luck so far, try to find NAME as a local symbol in some lexically
5454 enclosing subprogram. */
5455 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5456 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5457}
5458
ccefe4c4 5459/* An object of this type is used as the user_data argument when
40658b94 5460 calling the map_matching_symbols method. */
ccefe4c4 5461
40658b94 5462struct match_data
ccefe4c4 5463{
40658b94 5464 struct objfile *objfile;
ccefe4c4 5465 struct obstack *obstackp;
40658b94
PH
5466 struct symbol *arg_sym;
5467 int found_sym;
ccefe4c4
TT
5468};
5469
22cee43f 5470/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5471 to a list of symbols. DATA0 is a pointer to a struct match_data *
5472 containing the obstack that collects the symbol list, the file that SYM
5473 must come from, a flag indicating whether a non-argument symbol has
5474 been found in the current block, and the last argument symbol
5475 passed in SYM within the current block (if any). When SYM is null,
5476 marking the end of a block, the argument symbol is added if no
5477 other has been found. */
ccefe4c4 5478
40658b94
PH
5479static int
5480aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5481{
40658b94
PH
5482 struct match_data *data = (struct match_data *) data0;
5483
5484 if (sym == NULL)
5485 {
5486 if (!data->found_sym && data->arg_sym != NULL)
5487 add_defn_to_vec (data->obstackp,
5488 fixup_symbol_section (data->arg_sym, data->objfile),
5489 block);
5490 data->found_sym = 0;
5491 data->arg_sym = NULL;
5492 }
5493 else
5494 {
5495 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5496 return 0;
5497 else if (SYMBOL_IS_ARGUMENT (sym))
5498 data->arg_sym = sym;
5499 else
5500 {
5501 data->found_sym = 1;
5502 add_defn_to_vec (data->obstackp,
5503 fixup_symbol_section (sym, data->objfile),
5504 block);
5505 }
5506 }
5507 return 0;
5508}
5509
b5ec771e
PA
5510/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5511 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5512 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5513
5514static int
5515ada_add_block_renamings (struct obstack *obstackp,
5516 const struct block *block,
b5ec771e
PA
5517 const lookup_name_info &lookup_name,
5518 domain_enum domain)
22cee43f
PMR
5519{
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
b5ec771e
PA
5523 symbol_name_matcher_ftype *name_match
5524 = ada_get_symbol_name_matcher (lookup_name);
5525
22cee43f
PMR
5526 for (renaming = block_using (block);
5527 renaming != NULL;
5528 renaming = renaming->next)
5529 {
5530 const char *r_name;
22cee43f
PMR
5531
5532 /* Avoid infinite recursions: skip this renaming if we are actually
5533 already traversing it.
5534
5535 Currently, symbol lookup in Ada don't use the namespace machinery from
5536 C++/Fortran support: skip namespace imports that use them. */
5537 if (renaming->searched
5538 || (renaming->import_src != NULL
5539 && renaming->import_src[0] != '\0')
5540 || (renaming->import_dest != NULL
5541 && renaming->import_dest[0] != '\0'))
5542 continue;
5543 renaming->searched = 1;
5544
5545 /* TODO: here, we perform another name-based symbol lookup, which can
5546 pull its own multiple overloads. In theory, we should be able to do
5547 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5548 not a simple name. But in order to do this, we would need to enhance
5549 the DWARF reader to associate a symbol to this renaming, instead of a
5550 name. So, for now, we do something simpler: re-use the C++/Fortran
5551 namespace machinery. */
5552 r_name = (renaming->alias != NULL
5553 ? renaming->alias
5554 : renaming->declaration);
b5ec771e
PA
5555 if (name_match (r_name, lookup_name, NULL))
5556 {
5557 lookup_name_info decl_lookup_name (renaming->declaration,
5558 lookup_name.match_type ());
5559 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5560 1, NULL);
5561 }
22cee43f
PMR
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565}
5566
db230ce3
JB
5567/* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5b4ee69b 5569
40658b94 5570static int
db230ce3
JB
5571compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
40658b94
PH
5573{
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
db230ce3
JB
5576 char c1, c2;
5577
40658b94
PH
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
40658b94 5592 break;
db230ce3 5593
40658b94
PH
5594 string1 += 1;
5595 string2 += 1;
5596 }
db230ce3 5597
40658b94
PH
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
052874e8 5605 if (is_name_suffix (string1))
40658b94
PH
5606 return 0;
5607 else
1a1d5513 5608 return 1;
40658b94 5609 }
dbb8534f 5610 /* FALLTHROUGH */
40658b94
PH
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
db230ce3
JB
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
40658b94 5621 }
ccefe4c4
TT
5622}
5623
db230ce3
JB
5624/* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635static int
5636compare_names (const char *string1, const char *string2)
5637{
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650}
5651
b5ec771e
PA
5652/* Convenience function to get at the Ada encoded lookup name for
5653 LOOKUP_NAME, as a C string. */
5654
5655static const char *
5656ada_lookup_name (const lookup_name_info &lookup_name)
5657{
5658 return lookup_name.ada ().lookup_name ().c_str ();
5659}
5660
339c13b6 5661/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5662 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5663 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5664 symbols otherwise. */
339c13b6
JB
5665
5666static void
b5ec771e
PA
5667add_nonlocal_symbols (struct obstack *obstackp,
5668 const lookup_name_info &lookup_name,
5669 domain_enum domain, int global)
339c13b6
JB
5670{
5671 struct objfile *objfile;
22cee43f 5672 struct compunit_symtab *cu;
40658b94 5673 struct match_data data;
339c13b6 5674
6475f2fe 5675 memset (&data, 0, sizeof data);
ccefe4c4 5676 data.obstackp = obstackp;
339c13b6 5677
b5ec771e
PA
5678 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5679
ccefe4c4 5680 ALL_OBJFILES (objfile)
40658b94
PH
5681 {
5682 data.objfile = objfile;
5683
5684 if (is_wild_match)
b5ec771e
PA
5685 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5686 domain, global,
4186eb54 5687 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5688 symbol_name_match_type::WILD,
5689 NULL);
40658b94 5690 else
b5ec771e
PA
5691 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5692 domain, global,
4186eb54 5693 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5694 symbol_name_match_type::FULL,
5695 compare_names);
22cee43f
PMR
5696
5697 ALL_OBJFILE_COMPUNITS (objfile, cu)
5698 {
5699 const struct block *global_block
5700 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5701
b5ec771e
PA
5702 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5703 domain))
22cee43f
PMR
5704 data.found_sym = 1;
5705 }
40658b94
PH
5706 }
5707
5708 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5709 {
b5ec771e
PA
5710 const char *name = ada_lookup_name (lookup_name);
5711 std::string name1 = std::string ("<_ada_") + name + '>';
5712
40658b94
PH
5713 ALL_OBJFILES (objfile)
5714 {
40658b94 5715 data.objfile = objfile;
b5ec771e
PA
5716 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5717 domain, global,
0963b4bd
MS
5718 aux_add_nonlocal_symbols,
5719 &data,
b5ec771e
PA
5720 symbol_name_match_type::FULL,
5721 compare_names);
40658b94
PH
5722 }
5723 }
339c13b6
JB
5724}
5725
b5ec771e
PA
5726/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5727 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5728 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5729
22cee43f
PMR
5730 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5731 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5732 is the one match returned (no other matches in that or
d9680e73 5733 enclosing blocks is returned). If there are any matches in or
22cee43f 5734 surrounding BLOCK, then these alone are returned.
4eeaa230 5735
b5ec771e
PA
5736 Names prefixed with "standard__" are handled specially:
5737 "standard__" is first stripped off (by the lookup_name
5738 constructor), and only static and global symbols are searched.
14f9c5c9 5739
22cee43f
PMR
5740 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5741 to lookup global symbols. */
5742
5743static void
5744ada_add_all_symbols (struct obstack *obstackp,
5745 const struct block *block,
b5ec771e 5746 const lookup_name_info &lookup_name,
22cee43f
PMR
5747 domain_enum domain,
5748 int full_search,
5749 int *made_global_lookup_p)
14f9c5c9
AS
5750{
5751 struct symbol *sym;
14f9c5c9 5752
22cee43f
PMR
5753 if (made_global_lookup_p)
5754 *made_global_lookup_p = 0;
339c13b6
JB
5755
5756 /* Special case: If the user specifies a symbol name inside package
5757 Standard, do a non-wild matching of the symbol name without
5758 the "standard__" prefix. This was primarily introduced in order
5759 to allow the user to specifically access the standard exceptions
5760 using, for instance, Standard.Constraint_Error when Constraint_Error
5761 is ambiguous (due to the user defining its own Constraint_Error
5762 entity inside its program). */
b5ec771e
PA
5763 if (lookup_name.ada ().standard_p ())
5764 block = NULL;
4c4b4cd2 5765
339c13b6 5766 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5767
4eeaa230
DE
5768 if (block != NULL)
5769 {
5770 if (full_search)
b5ec771e 5771 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5772 else
5773 {
5774 /* In the !full_search case we're are being called by
5775 ada_iterate_over_symbols, and we don't want to search
5776 superblocks. */
b5ec771e 5777 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5778 }
22cee43f
PMR
5779 if (num_defns_collected (obstackp) > 0 || !full_search)
5780 return;
4eeaa230 5781 }
d2e4a39e 5782
339c13b6
JB
5783 /* No non-global symbols found. Check our cache to see if we have
5784 already performed this search before. If we have, then return
5785 the same result. */
5786
b5ec771e
PA
5787 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5788 domain, &sym, &block))
4c4b4cd2
PH
5789 {
5790 if (sym != NULL)
b5ec771e 5791 add_defn_to_vec (obstackp, sym, block);
22cee43f 5792 return;
4c4b4cd2 5793 }
14f9c5c9 5794
22cee43f
PMR
5795 if (made_global_lookup_p)
5796 *made_global_lookup_p = 1;
b1eedac9 5797
339c13b6
JB
5798 /* Search symbols from all global blocks. */
5799
b5ec771e 5800 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5801
4c4b4cd2 5802 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5803 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5804
22cee43f 5805 if (num_defns_collected (obstackp) == 0)
b5ec771e 5806 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5807}
5808
b5ec771e
PA
5809/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5810 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5811 matches.
ec6a20c2 5812 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5813 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5814 any) in which they were found. This vector should be freed when
5815 no longer useful.
22cee43f
PMR
5816
5817 When full_search is non-zero, any non-function/non-enumeral
5818 symbol match within the nest of blocks whose innermost member is BLOCK,
5819 is the one match returned (no other matches in that or
5820 enclosing blocks is returned). If there are any matches in or
5821 surrounding BLOCK, then these alone are returned.
5822
5823 Names prefixed with "standard__" are handled specially: "standard__"
5824 is first stripped off, and only static and global symbols are searched. */
5825
5826static int
b5ec771e
PA
5827ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5828 const struct block *block,
22cee43f
PMR
5829 domain_enum domain,
5830 struct block_symbol **results,
5831 int full_search)
5832{
22cee43f
PMR
5833 int syms_from_global_search;
5834 int ndefns;
ec6a20c2
JB
5835 int results_size;
5836 auto_obstack obstack;
22cee43f 5837
ec6a20c2 5838 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5839 domain, full_search, &syms_from_global_search);
14f9c5c9 5840
ec6a20c2
JB
5841 ndefns = num_defns_collected (&obstack);
5842
5843 results_size = obstack_object_size (&obstack);
5844 *results = (struct block_symbol *) malloc (results_size);
5845 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5846
5847 ndefns = remove_extra_symbols (*results, ndefns);
5848
b1eedac9 5849 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5850 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5851
b1eedac9 5852 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5853 cache_symbol (ada_lookup_name (lookup_name), domain,
5854 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5855
22cee43f 5856 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5857
14f9c5c9
AS
5858 return ndefns;
5859}
5860
b5ec771e 5861/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5862 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5863 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5864 vector should be freed when no longer useful.
5865
4eeaa230
DE
5866 See ada_lookup_symbol_list_worker for further details. */
5867
5868int
b5ec771e 5869ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5870 domain_enum domain, struct block_symbol **results)
4eeaa230 5871{
b5ec771e
PA
5872 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5873 lookup_name_info lookup_name (name, name_match_type);
5874
5875 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5876}
5877
5878/* Implementation of the la_iterate_over_symbols method. */
5879
5880static void
14bc53a8 5881ada_iterate_over_symbols
b5ec771e
PA
5882 (const struct block *block, const lookup_name_info &name,
5883 domain_enum domain,
14bc53a8 5884 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5885{
5886 int ndefs, i;
d12307c1 5887 struct block_symbol *results;
ec6a20c2 5888 struct cleanup *old_chain;
4eeaa230
DE
5889
5890 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5891 old_chain = make_cleanup (xfree, results);
5892
4eeaa230
DE
5893 for (i = 0; i < ndefs; ++i)
5894 {
14bc53a8 5895 if (!callback (results[i].symbol))
4eeaa230
DE
5896 break;
5897 }
ec6a20c2
JB
5898
5899 do_cleanups (old_chain);
4eeaa230
DE
5900}
5901
4e5c77fe
JB
5902/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5903 to 1, but choosing the first symbol found if there are multiple
5904 choices.
5905
5e2336be
JB
5906 The result is stored in *INFO, which must be non-NULL.
5907 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5908
5909void
5910ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5911 domain_enum domain,
d12307c1 5912 struct block_symbol *info)
14f9c5c9 5913{
d12307c1 5914 struct block_symbol *candidates;
14f9c5c9 5915 int n_candidates;
ec6a20c2 5916 struct cleanup *old_chain;
14f9c5c9 5917
b5ec771e
PA
5918 /* Since we already have an encoded name, wrap it in '<>' to force a
5919 verbatim match. Otherwise, if the name happens to not look like
5920 an encoded name (because it doesn't include a "__"),
5921 ada_lookup_name_info would re-encode/fold it again, and that
5922 would e.g., incorrectly lowercase object renaming names like
5923 "R28b" -> "r28b". */
5924 std::string verbatim = std::string ("<") + name + '>';
5925
5e2336be 5926 gdb_assert (info != NULL);
d12307c1 5927 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5928
b5ec771e
PA
5929 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5930 domain, &candidates);
ec6a20c2
JB
5931 old_chain = make_cleanup (xfree, candidates);
5932
14f9c5c9 5933 if (n_candidates == 0)
ec6a20c2
JB
5934 {
5935 do_cleanups (old_chain);
5936 return;
5937 }
4c4b4cd2 5938
5e2336be 5939 *info = candidates[0];
d12307c1 5940 info->symbol = fixup_symbol_section (info->symbol, NULL);
ec6a20c2
JB
5941
5942 do_cleanups (old_chain);
4e5c77fe 5943}
aeb5907d
JB
5944
5945/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5946 scope and in global scopes, or NULL if none. NAME is folded and
5947 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5948 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5949 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5950
d12307c1 5951struct block_symbol
aeb5907d 5952ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5953 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5954{
d12307c1 5955 struct block_symbol info;
4e5c77fe 5956
aeb5907d
JB
5957 if (is_a_field_of_this != NULL)
5958 *is_a_field_of_this = 0;
5959
4e5c77fe 5960 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5961 block0, domain, &info);
d12307c1 5962 return info;
4c4b4cd2 5963}
14f9c5c9 5964
d12307c1 5965static struct block_symbol
f606139a
DE
5966ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5967 const char *name,
76a01679 5968 const struct block *block,
21b556f4 5969 const domain_enum domain)
4c4b4cd2 5970{
d12307c1 5971 struct block_symbol sym;
04dccad0
JB
5972
5973 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5974 if (sym.symbol != NULL)
04dccad0
JB
5975 return sym;
5976
5977 /* If we haven't found a match at this point, try the primitive
5978 types. In other languages, this search is performed before
5979 searching for global symbols in order to short-circuit that
5980 global-symbol search if it happens that the name corresponds
5981 to a primitive type. But we cannot do the same in Ada, because
5982 it is perfectly legitimate for a program to declare a type which
5983 has the same name as a standard type. If looking up a type in
5984 that situation, we have traditionally ignored the primitive type
5985 in favor of user-defined types. This is why, unlike most other
5986 languages, we search the primitive types this late and only after
5987 having searched the global symbols without success. */
5988
5989 if (domain == VAR_DOMAIN)
5990 {
5991 struct gdbarch *gdbarch;
5992
5993 if (block == NULL)
5994 gdbarch = target_gdbarch ();
5995 else
5996 gdbarch = block_gdbarch (block);
d12307c1
PMR
5997 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5998 if (sym.symbol != NULL)
04dccad0
JB
5999 return sym;
6000 }
6001
d12307c1 6002 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
6003}
6004
6005
4c4b4cd2
PH
6006/* True iff STR is a possible encoded suffix of a normal Ada name
6007 that is to be ignored for matching purposes. Suffixes of parallel
6008 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6009 are given by any of the regular expressions:
4c4b4cd2 6010
babe1480
JB
6011 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6012 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6013 TKB [subprogram suffix for task bodies]
babe1480 6014 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6015 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6016
6017 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6018 match is performed. This sequence is used to differentiate homonyms,
6019 is an optional part of a valid name suffix. */
4c4b4cd2 6020
14f9c5c9 6021static int
d2e4a39e 6022is_name_suffix (const char *str)
14f9c5c9
AS
6023{
6024 int k;
4c4b4cd2
PH
6025 const char *matching;
6026 const int len = strlen (str);
6027
babe1480
JB
6028 /* Skip optional leading __[0-9]+. */
6029
4c4b4cd2
PH
6030 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6031 {
babe1480
JB
6032 str += 3;
6033 while (isdigit (str[0]))
6034 str += 1;
4c4b4cd2 6035 }
babe1480
JB
6036
6037 /* [.$][0-9]+ */
4c4b4cd2 6038
babe1480 6039 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6040 {
babe1480 6041 matching = str + 1;
4c4b4cd2
PH
6042 while (isdigit (matching[0]))
6043 matching += 1;
6044 if (matching[0] == '\0')
6045 return 1;
6046 }
6047
6048 /* ___[0-9]+ */
babe1480 6049
4c4b4cd2
PH
6050 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if (matching[0] == '\0')
6056 return 1;
6057 }
6058
9ac7f98e
JB
6059 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6060
6061 if (strcmp (str, "TKB") == 0)
6062 return 1;
6063
529cad9c
PH
6064#if 0
6065 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6066 with a N at the end. Unfortunately, the compiler uses the same
6067 convention for other internal types it creates. So treating
529cad9c 6068 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6069 some regressions. For instance, consider the case of an enumerated
6070 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6071 name ends with N.
6072 Having a single character like this as a suffix carrying some
0963b4bd 6073 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6074 to be something like "_N" instead. In the meantime, do not do
6075 the following check. */
6076 /* Protected Object Subprograms */
6077 if (len == 1 && str [0] == 'N')
6078 return 1;
6079#endif
6080
6081 /* _E[0-9]+[bs]$ */
6082 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6083 {
6084 matching = str + 3;
6085 while (isdigit (matching[0]))
6086 matching += 1;
6087 if ((matching[0] == 'b' || matching[0] == 's')
6088 && matching [1] == '\0')
6089 return 1;
6090 }
6091
4c4b4cd2
PH
6092 /* ??? We should not modify STR directly, as we are doing below. This
6093 is fine in this case, but may become problematic later if we find
6094 that this alternative did not work, and want to try matching
6095 another one from the begining of STR. Since we modified it, we
6096 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6097 if (str[0] == 'X')
6098 {
6099 str += 1;
d2e4a39e 6100 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6101 {
6102 if (str[0] != 'n' && str[0] != 'b')
6103 return 0;
6104 str += 1;
6105 }
14f9c5c9 6106 }
babe1480 6107
14f9c5c9
AS
6108 if (str[0] == '\000')
6109 return 1;
babe1480 6110
d2e4a39e 6111 if (str[0] == '_')
14f9c5c9
AS
6112 {
6113 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6114 return 0;
d2e4a39e 6115 if (str[2] == '_')
4c4b4cd2 6116 {
61ee279c
PH
6117 if (strcmp (str + 3, "JM") == 0)
6118 return 1;
6119 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6120 the LJM suffix in favor of the JM one. But we will
6121 still accept LJM as a valid suffix for a reasonable
6122 amount of time, just to allow ourselves to debug programs
6123 compiled using an older version of GNAT. */
4c4b4cd2
PH
6124 if (strcmp (str + 3, "LJM") == 0)
6125 return 1;
6126 if (str[3] != 'X')
6127 return 0;
1265e4aa
JB
6128 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6129 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6130 return 1;
6131 if (str[4] == 'R' && str[5] != 'T')
6132 return 1;
6133 return 0;
6134 }
6135 if (!isdigit (str[2]))
6136 return 0;
6137 for (k = 3; str[k] != '\0'; k += 1)
6138 if (!isdigit (str[k]) && str[k] != '_')
6139 return 0;
14f9c5c9
AS
6140 return 1;
6141 }
4c4b4cd2 6142 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6143 {
4c4b4cd2
PH
6144 for (k = 2; str[k] != '\0'; k += 1)
6145 if (!isdigit (str[k]) && str[k] != '_')
6146 return 0;
14f9c5c9
AS
6147 return 1;
6148 }
6149 return 0;
6150}
d2e4a39e 6151
aeb5907d
JB
6152/* Return non-zero if the string starting at NAME and ending before
6153 NAME_END contains no capital letters. */
529cad9c
PH
6154
6155static int
6156is_valid_name_for_wild_match (const char *name0)
6157{
6158 const char *decoded_name = ada_decode (name0);
6159 int i;
6160
5823c3ef
JB
6161 /* If the decoded name starts with an angle bracket, it means that
6162 NAME0 does not follow the GNAT encoding format. It should then
6163 not be allowed as a possible wild match. */
6164 if (decoded_name[0] == '<')
6165 return 0;
6166
529cad9c
PH
6167 for (i=0; decoded_name[i] != '\0'; i++)
6168 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6169 return 0;
6170
6171 return 1;
6172}
6173
73589123
PH
6174/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6175 that could start a simple name. Assumes that *NAMEP points into
6176 the string beginning at NAME0. */
4c4b4cd2 6177
14f9c5c9 6178static int
73589123 6179advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6180{
73589123 6181 const char *name = *namep;
5b4ee69b 6182
5823c3ef 6183 while (1)
14f9c5c9 6184 {
aa27d0b3 6185 int t0, t1;
73589123
PH
6186
6187 t0 = *name;
6188 if (t0 == '_')
6189 {
6190 t1 = name[1];
6191 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6192 {
6193 name += 1;
61012eef 6194 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6195 break;
6196 else
6197 name += 1;
6198 }
aa27d0b3
JB
6199 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6200 || name[2] == target0))
73589123
PH
6201 {
6202 name += 2;
6203 break;
6204 }
6205 else
6206 return 0;
6207 }
6208 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6209 name += 1;
6210 else
5823c3ef 6211 return 0;
73589123
PH
6212 }
6213
6214 *namep = name;
6215 return 1;
6216}
6217
b5ec771e
PA
6218/* Return true iff NAME encodes a name of the form prefix.PATN.
6219 Ignores any informational suffixes of NAME (i.e., for which
6220 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6221 simple name. */
73589123 6222
b5ec771e 6223static bool
73589123
PH
6224wild_match (const char *name, const char *patn)
6225{
22e048c9 6226 const char *p;
73589123
PH
6227 const char *name0 = name;
6228
6229 while (1)
6230 {
6231 const char *match = name;
6232
6233 if (*name == *patn)
6234 {
6235 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6236 if (*p != *name)
6237 break;
6238 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6239 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6240
6241 if (name[-1] == '_')
6242 name -= 1;
6243 }
6244 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6245 return false;
96d887e8 6246 }
96d887e8
PH
6247}
6248
b5ec771e
PA
6249/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6250 any trailing suffixes that encode debugging information or leading
6251 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6252 information that is ignored). */
40658b94 6253
b5ec771e 6254static bool
c4d840bd
PH
6255full_match (const char *sym_name, const char *search_name)
6256{
b5ec771e
PA
6257 size_t search_name_len = strlen (search_name);
6258
6259 if (strncmp (sym_name, search_name, search_name_len) == 0
6260 && is_name_suffix (sym_name + search_name_len))
6261 return true;
6262
6263 if (startswith (sym_name, "_ada_")
6264 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6265 && is_name_suffix (sym_name + search_name_len + 5))
6266 return true;
c4d840bd 6267
b5ec771e
PA
6268 return false;
6269}
c4d840bd 6270
b5ec771e
PA
6271/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6272 *defn_symbols, updating the list of symbols in OBSTACKP (if
6273 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6274
6275static void
6276ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6277 const struct block *block,
6278 const lookup_name_info &lookup_name,
6279 domain_enum domain, struct objfile *objfile)
96d887e8 6280{
8157b174 6281 struct block_iterator iter;
96d887e8
PH
6282 /* A matching argument symbol, if any. */
6283 struct symbol *arg_sym;
6284 /* Set true when we find a matching non-argument symbol. */
6285 int found_sym;
6286 struct symbol *sym;
6287
6288 arg_sym = NULL;
6289 found_sym = 0;
b5ec771e
PA
6290 for (sym = block_iter_match_first (block, lookup_name, &iter);
6291 sym != NULL;
6292 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6293 {
b5ec771e
PA
6294 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6295 SYMBOL_DOMAIN (sym), domain))
6296 {
6297 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6298 {
6299 if (SYMBOL_IS_ARGUMENT (sym))
6300 arg_sym = sym;
6301 else
6302 {
6303 found_sym = 1;
6304 add_defn_to_vec (obstackp,
6305 fixup_symbol_section (sym, objfile),
6306 block);
6307 }
6308 }
6309 }
96d887e8
PH
6310 }
6311
22cee43f
PMR
6312 /* Handle renamings. */
6313
b5ec771e 6314 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6315 found_sym = 1;
6316
96d887e8
PH
6317 if (!found_sym && arg_sym != NULL)
6318 {
76a01679
JB
6319 add_defn_to_vec (obstackp,
6320 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6321 block);
96d887e8
PH
6322 }
6323
b5ec771e 6324 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6325 {
6326 arg_sym = NULL;
6327 found_sym = 0;
b5ec771e
PA
6328 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6329 const char *name = ada_lookup_name.c_str ();
6330 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6331
6332 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6333 {
4186eb54
KS
6334 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6335 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6336 {
6337 int cmp;
6338
6339 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6340 if (cmp == 0)
6341 {
61012eef 6342 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6343 if (cmp == 0)
6344 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6345 name_len);
6346 }
6347
6348 if (cmp == 0
6349 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6350 {
2a2d4dc3
AS
6351 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6352 {
6353 if (SYMBOL_IS_ARGUMENT (sym))
6354 arg_sym = sym;
6355 else
6356 {
6357 found_sym = 1;
6358 add_defn_to_vec (obstackp,
6359 fixup_symbol_section (sym, objfile),
6360 block);
6361 }
6362 }
76a01679
JB
6363 }
6364 }
76a01679 6365 }
96d887e8
PH
6366
6367 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6368 They aren't parameters, right? */
6369 if (!found_sym && arg_sym != NULL)
6370 {
6371 add_defn_to_vec (obstackp,
76a01679 6372 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6373 block);
96d887e8
PH
6374 }
6375 }
6376}
6377\f
41d27058
JB
6378
6379 /* Symbol Completion */
6380
b5ec771e 6381/* See symtab.h. */
41d27058 6382
b5ec771e
PA
6383bool
6384ada_lookup_name_info::matches
6385 (const char *sym_name,
6386 symbol_name_match_type match_type,
a207cff2 6387 completion_match_result *comp_match_res) const
41d27058 6388{
b5ec771e
PA
6389 bool match = false;
6390 const char *text = m_encoded_name.c_str ();
6391 size_t text_len = m_encoded_name.size ();
41d27058
JB
6392
6393 /* First, test against the fully qualified name of the symbol. */
6394
6395 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6396 match = true;
41d27058 6397
b5ec771e 6398 if (match && !m_encoded_p)
41d27058
JB
6399 {
6400 /* One needed check before declaring a positive match is to verify
6401 that iff we are doing a verbatim match, the decoded version
6402 of the symbol name starts with '<'. Otherwise, this symbol name
6403 is not a suitable completion. */
6404 const char *sym_name_copy = sym_name;
b5ec771e 6405 bool has_angle_bracket;
41d27058
JB
6406
6407 sym_name = ada_decode (sym_name);
6408 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6409 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6410 sym_name = sym_name_copy;
6411 }
6412
b5ec771e 6413 if (match && !m_verbatim_p)
41d27058
JB
6414 {
6415 /* When doing non-verbatim match, another check that needs to
6416 be done is to verify that the potentially matching symbol name
6417 does not include capital letters, because the ada-mode would
6418 not be able to understand these symbol names without the
6419 angle bracket notation. */
6420 const char *tmp;
6421
6422 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6423 if (*tmp != '\0')
b5ec771e 6424 match = false;
41d27058
JB
6425 }
6426
6427 /* Second: Try wild matching... */
6428
b5ec771e 6429 if (!match && m_wild_match_p)
41d27058
JB
6430 {
6431 /* Since we are doing wild matching, this means that TEXT
6432 may represent an unqualified symbol name. We therefore must
6433 also compare TEXT against the unqualified name of the symbol. */
6434 sym_name = ada_unqualified_name (ada_decode (sym_name));
6435
6436 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6437 match = true;
41d27058
JB
6438 }
6439
b5ec771e 6440 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6441
6442 if (!match)
b5ec771e 6443 return false;
41d27058 6444
a207cff2 6445 if (comp_match_res != NULL)
b5ec771e 6446 {
a207cff2 6447 std::string &match_str = comp_match_res->match.storage ();
41d27058 6448
b5ec771e 6449 if (!m_encoded_p)
a207cff2 6450 match_str = ada_decode (sym_name);
b5ec771e
PA
6451 else
6452 {
6453 if (m_verbatim_p)
6454 match_str = add_angle_brackets (sym_name);
6455 else
6456 match_str = sym_name;
41d27058 6457
b5ec771e 6458 }
a207cff2
PA
6459
6460 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6461 }
6462
b5ec771e 6463 return true;
41d27058
JB
6464}
6465
b5ec771e 6466/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6467 WORD is the entire command on which completion is made. */
41d27058 6468
eb3ff9a5
PA
6469static void
6470ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6471 complete_symbol_mode mode,
b5ec771e
PA
6472 symbol_name_match_type name_match_type,
6473 const char *text, const char *word,
eb3ff9a5 6474 enum type_code code)
41d27058 6475{
41d27058 6476 struct symbol *sym;
43f3e411 6477 struct compunit_symtab *s;
41d27058
JB
6478 struct minimal_symbol *msymbol;
6479 struct objfile *objfile;
3977b71f 6480 const struct block *b, *surrounding_static_block = 0;
8157b174 6481 struct block_iterator iter;
b8fea896 6482 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6483
2f68a895
TT
6484 gdb_assert (code == TYPE_CODE_UNDEF);
6485
1b026119 6486 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6487
6488 /* First, look at the partial symtab symbols. */
14bc53a8 6489 expand_symtabs_matching (NULL,
b5ec771e
PA
6490 lookup_name,
6491 NULL,
14bc53a8
PA
6492 NULL,
6493 ALL_DOMAIN);
41d27058
JB
6494
6495 /* At this point scan through the misc symbol vectors and add each
6496 symbol you find to the list. Eventually we want to ignore
6497 anything that isn't a text symbol (everything else will be
6498 handled by the psymtab code above). */
6499
6500 ALL_MSYMBOLS (objfile, msymbol)
6501 {
6502 QUIT;
b5ec771e 6503
f9d67a22
PA
6504 if (completion_skip_symbol (mode, msymbol))
6505 continue;
6506
b5ec771e
PA
6507 completion_list_add_name (tracker,
6508 MSYMBOL_LANGUAGE (msymbol),
6509 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6510 lookup_name, text, word);
41d27058
JB
6511 }
6512
6513 /* Search upwards from currently selected frame (so that we can
6514 complete on local vars. */
6515
6516 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6517 {
6518 if (!BLOCK_SUPERBLOCK (b))
6519 surrounding_static_block = b; /* For elmin of dups */
6520
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
f9d67a22
PA
6523 if (completion_skip_symbol (mode, sym))
6524 continue;
6525
b5ec771e
PA
6526 completion_list_add_name (tracker,
6527 SYMBOL_LANGUAGE (sym),
6528 SYMBOL_LINKAGE_NAME (sym),
1b026119 6529 lookup_name, text, word);
41d27058
JB
6530 }
6531 }
6532
6533 /* Go through the symtabs and check the externs and statics for
43f3e411 6534 symbols which match. */
41d27058 6535
43f3e411 6536 ALL_COMPUNITS (objfile, s)
41d27058
JB
6537 {
6538 QUIT;
43f3e411 6539 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
f9d67a22
PA
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
6544
b5ec771e
PA
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
1b026119 6548 lookup_name, text, word);
41d27058
JB
6549 }
6550 }
6551
43f3e411 6552 ALL_COMPUNITS (objfile, s)
41d27058
JB
6553 {
6554 QUIT;
43f3e411 6555 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6556 /* Don't do this block twice. */
6557 if (b == surrounding_static_block)
6558 continue;
6559 ALL_BLOCK_SYMBOLS (b, iter, sym)
6560 {
f9d67a22
PA
6561 if (completion_skip_symbol (mode, sym))
6562 continue;
6563
b5ec771e
PA
6564 completion_list_add_name (tracker,
6565 SYMBOL_LANGUAGE (sym),
6566 SYMBOL_LINKAGE_NAME (sym),
1b026119 6567 lookup_name, text, word);
41d27058
JB
6568 }
6569 }
6570
b8fea896 6571 do_cleanups (old_chain);
41d27058
JB
6572}
6573
963a6417 6574 /* Field Access */
96d887e8 6575
73fb9985
JB
6576/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6577 for tagged types. */
6578
6579static int
6580ada_is_dispatch_table_ptr_type (struct type *type)
6581{
0d5cff50 6582 const char *name;
73fb9985
JB
6583
6584 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6585 return 0;
6586
6587 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6588 if (name == NULL)
6589 return 0;
6590
6591 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6592}
6593
ac4a2da4
JG
6594/* Return non-zero if TYPE is an interface tag. */
6595
6596static int
6597ada_is_interface_tag (struct type *type)
6598{
6599 const char *name = TYPE_NAME (type);
6600
6601 if (name == NULL)
6602 return 0;
6603
6604 return (strcmp (name, "ada__tags__interface_tag") == 0);
6605}
6606
963a6417
PH
6607/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6608 to be invisible to users. */
96d887e8 6609
963a6417
PH
6610int
6611ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6612{
963a6417
PH
6613 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6614 return 1;
ffde82bf 6615
73fb9985
JB
6616 /* Check the name of that field. */
6617 {
6618 const char *name = TYPE_FIELD_NAME (type, field_num);
6619
6620 /* Anonymous field names should not be printed.
6621 brobecker/2007-02-20: I don't think this can actually happen
6622 but we don't want to print the value of annonymous fields anyway. */
6623 if (name == NULL)
6624 return 1;
6625
ffde82bf
JB
6626 /* Normally, fields whose name start with an underscore ("_")
6627 are fields that have been internally generated by the compiler,
6628 and thus should not be printed. The "_parent" field is special,
6629 however: This is a field internally generated by the compiler
6630 for tagged types, and it contains the components inherited from
6631 the parent type. This field should not be printed as is, but
6632 should not be ignored either. */
61012eef 6633 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6634 return 1;
6635 }
6636
ac4a2da4
JG
6637 /* If this is the dispatch table of a tagged type or an interface tag,
6638 then ignore. */
73fb9985 6639 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6640 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6641 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6642 return 1;
6643
6644 /* Not a special field, so it should not be ignored. */
6645 return 0;
963a6417 6646}
96d887e8 6647
963a6417 6648/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6649 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6650
963a6417
PH
6651int
6652ada_is_tagged_type (struct type *type, int refok)
6653{
988f6b3d 6654 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6655}
96d887e8 6656
963a6417 6657/* True iff TYPE represents the type of X'Tag */
96d887e8 6658
963a6417
PH
6659int
6660ada_is_tag_type (struct type *type)
6661{
460efde1
JB
6662 type = ada_check_typedef (type);
6663
963a6417
PH
6664 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6665 return 0;
6666 else
96d887e8 6667 {
963a6417 6668 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6669
963a6417
PH
6670 return (name != NULL
6671 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6672 }
96d887e8
PH
6673}
6674
963a6417 6675/* The type of the tag on VAL. */
76a01679 6676
963a6417
PH
6677struct type *
6678ada_tag_type (struct value *val)
96d887e8 6679{
988f6b3d 6680 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6681}
96d887e8 6682
b50d69b5
JG
6683/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6684 retired at Ada 05). */
6685
6686static int
6687is_ada95_tag (struct value *tag)
6688{
6689 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6690}
6691
963a6417 6692/* The value of the tag on VAL. */
96d887e8 6693
963a6417
PH
6694struct value *
6695ada_value_tag (struct value *val)
6696{
03ee6b2e 6697 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6698}
6699
963a6417
PH
6700/* The value of the tag on the object of type TYPE whose contents are
6701 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6702 ADDRESS. */
96d887e8 6703
963a6417 6704static struct value *
10a2c479 6705value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6706 const gdb_byte *valaddr,
963a6417 6707 CORE_ADDR address)
96d887e8 6708{
b5385fc0 6709 int tag_byte_offset;
963a6417 6710 struct type *tag_type;
5b4ee69b 6711
963a6417 6712 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6713 NULL, NULL, NULL))
96d887e8 6714 {
fc1a4b47 6715 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6716 ? NULL
6717 : valaddr + tag_byte_offset);
963a6417 6718 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6719
963a6417 6720 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6721 }
963a6417
PH
6722 return NULL;
6723}
96d887e8 6724
963a6417
PH
6725static struct type *
6726type_from_tag (struct value *tag)
6727{
6728 const char *type_name = ada_tag_name (tag);
5b4ee69b 6729
963a6417
PH
6730 if (type_name != NULL)
6731 return ada_find_any_type (ada_encode (type_name));
6732 return NULL;
6733}
96d887e8 6734
b50d69b5
JG
6735/* Given a value OBJ of a tagged type, return a value of this
6736 type at the base address of the object. The base address, as
6737 defined in Ada.Tags, it is the address of the primary tag of
6738 the object, and therefore where the field values of its full
6739 view can be fetched. */
6740
6741struct value *
6742ada_tag_value_at_base_address (struct value *obj)
6743{
b50d69b5
JG
6744 struct value *val;
6745 LONGEST offset_to_top = 0;
6746 struct type *ptr_type, *obj_type;
6747 struct value *tag;
6748 CORE_ADDR base_address;
6749
6750 obj_type = value_type (obj);
6751
6752 /* It is the responsability of the caller to deref pointers. */
6753
6754 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6755 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6756 return obj;
6757
6758 tag = ada_value_tag (obj);
6759 if (!tag)
6760 return obj;
6761
6762 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6763
6764 if (is_ada95_tag (tag))
6765 return obj;
6766
08f49010
XR
6767 ptr_type = language_lookup_primitive_type
6768 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6769 ptr_type = lookup_pointer_type (ptr_type);
6770 val = value_cast (ptr_type, tag);
6771 if (!val)
6772 return obj;
6773
6774 /* It is perfectly possible that an exception be raised while
6775 trying to determine the base address, just like for the tag;
6776 see ada_tag_name for more details. We do not print the error
6777 message for the same reason. */
6778
492d29ea 6779 TRY
b50d69b5
JG
6780 {
6781 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6782 }
6783
492d29ea
PA
6784 CATCH (e, RETURN_MASK_ERROR)
6785 {
6786 return obj;
6787 }
6788 END_CATCH
b50d69b5
JG
6789
6790 /* If offset is null, nothing to do. */
6791
6792 if (offset_to_top == 0)
6793 return obj;
6794
6795 /* -1 is a special case in Ada.Tags; however, what should be done
6796 is not quite clear from the documentation. So do nothing for
6797 now. */
6798
6799 if (offset_to_top == -1)
6800 return obj;
6801
08f49010
XR
6802 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6803 from the base address. This was however incompatible with
6804 C++ dispatch table: C++ uses a *negative* value to *add*
6805 to the base address. Ada's convention has therefore been
6806 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6807 use the same convention. Here, we support both cases by
6808 checking the sign of OFFSET_TO_TOP. */
6809
6810 if (offset_to_top > 0)
6811 offset_to_top = -offset_to_top;
6812
6813 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6814 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6815
6816 /* Make sure that we have a proper tag at the new address.
6817 Otherwise, offset_to_top is bogus (which can happen when
6818 the object is not initialized yet). */
6819
6820 if (!tag)
6821 return obj;
6822
6823 obj_type = type_from_tag (tag);
6824
6825 if (!obj_type)
6826 return obj;
6827
6828 return value_from_contents_and_address (obj_type, NULL, base_address);
6829}
6830
1b611343
JB
6831/* Return the "ada__tags__type_specific_data" type. */
6832
6833static struct type *
6834ada_get_tsd_type (struct inferior *inf)
963a6417 6835{
1b611343 6836 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6837
1b611343
JB
6838 if (data->tsd_type == 0)
6839 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6840 return data->tsd_type;
6841}
529cad9c 6842
1b611343
JB
6843/* Return the TSD (type-specific data) associated to the given TAG.
6844 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6845
1b611343 6846 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6847
1b611343
JB
6848static struct value *
6849ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6850{
4c4b4cd2 6851 struct value *val;
1b611343 6852 struct type *type;
5b4ee69b 6853
1b611343
JB
6854 /* First option: The TSD is simply stored as a field of our TAG.
6855 Only older versions of GNAT would use this format, but we have
6856 to test it first, because there are no visible markers for
6857 the current approach except the absence of that field. */
529cad9c 6858
1b611343
JB
6859 val = ada_value_struct_elt (tag, "tsd", 1);
6860 if (val)
6861 return val;
e802dbe0 6862
1b611343
JB
6863 /* Try the second representation for the dispatch table (in which
6864 there is no explicit 'tsd' field in the referent of the tag pointer,
6865 and instead the tsd pointer is stored just before the dispatch
6866 table. */
e802dbe0 6867
1b611343
JB
6868 type = ada_get_tsd_type (current_inferior());
6869 if (type == NULL)
6870 return NULL;
6871 type = lookup_pointer_type (lookup_pointer_type (type));
6872 val = value_cast (type, tag);
6873 if (val == NULL)
6874 return NULL;
6875 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6876}
6877
1b611343
JB
6878/* Given the TSD of a tag (type-specific data), return a string
6879 containing the name of the associated type.
6880
6881 The returned value is good until the next call. May return NULL
6882 if we are unable to determine the tag name. */
6883
6884static char *
6885ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6886{
529cad9c
PH
6887 static char name[1024];
6888 char *p;
1b611343 6889 struct value *val;
529cad9c 6890
1b611343 6891 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6892 if (val == NULL)
1b611343 6893 return NULL;
4c4b4cd2
PH
6894 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6895 for (p = name; *p != '\0'; p += 1)
6896 if (isalpha (*p))
6897 *p = tolower (*p);
1b611343 6898 return name;
4c4b4cd2
PH
6899}
6900
6901/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6902 a C string.
6903
6904 Return NULL if the TAG is not an Ada tag, or if we were unable to
6905 determine the name of that tag. The result is good until the next
6906 call. */
4c4b4cd2
PH
6907
6908const char *
6909ada_tag_name (struct value *tag)
6910{
1b611343 6911 char *name = NULL;
5b4ee69b 6912
df407dfe 6913 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6914 return NULL;
1b611343
JB
6915
6916 /* It is perfectly possible that an exception be raised while trying
6917 to determine the TAG's name, even under normal circumstances:
6918 The associated variable may be uninitialized or corrupted, for
6919 instance. We do not let any exception propagate past this point.
6920 instead we return NULL.
6921
6922 We also do not print the error message either (which often is very
6923 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6924 the caller print a more meaningful message if necessary. */
492d29ea 6925 TRY
1b611343
JB
6926 {
6927 struct value *tsd = ada_get_tsd_from_tag (tag);
6928
6929 if (tsd != NULL)
6930 name = ada_tag_name_from_tsd (tsd);
6931 }
492d29ea
PA
6932 CATCH (e, RETURN_MASK_ERROR)
6933 {
6934 }
6935 END_CATCH
1b611343
JB
6936
6937 return name;
4c4b4cd2
PH
6938}
6939
6940/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6941
d2e4a39e 6942struct type *
ebf56fd3 6943ada_parent_type (struct type *type)
14f9c5c9
AS
6944{
6945 int i;
6946
61ee279c 6947 type = ada_check_typedef (type);
14f9c5c9
AS
6948
6949 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6950 return NULL;
6951
6952 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6953 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6954 {
6955 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6956
6957 /* If the _parent field is a pointer, then dereference it. */
6958 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6959 parent_type = TYPE_TARGET_TYPE (parent_type);
6960 /* If there is a parallel XVS type, get the actual base type. */
6961 parent_type = ada_get_base_type (parent_type);
6962
6963 return ada_check_typedef (parent_type);
6964 }
14f9c5c9
AS
6965
6966 return NULL;
6967}
6968
4c4b4cd2
PH
6969/* True iff field number FIELD_NUM of structure type TYPE contains the
6970 parent-type (inherited) fields of a derived type. Assumes TYPE is
6971 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6972
6973int
ebf56fd3 6974ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6975{
61ee279c 6976 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6977
4c4b4cd2 6978 return (name != NULL
61012eef
GB
6979 && (startswith (name, "PARENT")
6980 || startswith (name, "_parent")));
14f9c5c9
AS
6981}
6982
4c4b4cd2 6983/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6984 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6985 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6986 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6987 structures. */
14f9c5c9
AS
6988
6989int
ebf56fd3 6990ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6991{
d2e4a39e 6992 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6993
dddc0e16
JB
6994 if (name != NULL && strcmp (name, "RETVAL") == 0)
6995 {
6996 /* This happens in functions with "out" or "in out" parameters
6997 which are passed by copy. For such functions, GNAT describes
6998 the function's return type as being a struct where the return
6999 value is in a field called RETVAL, and where the other "out"
7000 or "in out" parameters are fields of that struct. This is not
7001 a wrapper. */
7002 return 0;
7003 }
7004
d2e4a39e 7005 return (name != NULL
61012eef 7006 && (startswith (name, "PARENT")
4c4b4cd2 7007 || strcmp (name, "REP") == 0
61012eef 7008 || startswith (name, "_parent")
4c4b4cd2 7009 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7010}
7011
4c4b4cd2
PH
7012/* True iff field number FIELD_NUM of structure or union type TYPE
7013 is a variant wrapper. Assumes TYPE is a structure type with at least
7014 FIELD_NUM+1 fields. */
14f9c5c9
AS
7015
7016int
ebf56fd3 7017ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7018{
d2e4a39e 7019 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7020
14f9c5c9 7021 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7022 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7023 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7024 == TYPE_CODE_UNION)));
14f9c5c9
AS
7025}
7026
7027/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7028 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7029 returns the type of the controlling discriminant for the variant.
7030 May return NULL if the type could not be found. */
14f9c5c9 7031
d2e4a39e 7032struct type *
ebf56fd3 7033ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7034{
a121b7c1 7035 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7036
988f6b3d 7037 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7038}
7039
4c4b4cd2 7040/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7041 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7042 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7043
7044int
ebf56fd3 7045ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7046{
d2e4a39e 7047 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7048
14f9c5c9
AS
7049 return (name != NULL && name[0] == 'O');
7050}
7051
7052/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7053 returns the name of the discriminant controlling the variant.
7054 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7055
a121b7c1 7056const char *
ebf56fd3 7057ada_variant_discrim_name (struct type *type0)
14f9c5c9 7058{
d2e4a39e 7059 static char *result = NULL;
14f9c5c9 7060 static size_t result_len = 0;
d2e4a39e
AS
7061 struct type *type;
7062 const char *name;
7063 const char *discrim_end;
7064 const char *discrim_start;
14f9c5c9
AS
7065
7066 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7067 type = TYPE_TARGET_TYPE (type0);
7068 else
7069 type = type0;
7070
7071 name = ada_type_name (type);
7072
7073 if (name == NULL || name[0] == '\000')
7074 return "";
7075
7076 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7077 discrim_end -= 1)
7078 {
61012eef 7079 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7080 break;
14f9c5c9
AS
7081 }
7082 if (discrim_end == name)
7083 return "";
7084
d2e4a39e 7085 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7086 discrim_start -= 1)
7087 {
d2e4a39e 7088 if (discrim_start == name + 1)
4c4b4cd2 7089 return "";
76a01679 7090 if ((discrim_start > name + 3
61012eef 7091 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7092 || discrim_start[-1] == '.')
7093 break;
14f9c5c9
AS
7094 }
7095
7096 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7097 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7098 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7099 return result;
7100}
7101
4c4b4cd2
PH
7102/* Scan STR for a subtype-encoded number, beginning at position K.
7103 Put the position of the character just past the number scanned in
7104 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7105 Return 1 if there was a valid number at the given position, and 0
7106 otherwise. A "subtype-encoded" number consists of the absolute value
7107 in decimal, followed by the letter 'm' to indicate a negative number.
7108 Assumes 0m does not occur. */
14f9c5c9
AS
7109
7110int
d2e4a39e 7111ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7112{
7113 ULONGEST RU;
7114
d2e4a39e 7115 if (!isdigit (str[k]))
14f9c5c9
AS
7116 return 0;
7117
4c4b4cd2 7118 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7119 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7120 LONGEST. */
14f9c5c9
AS
7121 RU = 0;
7122 while (isdigit (str[k]))
7123 {
d2e4a39e 7124 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7125 k += 1;
7126 }
7127
d2e4a39e 7128 if (str[k] == 'm')
14f9c5c9
AS
7129 {
7130 if (R != NULL)
4c4b4cd2 7131 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7132 k += 1;
7133 }
7134 else if (R != NULL)
7135 *R = (LONGEST) RU;
7136
4c4b4cd2 7137 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7138 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7139 number representable as a LONGEST (although either would probably work
7140 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7141 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7142
7143 if (new_k != NULL)
7144 *new_k = k;
7145 return 1;
7146}
7147
4c4b4cd2
PH
7148/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7149 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7150 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7151
d2e4a39e 7152int
ebf56fd3 7153ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7154{
d2e4a39e 7155 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7156 int p;
7157
7158 p = 0;
7159 while (1)
7160 {
d2e4a39e 7161 switch (name[p])
4c4b4cd2
PH
7162 {
7163 case '\0':
7164 return 0;
7165 case 'S':
7166 {
7167 LONGEST W;
5b4ee69b 7168
4c4b4cd2
PH
7169 if (!ada_scan_number (name, p + 1, &W, &p))
7170 return 0;
7171 if (val == W)
7172 return 1;
7173 break;
7174 }
7175 case 'R':
7176 {
7177 LONGEST L, U;
5b4ee69b 7178
4c4b4cd2
PH
7179 if (!ada_scan_number (name, p + 1, &L, &p)
7180 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7181 return 0;
7182 if (val >= L && val <= U)
7183 return 1;
7184 break;
7185 }
7186 case 'O':
7187 return 1;
7188 default:
7189 return 0;
7190 }
7191 }
7192}
7193
0963b4bd 7194/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7195
7196/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7197 ARG_TYPE, extract and return the value of one of its (non-static)
7198 fields. FIELDNO says which field. Differs from value_primitive_field
7199 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7200
4c4b4cd2 7201static struct value *
d2e4a39e 7202ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7203 struct type *arg_type)
14f9c5c9 7204{
14f9c5c9
AS
7205 struct type *type;
7206
61ee279c 7207 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7208 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7209
4c4b4cd2 7210 /* Handle packed fields. */
14f9c5c9
AS
7211
7212 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7213 {
7214 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7215 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7216
0fd88904 7217 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7218 offset + bit_pos / 8,
7219 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7220 }
7221 else
7222 return value_primitive_field (arg1, offset, fieldno, arg_type);
7223}
7224
52ce6436
PH
7225/* Find field with name NAME in object of type TYPE. If found,
7226 set the following for each argument that is non-null:
7227 - *FIELD_TYPE_P to the field's type;
7228 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7229 an object of that type;
7230 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7231 - *BIT_SIZE_P to its size in bits if the field is packed, and
7232 0 otherwise;
7233 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7234 fields up to but not including the desired field, or by the total
7235 number of fields if not found. A NULL value of NAME never
7236 matches; the function just counts visible fields in this case.
7237
828d5846
XR
7238 Notice that we need to handle when a tagged record hierarchy
7239 has some components with the same name, like in this scenario:
7240
7241 type Top_T is tagged record
7242 N : Integer := 1;
7243 U : Integer := 974;
7244 A : Integer := 48;
7245 end record;
7246
7247 type Middle_T is new Top.Top_T with record
7248 N : Character := 'a';
7249 C : Integer := 3;
7250 end record;
7251
7252 type Bottom_T is new Middle.Middle_T with record
7253 N : Float := 4.0;
7254 C : Character := '5';
7255 X : Integer := 6;
7256 A : Character := 'J';
7257 end record;
7258
7259 Let's say we now have a variable declared and initialized as follow:
7260
7261 TC : Top_A := new Bottom_T;
7262
7263 And then we use this variable to call this function
7264
7265 procedure Assign (Obj: in out Top_T; TV : Integer);
7266
7267 as follow:
7268
7269 Assign (Top_T (B), 12);
7270
7271 Now, we're in the debugger, and we're inside that procedure
7272 then and we want to print the value of obj.c:
7273
7274 Usually, the tagged record or one of the parent type owns the
7275 component to print and there's no issue but in this particular
7276 case, what does it mean to ask for Obj.C? Since the actual
7277 type for object is type Bottom_T, it could mean two things: type
7278 component C from the Middle_T view, but also component C from
7279 Bottom_T. So in that "undefined" case, when the component is
7280 not found in the non-resolved type (which includes all the
7281 components of the parent type), then resolve it and see if we
7282 get better luck once expanded.
7283
7284 In the case of homonyms in the derived tagged type, we don't
7285 guaranty anything, and pick the one that's easiest for us
7286 to program.
7287
0963b4bd 7288 Returns 1 if found, 0 otherwise. */
52ce6436 7289
4c4b4cd2 7290static int
0d5cff50 7291find_struct_field (const char *name, struct type *type, int offset,
76a01679 7292 struct type **field_type_p,
52ce6436
PH
7293 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7294 int *index_p)
4c4b4cd2
PH
7295{
7296 int i;
828d5846 7297 int parent_offset = -1;
4c4b4cd2 7298
61ee279c 7299 type = ada_check_typedef (type);
76a01679 7300
52ce6436
PH
7301 if (field_type_p != NULL)
7302 *field_type_p = NULL;
7303 if (byte_offset_p != NULL)
d5d6fca5 7304 *byte_offset_p = 0;
52ce6436
PH
7305 if (bit_offset_p != NULL)
7306 *bit_offset_p = 0;
7307 if (bit_size_p != NULL)
7308 *bit_size_p = 0;
7309
7310 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7311 {
7312 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7313 int fld_offset = offset + bit_pos / 8;
0d5cff50 7314 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7315
4c4b4cd2
PH
7316 if (t_field_name == NULL)
7317 continue;
7318
828d5846
XR
7319 else if (ada_is_parent_field (type, i))
7320 {
7321 /* This is a field pointing us to the parent type of a tagged
7322 type. As hinted in this function's documentation, we give
7323 preference to fields in the current record first, so what
7324 we do here is just record the index of this field before
7325 we skip it. If it turns out we couldn't find our field
7326 in the current record, then we'll get back to it and search
7327 inside it whether the field might exist in the parent. */
7328
7329 parent_offset = i;
7330 continue;
7331 }
7332
52ce6436 7333 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7334 {
7335 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7336
52ce6436
PH
7337 if (field_type_p != NULL)
7338 *field_type_p = TYPE_FIELD_TYPE (type, i);
7339 if (byte_offset_p != NULL)
7340 *byte_offset_p = fld_offset;
7341 if (bit_offset_p != NULL)
7342 *bit_offset_p = bit_pos % 8;
7343 if (bit_size_p != NULL)
7344 *bit_size_p = bit_size;
76a01679
JB
7345 return 1;
7346 }
4c4b4cd2
PH
7347 else if (ada_is_wrapper_field (type, i))
7348 {
52ce6436
PH
7349 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7350 field_type_p, byte_offset_p, bit_offset_p,
7351 bit_size_p, index_p))
76a01679
JB
7352 return 1;
7353 }
4c4b4cd2
PH
7354 else if (ada_is_variant_part (type, i))
7355 {
52ce6436
PH
7356 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7357 fixed type?? */
4c4b4cd2 7358 int j;
52ce6436
PH
7359 struct type *field_type
7360 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7361
52ce6436 7362 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7363 {
76a01679
JB
7364 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7365 fld_offset
7366 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7367 field_type_p, byte_offset_p,
52ce6436 7368 bit_offset_p, bit_size_p, index_p))
76a01679 7369 return 1;
4c4b4cd2
PH
7370 }
7371 }
52ce6436
PH
7372 else if (index_p != NULL)
7373 *index_p += 1;
4c4b4cd2 7374 }
828d5846
XR
7375
7376 /* Field not found so far. If this is a tagged type which
7377 has a parent, try finding that field in the parent now. */
7378
7379 if (parent_offset != -1)
7380 {
7381 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7382 int fld_offset = offset + bit_pos / 8;
7383
7384 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7385 fld_offset, field_type_p, byte_offset_p,
7386 bit_offset_p, bit_size_p, index_p))
7387 return 1;
7388 }
7389
4c4b4cd2
PH
7390 return 0;
7391}
7392
0963b4bd 7393/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7394
52ce6436
PH
7395static int
7396num_visible_fields (struct type *type)
7397{
7398 int n;
5b4ee69b 7399
52ce6436
PH
7400 n = 0;
7401 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7402 return n;
7403}
14f9c5c9 7404
4c4b4cd2 7405/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7406 and search in it assuming it has (class) type TYPE.
7407 If found, return value, else return NULL.
7408
828d5846
XR
7409 Searches recursively through wrapper fields (e.g., '_parent').
7410
7411 In the case of homonyms in the tagged types, please refer to the
7412 long explanation in find_struct_field's function documentation. */
14f9c5c9 7413
4c4b4cd2 7414static struct value *
108d56a4 7415ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7416 struct type *type)
14f9c5c9
AS
7417{
7418 int i;
828d5846 7419 int parent_offset = -1;
14f9c5c9 7420
5b4ee69b 7421 type = ada_check_typedef (type);
52ce6436 7422 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7423 {
0d5cff50 7424 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7425
7426 if (t_field_name == NULL)
4c4b4cd2 7427 continue;
14f9c5c9 7428
828d5846
XR
7429 else if (ada_is_parent_field (type, i))
7430 {
7431 /* This is a field pointing us to the parent type of a tagged
7432 type. As hinted in this function's documentation, we give
7433 preference to fields in the current record first, so what
7434 we do here is just record the index of this field before
7435 we skip it. If it turns out we couldn't find our field
7436 in the current record, then we'll get back to it and search
7437 inside it whether the field might exist in the parent. */
7438
7439 parent_offset = i;
7440 continue;
7441 }
7442
14f9c5c9 7443 else if (field_name_match (t_field_name, name))
4c4b4cd2 7444 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7445
7446 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7447 {
0963b4bd 7448 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7449 ada_search_struct_field (name, arg,
7450 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7451 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7452
4c4b4cd2
PH
7453 if (v != NULL)
7454 return v;
7455 }
14f9c5c9
AS
7456
7457 else if (ada_is_variant_part (type, i))
4c4b4cd2 7458 {
0963b4bd 7459 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7460 int j;
5b4ee69b
MS
7461 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7462 i));
4c4b4cd2
PH
7463 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7464
52ce6436 7465 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7466 {
0963b4bd
MS
7467 struct value *v = ada_search_struct_field /* Force line
7468 break. */
06d5cf63
JB
7469 (name, arg,
7470 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7471 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7472
4c4b4cd2
PH
7473 if (v != NULL)
7474 return v;
7475 }
7476 }
14f9c5c9 7477 }
828d5846
XR
7478
7479 /* Field not found so far. If this is a tagged type which
7480 has a parent, try finding that field in the parent now. */
7481
7482 if (parent_offset != -1)
7483 {
7484 struct value *v = ada_search_struct_field (
7485 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7486 TYPE_FIELD_TYPE (type, parent_offset));
7487
7488 if (v != NULL)
7489 return v;
7490 }
7491
14f9c5c9
AS
7492 return NULL;
7493}
d2e4a39e 7494
52ce6436
PH
7495static struct value *ada_index_struct_field_1 (int *, struct value *,
7496 int, struct type *);
7497
7498
7499/* Return field #INDEX in ARG, where the index is that returned by
7500 * find_struct_field through its INDEX_P argument. Adjust the address
7501 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7502 * If found, return value, else return NULL. */
52ce6436
PH
7503
7504static struct value *
7505ada_index_struct_field (int index, struct value *arg, int offset,
7506 struct type *type)
7507{
7508 return ada_index_struct_field_1 (&index, arg, offset, type);
7509}
7510
7511
7512/* Auxiliary function for ada_index_struct_field. Like
7513 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7514 * *INDEX_P. */
52ce6436
PH
7515
7516static struct value *
7517ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7518 struct type *type)
7519{
7520 int i;
7521 type = ada_check_typedef (type);
7522
7523 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7524 {
7525 if (TYPE_FIELD_NAME (type, i) == NULL)
7526 continue;
7527 else if (ada_is_wrapper_field (type, i))
7528 {
0963b4bd 7529 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7530 ada_index_struct_field_1 (index_p, arg,
7531 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7532 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7533
52ce6436
PH
7534 if (v != NULL)
7535 return v;
7536 }
7537
7538 else if (ada_is_variant_part (type, i))
7539 {
7540 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7541 find_struct_field. */
52ce6436
PH
7542 error (_("Cannot assign this kind of variant record"));
7543 }
7544 else if (*index_p == 0)
7545 return ada_value_primitive_field (arg, offset, i, type);
7546 else
7547 *index_p -= 1;
7548 }
7549 return NULL;
7550}
7551
4c4b4cd2
PH
7552/* Given ARG, a value of type (pointer or reference to a)*
7553 structure/union, extract the component named NAME from the ultimate
7554 target structure/union and return it as a value with its
f5938064 7555 appropriate type.
14f9c5c9 7556
4c4b4cd2
PH
7557 The routine searches for NAME among all members of the structure itself
7558 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7559 (e.g., '_parent').
7560
03ee6b2e
PH
7561 If NO_ERR, then simply return NULL in case of error, rather than
7562 calling error. */
14f9c5c9 7563
d2e4a39e 7564struct value *
a121b7c1 7565ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7566{
4c4b4cd2 7567 struct type *t, *t1;
d2e4a39e 7568 struct value *v;
14f9c5c9 7569
4c4b4cd2 7570 v = NULL;
df407dfe 7571 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7572 if (TYPE_CODE (t) == TYPE_CODE_REF)
7573 {
7574 t1 = TYPE_TARGET_TYPE (t);
7575 if (t1 == NULL)
03ee6b2e 7576 goto BadValue;
61ee279c 7577 t1 = ada_check_typedef (t1);
4c4b4cd2 7578 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7579 {
994b9211 7580 arg = coerce_ref (arg);
76a01679
JB
7581 t = t1;
7582 }
4c4b4cd2 7583 }
14f9c5c9 7584
4c4b4cd2
PH
7585 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7586 {
7587 t1 = TYPE_TARGET_TYPE (t);
7588 if (t1 == NULL)
03ee6b2e 7589 goto BadValue;
61ee279c 7590 t1 = ada_check_typedef (t1);
4c4b4cd2 7591 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7592 {
7593 arg = value_ind (arg);
7594 t = t1;
7595 }
4c4b4cd2 7596 else
76a01679 7597 break;
4c4b4cd2 7598 }
14f9c5c9 7599
4c4b4cd2 7600 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7601 goto BadValue;
14f9c5c9 7602
4c4b4cd2
PH
7603 if (t1 == t)
7604 v = ada_search_struct_field (name, arg, 0, t);
7605 else
7606 {
7607 int bit_offset, bit_size, byte_offset;
7608 struct type *field_type;
7609 CORE_ADDR address;
7610
76a01679 7611 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7612 address = value_address (ada_value_ind (arg));
4c4b4cd2 7613 else
b50d69b5 7614 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7615
828d5846
XR
7616 /* Check to see if this is a tagged type. We also need to handle
7617 the case where the type is a reference to a tagged type, but
7618 we have to be careful to exclude pointers to tagged types.
7619 The latter should be shown as usual (as a pointer), whereas
7620 a reference should mostly be transparent to the user. */
7621
7622 if (ada_is_tagged_type (t1, 0)
7623 || (TYPE_CODE (t1) == TYPE_CODE_REF
7624 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7625 {
7626 /* We first try to find the searched field in the current type.
7627 If not found then let's look in the fixed type. */
7628
7629 if (!find_struct_field (name, t1, 0,
7630 &field_type, &byte_offset, &bit_offset,
7631 &bit_size, NULL))
7632 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7633 address, NULL, 1);
7634 }
7635 else
7636 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7637 address, NULL, 1);
7638
76a01679
JB
7639 if (find_struct_field (name, t1, 0,
7640 &field_type, &byte_offset, &bit_offset,
52ce6436 7641 &bit_size, NULL))
76a01679
JB
7642 {
7643 if (bit_size != 0)
7644 {
714e53ab
PH
7645 if (TYPE_CODE (t) == TYPE_CODE_REF)
7646 arg = ada_coerce_ref (arg);
7647 else
7648 arg = ada_value_ind (arg);
76a01679
JB
7649 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7650 bit_offset, bit_size,
7651 field_type);
7652 }
7653 else
f5938064 7654 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7655 }
7656 }
7657
03ee6b2e
PH
7658 if (v != NULL || no_err)
7659 return v;
7660 else
323e0a4a 7661 error (_("There is no member named %s."), name);
14f9c5c9 7662
03ee6b2e
PH
7663 BadValue:
7664 if (no_err)
7665 return NULL;
7666 else
0963b4bd
MS
7667 error (_("Attempt to extract a component of "
7668 "a value that is not a record."));
14f9c5c9
AS
7669}
7670
3b4de39c 7671/* Return a string representation of type TYPE. */
99bbb428 7672
3b4de39c 7673static std::string
99bbb428
PA
7674type_as_string (struct type *type)
7675{
d7e74731 7676 string_file tmp_stream;
99bbb428 7677
d7e74731 7678 type_print (type, "", &tmp_stream, -1);
99bbb428 7679
d7e74731 7680 return std::move (tmp_stream.string ());
99bbb428
PA
7681}
7682
14f9c5c9 7683/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7684 If DISPP is non-null, add its byte displacement from the beginning of a
7685 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7686 work for packed fields).
7687
7688 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7689 followed by "___".
14f9c5c9 7690
0963b4bd 7691 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7692 be a (pointer or reference)+ to a struct or union, and the
7693 ultimate target type will be searched.
14f9c5c9
AS
7694
7695 Looks recursively into variant clauses and parent types.
7696
828d5846
XR
7697 In the case of homonyms in the tagged types, please refer to the
7698 long explanation in find_struct_field's function documentation.
7699
4c4b4cd2
PH
7700 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7701 TYPE is not a type of the right kind. */
14f9c5c9 7702
4c4b4cd2 7703static struct type *
a121b7c1 7704ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7705 int noerr)
14f9c5c9
AS
7706{
7707 int i;
828d5846 7708 int parent_offset = -1;
14f9c5c9
AS
7709
7710 if (name == NULL)
7711 goto BadName;
7712
76a01679 7713 if (refok && type != NULL)
4c4b4cd2
PH
7714 while (1)
7715 {
61ee279c 7716 type = ada_check_typedef (type);
76a01679
JB
7717 if (TYPE_CODE (type) != TYPE_CODE_PTR
7718 && TYPE_CODE (type) != TYPE_CODE_REF)
7719 break;
7720 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7721 }
14f9c5c9 7722
76a01679 7723 if (type == NULL
1265e4aa
JB
7724 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7725 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7726 {
4c4b4cd2 7727 if (noerr)
76a01679 7728 return NULL;
99bbb428 7729
3b4de39c
PA
7730 error (_("Type %s is not a structure or union type"),
7731 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7732 }
7733
7734 type = to_static_fixed_type (type);
7735
7736 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7737 {
0d5cff50 7738 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7739 struct type *t;
d2e4a39e 7740
14f9c5c9 7741 if (t_field_name == NULL)
4c4b4cd2 7742 continue;
14f9c5c9 7743
828d5846
XR
7744 else if (ada_is_parent_field (type, i))
7745 {
7746 /* This is a field pointing us to the parent type of a tagged
7747 type. As hinted in this function's documentation, we give
7748 preference to fields in the current record first, so what
7749 we do here is just record the index of this field before
7750 we skip it. If it turns out we couldn't find our field
7751 in the current record, then we'll get back to it and search
7752 inside it whether the field might exist in the parent. */
7753
7754 parent_offset = i;
7755 continue;
7756 }
7757
14f9c5c9 7758 else if (field_name_match (t_field_name, name))
988f6b3d 7759 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7760
7761 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7762 {
4c4b4cd2 7763 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7764 0, 1);
4c4b4cd2 7765 if (t != NULL)
988f6b3d 7766 return t;
4c4b4cd2 7767 }
14f9c5c9
AS
7768
7769 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7770 {
7771 int j;
5b4ee69b
MS
7772 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7773 i));
4c4b4cd2
PH
7774
7775 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7776 {
b1f33ddd
JB
7777 /* FIXME pnh 2008/01/26: We check for a field that is
7778 NOT wrapped in a struct, since the compiler sometimes
7779 generates these for unchecked variant types. Revisit
0963b4bd 7780 if the compiler changes this practice. */
0d5cff50 7781 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7782
b1f33ddd
JB
7783 if (v_field_name != NULL
7784 && field_name_match (v_field_name, name))
460efde1 7785 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7786 else
0963b4bd
MS
7787 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7788 j),
988f6b3d 7789 name, 0, 1);
b1f33ddd 7790
4c4b4cd2 7791 if (t != NULL)
988f6b3d 7792 return t;
4c4b4cd2
PH
7793 }
7794 }
14f9c5c9
AS
7795
7796 }
7797
828d5846
XR
7798 /* Field not found so far. If this is a tagged type which
7799 has a parent, try finding that field in the parent now. */
7800
7801 if (parent_offset != -1)
7802 {
7803 struct type *t;
7804
7805 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7806 name, 0, 1);
7807 if (t != NULL)
7808 return t;
7809 }
7810
14f9c5c9 7811BadName:
d2e4a39e 7812 if (!noerr)
14f9c5c9 7813 {
2b2798cc 7814 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7815
7816 error (_("Type %s has no component named %s"),
3b4de39c 7817 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7818 }
7819
7820 return NULL;
7821}
7822
b1f33ddd
JB
7823/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7824 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7825 represents an unchecked union (that is, the variant part of a
0963b4bd 7826 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7827
7828static int
7829is_unchecked_variant (struct type *var_type, struct type *outer_type)
7830{
a121b7c1 7831 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7832
988f6b3d 7833 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7834}
7835
7836
14f9c5c9
AS
7837/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7838 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7839 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7840 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7841
d2e4a39e 7842int
ebf56fd3 7843ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7844 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7845{
7846 int others_clause;
7847 int i;
a121b7c1 7848 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7849 struct value *outer;
7850 struct value *discrim;
14f9c5c9
AS
7851 LONGEST discrim_val;
7852
012370f6
TT
7853 /* Using plain value_from_contents_and_address here causes problems
7854 because we will end up trying to resolve a type that is currently
7855 being constructed. */
7856 outer = value_from_contents_and_address_unresolved (outer_type,
7857 outer_valaddr, 0);
0c281816
JB
7858 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7859 if (discrim == NULL)
14f9c5c9 7860 return -1;
0c281816 7861 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7862
7863 others_clause = -1;
7864 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7865 {
7866 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7867 others_clause = i;
14f9c5c9 7868 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7869 return i;
14f9c5c9
AS
7870 }
7871
7872 return others_clause;
7873}
d2e4a39e 7874\f
14f9c5c9
AS
7875
7876
4c4b4cd2 7877 /* Dynamic-Sized Records */
14f9c5c9
AS
7878
7879/* Strategy: The type ostensibly attached to a value with dynamic size
7880 (i.e., a size that is not statically recorded in the debugging
7881 data) does not accurately reflect the size or layout of the value.
7882 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7883 conventional types that are constructed on the fly. */
14f9c5c9
AS
7884
7885/* There is a subtle and tricky problem here. In general, we cannot
7886 determine the size of dynamic records without its data. However,
7887 the 'struct value' data structure, which GDB uses to represent
7888 quantities in the inferior process (the target), requires the size
7889 of the type at the time of its allocation in order to reserve space
7890 for GDB's internal copy of the data. That's why the
7891 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7892 rather than struct value*s.
14f9c5c9
AS
7893
7894 However, GDB's internal history variables ($1, $2, etc.) are
7895 struct value*s containing internal copies of the data that are not, in
7896 general, the same as the data at their corresponding addresses in
7897 the target. Fortunately, the types we give to these values are all
7898 conventional, fixed-size types (as per the strategy described
7899 above), so that we don't usually have to perform the
7900 'to_fixed_xxx_type' conversions to look at their values.
7901 Unfortunately, there is one exception: if one of the internal
7902 history variables is an array whose elements are unconstrained
7903 records, then we will need to create distinct fixed types for each
7904 element selected. */
7905
7906/* The upshot of all of this is that many routines take a (type, host
7907 address, target address) triple as arguments to represent a value.
7908 The host address, if non-null, is supposed to contain an internal
7909 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7910 target at the target address. */
14f9c5c9
AS
7911
7912/* Assuming that VAL0 represents a pointer value, the result of
7913 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7914 dynamic-sized types. */
14f9c5c9 7915
d2e4a39e
AS
7916struct value *
7917ada_value_ind (struct value *val0)
14f9c5c9 7918{
c48db5ca 7919 struct value *val = value_ind (val0);
5b4ee69b 7920
b50d69b5
JG
7921 if (ada_is_tagged_type (value_type (val), 0))
7922 val = ada_tag_value_at_base_address (val);
7923
4c4b4cd2 7924 return ada_to_fixed_value (val);
14f9c5c9
AS
7925}
7926
7927/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7928 qualifiers on VAL0. */
7929
d2e4a39e
AS
7930static struct value *
7931ada_coerce_ref (struct value *val0)
7932{
df407dfe 7933 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7934 {
7935 struct value *val = val0;
5b4ee69b 7936
994b9211 7937 val = coerce_ref (val);
b50d69b5
JG
7938
7939 if (ada_is_tagged_type (value_type (val), 0))
7940 val = ada_tag_value_at_base_address (val);
7941
4c4b4cd2 7942 return ada_to_fixed_value (val);
d2e4a39e
AS
7943 }
7944 else
14f9c5c9
AS
7945 return val0;
7946}
7947
7948/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7949 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7950
7951static unsigned int
ebf56fd3 7952align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7953{
7954 return (off + alignment - 1) & ~(alignment - 1);
7955}
7956
4c4b4cd2 7957/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7958
7959static unsigned int
ebf56fd3 7960field_alignment (struct type *type, int f)
14f9c5c9 7961{
d2e4a39e 7962 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7963 int len;
14f9c5c9
AS
7964 int align_offset;
7965
64a1bf19
JB
7966 /* The field name should never be null, unless the debugging information
7967 is somehow malformed. In this case, we assume the field does not
7968 require any alignment. */
7969 if (name == NULL)
7970 return 1;
7971
7972 len = strlen (name);
7973
4c4b4cd2
PH
7974 if (!isdigit (name[len - 1]))
7975 return 1;
14f9c5c9 7976
d2e4a39e 7977 if (isdigit (name[len - 2]))
14f9c5c9
AS
7978 align_offset = len - 2;
7979 else
7980 align_offset = len - 1;
7981
61012eef 7982 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7983 return TARGET_CHAR_BIT;
7984
4c4b4cd2
PH
7985 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7986}
7987
852dff6c 7988/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7989
852dff6c
JB
7990static struct symbol *
7991ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7992{
7993 struct symbol *sym;
7994
7995 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7996 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7997 return sym;
7998
4186eb54
KS
7999 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8000 return sym;
14f9c5c9
AS
8001}
8002
dddfab26
UW
8003/* Find a type named NAME. Ignores ambiguity. This routine will look
8004 solely for types defined by debug info, it will not search the GDB
8005 primitive types. */
4c4b4cd2 8006
852dff6c 8007static struct type *
ebf56fd3 8008ada_find_any_type (const char *name)
14f9c5c9 8009{
852dff6c 8010 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8011
14f9c5c9 8012 if (sym != NULL)
dddfab26 8013 return SYMBOL_TYPE (sym);
14f9c5c9 8014
dddfab26 8015 return NULL;
14f9c5c9
AS
8016}
8017
739593e0
JB
8018/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8019 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8020 symbol, in which case it is returned. Otherwise, this looks for
8021 symbols whose name is that of NAME_SYM suffixed with "___XR".
8022 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8023
8024struct symbol *
270140bd 8025ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8026{
739593e0 8027 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8028 struct symbol *sym;
8029
739593e0
JB
8030 if (strstr (name, "___XR") != NULL)
8031 return name_sym;
8032
aeb5907d
JB
8033 sym = find_old_style_renaming_symbol (name, block);
8034
8035 if (sym != NULL)
8036 return sym;
8037
0963b4bd 8038 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8039 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8040 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8041 return sym;
8042 else
8043 return NULL;
8044}
8045
8046static struct symbol *
270140bd 8047find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8048{
7f0df278 8049 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8050 char *rename;
8051
8052 if (function_sym != NULL)
8053 {
8054 /* If the symbol is defined inside a function, NAME is not fully
8055 qualified. This means we need to prepend the function name
8056 as well as adding the ``___XR'' suffix to build the name of
8057 the associated renaming symbol. */
0d5cff50 8058 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8059 /* Function names sometimes contain suffixes used
8060 for instance to qualify nested subprograms. When building
8061 the XR type name, we need to make sure that this suffix is
8062 not included. So do not include any suffix in the function
8063 name length below. */
69fadcdf 8064 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8065 const int rename_len = function_name_len + 2 /* "__" */
8066 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8067
529cad9c 8068 /* Strip the suffix if necessary. */
69fadcdf
JB
8069 ada_remove_trailing_digits (function_name, &function_name_len);
8070 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8071 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8072
4c4b4cd2
PH
8073 /* Library-level functions are a special case, as GNAT adds
8074 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8075 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8076 have this prefix, so we need to skip this prefix if present. */
8077 if (function_name_len > 5 /* "_ada_" */
8078 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8079 {
8080 function_name += 5;
8081 function_name_len -= 5;
8082 }
4c4b4cd2
PH
8083
8084 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8085 strncpy (rename, function_name, function_name_len);
8086 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8087 "__%s___XR", name);
4c4b4cd2
PH
8088 }
8089 else
8090 {
8091 const int rename_len = strlen (name) + 6;
5b4ee69b 8092
4c4b4cd2 8093 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8094 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8095 }
8096
852dff6c 8097 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8098}
8099
14f9c5c9 8100/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8101 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8102 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8103 otherwise return 0. */
8104
14f9c5c9 8105int
d2e4a39e 8106ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8107{
8108 if (type1 == NULL)
8109 return 1;
8110 else if (type0 == NULL)
8111 return 0;
8112 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8113 return 1;
8114 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8115 return 0;
4c4b4cd2
PH
8116 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8117 return 1;
ad82864c 8118 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8119 return 1;
4c4b4cd2
PH
8120 else if (ada_is_array_descriptor_type (type0)
8121 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8122 return 1;
aeb5907d
JB
8123 else
8124 {
8125 const char *type0_name = type_name_no_tag (type0);
8126 const char *type1_name = type_name_no_tag (type1);
8127
8128 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8129 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8130 return 1;
8131 }
14f9c5c9
AS
8132 return 0;
8133}
8134
8135/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8136 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8137
0d5cff50 8138const char *
d2e4a39e 8139ada_type_name (struct type *type)
14f9c5c9 8140{
d2e4a39e 8141 if (type == NULL)
14f9c5c9
AS
8142 return NULL;
8143 else if (TYPE_NAME (type) != NULL)
8144 return TYPE_NAME (type);
8145 else
8146 return TYPE_TAG_NAME (type);
8147}
8148
b4ba55a1
JB
8149/* Search the list of "descriptive" types associated to TYPE for a type
8150 whose name is NAME. */
8151
8152static struct type *
8153find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8154{
931e5bc3 8155 struct type *result, *tmp;
b4ba55a1 8156
c6044dd1
JB
8157 if (ada_ignore_descriptive_types_p)
8158 return NULL;
8159
b4ba55a1
JB
8160 /* If there no descriptive-type info, then there is no parallel type
8161 to be found. */
8162 if (!HAVE_GNAT_AUX_INFO (type))
8163 return NULL;
8164
8165 result = TYPE_DESCRIPTIVE_TYPE (type);
8166 while (result != NULL)
8167 {
0d5cff50 8168 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8169
8170 if (result_name == NULL)
8171 {
8172 warning (_("unexpected null name on descriptive type"));
8173 return NULL;
8174 }
8175
8176 /* If the names match, stop. */
8177 if (strcmp (result_name, name) == 0)
8178 break;
8179
8180 /* Otherwise, look at the next item on the list, if any. */
8181 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8182 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8183 else
8184 tmp = NULL;
8185
8186 /* If not found either, try after having resolved the typedef. */
8187 if (tmp != NULL)
8188 result = tmp;
b4ba55a1 8189 else
931e5bc3 8190 {
f168693b 8191 result = check_typedef (result);
931e5bc3
JG
8192 if (HAVE_GNAT_AUX_INFO (result))
8193 result = TYPE_DESCRIPTIVE_TYPE (result);
8194 else
8195 result = NULL;
8196 }
b4ba55a1
JB
8197 }
8198
8199 /* If we didn't find a match, see whether this is a packed array. With
8200 older compilers, the descriptive type information is either absent or
8201 irrelevant when it comes to packed arrays so the above lookup fails.
8202 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8203 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8204 return ada_find_any_type (name);
8205
8206 return result;
8207}
8208
8209/* Find a parallel type to TYPE with the specified NAME, using the
8210 descriptive type taken from the debugging information, if available,
8211 and otherwise using the (slower) name-based method. */
8212
8213static struct type *
8214ada_find_parallel_type_with_name (struct type *type, const char *name)
8215{
8216 struct type *result = NULL;
8217
8218 if (HAVE_GNAT_AUX_INFO (type))
8219 result = find_parallel_type_by_descriptive_type (type, name);
8220 else
8221 result = ada_find_any_type (name);
8222
8223 return result;
8224}
8225
8226/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8227 SUFFIX to the name of TYPE. */
14f9c5c9 8228
d2e4a39e 8229struct type *
ebf56fd3 8230ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8231{
0d5cff50 8232 char *name;
fe978cb0 8233 const char *type_name = ada_type_name (type);
14f9c5c9 8234 int len;
d2e4a39e 8235
fe978cb0 8236 if (type_name == NULL)
14f9c5c9
AS
8237 return NULL;
8238
fe978cb0 8239 len = strlen (type_name);
14f9c5c9 8240
b4ba55a1 8241 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8242
fe978cb0 8243 strcpy (name, type_name);
14f9c5c9
AS
8244 strcpy (name + len, suffix);
8245
b4ba55a1 8246 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8247}
8248
14f9c5c9 8249/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8250 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8251
d2e4a39e
AS
8252static struct type *
8253dynamic_template_type (struct type *type)
14f9c5c9 8254{
61ee279c 8255 type = ada_check_typedef (type);
14f9c5c9
AS
8256
8257 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8258 || ada_type_name (type) == NULL)
14f9c5c9 8259 return NULL;
d2e4a39e 8260 else
14f9c5c9
AS
8261 {
8262 int len = strlen (ada_type_name (type));
5b4ee69b 8263
4c4b4cd2
PH
8264 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8265 return type;
14f9c5c9 8266 else
4c4b4cd2 8267 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8268 }
8269}
8270
8271/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8272 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8273
d2e4a39e
AS
8274static int
8275is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8276{
8277 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8278
d2e4a39e 8279 return name != NULL
14f9c5c9
AS
8280 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8281 && strstr (name, "___XVL") != NULL;
8282}
8283
4c4b4cd2
PH
8284/* The index of the variant field of TYPE, or -1 if TYPE does not
8285 represent a variant record type. */
14f9c5c9 8286
d2e4a39e 8287static int
4c4b4cd2 8288variant_field_index (struct type *type)
14f9c5c9
AS
8289{
8290 int f;
8291
4c4b4cd2
PH
8292 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8293 return -1;
8294
8295 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8296 {
8297 if (ada_is_variant_part (type, f))
8298 return f;
8299 }
8300 return -1;
14f9c5c9
AS
8301}
8302
4c4b4cd2
PH
8303/* A record type with no fields. */
8304
d2e4a39e 8305static struct type *
fe978cb0 8306empty_record (struct type *templ)
14f9c5c9 8307{
fe978cb0 8308 struct type *type = alloc_type_copy (templ);
5b4ee69b 8309
14f9c5c9
AS
8310 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8311 TYPE_NFIELDS (type) = 0;
8312 TYPE_FIELDS (type) = NULL;
b1f33ddd 8313 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8314 TYPE_NAME (type) = "<empty>";
8315 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8316 TYPE_LENGTH (type) = 0;
8317 return type;
8318}
8319
8320/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8321 the value of type TYPE at VALADDR or ADDRESS (see comments at
8322 the beginning of this section) VAL according to GNAT conventions.
8323 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8324 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8325 an outer-level type (i.e., as opposed to a branch of a variant.) A
8326 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8327 of the variant.
14f9c5c9 8328
4c4b4cd2
PH
8329 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8330 length are not statically known are discarded. As a consequence,
8331 VALADDR, ADDRESS and DVAL0 are ignored.
8332
8333 NOTE: Limitations: For now, we assume that dynamic fields and
8334 variants occupy whole numbers of bytes. However, they need not be
8335 byte-aligned. */
8336
8337struct type *
10a2c479 8338ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8339 const gdb_byte *valaddr,
4c4b4cd2
PH
8340 CORE_ADDR address, struct value *dval0,
8341 int keep_dynamic_fields)
14f9c5c9 8342{
d2e4a39e
AS
8343 struct value *mark = value_mark ();
8344 struct value *dval;
8345 struct type *rtype;
14f9c5c9 8346 int nfields, bit_len;
4c4b4cd2 8347 int variant_field;
14f9c5c9 8348 long off;
d94e4f4f 8349 int fld_bit_len;
14f9c5c9
AS
8350 int f;
8351
4c4b4cd2
PH
8352 /* Compute the number of fields in this record type that are going
8353 to be processed: unless keep_dynamic_fields, this includes only
8354 fields whose position and length are static will be processed. */
8355 if (keep_dynamic_fields)
8356 nfields = TYPE_NFIELDS (type);
8357 else
8358 {
8359 nfields = 0;
76a01679 8360 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8361 && !ada_is_variant_part (type, nfields)
8362 && !is_dynamic_field (type, nfields))
8363 nfields++;
8364 }
8365
e9bb382b 8366 rtype = alloc_type_copy (type);
14f9c5c9
AS
8367 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8368 INIT_CPLUS_SPECIFIC (rtype);
8369 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8370 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8371 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8372 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8373 TYPE_NAME (rtype) = ada_type_name (type);
8374 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8375 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8376
d2e4a39e
AS
8377 off = 0;
8378 bit_len = 0;
4c4b4cd2
PH
8379 variant_field = -1;
8380
14f9c5c9
AS
8381 for (f = 0; f < nfields; f += 1)
8382 {
6c038f32
PH
8383 off = align_value (off, field_alignment (type, f))
8384 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8385 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8386 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8387
d2e4a39e 8388 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8389 {
8390 variant_field = f;
d94e4f4f 8391 fld_bit_len = 0;
4c4b4cd2 8392 }
14f9c5c9 8393 else if (is_dynamic_field (type, f))
4c4b4cd2 8394 {
284614f0
JB
8395 const gdb_byte *field_valaddr = valaddr;
8396 CORE_ADDR field_address = address;
8397 struct type *field_type =
8398 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8399
4c4b4cd2 8400 if (dval0 == NULL)
b5304971
JG
8401 {
8402 /* rtype's length is computed based on the run-time
8403 value of discriminants. If the discriminants are not
8404 initialized, the type size may be completely bogus and
0963b4bd 8405 GDB may fail to allocate a value for it. So check the
b5304971 8406 size first before creating the value. */
c1b5a1a6 8407 ada_ensure_varsize_limit (rtype);
012370f6
TT
8408 /* Using plain value_from_contents_and_address here
8409 causes problems because we will end up trying to
8410 resolve a type that is currently being
8411 constructed. */
8412 dval = value_from_contents_and_address_unresolved (rtype,
8413 valaddr,
8414 address);
9f1f738a 8415 rtype = value_type (dval);
b5304971 8416 }
4c4b4cd2
PH
8417 else
8418 dval = dval0;
8419
284614f0
JB
8420 /* If the type referenced by this field is an aligner type, we need
8421 to unwrap that aligner type, because its size might not be set.
8422 Keeping the aligner type would cause us to compute the wrong
8423 size for this field, impacting the offset of the all the fields
8424 that follow this one. */
8425 if (ada_is_aligner_type (field_type))
8426 {
8427 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8428
8429 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8430 field_address = cond_offset_target (field_address, field_offset);
8431 field_type = ada_aligned_type (field_type);
8432 }
8433
8434 field_valaddr = cond_offset_host (field_valaddr,
8435 off / TARGET_CHAR_BIT);
8436 field_address = cond_offset_target (field_address,
8437 off / TARGET_CHAR_BIT);
8438
8439 /* Get the fixed type of the field. Note that, in this case,
8440 we do not want to get the real type out of the tag: if
8441 the current field is the parent part of a tagged record,
8442 we will get the tag of the object. Clearly wrong: the real
8443 type of the parent is not the real type of the child. We
8444 would end up in an infinite loop. */
8445 field_type = ada_get_base_type (field_type);
8446 field_type = ada_to_fixed_type (field_type, field_valaddr,
8447 field_address, dval, 0);
27f2a97b
JB
8448 /* If the field size is already larger than the maximum
8449 object size, then the record itself will necessarily
8450 be larger than the maximum object size. We need to make
8451 this check now, because the size might be so ridiculously
8452 large (due to an uninitialized variable in the inferior)
8453 that it would cause an overflow when adding it to the
8454 record size. */
c1b5a1a6 8455 ada_ensure_varsize_limit (field_type);
284614f0
JB
8456
8457 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8458 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8459 /* The multiplication can potentially overflow. But because
8460 the field length has been size-checked just above, and
8461 assuming that the maximum size is a reasonable value,
8462 an overflow should not happen in practice. So rather than
8463 adding overflow recovery code to this already complex code,
8464 we just assume that it's not going to happen. */
d94e4f4f 8465 fld_bit_len =
4c4b4cd2
PH
8466 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8467 }
14f9c5c9 8468 else
4c4b4cd2 8469 {
5ded5331
JB
8470 /* Note: If this field's type is a typedef, it is important
8471 to preserve the typedef layer.
8472
8473 Otherwise, we might be transforming a typedef to a fat
8474 pointer (encoding a pointer to an unconstrained array),
8475 into a basic fat pointer (encoding an unconstrained
8476 array). As both types are implemented using the same
8477 structure, the typedef is the only clue which allows us
8478 to distinguish between the two options. Stripping it
8479 would prevent us from printing this field appropriately. */
8480 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8481 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8482 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8483 fld_bit_len =
4c4b4cd2
PH
8484 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8485 else
5ded5331
JB
8486 {
8487 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8488
8489 /* We need to be careful of typedefs when computing
8490 the length of our field. If this is a typedef,
8491 get the length of the target type, not the length
8492 of the typedef. */
8493 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8494 field_type = ada_typedef_target_type (field_type);
8495
8496 fld_bit_len =
8497 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8498 }
4c4b4cd2 8499 }
14f9c5c9 8500 if (off + fld_bit_len > bit_len)
4c4b4cd2 8501 bit_len = off + fld_bit_len;
d94e4f4f 8502 off += fld_bit_len;
4c4b4cd2
PH
8503 TYPE_LENGTH (rtype) =
8504 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8505 }
4c4b4cd2
PH
8506
8507 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8508 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8509 the record. This can happen in the presence of representation
8510 clauses. */
8511 if (variant_field >= 0)
8512 {
8513 struct type *branch_type;
8514
8515 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8516
8517 if (dval0 == NULL)
9f1f738a 8518 {
012370f6
TT
8519 /* Using plain value_from_contents_and_address here causes
8520 problems because we will end up trying to resolve a type
8521 that is currently being constructed. */
8522 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8523 address);
9f1f738a
SA
8524 rtype = value_type (dval);
8525 }
4c4b4cd2
PH
8526 else
8527 dval = dval0;
8528
8529 branch_type =
8530 to_fixed_variant_branch_type
8531 (TYPE_FIELD_TYPE (type, variant_field),
8532 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8533 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8534 if (branch_type == NULL)
8535 {
8536 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8537 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8538 TYPE_NFIELDS (rtype) -= 1;
8539 }
8540 else
8541 {
8542 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8543 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8544 fld_bit_len =
8545 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8546 TARGET_CHAR_BIT;
8547 if (off + fld_bit_len > bit_len)
8548 bit_len = off + fld_bit_len;
8549 TYPE_LENGTH (rtype) =
8550 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8551 }
8552 }
8553
714e53ab
PH
8554 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8555 should contain the alignment of that record, which should be a strictly
8556 positive value. If null or negative, then something is wrong, most
8557 probably in the debug info. In that case, we don't round up the size
0963b4bd 8558 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8559 the current RTYPE length might be good enough for our purposes. */
8560 if (TYPE_LENGTH (type) <= 0)
8561 {
323e0a4a
AC
8562 if (TYPE_NAME (rtype))
8563 warning (_("Invalid type size for `%s' detected: %d."),
8564 TYPE_NAME (rtype), TYPE_LENGTH (type));
8565 else
8566 warning (_("Invalid type size for <unnamed> detected: %d."),
8567 TYPE_LENGTH (type));
714e53ab
PH
8568 }
8569 else
8570 {
8571 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8572 TYPE_LENGTH (type));
8573 }
14f9c5c9
AS
8574
8575 value_free_to_mark (mark);
d2e4a39e 8576 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8577 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8578 return rtype;
8579}
8580
4c4b4cd2
PH
8581/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8582 of 1. */
14f9c5c9 8583
d2e4a39e 8584static struct type *
fc1a4b47 8585template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8586 CORE_ADDR address, struct value *dval0)
8587{
8588 return ada_template_to_fixed_record_type_1 (type, valaddr,
8589 address, dval0, 1);
8590}
8591
8592/* An ordinary record type in which ___XVL-convention fields and
8593 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8594 static approximations, containing all possible fields. Uses
8595 no runtime values. Useless for use in values, but that's OK,
8596 since the results are used only for type determinations. Works on both
8597 structs and unions. Representation note: to save space, we memorize
8598 the result of this function in the TYPE_TARGET_TYPE of the
8599 template type. */
8600
8601static struct type *
8602template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8603{
8604 struct type *type;
8605 int nfields;
8606 int f;
8607
9e195661
PMR
8608 /* No need no do anything if the input type is already fixed. */
8609 if (TYPE_FIXED_INSTANCE (type0))
8610 return type0;
8611
8612 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8613 if (TYPE_TARGET_TYPE (type0) != NULL)
8614 return TYPE_TARGET_TYPE (type0);
8615
9e195661 8616 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8617 type = type0;
9e195661
PMR
8618 nfields = TYPE_NFIELDS (type0);
8619
8620 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8621 recompute all over next time. */
8622 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8623
8624 for (f = 0; f < nfields; f += 1)
8625 {
460efde1 8626 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8627 struct type *new_type;
14f9c5c9 8628
4c4b4cd2 8629 if (is_dynamic_field (type0, f))
460efde1
JB
8630 {
8631 field_type = ada_check_typedef (field_type);
8632 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8633 }
14f9c5c9 8634 else
f192137b 8635 new_type = static_unwrap_type (field_type);
9e195661
PMR
8636
8637 if (new_type != field_type)
8638 {
8639 /* Clone TYPE0 only the first time we get a new field type. */
8640 if (type == type0)
8641 {
8642 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8643 TYPE_CODE (type) = TYPE_CODE (type0);
8644 INIT_CPLUS_SPECIFIC (type);
8645 TYPE_NFIELDS (type) = nfields;
8646 TYPE_FIELDS (type) = (struct field *)
8647 TYPE_ALLOC (type, nfields * sizeof (struct field));
8648 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8649 sizeof (struct field) * nfields);
8650 TYPE_NAME (type) = ada_type_name (type0);
8651 TYPE_TAG_NAME (type) = NULL;
8652 TYPE_FIXED_INSTANCE (type) = 1;
8653 TYPE_LENGTH (type) = 0;
8654 }
8655 TYPE_FIELD_TYPE (type, f) = new_type;
8656 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8657 }
14f9c5c9 8658 }
9e195661 8659
14f9c5c9
AS
8660 return type;
8661}
8662
4c4b4cd2 8663/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8664 whose address in memory is ADDRESS, returns a revision of TYPE,
8665 which should be a non-dynamic-sized record, in which the variant
8666 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8667 for discriminant values in DVAL0, which can be NULL if the record
8668 contains the necessary discriminant values. */
8669
d2e4a39e 8670static struct type *
fc1a4b47 8671to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8672 CORE_ADDR address, struct value *dval0)
14f9c5c9 8673{
d2e4a39e 8674 struct value *mark = value_mark ();
4c4b4cd2 8675 struct value *dval;
d2e4a39e 8676 struct type *rtype;
14f9c5c9
AS
8677 struct type *branch_type;
8678 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8679 int variant_field = variant_field_index (type);
14f9c5c9 8680
4c4b4cd2 8681 if (variant_field == -1)
14f9c5c9
AS
8682 return type;
8683
4c4b4cd2 8684 if (dval0 == NULL)
9f1f738a
SA
8685 {
8686 dval = value_from_contents_and_address (type, valaddr, address);
8687 type = value_type (dval);
8688 }
4c4b4cd2
PH
8689 else
8690 dval = dval0;
8691
e9bb382b 8692 rtype = alloc_type_copy (type);
14f9c5c9 8693 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8694 INIT_CPLUS_SPECIFIC (rtype);
8695 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8696 TYPE_FIELDS (rtype) =
8697 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8698 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8699 sizeof (struct field) * nfields);
14f9c5c9
AS
8700 TYPE_NAME (rtype) = ada_type_name (type);
8701 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8702 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8703 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8704
4c4b4cd2
PH
8705 branch_type = to_fixed_variant_branch_type
8706 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8707 cond_offset_host (valaddr,
4c4b4cd2
PH
8708 TYPE_FIELD_BITPOS (type, variant_field)
8709 / TARGET_CHAR_BIT),
d2e4a39e 8710 cond_offset_target (address,
4c4b4cd2
PH
8711 TYPE_FIELD_BITPOS (type, variant_field)
8712 / TARGET_CHAR_BIT), dval);
d2e4a39e 8713 if (branch_type == NULL)
14f9c5c9 8714 {
4c4b4cd2 8715 int f;
5b4ee69b 8716
4c4b4cd2
PH
8717 for (f = variant_field + 1; f < nfields; f += 1)
8718 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8719 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8720 }
8721 else
8722 {
4c4b4cd2
PH
8723 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8724 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8725 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8726 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8727 }
4c4b4cd2 8728 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8729
4c4b4cd2 8730 value_free_to_mark (mark);
14f9c5c9
AS
8731 return rtype;
8732}
8733
8734/* An ordinary record type (with fixed-length fields) that describes
8735 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8736 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8737 should be in DVAL, a record value; it may be NULL if the object
8738 at ADDR itself contains any necessary discriminant values.
8739 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8740 values from the record are needed. Except in the case that DVAL,
8741 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8742 unchecked) is replaced by a particular branch of the variant.
8743
8744 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8745 is questionable and may be removed. It can arise during the
8746 processing of an unconstrained-array-of-record type where all the
8747 variant branches have exactly the same size. This is because in
8748 such cases, the compiler does not bother to use the XVS convention
8749 when encoding the record. I am currently dubious of this
8750 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8751
d2e4a39e 8752static struct type *
fc1a4b47 8753to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8754 CORE_ADDR address, struct value *dval)
14f9c5c9 8755{
d2e4a39e 8756 struct type *templ_type;
14f9c5c9 8757
876cecd0 8758 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8759 return type0;
8760
d2e4a39e 8761 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8762
8763 if (templ_type != NULL)
8764 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8765 else if (variant_field_index (type0) >= 0)
8766 {
8767 if (dval == NULL && valaddr == NULL && address == 0)
8768 return type0;
8769 return to_record_with_fixed_variant_part (type0, valaddr, address,
8770 dval);
8771 }
14f9c5c9
AS
8772 else
8773 {
876cecd0 8774 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8775 return type0;
8776 }
8777
8778}
8779
8780/* An ordinary record type (with fixed-length fields) that describes
8781 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8782 union type. Any necessary discriminants' values should be in DVAL,
8783 a record value. That is, this routine selects the appropriate
8784 branch of the union at ADDR according to the discriminant value
b1f33ddd 8785 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8786 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8787
d2e4a39e 8788static struct type *
fc1a4b47 8789to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8790 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8791{
8792 int which;
d2e4a39e
AS
8793 struct type *templ_type;
8794 struct type *var_type;
14f9c5c9
AS
8795
8796 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8797 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8798 else
14f9c5c9
AS
8799 var_type = var_type0;
8800
8801 templ_type = ada_find_parallel_type (var_type, "___XVU");
8802
8803 if (templ_type != NULL)
8804 var_type = templ_type;
8805
b1f33ddd
JB
8806 if (is_unchecked_variant (var_type, value_type (dval)))
8807 return var_type0;
d2e4a39e
AS
8808 which =
8809 ada_which_variant_applies (var_type,
0fd88904 8810 value_type (dval), value_contents (dval));
14f9c5c9
AS
8811
8812 if (which < 0)
e9bb382b 8813 return empty_record (var_type);
14f9c5c9 8814 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8815 return to_fixed_record_type
d2e4a39e
AS
8816 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8817 valaddr, address, dval);
4c4b4cd2 8818 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8819 return
8820 to_fixed_record_type
8821 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8822 else
8823 return TYPE_FIELD_TYPE (var_type, which);
8824}
8825
8908fca5
JB
8826/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8827 ENCODING_TYPE, a type following the GNAT conventions for discrete
8828 type encodings, only carries redundant information. */
8829
8830static int
8831ada_is_redundant_range_encoding (struct type *range_type,
8832 struct type *encoding_type)
8833{
108d56a4 8834 const char *bounds_str;
8908fca5
JB
8835 int n;
8836 LONGEST lo, hi;
8837
8838 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8839
005e2509
JB
8840 if (TYPE_CODE (get_base_type (range_type))
8841 != TYPE_CODE (get_base_type (encoding_type)))
8842 {
8843 /* The compiler probably used a simple base type to describe
8844 the range type instead of the range's actual base type,
8845 expecting us to get the real base type from the encoding
8846 anyway. In this situation, the encoding cannot be ignored
8847 as redundant. */
8848 return 0;
8849 }
8850
8908fca5
JB
8851 if (is_dynamic_type (range_type))
8852 return 0;
8853
8854 if (TYPE_NAME (encoding_type) == NULL)
8855 return 0;
8856
8857 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8858 if (bounds_str == NULL)
8859 return 0;
8860
8861 n = 8; /* Skip "___XDLU_". */
8862 if (!ada_scan_number (bounds_str, n, &lo, &n))
8863 return 0;
8864 if (TYPE_LOW_BOUND (range_type) != lo)
8865 return 0;
8866
8867 n += 2; /* Skip the "__" separator between the two bounds. */
8868 if (!ada_scan_number (bounds_str, n, &hi, &n))
8869 return 0;
8870 if (TYPE_HIGH_BOUND (range_type) != hi)
8871 return 0;
8872
8873 return 1;
8874}
8875
8876/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8877 a type following the GNAT encoding for describing array type
8878 indices, only carries redundant information. */
8879
8880static int
8881ada_is_redundant_index_type_desc (struct type *array_type,
8882 struct type *desc_type)
8883{
8884 struct type *this_layer = check_typedef (array_type);
8885 int i;
8886
8887 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8888 {
8889 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8890 TYPE_FIELD_TYPE (desc_type, i)))
8891 return 0;
8892 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8893 }
8894
8895 return 1;
8896}
8897
14f9c5c9
AS
8898/* Assuming that TYPE0 is an array type describing the type of a value
8899 at ADDR, and that DVAL describes a record containing any
8900 discriminants used in TYPE0, returns a type for the value that
8901 contains no dynamic components (that is, no components whose sizes
8902 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8903 true, gives an error message if the resulting type's size is over
4c4b4cd2 8904 varsize_limit. */
14f9c5c9 8905
d2e4a39e
AS
8906static struct type *
8907to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8908 int ignore_too_big)
14f9c5c9 8909{
d2e4a39e
AS
8910 struct type *index_type_desc;
8911 struct type *result;
ad82864c 8912 int constrained_packed_array_p;
931e5bc3 8913 static const char *xa_suffix = "___XA";
14f9c5c9 8914
b0dd7688 8915 type0 = ada_check_typedef (type0);
284614f0 8916 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8917 return type0;
14f9c5c9 8918
ad82864c
JB
8919 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8920 if (constrained_packed_array_p)
8921 type0 = decode_constrained_packed_array_type (type0);
284614f0 8922
931e5bc3
JG
8923 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8924
8925 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8926 encoding suffixed with 'P' may still be generated. If so,
8927 it should be used to find the XA type. */
8928
8929 if (index_type_desc == NULL)
8930 {
1da0522e 8931 const char *type_name = ada_type_name (type0);
931e5bc3 8932
1da0522e 8933 if (type_name != NULL)
931e5bc3 8934 {
1da0522e 8935 const int len = strlen (type_name);
931e5bc3
JG
8936 char *name = (char *) alloca (len + strlen (xa_suffix));
8937
1da0522e 8938 if (type_name[len - 1] == 'P')
931e5bc3 8939 {
1da0522e 8940 strcpy (name, type_name);
931e5bc3
JG
8941 strcpy (name + len - 1, xa_suffix);
8942 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8943 }
8944 }
8945 }
8946
28c85d6c 8947 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8948 if (index_type_desc != NULL
8949 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8950 {
8951 /* Ignore this ___XA parallel type, as it does not bring any
8952 useful information. This allows us to avoid creating fixed
8953 versions of the array's index types, which would be identical
8954 to the original ones. This, in turn, can also help avoid
8955 the creation of fixed versions of the array itself. */
8956 index_type_desc = NULL;
8957 }
8958
14f9c5c9
AS
8959 if (index_type_desc == NULL)
8960 {
61ee279c 8961 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8962
14f9c5c9 8963 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8964 depend on the contents of the array in properly constructed
8965 debugging data. */
529cad9c
PH
8966 /* Create a fixed version of the array element type.
8967 We're not providing the address of an element here,
e1d5a0d2 8968 and thus the actual object value cannot be inspected to do
529cad9c
PH
8969 the conversion. This should not be a problem, since arrays of
8970 unconstrained objects are not allowed. In particular, all
8971 the elements of an array of a tagged type should all be of
8972 the same type specified in the debugging info. No need to
8973 consult the object tag. */
1ed6ede0 8974 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8975
284614f0
JB
8976 /* Make sure we always create a new array type when dealing with
8977 packed array types, since we're going to fix-up the array
8978 type length and element bitsize a little further down. */
ad82864c 8979 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8980 result = type0;
14f9c5c9 8981 else
e9bb382b 8982 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8983 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8984 }
8985 else
8986 {
8987 int i;
8988 struct type *elt_type0;
8989
8990 elt_type0 = type0;
8991 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8992 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8993
8994 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8995 depend on the contents of the array in properly constructed
8996 debugging data. */
529cad9c
PH
8997 /* Create a fixed version of the array element type.
8998 We're not providing the address of an element here,
e1d5a0d2 8999 and thus the actual object value cannot be inspected to do
529cad9c
PH
9000 the conversion. This should not be a problem, since arrays of
9001 unconstrained objects are not allowed. In particular, all
9002 the elements of an array of a tagged type should all be of
9003 the same type specified in the debugging info. No need to
9004 consult the object tag. */
1ed6ede0
JB
9005 result =
9006 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
9007
9008 elt_type0 = type0;
14f9c5c9 9009 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
9010 {
9011 struct type *range_type =
28c85d6c 9012 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9013
e9bb382b 9014 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9015 result, range_type);
1ce677a4 9016 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9017 }
d2e4a39e 9018 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9019 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9020 }
9021
2e6fda7d
JB
9022 /* We want to preserve the type name. This can be useful when
9023 trying to get the type name of a value that has already been
9024 printed (for instance, if the user did "print VAR; whatis $". */
9025 TYPE_NAME (result) = TYPE_NAME (type0);
9026
ad82864c 9027 if (constrained_packed_array_p)
284614f0
JB
9028 {
9029 /* So far, the resulting type has been created as if the original
9030 type was a regular (non-packed) array type. As a result, the
9031 bitsize of the array elements needs to be set again, and the array
9032 length needs to be recomputed based on that bitsize. */
9033 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9034 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9035
9036 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9037 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9038 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9039 TYPE_LENGTH (result)++;
9040 }
9041
876cecd0 9042 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9043 return result;
d2e4a39e 9044}
14f9c5c9
AS
9045
9046
9047/* A standard type (containing no dynamically sized components)
9048 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9049 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9050 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9051 ADDRESS or in VALADDR contains these discriminants.
9052
1ed6ede0
JB
9053 If CHECK_TAG is not null, in the case of tagged types, this function
9054 attempts to locate the object's tag and use it to compute the actual
9055 type. However, when ADDRESS is null, we cannot use it to determine the
9056 location of the tag, and therefore compute the tagged type's actual type.
9057 So we return the tagged type without consulting the tag. */
529cad9c 9058
f192137b
JB
9059static struct type *
9060ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9061 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9062{
61ee279c 9063 type = ada_check_typedef (type);
d2e4a39e
AS
9064 switch (TYPE_CODE (type))
9065 {
9066 default:
14f9c5c9 9067 return type;
d2e4a39e 9068 case TYPE_CODE_STRUCT:
4c4b4cd2 9069 {
76a01679 9070 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9071 struct type *fixed_record_type =
9072 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9073
529cad9c
PH
9074 /* If STATIC_TYPE is a tagged type and we know the object's address,
9075 then we can determine its tag, and compute the object's actual
0963b4bd 9076 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9077 type (the parent part of the record may have dynamic fields
9078 and the way the location of _tag is expressed may depend on
9079 them). */
529cad9c 9080
1ed6ede0 9081 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9082 {
b50d69b5
JG
9083 struct value *tag =
9084 value_tag_from_contents_and_address
9085 (fixed_record_type,
9086 valaddr,
9087 address);
9088 struct type *real_type = type_from_tag (tag);
9089 struct value *obj =
9090 value_from_contents_and_address (fixed_record_type,
9091 valaddr,
9092 address);
9f1f738a 9093 fixed_record_type = value_type (obj);
76a01679 9094 if (real_type != NULL)
b50d69b5
JG
9095 return to_fixed_record_type
9096 (real_type, NULL,
9097 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9098 }
4af88198
JB
9099
9100 /* Check to see if there is a parallel ___XVZ variable.
9101 If there is, then it provides the actual size of our type. */
9102 else if (ada_type_name (fixed_record_type) != NULL)
9103 {
0d5cff50 9104 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9105 char *xvz_name
9106 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9107 bool xvz_found = false;
4af88198
JB
9108 LONGEST size;
9109
88c15c34 9110 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9111 TRY
9112 {
9113 xvz_found = get_int_var_value (xvz_name, size);
9114 }
9115 CATCH (except, RETURN_MASK_ERROR)
9116 {
9117 /* We found the variable, but somehow failed to read
9118 its value. Rethrow the same error, but with a little
9119 bit more information, to help the user understand
9120 what went wrong (Eg: the variable might have been
9121 optimized out). */
9122 throw_error (except.error,
9123 _("unable to read value of %s (%s)"),
9124 xvz_name, except.message);
9125 }
9126 END_CATCH
9127
9128 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9129 {
9130 fixed_record_type = copy_type (fixed_record_type);
9131 TYPE_LENGTH (fixed_record_type) = size;
9132
9133 /* The FIXED_RECORD_TYPE may have be a stub. We have
9134 observed this when the debugging info is STABS, and
9135 apparently it is something that is hard to fix.
9136
9137 In practice, we don't need the actual type definition
9138 at all, because the presence of the XVZ variable allows us
9139 to assume that there must be a XVS type as well, which we
9140 should be able to use later, when we need the actual type
9141 definition.
9142
9143 In the meantime, pretend that the "fixed" type we are
9144 returning is NOT a stub, because this can cause trouble
9145 when using this type to create new types targeting it.
9146 Indeed, the associated creation routines often check
9147 whether the target type is a stub and will try to replace
0963b4bd 9148 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9149 might cause the new type to have the wrong size too.
9150 Consider the case of an array, for instance, where the size
9151 of the array is computed from the number of elements in
9152 our array multiplied by the size of its element. */
9153 TYPE_STUB (fixed_record_type) = 0;
9154 }
9155 }
1ed6ede0 9156 return fixed_record_type;
4c4b4cd2 9157 }
d2e4a39e 9158 case TYPE_CODE_ARRAY:
4c4b4cd2 9159 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9160 case TYPE_CODE_UNION:
9161 if (dval == NULL)
4c4b4cd2 9162 return type;
d2e4a39e 9163 else
4c4b4cd2 9164 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9165 }
14f9c5c9
AS
9166}
9167
f192137b
JB
9168/* The same as ada_to_fixed_type_1, except that it preserves the type
9169 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9170
9171 The typedef layer needs be preserved in order to differentiate between
9172 arrays and array pointers when both types are implemented using the same
9173 fat pointer. In the array pointer case, the pointer is encoded as
9174 a typedef of the pointer type. For instance, considering:
9175
9176 type String_Access is access String;
9177 S1 : String_Access := null;
9178
9179 To the debugger, S1 is defined as a typedef of type String. But
9180 to the user, it is a pointer. So if the user tries to print S1,
9181 we should not dereference the array, but print the array address
9182 instead.
9183
9184 If we didn't preserve the typedef layer, we would lose the fact that
9185 the type is to be presented as a pointer (needs de-reference before
9186 being printed). And we would also use the source-level type name. */
f192137b
JB
9187
9188struct type *
9189ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9190 CORE_ADDR address, struct value *dval, int check_tag)
9191
9192{
9193 struct type *fixed_type =
9194 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9195
96dbd2c1
JB
9196 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9197 then preserve the typedef layer.
9198
9199 Implementation note: We can only check the main-type portion of
9200 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9201 from TYPE now returns a type that has the same instance flags
9202 as TYPE. For instance, if TYPE is a "typedef const", and its
9203 target type is a "struct", then the typedef elimination will return
9204 a "const" version of the target type. See check_typedef for more
9205 details about how the typedef layer elimination is done.
9206
9207 brobecker/2010-11-19: It seems to me that the only case where it is
9208 useful to preserve the typedef layer is when dealing with fat pointers.
9209 Perhaps, we could add a check for that and preserve the typedef layer
9210 only in that situation. But this seems unecessary so far, probably
9211 because we call check_typedef/ada_check_typedef pretty much everywhere.
9212 */
f192137b 9213 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9214 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9215 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9216 return type;
9217
9218 return fixed_type;
9219}
9220
14f9c5c9 9221/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9222 TYPE0, but based on no runtime data. */
14f9c5c9 9223
d2e4a39e
AS
9224static struct type *
9225to_static_fixed_type (struct type *type0)
14f9c5c9 9226{
d2e4a39e 9227 struct type *type;
14f9c5c9
AS
9228
9229 if (type0 == NULL)
9230 return NULL;
9231
876cecd0 9232 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9233 return type0;
9234
61ee279c 9235 type0 = ada_check_typedef (type0);
d2e4a39e 9236
14f9c5c9
AS
9237 switch (TYPE_CODE (type0))
9238 {
9239 default:
9240 return type0;
9241 case TYPE_CODE_STRUCT:
9242 type = dynamic_template_type (type0);
d2e4a39e 9243 if (type != NULL)
4c4b4cd2
PH
9244 return template_to_static_fixed_type (type);
9245 else
9246 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9247 case TYPE_CODE_UNION:
9248 type = ada_find_parallel_type (type0, "___XVU");
9249 if (type != NULL)
4c4b4cd2
PH
9250 return template_to_static_fixed_type (type);
9251 else
9252 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9253 }
9254}
9255
4c4b4cd2
PH
9256/* A static approximation of TYPE with all type wrappers removed. */
9257
d2e4a39e
AS
9258static struct type *
9259static_unwrap_type (struct type *type)
14f9c5c9
AS
9260{
9261 if (ada_is_aligner_type (type))
9262 {
61ee279c 9263 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9264 if (ada_type_name (type1) == NULL)
4c4b4cd2 9265 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9266
9267 return static_unwrap_type (type1);
9268 }
d2e4a39e 9269 else
14f9c5c9 9270 {
d2e4a39e 9271 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9272
d2e4a39e 9273 if (raw_real_type == type)
4c4b4cd2 9274 return type;
14f9c5c9 9275 else
4c4b4cd2 9276 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9277 }
9278}
9279
9280/* In some cases, incomplete and private types require
4c4b4cd2 9281 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9282 type Foo;
9283 type FooP is access Foo;
9284 V: FooP;
9285 type Foo is array ...;
4c4b4cd2 9286 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9287 cross-references to such types, we instead substitute for FooP a
9288 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9289 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9290
9291/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9292 exists, otherwise TYPE. */
9293
d2e4a39e 9294struct type *
61ee279c 9295ada_check_typedef (struct type *type)
14f9c5c9 9296{
727e3d2e
JB
9297 if (type == NULL)
9298 return NULL;
9299
720d1a40
JB
9300 /* If our type is a typedef type of a fat pointer, then we're done.
9301 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9302 what allows us to distinguish between fat pointers that represent
9303 array types, and fat pointers that represent array access types
9304 (in both cases, the compiler implements them as fat pointers). */
9305 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9306 && is_thick_pntr (ada_typedef_target_type (type)))
9307 return type;
9308
f168693b 9309 type = check_typedef (type);
14f9c5c9 9310 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9311 || !TYPE_STUB (type)
14f9c5c9
AS
9312 || TYPE_TAG_NAME (type) == NULL)
9313 return type;
d2e4a39e 9314 else
14f9c5c9 9315 {
0d5cff50 9316 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9317 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9318
05e522ef
JB
9319 if (type1 == NULL)
9320 return type;
9321
9322 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9323 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9324 types, only for the typedef-to-array types). If that's the case,
9325 strip the typedef layer. */
9326 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9327 type1 = ada_check_typedef (type1);
9328
9329 return type1;
14f9c5c9
AS
9330 }
9331}
9332
9333/* A value representing the data at VALADDR/ADDRESS as described by
9334 type TYPE0, but with a standard (static-sized) type that correctly
9335 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9336 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9337 creation of struct values]. */
14f9c5c9 9338
4c4b4cd2
PH
9339static struct value *
9340ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9341 struct value *val0)
14f9c5c9 9342{
1ed6ede0 9343 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9344
14f9c5c9
AS
9345 if (type == type0 && val0 != NULL)
9346 return val0;
cc0e770c
JB
9347
9348 if (VALUE_LVAL (val0) != lval_memory)
9349 {
9350 /* Our value does not live in memory; it could be a convenience
9351 variable, for instance. Create a not_lval value using val0's
9352 contents. */
9353 return value_from_contents (type, value_contents (val0));
9354 }
9355
9356 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9357}
9358
9359/* A value representing VAL, but with a standard (static-sized) type
9360 that correctly describes it. Does not necessarily create a new
9361 value. */
9362
0c3acc09 9363struct value *
4c4b4cd2
PH
9364ada_to_fixed_value (struct value *val)
9365{
c48db5ca
JB
9366 val = unwrap_value (val);
9367 val = ada_to_fixed_value_create (value_type (val),
9368 value_address (val),
9369 val);
9370 return val;
14f9c5c9 9371}
d2e4a39e 9372\f
14f9c5c9 9373
14f9c5c9
AS
9374/* Attributes */
9375
4c4b4cd2
PH
9376/* Table mapping attribute numbers to names.
9377 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9378
d2e4a39e 9379static const char *attribute_names[] = {
14f9c5c9
AS
9380 "<?>",
9381
d2e4a39e 9382 "first",
14f9c5c9
AS
9383 "last",
9384 "length",
9385 "image",
14f9c5c9
AS
9386 "max",
9387 "min",
4c4b4cd2
PH
9388 "modulus",
9389 "pos",
9390 "size",
9391 "tag",
14f9c5c9 9392 "val",
14f9c5c9
AS
9393 0
9394};
9395
d2e4a39e 9396const char *
4c4b4cd2 9397ada_attribute_name (enum exp_opcode n)
14f9c5c9 9398{
4c4b4cd2
PH
9399 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9400 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9401 else
9402 return attribute_names[0];
9403}
9404
4c4b4cd2 9405/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9406
4c4b4cd2
PH
9407static LONGEST
9408pos_atr (struct value *arg)
14f9c5c9 9409{
24209737
PH
9410 struct value *val = coerce_ref (arg);
9411 struct type *type = value_type (val);
aa715135 9412 LONGEST result;
14f9c5c9 9413
d2e4a39e 9414 if (!discrete_type_p (type))
323e0a4a 9415 error (_("'POS only defined on discrete types"));
14f9c5c9 9416
aa715135
JG
9417 if (!discrete_position (type, value_as_long (val), &result))
9418 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9419
aa715135 9420 return result;
4c4b4cd2
PH
9421}
9422
9423static struct value *
3cb382c9 9424value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9425{
3cb382c9 9426 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9427}
9428
4c4b4cd2 9429/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9430
d2e4a39e
AS
9431static struct value *
9432value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9433{
d2e4a39e 9434 if (!discrete_type_p (type))
323e0a4a 9435 error (_("'VAL only defined on discrete types"));
df407dfe 9436 if (!integer_type_p (value_type (arg)))
323e0a4a 9437 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9438
9439 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9440 {
9441 long pos = value_as_long (arg);
5b4ee69b 9442
14f9c5c9 9443 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9444 error (_("argument to 'VAL out of range"));
14e75d8e 9445 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9446 }
9447 else
9448 return value_from_longest (type, value_as_long (arg));
9449}
14f9c5c9 9450\f
d2e4a39e 9451
4c4b4cd2 9452 /* Evaluation */
14f9c5c9 9453
4c4b4cd2
PH
9454/* True if TYPE appears to be an Ada character type.
9455 [At the moment, this is true only for Character and Wide_Character;
9456 It is a heuristic test that could stand improvement]. */
14f9c5c9 9457
d2e4a39e
AS
9458int
9459ada_is_character_type (struct type *type)
14f9c5c9 9460{
7b9f71f2
JB
9461 const char *name;
9462
9463 /* If the type code says it's a character, then assume it really is,
9464 and don't check any further. */
9465 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9466 return 1;
9467
9468 /* Otherwise, assume it's a character type iff it is a discrete type
9469 with a known character type name. */
9470 name = ada_type_name (type);
9471 return (name != NULL
9472 && (TYPE_CODE (type) == TYPE_CODE_INT
9473 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9474 && (strcmp (name, "character") == 0
9475 || strcmp (name, "wide_character") == 0
5a517ebd 9476 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9477 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9478}
9479
4c4b4cd2 9480/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9481
9482int
ebf56fd3 9483ada_is_string_type (struct type *type)
14f9c5c9 9484{
61ee279c 9485 type = ada_check_typedef (type);
d2e4a39e 9486 if (type != NULL
14f9c5c9 9487 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9488 && (ada_is_simple_array_type (type)
9489 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9490 && ada_array_arity (type) == 1)
9491 {
9492 struct type *elttype = ada_array_element_type (type, 1);
9493
9494 return ada_is_character_type (elttype);
9495 }
d2e4a39e 9496 else
14f9c5c9
AS
9497 return 0;
9498}
9499
5bf03f13
JB
9500/* The compiler sometimes provides a parallel XVS type for a given
9501 PAD type. Normally, it is safe to follow the PAD type directly,
9502 but older versions of the compiler have a bug that causes the offset
9503 of its "F" field to be wrong. Following that field in that case
9504 would lead to incorrect results, but this can be worked around
9505 by ignoring the PAD type and using the associated XVS type instead.
9506
9507 Set to True if the debugger should trust the contents of PAD types.
9508 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9509static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9510
9511/* True if TYPE is a struct type introduced by the compiler to force the
9512 alignment of a value. Such types have a single field with a
4c4b4cd2 9513 distinctive name. */
14f9c5c9
AS
9514
9515int
ebf56fd3 9516ada_is_aligner_type (struct type *type)
14f9c5c9 9517{
61ee279c 9518 type = ada_check_typedef (type);
714e53ab 9519
5bf03f13 9520 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9521 return 0;
9522
14f9c5c9 9523 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9524 && TYPE_NFIELDS (type) == 1
9525 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9526}
9527
9528/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9529 the parallel type. */
14f9c5c9 9530
d2e4a39e
AS
9531struct type *
9532ada_get_base_type (struct type *raw_type)
14f9c5c9 9533{
d2e4a39e
AS
9534 struct type *real_type_namer;
9535 struct type *raw_real_type;
14f9c5c9
AS
9536
9537 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9538 return raw_type;
9539
284614f0
JB
9540 if (ada_is_aligner_type (raw_type))
9541 /* The encoding specifies that we should always use the aligner type.
9542 So, even if this aligner type has an associated XVS type, we should
9543 simply ignore it.
9544
9545 According to the compiler gurus, an XVS type parallel to an aligner
9546 type may exist because of a stabs limitation. In stabs, aligner
9547 types are empty because the field has a variable-sized type, and
9548 thus cannot actually be used as an aligner type. As a result,
9549 we need the associated parallel XVS type to decode the type.
9550 Since the policy in the compiler is to not change the internal
9551 representation based on the debugging info format, we sometimes
9552 end up having a redundant XVS type parallel to the aligner type. */
9553 return raw_type;
9554
14f9c5c9 9555 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9556 if (real_type_namer == NULL
14f9c5c9
AS
9557 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9558 || TYPE_NFIELDS (real_type_namer) != 1)
9559 return raw_type;
9560
f80d3ff2
JB
9561 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9562 {
9563 /* This is an older encoding form where the base type needs to be
9564 looked up by name. We prefer the newer enconding because it is
9565 more efficient. */
9566 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9567 if (raw_real_type == NULL)
9568 return raw_type;
9569 else
9570 return raw_real_type;
9571 }
9572
9573 /* The field in our XVS type is a reference to the base type. */
9574 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9575}
14f9c5c9 9576
4c4b4cd2 9577/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9578
d2e4a39e
AS
9579struct type *
9580ada_aligned_type (struct type *type)
14f9c5c9
AS
9581{
9582 if (ada_is_aligner_type (type))
9583 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9584 else
9585 return ada_get_base_type (type);
9586}
9587
9588
9589/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9590 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9591
fc1a4b47
AC
9592const gdb_byte *
9593ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9594{
d2e4a39e 9595 if (ada_is_aligner_type (type))
14f9c5c9 9596 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9597 valaddr +
9598 TYPE_FIELD_BITPOS (type,
9599 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9600 else
9601 return valaddr;
9602}
9603
4c4b4cd2
PH
9604
9605
14f9c5c9 9606/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9607 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9608const char *
9609ada_enum_name (const char *name)
14f9c5c9 9610{
4c4b4cd2
PH
9611 static char *result;
9612 static size_t result_len = 0;
e6a959d6 9613 const char *tmp;
14f9c5c9 9614
4c4b4cd2
PH
9615 /* First, unqualify the enumeration name:
9616 1. Search for the last '.' character. If we find one, then skip
177b42fe 9617 all the preceding characters, the unqualified name starts
76a01679 9618 right after that dot.
4c4b4cd2 9619 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9620 translates dots into "__". Search forward for double underscores,
9621 but stop searching when we hit an overloading suffix, which is
9622 of the form "__" followed by digits. */
4c4b4cd2 9623
c3e5cd34
PH
9624 tmp = strrchr (name, '.');
9625 if (tmp != NULL)
4c4b4cd2
PH
9626 name = tmp + 1;
9627 else
14f9c5c9 9628 {
4c4b4cd2
PH
9629 while ((tmp = strstr (name, "__")) != NULL)
9630 {
9631 if (isdigit (tmp[2]))
9632 break;
9633 else
9634 name = tmp + 2;
9635 }
14f9c5c9
AS
9636 }
9637
9638 if (name[0] == 'Q')
9639 {
14f9c5c9 9640 int v;
5b4ee69b 9641
14f9c5c9 9642 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9643 {
9644 if (sscanf (name + 2, "%x", &v) != 1)
9645 return name;
9646 }
14f9c5c9 9647 else
4c4b4cd2 9648 return name;
14f9c5c9 9649
4c4b4cd2 9650 GROW_VECT (result, result_len, 16);
14f9c5c9 9651 if (isascii (v) && isprint (v))
88c15c34 9652 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9653 else if (name[1] == 'U')
88c15c34 9654 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9655 else
88c15c34 9656 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9657
9658 return result;
9659 }
d2e4a39e 9660 else
4c4b4cd2 9661 {
c3e5cd34
PH
9662 tmp = strstr (name, "__");
9663 if (tmp == NULL)
9664 tmp = strstr (name, "$");
9665 if (tmp != NULL)
4c4b4cd2
PH
9666 {
9667 GROW_VECT (result, result_len, tmp - name + 1);
9668 strncpy (result, name, tmp - name);
9669 result[tmp - name] = '\0';
9670 return result;
9671 }
9672
9673 return name;
9674 }
14f9c5c9
AS
9675}
9676
14f9c5c9
AS
9677/* Evaluate the subexpression of EXP starting at *POS as for
9678 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9679 expression. */
14f9c5c9 9680
d2e4a39e
AS
9681static struct value *
9682evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9683{
4b27a620 9684 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9685}
9686
9687/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9688 value it wraps. */
14f9c5c9 9689
d2e4a39e
AS
9690static struct value *
9691unwrap_value (struct value *val)
14f9c5c9 9692{
df407dfe 9693 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9694
14f9c5c9
AS
9695 if (ada_is_aligner_type (type))
9696 {
de4d072f 9697 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9698 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9699
14f9c5c9 9700 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9701 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9702
9703 return unwrap_value (v);
9704 }
d2e4a39e 9705 else
14f9c5c9 9706 {
d2e4a39e 9707 struct type *raw_real_type =
61ee279c 9708 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9709
5bf03f13
JB
9710 /* If there is no parallel XVS or XVE type, then the value is
9711 already unwrapped. Return it without further modification. */
9712 if ((type == raw_real_type)
9713 && ada_find_parallel_type (type, "___XVE") == NULL)
9714 return val;
14f9c5c9 9715
d2e4a39e 9716 return
4c4b4cd2
PH
9717 coerce_unspec_val_to_type
9718 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9719 value_address (val),
1ed6ede0 9720 NULL, 1));
14f9c5c9
AS
9721 }
9722}
d2e4a39e
AS
9723
9724static struct value *
50eff16b 9725cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9726{
50eff16b
UW
9727 struct value *scale = ada_scaling_factor (value_type (arg));
9728 arg = value_cast (value_type (scale), arg);
14f9c5c9 9729
50eff16b
UW
9730 arg = value_binop (arg, scale, BINOP_MUL);
9731 return value_cast (type, arg);
14f9c5c9
AS
9732}
9733
d2e4a39e 9734static struct value *
50eff16b 9735cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9736{
50eff16b
UW
9737 if (type == value_type (arg))
9738 return arg;
5b4ee69b 9739
50eff16b
UW
9740 struct value *scale = ada_scaling_factor (type);
9741 if (ada_is_fixed_point_type (value_type (arg)))
9742 arg = cast_from_fixed (value_type (scale), arg);
9743 else
9744 arg = value_cast (value_type (scale), arg);
9745
9746 arg = value_binop (arg, scale, BINOP_DIV);
9747 return value_cast (type, arg);
14f9c5c9
AS
9748}
9749
d99dcf51
JB
9750/* Given two array types T1 and T2, return nonzero iff both arrays
9751 contain the same number of elements. */
9752
9753static int
9754ada_same_array_size_p (struct type *t1, struct type *t2)
9755{
9756 LONGEST lo1, hi1, lo2, hi2;
9757
9758 /* Get the array bounds in order to verify that the size of
9759 the two arrays match. */
9760 if (!get_array_bounds (t1, &lo1, &hi1)
9761 || !get_array_bounds (t2, &lo2, &hi2))
9762 error (_("unable to determine array bounds"));
9763
9764 /* To make things easier for size comparison, normalize a bit
9765 the case of empty arrays by making sure that the difference
9766 between upper bound and lower bound is always -1. */
9767 if (lo1 > hi1)
9768 hi1 = lo1 - 1;
9769 if (lo2 > hi2)
9770 hi2 = lo2 - 1;
9771
9772 return (hi1 - lo1 == hi2 - lo2);
9773}
9774
9775/* Assuming that VAL is an array of integrals, and TYPE represents
9776 an array with the same number of elements, but with wider integral
9777 elements, return an array "casted" to TYPE. In practice, this
9778 means that the returned array is built by casting each element
9779 of the original array into TYPE's (wider) element type. */
9780
9781static struct value *
9782ada_promote_array_of_integrals (struct type *type, struct value *val)
9783{
9784 struct type *elt_type = TYPE_TARGET_TYPE (type);
9785 LONGEST lo, hi;
9786 struct value *res;
9787 LONGEST i;
9788
9789 /* Verify that both val and type are arrays of scalars, and
9790 that the size of val's elements is smaller than the size
9791 of type's element. */
9792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9793 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9794 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9795 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9796 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9797 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9798
9799 if (!get_array_bounds (type, &lo, &hi))
9800 error (_("unable to determine array bounds"));
9801
9802 res = allocate_value (type);
9803
9804 /* Promote each array element. */
9805 for (i = 0; i < hi - lo + 1; i++)
9806 {
9807 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9808
9809 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9810 value_contents_all (elt), TYPE_LENGTH (elt_type));
9811 }
9812
9813 return res;
9814}
9815
4c4b4cd2
PH
9816/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9817 return the converted value. */
9818
d2e4a39e
AS
9819static struct value *
9820coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9821{
df407dfe 9822 struct type *type2 = value_type (val);
5b4ee69b 9823
14f9c5c9
AS
9824 if (type == type2)
9825 return val;
9826
61ee279c
PH
9827 type2 = ada_check_typedef (type2);
9828 type = ada_check_typedef (type);
14f9c5c9 9829
d2e4a39e
AS
9830 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9831 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9832 {
9833 val = ada_value_ind (val);
df407dfe 9834 type2 = value_type (val);
14f9c5c9
AS
9835 }
9836
d2e4a39e 9837 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9838 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9839 {
d99dcf51
JB
9840 if (!ada_same_array_size_p (type, type2))
9841 error (_("cannot assign arrays of different length"));
9842
9843 if (is_integral_type (TYPE_TARGET_TYPE (type))
9844 && is_integral_type (TYPE_TARGET_TYPE (type2))
9845 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9846 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9847 {
9848 /* Allow implicit promotion of the array elements to
9849 a wider type. */
9850 return ada_promote_array_of_integrals (type, val);
9851 }
9852
9853 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9854 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9855 error (_("Incompatible types in assignment"));
04624583 9856 deprecated_set_value_type (val, type);
14f9c5c9 9857 }
d2e4a39e 9858 return val;
14f9c5c9
AS
9859}
9860
4c4b4cd2
PH
9861static struct value *
9862ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9863{
9864 struct value *val;
9865 struct type *type1, *type2;
9866 LONGEST v, v1, v2;
9867
994b9211
AC
9868 arg1 = coerce_ref (arg1);
9869 arg2 = coerce_ref (arg2);
18af8284
JB
9870 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9871 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9872
76a01679
JB
9873 if (TYPE_CODE (type1) != TYPE_CODE_INT
9874 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9875 return value_binop (arg1, arg2, op);
9876
76a01679 9877 switch (op)
4c4b4cd2
PH
9878 {
9879 case BINOP_MOD:
9880 case BINOP_DIV:
9881 case BINOP_REM:
9882 break;
9883 default:
9884 return value_binop (arg1, arg2, op);
9885 }
9886
9887 v2 = value_as_long (arg2);
9888 if (v2 == 0)
323e0a4a 9889 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9890
9891 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9892 return value_binop (arg1, arg2, op);
9893
9894 v1 = value_as_long (arg1);
9895 switch (op)
9896 {
9897 case BINOP_DIV:
9898 v = v1 / v2;
76a01679
JB
9899 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9900 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9901 break;
9902 case BINOP_REM:
9903 v = v1 % v2;
76a01679
JB
9904 if (v * v1 < 0)
9905 v -= v2;
4c4b4cd2
PH
9906 break;
9907 default:
9908 /* Should not reach this point. */
9909 v = 0;
9910 }
9911
9912 val = allocate_value (type1);
990a07ab 9913 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9914 TYPE_LENGTH (value_type (val)),
9915 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9916 return val;
9917}
9918
9919static int
9920ada_value_equal (struct value *arg1, struct value *arg2)
9921{
df407dfe
AC
9922 if (ada_is_direct_array_type (value_type (arg1))
9923 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9924 {
79e8fcaa
JB
9925 struct type *arg1_type, *arg2_type;
9926
f58b38bf
JB
9927 /* Automatically dereference any array reference before
9928 we attempt to perform the comparison. */
9929 arg1 = ada_coerce_ref (arg1);
9930 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9931
4c4b4cd2
PH
9932 arg1 = ada_coerce_to_simple_array (arg1);
9933 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9934
9935 arg1_type = ada_check_typedef (value_type (arg1));
9936 arg2_type = ada_check_typedef (value_type (arg2));
9937
9938 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9939 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9940 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9941 /* FIXME: The following works only for types whose
76a01679
JB
9942 representations use all bits (no padding or undefined bits)
9943 and do not have user-defined equality. */
79e8fcaa
JB
9944 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9945 && memcmp (value_contents (arg1), value_contents (arg2),
9946 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9947 }
9948 return value_equal (arg1, arg2);
9949}
9950
52ce6436
PH
9951/* Total number of component associations in the aggregate starting at
9952 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9953 OP_AGGREGATE. */
52ce6436
PH
9954
9955static int
9956num_component_specs (struct expression *exp, int pc)
9957{
9958 int n, m, i;
5b4ee69b 9959
52ce6436
PH
9960 m = exp->elts[pc + 1].longconst;
9961 pc += 3;
9962 n = 0;
9963 for (i = 0; i < m; i += 1)
9964 {
9965 switch (exp->elts[pc].opcode)
9966 {
9967 default:
9968 n += 1;
9969 break;
9970 case OP_CHOICES:
9971 n += exp->elts[pc + 1].longconst;
9972 break;
9973 }
9974 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9975 }
9976 return n;
9977}
9978
9979/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9980 component of LHS (a simple array or a record), updating *POS past
9981 the expression, assuming that LHS is contained in CONTAINER. Does
9982 not modify the inferior's memory, nor does it modify LHS (unless
9983 LHS == CONTAINER). */
9984
9985static void
9986assign_component (struct value *container, struct value *lhs, LONGEST index,
9987 struct expression *exp, int *pos)
9988{
9989 struct value *mark = value_mark ();
9990 struct value *elt;
0e2da9f0 9991 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9992
0e2da9f0 9993 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9994 {
22601c15
UW
9995 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9996 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9997
52ce6436
PH
9998 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9999 }
10000 else
10001 {
10002 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 10003 elt = ada_to_fixed_value (elt);
52ce6436
PH
10004 }
10005
10006 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10007 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10008 else
10009 value_assign_to_component (container, elt,
10010 ada_evaluate_subexp (NULL, exp, pos,
10011 EVAL_NORMAL));
10012
10013 value_free_to_mark (mark);
10014}
10015
10016/* Assuming that LHS represents an lvalue having a record or array
10017 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10018 of that aggregate's value to LHS, advancing *POS past the
10019 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10020 lvalue containing LHS (possibly LHS itself). Does not modify
10021 the inferior's memory, nor does it modify the contents of
0963b4bd 10022 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10023
10024static struct value *
10025assign_aggregate (struct value *container,
10026 struct value *lhs, struct expression *exp,
10027 int *pos, enum noside noside)
10028{
10029 struct type *lhs_type;
10030 int n = exp->elts[*pos+1].longconst;
10031 LONGEST low_index, high_index;
10032 int num_specs;
10033 LONGEST *indices;
10034 int max_indices, num_indices;
52ce6436 10035 int i;
52ce6436
PH
10036
10037 *pos += 3;
10038 if (noside != EVAL_NORMAL)
10039 {
52ce6436
PH
10040 for (i = 0; i < n; i += 1)
10041 ada_evaluate_subexp (NULL, exp, pos, noside);
10042 return container;
10043 }
10044
10045 container = ada_coerce_ref (container);
10046 if (ada_is_direct_array_type (value_type (container)))
10047 container = ada_coerce_to_simple_array (container);
10048 lhs = ada_coerce_ref (lhs);
10049 if (!deprecated_value_modifiable (lhs))
10050 error (_("Left operand of assignment is not a modifiable lvalue."));
10051
0e2da9f0 10052 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10053 if (ada_is_direct_array_type (lhs_type))
10054 {
10055 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10056 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10057 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10058 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10059 }
10060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10061 {
10062 low_index = 0;
10063 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10064 }
10065 else
10066 error (_("Left-hand side must be array or record."));
10067
10068 num_specs = num_component_specs (exp, *pos - 3);
10069 max_indices = 4 * num_specs + 4;
8d749320 10070 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10071 indices[0] = indices[1] = low_index - 1;
10072 indices[2] = indices[3] = high_index + 1;
10073 num_indices = 4;
10074
10075 for (i = 0; i < n; i += 1)
10076 {
10077 switch (exp->elts[*pos].opcode)
10078 {
1fbf5ada
JB
10079 case OP_CHOICES:
10080 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10081 &num_indices, max_indices,
10082 low_index, high_index);
10083 break;
10084 case OP_POSITIONAL:
10085 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10086 &num_indices, max_indices,
10087 low_index, high_index);
1fbf5ada
JB
10088 break;
10089 case OP_OTHERS:
10090 if (i != n-1)
10091 error (_("Misplaced 'others' clause"));
10092 aggregate_assign_others (container, lhs, exp, pos, indices,
10093 num_indices, low_index, high_index);
10094 break;
10095 default:
10096 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10097 }
10098 }
10099
10100 return container;
10101}
10102
10103/* Assign into the component of LHS indexed by the OP_POSITIONAL
10104 construct at *POS, updating *POS past the construct, given that
10105 the positions are relative to lower bound LOW, where HIGH is the
10106 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10107 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10108 assign_aggregate. */
52ce6436
PH
10109static void
10110aggregate_assign_positional (struct value *container,
10111 struct value *lhs, struct expression *exp,
10112 int *pos, LONGEST *indices, int *num_indices,
10113 int max_indices, LONGEST low, LONGEST high)
10114{
10115 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10116
10117 if (ind - 1 == high)
e1d5a0d2 10118 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10119 if (ind <= high)
10120 {
10121 add_component_interval (ind, ind, indices, num_indices, max_indices);
10122 *pos += 3;
10123 assign_component (container, lhs, ind, exp, pos);
10124 }
10125 else
10126 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10127}
10128
10129/* Assign into the components of LHS indexed by the OP_CHOICES
10130 construct at *POS, updating *POS past the construct, given that
10131 the allowable indices are LOW..HIGH. Record the indices assigned
10132 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10133 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10134static void
10135aggregate_assign_from_choices (struct value *container,
10136 struct value *lhs, struct expression *exp,
10137 int *pos, LONGEST *indices, int *num_indices,
10138 int max_indices, LONGEST low, LONGEST high)
10139{
10140 int j;
10141 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10142 int choice_pos, expr_pc;
10143 int is_array = ada_is_direct_array_type (value_type (lhs));
10144
10145 choice_pos = *pos += 3;
10146
10147 for (j = 0; j < n_choices; j += 1)
10148 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10149 expr_pc = *pos;
10150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10151
10152 for (j = 0; j < n_choices; j += 1)
10153 {
10154 LONGEST lower, upper;
10155 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10156
52ce6436
PH
10157 if (op == OP_DISCRETE_RANGE)
10158 {
10159 choice_pos += 1;
10160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10161 EVAL_NORMAL));
10162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10163 EVAL_NORMAL));
10164 }
10165 else if (is_array)
10166 {
10167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10168 EVAL_NORMAL));
10169 upper = lower;
10170 }
10171 else
10172 {
10173 int ind;
0d5cff50 10174 const char *name;
5b4ee69b 10175
52ce6436
PH
10176 switch (op)
10177 {
10178 case OP_NAME:
10179 name = &exp->elts[choice_pos + 2].string;
10180 break;
10181 case OP_VAR_VALUE:
10182 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10183 break;
10184 default:
10185 error (_("Invalid record component association."));
10186 }
10187 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10188 ind = 0;
10189 if (! find_struct_field (name, value_type (lhs), 0,
10190 NULL, NULL, NULL, NULL, &ind))
10191 error (_("Unknown component name: %s."), name);
10192 lower = upper = ind;
10193 }
10194
10195 if (lower <= upper && (lower < low || upper > high))
10196 error (_("Index in component association out of bounds."));
10197
10198 add_component_interval (lower, upper, indices, num_indices,
10199 max_indices);
10200 while (lower <= upper)
10201 {
10202 int pos1;
5b4ee69b 10203
52ce6436
PH
10204 pos1 = expr_pc;
10205 assign_component (container, lhs, lower, exp, &pos1);
10206 lower += 1;
10207 }
10208 }
10209}
10210
10211/* Assign the value of the expression in the OP_OTHERS construct in
10212 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10213 have not been previously assigned. The index intervals already assigned
10214 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10215 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10216static void
10217aggregate_assign_others (struct value *container,
10218 struct value *lhs, struct expression *exp,
10219 int *pos, LONGEST *indices, int num_indices,
10220 LONGEST low, LONGEST high)
10221{
10222 int i;
5ce64950 10223 int expr_pc = *pos + 1;
52ce6436
PH
10224
10225 for (i = 0; i < num_indices - 2; i += 2)
10226 {
10227 LONGEST ind;
5b4ee69b 10228
52ce6436
PH
10229 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10230 {
5ce64950 10231 int localpos;
5b4ee69b 10232
5ce64950
MS
10233 localpos = expr_pc;
10234 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10235 }
10236 }
10237 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10238}
10239
10240/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10241 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10242 modifying *SIZE as needed. It is an error if *SIZE exceeds
10243 MAX_SIZE. The resulting intervals do not overlap. */
10244static void
10245add_component_interval (LONGEST low, LONGEST high,
10246 LONGEST* indices, int *size, int max_size)
10247{
10248 int i, j;
5b4ee69b 10249
52ce6436
PH
10250 for (i = 0; i < *size; i += 2) {
10251 if (high >= indices[i] && low <= indices[i + 1])
10252 {
10253 int kh;
5b4ee69b 10254
52ce6436
PH
10255 for (kh = i + 2; kh < *size; kh += 2)
10256 if (high < indices[kh])
10257 break;
10258 if (low < indices[i])
10259 indices[i] = low;
10260 indices[i + 1] = indices[kh - 1];
10261 if (high > indices[i + 1])
10262 indices[i + 1] = high;
10263 memcpy (indices + i + 2, indices + kh, *size - kh);
10264 *size -= kh - i - 2;
10265 return;
10266 }
10267 else if (high < indices[i])
10268 break;
10269 }
10270
10271 if (*size == max_size)
10272 error (_("Internal error: miscounted aggregate components."));
10273 *size += 2;
10274 for (j = *size-1; j >= i+2; j -= 1)
10275 indices[j] = indices[j - 2];
10276 indices[i] = low;
10277 indices[i + 1] = high;
10278}
10279
6e48bd2c
JB
10280/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10281 is different. */
10282
10283static struct value *
b7e22850 10284ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10285{
10286 if (type == ada_check_typedef (value_type (arg2)))
10287 return arg2;
10288
10289 if (ada_is_fixed_point_type (type))
10290 return (cast_to_fixed (type, arg2));
10291
10292 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10293 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10294
10295 return value_cast (type, arg2);
10296}
10297
284614f0
JB
10298/* Evaluating Ada expressions, and printing their result.
10299 ------------------------------------------------------
10300
21649b50
JB
10301 1. Introduction:
10302 ----------------
10303
284614f0
JB
10304 We usually evaluate an Ada expression in order to print its value.
10305 We also evaluate an expression in order to print its type, which
10306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10310 similar.
10311
10312 Evaluating expressions is a little more complicated for Ada entities
10313 than it is for entities in languages such as C. The main reason for
10314 this is that Ada provides types whose definition might be dynamic.
10315 One example of such types is variant records. Or another example
10316 would be an array whose bounds can only be known at run time.
10317
10318 The following description is a general guide as to what should be
10319 done (and what should NOT be done) in order to evaluate an expression
10320 involving such types, and when. This does not cover how the semantic
10321 information is encoded by GNAT as this is covered separatly. For the
10322 document used as the reference for the GNAT encoding, see exp_dbug.ads
10323 in the GNAT sources.
10324
10325 Ideally, we should embed each part of this description next to its
10326 associated code. Unfortunately, the amount of code is so vast right
10327 now that it's hard to see whether the code handling a particular
10328 situation might be duplicated or not. One day, when the code is
10329 cleaned up, this guide might become redundant with the comments
10330 inserted in the code, and we might want to remove it.
10331
21649b50
JB
10332 2. ``Fixing'' an Entity, the Simple Case:
10333 -----------------------------------------
10334
284614f0
JB
10335 When evaluating Ada expressions, the tricky issue is that they may
10336 reference entities whose type contents and size are not statically
10337 known. Consider for instance a variant record:
10338
10339 type Rec (Empty : Boolean := True) is record
10340 case Empty is
10341 when True => null;
10342 when False => Value : Integer;
10343 end case;
10344 end record;
10345 Yes : Rec := (Empty => False, Value => 1);
10346 No : Rec := (empty => True);
10347
10348 The size and contents of that record depends on the value of the
10349 descriminant (Rec.Empty). At this point, neither the debugging
10350 information nor the associated type structure in GDB are able to
10351 express such dynamic types. So what the debugger does is to create
10352 "fixed" versions of the type that applies to the specific object.
10353 We also informally refer to this opperation as "fixing" an object,
10354 which means creating its associated fixed type.
10355
10356 Example: when printing the value of variable "Yes" above, its fixed
10357 type would look like this:
10358
10359 type Rec is record
10360 Empty : Boolean;
10361 Value : Integer;
10362 end record;
10363
10364 On the other hand, if we printed the value of "No", its fixed type
10365 would become:
10366
10367 type Rec is record
10368 Empty : Boolean;
10369 end record;
10370
10371 Things become a little more complicated when trying to fix an entity
10372 with a dynamic type that directly contains another dynamic type,
10373 such as an array of variant records, for instance. There are
10374 two possible cases: Arrays, and records.
10375
21649b50
JB
10376 3. ``Fixing'' Arrays:
10377 ---------------------
10378
10379 The type structure in GDB describes an array in terms of its bounds,
10380 and the type of its elements. By design, all elements in the array
10381 have the same type and we cannot represent an array of variant elements
10382 using the current type structure in GDB. When fixing an array,
10383 we cannot fix the array element, as we would potentially need one
10384 fixed type per element of the array. As a result, the best we can do
10385 when fixing an array is to produce an array whose bounds and size
10386 are correct (allowing us to read it from memory), but without having
10387 touched its element type. Fixing each element will be done later,
10388 when (if) necessary.
10389
10390 Arrays are a little simpler to handle than records, because the same
10391 amount of memory is allocated for each element of the array, even if
1b536f04 10392 the amount of space actually used by each element differs from element
21649b50 10393 to element. Consider for instance the following array of type Rec:
284614f0
JB
10394
10395 type Rec_Array is array (1 .. 2) of Rec;
10396
1b536f04
JB
10397 The actual amount of memory occupied by each element might be different
10398 from element to element, depending on the value of their discriminant.
21649b50 10399 But the amount of space reserved for each element in the array remains
1b536f04 10400 fixed regardless. So we simply need to compute that size using
21649b50
JB
10401 the debugging information available, from which we can then determine
10402 the array size (we multiply the number of elements of the array by
10403 the size of each element).
10404
10405 The simplest case is when we have an array of a constrained element
10406 type. For instance, consider the following type declarations:
10407
10408 type Bounded_String (Max_Size : Integer) is
10409 Length : Integer;
10410 Buffer : String (1 .. Max_Size);
10411 end record;
10412 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10413
10414 In this case, the compiler describes the array as an array of
10415 variable-size elements (identified by its XVS suffix) for which
10416 the size can be read in the parallel XVZ variable.
10417
10418 In the case of an array of an unconstrained element type, the compiler
10419 wraps the array element inside a private PAD type. This type should not
10420 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10421 that we also use the adjective "aligner" in our code to designate
10422 these wrapper types.
10423
1b536f04 10424 In some cases, the size allocated for each element is statically
21649b50
JB
10425 known. In that case, the PAD type already has the correct size,
10426 and the array element should remain unfixed.
10427
10428 But there are cases when this size is not statically known.
10429 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10430
10431 type Dynamic is array (1 .. Five) of Integer;
10432 type Wrapper (Has_Length : Boolean := False) is record
10433 Data : Dynamic;
10434 case Has_Length is
10435 when True => Length : Integer;
10436 when False => null;
10437 end case;
10438 end record;
10439 type Wrapper_Array is array (1 .. 2) of Wrapper;
10440
10441 Hello : Wrapper_Array := (others => (Has_Length => True,
10442 Data => (others => 17),
10443 Length => 1));
10444
10445
10446 The debugging info would describe variable Hello as being an
10447 array of a PAD type. The size of that PAD type is not statically
10448 known, but can be determined using a parallel XVZ variable.
10449 In that case, a copy of the PAD type with the correct size should
10450 be used for the fixed array.
10451
21649b50
JB
10452 3. ``Fixing'' record type objects:
10453 ----------------------------------
10454
10455 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10456 record types. In this case, in order to compute the associated
10457 fixed type, we need to determine the size and offset of each of
10458 its components. This, in turn, requires us to compute the fixed
10459 type of each of these components.
10460
10461 Consider for instance the example:
10462
10463 type Bounded_String (Max_Size : Natural) is record
10464 Str : String (1 .. Max_Size);
10465 Length : Natural;
10466 end record;
10467 My_String : Bounded_String (Max_Size => 10);
10468
10469 In that case, the position of field "Length" depends on the size
10470 of field Str, which itself depends on the value of the Max_Size
21649b50 10471 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10472 we need to fix the type of field Str. Therefore, fixing a variant
10473 record requires us to fix each of its components.
10474
10475 However, if a component does not have a dynamic size, the component
10476 should not be fixed. In particular, fields that use a PAD type
10477 should not fixed. Here is an example where this might happen
10478 (assuming type Rec above):
10479
10480 type Container (Big : Boolean) is record
10481 First : Rec;
10482 After : Integer;
10483 case Big is
10484 when True => Another : Integer;
10485 when False => null;
10486 end case;
10487 end record;
10488 My_Container : Container := (Big => False,
10489 First => (Empty => True),
10490 After => 42);
10491
10492 In that example, the compiler creates a PAD type for component First,
10493 whose size is constant, and then positions the component After just
10494 right after it. The offset of component After is therefore constant
10495 in this case.
10496
10497 The debugger computes the position of each field based on an algorithm
10498 that uses, among other things, the actual position and size of the field
21649b50
JB
10499 preceding it. Let's now imagine that the user is trying to print
10500 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10501 end up computing the offset of field After based on the size of the
10502 fixed version of field First. And since in our example First has
10503 only one actual field, the size of the fixed type is actually smaller
10504 than the amount of space allocated to that field, and thus we would
10505 compute the wrong offset of field After.
10506
21649b50
JB
10507 To make things more complicated, we need to watch out for dynamic
10508 components of variant records (identified by the ___XVL suffix in
10509 the component name). Even if the target type is a PAD type, the size
10510 of that type might not be statically known. So the PAD type needs
10511 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10512 we might end up with the wrong size for our component. This can be
10513 observed with the following type declarations:
284614f0
JB
10514
10515 type Octal is new Integer range 0 .. 7;
10516 type Octal_Array is array (Positive range <>) of Octal;
10517 pragma Pack (Octal_Array);
10518
10519 type Octal_Buffer (Size : Positive) is record
10520 Buffer : Octal_Array (1 .. Size);
10521 Length : Integer;
10522 end record;
10523
10524 In that case, Buffer is a PAD type whose size is unset and needs
10525 to be computed by fixing the unwrapped type.
10526
21649b50
JB
10527 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10528 ----------------------------------------------------------
10529
10530 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10531 thus far, be actually fixed?
10532
10533 The answer is: Only when referencing that element. For instance
10534 when selecting one component of a record, this specific component
10535 should be fixed at that point in time. Or when printing the value
10536 of a record, each component should be fixed before its value gets
10537 printed. Similarly for arrays, the element of the array should be
10538 fixed when printing each element of the array, or when extracting
10539 one element out of that array. On the other hand, fixing should
10540 not be performed on the elements when taking a slice of an array!
10541
31432a67 10542 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10543 size of each field is that we end up also miscomputing the size
10544 of the containing type. This can have adverse results when computing
10545 the value of an entity. GDB fetches the value of an entity based
10546 on the size of its type, and thus a wrong size causes GDB to fetch
10547 the wrong amount of memory. In the case where the computed size is
10548 too small, GDB fetches too little data to print the value of our
31432a67 10549 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10550 past the buffer containing the data =:-o. */
10551
ced9779b
JB
10552/* Evaluate a subexpression of EXP, at index *POS, and return a value
10553 for that subexpression cast to TO_TYPE. Advance *POS over the
10554 subexpression. */
10555
10556static value *
10557ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10558 enum noside noside, struct type *to_type)
10559{
10560 int pc = *pos;
10561
10562 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10563 || exp->elts[pc].opcode == OP_VAR_VALUE)
10564 {
10565 (*pos) += 4;
10566
10567 value *val;
10568 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10569 {
10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10571 return value_zero (to_type, not_lval);
10572
10573 val = evaluate_var_msym_value (noside,
10574 exp->elts[pc + 1].objfile,
10575 exp->elts[pc + 2].msymbol);
10576 }
10577 else
10578 val = evaluate_var_value (noside,
10579 exp->elts[pc + 1].block,
10580 exp->elts[pc + 2].symbol);
10581
10582 if (noside == EVAL_SKIP)
10583 return eval_skip_value (exp);
10584
10585 val = ada_value_cast (to_type, val);
10586
10587 /* Follow the Ada language semantics that do not allow taking
10588 an address of the result of a cast (view conversion in Ada). */
10589 if (VALUE_LVAL (val) == lval_memory)
10590 {
10591 if (value_lazy (val))
10592 value_fetch_lazy (val);
10593 VALUE_LVAL (val) = not_lval;
10594 }
10595 return val;
10596 }
10597
10598 value *val = evaluate_subexp (to_type, exp, pos, noside);
10599 if (noside == EVAL_SKIP)
10600 return eval_skip_value (exp);
10601 return ada_value_cast (to_type, val);
10602}
10603
284614f0
JB
10604/* Implement the evaluate_exp routine in the exp_descriptor structure
10605 for the Ada language. */
10606
52ce6436 10607static struct value *
ebf56fd3 10608ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10609 int *pos, enum noside noside)
14f9c5c9
AS
10610{
10611 enum exp_opcode op;
b5385fc0 10612 int tem;
14f9c5c9 10613 int pc;
5ec18f2b 10614 int preeval_pos;
14f9c5c9
AS
10615 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10616 struct type *type;
52ce6436 10617 int nargs, oplen;
d2e4a39e 10618 struct value **argvec;
14f9c5c9 10619
d2e4a39e
AS
10620 pc = *pos;
10621 *pos += 1;
14f9c5c9
AS
10622 op = exp->elts[pc].opcode;
10623
d2e4a39e 10624 switch (op)
14f9c5c9
AS
10625 {
10626 default:
10627 *pos -= 1;
6e48bd2c 10628 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10629
10630 if (noside == EVAL_NORMAL)
10631 arg1 = unwrap_value (arg1);
6e48bd2c 10632
edd079d9 10633 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10634 then we need to perform the conversion manually, because
10635 evaluate_subexp_standard doesn't do it. This conversion is
10636 necessary in Ada because the different kinds of float/fixed
10637 types in Ada have different representations.
10638
10639 Similarly, we need to perform the conversion from OP_LONG
10640 ourselves. */
edd079d9 10641 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10642 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10643
10644 return arg1;
4c4b4cd2
PH
10645
10646 case OP_STRING:
10647 {
76a01679 10648 struct value *result;
5b4ee69b 10649
76a01679
JB
10650 *pos -= 1;
10651 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10652 /* The result type will have code OP_STRING, bashed there from
10653 OP_ARRAY. Bash it back. */
df407dfe
AC
10654 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10655 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10656 return result;
4c4b4cd2 10657 }
14f9c5c9
AS
10658
10659 case UNOP_CAST:
10660 (*pos) += 2;
10661 type = exp->elts[pc + 1].type;
ced9779b 10662 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10663
4c4b4cd2
PH
10664 case UNOP_QUAL:
10665 (*pos) += 2;
10666 type = exp->elts[pc + 1].type;
10667 return ada_evaluate_subexp (type, exp, pos, noside);
10668
14f9c5c9
AS
10669 case BINOP_ASSIGN:
10670 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10671 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10672 {
10673 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10674 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10675 return arg1;
10676 return ada_value_assign (arg1, arg1);
10677 }
003f3813
JB
10678 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10679 except if the lhs of our assignment is a convenience variable.
10680 In the case of assigning to a convenience variable, the lhs
10681 should be exactly the result of the evaluation of the rhs. */
10682 type = value_type (arg1);
10683 if (VALUE_LVAL (arg1) == lval_internalvar)
10684 type = NULL;
10685 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10686 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10687 return arg1;
df407dfe
AC
10688 if (ada_is_fixed_point_type (value_type (arg1)))
10689 arg2 = cast_to_fixed (value_type (arg1), arg2);
10690 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10691 error
323e0a4a 10692 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10693 else
df407dfe 10694 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10695 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10696
10697 case BINOP_ADD:
10698 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10699 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10700 if (noside == EVAL_SKIP)
4c4b4cd2 10701 goto nosideret;
2ac8a782
JB
10702 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10703 return (value_from_longest
10704 (value_type (arg1),
10705 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10706 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10707 return (value_from_longest
10708 (value_type (arg2),
10709 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10710 if ((ada_is_fixed_point_type (value_type (arg1))
10711 || ada_is_fixed_point_type (value_type (arg2)))
10712 && value_type (arg1) != value_type (arg2))
323e0a4a 10713 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10714 /* Do the addition, and cast the result to the type of the first
10715 argument. We cannot cast the result to a reference type, so if
10716 ARG1 is a reference type, find its underlying type. */
10717 type = value_type (arg1);
10718 while (TYPE_CODE (type) == TYPE_CODE_REF)
10719 type = TYPE_TARGET_TYPE (type);
f44316fa 10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10721 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10722
10723 case BINOP_SUB:
10724 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10725 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10726 if (noside == EVAL_SKIP)
4c4b4cd2 10727 goto nosideret;
2ac8a782
JB
10728 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10729 return (value_from_longest
10730 (value_type (arg1),
10731 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10732 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10733 return (value_from_longest
10734 (value_type (arg2),
10735 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10736 if ((ada_is_fixed_point_type (value_type (arg1))
10737 || ada_is_fixed_point_type (value_type (arg2)))
10738 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10739 error (_("Operands of fixed-point subtraction "
10740 "must have the same type"));
b7789565
JB
10741 /* Do the substraction, and cast the result to the type of the first
10742 argument. We cannot cast the result to a reference type, so if
10743 ARG1 is a reference type, find its underlying type. */
10744 type = value_type (arg1);
10745 while (TYPE_CODE (type) == TYPE_CODE_REF)
10746 type = TYPE_TARGET_TYPE (type);
f44316fa 10747 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10748 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10749
10750 case BINOP_MUL:
10751 case BINOP_DIV:
e1578042
JB
10752 case BINOP_REM:
10753 case BINOP_MOD:
14f9c5c9
AS
10754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10755 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10756 if (noside == EVAL_SKIP)
4c4b4cd2 10757 goto nosideret;
e1578042 10758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10759 {
10760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10761 return value_zero (value_type (arg1), not_lval);
10762 }
14f9c5c9 10763 else
4c4b4cd2 10764 {
a53b7a21 10765 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10766 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10767 arg1 = cast_from_fixed (type, arg1);
df407dfe 10768 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10769 arg2 = cast_from_fixed (type, arg2);
f44316fa 10770 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10771 return ada_value_binop (arg1, arg2, op);
10772 }
10773
4c4b4cd2
PH
10774 case BINOP_EQUAL:
10775 case BINOP_NOTEQUAL:
14f9c5c9 10776 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10777 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10778 if (noside == EVAL_SKIP)
76a01679 10779 goto nosideret;
4c4b4cd2 10780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10781 tem = 0;
4c4b4cd2 10782 else
f44316fa
UW
10783 {
10784 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10785 tem = ada_value_equal (arg1, arg2);
10786 }
4c4b4cd2 10787 if (op == BINOP_NOTEQUAL)
76a01679 10788 tem = !tem;
fbb06eb1
UW
10789 type = language_bool_type (exp->language_defn, exp->gdbarch);
10790 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10791
10792 case UNOP_NEG:
10793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10794 if (noside == EVAL_SKIP)
10795 goto nosideret;
df407dfe
AC
10796 else if (ada_is_fixed_point_type (value_type (arg1)))
10797 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10798 else
f44316fa
UW
10799 {
10800 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10801 return value_neg (arg1);
10802 }
4c4b4cd2 10803
2330c6c6
JB
10804 case BINOP_LOGICAL_AND:
10805 case BINOP_LOGICAL_OR:
10806 case UNOP_LOGICAL_NOT:
000d5124
JB
10807 {
10808 struct value *val;
10809
10810 *pos -= 1;
10811 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10812 type = language_bool_type (exp->language_defn, exp->gdbarch);
10813 return value_cast (type, val);
000d5124 10814 }
2330c6c6
JB
10815
10816 case BINOP_BITWISE_AND:
10817 case BINOP_BITWISE_IOR:
10818 case BINOP_BITWISE_XOR:
000d5124
JB
10819 {
10820 struct value *val;
10821
10822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10823 *pos = pc;
10824 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10825
10826 return value_cast (value_type (arg1), val);
10827 }
2330c6c6 10828
14f9c5c9
AS
10829 case OP_VAR_VALUE:
10830 *pos -= 1;
6799def4 10831
14f9c5c9 10832 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10833 {
10834 *pos += 4;
10835 goto nosideret;
10836 }
da5c522f
JB
10837
10838 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10839 /* Only encountered when an unresolved symbol occurs in a
10840 context other than a function call, in which case, it is
52ce6436 10841 invalid. */
323e0a4a 10842 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10844
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10846 {
0c1f74cf 10847 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10848 /* Check to see if this is a tagged type. We also need to handle
10849 the case where the type is a reference to a tagged type, but
10850 we have to be careful to exclude pointers to tagged types.
10851 The latter should be shown as usual (as a pointer), whereas
10852 a reference should mostly be transparent to the user. */
10853 if (ada_is_tagged_type (type, 0)
023db19c 10854 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10855 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10856 {
10857 /* Tagged types are a little special in the fact that the real
10858 type is dynamic and can only be determined by inspecting the
10859 object's tag. This means that we need to get the object's
10860 value first (EVAL_NORMAL) and then extract the actual object
10861 type from its tag.
10862
10863 Note that we cannot skip the final step where we extract
10864 the object type from its tag, because the EVAL_NORMAL phase
10865 results in dynamic components being resolved into fixed ones.
10866 This can cause problems when trying to print the type
10867 description of tagged types whose parent has a dynamic size:
10868 We use the type name of the "_parent" component in order
10869 to print the name of the ancestor type in the type description.
10870 If that component had a dynamic size, the resolution into
10871 a fixed type would result in the loss of that type name,
10872 thus preventing us from printing the name of the ancestor
10873 type in the type description. */
10874 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10875
10876 if (TYPE_CODE (type) != TYPE_CODE_REF)
10877 {
10878 struct type *actual_type;
10879
10880 actual_type = type_from_tag (ada_value_tag (arg1));
10881 if (actual_type == NULL)
10882 /* If, for some reason, we were unable to determine
10883 the actual type from the tag, then use the static
10884 approximation that we just computed as a fallback.
10885 This can happen if the debugging information is
10886 incomplete, for instance. */
10887 actual_type = type;
10888 return value_zero (actual_type, not_lval);
10889 }
10890 else
10891 {
10892 /* In the case of a ref, ada_coerce_ref takes care
10893 of determining the actual type. But the evaluation
10894 should return a ref as it should be valid to ask
10895 for its address; so rebuild a ref after coerce. */
10896 arg1 = ada_coerce_ref (arg1);
a65cfae5 10897 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10898 }
10899 }
0c1f74cf 10900
84754697
JB
10901 /* Records and unions for which GNAT encodings have been
10902 generated need to be statically fixed as well.
10903 Otherwise, non-static fixing produces a type where
10904 all dynamic properties are removed, which prevents "ptype"
10905 from being able to completely describe the type.
10906 For instance, a case statement in a variant record would be
10907 replaced by the relevant components based on the actual
10908 value of the discriminants. */
10909 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10910 && dynamic_template_type (type) != NULL)
10911 || (TYPE_CODE (type) == TYPE_CODE_UNION
10912 && ada_find_parallel_type (type, "___XVU") != NULL))
10913 {
10914 *pos += 4;
10915 return value_zero (to_static_fixed_type (type), not_lval);
10916 }
4c4b4cd2 10917 }
da5c522f
JB
10918
10919 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10920 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10921
10922 case OP_FUNCALL:
10923 (*pos) += 2;
10924
10925 /* Allocate arg vector, including space for the function to be
10926 called in argvec[0] and a terminating NULL. */
10927 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10928 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10929
10930 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10931 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10932 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10933 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10934 else
10935 {
10936 for (tem = 0; tem <= nargs; tem += 1)
10937 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10938 argvec[tem] = 0;
10939
10940 if (noside == EVAL_SKIP)
10941 goto nosideret;
10942 }
10943
ad82864c
JB
10944 if (ada_is_constrained_packed_array_type
10945 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10946 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10947 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10948 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10949 /* This is a packed array that has already been fixed, and
10950 therefore already coerced to a simple array. Nothing further
10951 to do. */
10952 ;
e6c2c623
PMR
10953 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10954 {
10955 /* Make sure we dereference references so that all the code below
10956 feels like it's really handling the referenced value. Wrapping
10957 types (for alignment) may be there, so make sure we strip them as
10958 well. */
10959 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10960 }
10961 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10962 && VALUE_LVAL (argvec[0]) == lval_memory)
10963 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10964
df407dfe 10965 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10966
10967 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10968 them. So, if this is an array typedef (encoding use for array
10969 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10970 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10971 type = ada_typedef_target_type (type);
10972
4c4b4cd2
PH
10973 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10974 {
61ee279c 10975 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10976 {
10977 case TYPE_CODE_FUNC:
61ee279c 10978 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10979 break;
10980 case TYPE_CODE_ARRAY:
10981 break;
10982 case TYPE_CODE_STRUCT:
10983 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10984 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10985 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10986 break;
10987 default:
323e0a4a 10988 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10989 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10990 break;
10991 }
10992 }
10993
10994 switch (TYPE_CODE (type))
10995 {
10996 case TYPE_CODE_FUNC:
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10998 {
7022349d
PA
10999 if (TYPE_TARGET_TYPE (type) == NULL)
11000 error_call_unknown_return_type (NULL);
11001 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 11002 }
7022349d 11003 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
11004 case TYPE_CODE_INTERNAL_FUNCTION:
11005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11006 /* We don't know anything about what the internal
11007 function might return, but we have to return
11008 something. */
11009 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11010 not_lval);
11011 else
11012 return call_internal_function (exp->gdbarch, exp->language_defn,
11013 argvec[0], nargs, argvec + 1);
11014
4c4b4cd2
PH
11015 case TYPE_CODE_STRUCT:
11016 {
11017 int arity;
11018
4c4b4cd2
PH
11019 arity = ada_array_arity (type);
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
323e0a4a 11022 error (_("cannot subscript or call a record"));
4c4b4cd2 11023 if (arity != nargs)
323e0a4a 11024 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11026 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11027 return
11028 unwrap_value (ada_value_subscript
11029 (argvec[0], nargs, argvec + 1));
11030 }
11031 case TYPE_CODE_ARRAY:
11032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11033 {
11034 type = ada_array_element_type (type, nargs);
11035 if (type == NULL)
323e0a4a 11036 error (_("element type of array unknown"));
4c4b4cd2 11037 else
0a07e705 11038 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11039 }
11040 return
11041 unwrap_value (ada_value_subscript
11042 (ada_coerce_to_simple_array (argvec[0]),
11043 nargs, argvec + 1));
11044 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11046 {
deede10c 11047 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11048 type = ada_array_element_type (type, nargs);
11049 if (type == NULL)
323e0a4a 11050 error (_("element type of array unknown"));
4c4b4cd2 11051 else
0a07e705 11052 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11053 }
11054 return
deede10c
JB
11055 unwrap_value (ada_value_ptr_subscript (argvec[0],
11056 nargs, argvec + 1));
4c4b4cd2
PH
11057
11058 default:
e1d5a0d2
PH
11059 error (_("Attempt to index or call something other than an "
11060 "array or function"));
4c4b4cd2
PH
11061 }
11062
11063 case TERNOP_SLICE:
11064 {
11065 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11066 struct value *low_bound_val =
11067 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11068 struct value *high_bound_val =
11069 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11070 LONGEST low_bound;
11071 LONGEST high_bound;
5b4ee69b 11072
994b9211
AC
11073 low_bound_val = coerce_ref (low_bound_val);
11074 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11075 low_bound = value_as_long (low_bound_val);
11076 high_bound = value_as_long (high_bound_val);
963a6417 11077
4c4b4cd2
PH
11078 if (noside == EVAL_SKIP)
11079 goto nosideret;
11080
4c4b4cd2
PH
11081 /* If this is a reference to an aligner type, then remove all
11082 the aligners. */
df407dfe
AC
11083 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11084 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11085 TYPE_TARGET_TYPE (value_type (array)) =
11086 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11087
ad82864c 11088 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11089 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11090
11091 /* If this is a reference to an array or an array lvalue,
11092 convert to a pointer. */
df407dfe
AC
11093 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11094 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11095 && VALUE_LVAL (array) == lval_memory))
11096 array = value_addr (array);
11097
1265e4aa 11098 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11099 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11100 (value_type (array))))
0b5d8877 11101 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11102
11103 array = ada_coerce_to_simple_array_ptr (array);
11104
714e53ab
PH
11105 /* If we have more than one level of pointer indirection,
11106 dereference the value until we get only one level. */
df407dfe
AC
11107 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11108 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11109 == TYPE_CODE_PTR))
11110 array = value_ind (array);
11111
11112 /* Make sure we really do have an array type before going further,
11113 to avoid a SEGV when trying to get the index type or the target
11114 type later down the road if the debug info generated by
11115 the compiler is incorrect or incomplete. */
df407dfe 11116 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11117 error (_("cannot take slice of non-array"));
714e53ab 11118
828292f2
JB
11119 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11120 == TYPE_CODE_PTR)
4c4b4cd2 11121 {
828292f2
JB
11122 struct type *type0 = ada_check_typedef (value_type (array));
11123
0b5d8877 11124 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11125 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11126 else
11127 {
11128 struct type *arr_type0 =
828292f2 11129 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11130
f5938064
JG
11131 return ada_value_slice_from_ptr (array, arr_type0,
11132 longest_to_int (low_bound),
11133 longest_to_int (high_bound));
4c4b4cd2
PH
11134 }
11135 }
11136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11137 return array;
11138 else if (high_bound < low_bound)
df407dfe 11139 return empty_array (value_type (array), low_bound);
4c4b4cd2 11140 else
529cad9c
PH
11141 return ada_value_slice (array, longest_to_int (low_bound),
11142 longest_to_int (high_bound));
4c4b4cd2 11143 }
14f9c5c9 11144
4c4b4cd2
PH
11145 case UNOP_IN_RANGE:
11146 (*pos) += 2;
11147 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11148 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11149
14f9c5c9 11150 if (noside == EVAL_SKIP)
4c4b4cd2 11151 goto nosideret;
14f9c5c9 11152
4c4b4cd2
PH
11153 switch (TYPE_CODE (type))
11154 {
11155 default:
e1d5a0d2
PH
11156 lim_warning (_("Membership test incompletely implemented; "
11157 "always returns true"));
fbb06eb1
UW
11158 type = language_bool_type (exp->language_defn, exp->gdbarch);
11159 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11160
11161 case TYPE_CODE_RANGE:
030b4912
UW
11162 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11163 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
11167 return
11168 value_from_longest (type,
4c4b4cd2
PH
11169 (value_less (arg1, arg3)
11170 || value_equal (arg1, arg3))
11171 && (value_less (arg2, arg1)
11172 || value_equal (arg2, arg1)));
11173 }
11174
11175 case BINOP_IN_BOUNDS:
14f9c5c9 11176 (*pos) += 2;
4c4b4cd2
PH
11177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11179
4c4b4cd2
PH
11180 if (noside == EVAL_SKIP)
11181 goto nosideret;
14f9c5c9 11182
4c4b4cd2 11183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11184 {
11185 type = language_bool_type (exp->language_defn, exp->gdbarch);
11186 return value_zero (type, not_lval);
11187 }
14f9c5c9 11188
4c4b4cd2 11189 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11190
1eea4ebd
UW
11191 type = ada_index_type (value_type (arg2), tem, "range");
11192 if (!type)
11193 type = value_type (arg1);
14f9c5c9 11194
1eea4ebd
UW
11195 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11196 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11197
f44316fa
UW
11198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11200 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11201 return
fbb06eb1 11202 value_from_longest (type,
4c4b4cd2
PH
11203 (value_less (arg1, arg3)
11204 || value_equal (arg1, arg3))
11205 && (value_less (arg2, arg1)
11206 || value_equal (arg2, arg1)));
11207
11208 case TERNOP_IN_RANGE:
11209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11210 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11212
11213 if (noside == EVAL_SKIP)
11214 goto nosideret;
11215
f44316fa
UW
11216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11218 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11219 return
fbb06eb1 11220 value_from_longest (type,
4c4b4cd2
PH
11221 (value_less (arg1, arg3)
11222 || value_equal (arg1, arg3))
11223 && (value_less (arg2, arg1)
11224 || value_equal (arg2, arg1)));
11225
11226 case OP_ATR_FIRST:
11227 case OP_ATR_LAST:
11228 case OP_ATR_LENGTH:
11229 {
76a01679 11230 struct type *type_arg;
5b4ee69b 11231
76a01679
JB
11232 if (exp->elts[*pos].opcode == OP_TYPE)
11233 {
11234 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11235 arg1 = NULL;
5bc23cb3 11236 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11237 }
11238 else
11239 {
11240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 type_arg = NULL;
11242 }
11243
11244 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11245 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11246 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11247 *pos += 4;
11248
11249 if (noside == EVAL_SKIP)
11250 goto nosideret;
11251
11252 if (type_arg == NULL)
11253 {
11254 arg1 = ada_coerce_ref (arg1);
11255
ad82864c 11256 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11257 arg1 = ada_coerce_to_simple_array (arg1);
11258
aa4fb036 11259 if (op == OP_ATR_LENGTH)
1eea4ebd 11260 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11261 else
11262 {
11263 type = ada_index_type (value_type (arg1), tem,
11264 ada_attribute_name (op));
11265 if (type == NULL)
11266 type = builtin_type (exp->gdbarch)->builtin_int;
11267 }
76a01679
JB
11268
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11270 return allocate_value (type);
76a01679
JB
11271
11272 switch (op)
11273 {
11274 default: /* Should never happen. */
323e0a4a 11275 error (_("unexpected attribute encountered"));
76a01679 11276 case OP_ATR_FIRST:
1eea4ebd
UW
11277 return value_from_longest
11278 (type, ada_array_bound (arg1, tem, 0));
76a01679 11279 case OP_ATR_LAST:
1eea4ebd
UW
11280 return value_from_longest
11281 (type, ada_array_bound (arg1, tem, 1));
76a01679 11282 case OP_ATR_LENGTH:
1eea4ebd
UW
11283 return value_from_longest
11284 (type, ada_array_length (arg1, tem));
76a01679
JB
11285 }
11286 }
11287 else if (discrete_type_p (type_arg))
11288 {
11289 struct type *range_type;
0d5cff50 11290 const char *name = ada_type_name (type_arg);
5b4ee69b 11291
76a01679
JB
11292 range_type = NULL;
11293 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11294 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11295 if (range_type == NULL)
11296 range_type = type_arg;
11297 switch (op)
11298 {
11299 default:
323e0a4a 11300 error (_("unexpected attribute encountered"));
76a01679 11301 case OP_ATR_FIRST:
690cc4eb 11302 return value_from_longest
43bbcdc2 11303 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11304 case OP_ATR_LAST:
690cc4eb 11305 return value_from_longest
43bbcdc2 11306 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11307 case OP_ATR_LENGTH:
323e0a4a 11308 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11309 }
11310 }
11311 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11312 error (_("unimplemented type attribute"));
76a01679
JB
11313 else
11314 {
11315 LONGEST low, high;
11316
ad82864c
JB
11317 if (ada_is_constrained_packed_array_type (type_arg))
11318 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11319
aa4fb036 11320 if (op == OP_ATR_LENGTH)
1eea4ebd 11321 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11322 else
11323 {
11324 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11325 if (type == NULL)
11326 type = builtin_type (exp->gdbarch)->builtin_int;
11327 }
1eea4ebd 11328
76a01679
JB
11329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11330 return allocate_value (type);
11331
11332 switch (op)
11333 {
11334 default:
323e0a4a 11335 error (_("unexpected attribute encountered"));
76a01679 11336 case OP_ATR_FIRST:
1eea4ebd 11337 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11338 return value_from_longest (type, low);
11339 case OP_ATR_LAST:
1eea4ebd 11340 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11341 return value_from_longest (type, high);
11342 case OP_ATR_LENGTH:
1eea4ebd
UW
11343 low = ada_array_bound_from_type (type_arg, tem, 0);
11344 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11345 return value_from_longest (type, high - low + 1);
11346 }
11347 }
14f9c5c9
AS
11348 }
11349
4c4b4cd2
PH
11350 case OP_ATR_TAG:
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 if (noside == EVAL_SKIP)
76a01679 11353 goto nosideret;
4c4b4cd2
PH
11354
11355 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11356 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11357
11358 return ada_value_tag (arg1);
11359
11360 case OP_ATR_MIN:
11361 case OP_ATR_MAX:
11362 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11364 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11365 if (noside == EVAL_SKIP)
76a01679 11366 goto nosideret;
d2e4a39e 11367 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11368 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11369 else
f44316fa
UW
11370 {
11371 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11372 return value_binop (arg1, arg2,
11373 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11374 }
14f9c5c9 11375
4c4b4cd2
PH
11376 case OP_ATR_MODULUS:
11377 {
31dedfee 11378 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11379
5b4ee69b 11380 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11381 if (noside == EVAL_SKIP)
11382 goto nosideret;
4c4b4cd2 11383
76a01679 11384 if (!ada_is_modular_type (type_arg))
323e0a4a 11385 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11386
76a01679
JB
11387 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11388 ada_modulus (type_arg));
4c4b4cd2
PH
11389 }
11390
11391
11392 case OP_ATR_POS:
11393 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11395 if (noside == EVAL_SKIP)
76a01679 11396 goto nosideret;
3cb382c9
UW
11397 type = builtin_type (exp->gdbarch)->builtin_int;
11398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11399 return value_zero (type, not_lval);
14f9c5c9 11400 else
3cb382c9 11401 return value_pos_atr (type, arg1);
14f9c5c9 11402
4c4b4cd2
PH
11403 case OP_ATR_SIZE:
11404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11405 type = value_type (arg1);
11406
11407 /* If the argument is a reference, then dereference its type, since
11408 the user is really asking for the size of the actual object,
11409 not the size of the pointer. */
11410 if (TYPE_CODE (type) == TYPE_CODE_REF)
11411 type = TYPE_TARGET_TYPE (type);
11412
4c4b4cd2 11413 if (noside == EVAL_SKIP)
76a01679 11414 goto nosideret;
4c4b4cd2 11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11416 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11417 else
22601c15 11418 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11419 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11420
11421 case OP_ATR_VAL:
11422 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11424 type = exp->elts[pc + 2].type;
14f9c5c9 11425 if (noside == EVAL_SKIP)
76a01679 11426 goto nosideret;
4c4b4cd2 11427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11428 return value_zero (type, not_lval);
4c4b4cd2 11429 else
76a01679 11430 return value_val_atr (type, arg1);
4c4b4cd2
PH
11431
11432 case BINOP_EXP:
11433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11435 if (noside == EVAL_SKIP)
11436 goto nosideret;
11437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11438 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11439 else
f44316fa
UW
11440 {
11441 /* For integer exponentiation operations,
11442 only promote the first argument. */
11443 if (is_integral_type (value_type (arg2)))
11444 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11445 else
11446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11447
11448 return value_binop (arg1, arg2, op);
11449 }
4c4b4cd2
PH
11450
11451 case UNOP_PLUS:
11452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11453 if (noside == EVAL_SKIP)
11454 goto nosideret;
11455 else
11456 return arg1;
11457
11458 case UNOP_ABS:
11459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11460 if (noside == EVAL_SKIP)
11461 goto nosideret;
f44316fa 11462 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11463 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11464 return value_neg (arg1);
14f9c5c9 11465 else
4c4b4cd2 11466 return arg1;
14f9c5c9
AS
11467
11468 case UNOP_IND:
5ec18f2b 11469 preeval_pos = *pos;
6b0d7253 11470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11471 if (noside == EVAL_SKIP)
4c4b4cd2 11472 goto nosideret;
df407dfe 11473 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11474 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11475 {
11476 if (ada_is_array_descriptor_type (type))
11477 /* GDB allows dereferencing GNAT array descriptors. */
11478 {
11479 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11480
4c4b4cd2 11481 if (arrType == NULL)
323e0a4a 11482 error (_("Attempt to dereference null array pointer."));
00a4c844 11483 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11484 }
11485 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11486 || TYPE_CODE (type) == TYPE_CODE_REF
11487 /* In C you can dereference an array to get the 1st elt. */
11488 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11489 {
5ec18f2b
JG
11490 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11491 only be determined by inspecting the object's tag.
11492 This means that we need to evaluate completely the
11493 expression in order to get its type. */
11494
023db19c
JB
11495 if ((TYPE_CODE (type) == TYPE_CODE_REF
11496 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11497 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11498 {
11499 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11500 EVAL_NORMAL);
11501 type = value_type (ada_value_ind (arg1));
11502 }
11503 else
11504 {
11505 type = to_static_fixed_type
11506 (ada_aligned_type
11507 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11508 }
c1b5a1a6 11509 ada_ensure_varsize_limit (type);
714e53ab
PH
11510 return value_zero (type, lval_memory);
11511 }
4c4b4cd2 11512 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11513 {
11514 /* GDB allows dereferencing an int. */
11515 if (expect_type == NULL)
11516 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11517 lval_memory);
11518 else
11519 {
11520 expect_type =
11521 to_static_fixed_type (ada_aligned_type (expect_type));
11522 return value_zero (expect_type, lval_memory);
11523 }
11524 }
4c4b4cd2 11525 else
323e0a4a 11526 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11527 }
0963b4bd 11528 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11529 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11530
96967637
JB
11531 if (TYPE_CODE (type) == TYPE_CODE_INT)
11532 /* GDB allows dereferencing an int. If we were given
11533 the expect_type, then use that as the target type.
11534 Otherwise, assume that the target type is an int. */
11535 {
11536 if (expect_type != NULL)
11537 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11538 arg1));
11539 else
11540 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11541 (CORE_ADDR) value_as_address (arg1));
11542 }
6b0d7253 11543
4c4b4cd2
PH
11544 if (ada_is_array_descriptor_type (type))
11545 /* GDB allows dereferencing GNAT array descriptors. */
11546 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11547 else
4c4b4cd2 11548 return ada_value_ind (arg1);
14f9c5c9
AS
11549
11550 case STRUCTOP_STRUCT:
11551 tem = longest_to_int (exp->elts[pc + 1].longconst);
11552 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11553 preeval_pos = *pos;
14f9c5c9
AS
11554 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11555 if (noside == EVAL_SKIP)
4c4b4cd2 11556 goto nosideret;
14f9c5c9 11557 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11558 {
df407dfe 11559 struct type *type1 = value_type (arg1);
5b4ee69b 11560
76a01679
JB
11561 if (ada_is_tagged_type (type1, 1))
11562 {
11563 type = ada_lookup_struct_elt_type (type1,
11564 &exp->elts[pc + 2].string,
988f6b3d 11565 1, 1);
5ec18f2b
JG
11566
11567 /* If the field is not found, check if it exists in the
11568 extension of this object's type. This means that we
11569 need to evaluate completely the expression. */
11570
76a01679 11571 if (type == NULL)
5ec18f2b
JG
11572 {
11573 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11574 EVAL_NORMAL);
11575 arg1 = ada_value_struct_elt (arg1,
11576 &exp->elts[pc + 2].string,
11577 0);
11578 arg1 = unwrap_value (arg1);
11579 type = value_type (ada_to_fixed_value (arg1));
11580 }
76a01679
JB
11581 }
11582 else
11583 type =
11584 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11585 0);
76a01679
JB
11586
11587 return value_zero (ada_aligned_type (type), lval_memory);
11588 }
14f9c5c9 11589 else
a579cd9a
MW
11590 {
11591 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11592 arg1 = unwrap_value (arg1);
11593 return ada_to_fixed_value (arg1);
11594 }
284614f0 11595
14f9c5c9 11596 case OP_TYPE:
4c4b4cd2
PH
11597 /* The value is not supposed to be used. This is here to make it
11598 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11599 (*pos) += 2;
11600 if (noside == EVAL_SKIP)
4c4b4cd2 11601 goto nosideret;
14f9c5c9 11602 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11603 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11604 else
323e0a4a 11605 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11606
11607 case OP_AGGREGATE:
11608 case OP_CHOICES:
11609 case OP_OTHERS:
11610 case OP_DISCRETE_RANGE:
11611 case OP_POSITIONAL:
11612 case OP_NAME:
11613 if (noside == EVAL_NORMAL)
11614 switch (op)
11615 {
11616 case OP_NAME:
11617 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11618 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11619 case OP_AGGREGATE:
11620 error (_("Aggregates only allowed on the right of an assignment"));
11621 default:
0963b4bd
MS
11622 internal_error (__FILE__, __LINE__,
11623 _("aggregate apparently mangled"));
52ce6436
PH
11624 }
11625
11626 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11627 *pos += oplen - 1;
11628 for (tem = 0; tem < nargs; tem += 1)
11629 ada_evaluate_subexp (NULL, exp, pos, noside);
11630 goto nosideret;
14f9c5c9
AS
11631 }
11632
11633nosideret:
ced9779b 11634 return eval_skip_value (exp);
14f9c5c9 11635}
14f9c5c9 11636\f
d2e4a39e 11637
4c4b4cd2 11638 /* Fixed point */
14f9c5c9
AS
11639
11640/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11641 type name that encodes the 'small and 'delta information.
4c4b4cd2 11642 Otherwise, return NULL. */
14f9c5c9 11643
d2e4a39e 11644static const char *
ebf56fd3 11645fixed_type_info (struct type *type)
14f9c5c9 11646{
d2e4a39e 11647 const char *name = ada_type_name (type);
14f9c5c9
AS
11648 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11649
d2e4a39e
AS
11650 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11651 {
14f9c5c9 11652 const char *tail = strstr (name, "___XF_");
5b4ee69b 11653
14f9c5c9 11654 if (tail == NULL)
4c4b4cd2 11655 return NULL;
d2e4a39e 11656 else
4c4b4cd2 11657 return tail + 5;
14f9c5c9
AS
11658 }
11659 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11660 return fixed_type_info (TYPE_TARGET_TYPE (type));
11661 else
11662 return NULL;
11663}
11664
4c4b4cd2 11665/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11666
11667int
ebf56fd3 11668ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11669{
11670 return fixed_type_info (type) != NULL;
11671}
11672
4c4b4cd2
PH
11673/* Return non-zero iff TYPE represents a System.Address type. */
11674
11675int
11676ada_is_system_address_type (struct type *type)
11677{
11678 return (TYPE_NAME (type)
11679 && strcmp (TYPE_NAME (type), "system__address") == 0);
11680}
11681
14f9c5c9 11682/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11683 type, return the target floating-point type to be used to represent
11684 of this type during internal computation. */
11685
11686static struct type *
11687ada_scaling_type (struct type *type)
11688{
11689 return builtin_type (get_type_arch (type))->builtin_long_double;
11690}
11691
11692/* Assuming that TYPE is the representation of an Ada fixed-point
11693 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11694 delta cannot be determined. */
14f9c5c9 11695
50eff16b 11696struct value *
ebf56fd3 11697ada_delta (struct type *type)
14f9c5c9
AS
11698{
11699 const char *encoding = fixed_type_info (type);
50eff16b
UW
11700 struct type *scale_type = ada_scaling_type (type);
11701
11702 long long num, den;
11703
11704 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11705 return nullptr;
d2e4a39e 11706 else
50eff16b
UW
11707 return value_binop (value_from_longest (scale_type, num),
11708 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11709}
11710
11711/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11712 factor ('SMALL value) associated with the type. */
14f9c5c9 11713
50eff16b
UW
11714struct value *
11715ada_scaling_factor (struct type *type)
14f9c5c9
AS
11716{
11717 const char *encoding = fixed_type_info (type);
50eff16b
UW
11718 struct type *scale_type = ada_scaling_type (type);
11719
11720 long long num0, den0, num1, den1;
14f9c5c9 11721 int n;
d2e4a39e 11722
50eff16b 11723 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11724 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11725
11726 if (n < 2)
50eff16b 11727 return value_from_longest (scale_type, 1);
14f9c5c9 11728 else if (n == 4)
50eff16b
UW
11729 return value_binop (value_from_longest (scale_type, num1),
11730 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11731 else
50eff16b
UW
11732 return value_binop (value_from_longest (scale_type, num0),
11733 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11734}
11735
14f9c5c9 11736\f
d2e4a39e 11737
4c4b4cd2 11738 /* Range types */
14f9c5c9
AS
11739
11740/* Scan STR beginning at position K for a discriminant name, and
11741 return the value of that discriminant field of DVAL in *PX. If
11742 PNEW_K is not null, put the position of the character beyond the
11743 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11744 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11745
11746static int
108d56a4 11747scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11748 int *pnew_k)
14f9c5c9
AS
11749{
11750 static char *bound_buffer = NULL;
11751 static size_t bound_buffer_len = 0;
5da1a4d3 11752 const char *pstart, *pend, *bound;
d2e4a39e 11753 struct value *bound_val;
14f9c5c9
AS
11754
11755 if (dval == NULL || str == NULL || str[k] == '\0')
11756 return 0;
11757
5da1a4d3
SM
11758 pstart = str + k;
11759 pend = strstr (pstart, "__");
14f9c5c9
AS
11760 if (pend == NULL)
11761 {
5da1a4d3 11762 bound = pstart;
14f9c5c9
AS
11763 k += strlen (bound);
11764 }
d2e4a39e 11765 else
14f9c5c9 11766 {
5da1a4d3
SM
11767 int len = pend - pstart;
11768
11769 /* Strip __ and beyond. */
11770 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11771 strncpy (bound_buffer, pstart, len);
11772 bound_buffer[len] = '\0';
11773
14f9c5c9 11774 bound = bound_buffer;
d2e4a39e 11775 k = pend - str;
14f9c5c9 11776 }
d2e4a39e 11777
df407dfe 11778 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11779 if (bound_val == NULL)
11780 return 0;
11781
11782 *px = value_as_long (bound_val);
11783 if (pnew_k != NULL)
11784 *pnew_k = k;
11785 return 1;
11786}
11787
11788/* Value of variable named NAME in the current environment. If
11789 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11790 otherwise causes an error with message ERR_MSG. */
11791
d2e4a39e 11792static struct value *
edb0c9cb 11793get_var_value (const char *name, const char *err_msg)
14f9c5c9 11794{
b5ec771e 11795 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11796
b5ec771e
PA
11797 struct block_symbol *syms;
11798 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11799 get_selected_block (0),
11800 VAR_DOMAIN, &syms, 1);
ec6a20c2 11801 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11802
11803 if (nsyms != 1)
11804 {
ec6a20c2 11805 do_cleanups (old_chain);
14f9c5c9 11806 if (err_msg == NULL)
4c4b4cd2 11807 return 0;
14f9c5c9 11808 else
8a3fe4f8 11809 error (("%s"), err_msg);
14f9c5c9
AS
11810 }
11811
ec6a20c2
JB
11812 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11813 do_cleanups (old_chain);
11814 return result;
14f9c5c9 11815}
d2e4a39e 11816
edb0c9cb
PA
11817/* Value of integer variable named NAME in the current environment.
11818 If no such variable is found, returns false. Otherwise, sets VALUE
11819 to the variable's value and returns true. */
4c4b4cd2 11820
edb0c9cb
PA
11821bool
11822get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11823{
4c4b4cd2 11824 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11825
14f9c5c9 11826 if (var_val == 0)
edb0c9cb
PA
11827 return false;
11828
11829 value = value_as_long (var_val);
11830 return true;
14f9c5c9 11831}
d2e4a39e 11832
14f9c5c9
AS
11833
11834/* Return a range type whose base type is that of the range type named
11835 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11836 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11837 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11838 corresponding range type from debug information; fall back to using it
11839 if symbol lookup fails. If a new type must be created, allocate it
11840 like ORIG_TYPE was. The bounds information, in general, is encoded
11841 in NAME, the base type given in the named range type. */
14f9c5c9 11842
d2e4a39e 11843static struct type *
28c85d6c 11844to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11845{
0d5cff50 11846 const char *name;
14f9c5c9 11847 struct type *base_type;
108d56a4 11848 const char *subtype_info;
14f9c5c9 11849
28c85d6c
JB
11850 gdb_assert (raw_type != NULL);
11851 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11852
1ce677a4 11853 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11854 base_type = TYPE_TARGET_TYPE (raw_type);
11855 else
11856 base_type = raw_type;
11857
28c85d6c 11858 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11859 subtype_info = strstr (name, "___XD");
11860 if (subtype_info == NULL)
690cc4eb 11861 {
43bbcdc2
PH
11862 LONGEST L = ada_discrete_type_low_bound (raw_type);
11863 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11864
690cc4eb
PH
11865 if (L < INT_MIN || U > INT_MAX)
11866 return raw_type;
11867 else
0c9c3474
SA
11868 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11869 L, U);
690cc4eb 11870 }
14f9c5c9
AS
11871 else
11872 {
11873 static char *name_buf = NULL;
11874 static size_t name_len = 0;
11875 int prefix_len = subtype_info - name;
11876 LONGEST L, U;
11877 struct type *type;
108d56a4 11878 const char *bounds_str;
14f9c5c9
AS
11879 int n;
11880
11881 GROW_VECT (name_buf, name_len, prefix_len + 5);
11882 strncpy (name_buf, name, prefix_len);
11883 name_buf[prefix_len] = '\0';
11884
11885 subtype_info += 5;
11886 bounds_str = strchr (subtype_info, '_');
11887 n = 1;
11888
d2e4a39e 11889 if (*subtype_info == 'L')
4c4b4cd2
PH
11890 {
11891 if (!ada_scan_number (bounds_str, n, &L, &n)
11892 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11893 return raw_type;
11894 if (bounds_str[n] == '_')
11895 n += 2;
0963b4bd 11896 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11897 n += 1;
11898 subtype_info += 1;
11899 }
d2e4a39e 11900 else
4c4b4cd2 11901 {
4c4b4cd2 11902 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11903 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11904 {
323e0a4a 11905 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11906 L = 1;
11907 }
11908 }
14f9c5c9 11909
d2e4a39e 11910 if (*subtype_info == 'U')
4c4b4cd2
PH
11911 {
11912 if (!ada_scan_number (bounds_str, n, &U, &n)
11913 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11914 return raw_type;
11915 }
d2e4a39e 11916 else
4c4b4cd2 11917 {
4c4b4cd2 11918 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11919 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11920 {
323e0a4a 11921 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11922 U = L;
11923 }
11924 }
14f9c5c9 11925
0c9c3474
SA
11926 type = create_static_range_type (alloc_type_copy (raw_type),
11927 base_type, L, U);
f5a91472
JB
11928 /* create_static_range_type alters the resulting type's length
11929 to match the size of the base_type, which is not what we want.
11930 Set it back to the original range type's length. */
11931 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11932 TYPE_NAME (type) = name;
14f9c5c9
AS
11933 return type;
11934 }
11935}
11936
4c4b4cd2
PH
11937/* True iff NAME is the name of a range type. */
11938
14f9c5c9 11939int
d2e4a39e 11940ada_is_range_type_name (const char *name)
14f9c5c9
AS
11941{
11942 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11943}
14f9c5c9 11944\f
d2e4a39e 11945
4c4b4cd2
PH
11946 /* Modular types */
11947
11948/* True iff TYPE is an Ada modular type. */
14f9c5c9 11949
14f9c5c9 11950int
d2e4a39e 11951ada_is_modular_type (struct type *type)
14f9c5c9 11952{
18af8284 11953 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11954
11955 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11956 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11957 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11958}
11959
4c4b4cd2
PH
11960/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11961
61ee279c 11962ULONGEST
0056e4d5 11963ada_modulus (struct type *type)
14f9c5c9 11964{
43bbcdc2 11965 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11966}
d2e4a39e 11967\f
f7f9143b
JB
11968
11969/* Ada exception catchpoint support:
11970 ---------------------------------
11971
11972 We support 3 kinds of exception catchpoints:
11973 . catchpoints on Ada exceptions
11974 . catchpoints on unhandled Ada exceptions
11975 . catchpoints on failed assertions
11976
11977 Exceptions raised during failed assertions, or unhandled exceptions
11978 could perfectly be caught with the general catchpoint on Ada exceptions.
11979 However, we can easily differentiate these two special cases, and having
11980 the option to distinguish these two cases from the rest can be useful
11981 to zero-in on certain situations.
11982
11983 Exception catchpoints are a specialized form of breakpoint,
11984 since they rely on inserting breakpoints inside known routines
11985 of the GNAT runtime. The implementation therefore uses a standard
11986 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11987 of breakpoint_ops.
11988
0259addd
JB
11989 Support in the runtime for exception catchpoints have been changed
11990 a few times already, and these changes affect the implementation
11991 of these catchpoints. In order to be able to support several
11992 variants of the runtime, we use a sniffer that will determine
28010a5d 11993 the runtime variant used by the program being debugged. */
f7f9143b 11994
82eacd52
JB
11995/* Ada's standard exceptions.
11996
11997 The Ada 83 standard also defined Numeric_Error. But there so many
11998 situations where it was unclear from the Ada 83 Reference Manual
11999 (RM) whether Constraint_Error or Numeric_Error should be raised,
12000 that the ARG (Ada Rapporteur Group) eventually issued a Binding
12001 Interpretation saying that anytime the RM says that Numeric_Error
12002 should be raised, the implementation may raise Constraint_Error.
12003 Ada 95 went one step further and pretty much removed Numeric_Error
12004 from the list of standard exceptions (it made it a renaming of
12005 Constraint_Error, to help preserve compatibility when compiling
12006 an Ada83 compiler). As such, we do not include Numeric_Error from
12007 this list of standard exceptions. */
3d0b0fa3 12008
a121b7c1 12009static const char *standard_exc[] = {
3d0b0fa3
JB
12010 "constraint_error",
12011 "program_error",
12012 "storage_error",
12013 "tasking_error"
12014};
12015
0259addd
JB
12016typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12017
12018/* A structure that describes how to support exception catchpoints
12019 for a given executable. */
12020
12021struct exception_support_info
12022{
12023 /* The name of the symbol to break on in order to insert
12024 a catchpoint on exceptions. */
12025 const char *catch_exception_sym;
12026
12027 /* The name of the symbol to break on in order to insert
12028 a catchpoint on unhandled exceptions. */
12029 const char *catch_exception_unhandled_sym;
12030
12031 /* The name of the symbol to break on in order to insert
12032 a catchpoint on failed assertions. */
12033 const char *catch_assert_sym;
12034
9f757bf7
XR
12035 /* The name of the symbol to break on in order to insert
12036 a catchpoint on exception handling. */
12037 const char *catch_handlers_sym;
12038
0259addd
JB
12039 /* Assuming that the inferior just triggered an unhandled exception
12040 catchpoint, this function is responsible for returning the address
12041 in inferior memory where the name of that exception is stored.
12042 Return zero if the address could not be computed. */
12043 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12044};
12045
12046static CORE_ADDR ada_unhandled_exception_name_addr (void);
12047static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12048
12049/* The following exception support info structure describes how to
12050 implement exception catchpoints with the latest version of the
12051 Ada runtime (as of 2007-03-06). */
12052
12053static const struct exception_support_info default_exception_support_info =
12054{
12055 "__gnat_debug_raise_exception", /* catch_exception_sym */
12056 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12057 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12058 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12059 ada_unhandled_exception_name_addr
12060};
12061
12062/* The following exception support info structure describes how to
12063 implement exception catchpoints with a slightly older version
12064 of the Ada runtime. */
12065
12066static const struct exception_support_info exception_support_info_fallback =
12067{
12068 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12069 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12070 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12071 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12072 ada_unhandled_exception_name_addr_from_raise
12073};
12074
f17011e0
JB
12075/* Return nonzero if we can detect the exception support routines
12076 described in EINFO.
12077
12078 This function errors out if an abnormal situation is detected
12079 (for instance, if we find the exception support routines, but
12080 that support is found to be incomplete). */
12081
12082static int
12083ada_has_this_exception_support (const struct exception_support_info *einfo)
12084{
12085 struct symbol *sym;
12086
12087 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12088 that should be compiled with debugging information. As a result, we
12089 expect to find that symbol in the symtabs. */
12090
12091 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12092 if (sym == NULL)
a6af7abe
JB
12093 {
12094 /* Perhaps we did not find our symbol because the Ada runtime was
12095 compiled without debugging info, or simply stripped of it.
12096 It happens on some GNU/Linux distributions for instance, where
12097 users have to install a separate debug package in order to get
12098 the runtime's debugging info. In that situation, let the user
12099 know why we cannot insert an Ada exception catchpoint.
12100
12101 Note: Just for the purpose of inserting our Ada exception
12102 catchpoint, we could rely purely on the associated minimal symbol.
12103 But we would be operating in degraded mode anyway, since we are
12104 still lacking the debugging info needed later on to extract
12105 the name of the exception being raised (this name is printed in
12106 the catchpoint message, and is also used when trying to catch
12107 a specific exception). We do not handle this case for now. */
3b7344d5 12108 struct bound_minimal_symbol msym
1c8e84b0
JB
12109 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12110
3b7344d5 12111 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12112 error (_("Your Ada runtime appears to be missing some debugging "
12113 "information.\nCannot insert Ada exception catchpoint "
12114 "in this configuration."));
12115
12116 return 0;
12117 }
f17011e0
JB
12118
12119 /* Make sure that the symbol we found corresponds to a function. */
12120
12121 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12122 error (_("Symbol \"%s\" is not a function (class = %d)"),
12123 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12124
12125 return 1;
12126}
12127
0259addd
JB
12128/* Inspect the Ada runtime and determine which exception info structure
12129 should be used to provide support for exception catchpoints.
12130
3eecfa55
JB
12131 This function will always set the per-inferior exception_info,
12132 or raise an error. */
0259addd
JB
12133
12134static void
12135ada_exception_support_info_sniffer (void)
12136{
3eecfa55 12137 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12138
12139 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12140 if (data->exception_info != NULL)
0259addd
JB
12141 return;
12142
12143 /* Check the latest (default) exception support info. */
f17011e0 12144 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12145 {
3eecfa55 12146 data->exception_info = &default_exception_support_info;
0259addd
JB
12147 return;
12148 }
12149
12150 /* Try our fallback exception suport info. */
f17011e0 12151 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12152 {
3eecfa55 12153 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12154 return;
12155 }
12156
12157 /* Sometimes, it is normal for us to not be able to find the routine
12158 we are looking for. This happens when the program is linked with
12159 the shared version of the GNAT runtime, and the program has not been
12160 started yet. Inform the user of these two possible causes if
12161 applicable. */
12162
ccefe4c4 12163 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12164 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12165
12166 /* If the symbol does not exist, then check that the program is
12167 already started, to make sure that shared libraries have been
12168 loaded. If it is not started, this may mean that the symbol is
12169 in a shared library. */
12170
12171 if (ptid_get_pid (inferior_ptid) == 0)
12172 error (_("Unable to insert catchpoint. Try to start the program first."));
12173
12174 /* At this point, we know that we are debugging an Ada program and
12175 that the inferior has been started, but we still are not able to
0963b4bd 12176 find the run-time symbols. That can mean that we are in
0259addd
JB
12177 configurable run time mode, or that a-except as been optimized
12178 out by the linker... In any case, at this point it is not worth
12179 supporting this feature. */
12180
7dda8cff 12181 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12182}
12183
f7f9143b
JB
12184/* True iff FRAME is very likely to be that of a function that is
12185 part of the runtime system. This is all very heuristic, but is
12186 intended to be used as advice as to what frames are uninteresting
12187 to most users. */
12188
12189static int
12190is_known_support_routine (struct frame_info *frame)
12191{
692465f1 12192 enum language func_lang;
f7f9143b 12193 int i;
f35a17b5 12194 const char *fullname;
f7f9143b 12195
4ed6b5be
JB
12196 /* If this code does not have any debugging information (no symtab),
12197 This cannot be any user code. */
f7f9143b 12198
51abb421 12199 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12200 if (sal.symtab == NULL)
12201 return 1;
12202
4ed6b5be
JB
12203 /* If there is a symtab, but the associated source file cannot be
12204 located, then assume this is not user code: Selecting a frame
12205 for which we cannot display the code would not be very helpful
12206 for the user. This should also take care of case such as VxWorks
12207 where the kernel has some debugging info provided for a few units. */
f7f9143b 12208
f35a17b5
JK
12209 fullname = symtab_to_fullname (sal.symtab);
12210 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12211 return 1;
12212
4ed6b5be
JB
12213 /* Check the unit filename againt the Ada runtime file naming.
12214 We also check the name of the objfile against the name of some
12215 known system libraries that sometimes come with debugging info
12216 too. */
12217
f7f9143b
JB
12218 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12221 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12222 return 1;
eb822aa6
DE
12223 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12224 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12225 return 1;
f7f9143b
JB
12226 }
12227
4ed6b5be 12228 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12229
c6dc63a1
TT
12230 gdb::unique_xmalloc_ptr<char> func_name
12231 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12232 if (func_name == NULL)
12233 return 1;
12234
12235 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12236 {
12237 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12238 if (re_exec (func_name.get ()))
12239 return 1;
f7f9143b
JB
12240 }
12241
12242 return 0;
12243}
12244
12245/* Find the first frame that contains debugging information and that is not
12246 part of the Ada run-time, starting from FI and moving upward. */
12247
0ef643c8 12248void
f7f9143b
JB
12249ada_find_printable_frame (struct frame_info *fi)
12250{
12251 for (; fi != NULL; fi = get_prev_frame (fi))
12252 {
12253 if (!is_known_support_routine (fi))
12254 {
12255 select_frame (fi);
12256 break;
12257 }
12258 }
12259
12260}
12261
12262/* Assuming that the inferior just triggered an unhandled exception
12263 catchpoint, return the address in inferior memory where the name
12264 of the exception is stored.
12265
12266 Return zero if the address could not be computed. */
12267
12268static CORE_ADDR
12269ada_unhandled_exception_name_addr (void)
0259addd
JB
12270{
12271 return parse_and_eval_address ("e.full_name");
12272}
12273
12274/* Same as ada_unhandled_exception_name_addr, except that this function
12275 should be used when the inferior uses an older version of the runtime,
12276 where the exception name needs to be extracted from a specific frame
12277 several frames up in the callstack. */
12278
12279static CORE_ADDR
12280ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12281{
12282 int frame_level;
12283 struct frame_info *fi;
3eecfa55 12284 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12285
12286 /* To determine the name of this exception, we need to select
12287 the frame corresponding to RAISE_SYM_NAME. This frame is
12288 at least 3 levels up, so we simply skip the first 3 frames
12289 without checking the name of their associated function. */
12290 fi = get_current_frame ();
12291 for (frame_level = 0; frame_level < 3; frame_level += 1)
12292 if (fi != NULL)
12293 fi = get_prev_frame (fi);
12294
12295 while (fi != NULL)
12296 {
692465f1
JB
12297 enum language func_lang;
12298
c6dc63a1
TT
12299 gdb::unique_xmalloc_ptr<char> func_name
12300 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12301 if (func_name != NULL)
12302 {
c6dc63a1 12303 if (strcmp (func_name.get (),
55b87a52
KS
12304 data->exception_info->catch_exception_sym) == 0)
12305 break; /* We found the frame we were looking for... */
12306 fi = get_prev_frame (fi);
12307 }
f7f9143b
JB
12308 }
12309
12310 if (fi == NULL)
12311 return 0;
12312
12313 select_frame (fi);
12314 return parse_and_eval_address ("id.full_name");
12315}
12316
12317/* Assuming the inferior just triggered an Ada exception catchpoint
12318 (of any type), return the address in inferior memory where the name
12319 of the exception is stored, if applicable.
12320
45db7c09
PA
12321 Assumes the selected frame is the current frame.
12322
f7f9143b
JB
12323 Return zero if the address could not be computed, or if not relevant. */
12324
12325static CORE_ADDR
761269c8 12326ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12327 struct breakpoint *b)
12328{
3eecfa55
JB
12329 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12330
f7f9143b
JB
12331 switch (ex)
12332 {
761269c8 12333 case ada_catch_exception:
f7f9143b
JB
12334 return (parse_and_eval_address ("e.full_name"));
12335 break;
12336
761269c8 12337 case ada_catch_exception_unhandled:
3eecfa55 12338 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12339 break;
9f757bf7
XR
12340
12341 case ada_catch_handlers:
12342 return 0; /* The runtimes does not provide access to the exception
12343 name. */
12344 break;
12345
761269c8 12346 case ada_catch_assert:
f7f9143b
JB
12347 return 0; /* Exception name is not relevant in this case. */
12348 break;
12349
12350 default:
12351 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12352 break;
12353 }
12354
12355 return 0; /* Should never be reached. */
12356}
12357
e547c119
JB
12358/* Assuming the inferior is stopped at an exception catchpoint,
12359 return the message which was associated to the exception, if
12360 available. Return NULL if the message could not be retrieved.
12361
12362 The caller must xfree the string after use.
12363
12364 Note: The exception message can be associated to an exception
12365 either through the use of the Raise_Exception function, or
12366 more simply (Ada 2005 and later), via:
12367
12368 raise Exception_Name with "exception message";
12369
12370 */
12371
12372static char *
12373ada_exception_message_1 (void)
12374{
12375 struct value *e_msg_val;
12376 char *e_msg = NULL;
12377 int e_msg_len;
12378 struct cleanup *cleanups;
12379
12380 /* For runtimes that support this feature, the exception message
12381 is passed as an unbounded string argument called "message". */
12382 e_msg_val = parse_and_eval ("message");
12383 if (e_msg_val == NULL)
12384 return NULL; /* Exception message not supported. */
12385
12386 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12387 gdb_assert (e_msg_val != NULL);
12388 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12389
12390 /* If the message string is empty, then treat it as if there was
12391 no exception message. */
12392 if (e_msg_len <= 0)
12393 return NULL;
12394
12395 e_msg = (char *) xmalloc (e_msg_len + 1);
12396 cleanups = make_cleanup (xfree, e_msg);
12397 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12398 e_msg[e_msg_len] = '\0';
12399
12400 discard_cleanups (cleanups);
12401 return e_msg;
12402}
12403
12404/* Same as ada_exception_message_1, except that all exceptions are
12405 contained here (returning NULL instead). */
12406
12407static char *
12408ada_exception_message (void)
12409{
12410 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12411
12412 TRY
12413 {
12414 e_msg = ada_exception_message_1 ();
12415 }
12416 CATCH (e, RETURN_MASK_ERROR)
12417 {
12418 e_msg = NULL;
12419 }
12420 END_CATCH
12421
12422 return e_msg;
12423}
12424
f7f9143b
JB
12425/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12426 any error that ada_exception_name_addr_1 might cause to be thrown.
12427 When an error is intercepted, a warning with the error message is printed,
12428 and zero is returned. */
12429
12430static CORE_ADDR
761269c8 12431ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12432 struct breakpoint *b)
12433{
f7f9143b
JB
12434 CORE_ADDR result = 0;
12435
492d29ea 12436 TRY
f7f9143b
JB
12437 {
12438 result = ada_exception_name_addr_1 (ex, b);
12439 }
12440
492d29ea 12441 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12442 {
12443 warning (_("failed to get exception name: %s"), e.message);
12444 return 0;
12445 }
492d29ea 12446 END_CATCH
f7f9143b
JB
12447
12448 return result;
12449}
12450
9f757bf7
XR
12451static char *ada_exception_catchpoint_cond_string
12452 (const char *excep_string,
12453 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12454
12455/* Ada catchpoints.
12456
12457 In the case of catchpoints on Ada exceptions, the catchpoint will
12458 stop the target on every exception the program throws. When a user
12459 specifies the name of a specific exception, we translate this
12460 request into a condition expression (in text form), and then parse
12461 it into an expression stored in each of the catchpoint's locations.
12462 We then use this condition to check whether the exception that was
12463 raised is the one the user is interested in. If not, then the
12464 target is resumed again. We store the name of the requested
12465 exception, in order to be able to re-set the condition expression
12466 when symbols change. */
12467
12468/* An instance of this type is used to represent an Ada catchpoint
5625a286 12469 breakpoint location. */
28010a5d 12470
5625a286 12471class ada_catchpoint_location : public bp_location
28010a5d 12472{
5625a286
PA
12473public:
12474 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12475 : bp_location (ops, owner)
12476 {}
28010a5d
PA
12477
12478 /* The condition that checks whether the exception that was raised
12479 is the specific exception the user specified on catchpoint
12480 creation. */
4d01a485 12481 expression_up excep_cond_expr;
28010a5d
PA
12482};
12483
12484/* Implement the DTOR method in the bp_location_ops structure for all
12485 Ada exception catchpoint kinds. */
12486
12487static void
12488ada_catchpoint_location_dtor (struct bp_location *bl)
12489{
12490 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12491
4d01a485 12492 al->excep_cond_expr.reset ();
28010a5d
PA
12493}
12494
12495/* The vtable to be used in Ada catchpoint locations. */
12496
12497static const struct bp_location_ops ada_catchpoint_location_ops =
12498{
12499 ada_catchpoint_location_dtor
12500};
12501
c1fc2657 12502/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12503
c1fc2657 12504struct ada_catchpoint : public breakpoint
28010a5d 12505{
c1fc2657 12506 ~ada_catchpoint () override;
28010a5d
PA
12507
12508 /* The name of the specific exception the user specified. */
12509 char *excep_string;
12510};
12511
12512/* Parse the exception condition string in the context of each of the
12513 catchpoint's locations, and store them for later evaluation. */
12514
12515static void
9f757bf7
XR
12516create_excep_cond_exprs (struct ada_catchpoint *c,
12517 enum ada_exception_catchpoint_kind ex)
28010a5d
PA
12518{
12519 struct cleanup *old_chain;
12520 struct bp_location *bl;
12521 char *cond_string;
12522
12523 /* Nothing to do if there's no specific exception to catch. */
12524 if (c->excep_string == NULL)
12525 return;
12526
12527 /* Same if there are no locations... */
c1fc2657 12528 if (c->loc == NULL)
28010a5d
PA
12529 return;
12530
12531 /* Compute the condition expression in text form, from the specific
12532 expection we want to catch. */
9f757bf7 12533 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
28010a5d
PA
12534 old_chain = make_cleanup (xfree, cond_string);
12535
12536 /* Iterate over all the catchpoint's locations, and parse an
12537 expression for each. */
c1fc2657 12538 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12539 {
12540 struct ada_catchpoint_location *ada_loc
12541 = (struct ada_catchpoint_location *) bl;
4d01a485 12542 expression_up exp;
28010a5d
PA
12543
12544 if (!bl->shlib_disabled)
12545 {
bbc13ae3 12546 const char *s;
28010a5d
PA
12547
12548 s = cond_string;
492d29ea 12549 TRY
28010a5d 12550 {
036e657b
JB
12551 exp = parse_exp_1 (&s, bl->address,
12552 block_for_pc (bl->address),
12553 0);
28010a5d 12554 }
492d29ea 12555 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12556 {
12557 warning (_("failed to reevaluate internal exception condition "
12558 "for catchpoint %d: %s"),
c1fc2657 12559 c->number, e.message);
849f2b52 12560 }
492d29ea 12561 END_CATCH
28010a5d
PA
12562 }
12563
b22e99fd 12564 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12565 }
12566
12567 do_cleanups (old_chain);
12568}
12569
c1fc2657 12570/* ada_catchpoint destructor. */
28010a5d 12571
c1fc2657 12572ada_catchpoint::~ada_catchpoint ()
28010a5d 12573{
c1fc2657 12574 xfree (this->excep_string);
28010a5d
PA
12575}
12576
12577/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12578 structure for all exception catchpoint kinds. */
12579
12580static struct bp_location *
761269c8 12581allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12582 struct breakpoint *self)
12583{
5625a286 12584 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12585}
12586
12587/* Implement the RE_SET method in the breakpoint_ops structure for all
12588 exception catchpoint kinds. */
12589
12590static void
761269c8 12591re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12592{
12593 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12594
12595 /* Call the base class's method. This updates the catchpoint's
12596 locations. */
2060206e 12597 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12598
12599 /* Reparse the exception conditional expressions. One for each
12600 location. */
9f757bf7 12601 create_excep_cond_exprs (c, ex);
28010a5d
PA
12602}
12603
12604/* Returns true if we should stop for this breakpoint hit. If the
12605 user specified a specific exception, we only want to cause a stop
12606 if the program thrown that exception. */
12607
12608static int
12609should_stop_exception (const struct bp_location *bl)
12610{
12611 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12612 const struct ada_catchpoint_location *ada_loc
12613 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12614 int stop;
12615
12616 /* With no specific exception, should always stop. */
12617 if (c->excep_string == NULL)
12618 return 1;
12619
12620 if (ada_loc->excep_cond_expr == NULL)
12621 {
12622 /* We will have a NULL expression if back when we were creating
12623 the expressions, this location's had failed to parse. */
12624 return 1;
12625 }
12626
12627 stop = 1;
492d29ea 12628 TRY
28010a5d
PA
12629 {
12630 struct value *mark;
12631
12632 mark = value_mark ();
4d01a485 12633 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12634 value_free_to_mark (mark);
12635 }
492d29ea
PA
12636 CATCH (ex, RETURN_MASK_ALL)
12637 {
12638 exception_fprintf (gdb_stderr, ex,
12639 _("Error in testing exception condition:\n"));
12640 }
12641 END_CATCH
12642
28010a5d
PA
12643 return stop;
12644}
12645
12646/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12647 for all exception catchpoint kinds. */
12648
12649static void
761269c8 12650check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12651{
12652 bs->stop = should_stop_exception (bs->bp_location_at);
12653}
12654
f7f9143b
JB
12655/* Implement the PRINT_IT method in the breakpoint_ops structure
12656 for all exception catchpoint kinds. */
12657
12658static enum print_stop_action
761269c8 12659print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12660{
79a45e25 12661 struct ui_out *uiout = current_uiout;
348d480f 12662 struct breakpoint *b = bs->breakpoint_at;
e547c119 12663 char *exception_message;
348d480f 12664
956a9fb9 12665 annotate_catchpoint (b->number);
f7f9143b 12666
112e8700 12667 if (uiout->is_mi_like_p ())
f7f9143b 12668 {
112e8700 12669 uiout->field_string ("reason",
956a9fb9 12670 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12671 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12672 }
12673
112e8700
SM
12674 uiout->text (b->disposition == disp_del
12675 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12676 uiout->field_int ("bkptno", b->number);
12677 uiout->text (", ");
f7f9143b 12678
45db7c09
PA
12679 /* ada_exception_name_addr relies on the selected frame being the
12680 current frame. Need to do this here because this function may be
12681 called more than once when printing a stop, and below, we'll
12682 select the first frame past the Ada run-time (see
12683 ada_find_printable_frame). */
12684 select_frame (get_current_frame ());
12685
f7f9143b
JB
12686 switch (ex)
12687 {
761269c8
JB
12688 case ada_catch_exception:
12689 case ada_catch_exception_unhandled:
9f757bf7 12690 case ada_catch_handlers:
956a9fb9
JB
12691 {
12692 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12693 char exception_name[256];
12694
12695 if (addr != 0)
12696 {
c714b426
PA
12697 read_memory (addr, (gdb_byte *) exception_name,
12698 sizeof (exception_name) - 1);
956a9fb9
JB
12699 exception_name [sizeof (exception_name) - 1] = '\0';
12700 }
12701 else
12702 {
12703 /* For some reason, we were unable to read the exception
12704 name. This could happen if the Runtime was compiled
12705 without debugging info, for instance. In that case,
12706 just replace the exception name by the generic string
12707 "exception" - it will read as "an exception" in the
12708 notification we are about to print. */
967cff16 12709 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12710 }
12711 /* In the case of unhandled exception breakpoints, we print
12712 the exception name as "unhandled EXCEPTION_NAME", to make
12713 it clearer to the user which kind of catchpoint just got
12714 hit. We used ui_out_text to make sure that this extra
12715 info does not pollute the exception name in the MI case. */
761269c8 12716 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12717 uiout->text ("unhandled ");
12718 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12719 }
12720 break;
761269c8 12721 case ada_catch_assert:
956a9fb9
JB
12722 /* In this case, the name of the exception is not really
12723 important. Just print "failed assertion" to make it clearer
12724 that his program just hit an assertion-failure catchpoint.
12725 We used ui_out_text because this info does not belong in
12726 the MI output. */
112e8700 12727 uiout->text ("failed assertion");
956a9fb9 12728 break;
f7f9143b 12729 }
e547c119
JB
12730
12731 exception_message = ada_exception_message ();
12732 if (exception_message != NULL)
12733 {
12734 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12735
12736 uiout->text (" (");
12737 uiout->field_string ("exception-message", exception_message);
12738 uiout->text (")");
12739
12740 do_cleanups (cleanups);
12741 }
12742
112e8700 12743 uiout->text (" at ");
956a9fb9 12744 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12745
12746 return PRINT_SRC_AND_LOC;
12747}
12748
12749/* Implement the PRINT_ONE method in the breakpoint_ops structure
12750 for all exception catchpoint kinds. */
12751
12752static void
761269c8 12753print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12754 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12755{
79a45e25 12756 struct ui_out *uiout = current_uiout;
28010a5d 12757 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12758 struct value_print_options opts;
12759
12760 get_user_print_options (&opts);
12761 if (opts.addressprint)
f7f9143b
JB
12762 {
12763 annotate_field (4);
112e8700 12764 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12765 }
12766
12767 annotate_field (5);
a6d9a66e 12768 *last_loc = b->loc;
f7f9143b
JB
12769 switch (ex)
12770 {
761269c8 12771 case ada_catch_exception:
28010a5d 12772 if (c->excep_string != NULL)
f7f9143b 12773 {
28010a5d
PA
12774 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12775
112e8700 12776 uiout->field_string ("what", msg);
f7f9143b
JB
12777 xfree (msg);
12778 }
12779 else
112e8700 12780 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12781
12782 break;
12783
761269c8 12784 case ada_catch_exception_unhandled:
112e8700 12785 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12786 break;
12787
9f757bf7
XR
12788 case ada_catch_handlers:
12789 if (c->excep_string != NULL)
12790 {
12791 uiout->field_fmt ("what",
12792 _("`%s' Ada exception handlers"),
12793 c->excep_string);
12794 }
12795 else
12796 uiout->field_string ("what", "all Ada exceptions handlers");
12797 break;
12798
761269c8 12799 case ada_catch_assert:
112e8700 12800 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12801 break;
12802
12803 default:
12804 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12805 break;
12806 }
12807}
12808
12809/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12810 for all exception catchpoint kinds. */
12811
12812static void
761269c8 12813print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12814 struct breakpoint *b)
12815{
28010a5d 12816 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12817 struct ui_out *uiout = current_uiout;
28010a5d 12818
112e8700 12819 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12820 : _("Catchpoint "));
112e8700
SM
12821 uiout->field_int ("bkptno", b->number);
12822 uiout->text (": ");
00eb2c4a 12823
f7f9143b
JB
12824 switch (ex)
12825 {
761269c8 12826 case ada_catch_exception:
28010a5d 12827 if (c->excep_string != NULL)
00eb2c4a
JB
12828 {
12829 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12830 struct cleanup *old_chain = make_cleanup (xfree, info);
12831
112e8700 12832 uiout->text (info);
00eb2c4a
JB
12833 do_cleanups (old_chain);
12834 }
f7f9143b 12835 else
112e8700 12836 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12837 break;
12838
761269c8 12839 case ada_catch_exception_unhandled:
112e8700 12840 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12841 break;
9f757bf7
XR
12842
12843 case ada_catch_handlers:
12844 if (c->excep_string != NULL)
12845 {
12846 std::string info
12847 = string_printf (_("`%s' Ada exception handlers"),
12848 c->excep_string);
12849 uiout->text (info.c_str ());
12850 }
12851 else
12852 uiout->text (_("all Ada exceptions handlers"));
12853 break;
12854
761269c8 12855 case ada_catch_assert:
112e8700 12856 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12857 break;
12858
12859 default:
12860 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12861 break;
12862 }
12863}
12864
6149aea9
PA
12865/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12866 for all exception catchpoint kinds. */
12867
12868static void
761269c8 12869print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12870 struct breakpoint *b, struct ui_file *fp)
12871{
28010a5d
PA
12872 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12873
6149aea9
PA
12874 switch (ex)
12875 {
761269c8 12876 case ada_catch_exception:
6149aea9 12877 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12878 if (c->excep_string != NULL)
12879 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12880 break;
12881
761269c8 12882 case ada_catch_exception_unhandled:
78076abc 12883 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12884 break;
12885
9f757bf7
XR
12886 case ada_catch_handlers:
12887 fprintf_filtered (fp, "catch handlers");
12888 break;
12889
761269c8 12890 case ada_catch_assert:
6149aea9
PA
12891 fprintf_filtered (fp, "catch assert");
12892 break;
12893
12894 default:
12895 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12896 }
d9b3f62e 12897 print_recreate_thread (b, fp);
6149aea9
PA
12898}
12899
f7f9143b
JB
12900/* Virtual table for "catch exception" breakpoints. */
12901
28010a5d
PA
12902static struct bp_location *
12903allocate_location_catch_exception (struct breakpoint *self)
12904{
761269c8 12905 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12906}
12907
12908static void
12909re_set_catch_exception (struct breakpoint *b)
12910{
761269c8 12911 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12912}
12913
12914static void
12915check_status_catch_exception (bpstat bs)
12916{
761269c8 12917 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12918}
12919
f7f9143b 12920static enum print_stop_action
348d480f 12921print_it_catch_exception (bpstat bs)
f7f9143b 12922{
761269c8 12923 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12924}
12925
12926static void
a6d9a66e 12927print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12928{
761269c8 12929 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12930}
12931
12932static void
12933print_mention_catch_exception (struct breakpoint *b)
12934{
761269c8 12935 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12936}
12937
6149aea9
PA
12938static void
12939print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12940{
761269c8 12941 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12942}
12943
2060206e 12944static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12945
12946/* Virtual table for "catch exception unhandled" breakpoints. */
12947
28010a5d
PA
12948static struct bp_location *
12949allocate_location_catch_exception_unhandled (struct breakpoint *self)
12950{
761269c8 12951 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12952}
12953
12954static void
12955re_set_catch_exception_unhandled (struct breakpoint *b)
12956{
761269c8 12957 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12958}
12959
12960static void
12961check_status_catch_exception_unhandled (bpstat bs)
12962{
761269c8 12963 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12964}
12965
f7f9143b 12966static enum print_stop_action
348d480f 12967print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12968{
761269c8 12969 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12970}
12971
12972static void
a6d9a66e
UW
12973print_one_catch_exception_unhandled (struct breakpoint *b,
12974 struct bp_location **last_loc)
f7f9143b 12975{
761269c8 12976 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12977}
12978
12979static void
12980print_mention_catch_exception_unhandled (struct breakpoint *b)
12981{
761269c8 12982 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12983}
12984
6149aea9
PA
12985static void
12986print_recreate_catch_exception_unhandled (struct breakpoint *b,
12987 struct ui_file *fp)
12988{
761269c8 12989 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12990}
12991
2060206e 12992static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12993
12994/* Virtual table for "catch assert" breakpoints. */
12995
28010a5d
PA
12996static struct bp_location *
12997allocate_location_catch_assert (struct breakpoint *self)
12998{
761269c8 12999 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
13000}
13001
13002static void
13003re_set_catch_assert (struct breakpoint *b)
13004{
761269c8 13005 re_set_exception (ada_catch_assert, b);
28010a5d
PA
13006}
13007
13008static void
13009check_status_catch_assert (bpstat bs)
13010{
761269c8 13011 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
13012}
13013
f7f9143b 13014static enum print_stop_action
348d480f 13015print_it_catch_assert (bpstat bs)
f7f9143b 13016{
761269c8 13017 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
13018}
13019
13020static void
a6d9a66e 13021print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 13022{
761269c8 13023 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
13024}
13025
13026static void
13027print_mention_catch_assert (struct breakpoint *b)
13028{
761269c8 13029 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
13030}
13031
6149aea9
PA
13032static void
13033print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13034{
761269c8 13035 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
13036}
13037
2060206e 13038static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 13039
9f757bf7
XR
13040/* Virtual table for "catch handlers" breakpoints. */
13041
13042static struct bp_location *
13043allocate_location_catch_handlers (struct breakpoint *self)
13044{
13045 return allocate_location_exception (ada_catch_handlers, self);
13046}
13047
13048static void
13049re_set_catch_handlers (struct breakpoint *b)
13050{
13051 re_set_exception (ada_catch_handlers, b);
13052}
13053
13054static void
13055check_status_catch_handlers (bpstat bs)
13056{
13057 check_status_exception (ada_catch_handlers, bs);
13058}
13059
13060static enum print_stop_action
13061print_it_catch_handlers (bpstat bs)
13062{
13063 return print_it_exception (ada_catch_handlers, bs);
13064}
13065
13066static void
13067print_one_catch_handlers (struct breakpoint *b,
13068 struct bp_location **last_loc)
13069{
13070 print_one_exception (ada_catch_handlers, b, last_loc);
13071}
13072
13073static void
13074print_mention_catch_handlers (struct breakpoint *b)
13075{
13076 print_mention_exception (ada_catch_handlers, b);
13077}
13078
13079static void
13080print_recreate_catch_handlers (struct breakpoint *b,
13081 struct ui_file *fp)
13082{
13083 print_recreate_exception (ada_catch_handlers, b, fp);
13084}
13085
13086static struct breakpoint_ops catch_handlers_breakpoint_ops;
13087
f7f9143b
JB
13088/* Return a newly allocated copy of the first space-separated token
13089 in ARGSP, and then adjust ARGSP to point immediately after that
13090 token.
13091
13092 Return NULL if ARGPS does not contain any more tokens. */
13093
13094static char *
a121b7c1 13095ada_get_next_arg (const char **argsp)
f7f9143b 13096{
a121b7c1
PA
13097 const char *args = *argsp;
13098 const char *end;
f7f9143b
JB
13099 char *result;
13100
f1735a53 13101 args = skip_spaces (args);
f7f9143b
JB
13102 if (args[0] == '\0')
13103 return NULL; /* No more arguments. */
13104
13105 /* Find the end of the current argument. */
13106
f1735a53 13107 end = skip_to_space (args);
f7f9143b
JB
13108
13109 /* Adjust ARGSP to point to the start of the next argument. */
13110
13111 *argsp = end;
13112
13113 /* Make a copy of the current argument and return it. */
13114
224c3ddb 13115 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
13116 strncpy (result, args, end - args);
13117 result[end - args] = '\0';
13118
13119 return result;
13120}
13121
13122/* Split the arguments specified in a "catch exception" command.
13123 Set EX to the appropriate catchpoint type.
28010a5d 13124 Set EXCEP_STRING to the name of the specific exception if
5845583d 13125 specified by the user.
9f757bf7
XR
13126 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13127 "catch handlers" command. False otherwise.
5845583d
JB
13128 If a condition is found at the end of the arguments, the condition
13129 expression is stored in COND_STRING (memory must be deallocated
13130 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13131
13132static void
a121b7c1 13133catch_ada_exception_command_split (const char *args,
9f757bf7 13134 bool is_catch_handlers_cmd,
761269c8 13135 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
13136 char **excep_string,
13137 char **cond_string)
f7f9143b
JB
13138{
13139 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13140 char *exception_name;
5845583d 13141 char *cond = NULL;
f7f9143b
JB
13142
13143 exception_name = ada_get_next_arg (&args);
5845583d
JB
13144 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13145 {
13146 /* This is not an exception name; this is the start of a condition
13147 expression for a catchpoint on all exceptions. So, "un-get"
13148 this token, and set exception_name to NULL. */
13149 xfree (exception_name);
13150 exception_name = NULL;
13151 args -= 2;
13152 }
f7f9143b
JB
13153 make_cleanup (xfree, exception_name);
13154
5845583d 13155 /* Check to see if we have a condition. */
f7f9143b 13156
f1735a53 13157 args = skip_spaces (args);
61012eef 13158 if (startswith (args, "if")
5845583d
JB
13159 && (isspace (args[2]) || args[2] == '\0'))
13160 {
13161 args += 2;
f1735a53 13162 args = skip_spaces (args);
5845583d
JB
13163
13164 if (args[0] == '\0')
13165 error (_("Condition missing after `if' keyword"));
13166 cond = xstrdup (args);
13167 make_cleanup (xfree, cond);
13168
13169 args += strlen (args);
13170 }
13171
13172 /* Check that we do not have any more arguments. Anything else
13173 is unexpected. */
f7f9143b
JB
13174
13175 if (args[0] != '\0')
13176 error (_("Junk at end of expression"));
13177
13178 discard_cleanups (old_chain);
13179
9f757bf7
XR
13180 if (is_catch_handlers_cmd)
13181 {
13182 /* Catch handling of exceptions. */
13183 *ex = ada_catch_handlers;
13184 *excep_string = exception_name;
13185 }
13186 else if (exception_name == NULL)
f7f9143b
JB
13187 {
13188 /* Catch all exceptions. */
761269c8 13189 *ex = ada_catch_exception;
28010a5d 13190 *excep_string = NULL;
f7f9143b
JB
13191 }
13192 else if (strcmp (exception_name, "unhandled") == 0)
13193 {
13194 /* Catch unhandled exceptions. */
761269c8 13195 *ex = ada_catch_exception_unhandled;
28010a5d 13196 *excep_string = NULL;
f7f9143b
JB
13197 }
13198 else
13199 {
13200 /* Catch a specific exception. */
761269c8 13201 *ex = ada_catch_exception;
28010a5d 13202 *excep_string = exception_name;
f7f9143b 13203 }
5845583d 13204 *cond_string = cond;
f7f9143b
JB
13205}
13206
13207/* Return the name of the symbol on which we should break in order to
13208 implement a catchpoint of the EX kind. */
13209
13210static const char *
761269c8 13211ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13212{
3eecfa55
JB
13213 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13214
13215 gdb_assert (data->exception_info != NULL);
0259addd 13216
f7f9143b
JB
13217 switch (ex)
13218 {
761269c8 13219 case ada_catch_exception:
3eecfa55 13220 return (data->exception_info->catch_exception_sym);
f7f9143b 13221 break;
761269c8 13222 case ada_catch_exception_unhandled:
3eecfa55 13223 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13224 break;
761269c8 13225 case ada_catch_assert:
3eecfa55 13226 return (data->exception_info->catch_assert_sym);
f7f9143b 13227 break;
9f757bf7
XR
13228 case ada_catch_handlers:
13229 return (data->exception_info->catch_handlers_sym);
13230 break;
f7f9143b
JB
13231 default:
13232 internal_error (__FILE__, __LINE__,
13233 _("unexpected catchpoint kind (%d)"), ex);
13234 }
13235}
13236
13237/* Return the breakpoint ops "virtual table" used for catchpoints
13238 of the EX kind. */
13239
c0a91b2b 13240static const struct breakpoint_ops *
761269c8 13241ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13242{
13243 switch (ex)
13244 {
761269c8 13245 case ada_catch_exception:
f7f9143b
JB
13246 return (&catch_exception_breakpoint_ops);
13247 break;
761269c8 13248 case ada_catch_exception_unhandled:
f7f9143b
JB
13249 return (&catch_exception_unhandled_breakpoint_ops);
13250 break;
761269c8 13251 case ada_catch_assert:
f7f9143b
JB
13252 return (&catch_assert_breakpoint_ops);
13253 break;
9f757bf7
XR
13254 case ada_catch_handlers:
13255 return (&catch_handlers_breakpoint_ops);
13256 break;
f7f9143b
JB
13257 default:
13258 internal_error (__FILE__, __LINE__,
13259 _("unexpected catchpoint kind (%d)"), ex);
13260 }
13261}
13262
13263/* Return the condition that will be used to match the current exception
13264 being raised with the exception that the user wants to catch. This
13265 assumes that this condition is used when the inferior just triggered
13266 an exception catchpoint.
9f757bf7 13267 EX: the type of catchpoints used for catching Ada exceptions.
f7f9143b
JB
13268
13269 The string returned is a newly allocated string that needs to be
13270 deallocated later. */
13271
13272static char *
9f757bf7
XR
13273ada_exception_catchpoint_cond_string (const char *excep_string,
13274 enum ada_exception_catchpoint_kind ex)
f7f9143b 13275{
3d0b0fa3 13276 int i;
9f757bf7
XR
13277 bool is_standard_exc = false;
13278 const char *actual_exc_expr;
13279 char *ref_exc_expr;
13280
13281 if (ex == ada_catch_handlers)
13282 {
13283 /* For exception handlers catchpoints, the condition string does
13284 not use the same parameter as for the other exceptions. */
13285 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13286 "(gcc_exception).all.occurrence.id)");
13287 }
13288 else
13289 actual_exc_expr = "long_integer (e)";
3d0b0fa3 13290
0963b4bd 13291 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13292 runtime units that have been compiled without debugging info; if
28010a5d 13293 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13294 exception (e.g. "constraint_error") then, during the evaluation
13295 of the condition expression, the symbol lookup on this name would
0963b4bd 13296 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13297 may then be set only on user-defined exceptions which have the
13298 same not-fully-qualified name (e.g. my_package.constraint_error).
13299
13300 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13301 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13302 exception constraint_error" is rewritten into "catch exception
13303 standard.constraint_error".
13304
13305 If an exception named contraint_error is defined in another package of
13306 the inferior program, then the only way to specify this exception as a
13307 breakpoint condition is to use its fully-qualified named:
13308 e.g. my_package.constraint_error. */
13309
13310 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13311 {
28010a5d 13312 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13313 {
9f757bf7
XR
13314 is_standard_exc = true;
13315 break;
3d0b0fa3
JB
13316 }
13317 }
9f757bf7
XR
13318
13319 if (is_standard_exc)
13320 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13321 else
13322 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13323
13324 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13325 xfree (ref_exc_expr);
13326 return result;
f7f9143b
JB
13327}
13328
13329/* Return the symtab_and_line that should be used to insert an exception
13330 catchpoint of the TYPE kind.
13331
28010a5d
PA
13332 EXCEP_STRING should contain the name of a specific exception that
13333 the catchpoint should catch, or NULL otherwise.
f7f9143b 13334
28010a5d
PA
13335 ADDR_STRING returns the name of the function where the real
13336 breakpoint that implements the catchpoints is set, depending on the
13337 type of catchpoint we need to create. */
f7f9143b
JB
13338
13339static struct symtab_and_line
761269c8 13340ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13341 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13342{
13343 const char *sym_name;
13344 struct symbol *sym;
f7f9143b 13345
0259addd
JB
13346 /* First, find out which exception support info to use. */
13347 ada_exception_support_info_sniffer ();
13348
13349 /* Then lookup the function on which we will break in order to catch
f7f9143b 13350 the Ada exceptions requested by the user. */
f7f9143b
JB
13351 sym_name = ada_exception_sym_name (ex);
13352 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13353
f17011e0
JB
13354 /* We can assume that SYM is not NULL at this stage. If the symbol
13355 did not exist, ada_exception_support_info_sniffer would have
13356 raised an exception.
f7f9143b 13357
f17011e0
JB
13358 Also, ada_exception_support_info_sniffer should have already
13359 verified that SYM is a function symbol. */
13360 gdb_assert (sym != NULL);
13361 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13362
13363 /* Set ADDR_STRING. */
f7f9143b
JB
13364 *addr_string = xstrdup (sym_name);
13365
f7f9143b 13366 /* Set OPS. */
4b9eee8c 13367 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13368
f17011e0 13369 return find_function_start_sal (sym, 1);
f7f9143b
JB
13370}
13371
b4a5b78b 13372/* Create an Ada exception catchpoint.
f7f9143b 13373
b4a5b78b 13374 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13375
2df4d1d5
JB
13376 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13377 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13378 of the exception to which this catchpoint applies. When not NULL,
13379 the string must be allocated on the heap, and its deallocation
13380 is no longer the responsibility of the caller.
13381
13382 COND_STRING, if not NULL, is the catchpoint condition. This string
13383 must be allocated on the heap, and its deallocation is no longer
13384 the responsibility of the caller.
f7f9143b 13385
b4a5b78b
JB
13386 TEMPFLAG, if nonzero, means that the underlying breakpoint
13387 should be temporary.
28010a5d 13388
b4a5b78b 13389 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13390
349774ef 13391void
28010a5d 13392create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13393 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13394 char *excep_string,
5845583d 13395 char *cond_string,
28010a5d 13396 int tempflag,
349774ef 13397 int disabled,
28010a5d
PA
13398 int from_tty)
13399{
f2fc3015 13400 const char *addr_string = NULL;
b4a5b78b
JB
13401 const struct breakpoint_ops *ops = NULL;
13402 struct symtab_and_line sal
13403 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13404
b270e6f9
TT
13405 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13406 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13407 ops, tempflag, disabled, from_tty);
28010a5d 13408 c->excep_string = excep_string;
9f757bf7 13409 create_excep_cond_exprs (c.get (), ex_kind);
5845583d 13410 if (cond_string != NULL)
b270e6f9
TT
13411 set_breakpoint_condition (c.get (), cond_string, from_tty);
13412 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13413}
13414
9ac4176b
PA
13415/* Implement the "catch exception" command. */
13416
13417static void
eb4c3f4a 13418catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13419 struct cmd_list_element *command)
13420{
a121b7c1 13421 const char *arg = arg_entry;
9ac4176b
PA
13422 struct gdbarch *gdbarch = get_current_arch ();
13423 int tempflag;
761269c8 13424 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13425 char *excep_string = NULL;
5845583d 13426 char *cond_string = NULL;
9ac4176b
PA
13427
13428 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13429
13430 if (!arg)
13431 arg = "";
9f757bf7
XR
13432 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13433 &cond_string);
13434 create_ada_exception_catchpoint (gdbarch, ex_kind,
13435 excep_string, cond_string,
13436 tempflag, 1 /* enabled */,
13437 from_tty);
13438}
13439
13440/* Implement the "catch handlers" command. */
13441
13442static void
13443catch_ada_handlers_command (const char *arg_entry, int from_tty,
13444 struct cmd_list_element *command)
13445{
13446 const char *arg = arg_entry;
13447 struct gdbarch *gdbarch = get_current_arch ();
13448 int tempflag;
13449 enum ada_exception_catchpoint_kind ex_kind;
13450 char *excep_string = NULL;
13451 char *cond_string = NULL;
13452
13453 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13454
13455 if (!arg)
13456 arg = "";
13457 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
b4a5b78b
JB
13458 &cond_string);
13459 create_ada_exception_catchpoint (gdbarch, ex_kind,
13460 excep_string, cond_string,
349774ef
JB
13461 tempflag, 1 /* enabled */,
13462 from_tty);
9ac4176b
PA
13463}
13464
b4a5b78b 13465/* Split the arguments specified in a "catch assert" command.
5845583d 13466
b4a5b78b
JB
13467 ARGS contains the command's arguments (or the empty string if
13468 no arguments were passed).
5845583d
JB
13469
13470 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13471 (the memory needs to be deallocated after use). */
5845583d 13472
b4a5b78b 13473static void
a121b7c1 13474catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13475{
f1735a53 13476 args = skip_spaces (args);
f7f9143b 13477
5845583d 13478 /* Check whether a condition was provided. */
61012eef 13479 if (startswith (args, "if")
5845583d 13480 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13481 {
5845583d 13482 args += 2;
f1735a53 13483 args = skip_spaces (args);
5845583d
JB
13484 if (args[0] == '\0')
13485 error (_("condition missing after `if' keyword"));
13486 *cond_string = xstrdup (args);
f7f9143b
JB
13487 }
13488
5845583d
JB
13489 /* Otherwise, there should be no other argument at the end of
13490 the command. */
13491 else if (args[0] != '\0')
13492 error (_("Junk at end of arguments."));
f7f9143b
JB
13493}
13494
9ac4176b
PA
13495/* Implement the "catch assert" command. */
13496
13497static void
eb4c3f4a 13498catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13499 struct cmd_list_element *command)
13500{
a121b7c1 13501 const char *arg = arg_entry;
9ac4176b
PA
13502 struct gdbarch *gdbarch = get_current_arch ();
13503 int tempflag;
5845583d 13504 char *cond_string = NULL;
9ac4176b
PA
13505
13506 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13507
13508 if (!arg)
13509 arg = "";
b4a5b78b 13510 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13511 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13512 NULL, cond_string,
349774ef
JB
13513 tempflag, 1 /* enabled */,
13514 from_tty);
9ac4176b 13515}
778865d3
JB
13516
13517/* Return non-zero if the symbol SYM is an Ada exception object. */
13518
13519static int
13520ada_is_exception_sym (struct symbol *sym)
13521{
13522 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13523
13524 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13525 && SYMBOL_CLASS (sym) != LOC_BLOCK
13526 && SYMBOL_CLASS (sym) != LOC_CONST
13527 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13528 && type_name != NULL && strcmp (type_name, "exception") == 0);
13529}
13530
13531/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13532 Ada exception object. This matches all exceptions except the ones
13533 defined by the Ada language. */
13534
13535static int
13536ada_is_non_standard_exception_sym (struct symbol *sym)
13537{
13538 int i;
13539
13540 if (!ada_is_exception_sym (sym))
13541 return 0;
13542
13543 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13544 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13545 return 0; /* A standard exception. */
13546
13547 /* Numeric_Error is also a standard exception, so exclude it.
13548 See the STANDARD_EXC description for more details as to why
13549 this exception is not listed in that array. */
13550 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13551 return 0;
13552
13553 return 1;
13554}
13555
ab816a27 13556/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13557 objects.
13558
13559 The comparison is determined first by exception name, and then
13560 by exception address. */
13561
ab816a27 13562bool
cc536b21 13563ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13564{
778865d3
JB
13565 int result;
13566
ab816a27
TT
13567 result = strcmp (name, other.name);
13568 if (result < 0)
13569 return true;
13570 if (result == 0 && addr < other.addr)
13571 return true;
13572 return false;
13573}
778865d3 13574
ab816a27 13575bool
cc536b21 13576ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13577{
13578 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13579}
13580
13581/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13582 routine, but keeping the first SKIP elements untouched.
13583
13584 All duplicates are also removed. */
13585
13586static void
ab816a27 13587sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13588 int skip)
13589{
ab816a27
TT
13590 std::sort (exceptions->begin () + skip, exceptions->end ());
13591 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13592 exceptions->end ());
778865d3
JB
13593}
13594
778865d3
JB
13595/* Add all exceptions defined by the Ada standard whose name match
13596 a regular expression.
13597
13598 If PREG is not NULL, then this regexp_t object is used to
13599 perform the symbol name matching. Otherwise, no name-based
13600 filtering is performed.
13601
13602 EXCEPTIONS is a vector of exceptions to which matching exceptions
13603 gets pushed. */
13604
13605static void
2d7cc5c7 13606ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13607 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13608{
13609 int i;
13610
13611 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13612 {
13613 if (preg == NULL
2d7cc5c7 13614 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13615 {
13616 struct bound_minimal_symbol msymbol
13617 = ada_lookup_simple_minsym (standard_exc[i]);
13618
13619 if (msymbol.minsym != NULL)
13620 {
13621 struct ada_exc_info info
77e371c0 13622 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13623
ab816a27 13624 exceptions->push_back (info);
778865d3
JB
13625 }
13626 }
13627 }
13628}
13629
13630/* Add all Ada exceptions defined locally and accessible from the given
13631 FRAME.
13632
13633 If PREG is not NULL, then this regexp_t object is used to
13634 perform the symbol name matching. Otherwise, no name-based
13635 filtering is performed.
13636
13637 EXCEPTIONS is a vector of exceptions to which matching exceptions
13638 gets pushed. */
13639
13640static void
2d7cc5c7
PA
13641ada_add_exceptions_from_frame (compiled_regex *preg,
13642 struct frame_info *frame,
ab816a27 13643 std::vector<ada_exc_info> *exceptions)
778865d3 13644{
3977b71f 13645 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13646
13647 while (block != 0)
13648 {
13649 struct block_iterator iter;
13650 struct symbol *sym;
13651
13652 ALL_BLOCK_SYMBOLS (block, iter, sym)
13653 {
13654 switch (SYMBOL_CLASS (sym))
13655 {
13656 case LOC_TYPEDEF:
13657 case LOC_BLOCK:
13658 case LOC_CONST:
13659 break;
13660 default:
13661 if (ada_is_exception_sym (sym))
13662 {
13663 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13664 SYMBOL_VALUE_ADDRESS (sym)};
13665
ab816a27 13666 exceptions->push_back (info);
778865d3
JB
13667 }
13668 }
13669 }
13670 if (BLOCK_FUNCTION (block) != NULL)
13671 break;
13672 block = BLOCK_SUPERBLOCK (block);
13673 }
13674}
13675
14bc53a8
PA
13676/* Return true if NAME matches PREG or if PREG is NULL. */
13677
13678static bool
2d7cc5c7 13679name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13680{
13681 return (preg == NULL
2d7cc5c7 13682 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13683}
13684
778865d3
JB
13685/* Add all exceptions defined globally whose name name match
13686 a regular expression, excluding standard exceptions.
13687
13688 The reason we exclude standard exceptions is that they need
13689 to be handled separately: Standard exceptions are defined inside
13690 a runtime unit which is normally not compiled with debugging info,
13691 and thus usually do not show up in our symbol search. However,
13692 if the unit was in fact built with debugging info, we need to
13693 exclude them because they would duplicate the entry we found
13694 during the special loop that specifically searches for those
13695 standard exceptions.
13696
13697 If PREG is not NULL, then this regexp_t object is used to
13698 perform the symbol name matching. Otherwise, no name-based
13699 filtering is performed.
13700
13701 EXCEPTIONS is a vector of exceptions to which matching exceptions
13702 gets pushed. */
13703
13704static void
2d7cc5c7 13705ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13706 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13707{
13708 struct objfile *objfile;
43f3e411 13709 struct compunit_symtab *s;
778865d3 13710
14bc53a8
PA
13711 /* In Ada, the symbol "search name" is a linkage name, whereas the
13712 regular expression used to do the matching refers to the natural
13713 name. So match against the decoded name. */
13714 expand_symtabs_matching (NULL,
b5ec771e 13715 lookup_name_info::match_any (),
14bc53a8
PA
13716 [&] (const char *search_name)
13717 {
13718 const char *decoded = ada_decode (search_name);
13719 return name_matches_regex (decoded, preg);
13720 },
13721 NULL,
13722 VARIABLES_DOMAIN);
778865d3 13723
43f3e411 13724 ALL_COMPUNITS (objfile, s)
778865d3 13725 {
43f3e411 13726 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13727 int i;
13728
13729 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13730 {
13731 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13732 struct block_iterator iter;
13733 struct symbol *sym;
13734
13735 ALL_BLOCK_SYMBOLS (b, iter, sym)
13736 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13737 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13738 {
13739 struct ada_exc_info info
13740 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13741
ab816a27 13742 exceptions->push_back (info);
778865d3
JB
13743 }
13744 }
13745 }
13746}
13747
13748/* Implements ada_exceptions_list with the regular expression passed
13749 as a regex_t, rather than a string.
13750
13751 If not NULL, PREG is used to filter out exceptions whose names
13752 do not match. Otherwise, all exceptions are listed. */
13753
ab816a27 13754static std::vector<ada_exc_info>
2d7cc5c7 13755ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13756{
ab816a27 13757 std::vector<ada_exc_info> result;
778865d3
JB
13758 int prev_len;
13759
13760 /* First, list the known standard exceptions. These exceptions
13761 need to be handled separately, as they are usually defined in
13762 runtime units that have been compiled without debugging info. */
13763
13764 ada_add_standard_exceptions (preg, &result);
13765
13766 /* Next, find all exceptions whose scope is local and accessible
13767 from the currently selected frame. */
13768
13769 if (has_stack_frames ())
13770 {
ab816a27 13771 prev_len = result.size ();
778865d3
JB
13772 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13773 &result);
ab816a27 13774 if (result.size () > prev_len)
778865d3
JB
13775 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13776 }
13777
13778 /* Add all exceptions whose scope is global. */
13779
ab816a27 13780 prev_len = result.size ();
778865d3 13781 ada_add_global_exceptions (preg, &result);
ab816a27 13782 if (result.size () > prev_len)
778865d3
JB
13783 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13784
778865d3
JB
13785 return result;
13786}
13787
13788/* Return a vector of ada_exc_info.
13789
13790 If REGEXP is NULL, all exceptions are included in the result.
13791 Otherwise, it should contain a valid regular expression,
13792 and only the exceptions whose names match that regular expression
13793 are included in the result.
13794
13795 The exceptions are sorted in the following order:
13796 - Standard exceptions (defined by the Ada language), in
13797 alphabetical order;
13798 - Exceptions only visible from the current frame, in
13799 alphabetical order;
13800 - Exceptions whose scope is global, in alphabetical order. */
13801
ab816a27 13802std::vector<ada_exc_info>
778865d3
JB
13803ada_exceptions_list (const char *regexp)
13804{
2d7cc5c7
PA
13805 if (regexp == NULL)
13806 return ada_exceptions_list_1 (NULL);
778865d3 13807
2d7cc5c7
PA
13808 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13809 return ada_exceptions_list_1 (&reg);
778865d3
JB
13810}
13811
13812/* Implement the "info exceptions" command. */
13813
13814static void
1d12d88f 13815info_exceptions_command (const char *regexp, int from_tty)
778865d3 13816{
778865d3 13817 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13818
ab816a27 13819 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13820
13821 if (regexp != NULL)
13822 printf_filtered
13823 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13824 else
13825 printf_filtered (_("All defined Ada exceptions:\n"));
13826
ab816a27
TT
13827 for (const ada_exc_info &info : exceptions)
13828 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13829}
13830
4c4b4cd2
PH
13831 /* Operators */
13832/* Information about operators given special treatment in functions
13833 below. */
13834/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13835
13836#define ADA_OPERATORS \
13837 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13838 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13839 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13840 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13841 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13842 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13843 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13844 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13845 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13846 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13847 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13848 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13849 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13850 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13851 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13852 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13853 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13854 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13855 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13856
13857static void
554794dc
SDJ
13858ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13859 int *argsp)
4c4b4cd2
PH
13860{
13861 switch (exp->elts[pc - 1].opcode)
13862 {
76a01679 13863 default:
4c4b4cd2
PH
13864 operator_length_standard (exp, pc, oplenp, argsp);
13865 break;
13866
13867#define OP_DEFN(op, len, args, binop) \
13868 case op: *oplenp = len; *argsp = args; break;
13869 ADA_OPERATORS;
13870#undef OP_DEFN
52ce6436
PH
13871
13872 case OP_AGGREGATE:
13873 *oplenp = 3;
13874 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13875 break;
13876
13877 case OP_CHOICES:
13878 *oplenp = 3;
13879 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13880 break;
4c4b4cd2
PH
13881 }
13882}
13883
c0201579
JK
13884/* Implementation of the exp_descriptor method operator_check. */
13885
13886static int
13887ada_operator_check (struct expression *exp, int pos,
13888 int (*objfile_func) (struct objfile *objfile, void *data),
13889 void *data)
13890{
13891 const union exp_element *const elts = exp->elts;
13892 struct type *type = NULL;
13893
13894 switch (elts[pos].opcode)
13895 {
13896 case UNOP_IN_RANGE:
13897 case UNOP_QUAL:
13898 type = elts[pos + 1].type;
13899 break;
13900
13901 default:
13902 return operator_check_standard (exp, pos, objfile_func, data);
13903 }
13904
13905 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13906
13907 if (type && TYPE_OBJFILE (type)
13908 && (*objfile_func) (TYPE_OBJFILE (type), data))
13909 return 1;
13910
13911 return 0;
13912}
13913
a121b7c1 13914static const char *
4c4b4cd2
PH
13915ada_op_name (enum exp_opcode opcode)
13916{
13917 switch (opcode)
13918 {
76a01679 13919 default:
4c4b4cd2 13920 return op_name_standard (opcode);
52ce6436 13921
4c4b4cd2
PH
13922#define OP_DEFN(op, len, args, binop) case op: return #op;
13923 ADA_OPERATORS;
13924#undef OP_DEFN
52ce6436
PH
13925
13926 case OP_AGGREGATE:
13927 return "OP_AGGREGATE";
13928 case OP_CHOICES:
13929 return "OP_CHOICES";
13930 case OP_NAME:
13931 return "OP_NAME";
4c4b4cd2
PH
13932 }
13933}
13934
13935/* As for operator_length, but assumes PC is pointing at the first
13936 element of the operator, and gives meaningful results only for the
52ce6436 13937 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13938
13939static void
76a01679
JB
13940ada_forward_operator_length (struct expression *exp, int pc,
13941 int *oplenp, int *argsp)
4c4b4cd2 13942{
76a01679 13943 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13944 {
13945 default:
13946 *oplenp = *argsp = 0;
13947 break;
52ce6436 13948
4c4b4cd2
PH
13949#define OP_DEFN(op, len, args, binop) \
13950 case op: *oplenp = len; *argsp = args; break;
13951 ADA_OPERATORS;
13952#undef OP_DEFN
52ce6436
PH
13953
13954 case OP_AGGREGATE:
13955 *oplenp = 3;
13956 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13957 break;
13958
13959 case OP_CHOICES:
13960 *oplenp = 3;
13961 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13962 break;
13963
13964 case OP_STRING:
13965 case OP_NAME:
13966 {
13967 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13968
52ce6436
PH
13969 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13970 *argsp = 0;
13971 break;
13972 }
4c4b4cd2
PH
13973 }
13974}
13975
13976static int
13977ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13978{
13979 enum exp_opcode op = exp->elts[elt].opcode;
13980 int oplen, nargs;
13981 int pc = elt;
13982 int i;
76a01679 13983
4c4b4cd2
PH
13984 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13985
76a01679 13986 switch (op)
4c4b4cd2 13987 {
76a01679 13988 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13989 case OP_ATR_FIRST:
13990 case OP_ATR_LAST:
13991 case OP_ATR_LENGTH:
13992 case OP_ATR_IMAGE:
13993 case OP_ATR_MAX:
13994 case OP_ATR_MIN:
13995 case OP_ATR_MODULUS:
13996 case OP_ATR_POS:
13997 case OP_ATR_SIZE:
13998 case OP_ATR_TAG:
13999 case OP_ATR_VAL:
14000 break;
14001
14002 case UNOP_IN_RANGE:
14003 case UNOP_QUAL:
323e0a4a
AC
14004 /* XXX: gdb_sprint_host_address, type_sprint */
14005 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
14006 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14007 fprintf_filtered (stream, " (");
14008 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14009 fprintf_filtered (stream, ")");
14010 break;
14011 case BINOP_IN_BOUNDS:
52ce6436
PH
14012 fprintf_filtered (stream, " (%d)",
14013 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
14014 break;
14015 case TERNOP_IN_RANGE:
14016 break;
14017
52ce6436
PH
14018 case OP_AGGREGATE:
14019 case OP_OTHERS:
14020 case OP_DISCRETE_RANGE:
14021 case OP_POSITIONAL:
14022 case OP_CHOICES:
14023 break;
14024
14025 case OP_NAME:
14026 case OP_STRING:
14027 {
14028 char *name = &exp->elts[elt + 2].string;
14029 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 14030
52ce6436
PH
14031 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14032 break;
14033 }
14034
4c4b4cd2
PH
14035 default:
14036 return dump_subexp_body_standard (exp, stream, elt);
14037 }
14038
14039 elt += oplen;
14040 for (i = 0; i < nargs; i += 1)
14041 elt = dump_subexp (exp, stream, elt);
14042
14043 return elt;
14044}
14045
14046/* The Ada extension of print_subexp (q.v.). */
14047
76a01679
JB
14048static void
14049ada_print_subexp (struct expression *exp, int *pos,
14050 struct ui_file *stream, enum precedence prec)
4c4b4cd2 14051{
52ce6436 14052 int oplen, nargs, i;
4c4b4cd2
PH
14053 int pc = *pos;
14054 enum exp_opcode op = exp->elts[pc].opcode;
14055
14056 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14057
52ce6436 14058 *pos += oplen;
4c4b4cd2
PH
14059 switch (op)
14060 {
14061 default:
52ce6436 14062 *pos -= oplen;
4c4b4cd2
PH
14063 print_subexp_standard (exp, pos, stream, prec);
14064 return;
14065
14066 case OP_VAR_VALUE:
4c4b4cd2
PH
14067 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14068 return;
14069
14070 case BINOP_IN_BOUNDS:
323e0a4a 14071 /* XXX: sprint_subexp */
4c4b4cd2 14072 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14073 fputs_filtered (" in ", stream);
4c4b4cd2 14074 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14075 fputs_filtered ("'range", stream);
4c4b4cd2 14076 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
14077 fprintf_filtered (stream, "(%ld)",
14078 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
14079 return;
14080
14081 case TERNOP_IN_RANGE:
4c4b4cd2 14082 if (prec >= PREC_EQUAL)
76a01679 14083 fputs_filtered ("(", stream);
323e0a4a 14084 /* XXX: sprint_subexp */
4c4b4cd2 14085 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14086 fputs_filtered (" in ", stream);
4c4b4cd2
PH
14087 print_subexp (exp, pos, stream, PREC_EQUAL);
14088 fputs_filtered (" .. ", stream);
14089 print_subexp (exp, pos, stream, PREC_EQUAL);
14090 if (prec >= PREC_EQUAL)
76a01679
JB
14091 fputs_filtered (")", stream);
14092 return;
4c4b4cd2
PH
14093
14094 case OP_ATR_FIRST:
14095 case OP_ATR_LAST:
14096 case OP_ATR_LENGTH:
14097 case OP_ATR_IMAGE:
14098 case OP_ATR_MAX:
14099 case OP_ATR_MIN:
14100 case OP_ATR_MODULUS:
14101 case OP_ATR_POS:
14102 case OP_ATR_SIZE:
14103 case OP_ATR_TAG:
14104 case OP_ATR_VAL:
4c4b4cd2 14105 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14106 {
14107 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14108 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14109 &type_print_raw_options);
76a01679
JB
14110 *pos += 3;
14111 }
4c4b4cd2 14112 else
76a01679 14113 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14114 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14115 if (nargs > 1)
76a01679
JB
14116 {
14117 int tem;
5b4ee69b 14118
76a01679
JB
14119 for (tem = 1; tem < nargs; tem += 1)
14120 {
14121 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14122 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14123 }
14124 fputs_filtered (")", stream);
14125 }
4c4b4cd2 14126 return;
14f9c5c9 14127
4c4b4cd2 14128 case UNOP_QUAL:
4c4b4cd2
PH
14129 type_print (exp->elts[pc + 1].type, "", stream, 0);
14130 fputs_filtered ("'(", stream);
14131 print_subexp (exp, pos, stream, PREC_PREFIX);
14132 fputs_filtered (")", stream);
14133 return;
14f9c5c9 14134
4c4b4cd2 14135 case UNOP_IN_RANGE:
323e0a4a 14136 /* XXX: sprint_subexp */
4c4b4cd2 14137 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14138 fputs_filtered (" in ", stream);
79d43c61
TT
14139 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14140 &type_print_raw_options);
4c4b4cd2 14141 return;
52ce6436
PH
14142
14143 case OP_DISCRETE_RANGE:
14144 print_subexp (exp, pos, stream, PREC_SUFFIX);
14145 fputs_filtered ("..", stream);
14146 print_subexp (exp, pos, stream, PREC_SUFFIX);
14147 return;
14148
14149 case OP_OTHERS:
14150 fputs_filtered ("others => ", stream);
14151 print_subexp (exp, pos, stream, PREC_SUFFIX);
14152 return;
14153
14154 case OP_CHOICES:
14155 for (i = 0; i < nargs-1; i += 1)
14156 {
14157 if (i > 0)
14158 fputs_filtered ("|", stream);
14159 print_subexp (exp, pos, stream, PREC_SUFFIX);
14160 }
14161 fputs_filtered (" => ", stream);
14162 print_subexp (exp, pos, stream, PREC_SUFFIX);
14163 return;
14164
14165 case OP_POSITIONAL:
14166 print_subexp (exp, pos, stream, PREC_SUFFIX);
14167 return;
14168
14169 case OP_AGGREGATE:
14170 fputs_filtered ("(", stream);
14171 for (i = 0; i < nargs; i += 1)
14172 {
14173 if (i > 0)
14174 fputs_filtered (", ", stream);
14175 print_subexp (exp, pos, stream, PREC_SUFFIX);
14176 }
14177 fputs_filtered (")", stream);
14178 return;
4c4b4cd2
PH
14179 }
14180}
14f9c5c9
AS
14181
14182/* Table mapping opcodes into strings for printing operators
14183 and precedences of the operators. */
14184
d2e4a39e
AS
14185static const struct op_print ada_op_print_tab[] = {
14186 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14187 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14188 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14189 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14190 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14191 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14192 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14193 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14194 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14195 {">=", BINOP_GEQ, PREC_ORDER, 0},
14196 {">", BINOP_GTR, PREC_ORDER, 0},
14197 {"<", BINOP_LESS, PREC_ORDER, 0},
14198 {">>", BINOP_RSH, PREC_SHIFT, 0},
14199 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14200 {"+", BINOP_ADD, PREC_ADD, 0},
14201 {"-", BINOP_SUB, PREC_ADD, 0},
14202 {"&", BINOP_CONCAT, PREC_ADD, 0},
14203 {"*", BINOP_MUL, PREC_MUL, 0},
14204 {"/", BINOP_DIV, PREC_MUL, 0},
14205 {"rem", BINOP_REM, PREC_MUL, 0},
14206 {"mod", BINOP_MOD, PREC_MUL, 0},
14207 {"**", BINOP_EXP, PREC_REPEAT, 0},
14208 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14209 {"-", UNOP_NEG, PREC_PREFIX, 0},
14210 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14211 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14212 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14213 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14214 {".all", UNOP_IND, PREC_SUFFIX, 1},
14215 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14216 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14217 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14218};
14219\f
72d5681a
PH
14220enum ada_primitive_types {
14221 ada_primitive_type_int,
14222 ada_primitive_type_long,
14223 ada_primitive_type_short,
14224 ada_primitive_type_char,
14225 ada_primitive_type_float,
14226 ada_primitive_type_double,
14227 ada_primitive_type_void,
14228 ada_primitive_type_long_long,
14229 ada_primitive_type_long_double,
14230 ada_primitive_type_natural,
14231 ada_primitive_type_positive,
14232 ada_primitive_type_system_address,
08f49010 14233 ada_primitive_type_storage_offset,
72d5681a
PH
14234 nr_ada_primitive_types
14235};
6c038f32
PH
14236
14237static void
d4a9a881 14238ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14239 struct language_arch_info *lai)
14240{
d4a9a881 14241 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14242
72d5681a 14243 lai->primitive_type_vector
d4a9a881 14244 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14245 struct type *);
e9bb382b
UW
14246
14247 lai->primitive_type_vector [ada_primitive_type_int]
14248 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14249 0, "integer");
14250 lai->primitive_type_vector [ada_primitive_type_long]
14251 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14252 0, "long_integer");
14253 lai->primitive_type_vector [ada_primitive_type_short]
14254 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14255 0, "short_integer");
14256 lai->string_char_type
14257 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14258 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14259 lai->primitive_type_vector [ada_primitive_type_float]
14260 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14261 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14262 lai->primitive_type_vector [ada_primitive_type_double]
14263 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14264 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14265 lai->primitive_type_vector [ada_primitive_type_long_long]
14266 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14267 0, "long_long_integer");
14268 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14269 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14270 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14271 lai->primitive_type_vector [ada_primitive_type_natural]
14272 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14273 0, "natural");
14274 lai->primitive_type_vector [ada_primitive_type_positive]
14275 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14276 0, "positive");
14277 lai->primitive_type_vector [ada_primitive_type_void]
14278 = builtin->builtin_void;
14279
14280 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14281 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14282 "void"));
72d5681a
PH
14283 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14284 = "system__address";
fbb06eb1 14285
08f49010
XR
14286 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14287 type. This is a signed integral type whose size is the same as
14288 the size of addresses. */
14289 {
14290 unsigned int addr_length = TYPE_LENGTH
14291 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14292
14293 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14294 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14295 "storage_offset");
14296 }
14297
47e729a8 14298 lai->bool_type_symbol = NULL;
fbb06eb1 14299 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14300}
6c038f32
PH
14301\f
14302 /* Language vector */
14303
14304/* Not really used, but needed in the ada_language_defn. */
14305
14306static void
6c7a06a3 14307emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14308{
6c7a06a3 14309 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14310}
14311
14312static int
410a0ff2 14313parse (struct parser_state *ps)
6c038f32
PH
14314{
14315 warnings_issued = 0;
410a0ff2 14316 return ada_parse (ps);
6c038f32
PH
14317}
14318
14319static const struct exp_descriptor ada_exp_descriptor = {
14320 ada_print_subexp,
14321 ada_operator_length,
c0201579 14322 ada_operator_check,
6c038f32
PH
14323 ada_op_name,
14324 ada_dump_subexp_body,
14325 ada_evaluate_subexp
14326};
14327
b5ec771e
PA
14328/* symbol_name_matcher_ftype adapter for wild_match. */
14329
14330static bool
14331do_wild_match (const char *symbol_search_name,
14332 const lookup_name_info &lookup_name,
a207cff2 14333 completion_match_result *comp_match_res)
b5ec771e
PA
14334{
14335 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14336}
14337
14338/* symbol_name_matcher_ftype adapter for full_match. */
14339
14340static bool
14341do_full_match (const char *symbol_search_name,
14342 const lookup_name_info &lookup_name,
a207cff2 14343 completion_match_result *comp_match_res)
b5ec771e
PA
14344{
14345 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14346}
14347
14348/* Build the Ada lookup name for LOOKUP_NAME. */
14349
14350ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14351{
14352 const std::string &user_name = lookup_name.name ();
14353
14354 if (user_name[0] == '<')
14355 {
14356 if (user_name.back () == '>')
14357 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14358 else
14359 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14360 m_encoded_p = true;
14361 m_verbatim_p = true;
14362 m_wild_match_p = false;
14363 m_standard_p = false;
14364 }
14365 else
14366 {
14367 m_verbatim_p = false;
14368
14369 m_encoded_p = user_name.find ("__") != std::string::npos;
14370
14371 if (!m_encoded_p)
14372 {
14373 const char *folded = ada_fold_name (user_name.c_str ());
14374 const char *encoded = ada_encode_1 (folded, false);
14375 if (encoded != NULL)
14376 m_encoded_name = encoded;
14377 else
14378 m_encoded_name = user_name;
14379 }
14380 else
14381 m_encoded_name = user_name;
14382
14383 /* Handle the 'package Standard' special case. See description
14384 of m_standard_p. */
14385 if (startswith (m_encoded_name.c_str (), "standard__"))
14386 {
14387 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14388 m_standard_p = true;
14389 }
14390 else
14391 m_standard_p = false;
74ccd7f5 14392
b5ec771e
PA
14393 /* If the name contains a ".", then the user is entering a fully
14394 qualified entity name, and the match must not be done in wild
14395 mode. Similarly, if the user wants to complete what looks
14396 like an encoded name, the match must not be done in wild
14397 mode. Also, in the standard__ special case always do
14398 non-wild matching. */
14399 m_wild_match_p
14400 = (lookup_name.match_type () != symbol_name_match_type::FULL
14401 && !m_encoded_p
14402 && !m_standard_p
14403 && user_name.find ('.') == std::string::npos);
14404 }
14405}
14406
14407/* symbol_name_matcher_ftype method for Ada. This only handles
14408 completion mode. */
14409
14410static bool
14411ada_symbol_name_matches (const char *symbol_search_name,
14412 const lookup_name_info &lookup_name,
a207cff2 14413 completion_match_result *comp_match_res)
74ccd7f5 14414{
b5ec771e
PA
14415 return lookup_name.ada ().matches (symbol_search_name,
14416 lookup_name.match_type (),
a207cff2 14417 comp_match_res);
b5ec771e
PA
14418}
14419
14420/* Implement the "la_get_symbol_name_matcher" language_defn method for
14421 Ada. */
14422
14423static symbol_name_matcher_ftype *
14424ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14425{
14426 if (lookup_name.completion_mode ())
14427 return ada_symbol_name_matches;
74ccd7f5 14428 else
b5ec771e
PA
14429 {
14430 if (lookup_name.ada ().wild_match_p ())
14431 return do_wild_match;
14432 else
14433 return do_full_match;
14434 }
74ccd7f5
JB
14435}
14436
a5ee536b
JB
14437/* Implement the "la_read_var_value" language_defn method for Ada. */
14438
14439static struct value *
63e43d3a
PMR
14440ada_read_var_value (struct symbol *var, const struct block *var_block,
14441 struct frame_info *frame)
a5ee536b 14442{
3977b71f 14443 const struct block *frame_block = NULL;
a5ee536b
JB
14444 struct symbol *renaming_sym = NULL;
14445
14446 /* The only case where default_read_var_value is not sufficient
14447 is when VAR is a renaming... */
14448 if (frame)
14449 frame_block = get_frame_block (frame, NULL);
14450 if (frame_block)
14451 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14452 if (renaming_sym != NULL)
14453 return ada_read_renaming_var_value (renaming_sym, frame_block);
14454
14455 /* This is a typical case where we expect the default_read_var_value
14456 function to work. */
63e43d3a 14457 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14458}
14459
56618e20
TT
14460static const char *ada_extensions[] =
14461{
14462 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14463};
14464
47e77640 14465extern const struct language_defn ada_language_defn = {
6c038f32 14466 "ada", /* Language name */
6abde28f 14467 "Ada",
6c038f32 14468 language_ada,
6c038f32 14469 range_check_off,
6c038f32
PH
14470 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14471 that's not quite what this means. */
6c038f32 14472 array_row_major,
9a044a89 14473 macro_expansion_no,
56618e20 14474 ada_extensions,
6c038f32
PH
14475 &ada_exp_descriptor,
14476 parse,
b3f11165 14477 ada_yyerror,
6c038f32
PH
14478 resolve,
14479 ada_printchar, /* Print a character constant */
14480 ada_printstr, /* Function to print string constant */
14481 emit_char, /* Function to print single char (not used) */
6c038f32 14482 ada_print_type, /* Print a type using appropriate syntax */
be942545 14483 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14484 ada_val_print, /* Print a value using appropriate syntax */
14485 ada_value_print, /* Print a top-level value */
a5ee536b 14486 ada_read_var_value, /* la_read_var_value */
6c038f32 14487 NULL, /* Language specific skip_trampoline */
2b2d9e11 14488 NULL, /* name_of_this */
6c038f32
PH
14489 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14490 basic_lookup_transparent_type, /* lookup_transparent_type */
14491 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14492 ada_sniff_from_mangled_name,
0963b4bd
MS
14493 NULL, /* Language specific
14494 class_name_from_physname */
6c038f32
PH
14495 ada_op_print_tab, /* expression operators for printing */
14496 0, /* c-style arrays */
14497 1, /* String lower bound */
6c038f32 14498 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14499 ada_collect_symbol_completion_matches,
72d5681a 14500 ada_language_arch_info,
e79af960 14501 ada_print_array_index,
41f1b697 14502 default_pass_by_reference,
ae6a3a4c 14503 c_get_string,
43cc5389 14504 c_watch_location_expression,
b5ec771e 14505 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14506 ada_iterate_over_symbols,
5ffa0793 14507 default_search_name_hash,
a53b64ea 14508 &ada_varobj_ops,
bb2ec1b3
TT
14509 NULL,
14510 NULL,
6c038f32
PH
14511 LANG_MAGIC
14512};
14513
5bf03f13
JB
14514/* Command-list for the "set/show ada" prefix command. */
14515static struct cmd_list_element *set_ada_list;
14516static struct cmd_list_element *show_ada_list;
14517
14518/* Implement the "set ada" prefix command. */
14519
14520static void
981a3fb3 14521set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14522{
14523 printf_unfiltered (_(\
14524"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14525 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14526}
14527
14528/* Implement the "show ada" prefix command. */
14529
14530static void
981a3fb3 14531show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14532{
14533 cmd_show_list (show_ada_list, from_tty, "");
14534}
14535
2060206e
PA
14536static void
14537initialize_ada_catchpoint_ops (void)
14538{
14539 struct breakpoint_ops *ops;
14540
14541 initialize_breakpoint_ops ();
14542
14543 ops = &catch_exception_breakpoint_ops;
14544 *ops = bkpt_breakpoint_ops;
2060206e
PA
14545 ops->allocate_location = allocate_location_catch_exception;
14546 ops->re_set = re_set_catch_exception;
14547 ops->check_status = check_status_catch_exception;
14548 ops->print_it = print_it_catch_exception;
14549 ops->print_one = print_one_catch_exception;
14550 ops->print_mention = print_mention_catch_exception;
14551 ops->print_recreate = print_recreate_catch_exception;
14552
14553 ops = &catch_exception_unhandled_breakpoint_ops;
14554 *ops = bkpt_breakpoint_ops;
2060206e
PA
14555 ops->allocate_location = allocate_location_catch_exception_unhandled;
14556 ops->re_set = re_set_catch_exception_unhandled;
14557 ops->check_status = check_status_catch_exception_unhandled;
14558 ops->print_it = print_it_catch_exception_unhandled;
14559 ops->print_one = print_one_catch_exception_unhandled;
14560 ops->print_mention = print_mention_catch_exception_unhandled;
14561 ops->print_recreate = print_recreate_catch_exception_unhandled;
14562
14563 ops = &catch_assert_breakpoint_ops;
14564 *ops = bkpt_breakpoint_ops;
2060206e
PA
14565 ops->allocate_location = allocate_location_catch_assert;
14566 ops->re_set = re_set_catch_assert;
14567 ops->check_status = check_status_catch_assert;
14568 ops->print_it = print_it_catch_assert;
14569 ops->print_one = print_one_catch_assert;
14570 ops->print_mention = print_mention_catch_assert;
14571 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14572
14573 ops = &catch_handlers_breakpoint_ops;
14574 *ops = bkpt_breakpoint_ops;
14575 ops->allocate_location = allocate_location_catch_handlers;
14576 ops->re_set = re_set_catch_handlers;
14577 ops->check_status = check_status_catch_handlers;
14578 ops->print_it = print_it_catch_handlers;
14579 ops->print_one = print_one_catch_handlers;
14580 ops->print_mention = print_mention_catch_handlers;
14581 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14582}
14583
3d9434b5
JB
14584/* This module's 'new_objfile' observer. */
14585
14586static void
14587ada_new_objfile_observer (struct objfile *objfile)
14588{
14589 ada_clear_symbol_cache ();
14590}
14591
14592/* This module's 'free_objfile' observer. */
14593
14594static void
14595ada_free_objfile_observer (struct objfile *objfile)
14596{
14597 ada_clear_symbol_cache ();
14598}
14599
d2e4a39e 14600void
6c038f32 14601_initialize_ada_language (void)
14f9c5c9 14602{
2060206e
PA
14603 initialize_ada_catchpoint_ops ();
14604
5bf03f13
JB
14605 add_prefix_cmd ("ada", no_class, set_ada_command,
14606 _("Prefix command for changing Ada-specfic settings"),
14607 &set_ada_list, "set ada ", 0, &setlist);
14608
14609 add_prefix_cmd ("ada", no_class, show_ada_command,
14610 _("Generic command for showing Ada-specific settings."),
14611 &show_ada_list, "show ada ", 0, &showlist);
14612
14613 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14614 &trust_pad_over_xvs, _("\
14615Enable or disable an optimization trusting PAD types over XVS types"), _("\
14616Show whether an optimization trusting PAD types over XVS types is activated"),
14617 _("\
14618This is related to the encoding used by the GNAT compiler. The debugger\n\
14619should normally trust the contents of PAD types, but certain older versions\n\
14620of GNAT have a bug that sometimes causes the information in the PAD type\n\
14621to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14622work around this bug. It is always safe to turn this option \"off\", but\n\
14623this incurs a slight performance penalty, so it is recommended to NOT change\n\
14624this option to \"off\" unless necessary."),
14625 NULL, NULL, &set_ada_list, &show_ada_list);
14626
d72413e6
PMR
14627 add_setshow_boolean_cmd ("print-signatures", class_vars,
14628 &print_signatures, _("\
14629Enable or disable the output of formal and return types for functions in the \
14630overloads selection menu"), _("\
14631Show whether the output of formal and return types for functions in the \
14632overloads selection menu is activated"),
14633 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14634
9ac4176b
PA
14635 add_catch_command ("exception", _("\
14636Catch Ada exceptions, when raised.\n\
14637With an argument, catch only exceptions with the given name."),
14638 catch_ada_exception_command,
14639 NULL,
14640 CATCH_PERMANENT,
14641 CATCH_TEMPORARY);
9f757bf7
XR
14642
14643 add_catch_command ("handlers", _("\
14644Catch Ada exceptions, when handled.\n\
14645With an argument, catch only exceptions with the given name."),
14646 catch_ada_handlers_command,
14647 NULL,
14648 CATCH_PERMANENT,
14649 CATCH_TEMPORARY);
9ac4176b
PA
14650 add_catch_command ("assert", _("\
14651Catch failed Ada assertions, when raised.\n\
14652With an argument, catch only exceptions with the given name."),
14653 catch_assert_command,
14654 NULL,
14655 CATCH_PERMANENT,
14656 CATCH_TEMPORARY);
14657
6c038f32 14658 varsize_limit = 65536;
6c038f32 14659
778865d3
JB
14660 add_info ("exceptions", info_exceptions_command,
14661 _("\
14662List all Ada exception names.\n\
14663If a regular expression is passed as an argument, only those matching\n\
14664the regular expression are listed."));
14665
c6044dd1
JB
14666 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14667 _("Set Ada maintenance-related variables."),
14668 &maint_set_ada_cmdlist, "maintenance set ada ",
14669 0/*allow-unknown*/, &maintenance_set_cmdlist);
14670
14671 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14672 _("Show Ada maintenance-related variables"),
14673 &maint_show_ada_cmdlist, "maintenance show ada ",
14674 0/*allow-unknown*/, &maintenance_show_cmdlist);
14675
14676 add_setshow_boolean_cmd
14677 ("ignore-descriptive-types", class_maintenance,
14678 &ada_ignore_descriptive_types_p,
14679 _("Set whether descriptive types generated by GNAT should be ignored."),
14680 _("Show whether descriptive types generated by GNAT should be ignored."),
14681 _("\
14682When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14683DWARF attribute."),
14684 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14685
6c038f32
PH
14686 decoded_names_store = htab_create_alloc
14687 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14688 NULL, xcalloc, xfree);
6b69afc4 14689
3d9434b5
JB
14690 /* The ada-lang observers. */
14691 observer_attach_new_objfile (ada_new_objfile_observer);
14692 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14693 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14694
14695 /* Setup various context-specific data. */
e802dbe0 14696 ada_inferior_data
8e260fc0 14697 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14698 ada_pspace_data_handle
14699 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14700}