]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
28e7fd62 | 3 | Copyright (C) 1992-2013 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <stdio.h> |
0c30c098 | 23 | #include "gdb_string.h" |
14f9c5c9 AS |
24 | #include <ctype.h> |
25 | #include <stdarg.h> | |
26 | #include "demangle.h" | |
4c4b4cd2 PH |
27 | #include "gdb_regex.h" |
28 | #include "frame.h" | |
14f9c5c9 AS |
29 | #include "symtab.h" |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "expression.h" | |
33 | #include "parser-defs.h" | |
34 | #include "language.h" | |
35 | #include "c-lang.h" | |
36 | #include "inferior.h" | |
37 | #include "symfile.h" | |
38 | #include "objfiles.h" | |
39 | #include "breakpoint.h" | |
40 | #include "gdbcore.h" | |
4c4b4cd2 PH |
41 | #include "hashtab.h" |
42 | #include "gdb_obstack.h" | |
14f9c5c9 | 43 | #include "ada-lang.h" |
4c4b4cd2 PH |
44 | #include "completer.h" |
45 | #include "gdb_stat.h" | |
46 | #ifdef UI_OUT | |
14f9c5c9 | 47 | #include "ui-out.h" |
4c4b4cd2 | 48 | #endif |
fe898f56 | 49 | #include "block.h" |
04714b91 | 50 | #include "infcall.h" |
de4f826b | 51 | #include "dictionary.h" |
60250e8b | 52 | #include "exceptions.h" |
f7f9143b JB |
53 | #include "annotate.h" |
54 | #include "valprint.h" | |
9bbc9174 | 55 | #include "source.h" |
0259addd | 56 | #include "observer.h" |
2ba95b9b | 57 | #include "vec.h" |
692465f1 | 58 | #include "stack.h" |
fa864999 | 59 | #include "gdb_vecs.h" |
79d43c61 | 60 | #include "typeprint.h" |
14f9c5c9 | 61 | |
ccefe4c4 | 62 | #include "psymtab.h" |
40bc484c | 63 | #include "value.h" |
956a9fb9 | 64 | #include "mi/mi-common.h" |
9ac4176b | 65 | #include "arch-utils.h" |
28010a5d | 66 | #include "exceptions.h" |
0fcd72ba | 67 | #include "cli/cli-utils.h" |
ccefe4c4 | 68 | |
4c4b4cd2 | 69 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 70 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
71 | Copied from valarith.c. */ |
72 | ||
73 | #ifndef TRUNCATION_TOWARDS_ZERO | |
74 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
75 | #endif | |
76 | ||
d2e4a39e | 77 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 86 | |
556bdfd4 | 87 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_data (struct value *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int desc_arity (struct type *); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 106 | |
d2e4a39e | 107 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 108 | |
40658b94 PH |
109 | static int full_match (const char *, const char *); |
110 | ||
40bc484c | 111 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 112 | |
4c4b4cd2 | 113 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 114 | struct block *, const char *, |
2570f2b7 | 115 | domain_enum, struct objfile *, int); |
14f9c5c9 | 116 | |
4c4b4cd2 | 117 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 118 | |
76a01679 | 119 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 120 | struct block *); |
14f9c5c9 | 121 | |
4c4b4cd2 PH |
122 | static int num_defns_collected (struct obstack *); |
123 | ||
124 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 125 | |
4c4b4cd2 | 126 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 127 | struct type *); |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 130 | struct symbol *, const struct block *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 133 | |
4c4b4cd2 PH |
134 | static char *ada_op_name (enum exp_opcode); |
135 | ||
136 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int numeric_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int integer_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int scalar_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int discrete_type_p (struct type *); |
14f9c5c9 | 145 | |
aeb5907d JB |
146 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
147 | const char **, | |
148 | int *, | |
149 | const char **); | |
150 | ||
151 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 152 | const struct block *); |
aeb5907d | 153 | |
4c4b4cd2 | 154 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 155 | int, int, int *); |
4c4b4cd2 | 156 | |
d2e4a39e | 157 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 158 | |
b4ba55a1 JB |
159 | static struct type *ada_find_parallel_type_with_name (struct type *, |
160 | const char *); | |
161 | ||
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
28c85d6c | 170 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 171 | |
d2e4a39e | 172 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 173 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 174 | |
d2e4a39e | 175 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 180 | |
ad82864c JB |
181 | static long decode_packed_array_bitsize (struct type *); |
182 | ||
183 | static struct value *decode_constrained_packed_array (struct value *); | |
184 | ||
185 | static int ada_is_packed_array_type (struct type *); | |
186 | ||
187 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 190 | struct value **); |
14f9c5c9 | 191 | |
50810684 | 192 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int is_name_suffix (const char *); |
14f9c5c9 | 204 | |
73589123 PH |
205 | static int advance_wild_match (const char **, const char *, int); |
206 | ||
207 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static LONGEST pos_atr (struct value *); |
212 | ||
3cb382c9 | 213 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
d2e4a39e | 215 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct symbol *standard_lookup (const char *, const struct block *, |
218 | domain_enum); | |
14f9c5c9 | 219 | |
4c4b4cd2 PH |
220 | static struct value *ada_search_struct_field (char *, struct value *, int, |
221 | struct type *); | |
222 | ||
223 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
224 | struct type *); | |
225 | ||
0d5cff50 | 226 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 227 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
228 | |
229 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
230 | struct value *); | |
231 | ||
4c4b4cd2 PH |
232 | static int ada_resolve_function (struct ada_symbol_info *, int, |
233 | struct value **, int, const char *, | |
234 | struct type *); | |
235 | ||
4c4b4cd2 PH |
236 | static int ada_is_direct_array_type (struct type *); |
237 | ||
72d5681a PH |
238 | static void ada_language_arch_info (struct gdbarch *, |
239 | struct language_arch_info *); | |
714e53ab PH |
240 | |
241 | static void check_size (const struct type *); | |
52ce6436 PH |
242 | |
243 | static struct value *ada_index_struct_field (int, struct value *, int, | |
244 | struct type *); | |
245 | ||
246 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
247 | struct expression *, |
248 | int *, enum noside); | |
52ce6436 PH |
249 | |
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
852dff6c JB |
274 | |
275 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
276 | \f |
277 | ||
76a01679 | 278 | |
4c4b4cd2 | 279 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
280 | static unsigned int varsize_limit; |
281 | ||
4c4b4cd2 PH |
282 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
283 | returned by a function that does not return a const char *. */ | |
284 | static char *ada_completer_word_break_characters = | |
285 | #ifdef VMS | |
286 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
287 | #else | |
14f9c5c9 | 288 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 289 | #endif |
14f9c5c9 | 290 | |
4c4b4cd2 | 291 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 292 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 293 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 294 | |
4c4b4cd2 PH |
295 | /* Limit on the number of warnings to raise per expression evaluation. */ |
296 | static int warning_limit = 2; | |
297 | ||
298 | /* Number of warning messages issued; reset to 0 by cleanups after | |
299 | expression evaluation. */ | |
300 | static int warnings_issued = 0; | |
301 | ||
302 | static const char *known_runtime_file_name_patterns[] = { | |
303 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | static const char *known_auxiliary_function_name_patterns[] = { | |
307 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
308 | }; | |
309 | ||
310 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
311 | static struct obstack symbol_list_obstack; | |
312 | ||
e802dbe0 JB |
313 | /* Inferior-specific data. */ |
314 | ||
315 | /* Per-inferior data for this module. */ | |
316 | ||
317 | struct ada_inferior_data | |
318 | { | |
319 | /* The ada__tags__type_specific_data type, which is used when decoding | |
320 | tagged types. With older versions of GNAT, this type was directly | |
321 | accessible through a component ("tsd") in the object tag. But this | |
322 | is no longer the case, so we cache it for each inferior. */ | |
323 | struct type *tsd_type; | |
3eecfa55 JB |
324 | |
325 | /* The exception_support_info data. This data is used to determine | |
326 | how to implement support for Ada exception catchpoints in a given | |
327 | inferior. */ | |
328 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
329 | }; |
330 | ||
331 | /* Our key to this module's inferior data. */ | |
332 | static const struct inferior_data *ada_inferior_data; | |
333 | ||
334 | /* A cleanup routine for our inferior data. */ | |
335 | static void | |
336 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
337 | { | |
338 | struct ada_inferior_data *data; | |
339 | ||
340 | data = inferior_data (inf, ada_inferior_data); | |
341 | if (data != NULL) | |
342 | xfree (data); | |
343 | } | |
344 | ||
345 | /* Return our inferior data for the given inferior (INF). | |
346 | ||
347 | This function always returns a valid pointer to an allocated | |
348 | ada_inferior_data structure. If INF's inferior data has not | |
349 | been previously set, this functions creates a new one with all | |
350 | fields set to zero, sets INF's inferior to it, and then returns | |
351 | a pointer to that newly allocated ada_inferior_data. */ | |
352 | ||
353 | static struct ada_inferior_data * | |
354 | get_ada_inferior_data (struct inferior *inf) | |
355 | { | |
356 | struct ada_inferior_data *data; | |
357 | ||
358 | data = inferior_data (inf, ada_inferior_data); | |
359 | if (data == NULL) | |
360 | { | |
361 | data = XZALLOC (struct ada_inferior_data); | |
362 | set_inferior_data (inf, ada_inferior_data, data); | |
363 | } | |
364 | ||
365 | return data; | |
366 | } | |
367 | ||
368 | /* Perform all necessary cleanups regarding our module's inferior data | |
369 | that is required after the inferior INF just exited. */ | |
370 | ||
371 | static void | |
372 | ada_inferior_exit (struct inferior *inf) | |
373 | { | |
374 | ada_inferior_data_cleanup (inf, NULL); | |
375 | set_inferior_data (inf, ada_inferior_data, NULL); | |
376 | } | |
377 | ||
4c4b4cd2 PH |
378 | /* Utilities */ |
379 | ||
720d1a40 | 380 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 381 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
382 | |
383 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
384 | In other words, we really expect the target type of a typedef type to be | |
385 | a non-typedef type. This is particularly true for Ada units, because | |
386 | the language does not have a typedef vs not-typedef distinction. | |
387 | In that respect, the Ada compiler has been trying to eliminate as many | |
388 | typedef definitions in the debugging information, since they generally | |
389 | do not bring any extra information (we still use typedef under certain | |
390 | circumstances related mostly to the GNAT encoding). | |
391 | ||
392 | Unfortunately, we have seen situations where the debugging information | |
393 | generated by the compiler leads to such multiple typedef layers. For | |
394 | instance, consider the following example with stabs: | |
395 | ||
396 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
397 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
398 | ||
399 | This is an error in the debugging information which causes type | |
400 | pck__float_array___XUP to be defined twice, and the second time, | |
401 | it is defined as a typedef of a typedef. | |
402 | ||
403 | This is on the fringe of legality as far as debugging information is | |
404 | concerned, and certainly unexpected. But it is easy to handle these | |
405 | situations correctly, so we can afford to be lenient in this case. */ | |
406 | ||
407 | static struct type * | |
408 | ada_typedef_target_type (struct type *type) | |
409 | { | |
410 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
411 | type = TYPE_TARGET_TYPE (type); | |
412 | return type; | |
413 | } | |
414 | ||
41d27058 JB |
415 | /* Given DECODED_NAME a string holding a symbol name in its |
416 | decoded form (ie using the Ada dotted notation), returns | |
417 | its unqualified name. */ | |
418 | ||
419 | static const char * | |
420 | ada_unqualified_name (const char *decoded_name) | |
421 | { | |
422 | const char *result = strrchr (decoded_name, '.'); | |
423 | ||
424 | if (result != NULL) | |
425 | result++; /* Skip the dot... */ | |
426 | else | |
427 | result = decoded_name; | |
428 | ||
429 | return result; | |
430 | } | |
431 | ||
432 | /* Return a string starting with '<', followed by STR, and '>'. | |
433 | The result is good until the next call. */ | |
434 | ||
435 | static char * | |
436 | add_angle_brackets (const char *str) | |
437 | { | |
438 | static char *result = NULL; | |
439 | ||
440 | xfree (result); | |
88c15c34 | 441 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
442 | return result; |
443 | } | |
96d887e8 | 444 | |
4c4b4cd2 PH |
445 | static char * |
446 | ada_get_gdb_completer_word_break_characters (void) | |
447 | { | |
448 | return ada_completer_word_break_characters; | |
449 | } | |
450 | ||
e79af960 JB |
451 | /* Print an array element index using the Ada syntax. */ |
452 | ||
453 | static void | |
454 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 455 | const struct value_print_options *options) |
e79af960 | 456 | { |
79a45b7d | 457 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
458 | fprintf_filtered (stream, " => "); |
459 | } | |
460 | ||
f27cf670 | 461 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 462 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 463 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 464 | |
f27cf670 AS |
465 | void * |
466 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 467 | { |
d2e4a39e AS |
468 | if (*size < min_size) |
469 | { | |
470 | *size *= 2; | |
471 | if (*size < min_size) | |
4c4b4cd2 | 472 | *size = min_size; |
f27cf670 | 473 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 474 | } |
f27cf670 | 475 | return vect; |
14f9c5c9 AS |
476 | } |
477 | ||
478 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 479 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
480 | |
481 | static int | |
ebf56fd3 | 482 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
483 | { |
484 | int len = strlen (target); | |
5b4ee69b | 485 | |
d2e4a39e | 486 | return |
4c4b4cd2 PH |
487 | (strncmp (field_name, target, len) == 0 |
488 | && (field_name[len] == '\0' | |
489 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
490 | && strcmp (field_name + strlen (field_name) - 6, |
491 | "___XVN") != 0))); | |
14f9c5c9 AS |
492 | } |
493 | ||
494 | ||
872c8b51 JB |
495 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
496 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
497 | and return its index. This function also handles fields whose name | |
498 | have ___ suffixes because the compiler sometimes alters their name | |
499 | by adding such a suffix to represent fields with certain constraints. | |
500 | If the field could not be found, return a negative number if | |
501 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
502 | |
503 | int | |
504 | ada_get_field_index (const struct type *type, const char *field_name, | |
505 | int maybe_missing) | |
506 | { | |
507 | int fieldno; | |
872c8b51 JB |
508 | struct type *struct_type = check_typedef ((struct type *) type); |
509 | ||
510 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
511 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
512 | return fieldno; |
513 | ||
514 | if (!maybe_missing) | |
323e0a4a | 515 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 516 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
517 | |
518 | return -1; | |
519 | } | |
520 | ||
521 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
522 | |
523 | int | |
d2e4a39e | 524 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
525 | { |
526 | if (name == NULL) | |
527 | return 0; | |
d2e4a39e | 528 | else |
14f9c5c9 | 529 | { |
d2e4a39e | 530 | const char *p = strstr (name, "___"); |
5b4ee69b | 531 | |
14f9c5c9 | 532 | if (p == NULL) |
4c4b4cd2 | 533 | return strlen (name); |
14f9c5c9 | 534 | else |
4c4b4cd2 | 535 | return p - name; |
14f9c5c9 AS |
536 | } |
537 | } | |
538 | ||
4c4b4cd2 PH |
539 | /* Return non-zero if SUFFIX is a suffix of STR. |
540 | Return zero if STR is null. */ | |
541 | ||
14f9c5c9 | 542 | static int |
d2e4a39e | 543 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
544 | { |
545 | int len1, len2; | |
5b4ee69b | 546 | |
14f9c5c9 AS |
547 | if (str == NULL) |
548 | return 0; | |
549 | len1 = strlen (str); | |
550 | len2 = strlen (suffix); | |
4c4b4cd2 | 551 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
552 | } |
553 | ||
4c4b4cd2 PH |
554 | /* The contents of value VAL, treated as a value of type TYPE. The |
555 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 556 | |
d2e4a39e | 557 | static struct value * |
4c4b4cd2 | 558 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 559 | { |
61ee279c | 560 | type = ada_check_typedef (type); |
df407dfe | 561 | if (value_type (val) == type) |
4c4b4cd2 | 562 | return val; |
d2e4a39e | 563 | else |
14f9c5c9 | 564 | { |
4c4b4cd2 PH |
565 | struct value *result; |
566 | ||
567 | /* Make sure that the object size is not unreasonable before | |
568 | trying to allocate some memory for it. */ | |
714e53ab | 569 | check_size (type); |
4c4b4cd2 | 570 | |
41e8491f JK |
571 | if (value_lazy (val) |
572 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
573 | result = allocate_value_lazy (type); | |
574 | else | |
575 | { | |
576 | result = allocate_value (type); | |
577 | memcpy (value_contents_raw (result), value_contents (val), | |
578 | TYPE_LENGTH (type)); | |
579 | } | |
74bcbdf3 | 580 | set_value_component_location (result, val); |
9bbda503 AC |
581 | set_value_bitsize (result, value_bitsize (val)); |
582 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 583 | set_value_address (result, value_address (val)); |
2fa15f23 | 584 | set_value_optimized_out (result, value_optimized_out (val)); |
14f9c5c9 AS |
585 | return result; |
586 | } | |
587 | } | |
588 | ||
fc1a4b47 AC |
589 | static const gdb_byte * |
590 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
591 | { |
592 | if (valaddr == NULL) | |
593 | return NULL; | |
594 | else | |
595 | return valaddr + offset; | |
596 | } | |
597 | ||
598 | static CORE_ADDR | |
ebf56fd3 | 599 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
600 | { |
601 | if (address == 0) | |
602 | return 0; | |
d2e4a39e | 603 | else |
14f9c5c9 AS |
604 | return address + offset; |
605 | } | |
606 | ||
4c4b4cd2 PH |
607 | /* Issue a warning (as for the definition of warning in utils.c, but |
608 | with exactly one argument rather than ...), unless the limit on the | |
609 | number of warnings has passed during the evaluation of the current | |
610 | expression. */ | |
a2249542 | 611 | |
77109804 AC |
612 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
613 | provided by "complaint". */ | |
a0b31db1 | 614 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 615 | |
14f9c5c9 | 616 | static void |
a2249542 | 617 | lim_warning (const char *format, ...) |
14f9c5c9 | 618 | { |
a2249542 | 619 | va_list args; |
a2249542 | 620 | |
5b4ee69b | 621 | va_start (args, format); |
4c4b4cd2 PH |
622 | warnings_issued += 1; |
623 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
624 | vwarning (format, args); |
625 | ||
626 | va_end (args); | |
4c4b4cd2 PH |
627 | } |
628 | ||
714e53ab PH |
629 | /* Issue an error if the size of an object of type T is unreasonable, |
630 | i.e. if it would be a bad idea to allocate a value of this type in | |
631 | GDB. */ | |
632 | ||
633 | static void | |
634 | check_size (const struct type *type) | |
635 | { | |
636 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 637 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
638 | } |
639 | ||
0963b4bd | 640 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 641 | static LONGEST |
c3e5cd34 | 642 | max_of_size (int size) |
4c4b4cd2 | 643 | { |
76a01679 | 644 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 645 | |
76a01679 | 646 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
647 | } |
648 | ||
0963b4bd | 649 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 650 | static LONGEST |
c3e5cd34 | 651 | min_of_size (int size) |
4c4b4cd2 | 652 | { |
c3e5cd34 | 653 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
654 | } |
655 | ||
0963b4bd | 656 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 657 | static ULONGEST |
c3e5cd34 | 658 | umax_of_size (int size) |
4c4b4cd2 | 659 | { |
76a01679 | 660 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 661 | |
76a01679 | 662 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
663 | } |
664 | ||
0963b4bd | 665 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
666 | static LONGEST |
667 | max_of_type (struct type *t) | |
4c4b4cd2 | 668 | { |
c3e5cd34 PH |
669 | if (TYPE_UNSIGNED (t)) |
670 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
671 | else | |
672 | return max_of_size (TYPE_LENGTH (t)); | |
673 | } | |
674 | ||
0963b4bd | 675 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
676 | static LONGEST |
677 | min_of_type (struct type *t) | |
678 | { | |
679 | if (TYPE_UNSIGNED (t)) | |
680 | return 0; | |
681 | else | |
682 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
683 | } |
684 | ||
685 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
686 | LONGEST |
687 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 688 | { |
76a01679 | 689 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
690 | { |
691 | case TYPE_CODE_RANGE: | |
690cc4eb | 692 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 693 | case TYPE_CODE_ENUM: |
14e75d8e | 694 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
695 | case TYPE_CODE_BOOL: |
696 | return 1; | |
697 | case TYPE_CODE_CHAR: | |
76a01679 | 698 | case TYPE_CODE_INT: |
690cc4eb | 699 | return max_of_type (type); |
4c4b4cd2 | 700 | default: |
43bbcdc2 | 701 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
702 | } |
703 | } | |
704 | ||
14e75d8e | 705 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
706 | LONGEST |
707 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 708 | { |
76a01679 | 709 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
710 | { |
711 | case TYPE_CODE_RANGE: | |
690cc4eb | 712 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 713 | case TYPE_CODE_ENUM: |
14e75d8e | 714 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
715 | case TYPE_CODE_BOOL: |
716 | return 0; | |
717 | case TYPE_CODE_CHAR: | |
76a01679 | 718 | case TYPE_CODE_INT: |
690cc4eb | 719 | return min_of_type (type); |
4c4b4cd2 | 720 | default: |
43bbcdc2 | 721 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
722 | } |
723 | } | |
724 | ||
725 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 726 | non-range scalar type. */ |
4c4b4cd2 PH |
727 | |
728 | static struct type * | |
18af8284 | 729 | get_base_type (struct type *type) |
4c4b4cd2 PH |
730 | { |
731 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
732 | { | |
76a01679 JB |
733 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
734 | return type; | |
4c4b4cd2 PH |
735 | type = TYPE_TARGET_TYPE (type); |
736 | } | |
737 | return type; | |
14f9c5c9 | 738 | } |
41246937 JB |
739 | |
740 | /* Return a decoded version of the given VALUE. This means returning | |
741 | a value whose type is obtained by applying all the GNAT-specific | |
742 | encondings, making the resulting type a static but standard description | |
743 | of the initial type. */ | |
744 | ||
745 | struct value * | |
746 | ada_get_decoded_value (struct value *value) | |
747 | { | |
748 | struct type *type = ada_check_typedef (value_type (value)); | |
749 | ||
750 | if (ada_is_array_descriptor_type (type) | |
751 | || (ada_is_constrained_packed_array_type (type) | |
752 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
753 | { | |
754 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
755 | value = ada_coerce_to_simple_array_ptr (value); | |
756 | else | |
757 | value = ada_coerce_to_simple_array (value); | |
758 | } | |
759 | else | |
760 | value = ada_to_fixed_value (value); | |
761 | ||
762 | return value; | |
763 | } | |
764 | ||
765 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
766 | Because there is no associated actual value for this type, | |
767 | the resulting type might be a best-effort approximation in | |
768 | the case of dynamic types. */ | |
769 | ||
770 | struct type * | |
771 | ada_get_decoded_type (struct type *type) | |
772 | { | |
773 | type = to_static_fixed_type (type); | |
774 | if (ada_is_constrained_packed_array_type (type)) | |
775 | type = ada_coerce_to_simple_array_type (type); | |
776 | return type; | |
777 | } | |
778 | ||
4c4b4cd2 | 779 | \f |
76a01679 | 780 | |
4c4b4cd2 | 781 | /* Language Selection */ |
14f9c5c9 AS |
782 | |
783 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 784 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 785 | |
14f9c5c9 | 786 | enum language |
ccefe4c4 | 787 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 788 | { |
d2e4a39e | 789 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
790 | (struct objfile *) NULL) != NULL) |
791 | return language_ada; | |
14f9c5c9 AS |
792 | |
793 | return lang; | |
794 | } | |
96d887e8 PH |
795 | |
796 | /* If the main procedure is written in Ada, then return its name. | |
797 | The result is good until the next call. Return NULL if the main | |
798 | procedure doesn't appear to be in Ada. */ | |
799 | ||
800 | char * | |
801 | ada_main_name (void) | |
802 | { | |
803 | struct minimal_symbol *msym; | |
f9bc20b9 | 804 | static char *main_program_name = NULL; |
6c038f32 | 805 | |
96d887e8 PH |
806 | /* For Ada, the name of the main procedure is stored in a specific |
807 | string constant, generated by the binder. Look for that symbol, | |
808 | extract its address, and then read that string. If we didn't find | |
809 | that string, then most probably the main procedure is not written | |
810 | in Ada. */ | |
811 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
812 | ||
813 | if (msym != NULL) | |
814 | { | |
f9bc20b9 JB |
815 | CORE_ADDR main_program_name_addr; |
816 | int err_code; | |
817 | ||
96d887e8 PH |
818 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
819 | if (main_program_name_addr == 0) | |
323e0a4a | 820 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 821 | |
f9bc20b9 JB |
822 | xfree (main_program_name); |
823 | target_read_string (main_program_name_addr, &main_program_name, | |
824 | 1024, &err_code); | |
825 | ||
826 | if (err_code != 0) | |
827 | return NULL; | |
96d887e8 PH |
828 | return main_program_name; |
829 | } | |
830 | ||
831 | /* The main procedure doesn't seem to be in Ada. */ | |
832 | return NULL; | |
833 | } | |
14f9c5c9 | 834 | \f |
4c4b4cd2 | 835 | /* Symbols */ |
d2e4a39e | 836 | |
4c4b4cd2 PH |
837 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
838 | of NULLs. */ | |
14f9c5c9 | 839 | |
d2e4a39e AS |
840 | const struct ada_opname_map ada_opname_table[] = { |
841 | {"Oadd", "\"+\"", BINOP_ADD}, | |
842 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
843 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
844 | {"Odivide", "\"/\"", BINOP_DIV}, | |
845 | {"Omod", "\"mod\"", BINOP_MOD}, | |
846 | {"Orem", "\"rem\"", BINOP_REM}, | |
847 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
848 | {"Olt", "\"<\"", BINOP_LESS}, | |
849 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
850 | {"Ogt", "\">\"", BINOP_GTR}, | |
851 | {"Oge", "\">=\"", BINOP_GEQ}, | |
852 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
853 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
854 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
855 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
856 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
857 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
858 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
859 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
860 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
861 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
862 | {NULL, NULL} | |
14f9c5c9 AS |
863 | }; |
864 | ||
4c4b4cd2 PH |
865 | /* The "encoded" form of DECODED, according to GNAT conventions. |
866 | The result is valid until the next call to ada_encode. */ | |
867 | ||
14f9c5c9 | 868 | char * |
4c4b4cd2 | 869 | ada_encode (const char *decoded) |
14f9c5c9 | 870 | { |
4c4b4cd2 PH |
871 | static char *encoding_buffer = NULL; |
872 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 873 | const char *p; |
14f9c5c9 | 874 | int k; |
d2e4a39e | 875 | |
4c4b4cd2 | 876 | if (decoded == NULL) |
14f9c5c9 AS |
877 | return NULL; |
878 | ||
4c4b4cd2 PH |
879 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
880 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
881 | |
882 | k = 0; | |
4c4b4cd2 | 883 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 884 | { |
cdc7bb92 | 885 | if (*p == '.') |
4c4b4cd2 PH |
886 | { |
887 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
888 | k += 2; | |
889 | } | |
14f9c5c9 | 890 | else if (*p == '"') |
4c4b4cd2 PH |
891 | { |
892 | const struct ada_opname_map *mapping; | |
893 | ||
894 | for (mapping = ada_opname_table; | |
1265e4aa JB |
895 | mapping->encoded != NULL |
896 | && strncmp (mapping->decoded, p, | |
897 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
898 | ; |
899 | if (mapping->encoded == NULL) | |
323e0a4a | 900 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
901 | strcpy (encoding_buffer + k, mapping->encoded); |
902 | k += strlen (mapping->encoded); | |
903 | break; | |
904 | } | |
d2e4a39e | 905 | else |
4c4b4cd2 PH |
906 | { |
907 | encoding_buffer[k] = *p; | |
908 | k += 1; | |
909 | } | |
14f9c5c9 AS |
910 | } |
911 | ||
4c4b4cd2 PH |
912 | encoding_buffer[k] = '\0'; |
913 | return encoding_buffer; | |
14f9c5c9 AS |
914 | } |
915 | ||
916 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
917 | quotes, unfolded, but with the quotes stripped away. Result good |
918 | to next call. */ | |
919 | ||
d2e4a39e AS |
920 | char * |
921 | ada_fold_name (const char *name) | |
14f9c5c9 | 922 | { |
d2e4a39e | 923 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
924 | static size_t fold_buffer_size = 0; |
925 | ||
926 | int len = strlen (name); | |
d2e4a39e | 927 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
928 | |
929 | if (name[0] == '\'') | |
930 | { | |
d2e4a39e AS |
931 | strncpy (fold_buffer, name + 1, len - 2); |
932 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
933 | } |
934 | else | |
935 | { | |
936 | int i; | |
5b4ee69b | 937 | |
14f9c5c9 | 938 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 939 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
940 | } |
941 | ||
942 | return fold_buffer; | |
943 | } | |
944 | ||
529cad9c PH |
945 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
946 | ||
947 | static int | |
948 | is_lower_alphanum (const char c) | |
949 | { | |
950 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
951 | } | |
952 | ||
c90092fe JB |
953 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
954 | This function saves in LEN the length of that same symbol name but | |
955 | without either of these suffixes: | |
29480c32 JB |
956 | . .{DIGIT}+ |
957 | . ${DIGIT}+ | |
958 | . ___{DIGIT}+ | |
959 | . __{DIGIT}+. | |
c90092fe | 960 | |
29480c32 JB |
961 | These are suffixes introduced by the compiler for entities such as |
962 | nested subprogram for instance, in order to avoid name clashes. | |
963 | They do not serve any purpose for the debugger. */ | |
964 | ||
965 | static void | |
966 | ada_remove_trailing_digits (const char *encoded, int *len) | |
967 | { | |
968 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
969 | { | |
970 | int i = *len - 2; | |
5b4ee69b | 971 | |
29480c32 JB |
972 | while (i > 0 && isdigit (encoded[i])) |
973 | i--; | |
974 | if (i >= 0 && encoded[i] == '.') | |
975 | *len = i; | |
976 | else if (i >= 0 && encoded[i] == '$') | |
977 | *len = i; | |
978 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
979 | *len = i - 2; | |
980 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
981 | *len = i - 1; | |
982 | } | |
983 | } | |
984 | ||
985 | /* Remove the suffix introduced by the compiler for protected object | |
986 | subprograms. */ | |
987 | ||
988 | static void | |
989 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
990 | { | |
991 | /* Remove trailing N. */ | |
992 | ||
993 | /* Protected entry subprograms are broken into two | |
994 | separate subprograms: The first one is unprotected, and has | |
995 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 996 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
997 | the protection. Since the P subprograms are internally generated, |
998 | we leave these names undecoded, giving the user a clue that this | |
999 | entity is internal. */ | |
1000 | ||
1001 | if (*len > 1 | |
1002 | && encoded[*len - 1] == 'N' | |
1003 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1004 | *len = *len - 1; | |
1005 | } | |
1006 | ||
69fadcdf JB |
1007 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1008 | ||
1009 | static void | |
1010 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1011 | { | |
1012 | int i = *len - 1; | |
1013 | ||
1014 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1015 | i--; | |
1016 | ||
1017 | if (encoded[i] != 'X') | |
1018 | return; | |
1019 | ||
1020 | if (i == 0) | |
1021 | return; | |
1022 | ||
1023 | if (isalnum (encoded[i-1])) | |
1024 | *len = i; | |
1025 | } | |
1026 | ||
29480c32 JB |
1027 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1028 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1029 | replaced by ENCODED. | |
14f9c5c9 | 1030 | |
4c4b4cd2 | 1031 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1032 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1033 | is returned. */ |
1034 | ||
1035 | const char * | |
1036 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1037 | { |
1038 | int i, j; | |
1039 | int len0; | |
d2e4a39e | 1040 | const char *p; |
4c4b4cd2 | 1041 | char *decoded; |
14f9c5c9 | 1042 | int at_start_name; |
4c4b4cd2 PH |
1043 | static char *decoding_buffer = NULL; |
1044 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1045 | |
29480c32 JB |
1046 | /* The name of the Ada main procedure starts with "_ada_". |
1047 | This prefix is not part of the decoded name, so skip this part | |
1048 | if we see this prefix. */ | |
4c4b4cd2 PH |
1049 | if (strncmp (encoded, "_ada_", 5) == 0) |
1050 | encoded += 5; | |
14f9c5c9 | 1051 | |
29480c32 JB |
1052 | /* If the name starts with '_', then it is not a properly encoded |
1053 | name, so do not attempt to decode it. Similarly, if the name | |
1054 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1055 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1056 | goto Suppress; |
1057 | ||
4c4b4cd2 | 1058 | len0 = strlen (encoded); |
4c4b4cd2 | 1059 | |
29480c32 JB |
1060 | ada_remove_trailing_digits (encoded, &len0); |
1061 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1062 | |
4c4b4cd2 PH |
1063 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1064 | the suffix is located before the current "end" of ENCODED. We want | |
1065 | to avoid re-matching parts of ENCODED that have previously been | |
1066 | marked as discarded (by decrementing LEN0). */ | |
1067 | p = strstr (encoded, "___"); | |
1068 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1069 | { |
1070 | if (p[3] == 'X') | |
4c4b4cd2 | 1071 | len0 = p - encoded; |
14f9c5c9 | 1072 | else |
4c4b4cd2 | 1073 | goto Suppress; |
14f9c5c9 | 1074 | } |
4c4b4cd2 | 1075 | |
29480c32 JB |
1076 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1077 | is for the body of a task, but that information does not actually | |
1078 | appear in the decoded name. */ | |
1079 | ||
4c4b4cd2 | 1080 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1081 | len0 -= 3; |
76a01679 | 1082 | |
a10967fa JB |
1083 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1084 | from the TKB suffix because it is used for non-anonymous task | |
1085 | bodies. */ | |
1086 | ||
1087 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1088 | len0 -= 2; | |
1089 | ||
29480c32 JB |
1090 | /* Remove trailing "B" suffixes. */ |
1091 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1092 | ||
4c4b4cd2 | 1093 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1094 | len0 -= 1; |
1095 | ||
4c4b4cd2 | 1096 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1097 | |
4c4b4cd2 PH |
1098 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1099 | decoded = decoding_buffer; | |
14f9c5c9 | 1100 | |
29480c32 JB |
1101 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1102 | ||
4c4b4cd2 | 1103 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1104 | { |
4c4b4cd2 PH |
1105 | i = len0 - 2; |
1106 | while ((i >= 0 && isdigit (encoded[i])) | |
1107 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1108 | i -= 1; | |
1109 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1110 | len0 = i - 1; | |
1111 | else if (encoded[i] == '$') | |
1112 | len0 = i; | |
d2e4a39e | 1113 | } |
14f9c5c9 | 1114 | |
29480c32 JB |
1115 | /* The first few characters that are not alphabetic are not part |
1116 | of any encoding we use, so we can copy them over verbatim. */ | |
1117 | ||
4c4b4cd2 PH |
1118 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1119 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1120 | |
1121 | at_start_name = 1; | |
1122 | while (i < len0) | |
1123 | { | |
29480c32 | 1124 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1125 | if (at_start_name && encoded[i] == 'O') |
1126 | { | |
1127 | int k; | |
5b4ee69b | 1128 | |
4c4b4cd2 PH |
1129 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1130 | { | |
1131 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1132 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1133 | op_len - 1) == 0) | |
1134 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1135 | { |
1136 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1137 | at_start_name = 0; | |
1138 | i += op_len; | |
1139 | j += strlen (ada_opname_table[k].decoded); | |
1140 | break; | |
1141 | } | |
1142 | } | |
1143 | if (ada_opname_table[k].encoded != NULL) | |
1144 | continue; | |
1145 | } | |
14f9c5c9 AS |
1146 | at_start_name = 0; |
1147 | ||
529cad9c PH |
1148 | /* Replace "TK__" with "__", which will eventually be translated |
1149 | into "." (just below). */ | |
1150 | ||
4c4b4cd2 PH |
1151 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1152 | i += 2; | |
529cad9c | 1153 | |
29480c32 JB |
1154 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1155 | be translated into "." (just below). These are internal names | |
1156 | generated for anonymous blocks inside which our symbol is nested. */ | |
1157 | ||
1158 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1159 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1160 | && isdigit (encoded [i+4])) | |
1161 | { | |
1162 | int k = i + 5; | |
1163 | ||
1164 | while (k < len0 && isdigit (encoded[k])) | |
1165 | k++; /* Skip any extra digit. */ | |
1166 | ||
1167 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1168 | is indeed followed by "__". */ | |
1169 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1170 | i = k; | |
1171 | } | |
1172 | ||
529cad9c PH |
1173 | /* Remove _E{DIGITS}+[sb] */ |
1174 | ||
1175 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1176 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1177 | one implements the actual entry code, and has a suffix following |
1178 | the convention above; the second one implements the barrier and | |
1179 | uses the same convention as above, except that the 'E' is replaced | |
1180 | by a 'B'. | |
1181 | ||
1182 | Just as above, we do not decode the name of barrier functions | |
1183 | to give the user a clue that the code he is debugging has been | |
1184 | internally generated. */ | |
1185 | ||
1186 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1187 | && isdigit (encoded[i+2])) | |
1188 | { | |
1189 | int k = i + 3; | |
1190 | ||
1191 | while (k < len0 && isdigit (encoded[k])) | |
1192 | k++; | |
1193 | ||
1194 | if (k < len0 | |
1195 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1196 | { | |
1197 | k++; | |
1198 | /* Just as an extra precaution, make sure that if this | |
1199 | suffix is followed by anything else, it is a '_'. | |
1200 | Otherwise, we matched this sequence by accident. */ | |
1201 | if (k == len0 | |
1202 | || (k < len0 && encoded[k] == '_')) | |
1203 | i = k; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1208 | the GNAT front-end in protected object subprograms. */ | |
1209 | ||
1210 | if (i < len0 + 3 | |
1211 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1212 | { | |
1213 | /* Backtrack a bit up until we reach either the begining of | |
1214 | the encoded name, or "__". Make sure that we only find | |
1215 | digits or lowercase characters. */ | |
1216 | const char *ptr = encoded + i - 1; | |
1217 | ||
1218 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1219 | ptr--; | |
1220 | if (ptr < encoded | |
1221 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1222 | i++; | |
1223 | } | |
1224 | ||
4c4b4cd2 PH |
1225 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1226 | { | |
29480c32 JB |
1227 | /* This is a X[bn]* sequence not separated from the previous |
1228 | part of the name with a non-alpha-numeric character (in other | |
1229 | words, immediately following an alpha-numeric character), then | |
1230 | verify that it is placed at the end of the encoded name. If | |
1231 | not, then the encoding is not valid and we should abort the | |
1232 | decoding. Otherwise, just skip it, it is used in body-nested | |
1233 | package names. */ | |
4c4b4cd2 PH |
1234 | do |
1235 | i += 1; | |
1236 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1237 | if (i < len0) | |
1238 | goto Suppress; | |
1239 | } | |
cdc7bb92 | 1240 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1241 | { |
29480c32 | 1242 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1243 | decoded[j] = '.'; |
1244 | at_start_name = 1; | |
1245 | i += 2; | |
1246 | j += 1; | |
1247 | } | |
14f9c5c9 | 1248 | else |
4c4b4cd2 | 1249 | { |
29480c32 JB |
1250 | /* It's a character part of the decoded name, so just copy it |
1251 | over. */ | |
4c4b4cd2 PH |
1252 | decoded[j] = encoded[i]; |
1253 | i += 1; | |
1254 | j += 1; | |
1255 | } | |
14f9c5c9 | 1256 | } |
4c4b4cd2 | 1257 | decoded[j] = '\000'; |
14f9c5c9 | 1258 | |
29480c32 JB |
1259 | /* Decoded names should never contain any uppercase character. |
1260 | Double-check this, and abort the decoding if we find one. */ | |
1261 | ||
4c4b4cd2 PH |
1262 | for (i = 0; decoded[i] != '\0'; i += 1) |
1263 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1264 | goto Suppress; |
1265 | ||
4c4b4cd2 PH |
1266 | if (strcmp (decoded, encoded) == 0) |
1267 | return encoded; | |
1268 | else | |
1269 | return decoded; | |
14f9c5c9 AS |
1270 | |
1271 | Suppress: | |
4c4b4cd2 PH |
1272 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1273 | decoded = decoding_buffer; | |
1274 | if (encoded[0] == '<') | |
1275 | strcpy (decoded, encoded); | |
14f9c5c9 | 1276 | else |
88c15c34 | 1277 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1278 | return decoded; |
1279 | ||
1280 | } | |
1281 | ||
1282 | /* Table for keeping permanent unique copies of decoded names. Once | |
1283 | allocated, names in this table are never released. While this is a | |
1284 | storage leak, it should not be significant unless there are massive | |
1285 | changes in the set of decoded names in successive versions of a | |
1286 | symbol table loaded during a single session. */ | |
1287 | static struct htab *decoded_names_store; | |
1288 | ||
1289 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1290 | in the language-specific part of GSYMBOL, if it has not been | |
1291 | previously computed. Tries to save the decoded name in the same | |
1292 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1293 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1294 | GSYMBOL). |
4c4b4cd2 PH |
1295 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1296 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1297 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1298 | |
45e6c716 | 1299 | const char * |
76a01679 | 1300 | ada_decode_symbol (const struct general_symbol_info *gsymbol) |
4c4b4cd2 | 1301 | { |
a0bcdaa7 PA |
1302 | struct general_symbol_info *gsymbol_rw |
1303 | = (struct general_symbol_info *) gsymbol; | |
1304 | const char **resultp | |
1305 | = &gsymbol_rw->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1306 | |
4c4b4cd2 PH |
1307 | if (*resultp == NULL) |
1308 | { | |
1309 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1310 | |
714835d5 | 1311 | if (gsymbol->obj_section != NULL) |
76a01679 | 1312 | { |
714835d5 | 1313 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1314 | |
10f0c4bb TT |
1315 | *resultp = obstack_copy0 (&objf->objfile_obstack, |
1316 | decoded, strlen (decoded)); | |
76a01679 | 1317 | } |
4c4b4cd2 | 1318 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1319 | case, we put the result on the heap. Since we only decode |
1320 | when needed, we hope this usually does not cause a | |
1321 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1322 | if (*resultp == NULL) |
76a01679 JB |
1323 | { |
1324 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1325 | decoded, INSERT); | |
5b4ee69b | 1326 | |
76a01679 JB |
1327 | if (*slot == NULL) |
1328 | *slot = xstrdup (decoded); | |
1329 | *resultp = *slot; | |
1330 | } | |
4c4b4cd2 | 1331 | } |
14f9c5c9 | 1332 | |
4c4b4cd2 PH |
1333 | return *resultp; |
1334 | } | |
76a01679 | 1335 | |
2c0b251b | 1336 | static char * |
76a01679 | 1337 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1338 | { |
1339 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1340 | } |
1341 | ||
1342 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1343 | suffixes that encode debugging information or leading _ada_ on |
1344 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1345 | information that is ignored). If WILD, then NAME need only match a | |
1346 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1347 | either argument is NULL. */ | |
14f9c5c9 | 1348 | |
2c0b251b | 1349 | static int |
40658b94 | 1350 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1351 | { |
1352 | if (sym_name == NULL || name == NULL) | |
1353 | return 0; | |
1354 | else if (wild) | |
73589123 | 1355 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1356 | else |
1357 | { | |
1358 | int len_name = strlen (name); | |
5b4ee69b | 1359 | |
4c4b4cd2 PH |
1360 | return (strncmp (sym_name, name, len_name) == 0 |
1361 | && is_name_suffix (sym_name + len_name)) | |
1362 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1363 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1364 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1365 | } |
14f9c5c9 | 1366 | } |
14f9c5c9 | 1367 | \f |
d2e4a39e | 1368 | |
4c4b4cd2 | 1369 | /* Arrays */ |
14f9c5c9 | 1370 | |
28c85d6c JB |
1371 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1372 | generated by the GNAT compiler to describe the index type used | |
1373 | for each dimension of an array, check whether it follows the latest | |
1374 | known encoding. If not, fix it up to conform to the latest encoding. | |
1375 | Otherwise, do nothing. This function also does nothing if | |
1376 | INDEX_DESC_TYPE is NULL. | |
1377 | ||
1378 | The GNAT encoding used to describle the array index type evolved a bit. | |
1379 | Initially, the information would be provided through the name of each | |
1380 | field of the structure type only, while the type of these fields was | |
1381 | described as unspecified and irrelevant. The debugger was then expected | |
1382 | to perform a global type lookup using the name of that field in order | |
1383 | to get access to the full index type description. Because these global | |
1384 | lookups can be very expensive, the encoding was later enhanced to make | |
1385 | the global lookup unnecessary by defining the field type as being | |
1386 | the full index type description. | |
1387 | ||
1388 | The purpose of this routine is to allow us to support older versions | |
1389 | of the compiler by detecting the use of the older encoding, and by | |
1390 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1391 | we essentially replace each field's meaningless type by the associated | |
1392 | index subtype). */ | |
1393 | ||
1394 | void | |
1395 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1396 | { | |
1397 | int i; | |
1398 | ||
1399 | if (index_desc_type == NULL) | |
1400 | return; | |
1401 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1402 | ||
1403 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1404 | to check one field only, no need to check them all). If not, return | |
1405 | now. | |
1406 | ||
1407 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1408 | the field type should be a meaningless integer type whose name | |
1409 | is not equal to the field name. */ | |
1410 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1411 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1412 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1413 | return; | |
1414 | ||
1415 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1416 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1417 | { | |
0d5cff50 | 1418 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1419 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1420 | ||
1421 | if (raw_type) | |
1422 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1423 | } | |
1424 | } | |
1425 | ||
4c4b4cd2 | 1426 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1427 | |
d2e4a39e AS |
1428 | static char *bound_name[] = { |
1429 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1430 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1431 | }; | |
1432 | ||
1433 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1434 | ||
4c4b4cd2 | 1435 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1436 | |
14f9c5c9 | 1437 | |
4c4b4cd2 PH |
1438 | /* The desc_* routines return primitive portions of array descriptors |
1439 | (fat pointers). */ | |
14f9c5c9 AS |
1440 | |
1441 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1442 | level of indirection, if needed. */ |
1443 | ||
d2e4a39e AS |
1444 | static struct type * |
1445 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1446 | { |
1447 | if (type == NULL) | |
1448 | return NULL; | |
61ee279c | 1449 | type = ada_check_typedef (type); |
720d1a40 JB |
1450 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1451 | type = ada_typedef_target_type (type); | |
1452 | ||
1265e4aa JB |
1453 | if (type != NULL |
1454 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1455 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1456 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1457 | else |
1458 | return type; | |
1459 | } | |
1460 | ||
4c4b4cd2 PH |
1461 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1462 | ||
14f9c5c9 | 1463 | static int |
d2e4a39e | 1464 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1465 | { |
d2e4a39e | 1466 | return |
14f9c5c9 AS |
1467 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1468 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1469 | } | |
1470 | ||
4c4b4cd2 PH |
1471 | /* The descriptor type for thin pointer type TYPE. */ |
1472 | ||
d2e4a39e AS |
1473 | static struct type * |
1474 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1475 | { |
d2e4a39e | 1476 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1477 | |
14f9c5c9 AS |
1478 | if (base_type == NULL) |
1479 | return NULL; | |
1480 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1481 | return base_type; | |
d2e4a39e | 1482 | else |
14f9c5c9 | 1483 | { |
d2e4a39e | 1484 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1485 | |
14f9c5c9 | 1486 | if (alt_type == NULL) |
4c4b4cd2 | 1487 | return base_type; |
14f9c5c9 | 1488 | else |
4c4b4cd2 | 1489 | return alt_type; |
14f9c5c9 AS |
1490 | } |
1491 | } | |
1492 | ||
4c4b4cd2 PH |
1493 | /* A pointer to the array data for thin-pointer value VAL. */ |
1494 | ||
d2e4a39e AS |
1495 | static struct value * |
1496 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1497 | { |
828292f2 | 1498 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1499 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1500 | |
556bdfd4 UW |
1501 | data_type = lookup_pointer_type (data_type); |
1502 | ||
14f9c5c9 | 1503 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1504 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1505 | else |
42ae5230 | 1506 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1507 | } |
1508 | ||
4c4b4cd2 PH |
1509 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1510 | ||
14f9c5c9 | 1511 | static int |
d2e4a39e | 1512 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1513 | { |
1514 | type = desc_base_type (type); | |
1515 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1516 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1517 | } |
1518 | ||
4c4b4cd2 PH |
1519 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1520 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1521 | |
d2e4a39e AS |
1522 | static struct type * |
1523 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1524 | { |
d2e4a39e | 1525 | struct type *r; |
14f9c5c9 AS |
1526 | |
1527 | type = desc_base_type (type); | |
1528 | ||
1529 | if (type == NULL) | |
1530 | return NULL; | |
1531 | else if (is_thin_pntr (type)) | |
1532 | { | |
1533 | type = thin_descriptor_type (type); | |
1534 | if (type == NULL) | |
4c4b4cd2 | 1535 | return NULL; |
14f9c5c9 AS |
1536 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1537 | if (r != NULL) | |
61ee279c | 1538 | return ada_check_typedef (r); |
14f9c5c9 AS |
1539 | } |
1540 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1541 | { | |
1542 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1543 | if (r != NULL) | |
61ee279c | 1544 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1545 | } |
1546 | return NULL; | |
1547 | } | |
1548 | ||
1549 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1550 | one, a pointer to its bounds data. Otherwise NULL. */ |
1551 | ||
d2e4a39e AS |
1552 | static struct value * |
1553 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1554 | { |
df407dfe | 1555 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1556 | |
d2e4a39e | 1557 | if (is_thin_pntr (type)) |
14f9c5c9 | 1558 | { |
d2e4a39e | 1559 | struct type *bounds_type = |
4c4b4cd2 | 1560 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1561 | LONGEST addr; |
1562 | ||
4cdfadb1 | 1563 | if (bounds_type == NULL) |
323e0a4a | 1564 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1565 | |
1566 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1567 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1568 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1569 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1570 | addr = value_as_long (arr); |
d2e4a39e | 1571 | else |
42ae5230 | 1572 | addr = value_address (arr); |
14f9c5c9 | 1573 | |
d2e4a39e | 1574 | return |
4c4b4cd2 PH |
1575 | value_from_longest (lookup_pointer_type (bounds_type), |
1576 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1577 | } |
1578 | ||
1579 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1580 | { |
1581 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1582 | _("Bad GNAT array descriptor")); | |
1583 | struct type *p_bounds_type = value_type (p_bounds); | |
1584 | ||
1585 | if (p_bounds_type | |
1586 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1587 | { | |
1588 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1589 | ||
1590 | if (TYPE_STUB (target_type)) | |
1591 | p_bounds = value_cast (lookup_pointer_type | |
1592 | (ada_check_typedef (target_type)), | |
1593 | p_bounds); | |
1594 | } | |
1595 | else | |
1596 | error (_("Bad GNAT array descriptor")); | |
1597 | ||
1598 | return p_bounds; | |
1599 | } | |
14f9c5c9 AS |
1600 | else |
1601 | return NULL; | |
1602 | } | |
1603 | ||
4c4b4cd2 PH |
1604 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1605 | position of the field containing the address of the bounds data. */ | |
1606 | ||
14f9c5c9 | 1607 | static int |
d2e4a39e | 1608 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1609 | { |
1610 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1611 | } | |
1612 | ||
1613 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1614 | size of the field containing the address of the bounds data. */ |
1615 | ||
14f9c5c9 | 1616 | static int |
d2e4a39e | 1617 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1618 | { |
1619 | type = desc_base_type (type); | |
1620 | ||
d2e4a39e | 1621 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1622 | return TYPE_FIELD_BITSIZE (type, 1); |
1623 | else | |
61ee279c | 1624 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1625 | } |
1626 | ||
4c4b4cd2 | 1627 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1628 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1629 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1630 | data. */ | |
4c4b4cd2 | 1631 | |
d2e4a39e | 1632 | static struct type * |
556bdfd4 | 1633 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1634 | { |
1635 | type = desc_base_type (type); | |
1636 | ||
4c4b4cd2 | 1637 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1638 | if (is_thin_pntr (type)) |
556bdfd4 | 1639 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1640 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1641 | { |
1642 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1643 | ||
1644 | if (data_type | |
1645 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1646 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1647 | } |
1648 | ||
1649 | return NULL; | |
14f9c5c9 AS |
1650 | } |
1651 | ||
1652 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1653 | its array data. */ | |
4c4b4cd2 | 1654 | |
d2e4a39e AS |
1655 | static struct value * |
1656 | desc_data (struct value *arr) | |
14f9c5c9 | 1657 | { |
df407dfe | 1658 | struct type *type = value_type (arr); |
5b4ee69b | 1659 | |
14f9c5c9 AS |
1660 | if (is_thin_pntr (type)) |
1661 | return thin_data_pntr (arr); | |
1662 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1663 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1664 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1665 | else |
1666 | return NULL; | |
1667 | } | |
1668 | ||
1669 | ||
1670 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1671 | position of the field containing the address of the data. */ |
1672 | ||
14f9c5c9 | 1673 | static int |
d2e4a39e | 1674 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1675 | { |
1676 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1677 | } | |
1678 | ||
1679 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1680 | size of the field containing the address of the data. */ |
1681 | ||
14f9c5c9 | 1682 | static int |
d2e4a39e | 1683 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1684 | { |
1685 | type = desc_base_type (type); | |
1686 | ||
1687 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1688 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1689 | else |
14f9c5c9 AS |
1690 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1691 | } | |
1692 | ||
4c4b4cd2 | 1693 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1694 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1695 | bound, if WHICH is 1. The first bound is I=1. */ |
1696 | ||
d2e4a39e AS |
1697 | static struct value * |
1698 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1699 | { |
d2e4a39e | 1700 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1701 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1702 | } |
1703 | ||
1704 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1705 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1706 | bound, if WHICH is 1. The first bound is I=1. */ |
1707 | ||
14f9c5c9 | 1708 | static int |
d2e4a39e | 1709 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1710 | { |
d2e4a39e | 1711 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1712 | } |
1713 | ||
1714 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1715 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1716 | bound, if WHICH is 1. The first bound is I=1. */ |
1717 | ||
76a01679 | 1718 | static int |
d2e4a39e | 1719 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1720 | { |
1721 | type = desc_base_type (type); | |
1722 | ||
d2e4a39e AS |
1723 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1724 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1725 | else | |
1726 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1727 | } |
1728 | ||
1729 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1730 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1731 | ||
d2e4a39e AS |
1732 | static struct type * |
1733 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1734 | { |
1735 | type = desc_base_type (type); | |
1736 | ||
1737 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1738 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1739 | else | |
14f9c5c9 AS |
1740 | return NULL; |
1741 | } | |
1742 | ||
4c4b4cd2 PH |
1743 | /* The number of index positions in the array-bounds type TYPE. |
1744 | Return 0 if TYPE is NULL. */ | |
1745 | ||
14f9c5c9 | 1746 | static int |
d2e4a39e | 1747 | desc_arity (struct type *type) |
14f9c5c9 AS |
1748 | { |
1749 | type = desc_base_type (type); | |
1750 | ||
1751 | if (type != NULL) | |
1752 | return TYPE_NFIELDS (type) / 2; | |
1753 | return 0; | |
1754 | } | |
1755 | ||
4c4b4cd2 PH |
1756 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1757 | an array descriptor type (representing an unconstrained array | |
1758 | type). */ | |
1759 | ||
76a01679 JB |
1760 | static int |
1761 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1762 | { |
1763 | if (type == NULL) | |
1764 | return 0; | |
61ee279c | 1765 | type = ada_check_typedef (type); |
4c4b4cd2 | 1766 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1767 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1768 | } |
1769 | ||
52ce6436 | 1770 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1771 | * to one. */ |
52ce6436 | 1772 | |
2c0b251b | 1773 | static int |
52ce6436 PH |
1774 | ada_is_array_type (struct type *type) |
1775 | { | |
1776 | while (type != NULL | |
1777 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1778 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1779 | type = TYPE_TARGET_TYPE (type); | |
1780 | return ada_is_direct_array_type (type); | |
1781 | } | |
1782 | ||
4c4b4cd2 | 1783 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1784 | |
14f9c5c9 | 1785 | int |
4c4b4cd2 | 1786 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1787 | { |
1788 | if (type == NULL) | |
1789 | return 0; | |
61ee279c | 1790 | type = ada_check_typedef (type); |
14f9c5c9 | 1791 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1792 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1793 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1794 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1795 | } |
1796 | ||
4c4b4cd2 PH |
1797 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1798 | ||
14f9c5c9 | 1799 | int |
4c4b4cd2 | 1800 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1801 | { |
556bdfd4 | 1802 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1803 | |
1804 | if (type == NULL) | |
1805 | return 0; | |
61ee279c | 1806 | type = ada_check_typedef (type); |
556bdfd4 UW |
1807 | return (data_type != NULL |
1808 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1809 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1810 | } |
1811 | ||
1812 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1813 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1814 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1815 | is still needed. */ |
1816 | ||
14f9c5c9 | 1817 | int |
ebf56fd3 | 1818 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1819 | { |
d2e4a39e | 1820 | return |
14f9c5c9 AS |
1821 | type != NULL |
1822 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1823 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1824 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1825 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1826 | } |
1827 | ||
1828 | ||
4c4b4cd2 | 1829 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1830 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1831 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1832 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1833 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1834 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1835 | a descriptor. */ |
d2e4a39e AS |
1836 | struct type * |
1837 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1838 | { |
ad82864c JB |
1839 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1840 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1841 | |
df407dfe AC |
1842 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1843 | return value_type (arr); | |
d2e4a39e AS |
1844 | |
1845 | if (!bounds) | |
ad82864c JB |
1846 | { |
1847 | struct type *array_type = | |
1848 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1849 | ||
1850 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1851 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1852 | decode_packed_array_bitsize (value_type (arr)); | |
1853 | ||
1854 | return array_type; | |
1855 | } | |
14f9c5c9 AS |
1856 | else |
1857 | { | |
d2e4a39e | 1858 | struct type *elt_type; |
14f9c5c9 | 1859 | int arity; |
d2e4a39e | 1860 | struct value *descriptor; |
14f9c5c9 | 1861 | |
df407dfe AC |
1862 | elt_type = ada_array_element_type (value_type (arr), -1); |
1863 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1864 | |
d2e4a39e | 1865 | if (elt_type == NULL || arity == 0) |
df407dfe | 1866 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1867 | |
1868 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1869 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1870 | return NULL; |
d2e4a39e | 1871 | while (arity > 0) |
4c4b4cd2 | 1872 | { |
e9bb382b UW |
1873 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1874 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1875 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1876 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1877 | |
5b4ee69b | 1878 | arity -= 1; |
df407dfe | 1879 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1880 | longest_to_int (value_as_long (low)), |
1881 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1882 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1883 | |
1884 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1885 | { |
1886 | /* We need to store the element packed bitsize, as well as | |
1887 | recompute the array size, because it was previously | |
1888 | computed based on the unpacked element size. */ | |
1889 | LONGEST lo = value_as_long (low); | |
1890 | LONGEST hi = value_as_long (high); | |
1891 | ||
1892 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1893 | decode_packed_array_bitsize (value_type (arr)); | |
1894 | /* If the array has no element, then the size is already | |
1895 | zero, and does not need to be recomputed. */ | |
1896 | if (lo < hi) | |
1897 | { | |
1898 | int array_bitsize = | |
1899 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1900 | ||
1901 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1902 | } | |
1903 | } | |
4c4b4cd2 | 1904 | } |
14f9c5c9 AS |
1905 | |
1906 | return lookup_pointer_type (elt_type); | |
1907 | } | |
1908 | } | |
1909 | ||
1910 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1911 | Otherwise, returns either a standard GDB array with bounds set |
1912 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1913 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1914 | ||
d2e4a39e AS |
1915 | struct value * |
1916 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1917 | { |
df407dfe | 1918 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1919 | { |
d2e4a39e | 1920 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1921 | |
14f9c5c9 | 1922 | if (arrType == NULL) |
4c4b4cd2 | 1923 | return NULL; |
14f9c5c9 AS |
1924 | return value_cast (arrType, value_copy (desc_data (arr))); |
1925 | } | |
ad82864c JB |
1926 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1927 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1928 | else |
1929 | return arr; | |
1930 | } | |
1931 | ||
1932 | /* If ARR does not represent an array, returns ARR unchanged. | |
1933 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1934 | be ARR itself if it already is in the proper form). */ |
1935 | ||
720d1a40 | 1936 | struct value * |
d2e4a39e | 1937 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1938 | { |
df407dfe | 1939 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1940 | { |
d2e4a39e | 1941 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1942 | |
14f9c5c9 | 1943 | if (arrVal == NULL) |
323e0a4a | 1944 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1945 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1946 | return value_ind (arrVal); |
1947 | } | |
ad82864c JB |
1948 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1949 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1950 | else |
14f9c5c9 AS |
1951 | return arr; |
1952 | } | |
1953 | ||
1954 | /* If TYPE represents a GNAT array type, return it translated to an | |
1955 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1956 | packing). For other types, is the identity. */ |
1957 | ||
d2e4a39e AS |
1958 | struct type * |
1959 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1960 | { |
ad82864c JB |
1961 | if (ada_is_constrained_packed_array_type (type)) |
1962 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1963 | |
1964 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1965 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1966 | |
1967 | return type; | |
14f9c5c9 AS |
1968 | } |
1969 | ||
4c4b4cd2 PH |
1970 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1971 | ||
ad82864c JB |
1972 | static int |
1973 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1974 | { |
1975 | if (type == NULL) | |
1976 | return 0; | |
4c4b4cd2 | 1977 | type = desc_base_type (type); |
61ee279c | 1978 | type = ada_check_typedef (type); |
d2e4a39e | 1979 | return |
14f9c5c9 AS |
1980 | ada_type_name (type) != NULL |
1981 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1982 | } | |
1983 | ||
ad82864c JB |
1984 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1985 | packed-array type. */ | |
1986 | ||
1987 | int | |
1988 | ada_is_constrained_packed_array_type (struct type *type) | |
1989 | { | |
1990 | return ada_is_packed_array_type (type) | |
1991 | && !ada_is_array_descriptor_type (type); | |
1992 | } | |
1993 | ||
1994 | /* Non-zero iff TYPE represents an array descriptor for a | |
1995 | unconstrained packed-array type. */ | |
1996 | ||
1997 | static int | |
1998 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1999 | { | |
2000 | return ada_is_packed_array_type (type) | |
2001 | && ada_is_array_descriptor_type (type); | |
2002 | } | |
2003 | ||
2004 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2005 | return the size of its elements in bits. */ | |
2006 | ||
2007 | static long | |
2008 | decode_packed_array_bitsize (struct type *type) | |
2009 | { | |
0d5cff50 DE |
2010 | const char *raw_name; |
2011 | const char *tail; | |
ad82864c JB |
2012 | long bits; |
2013 | ||
720d1a40 JB |
2014 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2015 | of the fat pointer type. We need the name of the fat pointer type | |
2016 | to do the decoding, so strip the typedef layer. */ | |
2017 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2018 | type = ada_typedef_target_type (type); | |
2019 | ||
2020 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2021 | if (!raw_name) |
2022 | raw_name = ada_type_name (desc_base_type (type)); | |
2023 | ||
2024 | if (!raw_name) | |
2025 | return 0; | |
2026 | ||
2027 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2028 | gdb_assert (tail != NULL); |
ad82864c JB |
2029 | |
2030 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2031 | { | |
2032 | lim_warning | |
2033 | (_("could not understand bit size information on packed array")); | |
2034 | return 0; | |
2035 | } | |
2036 | ||
2037 | return bits; | |
2038 | } | |
2039 | ||
14f9c5c9 AS |
2040 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2041 | in, and that the element size of its ultimate scalar constituents | |
2042 | (that is, either its elements, or, if it is an array of arrays, its | |
2043 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2044 | but with the bit sizes of its elements (and those of any | |
2045 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2046 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2047 | in bits. */ | |
2048 | ||
d2e4a39e | 2049 | static struct type * |
ad82864c | 2050 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2051 | { |
d2e4a39e AS |
2052 | struct type *new_elt_type; |
2053 | struct type *new_type; | |
99b1c762 JB |
2054 | struct type *index_type_desc; |
2055 | struct type *index_type; | |
14f9c5c9 AS |
2056 | LONGEST low_bound, high_bound; |
2057 | ||
61ee279c | 2058 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2059 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2060 | return type; | |
2061 | ||
99b1c762 JB |
2062 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2063 | if (index_type_desc) | |
2064 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2065 | NULL); | |
2066 | else | |
2067 | index_type = TYPE_INDEX_TYPE (type); | |
2068 | ||
e9bb382b | 2069 | new_type = alloc_type_copy (type); |
ad82864c JB |
2070 | new_elt_type = |
2071 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2072 | elt_bits); | |
99b1c762 | 2073 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2074 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2075 | TYPE_NAME (new_type) = ada_type_name (type); | |
2076 | ||
99b1c762 | 2077 | if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2078 | low_bound = high_bound = 0; |
2079 | if (high_bound < low_bound) | |
2080 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2081 | else |
14f9c5c9 AS |
2082 | { |
2083 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2084 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2085 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2086 | } |
2087 | ||
876cecd0 | 2088 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2089 | return new_type; |
2090 | } | |
2091 | ||
ad82864c JB |
2092 | /* The array type encoded by TYPE, where |
2093 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2094 | |
d2e4a39e | 2095 | static struct type * |
ad82864c | 2096 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2097 | { |
0d5cff50 | 2098 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2099 | char *name; |
0d5cff50 | 2100 | const char *tail; |
d2e4a39e | 2101 | struct type *shadow_type; |
14f9c5c9 | 2102 | long bits; |
14f9c5c9 | 2103 | |
727e3d2e JB |
2104 | if (!raw_name) |
2105 | raw_name = ada_type_name (desc_base_type (type)); | |
2106 | ||
2107 | if (!raw_name) | |
2108 | return NULL; | |
2109 | ||
2110 | name = (char *) alloca (strlen (raw_name) + 1); | |
2111 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2112 | type = desc_base_type (type); |
2113 | ||
14f9c5c9 AS |
2114 | memcpy (name, raw_name, tail - raw_name); |
2115 | name[tail - raw_name] = '\000'; | |
2116 | ||
b4ba55a1 JB |
2117 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2118 | ||
2119 | if (shadow_type == NULL) | |
14f9c5c9 | 2120 | { |
323e0a4a | 2121 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2122 | return NULL; |
2123 | } | |
cb249c71 | 2124 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2125 | |
2126 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2127 | { | |
0963b4bd MS |
2128 | lim_warning (_("could not understand bounds " |
2129 | "information on packed array")); | |
14f9c5c9 AS |
2130 | return NULL; |
2131 | } | |
d2e4a39e | 2132 | |
ad82864c JB |
2133 | bits = decode_packed_array_bitsize (type); |
2134 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2135 | } |
2136 | ||
ad82864c JB |
2137 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2138 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2139 | standard GDB array type except that the BITSIZEs of the array |
2140 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2141 | type length is set appropriately. */ |
14f9c5c9 | 2142 | |
d2e4a39e | 2143 | static struct value * |
ad82864c | 2144 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2145 | { |
4c4b4cd2 | 2146 | struct type *type; |
14f9c5c9 | 2147 | |
4c4b4cd2 | 2148 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2149 | |
2150 | /* If our value is a pointer, then dererence it. Make sure that | |
2151 | this operation does not cause the target type to be fixed, as | |
2152 | this would indirectly cause this array to be decoded. The rest | |
2153 | of the routine assumes that the array hasn't been decoded yet, | |
2154 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2155 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2156 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2157 | arr = value_ind (arr); |
4c4b4cd2 | 2158 | |
ad82864c | 2159 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2160 | if (type == NULL) |
2161 | { | |
323e0a4a | 2162 | error (_("can't unpack array")); |
14f9c5c9 AS |
2163 | return NULL; |
2164 | } | |
61ee279c | 2165 | |
50810684 | 2166 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2167 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2168 | { |
2169 | /* This is a (right-justified) modular type representing a packed | |
2170 | array with no wrapper. In order to interpret the value through | |
2171 | the (left-justified) packed array type we just built, we must | |
2172 | first left-justify it. */ | |
2173 | int bit_size, bit_pos; | |
2174 | ULONGEST mod; | |
2175 | ||
df407dfe | 2176 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2177 | bit_size = 0; |
2178 | while (mod > 0) | |
2179 | { | |
2180 | bit_size += 1; | |
2181 | mod >>= 1; | |
2182 | } | |
df407dfe | 2183 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2184 | arr = ada_value_primitive_packed_val (arr, NULL, |
2185 | bit_pos / HOST_CHAR_BIT, | |
2186 | bit_pos % HOST_CHAR_BIT, | |
2187 | bit_size, | |
2188 | type); | |
2189 | } | |
2190 | ||
4c4b4cd2 | 2191 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2192 | } |
2193 | ||
2194 | ||
2195 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2196 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2197 | |
d2e4a39e AS |
2198 | static struct value * |
2199 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2200 | { |
2201 | int i; | |
2202 | int bits, elt_off, bit_off; | |
2203 | long elt_total_bit_offset; | |
d2e4a39e AS |
2204 | struct type *elt_type; |
2205 | struct value *v; | |
14f9c5c9 AS |
2206 | |
2207 | bits = 0; | |
2208 | elt_total_bit_offset = 0; | |
df407dfe | 2209 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2210 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2211 | { |
d2e4a39e | 2212 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2213 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2214 | error | |
0963b4bd MS |
2215 | (_("attempt to do packed indexing of " |
2216 | "something other than a packed array")); | |
14f9c5c9 | 2217 | else |
4c4b4cd2 PH |
2218 | { |
2219 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2220 | LONGEST lowerbound, upperbound; | |
2221 | LONGEST idx; | |
2222 | ||
2223 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2224 | { | |
323e0a4a | 2225 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2226 | lowerbound = upperbound = 0; |
2227 | } | |
2228 | ||
3cb382c9 | 2229 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2230 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2231 | lim_warning (_("packed array index %ld out of bounds"), |
2232 | (long) idx); | |
4c4b4cd2 PH |
2233 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2234 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2235 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2236 | } |
14f9c5c9 AS |
2237 | } |
2238 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2239 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2240 | |
2241 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2242 | bits, elt_type); |
14f9c5c9 AS |
2243 | return v; |
2244 | } | |
2245 | ||
4c4b4cd2 | 2246 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2247 | |
2248 | static int | |
d2e4a39e | 2249 | has_negatives (struct type *type) |
14f9c5c9 | 2250 | { |
d2e4a39e AS |
2251 | switch (TYPE_CODE (type)) |
2252 | { | |
2253 | default: | |
2254 | return 0; | |
2255 | case TYPE_CODE_INT: | |
2256 | return !TYPE_UNSIGNED (type); | |
2257 | case TYPE_CODE_RANGE: | |
2258 | return TYPE_LOW_BOUND (type) < 0; | |
2259 | } | |
14f9c5c9 | 2260 | } |
d2e4a39e | 2261 | |
14f9c5c9 AS |
2262 | |
2263 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2264 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2265 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2266 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2267 | VALADDR is ignored unless OBJ is NULL, in which case, |
2268 | VALADDR+OFFSET must address the start of storage containing the | |
2269 | packed value. The value returned in this case is never an lval. | |
2270 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2271 | |
d2e4a39e | 2272 | struct value * |
fc1a4b47 | 2273 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2274 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2275 | struct type *type) |
14f9c5c9 | 2276 | { |
d2e4a39e | 2277 | struct value *v; |
4c4b4cd2 PH |
2278 | int src, /* Index into the source area */ |
2279 | targ, /* Index into the target area */ | |
2280 | srcBitsLeft, /* Number of source bits left to move */ | |
2281 | nsrc, ntarg, /* Number of source and target bytes */ | |
2282 | unusedLS, /* Number of bits in next significant | |
2283 | byte of source that are unused */ | |
2284 | accumSize; /* Number of meaningful bits in accum */ | |
2285 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2286 | unsigned char *unpacked; |
4c4b4cd2 | 2287 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2288 | unsigned char sign; |
2289 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2290 | /* Transmit bytes from least to most significant; delta is the direction |
2291 | the indices move. */ | |
50810684 | 2292 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2293 | |
61ee279c | 2294 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2295 | |
2296 | if (obj == NULL) | |
2297 | { | |
2298 | v = allocate_value (type); | |
d2e4a39e | 2299 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2300 | } |
9214ee5f | 2301 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2302 | { |
53ba8333 | 2303 | v = value_at (type, value_address (obj)); |
d2e4a39e | 2304 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2305 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2306 | } |
d2e4a39e | 2307 | else |
14f9c5c9 AS |
2308 | { |
2309 | v = allocate_value (type); | |
0fd88904 | 2310 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2311 | } |
d2e4a39e AS |
2312 | |
2313 | if (obj != NULL) | |
14f9c5c9 | 2314 | { |
53ba8333 | 2315 | long new_offset = offset; |
5b4ee69b | 2316 | |
74bcbdf3 | 2317 | set_value_component_location (v, obj); |
9bbda503 AC |
2318 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2319 | set_value_bitsize (v, bit_size); | |
df407dfe | 2320 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2321 | { |
53ba8333 | 2322 | ++new_offset; |
9bbda503 | 2323 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2324 | } |
53ba8333 JB |
2325 | set_value_offset (v, new_offset); |
2326 | ||
2327 | /* Also set the parent value. This is needed when trying to | |
2328 | assign a new value (in inferior memory). */ | |
2329 | set_value_parent (v, obj); | |
2330 | value_incref (obj); | |
14f9c5c9 AS |
2331 | } |
2332 | else | |
9bbda503 | 2333 | set_value_bitsize (v, bit_size); |
0fd88904 | 2334 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2335 | |
2336 | srcBitsLeft = bit_size; | |
2337 | nsrc = len; | |
2338 | ntarg = TYPE_LENGTH (type); | |
2339 | sign = 0; | |
2340 | if (bit_size == 0) | |
2341 | { | |
2342 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2343 | return v; | |
2344 | } | |
50810684 | 2345 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2346 | { |
d2e4a39e | 2347 | src = len - 1; |
1265e4aa JB |
2348 | if (has_negatives (type) |
2349 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2350 | sign = ~0; |
d2e4a39e AS |
2351 | |
2352 | unusedLS = | |
4c4b4cd2 PH |
2353 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2354 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2355 | |
2356 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2357 | { |
2358 | case TYPE_CODE_ARRAY: | |
2359 | case TYPE_CODE_UNION: | |
2360 | case TYPE_CODE_STRUCT: | |
2361 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2362 | accumSize = | |
2363 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2364 | /* ... And are placed at the beginning (most-significant) bytes | |
2365 | of the target. */ | |
529cad9c | 2366 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2367 | ntarg = targ + 1; |
4c4b4cd2 PH |
2368 | break; |
2369 | default: | |
2370 | accumSize = 0; | |
2371 | targ = TYPE_LENGTH (type) - 1; | |
2372 | break; | |
2373 | } | |
14f9c5c9 | 2374 | } |
d2e4a39e | 2375 | else |
14f9c5c9 AS |
2376 | { |
2377 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2378 | ||
2379 | src = targ = 0; | |
2380 | unusedLS = bit_offset; | |
2381 | accumSize = 0; | |
2382 | ||
d2e4a39e | 2383 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2384 | sign = ~0; |
14f9c5c9 | 2385 | } |
d2e4a39e | 2386 | |
14f9c5c9 AS |
2387 | accum = 0; |
2388 | while (nsrc > 0) | |
2389 | { | |
2390 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2391 | part of the value. */ |
d2e4a39e | 2392 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2393 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2394 | 1; | |
2395 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2396 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2397 | |
d2e4a39e | 2398 | accum |= |
4c4b4cd2 | 2399 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2400 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2401 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2402 | { |
2403 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2404 | accumSize -= HOST_CHAR_BIT; | |
2405 | accum >>= HOST_CHAR_BIT; | |
2406 | ntarg -= 1; | |
2407 | targ += delta; | |
2408 | } | |
14f9c5c9 AS |
2409 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2410 | unusedLS = 0; | |
2411 | nsrc -= 1; | |
2412 | src += delta; | |
2413 | } | |
2414 | while (ntarg > 0) | |
2415 | { | |
2416 | accum |= sign << accumSize; | |
2417 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2418 | accumSize -= HOST_CHAR_BIT; | |
2419 | accum >>= HOST_CHAR_BIT; | |
2420 | ntarg -= 1; | |
2421 | targ += delta; | |
2422 | } | |
2423 | ||
2424 | return v; | |
2425 | } | |
d2e4a39e | 2426 | |
14f9c5c9 AS |
2427 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2428 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2429 | not overlap. */ |
14f9c5c9 | 2430 | static void |
fc1a4b47 | 2431 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2432 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2433 | { |
2434 | unsigned int accum, mask; | |
2435 | int accum_bits, chunk_size; | |
2436 | ||
2437 | target += targ_offset / HOST_CHAR_BIT; | |
2438 | targ_offset %= HOST_CHAR_BIT; | |
2439 | source += src_offset / HOST_CHAR_BIT; | |
2440 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2441 | if (bits_big_endian_p) |
14f9c5c9 AS |
2442 | { |
2443 | accum = (unsigned char) *source; | |
2444 | source += 1; | |
2445 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2446 | ||
d2e4a39e | 2447 | while (n > 0) |
4c4b4cd2 PH |
2448 | { |
2449 | int unused_right; | |
5b4ee69b | 2450 | |
4c4b4cd2 PH |
2451 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2452 | accum_bits += HOST_CHAR_BIT; | |
2453 | source += 1; | |
2454 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2455 | if (chunk_size > n) | |
2456 | chunk_size = n; | |
2457 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2458 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2459 | *target = | |
2460 | (*target & ~mask) | |
2461 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2462 | n -= chunk_size; | |
2463 | accum_bits -= chunk_size; | |
2464 | target += 1; | |
2465 | targ_offset = 0; | |
2466 | } | |
14f9c5c9 AS |
2467 | } |
2468 | else | |
2469 | { | |
2470 | accum = (unsigned char) *source >> src_offset; | |
2471 | source += 1; | |
2472 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2473 | ||
d2e4a39e | 2474 | while (n > 0) |
4c4b4cd2 PH |
2475 | { |
2476 | accum = accum + ((unsigned char) *source << accum_bits); | |
2477 | accum_bits += HOST_CHAR_BIT; | |
2478 | source += 1; | |
2479 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2480 | if (chunk_size > n) | |
2481 | chunk_size = n; | |
2482 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2483 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2484 | n -= chunk_size; | |
2485 | accum_bits -= chunk_size; | |
2486 | accum >>= chunk_size; | |
2487 | target += 1; | |
2488 | targ_offset = 0; | |
2489 | } | |
14f9c5c9 AS |
2490 | } |
2491 | } | |
2492 | ||
14f9c5c9 AS |
2493 | /* Store the contents of FROMVAL into the location of TOVAL. |
2494 | Return a new value with the location of TOVAL and contents of | |
2495 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2496 | floating-point or non-scalar types. */ |
14f9c5c9 | 2497 | |
d2e4a39e AS |
2498 | static struct value * |
2499 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2500 | { |
df407dfe AC |
2501 | struct type *type = value_type (toval); |
2502 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2503 | |
52ce6436 PH |
2504 | toval = ada_coerce_ref (toval); |
2505 | fromval = ada_coerce_ref (fromval); | |
2506 | ||
2507 | if (ada_is_direct_array_type (value_type (toval))) | |
2508 | toval = ada_coerce_to_simple_array (toval); | |
2509 | if (ada_is_direct_array_type (value_type (fromval))) | |
2510 | fromval = ada_coerce_to_simple_array (fromval); | |
2511 | ||
88e3b34b | 2512 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2513 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2514 | |
d2e4a39e | 2515 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2516 | && bits > 0 |
d2e4a39e | 2517 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2518 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2519 | { |
df407dfe AC |
2520 | int len = (value_bitpos (toval) |
2521 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2522 | int from_size; |
d2e4a39e AS |
2523 | char *buffer = (char *) alloca (len); |
2524 | struct value *val; | |
42ae5230 | 2525 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2526 | |
2527 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2528 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2529 | |
52ce6436 | 2530 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2531 | from_size = value_bitsize (fromval); |
2532 | if (from_size == 0) | |
2533 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2534 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2535 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2536 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2537 | else |
50810684 UW |
2538 | move_bits (buffer, value_bitpos (toval), |
2539 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2540 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2541 | |
14f9c5c9 | 2542 | val = value_copy (toval); |
0fd88904 | 2543 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2544 | TYPE_LENGTH (type)); |
04624583 | 2545 | deprecated_set_value_type (val, type); |
d2e4a39e | 2546 | |
14f9c5c9 AS |
2547 | return val; |
2548 | } | |
2549 | ||
2550 | return value_assign (toval, fromval); | |
2551 | } | |
2552 | ||
2553 | ||
52ce6436 PH |
2554 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2555 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2556 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2557 | * COMPONENT, and not the inferior's memory. The current contents | |
2558 | * of COMPONENT are ignored. */ | |
2559 | static void | |
2560 | value_assign_to_component (struct value *container, struct value *component, | |
2561 | struct value *val) | |
2562 | { | |
2563 | LONGEST offset_in_container = | |
42ae5230 | 2564 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2565 | int bit_offset_in_container = |
2566 | value_bitpos (component) - value_bitpos (container); | |
2567 | int bits; | |
2568 | ||
2569 | val = value_cast (value_type (component), val); | |
2570 | ||
2571 | if (value_bitsize (component) == 0) | |
2572 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2573 | else | |
2574 | bits = value_bitsize (component); | |
2575 | ||
50810684 | 2576 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2577 | move_bits (value_contents_writeable (container) + offset_in_container, |
2578 | value_bitpos (container) + bit_offset_in_container, | |
2579 | value_contents (val), | |
2580 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2581 | bits, 1); |
52ce6436 PH |
2582 | else |
2583 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2584 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2585 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2586 | } |
2587 | ||
4c4b4cd2 PH |
2588 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2589 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2590 | thereto. */ |
2591 | ||
d2e4a39e AS |
2592 | struct value * |
2593 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2594 | { |
2595 | int k; | |
d2e4a39e AS |
2596 | struct value *elt; |
2597 | struct type *elt_type; | |
14f9c5c9 AS |
2598 | |
2599 | elt = ada_coerce_to_simple_array (arr); | |
2600 | ||
df407dfe | 2601 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2602 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2603 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2604 | return value_subscript_packed (elt, arity, ind); | |
2605 | ||
2606 | for (k = 0; k < arity; k += 1) | |
2607 | { | |
2608 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2609 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2610 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2611 | } |
2612 | return elt; | |
2613 | } | |
2614 | ||
2615 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2616 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2617 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2618 | |
2c0b251b | 2619 | static struct value * |
d2e4a39e | 2620 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2621 | struct value **ind) |
14f9c5c9 AS |
2622 | { |
2623 | int k; | |
2624 | ||
2625 | for (k = 0; k < arity; k += 1) | |
2626 | { | |
2627 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2628 | |
2629 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2630 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2631 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2632 | value_copy (arr)); |
14f9c5c9 | 2633 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2634 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2635 | type = TYPE_TARGET_TYPE (type); |
2636 | } | |
2637 | ||
2638 | return value_ind (arr); | |
2639 | } | |
2640 | ||
0b5d8877 | 2641 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2642 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2643 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2644 | per Ada rules. */ |
0b5d8877 | 2645 | static struct value * |
f5938064 JG |
2646 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2647 | int low, int high) | |
0b5d8877 | 2648 | { |
b0dd7688 | 2649 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2650 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2651 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2652 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2653 | struct type *index_type = |
b0dd7688 | 2654 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2655 | low, high); |
6c038f32 | 2656 | struct type *slice_type = |
b0dd7688 | 2657 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2658 | |
f5938064 | 2659 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2660 | } |
2661 | ||
2662 | ||
2663 | static struct value * | |
2664 | ada_value_slice (struct value *array, int low, int high) | |
2665 | { | |
b0dd7688 | 2666 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2667 | struct type *index_type = |
0b5d8877 | 2668 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2669 | struct type *slice_type = |
0b5d8877 | 2670 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2671 | |
6c038f32 | 2672 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2673 | } |
2674 | ||
14f9c5c9 AS |
2675 | /* If type is a record type in the form of a standard GNAT array |
2676 | descriptor, returns the number of dimensions for type. If arr is a | |
2677 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2678 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2679 | |
2680 | int | |
d2e4a39e | 2681 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2682 | { |
2683 | int arity; | |
2684 | ||
2685 | if (type == NULL) | |
2686 | return 0; | |
2687 | ||
2688 | type = desc_base_type (type); | |
2689 | ||
2690 | arity = 0; | |
d2e4a39e | 2691 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2692 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2693 | else |
2694 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2695 | { |
4c4b4cd2 | 2696 | arity += 1; |
61ee279c | 2697 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2698 | } |
d2e4a39e | 2699 | |
14f9c5c9 AS |
2700 | return arity; |
2701 | } | |
2702 | ||
2703 | /* If TYPE is a record type in the form of a standard GNAT array | |
2704 | descriptor or a simple array type, returns the element type for | |
2705 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2706 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2707 | |
d2e4a39e AS |
2708 | struct type * |
2709 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2710 | { |
2711 | type = desc_base_type (type); | |
2712 | ||
d2e4a39e | 2713 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2714 | { |
2715 | int k; | |
d2e4a39e | 2716 | struct type *p_array_type; |
14f9c5c9 | 2717 | |
556bdfd4 | 2718 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2719 | |
2720 | k = ada_array_arity (type); | |
2721 | if (k == 0) | |
4c4b4cd2 | 2722 | return NULL; |
d2e4a39e | 2723 | |
4c4b4cd2 | 2724 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2725 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2726 | k = nindices; |
d2e4a39e | 2727 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2728 | { |
61ee279c | 2729 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2730 | k -= 1; |
2731 | } | |
14f9c5c9 AS |
2732 | return p_array_type; |
2733 | } | |
2734 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2735 | { | |
2736 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2737 | { |
2738 | type = TYPE_TARGET_TYPE (type); | |
2739 | nindices -= 1; | |
2740 | } | |
14f9c5c9 AS |
2741 | return type; |
2742 | } | |
2743 | ||
2744 | return NULL; | |
2745 | } | |
2746 | ||
4c4b4cd2 | 2747 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2748 | Does not examine memory. Throws an error if N is invalid or TYPE |
2749 | is not an array type. NAME is the name of the Ada attribute being | |
2750 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2751 | the error message. */ | |
14f9c5c9 | 2752 | |
1eea4ebd UW |
2753 | static struct type * |
2754 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2755 | { |
4c4b4cd2 PH |
2756 | struct type *result_type; |
2757 | ||
14f9c5c9 AS |
2758 | type = desc_base_type (type); |
2759 | ||
1eea4ebd UW |
2760 | if (n < 0 || n > ada_array_arity (type)) |
2761 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2762 | |
4c4b4cd2 | 2763 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2764 | { |
2765 | int i; | |
2766 | ||
2767 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2768 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2769 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2770 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2771 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2772 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2773 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2774 | result_type = NULL; | |
14f9c5c9 | 2775 | } |
d2e4a39e | 2776 | else |
1eea4ebd UW |
2777 | { |
2778 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2779 | if (result_type == NULL) | |
2780 | error (_("attempt to take bound of something that is not an array")); | |
2781 | } | |
2782 | ||
2783 | return result_type; | |
14f9c5c9 AS |
2784 | } |
2785 | ||
2786 | /* Given that arr is an array type, returns the lower bound of the | |
2787 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2788 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2789 | array-descriptor type. It works for other arrays with bounds supplied |
2790 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2791 | |
abb68b3e | 2792 | static LONGEST |
1eea4ebd | 2793 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2794 | { |
1ce677a4 | 2795 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2796 | int i; |
262452ec JK |
2797 | |
2798 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2799 | |
ad82864c JB |
2800 | if (ada_is_constrained_packed_array_type (arr_type)) |
2801 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2802 | |
4c4b4cd2 | 2803 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2804 | return (LONGEST) - which; |
14f9c5c9 AS |
2805 | |
2806 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2807 | type = TYPE_TARGET_TYPE (arr_type); | |
2808 | else | |
2809 | type = arr_type; | |
2810 | ||
1ce677a4 UW |
2811 | elt_type = type; |
2812 | for (i = n; i > 1; i--) | |
2813 | elt_type = TYPE_TARGET_TYPE (type); | |
2814 | ||
14f9c5c9 | 2815 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2816 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2817 | if (index_type_desc != NULL) |
28c85d6c JB |
2818 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2819 | NULL); | |
262452ec | 2820 | else |
1ce677a4 | 2821 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2822 | |
43bbcdc2 PH |
2823 | return |
2824 | (LONGEST) (which == 0 | |
2825 | ? ada_discrete_type_low_bound (index_type) | |
2826 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2827 | } |
2828 | ||
2829 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2830 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2831 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2832 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2833 | |
1eea4ebd | 2834 | static LONGEST |
4dc81987 | 2835 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2836 | { |
df407dfe | 2837 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2838 | |
ad82864c JB |
2839 | if (ada_is_constrained_packed_array_type (arr_type)) |
2840 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2841 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2842 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2843 | else |
1eea4ebd | 2844 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2845 | } |
2846 | ||
2847 | /* Given that arr is an array value, returns the length of the | |
2848 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2849 | supplied by run-time quantities other than discriminants. |
2850 | Does not work for arrays indexed by enumeration types with representation | |
2851 | clauses at the moment. */ | |
14f9c5c9 | 2852 | |
1eea4ebd | 2853 | static LONGEST |
d2e4a39e | 2854 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2855 | { |
df407dfe | 2856 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2857 | |
ad82864c JB |
2858 | if (ada_is_constrained_packed_array_type (arr_type)) |
2859 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2860 | |
4c4b4cd2 | 2861 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2862 | return (ada_array_bound_from_type (arr_type, n, 1) |
2863 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2864 | else |
1eea4ebd UW |
2865 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2866 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2867 | } |
2868 | ||
2869 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2870 | with bounds LOW to LOW-1. */ | |
2871 | ||
2872 | static struct value * | |
2873 | empty_array (struct type *arr_type, int low) | |
2874 | { | |
b0dd7688 | 2875 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2876 | struct type *index_type = |
b0dd7688 | 2877 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2878 | low, low - 1); |
b0dd7688 | 2879 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2880 | |
0b5d8877 | 2881 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2882 | } |
14f9c5c9 | 2883 | \f |
d2e4a39e | 2884 | |
4c4b4cd2 | 2885 | /* Name resolution */ |
14f9c5c9 | 2886 | |
4c4b4cd2 PH |
2887 | /* The "decoded" name for the user-definable Ada operator corresponding |
2888 | to OP. */ | |
14f9c5c9 | 2889 | |
d2e4a39e | 2890 | static const char * |
4c4b4cd2 | 2891 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2892 | { |
2893 | int i; | |
2894 | ||
4c4b4cd2 | 2895 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2896 | { |
2897 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2898 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2899 | } |
323e0a4a | 2900 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2901 | } |
2902 | ||
2903 | ||
4c4b4cd2 PH |
2904 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2905 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2906 | undefined namespace) and converts operators that are | |
2907 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2908 | non-null, it provides a preferred result type [at the moment, only |
2909 | type void has any effect---causing procedures to be preferred over | |
2910 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2911 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2912 | |
4c4b4cd2 PH |
2913 | static void |
2914 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2915 | { |
30b15541 UW |
2916 | struct type *context_type = NULL; |
2917 | int pc = 0; | |
2918 | ||
2919 | if (void_context_p) | |
2920 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2921 | ||
2922 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2923 | } |
2924 | ||
4c4b4cd2 PH |
2925 | /* Resolve the operator of the subexpression beginning at |
2926 | position *POS of *EXPP. "Resolving" consists of replacing | |
2927 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2928 | with their resolutions, replacing built-in operators with | |
2929 | function calls to user-defined operators, where appropriate, and, | |
2930 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2931 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2932 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2933 | |
d2e4a39e | 2934 | static struct value * |
4c4b4cd2 | 2935 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2936 | struct type *context_type) |
14f9c5c9 AS |
2937 | { |
2938 | int pc = *pos; | |
2939 | int i; | |
4c4b4cd2 | 2940 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2941 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2942 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2943 | int nargs; /* Number of operands. */ | |
52ce6436 | 2944 | int oplen; |
14f9c5c9 AS |
2945 | |
2946 | argvec = NULL; | |
2947 | nargs = 0; | |
2948 | exp = *expp; | |
2949 | ||
52ce6436 PH |
2950 | /* Pass one: resolve operands, saving their types and updating *pos, |
2951 | if needed. */ | |
14f9c5c9 AS |
2952 | switch (op) |
2953 | { | |
4c4b4cd2 PH |
2954 | case OP_FUNCALL: |
2955 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2956 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2957 | *pos += 7; | |
4c4b4cd2 PH |
2958 | else |
2959 | { | |
2960 | *pos += 3; | |
2961 | resolve_subexp (expp, pos, 0, NULL); | |
2962 | } | |
2963 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2964 | break; |
2965 | ||
14f9c5c9 | 2966 | case UNOP_ADDR: |
4c4b4cd2 PH |
2967 | *pos += 1; |
2968 | resolve_subexp (expp, pos, 0, NULL); | |
2969 | break; | |
2970 | ||
52ce6436 PH |
2971 | case UNOP_QUAL: |
2972 | *pos += 3; | |
17466c1a | 2973 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2974 | break; |
2975 | ||
52ce6436 | 2976 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2977 | case OP_ATR_SIZE: |
2978 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2979 | case OP_ATR_FIRST: |
2980 | case OP_ATR_LAST: | |
2981 | case OP_ATR_LENGTH: | |
2982 | case OP_ATR_POS: | |
2983 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2984 | case OP_ATR_MIN: |
2985 | case OP_ATR_MAX: | |
52ce6436 PH |
2986 | case TERNOP_IN_RANGE: |
2987 | case BINOP_IN_BOUNDS: | |
2988 | case UNOP_IN_RANGE: | |
2989 | case OP_AGGREGATE: | |
2990 | case OP_OTHERS: | |
2991 | case OP_CHOICES: | |
2992 | case OP_POSITIONAL: | |
2993 | case OP_DISCRETE_RANGE: | |
2994 | case OP_NAME: | |
2995 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2996 | *pos += oplen; | |
14f9c5c9 AS |
2997 | break; |
2998 | ||
2999 | case BINOP_ASSIGN: | |
3000 | { | |
4c4b4cd2 PH |
3001 | struct value *arg1; |
3002 | ||
3003 | *pos += 1; | |
3004 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3005 | if (arg1 == NULL) | |
3006 | resolve_subexp (expp, pos, 1, NULL); | |
3007 | else | |
df407dfe | 3008 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3009 | break; |
14f9c5c9 AS |
3010 | } |
3011 | ||
4c4b4cd2 | 3012 | case UNOP_CAST: |
4c4b4cd2 PH |
3013 | *pos += 3; |
3014 | nargs = 1; | |
3015 | break; | |
14f9c5c9 | 3016 | |
4c4b4cd2 PH |
3017 | case BINOP_ADD: |
3018 | case BINOP_SUB: | |
3019 | case BINOP_MUL: | |
3020 | case BINOP_DIV: | |
3021 | case BINOP_REM: | |
3022 | case BINOP_MOD: | |
3023 | case BINOP_EXP: | |
3024 | case BINOP_CONCAT: | |
3025 | case BINOP_LOGICAL_AND: | |
3026 | case BINOP_LOGICAL_OR: | |
3027 | case BINOP_BITWISE_AND: | |
3028 | case BINOP_BITWISE_IOR: | |
3029 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3030 | |
4c4b4cd2 PH |
3031 | case BINOP_EQUAL: |
3032 | case BINOP_NOTEQUAL: | |
3033 | case BINOP_LESS: | |
3034 | case BINOP_GTR: | |
3035 | case BINOP_LEQ: | |
3036 | case BINOP_GEQ: | |
14f9c5c9 | 3037 | |
4c4b4cd2 PH |
3038 | case BINOP_REPEAT: |
3039 | case BINOP_SUBSCRIPT: | |
3040 | case BINOP_COMMA: | |
40c8aaa9 JB |
3041 | *pos += 1; |
3042 | nargs = 2; | |
3043 | break; | |
14f9c5c9 | 3044 | |
4c4b4cd2 PH |
3045 | case UNOP_NEG: |
3046 | case UNOP_PLUS: | |
3047 | case UNOP_LOGICAL_NOT: | |
3048 | case UNOP_ABS: | |
3049 | case UNOP_IND: | |
3050 | *pos += 1; | |
3051 | nargs = 1; | |
3052 | break; | |
14f9c5c9 | 3053 | |
4c4b4cd2 PH |
3054 | case OP_LONG: |
3055 | case OP_DOUBLE: | |
3056 | case OP_VAR_VALUE: | |
3057 | *pos += 4; | |
3058 | break; | |
14f9c5c9 | 3059 | |
4c4b4cd2 PH |
3060 | case OP_TYPE: |
3061 | case OP_BOOL: | |
3062 | case OP_LAST: | |
4c4b4cd2 PH |
3063 | case OP_INTERNALVAR: |
3064 | *pos += 3; | |
3065 | break; | |
14f9c5c9 | 3066 | |
4c4b4cd2 PH |
3067 | case UNOP_MEMVAL: |
3068 | *pos += 3; | |
3069 | nargs = 1; | |
3070 | break; | |
3071 | ||
67f3407f DJ |
3072 | case OP_REGISTER: |
3073 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3074 | break; | |
3075 | ||
4c4b4cd2 PH |
3076 | case STRUCTOP_STRUCT: |
3077 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3078 | nargs = 1; | |
3079 | break; | |
3080 | ||
4c4b4cd2 | 3081 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3082 | *pos += 1; |
3083 | nargs = 3; | |
3084 | break; | |
3085 | ||
52ce6436 | 3086 | case OP_STRING: |
14f9c5c9 | 3087 | break; |
4c4b4cd2 PH |
3088 | |
3089 | default: | |
323e0a4a | 3090 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3091 | } |
3092 | ||
76a01679 | 3093 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3094 | for (i = 0; i < nargs; i += 1) |
3095 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3096 | argvec[i] = NULL; | |
3097 | exp = *expp; | |
3098 | ||
3099 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3100 | switch (op) |
3101 | { | |
3102 | default: | |
3103 | break; | |
3104 | ||
14f9c5c9 | 3105 | case OP_VAR_VALUE: |
4c4b4cd2 | 3106 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3107 | { |
3108 | struct ada_symbol_info *candidates; | |
3109 | int n_candidates; | |
3110 | ||
3111 | n_candidates = | |
3112 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3113 | (exp->elts[pc + 2].symbol), | |
3114 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3115 | &candidates); |
76a01679 JB |
3116 | |
3117 | if (n_candidates > 1) | |
3118 | { | |
3119 | /* Types tend to get re-introduced locally, so if there | |
3120 | are any local symbols that are not types, first filter | |
3121 | out all types. */ | |
3122 | int j; | |
3123 | for (j = 0; j < n_candidates; j += 1) | |
3124 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3125 | { | |
3126 | case LOC_REGISTER: | |
3127 | case LOC_ARG: | |
3128 | case LOC_REF_ARG: | |
76a01679 JB |
3129 | case LOC_REGPARM_ADDR: |
3130 | case LOC_LOCAL: | |
76a01679 | 3131 | case LOC_COMPUTED: |
76a01679 JB |
3132 | goto FoundNonType; |
3133 | default: | |
3134 | break; | |
3135 | } | |
3136 | FoundNonType: | |
3137 | if (j < n_candidates) | |
3138 | { | |
3139 | j = 0; | |
3140 | while (j < n_candidates) | |
3141 | { | |
3142 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3143 | { | |
3144 | candidates[j] = candidates[n_candidates - 1]; | |
3145 | n_candidates -= 1; | |
3146 | } | |
3147 | else | |
3148 | j += 1; | |
3149 | } | |
3150 | } | |
3151 | } | |
3152 | ||
3153 | if (n_candidates == 0) | |
323e0a4a | 3154 | error (_("No definition found for %s"), |
76a01679 JB |
3155 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3156 | else if (n_candidates == 1) | |
3157 | i = 0; | |
3158 | else if (deprocedure_p | |
3159 | && !is_nonfunction (candidates, n_candidates)) | |
3160 | { | |
06d5cf63 JB |
3161 | i = ada_resolve_function |
3162 | (candidates, n_candidates, NULL, 0, | |
3163 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3164 | context_type); | |
76a01679 | 3165 | if (i < 0) |
323e0a4a | 3166 | error (_("Could not find a match for %s"), |
76a01679 JB |
3167 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3168 | } | |
3169 | else | |
3170 | { | |
323e0a4a | 3171 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3172 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3173 | user_select_syms (candidates, n_candidates, 1); | |
3174 | i = 0; | |
3175 | } | |
3176 | ||
3177 | exp->elts[pc + 1].block = candidates[i].block; | |
3178 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3179 | if (innermost_block == NULL |
3180 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3181 | innermost_block = candidates[i].block; |
3182 | } | |
3183 | ||
3184 | if (deprocedure_p | |
3185 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3186 | == TYPE_CODE_FUNC)) | |
3187 | { | |
3188 | replace_operator_with_call (expp, pc, 0, 0, | |
3189 | exp->elts[pc + 2].symbol, | |
3190 | exp->elts[pc + 1].block); | |
3191 | exp = *expp; | |
3192 | } | |
14f9c5c9 AS |
3193 | break; |
3194 | ||
3195 | case OP_FUNCALL: | |
3196 | { | |
4c4b4cd2 | 3197 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3198 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3199 | { |
3200 | struct ada_symbol_info *candidates; | |
3201 | int n_candidates; | |
3202 | ||
3203 | n_candidates = | |
76a01679 JB |
3204 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3205 | (exp->elts[pc + 5].symbol), | |
3206 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3207 | &candidates); |
4c4b4cd2 PH |
3208 | if (n_candidates == 1) |
3209 | i = 0; | |
3210 | else | |
3211 | { | |
06d5cf63 JB |
3212 | i = ada_resolve_function |
3213 | (candidates, n_candidates, | |
3214 | argvec, nargs, | |
3215 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3216 | context_type); | |
4c4b4cd2 | 3217 | if (i < 0) |
323e0a4a | 3218 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3219 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3220 | } | |
3221 | ||
3222 | exp->elts[pc + 4].block = candidates[i].block; | |
3223 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3224 | if (innermost_block == NULL |
3225 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3226 | innermost_block = candidates[i].block; |
3227 | } | |
14f9c5c9 AS |
3228 | } |
3229 | break; | |
3230 | case BINOP_ADD: | |
3231 | case BINOP_SUB: | |
3232 | case BINOP_MUL: | |
3233 | case BINOP_DIV: | |
3234 | case BINOP_REM: | |
3235 | case BINOP_MOD: | |
3236 | case BINOP_CONCAT: | |
3237 | case BINOP_BITWISE_AND: | |
3238 | case BINOP_BITWISE_IOR: | |
3239 | case BINOP_BITWISE_XOR: | |
3240 | case BINOP_EQUAL: | |
3241 | case BINOP_NOTEQUAL: | |
3242 | case BINOP_LESS: | |
3243 | case BINOP_GTR: | |
3244 | case BINOP_LEQ: | |
3245 | case BINOP_GEQ: | |
3246 | case BINOP_EXP: | |
3247 | case UNOP_NEG: | |
3248 | case UNOP_PLUS: | |
3249 | case UNOP_LOGICAL_NOT: | |
3250 | case UNOP_ABS: | |
3251 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3252 | { |
3253 | struct ada_symbol_info *candidates; | |
3254 | int n_candidates; | |
3255 | ||
3256 | n_candidates = | |
3257 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3258 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3259 | &candidates); |
4c4b4cd2 | 3260 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3261 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3262 | if (i < 0) |
3263 | break; | |
3264 | ||
76a01679 JB |
3265 | replace_operator_with_call (expp, pc, nargs, 1, |
3266 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3267 | exp = *expp; |
3268 | } | |
14f9c5c9 | 3269 | break; |
4c4b4cd2 PH |
3270 | |
3271 | case OP_TYPE: | |
b3dbf008 | 3272 | case OP_REGISTER: |
4c4b4cd2 | 3273 | return NULL; |
14f9c5c9 AS |
3274 | } |
3275 | ||
3276 | *pos = pc; | |
3277 | return evaluate_subexp_type (exp, pos); | |
3278 | } | |
3279 | ||
3280 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3281 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3282 | a non-pointer. */ |
14f9c5c9 | 3283 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3284 | liberal. */ |
14f9c5c9 AS |
3285 | |
3286 | static int | |
4dc81987 | 3287 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3288 | { |
61ee279c PH |
3289 | ftype = ada_check_typedef (ftype); |
3290 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3291 | |
3292 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3293 | ftype = TYPE_TARGET_TYPE (ftype); | |
3294 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3295 | atype = TYPE_TARGET_TYPE (atype); | |
3296 | ||
d2e4a39e | 3297 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3298 | { |
3299 | default: | |
5b3d5b7d | 3300 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3301 | case TYPE_CODE_PTR: |
3302 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3303 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3304 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3305 | else |
1265e4aa JB |
3306 | return (may_deref |
3307 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3308 | case TYPE_CODE_INT: |
3309 | case TYPE_CODE_ENUM: | |
3310 | case TYPE_CODE_RANGE: | |
3311 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3312 | { |
3313 | case TYPE_CODE_INT: | |
3314 | case TYPE_CODE_ENUM: | |
3315 | case TYPE_CODE_RANGE: | |
3316 | return 1; | |
3317 | default: | |
3318 | return 0; | |
3319 | } | |
14f9c5c9 AS |
3320 | |
3321 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3322 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3323 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3324 | |
3325 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3326 | if (ada_is_array_descriptor_type (ftype)) |
3327 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3328 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3329 | else |
4c4b4cd2 PH |
3330 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3331 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3332 | |
3333 | case TYPE_CODE_UNION: | |
3334 | case TYPE_CODE_FLT: | |
3335 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3336 | } | |
3337 | } | |
3338 | ||
3339 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3340 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3341 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3342 | argument function. */ |
14f9c5c9 AS |
3343 | |
3344 | static int | |
d2e4a39e | 3345 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3346 | { |
3347 | int i; | |
d2e4a39e | 3348 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3349 | |
1265e4aa JB |
3350 | if (SYMBOL_CLASS (func) == LOC_CONST |
3351 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3352 | return (n_actuals == 0); |
3353 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3354 | return 0; | |
3355 | ||
3356 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3357 | return 0; | |
3358 | ||
3359 | for (i = 0; i < n_actuals; i += 1) | |
3360 | { | |
4c4b4cd2 | 3361 | if (actuals[i] == NULL) |
76a01679 JB |
3362 | return 0; |
3363 | else | |
3364 | { | |
5b4ee69b MS |
3365 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3366 | i)); | |
df407dfe | 3367 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3368 | |
76a01679 JB |
3369 | if (!ada_type_match (ftype, atype, 1)) |
3370 | return 0; | |
3371 | } | |
14f9c5c9 AS |
3372 | } |
3373 | return 1; | |
3374 | } | |
3375 | ||
3376 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3377 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3378 | FUNC_TYPE is not a valid function type with a non-null return type | |
3379 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3380 | ||
3381 | static int | |
d2e4a39e | 3382 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3383 | { |
d2e4a39e | 3384 | struct type *return_type; |
14f9c5c9 AS |
3385 | |
3386 | if (func_type == NULL) | |
3387 | return 1; | |
3388 | ||
4c4b4cd2 | 3389 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3390 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3391 | else |
18af8284 | 3392 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3393 | if (return_type == NULL) |
3394 | return 1; | |
3395 | ||
18af8284 | 3396 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3397 | |
3398 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3399 | return context_type == NULL || return_type == context_type; | |
3400 | else if (context_type == NULL) | |
3401 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3402 | else | |
3403 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3404 | } | |
3405 | ||
3406 | ||
4c4b4cd2 | 3407 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3408 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3409 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3410 | that returns that type, then eliminate matches that don't. If | |
3411 | CONTEXT_TYPE is void and there is at least one match that does not | |
3412 | return void, eliminate all matches that do. | |
3413 | ||
14f9c5c9 AS |
3414 | Asks the user if there is more than one match remaining. Returns -1 |
3415 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3416 | solely for messages. May re-arrange and modify SYMS in |
3417 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3418 | |
4c4b4cd2 PH |
3419 | static int |
3420 | ada_resolve_function (struct ada_symbol_info syms[], | |
3421 | int nsyms, struct value **args, int nargs, | |
3422 | const char *name, struct type *context_type) | |
14f9c5c9 | 3423 | { |
30b15541 | 3424 | int fallback; |
14f9c5c9 | 3425 | int k; |
4c4b4cd2 | 3426 | int m; /* Number of hits */ |
14f9c5c9 | 3427 | |
d2e4a39e | 3428 | m = 0; |
30b15541 UW |
3429 | /* In the first pass of the loop, we only accept functions matching |
3430 | context_type. If none are found, we add a second pass of the loop | |
3431 | where every function is accepted. */ | |
3432 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3433 | { |
3434 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3435 | { |
61ee279c | 3436 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3437 | |
3438 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3439 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3440 | { |
3441 | syms[m] = syms[k]; | |
3442 | m += 1; | |
3443 | } | |
3444 | } | |
14f9c5c9 AS |
3445 | } |
3446 | ||
3447 | if (m == 0) | |
3448 | return -1; | |
3449 | else if (m > 1) | |
3450 | { | |
323e0a4a | 3451 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3452 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3453 | return 0; |
3454 | } | |
3455 | return 0; | |
3456 | } | |
3457 | ||
4c4b4cd2 PH |
3458 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3459 | in a listing of choices during disambiguation (see sort_choices, below). | |
3460 | The idea is that overloadings of a subprogram name from the | |
3461 | same package should sort in their source order. We settle for ordering | |
3462 | such symbols by their trailing number (__N or $N). */ | |
3463 | ||
14f9c5c9 | 3464 | static int |
0d5cff50 | 3465 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3466 | { |
3467 | if (N1 == NULL) | |
3468 | return 0; | |
3469 | else if (N0 == NULL) | |
3470 | return 1; | |
3471 | else | |
3472 | { | |
3473 | int k0, k1; | |
5b4ee69b | 3474 | |
d2e4a39e | 3475 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3476 | ; |
d2e4a39e | 3477 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3478 | ; |
d2e4a39e | 3479 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3480 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3481 | { | |
3482 | int n0, n1; | |
5b4ee69b | 3483 | |
4c4b4cd2 PH |
3484 | n0 = k0; |
3485 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3486 | n0 -= 1; | |
3487 | n1 = k1; | |
3488 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3489 | n1 -= 1; | |
3490 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3491 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3492 | } | |
14f9c5c9 AS |
3493 | return (strcmp (N0, N1) < 0); |
3494 | } | |
3495 | } | |
d2e4a39e | 3496 | |
4c4b4cd2 PH |
3497 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3498 | encoded names. */ | |
3499 | ||
d2e4a39e | 3500 | static void |
4c4b4cd2 | 3501 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3502 | { |
4c4b4cd2 | 3503 | int i; |
5b4ee69b | 3504 | |
d2e4a39e | 3505 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3506 | { |
4c4b4cd2 | 3507 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3508 | int j; |
3509 | ||
d2e4a39e | 3510 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3511 | { |
3512 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3513 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3514 | break; | |
3515 | syms[j + 1] = syms[j]; | |
3516 | } | |
d2e4a39e | 3517 | syms[j + 1] = sym; |
14f9c5c9 AS |
3518 | } |
3519 | } | |
3520 | ||
4c4b4cd2 PH |
3521 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3522 | by asking the user (if necessary), returning the number selected, | |
3523 | and setting the first elements of SYMS items. Error if no symbols | |
3524 | selected. */ | |
14f9c5c9 AS |
3525 | |
3526 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3527 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3528 | |
3529 | int | |
4c4b4cd2 | 3530 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3531 | { |
3532 | int i; | |
d2e4a39e | 3533 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3534 | int n_chosen; |
3535 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3536 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3537 | |
3538 | if (max_results < 1) | |
323e0a4a | 3539 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3540 | if (nsyms <= 1) |
3541 | return nsyms; | |
3542 | ||
717d2f5a JB |
3543 | if (select_mode == multiple_symbols_cancel) |
3544 | error (_("\ | |
3545 | canceled because the command is ambiguous\n\ | |
3546 | See set/show multiple-symbol.")); | |
3547 | ||
3548 | /* If select_mode is "all", then return all possible symbols. | |
3549 | Only do that if more than one symbol can be selected, of course. | |
3550 | Otherwise, display the menu as usual. */ | |
3551 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3552 | return nsyms; | |
3553 | ||
323e0a4a | 3554 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3555 | if (max_results > 1) |
323e0a4a | 3556 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3557 | |
4c4b4cd2 | 3558 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3559 | |
3560 | for (i = 0; i < nsyms; i += 1) | |
3561 | { | |
4c4b4cd2 PH |
3562 | if (syms[i].sym == NULL) |
3563 | continue; | |
3564 | ||
3565 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3566 | { | |
76a01679 JB |
3567 | struct symtab_and_line sal = |
3568 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3569 | |
323e0a4a AC |
3570 | if (sal.symtab == NULL) |
3571 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3572 | i + first_choice, | |
3573 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3574 | sal.line); | |
3575 | else | |
3576 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3577 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3578 | symtab_to_filename_for_display (sal.symtab), |
3579 | sal.line); | |
4c4b4cd2 PH |
3580 | continue; |
3581 | } | |
d2e4a39e | 3582 | else |
4c4b4cd2 PH |
3583 | { |
3584 | int is_enumeral = | |
3585 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3586 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3587 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
210bbc17 | 3588 | struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); |
4c4b4cd2 PH |
3589 | |
3590 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3591 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3592 | i + first_choice, |
3593 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3594 | symtab_to_filename_for_display (symtab), |
3595 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3596 | else if (is_enumeral |
3597 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3598 | { |
a3f17187 | 3599 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3600 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3601 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3602 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3603 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3604 | } | |
3605 | else if (symtab != NULL) | |
3606 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3607 | ? _("[%d] %s in %s (enumeral)\n") |
3608 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3609 | i + first_choice, |
3610 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3611 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3612 | else |
3613 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3614 | ? _("[%d] %s (enumeral)\n") |
3615 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3616 | i + first_choice, |
3617 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3618 | } | |
14f9c5c9 | 3619 | } |
d2e4a39e | 3620 | |
14f9c5c9 | 3621 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3622 | "overload-choice"); |
14f9c5c9 AS |
3623 | |
3624 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3625 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3626 | |
3627 | return n_chosen; | |
3628 | } | |
3629 | ||
3630 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3631 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3632 | order in CHOICES[0 .. N-1], and return N. |
3633 | ||
3634 | The user types choices as a sequence of numbers on one line | |
3635 | separated by blanks, encoding them as follows: | |
3636 | ||
4c4b4cd2 | 3637 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3638 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3639 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3640 | ||
4c4b4cd2 | 3641 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3642 | |
3643 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3644 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3645 | |
3646 | int | |
d2e4a39e | 3647 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3648 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3649 | { |
d2e4a39e | 3650 | char *args; |
0bcd0149 | 3651 | char *prompt; |
14f9c5c9 AS |
3652 | int n_chosen; |
3653 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3654 | |
14f9c5c9 AS |
3655 | prompt = getenv ("PS2"); |
3656 | if (prompt == NULL) | |
0bcd0149 | 3657 | prompt = "> "; |
14f9c5c9 | 3658 | |
0bcd0149 | 3659 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3660 | |
14f9c5c9 | 3661 | if (args == NULL) |
323e0a4a | 3662 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3663 | |
3664 | n_chosen = 0; | |
76a01679 | 3665 | |
4c4b4cd2 PH |
3666 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3667 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3668 | while (1) |
3669 | { | |
d2e4a39e | 3670 | char *args2; |
14f9c5c9 AS |
3671 | int choice, j; |
3672 | ||
0fcd72ba | 3673 | args = skip_spaces (args); |
14f9c5c9 | 3674 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3675 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3676 | else if (*args == '\0') |
4c4b4cd2 | 3677 | break; |
14f9c5c9 AS |
3678 | |
3679 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3680 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3681 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3682 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3683 | args = args2; |
3684 | ||
d2e4a39e | 3685 | if (choice == 0) |
323e0a4a | 3686 | error (_("cancelled")); |
14f9c5c9 AS |
3687 | |
3688 | if (choice < first_choice) | |
4c4b4cd2 PH |
3689 | { |
3690 | n_chosen = n_choices; | |
3691 | for (j = 0; j < n_choices; j += 1) | |
3692 | choices[j] = j; | |
3693 | break; | |
3694 | } | |
14f9c5c9 AS |
3695 | choice -= first_choice; |
3696 | ||
d2e4a39e | 3697 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3698 | { |
3699 | } | |
14f9c5c9 AS |
3700 | |
3701 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3702 | { |
3703 | int k; | |
5b4ee69b | 3704 | |
4c4b4cd2 PH |
3705 | for (k = n_chosen - 1; k > j; k -= 1) |
3706 | choices[k + 1] = choices[k]; | |
3707 | choices[j + 1] = choice; | |
3708 | n_chosen += 1; | |
3709 | } | |
14f9c5c9 AS |
3710 | } |
3711 | ||
3712 | if (n_chosen > max_results) | |
323e0a4a | 3713 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3714 | |
14f9c5c9 AS |
3715 | return n_chosen; |
3716 | } | |
3717 | ||
4c4b4cd2 PH |
3718 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3719 | on the function identified by SYM and BLOCK, and taking NARGS | |
3720 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3721 | |
3722 | static void | |
d2e4a39e | 3723 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3724 | int oplen, struct symbol *sym, |
270140bd | 3725 | const struct block *block) |
14f9c5c9 AS |
3726 | { |
3727 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3728 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3729 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3730 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3731 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3732 | struct expression *exp = *expp; |
14f9c5c9 AS |
3733 | |
3734 | newexp->nelts = exp->nelts + 7 - oplen; | |
3735 | newexp->language_defn = exp->language_defn; | |
3489610d | 3736 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3737 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3738 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3739 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3740 | |
3741 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3742 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3743 | ||
3744 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3745 | newexp->elts[pc + 4].block = block; | |
3746 | newexp->elts[pc + 5].symbol = sym; | |
3747 | ||
3748 | *expp = newexp; | |
aacb1f0a | 3749 | xfree (exp); |
d2e4a39e | 3750 | } |
14f9c5c9 AS |
3751 | |
3752 | /* Type-class predicates */ | |
3753 | ||
4c4b4cd2 PH |
3754 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3755 | or FLOAT). */ | |
14f9c5c9 AS |
3756 | |
3757 | static int | |
d2e4a39e | 3758 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3759 | { |
3760 | if (type == NULL) | |
3761 | return 0; | |
d2e4a39e AS |
3762 | else |
3763 | { | |
3764 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3765 | { |
3766 | case TYPE_CODE_INT: | |
3767 | case TYPE_CODE_FLT: | |
3768 | return 1; | |
3769 | case TYPE_CODE_RANGE: | |
3770 | return (type == TYPE_TARGET_TYPE (type) | |
3771 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3772 | default: | |
3773 | return 0; | |
3774 | } | |
d2e4a39e | 3775 | } |
14f9c5c9 AS |
3776 | } |
3777 | ||
4c4b4cd2 | 3778 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3779 | |
3780 | static int | |
d2e4a39e | 3781 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3782 | { |
3783 | if (type == NULL) | |
3784 | return 0; | |
d2e4a39e AS |
3785 | else |
3786 | { | |
3787 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3788 | { |
3789 | case TYPE_CODE_INT: | |
3790 | return 1; | |
3791 | case TYPE_CODE_RANGE: | |
3792 | return (type == TYPE_TARGET_TYPE (type) | |
3793 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3794 | default: | |
3795 | return 0; | |
3796 | } | |
d2e4a39e | 3797 | } |
14f9c5c9 AS |
3798 | } |
3799 | ||
4c4b4cd2 | 3800 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3801 | |
3802 | static int | |
d2e4a39e | 3803 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3804 | { |
3805 | if (type == NULL) | |
3806 | return 0; | |
d2e4a39e AS |
3807 | else |
3808 | { | |
3809 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3810 | { |
3811 | case TYPE_CODE_INT: | |
3812 | case TYPE_CODE_RANGE: | |
3813 | case TYPE_CODE_ENUM: | |
3814 | case TYPE_CODE_FLT: | |
3815 | return 1; | |
3816 | default: | |
3817 | return 0; | |
3818 | } | |
d2e4a39e | 3819 | } |
14f9c5c9 AS |
3820 | } |
3821 | ||
4c4b4cd2 | 3822 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3823 | |
3824 | static int | |
d2e4a39e | 3825 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3826 | { |
3827 | if (type == NULL) | |
3828 | return 0; | |
d2e4a39e AS |
3829 | else |
3830 | { | |
3831 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3832 | { |
3833 | case TYPE_CODE_INT: | |
3834 | case TYPE_CODE_RANGE: | |
3835 | case TYPE_CODE_ENUM: | |
872f0337 | 3836 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3837 | return 1; |
3838 | default: | |
3839 | return 0; | |
3840 | } | |
d2e4a39e | 3841 | } |
14f9c5c9 AS |
3842 | } |
3843 | ||
4c4b4cd2 PH |
3844 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3845 | a user-defined function. Errs on the side of pre-defined operators | |
3846 | (i.e., result 0). */ | |
14f9c5c9 AS |
3847 | |
3848 | static int | |
d2e4a39e | 3849 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3850 | { |
76a01679 | 3851 | struct type *type0 = |
df407dfe | 3852 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3853 | struct type *type1 = |
df407dfe | 3854 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3855 | |
4c4b4cd2 PH |
3856 | if (type0 == NULL) |
3857 | return 0; | |
3858 | ||
14f9c5c9 AS |
3859 | switch (op) |
3860 | { | |
3861 | default: | |
3862 | return 0; | |
3863 | ||
3864 | case BINOP_ADD: | |
3865 | case BINOP_SUB: | |
3866 | case BINOP_MUL: | |
3867 | case BINOP_DIV: | |
d2e4a39e | 3868 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3869 | |
3870 | case BINOP_REM: | |
3871 | case BINOP_MOD: | |
3872 | case BINOP_BITWISE_AND: | |
3873 | case BINOP_BITWISE_IOR: | |
3874 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3875 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3876 | |
3877 | case BINOP_EQUAL: | |
3878 | case BINOP_NOTEQUAL: | |
3879 | case BINOP_LESS: | |
3880 | case BINOP_GTR: | |
3881 | case BINOP_LEQ: | |
3882 | case BINOP_GEQ: | |
d2e4a39e | 3883 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3884 | |
3885 | case BINOP_CONCAT: | |
ee90b9ab | 3886 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3887 | |
3888 | case BINOP_EXP: | |
d2e4a39e | 3889 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3890 | |
3891 | case UNOP_NEG: | |
3892 | case UNOP_PLUS: | |
3893 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3894 | case UNOP_ABS: |
3895 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3896 | |
3897 | } | |
3898 | } | |
3899 | \f | |
4c4b4cd2 | 3900 | /* Renaming */ |
14f9c5c9 | 3901 | |
aeb5907d JB |
3902 | /* NOTES: |
3903 | ||
3904 | 1. In the following, we assume that a renaming type's name may | |
3905 | have an ___XD suffix. It would be nice if this went away at some | |
3906 | point. | |
3907 | 2. We handle both the (old) purely type-based representation of | |
3908 | renamings and the (new) variable-based encoding. At some point, | |
3909 | it is devoutly to be hoped that the former goes away | |
3910 | (FIXME: hilfinger-2007-07-09). | |
3911 | 3. Subprogram renamings are not implemented, although the XRS | |
3912 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3913 | ||
3914 | /* If SYM encodes a renaming, | |
3915 | ||
3916 | <renaming> renames <renamed entity>, | |
3917 | ||
3918 | sets *LEN to the length of the renamed entity's name, | |
3919 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3920 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3921 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3922 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3923 | are undefined). Otherwise, returns a value indicating the category | |
3924 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3925 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3926 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3927 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3928 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3929 | may be NULL, in which case they are not assigned. | |
3930 | ||
3931 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3932 | ||
3933 | enum ada_renaming_category | |
3934 | ada_parse_renaming (struct symbol *sym, | |
3935 | const char **renamed_entity, int *len, | |
3936 | const char **renaming_expr) | |
3937 | { | |
3938 | enum ada_renaming_category kind; | |
3939 | const char *info; | |
3940 | const char *suffix; | |
3941 | ||
3942 | if (sym == NULL) | |
3943 | return ADA_NOT_RENAMING; | |
3944 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3945 | { |
aeb5907d JB |
3946 | default: |
3947 | return ADA_NOT_RENAMING; | |
3948 | case LOC_TYPEDEF: | |
3949 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3950 | renamed_entity, len, renaming_expr); | |
3951 | case LOC_LOCAL: | |
3952 | case LOC_STATIC: | |
3953 | case LOC_COMPUTED: | |
3954 | case LOC_OPTIMIZED_OUT: | |
3955 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3956 | if (info == NULL) | |
3957 | return ADA_NOT_RENAMING; | |
3958 | switch (info[5]) | |
3959 | { | |
3960 | case '_': | |
3961 | kind = ADA_OBJECT_RENAMING; | |
3962 | info += 6; | |
3963 | break; | |
3964 | case 'E': | |
3965 | kind = ADA_EXCEPTION_RENAMING; | |
3966 | info += 7; | |
3967 | break; | |
3968 | case 'P': | |
3969 | kind = ADA_PACKAGE_RENAMING; | |
3970 | info += 7; | |
3971 | break; | |
3972 | case 'S': | |
3973 | kind = ADA_SUBPROGRAM_RENAMING; | |
3974 | info += 7; | |
3975 | break; | |
3976 | default: | |
3977 | return ADA_NOT_RENAMING; | |
3978 | } | |
14f9c5c9 | 3979 | } |
4c4b4cd2 | 3980 | |
aeb5907d JB |
3981 | if (renamed_entity != NULL) |
3982 | *renamed_entity = info; | |
3983 | suffix = strstr (info, "___XE"); | |
3984 | if (suffix == NULL || suffix == info) | |
3985 | return ADA_NOT_RENAMING; | |
3986 | if (len != NULL) | |
3987 | *len = strlen (info) - strlen (suffix); | |
3988 | suffix += 5; | |
3989 | if (renaming_expr != NULL) | |
3990 | *renaming_expr = suffix; | |
3991 | return kind; | |
3992 | } | |
3993 | ||
3994 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3995 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3996 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3997 | ADA_NOT_RENAMING otherwise. */ | |
3998 | static enum ada_renaming_category | |
3999 | parse_old_style_renaming (struct type *type, | |
4000 | const char **renamed_entity, int *len, | |
4001 | const char **renaming_expr) | |
4002 | { | |
4003 | enum ada_renaming_category kind; | |
4004 | const char *name; | |
4005 | const char *info; | |
4006 | const char *suffix; | |
14f9c5c9 | 4007 | |
aeb5907d JB |
4008 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4009 | || TYPE_NFIELDS (type) != 1) | |
4010 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4011 | |
aeb5907d JB |
4012 | name = type_name_no_tag (type); |
4013 | if (name == NULL) | |
4014 | return ADA_NOT_RENAMING; | |
4015 | ||
4016 | name = strstr (name, "___XR"); | |
4017 | if (name == NULL) | |
4018 | return ADA_NOT_RENAMING; | |
4019 | switch (name[5]) | |
4020 | { | |
4021 | case '\0': | |
4022 | case '_': | |
4023 | kind = ADA_OBJECT_RENAMING; | |
4024 | break; | |
4025 | case 'E': | |
4026 | kind = ADA_EXCEPTION_RENAMING; | |
4027 | break; | |
4028 | case 'P': | |
4029 | kind = ADA_PACKAGE_RENAMING; | |
4030 | break; | |
4031 | case 'S': | |
4032 | kind = ADA_SUBPROGRAM_RENAMING; | |
4033 | break; | |
4034 | default: | |
4035 | return ADA_NOT_RENAMING; | |
4036 | } | |
14f9c5c9 | 4037 | |
aeb5907d JB |
4038 | info = TYPE_FIELD_NAME (type, 0); |
4039 | if (info == NULL) | |
4040 | return ADA_NOT_RENAMING; | |
4041 | if (renamed_entity != NULL) | |
4042 | *renamed_entity = info; | |
4043 | suffix = strstr (info, "___XE"); | |
4044 | if (renaming_expr != NULL) | |
4045 | *renaming_expr = suffix + 5; | |
4046 | if (suffix == NULL || suffix == info) | |
4047 | return ADA_NOT_RENAMING; | |
4048 | if (len != NULL) | |
4049 | *len = suffix - info; | |
4050 | return kind; | |
a5ee536b JB |
4051 | } |
4052 | ||
4053 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4054 | be a symbol encoding a renaming expression. BLOCK is the block | |
4055 | used to evaluate the renaming. */ | |
52ce6436 | 4056 | |
a5ee536b JB |
4057 | static struct value * |
4058 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4059 | struct block *block) | |
4060 | { | |
bbc13ae3 | 4061 | const char *sym_name; |
a5ee536b JB |
4062 | struct expression *expr; |
4063 | struct value *value; | |
4064 | struct cleanup *old_chain = NULL; | |
4065 | ||
bbc13ae3 | 4066 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4067 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4068 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4069 | value = evaluate_expression (expr); |
4070 | ||
4071 | do_cleanups (old_chain); | |
4072 | return value; | |
4073 | } | |
14f9c5c9 | 4074 | \f |
d2e4a39e | 4075 | |
4c4b4cd2 | 4076 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4077 | |
4c4b4cd2 | 4078 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4079 | lvalues, and otherwise has the side-effect of allocating memory |
4080 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4081 | |
d2e4a39e | 4082 | static struct value * |
40bc484c | 4083 | ensure_lval (struct value *val) |
14f9c5c9 | 4084 | { |
40bc484c JB |
4085 | if (VALUE_LVAL (val) == not_lval |
4086 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4087 | { |
df407dfe | 4088 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4089 | const CORE_ADDR addr = |
4090 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4091 | |
40bc484c | 4092 | set_value_address (val, addr); |
a84a8a0d | 4093 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4094 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4095 | } |
14f9c5c9 AS |
4096 | |
4097 | return val; | |
4098 | } | |
4099 | ||
4100 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4101 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4102 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4103 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4104 | |
a93c0eb6 | 4105 | struct value * |
40bc484c | 4106 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4107 | { |
df407dfe | 4108 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4109 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4110 | struct type *formal_target = |
4111 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4112 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4113 | struct type *actual_target = |
4114 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4115 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4116 | |
4c4b4cd2 | 4117 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4118 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4119 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4120 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4121 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4122 | { |
a84a8a0d | 4123 | struct value *result; |
5b4ee69b | 4124 | |
14f9c5c9 | 4125 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4126 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4127 | result = desc_data (actual); |
14f9c5c9 | 4128 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4129 | { |
4130 | if (VALUE_LVAL (actual) != lval_memory) | |
4131 | { | |
4132 | struct value *val; | |
5b4ee69b | 4133 | |
df407dfe | 4134 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4135 | val = allocate_value (actual_type); |
990a07ab | 4136 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4137 | (char *) value_contents (actual), |
4c4b4cd2 | 4138 | TYPE_LENGTH (actual_type)); |
40bc484c | 4139 | actual = ensure_lval (val); |
4c4b4cd2 | 4140 | } |
a84a8a0d | 4141 | result = value_addr (actual); |
4c4b4cd2 | 4142 | } |
a84a8a0d JB |
4143 | else |
4144 | return actual; | |
b1af9e97 | 4145 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4146 | } |
4147 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4148 | return ada_value_ind (actual); | |
4149 | ||
4150 | return actual; | |
4151 | } | |
4152 | ||
438c98a1 JB |
4153 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4154 | type TYPE. This is usually an inefficient no-op except on some targets | |
4155 | (such as AVR) where the representation of a pointer and an address | |
4156 | differs. */ | |
4157 | ||
4158 | static CORE_ADDR | |
4159 | value_pointer (struct value *value, struct type *type) | |
4160 | { | |
4161 | struct gdbarch *gdbarch = get_type_arch (type); | |
4162 | unsigned len = TYPE_LENGTH (type); | |
4163 | gdb_byte *buf = alloca (len); | |
4164 | CORE_ADDR addr; | |
4165 | ||
4166 | addr = value_address (value); | |
4167 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4168 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4169 | return addr; | |
4170 | } | |
4171 | ||
14f9c5c9 | 4172 | |
4c4b4cd2 PH |
4173 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4174 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4175 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4176 | to-descriptor type rather than a descriptor type), a struct value * |
4177 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4178 | |
d2e4a39e | 4179 | static struct value * |
40bc484c | 4180 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4181 | { |
d2e4a39e AS |
4182 | struct type *bounds_type = desc_bounds_type (type); |
4183 | struct type *desc_type = desc_base_type (type); | |
4184 | struct value *descriptor = allocate_value (desc_type); | |
4185 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4186 | int i; |
d2e4a39e | 4187 | |
0963b4bd MS |
4188 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4189 | i > 0; i -= 1) | |
14f9c5c9 | 4190 | { |
19f220c3 JK |
4191 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4192 | ada_array_bound (arr, i, 0), | |
4193 | desc_bound_bitpos (bounds_type, i, 0), | |
4194 | desc_bound_bitsize (bounds_type, i, 0)); | |
4195 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4196 | ada_array_bound (arr, i, 1), | |
4197 | desc_bound_bitpos (bounds_type, i, 1), | |
4198 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4199 | } |
d2e4a39e | 4200 | |
40bc484c | 4201 | bounds = ensure_lval (bounds); |
d2e4a39e | 4202 | |
19f220c3 JK |
4203 | modify_field (value_type (descriptor), |
4204 | value_contents_writeable (descriptor), | |
4205 | value_pointer (ensure_lval (arr), | |
4206 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4207 | fat_pntr_data_bitpos (desc_type), | |
4208 | fat_pntr_data_bitsize (desc_type)); | |
4209 | ||
4210 | modify_field (value_type (descriptor), | |
4211 | value_contents_writeable (descriptor), | |
4212 | value_pointer (bounds, | |
4213 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4214 | fat_pntr_bounds_bitpos (desc_type), | |
4215 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4216 | |
40bc484c | 4217 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4218 | |
4219 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4220 | return value_addr (descriptor); | |
4221 | else | |
4222 | return descriptor; | |
4223 | } | |
14f9c5c9 | 4224 | \f |
963a6417 | 4225 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4226 | * used in the public sources. */ |
96d887e8 | 4227 | |
96d887e8 PH |
4228 | static int |
4229 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4230 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4231 | { |
4232 | return 0; | |
4233 | } | |
4234 | ||
4235 | static void | |
4236 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4237 | const struct block *block) |
96d887e8 PH |
4238 | { |
4239 | } | |
4c4b4cd2 PH |
4240 | \f |
4241 | /* Symbol Lookup */ | |
4242 | ||
c0431670 JB |
4243 | /* Return nonzero if wild matching should be used when searching for |
4244 | all symbols matching LOOKUP_NAME. | |
4245 | ||
4246 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4247 | for Ada lookups (see ada_name_for_lookup). */ | |
4248 | ||
4249 | static int | |
4250 | should_use_wild_match (const char *lookup_name) | |
4251 | { | |
4252 | return (strstr (lookup_name, "__") == NULL); | |
4253 | } | |
4254 | ||
4c4b4cd2 PH |
4255 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4256 | given DOMAIN, visible from lexical block BLOCK. */ | |
4257 | ||
4258 | static struct symbol * | |
4259 | standard_lookup (const char *name, const struct block *block, | |
4260 | domain_enum domain) | |
4261 | { | |
acbd605d MGD |
4262 | /* Initialize it just to avoid a GCC false warning. */ |
4263 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4264 | |
2570f2b7 | 4265 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4266 | return sym; |
2570f2b7 UW |
4267 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4268 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4269 | return sym; |
4270 | } | |
4271 | ||
4272 | ||
4273 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4274 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4275 | since they contend in overloading in the same way. */ | |
4276 | static int | |
4277 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4278 | { | |
4279 | int i; | |
4280 | ||
4281 | for (i = 0; i < n; i += 1) | |
4282 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4283 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4284 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4285 | return 1; |
4286 | ||
4287 | return 0; | |
4288 | } | |
4289 | ||
4290 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4291 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4292 | |
4293 | static int | |
d2e4a39e | 4294 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4295 | { |
d2e4a39e | 4296 | if (type0 == type1) |
14f9c5c9 | 4297 | return 1; |
d2e4a39e | 4298 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4299 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4300 | return 0; | |
d2e4a39e | 4301 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4302 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4303 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4304 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4305 | return 1; |
d2e4a39e | 4306 | |
14f9c5c9 AS |
4307 | return 0; |
4308 | } | |
4309 | ||
4310 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4311 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4312 | |
4313 | static int | |
d2e4a39e | 4314 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4315 | { |
4316 | if (sym0 == sym1) | |
4317 | return 1; | |
176620f1 | 4318 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4319 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4320 | return 0; | |
4321 | ||
d2e4a39e | 4322 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4323 | { |
4324 | case LOC_UNDEF: | |
4325 | return 1; | |
4326 | case LOC_TYPEDEF: | |
4327 | { | |
4c4b4cd2 PH |
4328 | struct type *type0 = SYMBOL_TYPE (sym0); |
4329 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4330 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4331 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4332 | int len0 = strlen (name0); |
5b4ee69b | 4333 | |
4c4b4cd2 PH |
4334 | return |
4335 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4336 | && (equiv_types (type0, type1) | |
4337 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4338 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4339 | } |
4340 | case LOC_CONST: | |
4341 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4342 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4343 | default: |
4344 | return 0; | |
14f9c5c9 AS |
4345 | } |
4346 | } | |
4347 | ||
4c4b4cd2 PH |
4348 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4349 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4350 | |
4351 | static void | |
76a01679 JB |
4352 | add_defn_to_vec (struct obstack *obstackp, |
4353 | struct symbol *sym, | |
2570f2b7 | 4354 | struct block *block) |
14f9c5c9 AS |
4355 | { |
4356 | int i; | |
4c4b4cd2 | 4357 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4358 | |
529cad9c PH |
4359 | /* Do not try to complete stub types, as the debugger is probably |
4360 | already scanning all symbols matching a certain name at the | |
4361 | time when this function is called. Trying to replace the stub | |
4362 | type by its associated full type will cause us to restart a scan | |
4363 | which may lead to an infinite recursion. Instead, the client | |
4364 | collecting the matching symbols will end up collecting several | |
4365 | matches, with at least one of them complete. It can then filter | |
4366 | out the stub ones if needed. */ | |
4367 | ||
4c4b4cd2 PH |
4368 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4369 | { | |
4370 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4371 | return; | |
4372 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4373 | { | |
4374 | prevDefns[i].sym = sym; | |
4375 | prevDefns[i].block = block; | |
4c4b4cd2 | 4376 | return; |
76a01679 | 4377 | } |
4c4b4cd2 PH |
4378 | } |
4379 | ||
4380 | { | |
4381 | struct ada_symbol_info info; | |
4382 | ||
4383 | info.sym = sym; | |
4384 | info.block = block; | |
4c4b4cd2 PH |
4385 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4386 | } | |
4387 | } | |
4388 | ||
4389 | /* Number of ada_symbol_info structures currently collected in | |
4390 | current vector in *OBSTACKP. */ | |
4391 | ||
76a01679 JB |
4392 | static int |
4393 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4394 | { |
4395 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4396 | } | |
4397 | ||
4398 | /* Vector of ada_symbol_info structures currently collected in current | |
4399 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4400 | its final address. */ | |
4401 | ||
76a01679 | 4402 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4403 | defns_collected (struct obstack *obstackp, int finish) |
4404 | { | |
4405 | if (finish) | |
4406 | return obstack_finish (obstackp); | |
4407 | else | |
4408 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4409 | } | |
4410 | ||
96d887e8 | 4411 | /* Return a minimal symbol matching NAME according to Ada decoding |
2e6e0353 JB |
4412 | rules. Returns NULL if there is no such minimal symbol. Names |
4413 | prefixed with "standard__" are handled specially: "standard__" is | |
96d887e8 | 4414 | first stripped off, and only static and global symbols are searched. */ |
4c4b4cd2 | 4415 | |
96d887e8 PH |
4416 | struct minimal_symbol * |
4417 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4418 | { |
4c4b4cd2 | 4419 | struct objfile *objfile; |
96d887e8 | 4420 | struct minimal_symbol *msymbol; |
dc4024cd | 4421 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4422 | |
c0431670 JB |
4423 | /* Special case: If the user specifies a symbol name inside package |
4424 | Standard, do a non-wild matching of the symbol name without | |
4425 | the "standard__" prefix. This was primarily introduced in order | |
4426 | to allow the user to specifically access the standard exceptions | |
4427 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4428 | is ambiguous (due to the user defining its own Constraint_Error | |
4429 | entity inside its program). */ | |
96d887e8 | 4430 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4431 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4432 | |
96d887e8 PH |
4433 | ALL_MSYMBOLS (objfile, msymbol) |
4434 | { | |
dc4024cd | 4435 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 PH |
4436 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4437 | return msymbol; | |
4438 | } | |
4c4b4cd2 | 4439 | |
96d887e8 PH |
4440 | return NULL; |
4441 | } | |
4c4b4cd2 | 4442 | |
96d887e8 PH |
4443 | /* For all subprograms that statically enclose the subprogram of the |
4444 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4445 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4446 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4447 | with a wildcard prefix. */ | |
4c4b4cd2 | 4448 | |
96d887e8 PH |
4449 | static void |
4450 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4451 | const char *name, domain_enum namespace, |
48b78332 | 4452 | int wild_match_p) |
96d887e8 | 4453 | { |
96d887e8 | 4454 | } |
14f9c5c9 | 4455 | |
96d887e8 PH |
4456 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4457 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4458 | |
96d887e8 PH |
4459 | static int |
4460 | is_nondebugging_type (struct type *type) | |
4461 | { | |
0d5cff50 | 4462 | const char *name = ada_type_name (type); |
5b4ee69b | 4463 | |
96d887e8 PH |
4464 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4465 | } | |
4c4b4cd2 | 4466 | |
8f17729f JB |
4467 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4468 | that are deemed "identical" for practical purposes. | |
4469 | ||
4470 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4471 | types and that their number of enumerals is identical (in other | |
4472 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4473 | ||
4474 | static int | |
4475 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4476 | { | |
4477 | int i; | |
4478 | ||
4479 | /* The heuristic we use here is fairly conservative. We consider | |
4480 | that 2 enumerate types are identical if they have the same | |
4481 | number of enumerals and that all enumerals have the same | |
4482 | underlying value and name. */ | |
4483 | ||
4484 | /* All enums in the type should have an identical underlying value. */ | |
4485 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4486 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4487 | return 0; |
4488 | ||
4489 | /* All enumerals should also have the same name (modulo any numerical | |
4490 | suffix). */ | |
4491 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4492 | { | |
0d5cff50 DE |
4493 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4494 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4495 | int len_1 = strlen (name_1); |
4496 | int len_2 = strlen (name_2); | |
4497 | ||
4498 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4499 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4500 | if (len_1 != len_2 | |
4501 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4502 | TYPE_FIELD_NAME (type2, i), | |
4503 | len_1) != 0) | |
4504 | return 0; | |
4505 | } | |
4506 | ||
4507 | return 1; | |
4508 | } | |
4509 | ||
4510 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4511 | that are deemed "identical" for practical purposes. Sometimes, | |
4512 | enumerals are not strictly identical, but their types are so similar | |
4513 | that they can be considered identical. | |
4514 | ||
4515 | For instance, consider the following code: | |
4516 | ||
4517 | type Color is (Black, Red, Green, Blue, White); | |
4518 | type RGB_Color is new Color range Red .. Blue; | |
4519 | ||
4520 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4521 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4522 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4523 | As a result, when an expression references any of the enumeral | |
4524 | by name (Eg. "print green"), the expression is technically | |
4525 | ambiguous and the user should be asked to disambiguate. But | |
4526 | doing so would only hinder the user, since it wouldn't matter | |
4527 | what choice he makes, the outcome would always be the same. | |
4528 | So, for practical purposes, we consider them as the same. */ | |
4529 | ||
4530 | static int | |
4531 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4532 | { | |
4533 | int i; | |
4534 | ||
4535 | /* Before performing a thorough comparison check of each type, | |
4536 | we perform a series of inexpensive checks. We expect that these | |
4537 | checks will quickly fail in the vast majority of cases, and thus | |
4538 | help prevent the unnecessary use of a more expensive comparison. | |
4539 | Said comparison also expects us to make some of these checks | |
4540 | (see ada_identical_enum_types_p). */ | |
4541 | ||
4542 | /* Quick check: All symbols should have an enum type. */ | |
4543 | for (i = 0; i < nsyms; i++) | |
4544 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4545 | return 0; | |
4546 | ||
4547 | /* Quick check: They should all have the same value. */ | |
4548 | for (i = 1; i < nsyms; i++) | |
4549 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4550 | return 0; | |
4551 | ||
4552 | /* Quick check: They should all have the same number of enumerals. */ | |
4553 | for (i = 1; i < nsyms; i++) | |
4554 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4555 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4556 | return 0; | |
4557 | ||
4558 | /* All the sanity checks passed, so we might have a set of | |
4559 | identical enumeration types. Perform a more complete | |
4560 | comparison of the type of each symbol. */ | |
4561 | for (i = 1; i < nsyms; i++) | |
4562 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4563 | SYMBOL_TYPE (syms[0].sym))) | |
4564 | return 0; | |
4565 | ||
4566 | return 1; | |
4567 | } | |
4568 | ||
96d887e8 PH |
4569 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4570 | duplicate other symbols in the list (The only case I know of where | |
4571 | this happens is when object files containing stabs-in-ecoff are | |
4572 | linked with files containing ordinary ecoff debugging symbols (or no | |
4573 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4574 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4575 | |
96d887e8 PH |
4576 | static int |
4577 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4578 | { | |
4579 | int i, j; | |
4c4b4cd2 | 4580 | |
8f17729f JB |
4581 | /* We should never be called with less than 2 symbols, as there |
4582 | cannot be any extra symbol in that case. But it's easy to | |
4583 | handle, since we have nothing to do in that case. */ | |
4584 | if (nsyms < 2) | |
4585 | return nsyms; | |
4586 | ||
96d887e8 PH |
4587 | i = 0; |
4588 | while (i < nsyms) | |
4589 | { | |
a35ddb44 | 4590 | int remove_p = 0; |
339c13b6 JB |
4591 | |
4592 | /* If two symbols have the same name and one of them is a stub type, | |
4593 | the get rid of the stub. */ | |
4594 | ||
4595 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4596 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4597 | { | |
4598 | for (j = 0; j < nsyms; j++) | |
4599 | { | |
4600 | if (j != i | |
4601 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4602 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4603 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4604 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4605 | remove_p = 1; |
339c13b6 JB |
4606 | } |
4607 | } | |
4608 | ||
4609 | /* Two symbols with the same name, same class and same address | |
4610 | should be identical. */ | |
4611 | ||
4612 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4613 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4614 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4615 | { | |
4616 | for (j = 0; j < nsyms; j += 1) | |
4617 | { | |
4618 | if (i != j | |
4619 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4620 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4621 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4622 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4623 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4624 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4625 | remove_p = 1; |
4c4b4cd2 | 4626 | } |
4c4b4cd2 | 4627 | } |
339c13b6 | 4628 | |
a35ddb44 | 4629 | if (remove_p) |
339c13b6 JB |
4630 | { |
4631 | for (j = i + 1; j < nsyms; j += 1) | |
4632 | syms[j - 1] = syms[j]; | |
4633 | nsyms -= 1; | |
4634 | } | |
4635 | ||
96d887e8 | 4636 | i += 1; |
14f9c5c9 | 4637 | } |
8f17729f JB |
4638 | |
4639 | /* If all the remaining symbols are identical enumerals, then | |
4640 | just keep the first one and discard the rest. | |
4641 | ||
4642 | Unlike what we did previously, we do not discard any entry | |
4643 | unless they are ALL identical. This is because the symbol | |
4644 | comparison is not a strict comparison, but rather a practical | |
4645 | comparison. If all symbols are considered identical, then | |
4646 | we can just go ahead and use the first one and discard the rest. | |
4647 | But if we cannot reduce the list to a single element, we have | |
4648 | to ask the user to disambiguate anyways. And if we have to | |
4649 | present a multiple-choice menu, it's less confusing if the list | |
4650 | isn't missing some choices that were identical and yet distinct. */ | |
4651 | if (symbols_are_identical_enums (syms, nsyms)) | |
4652 | nsyms = 1; | |
4653 | ||
96d887e8 | 4654 | return nsyms; |
14f9c5c9 AS |
4655 | } |
4656 | ||
96d887e8 PH |
4657 | /* Given a type that corresponds to a renaming entity, use the type name |
4658 | to extract the scope (package name or function name, fully qualified, | |
4659 | and following the GNAT encoding convention) where this renaming has been | |
4660 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4661 | |
96d887e8 PH |
4662 | static char * |
4663 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4664 | { |
96d887e8 | 4665 | /* The renaming types adhere to the following convention: |
0963b4bd | 4666 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4667 | So, to extract the scope, we search for the "___XR" extension, |
4668 | and then backtrack until we find the first "__". */ | |
76a01679 | 4669 | |
96d887e8 PH |
4670 | const char *name = type_name_no_tag (renaming_type); |
4671 | char *suffix = strstr (name, "___XR"); | |
4672 | char *last; | |
4673 | int scope_len; | |
4674 | char *scope; | |
14f9c5c9 | 4675 | |
96d887e8 PH |
4676 | /* Now, backtrack a bit until we find the first "__". Start looking |
4677 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4678 | |
96d887e8 PH |
4679 | for (last = suffix - 3; last > name; last--) |
4680 | if (last[0] == '_' && last[1] == '_') | |
4681 | break; | |
76a01679 | 4682 | |
96d887e8 | 4683 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4684 | |
96d887e8 PH |
4685 | scope_len = last - name; |
4686 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4687 | |
96d887e8 PH |
4688 | strncpy (scope, name, scope_len); |
4689 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4690 | |
96d887e8 | 4691 | return scope; |
4c4b4cd2 PH |
4692 | } |
4693 | ||
96d887e8 | 4694 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4695 | |
96d887e8 PH |
4696 | static int |
4697 | is_package_name (const char *name) | |
4c4b4cd2 | 4698 | { |
96d887e8 PH |
4699 | /* Here, We take advantage of the fact that no symbols are generated |
4700 | for packages, while symbols are generated for each function. | |
4701 | So the condition for NAME represent a package becomes equivalent | |
4702 | to NAME not existing in our list of symbols. There is only one | |
4703 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4704 | |
96d887e8 | 4705 | char *fun_name; |
76a01679 | 4706 | |
96d887e8 PH |
4707 | /* If it is a function that has not been defined at library level, |
4708 | then we should be able to look it up in the symbols. */ | |
4709 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4710 | return 0; | |
14f9c5c9 | 4711 | |
96d887e8 PH |
4712 | /* Library-level function names start with "_ada_". See if function |
4713 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4714 | |
96d887e8 | 4715 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4716 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4717 | if (strstr (name, "__") != NULL) |
4718 | return 0; | |
4c4b4cd2 | 4719 | |
b435e160 | 4720 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4721 | |
96d887e8 PH |
4722 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4723 | } | |
14f9c5c9 | 4724 | |
96d887e8 | 4725 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4726 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4727 | |
96d887e8 | 4728 | static int |
0d5cff50 | 4729 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4730 | { |
aeb5907d JB |
4731 | char *scope; |
4732 | ||
4733 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4734 | return 0; | |
4735 | ||
4736 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4737 | |
96d887e8 | 4738 | make_cleanup (xfree, scope); |
14f9c5c9 | 4739 | |
96d887e8 PH |
4740 | /* If the rename has been defined in a package, then it is visible. */ |
4741 | if (is_package_name (scope)) | |
aeb5907d | 4742 | return 0; |
14f9c5c9 | 4743 | |
96d887e8 PH |
4744 | /* Check that the rename is in the current function scope by checking |
4745 | that its name starts with SCOPE. */ | |
76a01679 | 4746 | |
96d887e8 PH |
4747 | /* If the function name starts with "_ada_", it means that it is |
4748 | a library-level function. Strip this prefix before doing the | |
4749 | comparison, as the encoding for the renaming does not contain | |
4750 | this prefix. */ | |
4751 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4752 | function_name += 5; | |
f26caa11 | 4753 | |
aeb5907d | 4754 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4755 | } |
4756 | ||
aeb5907d JB |
4757 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4758 | is not visible from the function associated with CURRENT_BLOCK or | |
4759 | that is superfluous due to the presence of more specific renaming | |
4760 | information. Places surviving symbols in the initial entries of | |
4761 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4762 | |
4763 | Rationale: | |
aeb5907d JB |
4764 | First, in cases where an object renaming is implemented as a |
4765 | reference variable, GNAT may produce both the actual reference | |
4766 | variable and the renaming encoding. In this case, we discard the | |
4767 | latter. | |
4768 | ||
4769 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4770 | entity. Unfortunately, STABS currently does not support the definition |
4771 | of types that are local to a given lexical block, so all renamings types | |
4772 | are emitted at library level. As a consequence, if an application | |
4773 | contains two renaming entities using the same name, and a user tries to | |
4774 | print the value of one of these entities, the result of the ada symbol | |
4775 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4776 | |
96d887e8 PH |
4777 | This function partially covers for this limitation by attempting to |
4778 | remove from the SYMS list renaming symbols that should be visible | |
4779 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4780 | method with the current information available. The implementation | |
4781 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4782 | ||
4783 | - When the user tries to print a rename in a function while there | |
4784 | is another rename entity defined in a package: Normally, the | |
4785 | rename in the function has precedence over the rename in the | |
4786 | package, so the latter should be removed from the list. This is | |
4787 | currently not the case. | |
4788 | ||
4789 | - This function will incorrectly remove valid renames if | |
4790 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4791 | has been changed by an "Export" pragma. As a consequence, | |
4792 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4793 | |
14f9c5c9 | 4794 | static int |
aeb5907d JB |
4795 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4796 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4797 | { |
4798 | struct symbol *current_function; | |
0d5cff50 | 4799 | const char *current_function_name; |
4c4b4cd2 | 4800 | int i; |
aeb5907d JB |
4801 | int is_new_style_renaming; |
4802 | ||
4803 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4804 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4805 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4806 | is_new_style_renaming = 0; |
4807 | for (i = 0; i < nsyms; i += 1) | |
4808 | { | |
4809 | struct symbol *sym = syms[i].sym; | |
270140bd | 4810 | const struct block *block = syms[i].block; |
aeb5907d JB |
4811 | const char *name; |
4812 | const char *suffix; | |
4813 | ||
4814 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4815 | continue; | |
4816 | name = SYMBOL_LINKAGE_NAME (sym); | |
4817 | suffix = strstr (name, "___XR"); | |
4818 | ||
4819 | if (suffix != NULL) | |
4820 | { | |
4821 | int name_len = suffix - name; | |
4822 | int j; | |
5b4ee69b | 4823 | |
aeb5907d JB |
4824 | is_new_style_renaming = 1; |
4825 | for (j = 0; j < nsyms; j += 1) | |
4826 | if (i != j && syms[j].sym != NULL | |
4827 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4828 | name_len) == 0 | |
4829 | && block == syms[j].block) | |
4830 | syms[j].sym = NULL; | |
4831 | } | |
4832 | } | |
4833 | if (is_new_style_renaming) | |
4834 | { | |
4835 | int j, k; | |
4836 | ||
4837 | for (j = k = 0; j < nsyms; j += 1) | |
4838 | if (syms[j].sym != NULL) | |
4839 | { | |
4840 | syms[k] = syms[j]; | |
4841 | k += 1; | |
4842 | } | |
4843 | return k; | |
4844 | } | |
4c4b4cd2 PH |
4845 | |
4846 | /* Extract the function name associated to CURRENT_BLOCK. | |
4847 | Abort if unable to do so. */ | |
76a01679 | 4848 | |
4c4b4cd2 PH |
4849 | if (current_block == NULL) |
4850 | return nsyms; | |
76a01679 | 4851 | |
7f0df278 | 4852 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4853 | if (current_function == NULL) |
4854 | return nsyms; | |
4855 | ||
4856 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4857 | if (current_function_name == NULL) | |
4858 | return nsyms; | |
4859 | ||
4860 | /* Check each of the symbols, and remove it from the list if it is | |
4861 | a type corresponding to a renaming that is out of the scope of | |
4862 | the current block. */ | |
4863 | ||
4864 | i = 0; | |
4865 | while (i < nsyms) | |
4866 | { | |
aeb5907d JB |
4867 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4868 | == ADA_OBJECT_RENAMING | |
4869 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4870 | { |
4871 | int j; | |
5b4ee69b | 4872 | |
aeb5907d | 4873 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4874 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4875 | nsyms -= 1; |
4876 | } | |
4877 | else | |
4878 | i += 1; | |
4879 | } | |
4880 | ||
4881 | return nsyms; | |
4882 | } | |
4883 | ||
339c13b6 JB |
4884 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4885 | whose name and domain match NAME and DOMAIN respectively. | |
4886 | If no match was found, then extend the search to "enclosing" | |
4887 | routines (in other words, if we're inside a nested function, | |
4888 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
4889 | If WILD_MATCH_P is nonzero, perform the naming matching in |
4890 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
4891 | |
4892 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4893 | ||
4894 | static void | |
4895 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4896 | struct block *block, domain_enum domain, | |
d0a8ab18 | 4897 | int wild_match_p) |
339c13b6 JB |
4898 | { |
4899 | int block_depth = 0; | |
4900 | ||
4901 | while (block != NULL) | |
4902 | { | |
4903 | block_depth += 1; | |
d0a8ab18 JB |
4904 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
4905 | wild_match_p); | |
339c13b6 JB |
4906 | |
4907 | /* If we found a non-function match, assume that's the one. */ | |
4908 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4909 | num_defns_collected (obstackp))) | |
4910 | return; | |
4911 | ||
4912 | block = BLOCK_SUPERBLOCK (block); | |
4913 | } | |
4914 | ||
4915 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4916 | enclosing subprogram. */ | |
4917 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 4918 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
4919 | } |
4920 | ||
ccefe4c4 | 4921 | /* An object of this type is used as the user_data argument when |
40658b94 | 4922 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4923 | |
40658b94 | 4924 | struct match_data |
ccefe4c4 | 4925 | { |
40658b94 | 4926 | struct objfile *objfile; |
ccefe4c4 | 4927 | struct obstack *obstackp; |
40658b94 PH |
4928 | struct symbol *arg_sym; |
4929 | int found_sym; | |
ccefe4c4 TT |
4930 | }; |
4931 | ||
40658b94 PH |
4932 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4933 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4934 | containing the obstack that collects the symbol list, the file that SYM | |
4935 | must come from, a flag indicating whether a non-argument symbol has | |
4936 | been found in the current block, and the last argument symbol | |
4937 | passed in SYM within the current block (if any). When SYM is null, | |
4938 | marking the end of a block, the argument symbol is added if no | |
4939 | other has been found. */ | |
ccefe4c4 | 4940 | |
40658b94 PH |
4941 | static int |
4942 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4943 | { |
40658b94 PH |
4944 | struct match_data *data = (struct match_data *) data0; |
4945 | ||
4946 | if (sym == NULL) | |
4947 | { | |
4948 | if (!data->found_sym && data->arg_sym != NULL) | |
4949 | add_defn_to_vec (data->obstackp, | |
4950 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4951 | block); | |
4952 | data->found_sym = 0; | |
4953 | data->arg_sym = NULL; | |
4954 | } | |
4955 | else | |
4956 | { | |
4957 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4958 | return 0; | |
4959 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4960 | data->arg_sym = sym; | |
4961 | else | |
4962 | { | |
4963 | data->found_sym = 1; | |
4964 | add_defn_to_vec (data->obstackp, | |
4965 | fixup_symbol_section (sym, data->objfile), | |
4966 | block); | |
4967 | } | |
4968 | } | |
4969 | return 0; | |
4970 | } | |
4971 | ||
4972 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4973 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4974 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4975 | what symbols compare equal). */ | |
5b4ee69b | 4976 | |
40658b94 PH |
4977 | static int |
4978 | compare_names (const char *string1, const char *string2) | |
4979 | { | |
4980 | while (*string1 != '\0' && *string2 != '\0') | |
4981 | { | |
4982 | if (isspace (*string1) || isspace (*string2)) | |
4983 | return strcmp_iw_ordered (string1, string2); | |
4984 | if (*string1 != *string2) | |
4985 | break; | |
4986 | string1 += 1; | |
4987 | string2 += 1; | |
4988 | } | |
4989 | switch (*string1) | |
4990 | { | |
4991 | case '(': | |
4992 | return strcmp_iw_ordered (string1, string2); | |
4993 | case '_': | |
4994 | if (*string2 == '\0') | |
4995 | { | |
052874e8 | 4996 | if (is_name_suffix (string1)) |
40658b94 PH |
4997 | return 0; |
4998 | else | |
1a1d5513 | 4999 | return 1; |
40658b94 | 5000 | } |
dbb8534f | 5001 | /* FALLTHROUGH */ |
40658b94 PH |
5002 | default: |
5003 | if (*string2 == '(') | |
5004 | return strcmp_iw_ordered (string1, string2); | |
5005 | else | |
5006 | return *string1 - *string2; | |
5007 | } | |
ccefe4c4 TT |
5008 | } |
5009 | ||
339c13b6 JB |
5010 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5011 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5012 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5013 | ||
5014 | static void | |
40658b94 PH |
5015 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5016 | domain_enum domain, int global, | |
5017 | int is_wild_match) | |
339c13b6 JB |
5018 | { |
5019 | struct objfile *objfile; | |
40658b94 | 5020 | struct match_data data; |
339c13b6 | 5021 | |
6475f2fe | 5022 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5023 | data.obstackp = obstackp; |
339c13b6 | 5024 | |
ccefe4c4 | 5025 | ALL_OBJFILES (objfile) |
40658b94 PH |
5026 | { |
5027 | data.objfile = objfile; | |
5028 | ||
5029 | if (is_wild_match) | |
5030 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5031 | aux_add_nonlocal_symbols, &data, | |
5032 | wild_match, NULL); | |
5033 | else | |
5034 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5035 | aux_add_nonlocal_symbols, &data, | |
5036 | full_match, compare_names); | |
5037 | } | |
5038 | ||
5039 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5040 | { | |
5041 | ALL_OBJFILES (objfile) | |
5042 | { | |
5043 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5044 | strcpy (name1, "_ada_"); | |
5045 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5046 | data.objfile = objfile; | |
0963b4bd MS |
5047 | objfile->sf->qf->map_matching_symbols (name1, domain, |
5048 | objfile, global, | |
5049 | aux_add_nonlocal_symbols, | |
5050 | &data, | |
40658b94 PH |
5051 | full_match, compare_names); |
5052 | } | |
5053 | } | |
339c13b6 JB |
5054 | } |
5055 | ||
4eeaa230 DE |
5056 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5057 | non-zero, enclosing scope and in global scopes, returning the number of | |
5058 | matches. | |
9f88c959 | 5059 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5060 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5061 | any) in which they were found. This vector is transient---good only to |
5062 | the next call of ada_lookup_symbol_list. | |
5063 | ||
5064 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5065 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5066 | is the one match returned (no other matches in that or | |
d9680e73 | 5067 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5068 | surrounding BLOCK0, then these alone are returned. |
5069 | ||
9f88c959 | 5070 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5071 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5072 | |
4eeaa230 DE |
5073 | static int |
5074 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
5075 | domain_enum namespace, | |
5076 | struct ada_symbol_info **results, | |
5077 | int full_search) | |
14f9c5c9 AS |
5078 | { |
5079 | struct symbol *sym; | |
14f9c5c9 | 5080 | struct block *block; |
4c4b4cd2 | 5081 | const char *name; |
82ccd55e | 5082 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5083 | int cacheIfUnique; |
4c4b4cd2 | 5084 | int ndefns; |
14f9c5c9 | 5085 | |
4c4b4cd2 PH |
5086 | obstack_free (&symbol_list_obstack, NULL); |
5087 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5088 | |
14f9c5c9 AS |
5089 | cacheIfUnique = 0; |
5090 | ||
5091 | /* Search specified block and its superiors. */ | |
5092 | ||
4c4b4cd2 | 5093 | name = name0; |
76a01679 JB |
5094 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5095 | needed, but adding const will | |
5096 | have a cascade effect. */ | |
339c13b6 JB |
5097 | |
5098 | /* Special case: If the user specifies a symbol name inside package | |
5099 | Standard, do a non-wild matching of the symbol name without | |
5100 | the "standard__" prefix. This was primarily introduced in order | |
5101 | to allow the user to specifically access the standard exceptions | |
5102 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5103 | is ambiguous (due to the user defining its own Constraint_Error | |
5104 | entity inside its program). */ | |
4c4b4cd2 PH |
5105 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5106 | { | |
4c4b4cd2 PH |
5107 | block = NULL; |
5108 | name = name0 + sizeof ("standard__") - 1; | |
5109 | } | |
5110 | ||
339c13b6 | 5111 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5112 | |
4eeaa230 DE |
5113 | if (block != NULL) |
5114 | { | |
5115 | if (full_search) | |
5116 | { | |
5117 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
5118 | namespace, wild_match_p); | |
5119 | } | |
5120 | else | |
5121 | { | |
5122 | /* In the !full_search case we're are being called by | |
5123 | ada_iterate_over_symbols, and we don't want to search | |
5124 | superblocks. */ | |
5125 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
5126 | namespace, NULL, wild_match_p); | |
5127 | } | |
5128 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5129 | goto done; | |
5130 | } | |
d2e4a39e | 5131 | |
339c13b6 JB |
5132 | /* No non-global symbols found. Check our cache to see if we have |
5133 | already performed this search before. If we have, then return | |
5134 | the same result. */ | |
5135 | ||
14f9c5c9 | 5136 | cacheIfUnique = 1; |
2570f2b7 | 5137 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5138 | { |
5139 | if (sym != NULL) | |
2570f2b7 | 5140 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5141 | goto done; |
5142 | } | |
14f9c5c9 | 5143 | |
339c13b6 JB |
5144 | /* Search symbols from all global blocks. */ |
5145 | ||
40658b94 | 5146 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5147 | wild_match_p); |
d2e4a39e | 5148 | |
4c4b4cd2 | 5149 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5150 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5151 | |
4c4b4cd2 | 5152 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5153 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5154 | wild_match_p); |
14f9c5c9 | 5155 | |
4c4b4cd2 PH |
5156 | done: |
5157 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5158 | *results = defns_collected (&symbol_list_obstack, 1); | |
5159 | ||
5160 | ndefns = remove_extra_symbols (*results, ndefns); | |
5161 | ||
2ad01556 | 5162 | if (ndefns == 0 && full_search) |
2570f2b7 | 5163 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5164 | |
2ad01556 | 5165 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5166 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5167 | |
aeb5907d | 5168 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5169 | |
14f9c5c9 AS |
5170 | return ndefns; |
5171 | } | |
5172 | ||
4eeaa230 DE |
5173 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5174 | in global scopes, returning the number of matches, and setting *RESULTS | |
5175 | to a vector of (SYM,BLOCK) tuples. | |
5176 | See ada_lookup_symbol_list_worker for further details. */ | |
5177 | ||
5178 | int | |
5179 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
5180 | domain_enum domain, struct ada_symbol_info **results) | |
5181 | { | |
5182 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5183 | } | |
5184 | ||
5185 | /* Implementation of the la_iterate_over_symbols method. */ | |
5186 | ||
5187 | static void | |
5188 | ada_iterate_over_symbols (const struct block *block, | |
5189 | const char *name, domain_enum domain, | |
5190 | symbol_found_callback_ftype *callback, | |
5191 | void *data) | |
5192 | { | |
5193 | int ndefs, i; | |
5194 | struct ada_symbol_info *results; | |
5195 | ||
5196 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5197 | for (i = 0; i < ndefs; ++i) | |
5198 | { | |
5199 | if (! (*callback) (results[i].sym, data)) | |
5200 | break; | |
5201 | } | |
5202 | } | |
5203 | ||
f8eba3c6 TT |
5204 | /* If NAME is the name of an entity, return a string that should |
5205 | be used to look that entity up in Ada units. This string should | |
5206 | be deallocated after use using xfree. | |
5207 | ||
5208 | NAME can have any form that the "break" or "print" commands might | |
5209 | recognize. In other words, it does not have to be the "natural" | |
5210 | name, or the "encoded" name. */ | |
5211 | ||
5212 | char * | |
5213 | ada_name_for_lookup (const char *name) | |
5214 | { | |
5215 | char *canon; | |
5216 | int nlen = strlen (name); | |
5217 | ||
5218 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5219 | { | |
5220 | canon = xmalloc (nlen - 1); | |
5221 | memcpy (canon, name + 1, nlen - 2); | |
5222 | canon[nlen - 2] = '\0'; | |
5223 | } | |
5224 | else | |
5225 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5226 | return canon; | |
5227 | } | |
5228 | ||
4e5c77fe JB |
5229 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5230 | to 1, but choosing the first symbol found if there are multiple | |
5231 | choices. | |
5232 | ||
5e2336be JB |
5233 | The result is stored in *INFO, which must be non-NULL. |
5234 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5235 | |
5236 | void | |
5237 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5238 | domain_enum namespace, | |
5e2336be | 5239 | struct ada_symbol_info *info) |
14f9c5c9 | 5240 | { |
4c4b4cd2 | 5241 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5242 | int n_candidates; |
5243 | ||
5e2336be JB |
5244 | gdb_assert (info != NULL); |
5245 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe | 5246 | |
4eeaa230 | 5247 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); |
14f9c5c9 | 5248 | if (n_candidates == 0) |
4e5c77fe | 5249 | return; |
4c4b4cd2 | 5250 | |
5e2336be JB |
5251 | *info = candidates[0]; |
5252 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5253 | } |
aeb5907d JB |
5254 | |
5255 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5256 | scope and in global scopes, or NULL if none. NAME is folded and | |
5257 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5258 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5259 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5260 | ||
aeb5907d JB |
5261 | struct symbol * |
5262 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5263 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5264 | { |
5e2336be | 5265 | struct ada_symbol_info info; |
4e5c77fe | 5266 | |
aeb5907d JB |
5267 | if (is_a_field_of_this != NULL) |
5268 | *is_a_field_of_this = 0; | |
5269 | ||
4e5c77fe | 5270 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5271 | block0, namespace, &info); |
5272 | return info.sym; | |
4c4b4cd2 | 5273 | } |
14f9c5c9 | 5274 | |
4c4b4cd2 PH |
5275 | static struct symbol * |
5276 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5277 | const struct block *block, |
21b556f4 | 5278 | const domain_enum domain) |
4c4b4cd2 | 5279 | { |
94af9270 | 5280 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5281 | } |
5282 | ||
5283 | ||
4c4b4cd2 PH |
5284 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5285 | that is to be ignored for matching purposes. Suffixes of parallel | |
5286 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5287 | are given by any of the regular expressions: |
4c4b4cd2 | 5288 | |
babe1480 JB |
5289 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5290 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5291 | TKB [subprogram suffix for task bodies] |
babe1480 | 5292 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5293 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5294 | |
5295 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5296 | match is performed. This sequence is used to differentiate homonyms, | |
5297 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5298 | |
14f9c5c9 | 5299 | static int |
d2e4a39e | 5300 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5301 | { |
5302 | int k; | |
4c4b4cd2 PH |
5303 | const char *matching; |
5304 | const int len = strlen (str); | |
5305 | ||
babe1480 JB |
5306 | /* Skip optional leading __[0-9]+. */ |
5307 | ||
4c4b4cd2 PH |
5308 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5309 | { | |
babe1480 JB |
5310 | str += 3; |
5311 | while (isdigit (str[0])) | |
5312 | str += 1; | |
4c4b4cd2 | 5313 | } |
babe1480 JB |
5314 | |
5315 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5316 | |
babe1480 | 5317 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5318 | { |
babe1480 | 5319 | matching = str + 1; |
4c4b4cd2 PH |
5320 | while (isdigit (matching[0])) |
5321 | matching += 1; | |
5322 | if (matching[0] == '\0') | |
5323 | return 1; | |
5324 | } | |
5325 | ||
5326 | /* ___[0-9]+ */ | |
babe1480 | 5327 | |
4c4b4cd2 PH |
5328 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5329 | { | |
5330 | matching = str + 3; | |
5331 | while (isdigit (matching[0])) | |
5332 | matching += 1; | |
5333 | if (matching[0] == '\0') | |
5334 | return 1; | |
5335 | } | |
5336 | ||
9ac7f98e JB |
5337 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5338 | ||
5339 | if (strcmp (str, "TKB") == 0) | |
5340 | return 1; | |
5341 | ||
529cad9c PH |
5342 | #if 0 |
5343 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5344 | with a N at the end. Unfortunately, the compiler uses the same |
5345 | convention for other internal types it creates. So treating | |
529cad9c | 5346 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5347 | some regressions. For instance, consider the case of an enumerated |
5348 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5349 | name ends with N. |
5350 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5351 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5352 | to be something like "_N" instead. In the meantime, do not do |
5353 | the following check. */ | |
5354 | /* Protected Object Subprograms */ | |
5355 | if (len == 1 && str [0] == 'N') | |
5356 | return 1; | |
5357 | #endif | |
5358 | ||
5359 | /* _E[0-9]+[bs]$ */ | |
5360 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5361 | { | |
5362 | matching = str + 3; | |
5363 | while (isdigit (matching[0])) | |
5364 | matching += 1; | |
5365 | if ((matching[0] == 'b' || matching[0] == 's') | |
5366 | && matching [1] == '\0') | |
5367 | return 1; | |
5368 | } | |
5369 | ||
4c4b4cd2 PH |
5370 | /* ??? We should not modify STR directly, as we are doing below. This |
5371 | is fine in this case, but may become problematic later if we find | |
5372 | that this alternative did not work, and want to try matching | |
5373 | another one from the begining of STR. Since we modified it, we | |
5374 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5375 | if (str[0] == 'X') |
5376 | { | |
5377 | str += 1; | |
d2e4a39e | 5378 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5379 | { |
5380 | if (str[0] != 'n' && str[0] != 'b') | |
5381 | return 0; | |
5382 | str += 1; | |
5383 | } | |
14f9c5c9 | 5384 | } |
babe1480 | 5385 | |
14f9c5c9 AS |
5386 | if (str[0] == '\000') |
5387 | return 1; | |
babe1480 | 5388 | |
d2e4a39e | 5389 | if (str[0] == '_') |
14f9c5c9 AS |
5390 | { |
5391 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5392 | return 0; |
d2e4a39e | 5393 | if (str[2] == '_') |
4c4b4cd2 | 5394 | { |
61ee279c PH |
5395 | if (strcmp (str + 3, "JM") == 0) |
5396 | return 1; | |
5397 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5398 | the LJM suffix in favor of the JM one. But we will | |
5399 | still accept LJM as a valid suffix for a reasonable | |
5400 | amount of time, just to allow ourselves to debug programs | |
5401 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5402 | if (strcmp (str + 3, "LJM") == 0) |
5403 | return 1; | |
5404 | if (str[3] != 'X') | |
5405 | return 0; | |
1265e4aa JB |
5406 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5407 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5408 | return 1; |
5409 | if (str[4] == 'R' && str[5] != 'T') | |
5410 | return 1; | |
5411 | return 0; | |
5412 | } | |
5413 | if (!isdigit (str[2])) | |
5414 | return 0; | |
5415 | for (k = 3; str[k] != '\0'; k += 1) | |
5416 | if (!isdigit (str[k]) && str[k] != '_') | |
5417 | return 0; | |
14f9c5c9 AS |
5418 | return 1; |
5419 | } | |
4c4b4cd2 | 5420 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5421 | { |
4c4b4cd2 PH |
5422 | for (k = 2; str[k] != '\0'; k += 1) |
5423 | if (!isdigit (str[k]) && str[k] != '_') | |
5424 | return 0; | |
14f9c5c9 AS |
5425 | return 1; |
5426 | } | |
5427 | return 0; | |
5428 | } | |
d2e4a39e | 5429 | |
aeb5907d JB |
5430 | /* Return non-zero if the string starting at NAME and ending before |
5431 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5432 | |
5433 | static int | |
5434 | is_valid_name_for_wild_match (const char *name0) | |
5435 | { | |
5436 | const char *decoded_name = ada_decode (name0); | |
5437 | int i; | |
5438 | ||
5823c3ef JB |
5439 | /* If the decoded name starts with an angle bracket, it means that |
5440 | NAME0 does not follow the GNAT encoding format. It should then | |
5441 | not be allowed as a possible wild match. */ | |
5442 | if (decoded_name[0] == '<') | |
5443 | return 0; | |
5444 | ||
529cad9c PH |
5445 | for (i=0; decoded_name[i] != '\0'; i++) |
5446 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5447 | return 0; | |
5448 | ||
5449 | return 1; | |
5450 | } | |
5451 | ||
73589123 PH |
5452 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5453 | that could start a simple name. Assumes that *NAMEP points into | |
5454 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5455 | |
14f9c5c9 | 5456 | static int |
73589123 | 5457 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5458 | { |
73589123 | 5459 | const char *name = *namep; |
5b4ee69b | 5460 | |
5823c3ef | 5461 | while (1) |
14f9c5c9 | 5462 | { |
aa27d0b3 | 5463 | int t0, t1; |
73589123 PH |
5464 | |
5465 | t0 = *name; | |
5466 | if (t0 == '_') | |
5467 | { | |
5468 | t1 = name[1]; | |
5469 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5470 | { | |
5471 | name += 1; | |
5472 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5473 | break; | |
5474 | else | |
5475 | name += 1; | |
5476 | } | |
aa27d0b3 JB |
5477 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5478 | || name[2] == target0)) | |
73589123 PH |
5479 | { |
5480 | name += 2; | |
5481 | break; | |
5482 | } | |
5483 | else | |
5484 | return 0; | |
5485 | } | |
5486 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5487 | name += 1; | |
5488 | else | |
5823c3ef | 5489 | return 0; |
73589123 PH |
5490 | } |
5491 | ||
5492 | *namep = name; | |
5493 | return 1; | |
5494 | } | |
5495 | ||
5496 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5497 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5498 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5499 | ||
5500 | static int | |
5501 | wild_match (const char *name, const char *patn) | |
5502 | { | |
22e048c9 | 5503 | const char *p; |
73589123 PH |
5504 | const char *name0 = name; |
5505 | ||
5506 | while (1) | |
5507 | { | |
5508 | const char *match = name; | |
5509 | ||
5510 | if (*name == *patn) | |
5511 | { | |
5512 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5513 | if (*p != *name) | |
5514 | break; | |
5515 | if (*p == '\0' && is_name_suffix (name)) | |
5516 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5517 | ||
5518 | if (name[-1] == '_') | |
5519 | name -= 1; | |
5520 | } | |
5521 | if (!advance_wild_match (&name, name0, *patn)) | |
5522 | return 1; | |
96d887e8 | 5523 | } |
96d887e8 PH |
5524 | } |
5525 | ||
40658b94 PH |
5526 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5527 | informational suffix. */ | |
5528 | ||
c4d840bd PH |
5529 | static int |
5530 | full_match (const char *sym_name, const char *search_name) | |
5531 | { | |
40658b94 | 5532 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5533 | } |
5534 | ||
5535 | ||
96d887e8 PH |
5536 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5537 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5538 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5539 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5540 | |
5541 | static void | |
5542 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5543 | struct block *block, const char *name, |
96d887e8 | 5544 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5545 | int wild) |
96d887e8 | 5546 | { |
8157b174 | 5547 | struct block_iterator iter; |
96d887e8 PH |
5548 | int name_len = strlen (name); |
5549 | /* A matching argument symbol, if any. */ | |
5550 | struct symbol *arg_sym; | |
5551 | /* Set true when we find a matching non-argument symbol. */ | |
5552 | int found_sym; | |
5553 | struct symbol *sym; | |
5554 | ||
5555 | arg_sym = NULL; | |
5556 | found_sym = 0; | |
5557 | if (wild) | |
5558 | { | |
8157b174 TT |
5559 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5560 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5561 | { |
5eeb2539 AR |
5562 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5563 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5564 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5565 | { |
2a2d4dc3 AS |
5566 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5567 | continue; | |
5568 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5569 | arg_sym = sym; | |
5570 | else | |
5571 | { | |
76a01679 JB |
5572 | found_sym = 1; |
5573 | add_defn_to_vec (obstackp, | |
5574 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5575 | block); |
76a01679 JB |
5576 | } |
5577 | } | |
5578 | } | |
96d887e8 PH |
5579 | } |
5580 | else | |
5581 | { | |
8157b174 TT |
5582 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5583 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5584 | { |
5eeb2539 AR |
5585 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5586 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5587 | { |
c4d840bd PH |
5588 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5589 | { | |
5590 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5591 | arg_sym = sym; | |
5592 | else | |
2a2d4dc3 | 5593 | { |
c4d840bd PH |
5594 | found_sym = 1; |
5595 | add_defn_to_vec (obstackp, | |
5596 | fixup_symbol_section (sym, objfile), | |
5597 | block); | |
2a2d4dc3 | 5598 | } |
c4d840bd | 5599 | } |
76a01679 JB |
5600 | } |
5601 | } | |
96d887e8 PH |
5602 | } |
5603 | ||
5604 | if (!found_sym && arg_sym != NULL) | |
5605 | { | |
76a01679 JB |
5606 | add_defn_to_vec (obstackp, |
5607 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5608 | block); |
96d887e8 PH |
5609 | } |
5610 | ||
5611 | if (!wild) | |
5612 | { | |
5613 | arg_sym = NULL; | |
5614 | found_sym = 0; | |
5615 | ||
5616 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5617 | { |
5eeb2539 AR |
5618 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5619 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5620 | { |
5621 | int cmp; | |
5622 | ||
5623 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5624 | if (cmp == 0) | |
5625 | { | |
5626 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5627 | if (cmp == 0) | |
5628 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5629 | name_len); | |
5630 | } | |
5631 | ||
5632 | if (cmp == 0 | |
5633 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5634 | { | |
2a2d4dc3 AS |
5635 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5636 | { | |
5637 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5638 | arg_sym = sym; | |
5639 | else | |
5640 | { | |
5641 | found_sym = 1; | |
5642 | add_defn_to_vec (obstackp, | |
5643 | fixup_symbol_section (sym, objfile), | |
5644 | block); | |
5645 | } | |
5646 | } | |
76a01679 JB |
5647 | } |
5648 | } | |
76a01679 | 5649 | } |
96d887e8 PH |
5650 | |
5651 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5652 | They aren't parameters, right? */ | |
5653 | if (!found_sym && arg_sym != NULL) | |
5654 | { | |
5655 | add_defn_to_vec (obstackp, | |
76a01679 | 5656 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5657 | block); |
96d887e8 PH |
5658 | } |
5659 | } | |
5660 | } | |
5661 | \f | |
41d27058 JB |
5662 | |
5663 | /* Symbol Completion */ | |
5664 | ||
5665 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5666 | name in a form that's appropriate for the completion. The result | |
5667 | does not need to be deallocated, but is only good until the next call. | |
5668 | ||
5669 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5670 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5671 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5672 | in its encoded form. */ |
5673 | ||
5674 | static const char * | |
5675 | symbol_completion_match (const char *sym_name, | |
5676 | const char *text, int text_len, | |
6ea35997 | 5677 | int wild_match_p, int encoded_p) |
41d27058 | 5678 | { |
41d27058 JB |
5679 | const int verbatim_match = (text[0] == '<'); |
5680 | int match = 0; | |
5681 | ||
5682 | if (verbatim_match) | |
5683 | { | |
5684 | /* Strip the leading angle bracket. */ | |
5685 | text = text + 1; | |
5686 | text_len--; | |
5687 | } | |
5688 | ||
5689 | /* First, test against the fully qualified name of the symbol. */ | |
5690 | ||
5691 | if (strncmp (sym_name, text, text_len) == 0) | |
5692 | match = 1; | |
5693 | ||
6ea35997 | 5694 | if (match && !encoded_p) |
41d27058 JB |
5695 | { |
5696 | /* One needed check before declaring a positive match is to verify | |
5697 | that iff we are doing a verbatim match, the decoded version | |
5698 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5699 | is not a suitable completion. */ | |
5700 | const char *sym_name_copy = sym_name; | |
5701 | int has_angle_bracket; | |
5702 | ||
5703 | sym_name = ada_decode (sym_name); | |
5704 | has_angle_bracket = (sym_name[0] == '<'); | |
5705 | match = (has_angle_bracket == verbatim_match); | |
5706 | sym_name = sym_name_copy; | |
5707 | } | |
5708 | ||
5709 | if (match && !verbatim_match) | |
5710 | { | |
5711 | /* When doing non-verbatim match, another check that needs to | |
5712 | be done is to verify that the potentially matching symbol name | |
5713 | does not include capital letters, because the ada-mode would | |
5714 | not be able to understand these symbol names without the | |
5715 | angle bracket notation. */ | |
5716 | const char *tmp; | |
5717 | ||
5718 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5719 | if (*tmp != '\0') | |
5720 | match = 0; | |
5721 | } | |
5722 | ||
5723 | /* Second: Try wild matching... */ | |
5724 | ||
e701b3c0 | 5725 | if (!match && wild_match_p) |
41d27058 JB |
5726 | { |
5727 | /* Since we are doing wild matching, this means that TEXT | |
5728 | may represent an unqualified symbol name. We therefore must | |
5729 | also compare TEXT against the unqualified name of the symbol. */ | |
5730 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5731 | ||
5732 | if (strncmp (sym_name, text, text_len) == 0) | |
5733 | match = 1; | |
5734 | } | |
5735 | ||
5736 | /* Finally: If we found a mach, prepare the result to return. */ | |
5737 | ||
5738 | if (!match) | |
5739 | return NULL; | |
5740 | ||
5741 | if (verbatim_match) | |
5742 | sym_name = add_angle_brackets (sym_name); | |
5743 | ||
6ea35997 | 5744 | if (!encoded_p) |
41d27058 JB |
5745 | sym_name = ada_decode (sym_name); |
5746 | ||
5747 | return sym_name; | |
5748 | } | |
5749 | ||
5750 | /* A companion function to ada_make_symbol_completion_list(). | |
5751 | Check if SYM_NAME represents a symbol which name would be suitable | |
5752 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5753 | it is appended at the end of the given string vector SV. | |
5754 | ||
5755 | ORIG_TEXT is the string original string from the user command | |
5756 | that needs to be completed. WORD is the entire command on which | |
5757 | completion should be performed. These two parameters are used to | |
5758 | determine which part of the symbol name should be added to the | |
5759 | completion vector. | |
c0af1706 | 5760 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 5761 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
5762 | encoded formed (in which case the completion should also be |
5763 | encoded). */ | |
5764 | ||
5765 | static void | |
d6565258 | 5766 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5767 | const char *sym_name, |
5768 | const char *text, int text_len, | |
5769 | const char *orig_text, const char *word, | |
cb8e9b97 | 5770 | int wild_match_p, int encoded_p) |
41d27058 JB |
5771 | { |
5772 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 5773 | wild_match_p, encoded_p); |
41d27058 JB |
5774 | char *completion; |
5775 | ||
5776 | if (match == NULL) | |
5777 | return; | |
5778 | ||
5779 | /* We found a match, so add the appropriate completion to the given | |
5780 | string vector. */ | |
5781 | ||
5782 | if (word == orig_text) | |
5783 | { | |
5784 | completion = xmalloc (strlen (match) + 5); | |
5785 | strcpy (completion, match); | |
5786 | } | |
5787 | else if (word > orig_text) | |
5788 | { | |
5789 | /* Return some portion of sym_name. */ | |
5790 | completion = xmalloc (strlen (match) + 5); | |
5791 | strcpy (completion, match + (word - orig_text)); | |
5792 | } | |
5793 | else | |
5794 | { | |
5795 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5796 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5797 | strncpy (completion, word, orig_text - word); | |
5798 | completion[orig_text - word] = '\0'; | |
5799 | strcat (completion, match); | |
5800 | } | |
5801 | ||
d6565258 | 5802 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5803 | } |
5804 | ||
ccefe4c4 | 5805 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5806 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5807 | struct add_partial_datum |
5808 | { | |
5809 | VEC(char_ptr) **completions; | |
6f937416 | 5810 | const char *text; |
ccefe4c4 | 5811 | int text_len; |
6f937416 PA |
5812 | const char *text0; |
5813 | const char *word; | |
ccefe4c4 TT |
5814 | int wild_match; |
5815 | int encoded; | |
5816 | }; | |
5817 | ||
7b08b9eb JK |
5818 | /* A callback for expand_partial_symbol_names. */ |
5819 | static int | |
e078317b | 5820 | ada_expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
5821 | { |
5822 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5823 | |
5824 | return symbol_completion_match (name, data->text, data->text_len, | |
5825 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5826 | } |
5827 | ||
49c4e619 TT |
5828 | /* Return a list of possible symbol names completing TEXT0. WORD is |
5829 | the entire command on which completion is made. */ | |
41d27058 | 5830 | |
49c4e619 | 5831 | static VEC (char_ptr) * |
6f937416 PA |
5832 | ada_make_symbol_completion_list (const char *text0, const char *word, |
5833 | enum type_code code) | |
41d27058 JB |
5834 | { |
5835 | char *text; | |
5836 | int text_len; | |
b1ed564a JB |
5837 | int wild_match_p; |
5838 | int encoded_p; | |
2ba95b9b | 5839 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5840 | struct symbol *sym; |
5841 | struct symtab *s; | |
41d27058 JB |
5842 | struct minimal_symbol *msymbol; |
5843 | struct objfile *objfile; | |
5844 | struct block *b, *surrounding_static_block = 0; | |
5845 | int i; | |
8157b174 | 5846 | struct block_iterator iter; |
41d27058 | 5847 | |
2f68a895 TT |
5848 | gdb_assert (code == TYPE_CODE_UNDEF); |
5849 | ||
41d27058 JB |
5850 | if (text0[0] == '<') |
5851 | { | |
5852 | text = xstrdup (text0); | |
5853 | make_cleanup (xfree, text); | |
5854 | text_len = strlen (text); | |
b1ed564a JB |
5855 | wild_match_p = 0; |
5856 | encoded_p = 1; | |
41d27058 JB |
5857 | } |
5858 | else | |
5859 | { | |
5860 | text = xstrdup (ada_encode (text0)); | |
5861 | make_cleanup (xfree, text); | |
5862 | text_len = strlen (text); | |
5863 | for (i = 0; i < text_len; i++) | |
5864 | text[i] = tolower (text[i]); | |
5865 | ||
b1ed564a | 5866 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
5867 | /* If the name contains a ".", then the user is entering a fully |
5868 | qualified entity name, and the match must not be done in wild | |
5869 | mode. Similarly, if the user wants to complete what looks like | |
5870 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 5871 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
5872 | } |
5873 | ||
5874 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5875 | { |
ccefe4c4 TT |
5876 | struct add_partial_datum data; |
5877 | ||
5878 | data.completions = &completions; | |
5879 | data.text = text; | |
5880 | data.text_len = text_len; | |
5881 | data.text0 = text0; | |
5882 | data.word = word; | |
b1ed564a JB |
5883 | data.wild_match = wild_match_p; |
5884 | data.encoded = encoded_p; | |
7b08b9eb | 5885 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5886 | } |
5887 | ||
5888 | /* At this point scan through the misc symbol vectors and add each | |
5889 | symbol you find to the list. Eventually we want to ignore | |
5890 | anything that isn't a text symbol (everything else will be | |
5891 | handled by the psymtab code above). */ | |
5892 | ||
5893 | ALL_MSYMBOLS (objfile, msymbol) | |
5894 | { | |
5895 | QUIT; | |
d6565258 | 5896 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
5897 | text, text_len, text0, word, wild_match_p, |
5898 | encoded_p); | |
41d27058 JB |
5899 | } |
5900 | ||
5901 | /* Search upwards from currently selected frame (so that we can | |
5902 | complete on local vars. */ | |
5903 | ||
5904 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5905 | { | |
5906 | if (!BLOCK_SUPERBLOCK (b)) | |
5907 | surrounding_static_block = b; /* For elmin of dups */ | |
5908 | ||
5909 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5910 | { | |
d6565258 | 5911 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5912 | text, text_len, text0, word, |
b1ed564a | 5913 | wild_match_p, encoded_p); |
41d27058 JB |
5914 | } |
5915 | } | |
5916 | ||
5917 | /* Go through the symtabs and check the externs and statics for | |
5918 | symbols which match. */ | |
5919 | ||
5920 | ALL_SYMTABS (objfile, s) | |
5921 | { | |
5922 | QUIT; | |
5923 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5924 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5925 | { | |
d6565258 | 5926 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5927 | text, text_len, text0, word, |
b1ed564a | 5928 | wild_match_p, encoded_p); |
41d27058 JB |
5929 | } |
5930 | } | |
5931 | ||
5932 | ALL_SYMTABS (objfile, s) | |
5933 | { | |
5934 | QUIT; | |
5935 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5936 | /* Don't do this block twice. */ | |
5937 | if (b == surrounding_static_block) | |
5938 | continue; | |
5939 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5940 | { | |
d6565258 | 5941 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5942 | text, text_len, text0, word, |
b1ed564a | 5943 | wild_match_p, encoded_p); |
41d27058 JB |
5944 | } |
5945 | } | |
5946 | ||
49c4e619 | 5947 | return completions; |
41d27058 JB |
5948 | } |
5949 | ||
963a6417 | 5950 | /* Field Access */ |
96d887e8 | 5951 | |
73fb9985 JB |
5952 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5953 | for tagged types. */ | |
5954 | ||
5955 | static int | |
5956 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5957 | { | |
0d5cff50 | 5958 | const char *name; |
73fb9985 JB |
5959 | |
5960 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5961 | return 0; | |
5962 | ||
5963 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5964 | if (name == NULL) | |
5965 | return 0; | |
5966 | ||
5967 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5968 | } | |
5969 | ||
ac4a2da4 JG |
5970 | /* Return non-zero if TYPE is an interface tag. */ |
5971 | ||
5972 | static int | |
5973 | ada_is_interface_tag (struct type *type) | |
5974 | { | |
5975 | const char *name = TYPE_NAME (type); | |
5976 | ||
5977 | if (name == NULL) | |
5978 | return 0; | |
5979 | ||
5980 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
5981 | } | |
5982 | ||
963a6417 PH |
5983 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5984 | to be invisible to users. */ | |
96d887e8 | 5985 | |
963a6417 PH |
5986 | int |
5987 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5988 | { |
963a6417 PH |
5989 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5990 | return 1; | |
ffde82bf | 5991 | |
73fb9985 JB |
5992 | /* Check the name of that field. */ |
5993 | { | |
5994 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5995 | ||
5996 | /* Anonymous field names should not be printed. | |
5997 | brobecker/2007-02-20: I don't think this can actually happen | |
5998 | but we don't want to print the value of annonymous fields anyway. */ | |
5999 | if (name == NULL) | |
6000 | return 1; | |
6001 | ||
ffde82bf JB |
6002 | /* Normally, fields whose name start with an underscore ("_") |
6003 | are fields that have been internally generated by the compiler, | |
6004 | and thus should not be printed. The "_parent" field is special, | |
6005 | however: This is a field internally generated by the compiler | |
6006 | for tagged types, and it contains the components inherited from | |
6007 | the parent type. This field should not be printed as is, but | |
6008 | should not be ignored either. */ | |
73fb9985 JB |
6009 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
6010 | return 1; | |
6011 | } | |
6012 | ||
ac4a2da4 JG |
6013 | /* If this is the dispatch table of a tagged type or an interface tag, |
6014 | then ignore. */ | |
73fb9985 | 6015 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6016 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6017 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6018 | return 1; |
6019 | ||
6020 | /* Not a special field, so it should not be ignored. */ | |
6021 | return 0; | |
963a6417 | 6022 | } |
96d887e8 | 6023 | |
963a6417 | 6024 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6025 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6026 | |
963a6417 PH |
6027 | int |
6028 | ada_is_tagged_type (struct type *type, int refok) | |
6029 | { | |
6030 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6031 | } | |
96d887e8 | 6032 | |
963a6417 | 6033 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6034 | |
963a6417 PH |
6035 | int |
6036 | ada_is_tag_type (struct type *type) | |
6037 | { | |
6038 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6039 | return 0; | |
6040 | else | |
96d887e8 | 6041 | { |
963a6417 | 6042 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6043 | |
963a6417 PH |
6044 | return (name != NULL |
6045 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6046 | } |
96d887e8 PH |
6047 | } |
6048 | ||
963a6417 | 6049 | /* The type of the tag on VAL. */ |
76a01679 | 6050 | |
963a6417 PH |
6051 | struct type * |
6052 | ada_tag_type (struct value *val) | |
96d887e8 | 6053 | { |
df407dfe | 6054 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6055 | } |
96d887e8 | 6056 | |
b50d69b5 JG |
6057 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6058 | retired at Ada 05). */ | |
6059 | ||
6060 | static int | |
6061 | is_ada95_tag (struct value *tag) | |
6062 | { | |
6063 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6064 | } | |
6065 | ||
963a6417 | 6066 | /* The value of the tag on VAL. */ |
96d887e8 | 6067 | |
963a6417 PH |
6068 | struct value * |
6069 | ada_value_tag (struct value *val) | |
6070 | { | |
03ee6b2e | 6071 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6072 | } |
6073 | ||
963a6417 PH |
6074 | /* The value of the tag on the object of type TYPE whose contents are |
6075 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6076 | ADDRESS. */ |
96d887e8 | 6077 | |
963a6417 | 6078 | static struct value * |
10a2c479 | 6079 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6080 | const gdb_byte *valaddr, |
963a6417 | 6081 | CORE_ADDR address) |
96d887e8 | 6082 | { |
b5385fc0 | 6083 | int tag_byte_offset; |
963a6417 | 6084 | struct type *tag_type; |
5b4ee69b | 6085 | |
963a6417 | 6086 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6087 | NULL, NULL, NULL)) |
96d887e8 | 6088 | { |
fc1a4b47 | 6089 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6090 | ? NULL |
6091 | : valaddr + tag_byte_offset); | |
963a6417 | 6092 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6093 | |
963a6417 | 6094 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6095 | } |
963a6417 PH |
6096 | return NULL; |
6097 | } | |
96d887e8 | 6098 | |
963a6417 PH |
6099 | static struct type * |
6100 | type_from_tag (struct value *tag) | |
6101 | { | |
6102 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6103 | |
963a6417 PH |
6104 | if (type_name != NULL) |
6105 | return ada_find_any_type (ada_encode (type_name)); | |
6106 | return NULL; | |
6107 | } | |
96d887e8 | 6108 | |
b50d69b5 JG |
6109 | /* Given a value OBJ of a tagged type, return a value of this |
6110 | type at the base address of the object. The base address, as | |
6111 | defined in Ada.Tags, it is the address of the primary tag of | |
6112 | the object, and therefore where the field values of its full | |
6113 | view can be fetched. */ | |
6114 | ||
6115 | struct value * | |
6116 | ada_tag_value_at_base_address (struct value *obj) | |
6117 | { | |
6118 | volatile struct gdb_exception e; | |
6119 | struct value *val; | |
6120 | LONGEST offset_to_top = 0; | |
6121 | struct type *ptr_type, *obj_type; | |
6122 | struct value *tag; | |
6123 | CORE_ADDR base_address; | |
6124 | ||
6125 | obj_type = value_type (obj); | |
6126 | ||
6127 | /* It is the responsability of the caller to deref pointers. */ | |
6128 | ||
6129 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6130 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6131 | return obj; | |
6132 | ||
6133 | tag = ada_value_tag (obj); | |
6134 | if (!tag) | |
6135 | return obj; | |
6136 | ||
6137 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6138 | ||
6139 | if (is_ada95_tag (tag)) | |
6140 | return obj; | |
6141 | ||
6142 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6143 | ptr_type = lookup_pointer_type (ptr_type); | |
6144 | val = value_cast (ptr_type, tag); | |
6145 | if (!val) | |
6146 | return obj; | |
6147 | ||
6148 | /* It is perfectly possible that an exception be raised while | |
6149 | trying to determine the base address, just like for the tag; | |
6150 | see ada_tag_name for more details. We do not print the error | |
6151 | message for the same reason. */ | |
6152 | ||
6153 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6154 | { | |
6155 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6156 | } | |
6157 | ||
6158 | if (e.reason < 0) | |
6159 | return obj; | |
6160 | ||
6161 | /* If offset is null, nothing to do. */ | |
6162 | ||
6163 | if (offset_to_top == 0) | |
6164 | return obj; | |
6165 | ||
6166 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6167 | is not quite clear from the documentation. So do nothing for | |
6168 | now. */ | |
6169 | ||
6170 | if (offset_to_top == -1) | |
6171 | return obj; | |
6172 | ||
6173 | base_address = value_address (obj) - offset_to_top; | |
6174 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6175 | ||
6176 | /* Make sure that we have a proper tag at the new address. | |
6177 | Otherwise, offset_to_top is bogus (which can happen when | |
6178 | the object is not initialized yet). */ | |
6179 | ||
6180 | if (!tag) | |
6181 | return obj; | |
6182 | ||
6183 | obj_type = type_from_tag (tag); | |
6184 | ||
6185 | if (!obj_type) | |
6186 | return obj; | |
6187 | ||
6188 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6189 | } | |
6190 | ||
1b611343 JB |
6191 | /* Return the "ada__tags__type_specific_data" type. */ |
6192 | ||
6193 | static struct type * | |
6194 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6195 | { |
1b611343 | 6196 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6197 | |
1b611343 JB |
6198 | if (data->tsd_type == 0) |
6199 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6200 | return data->tsd_type; | |
6201 | } | |
529cad9c | 6202 | |
1b611343 JB |
6203 | /* Return the TSD (type-specific data) associated to the given TAG. |
6204 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6205 | |
1b611343 | 6206 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6207 | |
1b611343 JB |
6208 | static struct value * |
6209 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6210 | { |
4c4b4cd2 | 6211 | struct value *val; |
1b611343 | 6212 | struct type *type; |
5b4ee69b | 6213 | |
1b611343 JB |
6214 | /* First option: The TSD is simply stored as a field of our TAG. |
6215 | Only older versions of GNAT would use this format, but we have | |
6216 | to test it first, because there are no visible markers for | |
6217 | the current approach except the absence of that field. */ | |
529cad9c | 6218 | |
1b611343 JB |
6219 | val = ada_value_struct_elt (tag, "tsd", 1); |
6220 | if (val) | |
6221 | return val; | |
e802dbe0 | 6222 | |
1b611343 JB |
6223 | /* Try the second representation for the dispatch table (in which |
6224 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6225 | and instead the tsd pointer is stored just before the dispatch | |
6226 | table. */ | |
e802dbe0 | 6227 | |
1b611343 JB |
6228 | type = ada_get_tsd_type (current_inferior()); |
6229 | if (type == NULL) | |
6230 | return NULL; | |
6231 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6232 | val = value_cast (type, tag); | |
6233 | if (val == NULL) | |
6234 | return NULL; | |
6235 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6236 | } |
6237 | ||
1b611343 JB |
6238 | /* Given the TSD of a tag (type-specific data), return a string |
6239 | containing the name of the associated type. | |
6240 | ||
6241 | The returned value is good until the next call. May return NULL | |
6242 | if we are unable to determine the tag name. */ | |
6243 | ||
6244 | static char * | |
6245 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6246 | { |
529cad9c PH |
6247 | static char name[1024]; |
6248 | char *p; | |
1b611343 | 6249 | struct value *val; |
529cad9c | 6250 | |
1b611343 | 6251 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6252 | if (val == NULL) |
1b611343 | 6253 | return NULL; |
4c4b4cd2 PH |
6254 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6255 | for (p = name; *p != '\0'; p += 1) | |
6256 | if (isalpha (*p)) | |
6257 | *p = tolower (*p); | |
1b611343 | 6258 | return name; |
4c4b4cd2 PH |
6259 | } |
6260 | ||
6261 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6262 | a C string. |
6263 | ||
6264 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6265 | determine the name of that tag. The result is good until the next | |
6266 | call. */ | |
4c4b4cd2 PH |
6267 | |
6268 | const char * | |
6269 | ada_tag_name (struct value *tag) | |
6270 | { | |
1b611343 JB |
6271 | volatile struct gdb_exception e; |
6272 | char *name = NULL; | |
5b4ee69b | 6273 | |
df407dfe | 6274 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6275 | return NULL; |
1b611343 JB |
6276 | |
6277 | /* It is perfectly possible that an exception be raised while trying | |
6278 | to determine the TAG's name, even under normal circumstances: | |
6279 | The associated variable may be uninitialized or corrupted, for | |
6280 | instance. We do not let any exception propagate past this point. | |
6281 | instead we return NULL. | |
6282 | ||
6283 | We also do not print the error message either (which often is very | |
6284 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6285 | the caller print a more meaningful message if necessary. */ | |
6286 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6287 | { | |
6288 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6289 | ||
6290 | if (tsd != NULL) | |
6291 | name = ada_tag_name_from_tsd (tsd); | |
6292 | } | |
6293 | ||
6294 | return name; | |
4c4b4cd2 PH |
6295 | } |
6296 | ||
6297 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6298 | |
d2e4a39e | 6299 | struct type * |
ebf56fd3 | 6300 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6301 | { |
6302 | int i; | |
6303 | ||
61ee279c | 6304 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6305 | |
6306 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6307 | return NULL; | |
6308 | ||
6309 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6310 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6311 | { |
6312 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6313 | ||
6314 | /* If the _parent field is a pointer, then dereference it. */ | |
6315 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6316 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6317 | /* If there is a parallel XVS type, get the actual base type. */ | |
6318 | parent_type = ada_get_base_type (parent_type); | |
6319 | ||
6320 | return ada_check_typedef (parent_type); | |
6321 | } | |
14f9c5c9 AS |
6322 | |
6323 | return NULL; | |
6324 | } | |
6325 | ||
4c4b4cd2 PH |
6326 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6327 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6328 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6329 | |
6330 | int | |
ebf56fd3 | 6331 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6332 | { |
61ee279c | 6333 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6334 | |
4c4b4cd2 PH |
6335 | return (name != NULL |
6336 | && (strncmp (name, "PARENT", 6) == 0 | |
6337 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6338 | } |
6339 | ||
4c4b4cd2 | 6340 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6341 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6342 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6343 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6344 | structures. */ |
14f9c5c9 AS |
6345 | |
6346 | int | |
ebf56fd3 | 6347 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6348 | { |
d2e4a39e | 6349 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6350 | |
d2e4a39e | 6351 | return (name != NULL |
4c4b4cd2 PH |
6352 | && (strncmp (name, "PARENT", 6) == 0 |
6353 | || strcmp (name, "REP") == 0 | |
6354 | || strncmp (name, "_parent", 7) == 0 | |
6355 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6356 | } |
6357 | ||
4c4b4cd2 PH |
6358 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6359 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6360 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6361 | |
6362 | int | |
ebf56fd3 | 6363 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6364 | { |
d2e4a39e | 6365 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6366 | |
14f9c5c9 | 6367 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6368 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6369 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6370 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6371 | } |
6372 | ||
6373 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6374 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6375 | returns the type of the controlling discriminant for the variant. |
6376 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6377 | |
d2e4a39e | 6378 | struct type * |
ebf56fd3 | 6379 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6380 | { |
d2e4a39e | 6381 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6382 | |
7c964f07 | 6383 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6384 | } |
6385 | ||
4c4b4cd2 | 6386 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6387 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6388 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6389 | |
6390 | int | |
ebf56fd3 | 6391 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6392 | { |
d2e4a39e | 6393 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6394 | |
14f9c5c9 AS |
6395 | return (name != NULL && name[0] == 'O'); |
6396 | } | |
6397 | ||
6398 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6399 | returns the name of the discriminant controlling the variant. |
6400 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6401 | |
d2e4a39e | 6402 | char * |
ebf56fd3 | 6403 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6404 | { |
d2e4a39e | 6405 | static char *result = NULL; |
14f9c5c9 | 6406 | static size_t result_len = 0; |
d2e4a39e AS |
6407 | struct type *type; |
6408 | const char *name; | |
6409 | const char *discrim_end; | |
6410 | const char *discrim_start; | |
14f9c5c9 AS |
6411 | |
6412 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6413 | type = TYPE_TARGET_TYPE (type0); | |
6414 | else | |
6415 | type = type0; | |
6416 | ||
6417 | name = ada_type_name (type); | |
6418 | ||
6419 | if (name == NULL || name[0] == '\000') | |
6420 | return ""; | |
6421 | ||
6422 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6423 | discrim_end -= 1) | |
6424 | { | |
4c4b4cd2 PH |
6425 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6426 | break; | |
14f9c5c9 AS |
6427 | } |
6428 | if (discrim_end == name) | |
6429 | return ""; | |
6430 | ||
d2e4a39e | 6431 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6432 | discrim_start -= 1) |
6433 | { | |
d2e4a39e | 6434 | if (discrim_start == name + 1) |
4c4b4cd2 | 6435 | return ""; |
76a01679 | 6436 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6437 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6438 | || discrim_start[-1] == '.') | |
6439 | break; | |
14f9c5c9 AS |
6440 | } |
6441 | ||
6442 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6443 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6444 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6445 | return result; |
6446 | } | |
6447 | ||
4c4b4cd2 PH |
6448 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6449 | Put the position of the character just past the number scanned in | |
6450 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6451 | Return 1 if there was a valid number at the given position, and 0 | |
6452 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6453 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6454 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6455 | |
6456 | int | |
d2e4a39e | 6457 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6458 | { |
6459 | ULONGEST RU; | |
6460 | ||
d2e4a39e | 6461 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6462 | return 0; |
6463 | ||
4c4b4cd2 | 6464 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6465 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6466 | LONGEST. */ |
14f9c5c9 AS |
6467 | RU = 0; |
6468 | while (isdigit (str[k])) | |
6469 | { | |
d2e4a39e | 6470 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6471 | k += 1; |
6472 | } | |
6473 | ||
d2e4a39e | 6474 | if (str[k] == 'm') |
14f9c5c9 AS |
6475 | { |
6476 | if (R != NULL) | |
4c4b4cd2 | 6477 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6478 | k += 1; |
6479 | } | |
6480 | else if (R != NULL) | |
6481 | *R = (LONGEST) RU; | |
6482 | ||
4c4b4cd2 | 6483 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6484 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6485 | number representable as a LONGEST (although either would probably work | |
6486 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6487 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6488 | |
6489 | if (new_k != NULL) | |
6490 | *new_k = k; | |
6491 | return 1; | |
6492 | } | |
6493 | ||
4c4b4cd2 PH |
6494 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6495 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6496 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6497 | |
d2e4a39e | 6498 | int |
ebf56fd3 | 6499 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6500 | { |
d2e4a39e | 6501 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6502 | int p; |
6503 | ||
6504 | p = 0; | |
6505 | while (1) | |
6506 | { | |
d2e4a39e | 6507 | switch (name[p]) |
4c4b4cd2 PH |
6508 | { |
6509 | case '\0': | |
6510 | return 0; | |
6511 | case 'S': | |
6512 | { | |
6513 | LONGEST W; | |
5b4ee69b | 6514 | |
4c4b4cd2 PH |
6515 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6516 | return 0; | |
6517 | if (val == W) | |
6518 | return 1; | |
6519 | break; | |
6520 | } | |
6521 | case 'R': | |
6522 | { | |
6523 | LONGEST L, U; | |
5b4ee69b | 6524 | |
4c4b4cd2 PH |
6525 | if (!ada_scan_number (name, p + 1, &L, &p) |
6526 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6527 | return 0; | |
6528 | if (val >= L && val <= U) | |
6529 | return 1; | |
6530 | break; | |
6531 | } | |
6532 | case 'O': | |
6533 | return 1; | |
6534 | default: | |
6535 | return 0; | |
6536 | } | |
6537 | } | |
6538 | } | |
6539 | ||
0963b4bd | 6540 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6541 | |
6542 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6543 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6544 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6545 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6546 | |
4c4b4cd2 | 6547 | static struct value * |
d2e4a39e | 6548 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6549 | struct type *arg_type) |
14f9c5c9 | 6550 | { |
14f9c5c9 AS |
6551 | struct type *type; |
6552 | ||
61ee279c | 6553 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6554 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6555 | ||
4c4b4cd2 | 6556 | /* Handle packed fields. */ |
14f9c5c9 AS |
6557 | |
6558 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6559 | { | |
6560 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6561 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6562 | |
0fd88904 | 6563 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6564 | offset + bit_pos / 8, |
6565 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6566 | } |
6567 | else | |
6568 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6569 | } | |
6570 | ||
52ce6436 PH |
6571 | /* Find field with name NAME in object of type TYPE. If found, |
6572 | set the following for each argument that is non-null: | |
6573 | - *FIELD_TYPE_P to the field's type; | |
6574 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6575 | an object of that type; | |
6576 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6577 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6578 | 0 otherwise; | |
6579 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6580 | fields up to but not including the desired field, or by the total | |
6581 | number of fields if not found. A NULL value of NAME never | |
6582 | matches; the function just counts visible fields in this case. | |
6583 | ||
0963b4bd | 6584 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6585 | |
4c4b4cd2 | 6586 | static int |
0d5cff50 | 6587 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6588 | struct type **field_type_p, |
52ce6436 PH |
6589 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6590 | int *index_p) | |
4c4b4cd2 PH |
6591 | { |
6592 | int i; | |
6593 | ||
61ee279c | 6594 | type = ada_check_typedef (type); |
76a01679 | 6595 | |
52ce6436 PH |
6596 | if (field_type_p != NULL) |
6597 | *field_type_p = NULL; | |
6598 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6599 | *byte_offset_p = 0; |
52ce6436 PH |
6600 | if (bit_offset_p != NULL) |
6601 | *bit_offset_p = 0; | |
6602 | if (bit_size_p != NULL) | |
6603 | *bit_size_p = 0; | |
6604 | ||
6605 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6606 | { |
6607 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6608 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6609 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6610 | |
4c4b4cd2 PH |
6611 | if (t_field_name == NULL) |
6612 | continue; | |
6613 | ||
52ce6436 | 6614 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6615 | { |
6616 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6617 | |
52ce6436 PH |
6618 | if (field_type_p != NULL) |
6619 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6620 | if (byte_offset_p != NULL) | |
6621 | *byte_offset_p = fld_offset; | |
6622 | if (bit_offset_p != NULL) | |
6623 | *bit_offset_p = bit_pos % 8; | |
6624 | if (bit_size_p != NULL) | |
6625 | *bit_size_p = bit_size; | |
76a01679 JB |
6626 | return 1; |
6627 | } | |
4c4b4cd2 PH |
6628 | else if (ada_is_wrapper_field (type, i)) |
6629 | { | |
52ce6436 PH |
6630 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6631 | field_type_p, byte_offset_p, bit_offset_p, | |
6632 | bit_size_p, index_p)) | |
76a01679 JB |
6633 | return 1; |
6634 | } | |
4c4b4cd2 PH |
6635 | else if (ada_is_variant_part (type, i)) |
6636 | { | |
52ce6436 PH |
6637 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6638 | fixed type?? */ | |
4c4b4cd2 | 6639 | int j; |
52ce6436 PH |
6640 | struct type *field_type |
6641 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6642 | |
52ce6436 | 6643 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6644 | { |
76a01679 JB |
6645 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6646 | fld_offset | |
6647 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6648 | field_type_p, byte_offset_p, | |
52ce6436 | 6649 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6650 | return 1; |
4c4b4cd2 PH |
6651 | } |
6652 | } | |
52ce6436 PH |
6653 | else if (index_p != NULL) |
6654 | *index_p += 1; | |
4c4b4cd2 PH |
6655 | } |
6656 | return 0; | |
6657 | } | |
6658 | ||
0963b4bd | 6659 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6660 | |
52ce6436 PH |
6661 | static int |
6662 | num_visible_fields (struct type *type) | |
6663 | { | |
6664 | int n; | |
5b4ee69b | 6665 | |
52ce6436 PH |
6666 | n = 0; |
6667 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6668 | return n; | |
6669 | } | |
14f9c5c9 | 6670 | |
4c4b4cd2 | 6671 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6672 | and search in it assuming it has (class) type TYPE. |
6673 | If found, return value, else return NULL. | |
6674 | ||
4c4b4cd2 | 6675 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6676 | |
4c4b4cd2 | 6677 | static struct value * |
d2e4a39e | 6678 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6679 | struct type *type) |
14f9c5c9 AS |
6680 | { |
6681 | int i; | |
14f9c5c9 | 6682 | |
5b4ee69b | 6683 | type = ada_check_typedef (type); |
52ce6436 | 6684 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 6685 | { |
0d5cff50 | 6686 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6687 | |
6688 | if (t_field_name == NULL) | |
4c4b4cd2 | 6689 | continue; |
14f9c5c9 AS |
6690 | |
6691 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6692 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6693 | |
6694 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6695 | { |
0963b4bd | 6696 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6697 | ada_search_struct_field (name, arg, |
6698 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6699 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6700 | |
4c4b4cd2 PH |
6701 | if (v != NULL) |
6702 | return v; | |
6703 | } | |
14f9c5c9 AS |
6704 | |
6705 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6706 | { |
0963b4bd | 6707 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6708 | int j; |
5b4ee69b MS |
6709 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6710 | i)); | |
4c4b4cd2 PH |
6711 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6712 | ||
52ce6436 | 6713 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6714 | { |
0963b4bd MS |
6715 | struct value *v = ada_search_struct_field /* Force line |
6716 | break. */ | |
06d5cf63 JB |
6717 | (name, arg, |
6718 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6719 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6720 | |
4c4b4cd2 PH |
6721 | if (v != NULL) |
6722 | return v; | |
6723 | } | |
6724 | } | |
14f9c5c9 AS |
6725 | } |
6726 | return NULL; | |
6727 | } | |
d2e4a39e | 6728 | |
52ce6436 PH |
6729 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6730 | int, struct type *); | |
6731 | ||
6732 | ||
6733 | /* Return field #INDEX in ARG, where the index is that returned by | |
6734 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6735 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6736 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6737 | |
6738 | static struct value * | |
6739 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6740 | struct type *type) | |
6741 | { | |
6742 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6743 | } | |
6744 | ||
6745 | ||
6746 | /* Auxiliary function for ada_index_struct_field. Like | |
6747 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6748 | * *INDEX_P. */ |
52ce6436 PH |
6749 | |
6750 | static struct value * | |
6751 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6752 | struct type *type) | |
6753 | { | |
6754 | int i; | |
6755 | type = ada_check_typedef (type); | |
6756 | ||
6757 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6758 | { | |
6759 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6760 | continue; | |
6761 | else if (ada_is_wrapper_field (type, i)) | |
6762 | { | |
0963b4bd | 6763 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6764 | ada_index_struct_field_1 (index_p, arg, |
6765 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6766 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6767 | |
52ce6436 PH |
6768 | if (v != NULL) |
6769 | return v; | |
6770 | } | |
6771 | ||
6772 | else if (ada_is_variant_part (type, i)) | |
6773 | { | |
6774 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6775 | find_struct_field. */ |
52ce6436 PH |
6776 | error (_("Cannot assign this kind of variant record")); |
6777 | } | |
6778 | else if (*index_p == 0) | |
6779 | return ada_value_primitive_field (arg, offset, i, type); | |
6780 | else | |
6781 | *index_p -= 1; | |
6782 | } | |
6783 | return NULL; | |
6784 | } | |
6785 | ||
4c4b4cd2 PH |
6786 | /* Given ARG, a value of type (pointer or reference to a)* |
6787 | structure/union, extract the component named NAME from the ultimate | |
6788 | target structure/union and return it as a value with its | |
f5938064 | 6789 | appropriate type. |
14f9c5c9 | 6790 | |
4c4b4cd2 PH |
6791 | The routine searches for NAME among all members of the structure itself |
6792 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6793 | (e.g., '_parent'). |
6794 | ||
03ee6b2e PH |
6795 | If NO_ERR, then simply return NULL in case of error, rather than |
6796 | calling error. */ | |
14f9c5c9 | 6797 | |
d2e4a39e | 6798 | struct value * |
03ee6b2e | 6799 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6800 | { |
4c4b4cd2 | 6801 | struct type *t, *t1; |
d2e4a39e | 6802 | struct value *v; |
14f9c5c9 | 6803 | |
4c4b4cd2 | 6804 | v = NULL; |
df407dfe | 6805 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6806 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6807 | { | |
6808 | t1 = TYPE_TARGET_TYPE (t); | |
6809 | if (t1 == NULL) | |
03ee6b2e | 6810 | goto BadValue; |
61ee279c | 6811 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6812 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6813 | { |
994b9211 | 6814 | arg = coerce_ref (arg); |
76a01679 JB |
6815 | t = t1; |
6816 | } | |
4c4b4cd2 | 6817 | } |
14f9c5c9 | 6818 | |
4c4b4cd2 PH |
6819 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6820 | { | |
6821 | t1 = TYPE_TARGET_TYPE (t); | |
6822 | if (t1 == NULL) | |
03ee6b2e | 6823 | goto BadValue; |
61ee279c | 6824 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6825 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6826 | { |
6827 | arg = value_ind (arg); | |
6828 | t = t1; | |
6829 | } | |
4c4b4cd2 | 6830 | else |
76a01679 | 6831 | break; |
4c4b4cd2 | 6832 | } |
14f9c5c9 | 6833 | |
4c4b4cd2 | 6834 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6835 | goto BadValue; |
14f9c5c9 | 6836 | |
4c4b4cd2 PH |
6837 | if (t1 == t) |
6838 | v = ada_search_struct_field (name, arg, 0, t); | |
6839 | else | |
6840 | { | |
6841 | int bit_offset, bit_size, byte_offset; | |
6842 | struct type *field_type; | |
6843 | CORE_ADDR address; | |
6844 | ||
76a01679 | 6845 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 6846 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 6847 | else |
b50d69b5 | 6848 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 6849 | |
1ed6ede0 | 6850 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6851 | if (find_struct_field (name, t1, 0, |
6852 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6853 | &bit_size, NULL)) |
76a01679 JB |
6854 | { |
6855 | if (bit_size != 0) | |
6856 | { | |
714e53ab PH |
6857 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6858 | arg = ada_coerce_ref (arg); | |
6859 | else | |
6860 | arg = ada_value_ind (arg); | |
76a01679 JB |
6861 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6862 | bit_offset, bit_size, | |
6863 | field_type); | |
6864 | } | |
6865 | else | |
f5938064 | 6866 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6867 | } |
6868 | } | |
6869 | ||
03ee6b2e PH |
6870 | if (v != NULL || no_err) |
6871 | return v; | |
6872 | else | |
323e0a4a | 6873 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6874 | |
03ee6b2e PH |
6875 | BadValue: |
6876 | if (no_err) | |
6877 | return NULL; | |
6878 | else | |
0963b4bd MS |
6879 | error (_("Attempt to extract a component of " |
6880 | "a value that is not a record.")); | |
14f9c5c9 AS |
6881 | } |
6882 | ||
6883 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6884 | If DISPP is non-null, add its byte displacement from the beginning of a |
6885 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6886 | work for packed fields). |
6887 | ||
6888 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6889 | followed by "___". |
14f9c5c9 | 6890 | |
0963b4bd | 6891 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6892 | be a (pointer or reference)+ to a struct or union, and the |
6893 | ultimate target type will be searched. | |
14f9c5c9 AS |
6894 | |
6895 | Looks recursively into variant clauses and parent types. | |
6896 | ||
4c4b4cd2 PH |
6897 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6898 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6899 | |
4c4b4cd2 | 6900 | static struct type * |
76a01679 JB |
6901 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6902 | int noerr, int *dispp) | |
14f9c5c9 AS |
6903 | { |
6904 | int i; | |
6905 | ||
6906 | if (name == NULL) | |
6907 | goto BadName; | |
6908 | ||
76a01679 | 6909 | if (refok && type != NULL) |
4c4b4cd2 PH |
6910 | while (1) |
6911 | { | |
61ee279c | 6912 | type = ada_check_typedef (type); |
76a01679 JB |
6913 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6914 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6915 | break; | |
6916 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6917 | } |
14f9c5c9 | 6918 | |
76a01679 | 6919 | if (type == NULL |
1265e4aa JB |
6920 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6921 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6922 | { |
4c4b4cd2 | 6923 | if (noerr) |
76a01679 | 6924 | return NULL; |
4c4b4cd2 | 6925 | else |
76a01679 JB |
6926 | { |
6927 | target_terminal_ours (); | |
6928 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6929 | if (type == NULL) |
6930 | error (_("Type (null) is not a structure or union type")); | |
6931 | else | |
6932 | { | |
6933 | /* XXX: type_sprint */ | |
6934 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6935 | type_print (type, "", gdb_stderr, -1); | |
6936 | error (_(" is not a structure or union type")); | |
6937 | } | |
76a01679 | 6938 | } |
14f9c5c9 AS |
6939 | } |
6940 | ||
6941 | type = to_static_fixed_type (type); | |
6942 | ||
6943 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6944 | { | |
0d5cff50 | 6945 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6946 | struct type *t; |
6947 | int disp; | |
d2e4a39e | 6948 | |
14f9c5c9 | 6949 | if (t_field_name == NULL) |
4c4b4cd2 | 6950 | continue; |
14f9c5c9 AS |
6951 | |
6952 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6953 | { |
6954 | if (dispp != NULL) | |
6955 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6956 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6957 | } |
14f9c5c9 AS |
6958 | |
6959 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6960 | { |
6961 | disp = 0; | |
6962 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6963 | 0, 1, &disp); | |
6964 | if (t != NULL) | |
6965 | { | |
6966 | if (dispp != NULL) | |
6967 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6968 | return t; | |
6969 | } | |
6970 | } | |
14f9c5c9 AS |
6971 | |
6972 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6973 | { |
6974 | int j; | |
5b4ee69b MS |
6975 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6976 | i)); | |
4c4b4cd2 PH |
6977 | |
6978 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6979 | { | |
b1f33ddd JB |
6980 | /* FIXME pnh 2008/01/26: We check for a field that is |
6981 | NOT wrapped in a struct, since the compiler sometimes | |
6982 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6983 | if the compiler changes this practice. */ |
0d5cff50 | 6984 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6985 | disp = 0; |
b1f33ddd JB |
6986 | if (v_field_name != NULL |
6987 | && field_name_match (v_field_name, name)) | |
6988 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6989 | else | |
0963b4bd MS |
6990 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6991 | j), | |
b1f33ddd JB |
6992 | name, 0, 1, &disp); |
6993 | ||
4c4b4cd2 PH |
6994 | if (t != NULL) |
6995 | { | |
6996 | if (dispp != NULL) | |
6997 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6998 | return t; | |
6999 | } | |
7000 | } | |
7001 | } | |
14f9c5c9 AS |
7002 | |
7003 | } | |
7004 | ||
7005 | BadName: | |
d2e4a39e | 7006 | if (!noerr) |
14f9c5c9 AS |
7007 | { |
7008 | target_terminal_ours (); | |
7009 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7010 | if (name == NULL) |
7011 | { | |
7012 | /* XXX: type_sprint */ | |
7013 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7014 | type_print (type, "", gdb_stderr, -1); | |
7015 | error (_(" has no component named <null>")); | |
7016 | } | |
7017 | else | |
7018 | { | |
7019 | /* XXX: type_sprint */ | |
7020 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7021 | type_print (type, "", gdb_stderr, -1); | |
7022 | error (_(" has no component named %s"), name); | |
7023 | } | |
14f9c5c9 AS |
7024 | } |
7025 | ||
7026 | return NULL; | |
7027 | } | |
7028 | ||
b1f33ddd JB |
7029 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7030 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7031 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7032 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7033 | |
7034 | static int | |
7035 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7036 | { | |
7037 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7038 | |
b1f33ddd JB |
7039 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7040 | == NULL); | |
7041 | } | |
7042 | ||
7043 | ||
14f9c5c9 AS |
7044 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7045 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7046 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7047 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7048 | |
d2e4a39e | 7049 | int |
ebf56fd3 | 7050 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7051 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7052 | { |
7053 | int others_clause; | |
7054 | int i; | |
d2e4a39e | 7055 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7056 | struct value *outer; |
7057 | struct value *discrim; | |
14f9c5c9 AS |
7058 | LONGEST discrim_val; |
7059 | ||
0c281816 JB |
7060 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
7061 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
7062 | if (discrim == NULL) | |
14f9c5c9 | 7063 | return -1; |
0c281816 | 7064 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7065 | |
7066 | others_clause = -1; | |
7067 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7068 | { | |
7069 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7070 | others_clause = i; |
14f9c5c9 | 7071 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7072 | return i; |
14f9c5c9 AS |
7073 | } |
7074 | ||
7075 | return others_clause; | |
7076 | } | |
d2e4a39e | 7077 | \f |
14f9c5c9 AS |
7078 | |
7079 | ||
4c4b4cd2 | 7080 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7081 | |
7082 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7083 | (i.e., a size that is not statically recorded in the debugging | |
7084 | data) does not accurately reflect the size or layout of the value. | |
7085 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7086 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7087 | |
7088 | /* There is a subtle and tricky problem here. In general, we cannot | |
7089 | determine the size of dynamic records without its data. However, | |
7090 | the 'struct value' data structure, which GDB uses to represent | |
7091 | quantities in the inferior process (the target), requires the size | |
7092 | of the type at the time of its allocation in order to reserve space | |
7093 | for GDB's internal copy of the data. That's why the | |
7094 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7095 | rather than struct value*s. |
14f9c5c9 AS |
7096 | |
7097 | However, GDB's internal history variables ($1, $2, etc.) are | |
7098 | struct value*s containing internal copies of the data that are not, in | |
7099 | general, the same as the data at their corresponding addresses in | |
7100 | the target. Fortunately, the types we give to these values are all | |
7101 | conventional, fixed-size types (as per the strategy described | |
7102 | above), so that we don't usually have to perform the | |
7103 | 'to_fixed_xxx_type' conversions to look at their values. | |
7104 | Unfortunately, there is one exception: if one of the internal | |
7105 | history variables is an array whose elements are unconstrained | |
7106 | records, then we will need to create distinct fixed types for each | |
7107 | element selected. */ | |
7108 | ||
7109 | /* The upshot of all of this is that many routines take a (type, host | |
7110 | address, target address) triple as arguments to represent a value. | |
7111 | The host address, if non-null, is supposed to contain an internal | |
7112 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7113 | target at the target address. */ |
14f9c5c9 AS |
7114 | |
7115 | /* Assuming that VAL0 represents a pointer value, the result of | |
7116 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7117 | dynamic-sized types. */ |
14f9c5c9 | 7118 | |
d2e4a39e AS |
7119 | struct value * |
7120 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7121 | { |
c48db5ca | 7122 | struct value *val = value_ind (val0); |
5b4ee69b | 7123 | |
b50d69b5 JG |
7124 | if (ada_is_tagged_type (value_type (val), 0)) |
7125 | val = ada_tag_value_at_base_address (val); | |
7126 | ||
4c4b4cd2 | 7127 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7128 | } |
7129 | ||
7130 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7131 | qualifiers on VAL0. */ |
7132 | ||
d2e4a39e AS |
7133 | static struct value * |
7134 | ada_coerce_ref (struct value *val0) | |
7135 | { | |
df407dfe | 7136 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7137 | { |
7138 | struct value *val = val0; | |
5b4ee69b | 7139 | |
994b9211 | 7140 | val = coerce_ref (val); |
b50d69b5 JG |
7141 | |
7142 | if (ada_is_tagged_type (value_type (val), 0)) | |
7143 | val = ada_tag_value_at_base_address (val); | |
7144 | ||
4c4b4cd2 | 7145 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7146 | } |
7147 | else | |
14f9c5c9 AS |
7148 | return val0; |
7149 | } | |
7150 | ||
7151 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7152 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7153 | |
7154 | static unsigned int | |
ebf56fd3 | 7155 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7156 | { |
7157 | return (off + alignment - 1) & ~(alignment - 1); | |
7158 | } | |
7159 | ||
4c4b4cd2 | 7160 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7161 | |
7162 | static unsigned int | |
ebf56fd3 | 7163 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7164 | { |
d2e4a39e | 7165 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7166 | int len; |
14f9c5c9 AS |
7167 | int align_offset; |
7168 | ||
64a1bf19 JB |
7169 | /* The field name should never be null, unless the debugging information |
7170 | is somehow malformed. In this case, we assume the field does not | |
7171 | require any alignment. */ | |
7172 | if (name == NULL) | |
7173 | return 1; | |
7174 | ||
7175 | len = strlen (name); | |
7176 | ||
4c4b4cd2 PH |
7177 | if (!isdigit (name[len - 1])) |
7178 | return 1; | |
14f9c5c9 | 7179 | |
d2e4a39e | 7180 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7181 | align_offset = len - 2; |
7182 | else | |
7183 | align_offset = len - 1; | |
7184 | ||
4c4b4cd2 | 7185 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7186 | return TARGET_CHAR_BIT; |
7187 | ||
4c4b4cd2 PH |
7188 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7189 | } | |
7190 | ||
852dff6c | 7191 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7192 | |
852dff6c JB |
7193 | static struct symbol * |
7194 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7195 | { |
7196 | struct symbol *sym; | |
7197 | ||
7198 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
7199 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
7200 | return sym; | |
7201 | ||
7202 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
7203 | return sym; | |
14f9c5c9 AS |
7204 | } |
7205 | ||
dddfab26 UW |
7206 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7207 | solely for types defined by debug info, it will not search the GDB | |
7208 | primitive types. */ | |
4c4b4cd2 | 7209 | |
852dff6c | 7210 | static struct type * |
ebf56fd3 | 7211 | ada_find_any_type (const char *name) |
14f9c5c9 | 7212 | { |
852dff6c | 7213 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7214 | |
14f9c5c9 | 7215 | if (sym != NULL) |
dddfab26 | 7216 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7217 | |
dddfab26 | 7218 | return NULL; |
14f9c5c9 AS |
7219 | } |
7220 | ||
739593e0 JB |
7221 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7222 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7223 | symbol, in which case it is returned. Otherwise, this looks for | |
7224 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7225 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7226 | |
7227 | struct symbol * | |
270140bd | 7228 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7229 | { |
739593e0 | 7230 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7231 | struct symbol *sym; |
7232 | ||
739593e0 JB |
7233 | if (strstr (name, "___XR") != NULL) |
7234 | return name_sym; | |
7235 | ||
aeb5907d JB |
7236 | sym = find_old_style_renaming_symbol (name, block); |
7237 | ||
7238 | if (sym != NULL) | |
7239 | return sym; | |
7240 | ||
0963b4bd | 7241 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7242 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7243 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7244 | return sym; | |
7245 | else | |
7246 | return NULL; | |
7247 | } | |
7248 | ||
7249 | static struct symbol * | |
270140bd | 7250 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7251 | { |
7f0df278 | 7252 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7253 | char *rename; |
7254 | ||
7255 | if (function_sym != NULL) | |
7256 | { | |
7257 | /* If the symbol is defined inside a function, NAME is not fully | |
7258 | qualified. This means we need to prepend the function name | |
7259 | as well as adding the ``___XR'' suffix to build the name of | |
7260 | the associated renaming symbol. */ | |
0d5cff50 | 7261 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7262 | /* Function names sometimes contain suffixes used |
7263 | for instance to qualify nested subprograms. When building | |
7264 | the XR type name, we need to make sure that this suffix is | |
7265 | not included. So do not include any suffix in the function | |
7266 | name length below. */ | |
69fadcdf | 7267 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7268 | const int rename_len = function_name_len + 2 /* "__" */ |
7269 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7270 | |
529cad9c | 7271 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7272 | ada_remove_trailing_digits (function_name, &function_name_len); |
7273 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7274 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7275 | |
4c4b4cd2 PH |
7276 | /* Library-level functions are a special case, as GNAT adds |
7277 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7278 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7279 | have this prefix, so we need to skip this prefix if present. */ |
7280 | if (function_name_len > 5 /* "_ada_" */ | |
7281 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7282 | { |
7283 | function_name += 5; | |
7284 | function_name_len -= 5; | |
7285 | } | |
4c4b4cd2 PH |
7286 | |
7287 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7288 | strncpy (rename, function_name, function_name_len); |
7289 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7290 | "__%s___XR", name); | |
4c4b4cd2 PH |
7291 | } |
7292 | else | |
7293 | { | |
7294 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7295 | |
4c4b4cd2 | 7296 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7297 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7298 | } |
7299 | ||
852dff6c | 7300 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7301 | } |
7302 | ||
14f9c5c9 | 7303 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7304 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7305 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7306 | otherwise return 0. */ |
7307 | ||
14f9c5c9 | 7308 | int |
d2e4a39e | 7309 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7310 | { |
7311 | if (type1 == NULL) | |
7312 | return 1; | |
7313 | else if (type0 == NULL) | |
7314 | return 0; | |
7315 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7316 | return 1; | |
7317 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7318 | return 0; | |
4c4b4cd2 PH |
7319 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7320 | return 1; | |
ad82864c | 7321 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7322 | return 1; |
4c4b4cd2 PH |
7323 | else if (ada_is_array_descriptor_type (type0) |
7324 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7325 | return 1; |
aeb5907d JB |
7326 | else |
7327 | { | |
7328 | const char *type0_name = type_name_no_tag (type0); | |
7329 | const char *type1_name = type_name_no_tag (type1); | |
7330 | ||
7331 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7332 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7333 | return 1; | |
7334 | } | |
14f9c5c9 AS |
7335 | return 0; |
7336 | } | |
7337 | ||
7338 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7339 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7340 | ||
0d5cff50 | 7341 | const char * |
d2e4a39e | 7342 | ada_type_name (struct type *type) |
14f9c5c9 | 7343 | { |
d2e4a39e | 7344 | if (type == NULL) |
14f9c5c9 AS |
7345 | return NULL; |
7346 | else if (TYPE_NAME (type) != NULL) | |
7347 | return TYPE_NAME (type); | |
7348 | else | |
7349 | return TYPE_TAG_NAME (type); | |
7350 | } | |
7351 | ||
b4ba55a1 JB |
7352 | /* Search the list of "descriptive" types associated to TYPE for a type |
7353 | whose name is NAME. */ | |
7354 | ||
7355 | static struct type * | |
7356 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7357 | { | |
7358 | struct type *result; | |
7359 | ||
7360 | /* If there no descriptive-type info, then there is no parallel type | |
7361 | to be found. */ | |
7362 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7363 | return NULL; | |
7364 | ||
7365 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7366 | while (result != NULL) | |
7367 | { | |
0d5cff50 | 7368 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7369 | |
7370 | if (result_name == NULL) | |
7371 | { | |
7372 | warning (_("unexpected null name on descriptive type")); | |
7373 | return NULL; | |
7374 | } | |
7375 | ||
7376 | /* If the names match, stop. */ | |
7377 | if (strcmp (result_name, name) == 0) | |
7378 | break; | |
7379 | ||
7380 | /* Otherwise, look at the next item on the list, if any. */ | |
7381 | if (HAVE_GNAT_AUX_INFO (result)) | |
7382 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7383 | else | |
7384 | result = NULL; | |
7385 | } | |
7386 | ||
7387 | /* If we didn't find a match, see whether this is a packed array. With | |
7388 | older compilers, the descriptive type information is either absent or | |
7389 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7390 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7391 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7392 | return ada_find_any_type (name); |
7393 | ||
7394 | return result; | |
7395 | } | |
7396 | ||
7397 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7398 | descriptive type taken from the debugging information, if available, | |
7399 | and otherwise using the (slower) name-based method. */ | |
7400 | ||
7401 | static struct type * | |
7402 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7403 | { | |
7404 | struct type *result = NULL; | |
7405 | ||
7406 | if (HAVE_GNAT_AUX_INFO (type)) | |
7407 | result = find_parallel_type_by_descriptive_type (type, name); | |
7408 | else | |
7409 | result = ada_find_any_type (name); | |
7410 | ||
7411 | return result; | |
7412 | } | |
7413 | ||
7414 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7415 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7416 | |
d2e4a39e | 7417 | struct type * |
ebf56fd3 | 7418 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7419 | { |
0d5cff50 DE |
7420 | char *name; |
7421 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7422 | int len; |
d2e4a39e | 7423 | |
14f9c5c9 AS |
7424 | if (typename == NULL) |
7425 | return NULL; | |
7426 | ||
7427 | len = strlen (typename); | |
7428 | ||
b4ba55a1 | 7429 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7430 | |
7431 | strcpy (name, typename); | |
7432 | strcpy (name + len, suffix); | |
7433 | ||
b4ba55a1 | 7434 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7435 | } |
7436 | ||
14f9c5c9 | 7437 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7438 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7439 | |
d2e4a39e AS |
7440 | static struct type * |
7441 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7442 | { |
61ee279c | 7443 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7444 | |
7445 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7446 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7447 | return NULL; |
d2e4a39e | 7448 | else |
14f9c5c9 AS |
7449 | { |
7450 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7451 | |
4c4b4cd2 PH |
7452 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7453 | return type; | |
14f9c5c9 | 7454 | else |
4c4b4cd2 | 7455 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7456 | } |
7457 | } | |
7458 | ||
7459 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7460 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7461 | |
d2e4a39e AS |
7462 | static int |
7463 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7464 | { |
7465 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7466 | |
d2e4a39e | 7467 | return name != NULL |
14f9c5c9 AS |
7468 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7469 | && strstr (name, "___XVL") != NULL; | |
7470 | } | |
7471 | ||
4c4b4cd2 PH |
7472 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7473 | represent a variant record type. */ | |
14f9c5c9 | 7474 | |
d2e4a39e | 7475 | static int |
4c4b4cd2 | 7476 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7477 | { |
7478 | int f; | |
7479 | ||
4c4b4cd2 PH |
7480 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7481 | return -1; | |
7482 | ||
7483 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7484 | { | |
7485 | if (ada_is_variant_part (type, f)) | |
7486 | return f; | |
7487 | } | |
7488 | return -1; | |
14f9c5c9 AS |
7489 | } |
7490 | ||
4c4b4cd2 PH |
7491 | /* A record type with no fields. */ |
7492 | ||
d2e4a39e | 7493 | static struct type * |
e9bb382b | 7494 | empty_record (struct type *template) |
14f9c5c9 | 7495 | { |
e9bb382b | 7496 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7497 | |
14f9c5c9 AS |
7498 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7499 | TYPE_NFIELDS (type) = 0; | |
7500 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7501 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7502 | TYPE_NAME (type) = "<empty>"; |
7503 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7504 | TYPE_LENGTH (type) = 0; |
7505 | return type; | |
7506 | } | |
7507 | ||
7508 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7509 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7510 | the beginning of this section) VAL according to GNAT conventions. | |
7511 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7512 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7513 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7514 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7515 | of the variant. |
14f9c5c9 | 7516 | |
4c4b4cd2 PH |
7517 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7518 | length are not statically known are discarded. As a consequence, | |
7519 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7520 | ||
7521 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7522 | variants occupy whole numbers of bytes. However, they need not be | |
7523 | byte-aligned. */ | |
7524 | ||
7525 | struct type * | |
10a2c479 | 7526 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7527 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7528 | CORE_ADDR address, struct value *dval0, |
7529 | int keep_dynamic_fields) | |
14f9c5c9 | 7530 | { |
d2e4a39e AS |
7531 | struct value *mark = value_mark (); |
7532 | struct value *dval; | |
7533 | struct type *rtype; | |
14f9c5c9 | 7534 | int nfields, bit_len; |
4c4b4cd2 | 7535 | int variant_field; |
14f9c5c9 | 7536 | long off; |
d94e4f4f | 7537 | int fld_bit_len; |
14f9c5c9 AS |
7538 | int f; |
7539 | ||
4c4b4cd2 PH |
7540 | /* Compute the number of fields in this record type that are going |
7541 | to be processed: unless keep_dynamic_fields, this includes only | |
7542 | fields whose position and length are static will be processed. */ | |
7543 | if (keep_dynamic_fields) | |
7544 | nfields = TYPE_NFIELDS (type); | |
7545 | else | |
7546 | { | |
7547 | nfields = 0; | |
76a01679 | 7548 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7549 | && !ada_is_variant_part (type, nfields) |
7550 | && !is_dynamic_field (type, nfields)) | |
7551 | nfields++; | |
7552 | } | |
7553 | ||
e9bb382b | 7554 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7555 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7556 | INIT_CPLUS_SPECIFIC (rtype); | |
7557 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7558 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7559 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7560 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7561 | TYPE_NAME (rtype) = ada_type_name (type); | |
7562 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7563 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7564 | |
d2e4a39e AS |
7565 | off = 0; |
7566 | bit_len = 0; | |
4c4b4cd2 PH |
7567 | variant_field = -1; |
7568 | ||
14f9c5c9 AS |
7569 | for (f = 0; f < nfields; f += 1) |
7570 | { | |
6c038f32 PH |
7571 | off = align_value (off, field_alignment (type, f)) |
7572 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7573 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7574 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7575 | |
d2e4a39e | 7576 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7577 | { |
7578 | variant_field = f; | |
d94e4f4f | 7579 | fld_bit_len = 0; |
4c4b4cd2 | 7580 | } |
14f9c5c9 | 7581 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7582 | { |
284614f0 JB |
7583 | const gdb_byte *field_valaddr = valaddr; |
7584 | CORE_ADDR field_address = address; | |
7585 | struct type *field_type = | |
7586 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7587 | ||
4c4b4cd2 | 7588 | if (dval0 == NULL) |
b5304971 JG |
7589 | { |
7590 | /* rtype's length is computed based on the run-time | |
7591 | value of discriminants. If the discriminants are not | |
7592 | initialized, the type size may be completely bogus and | |
0963b4bd | 7593 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7594 | size first before creating the value. */ |
7595 | check_size (rtype); | |
7596 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7597 | } | |
4c4b4cd2 PH |
7598 | else |
7599 | dval = dval0; | |
7600 | ||
284614f0 JB |
7601 | /* If the type referenced by this field is an aligner type, we need |
7602 | to unwrap that aligner type, because its size might not be set. | |
7603 | Keeping the aligner type would cause us to compute the wrong | |
7604 | size for this field, impacting the offset of the all the fields | |
7605 | that follow this one. */ | |
7606 | if (ada_is_aligner_type (field_type)) | |
7607 | { | |
7608 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7609 | ||
7610 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7611 | field_address = cond_offset_target (field_address, field_offset); | |
7612 | field_type = ada_aligned_type (field_type); | |
7613 | } | |
7614 | ||
7615 | field_valaddr = cond_offset_host (field_valaddr, | |
7616 | off / TARGET_CHAR_BIT); | |
7617 | field_address = cond_offset_target (field_address, | |
7618 | off / TARGET_CHAR_BIT); | |
7619 | ||
7620 | /* Get the fixed type of the field. Note that, in this case, | |
7621 | we do not want to get the real type out of the tag: if | |
7622 | the current field is the parent part of a tagged record, | |
7623 | we will get the tag of the object. Clearly wrong: the real | |
7624 | type of the parent is not the real type of the child. We | |
7625 | would end up in an infinite loop. */ | |
7626 | field_type = ada_get_base_type (field_type); | |
7627 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7628 | field_address, dval, 0); | |
27f2a97b JB |
7629 | /* If the field size is already larger than the maximum |
7630 | object size, then the record itself will necessarily | |
7631 | be larger than the maximum object size. We need to make | |
7632 | this check now, because the size might be so ridiculously | |
7633 | large (due to an uninitialized variable in the inferior) | |
7634 | that it would cause an overflow when adding it to the | |
7635 | record size. */ | |
7636 | check_size (field_type); | |
284614f0 JB |
7637 | |
7638 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7639 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7640 | /* The multiplication can potentially overflow. But because |
7641 | the field length has been size-checked just above, and | |
7642 | assuming that the maximum size is a reasonable value, | |
7643 | an overflow should not happen in practice. So rather than | |
7644 | adding overflow recovery code to this already complex code, | |
7645 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7646 | fld_bit_len = |
4c4b4cd2 PH |
7647 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7648 | } | |
14f9c5c9 | 7649 | else |
4c4b4cd2 | 7650 | { |
5ded5331 JB |
7651 | /* Note: If this field's type is a typedef, it is important |
7652 | to preserve the typedef layer. | |
7653 | ||
7654 | Otherwise, we might be transforming a typedef to a fat | |
7655 | pointer (encoding a pointer to an unconstrained array), | |
7656 | into a basic fat pointer (encoding an unconstrained | |
7657 | array). As both types are implemented using the same | |
7658 | structure, the typedef is the only clue which allows us | |
7659 | to distinguish between the two options. Stripping it | |
7660 | would prevent us from printing this field appropriately. */ | |
7661 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
7662 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7663 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7664 | fld_bit_len = |
4c4b4cd2 PH |
7665 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7666 | else | |
5ded5331 JB |
7667 | { |
7668 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
7669 | ||
7670 | /* We need to be careful of typedefs when computing | |
7671 | the length of our field. If this is a typedef, | |
7672 | get the length of the target type, not the length | |
7673 | of the typedef. */ | |
7674 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7675 | field_type = ada_typedef_target_type (field_type); | |
7676 | ||
7677 | fld_bit_len = | |
7678 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
7679 | } | |
4c4b4cd2 | 7680 | } |
14f9c5c9 | 7681 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7682 | bit_len = off + fld_bit_len; |
d94e4f4f | 7683 | off += fld_bit_len; |
4c4b4cd2 PH |
7684 | TYPE_LENGTH (rtype) = |
7685 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7686 | } |
4c4b4cd2 PH |
7687 | |
7688 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7689 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7690 | the record. This can happen in the presence of representation |
7691 | clauses. */ | |
7692 | if (variant_field >= 0) | |
7693 | { | |
7694 | struct type *branch_type; | |
7695 | ||
7696 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7697 | ||
7698 | if (dval0 == NULL) | |
7699 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7700 | else | |
7701 | dval = dval0; | |
7702 | ||
7703 | branch_type = | |
7704 | to_fixed_variant_branch_type | |
7705 | (TYPE_FIELD_TYPE (type, variant_field), | |
7706 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7707 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7708 | if (branch_type == NULL) | |
7709 | { | |
7710 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7711 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7712 | TYPE_NFIELDS (rtype) -= 1; | |
7713 | } | |
7714 | else | |
7715 | { | |
7716 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7717 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7718 | fld_bit_len = | |
7719 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7720 | TARGET_CHAR_BIT; | |
7721 | if (off + fld_bit_len > bit_len) | |
7722 | bit_len = off + fld_bit_len; | |
7723 | TYPE_LENGTH (rtype) = | |
7724 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7725 | } | |
7726 | } | |
7727 | ||
714e53ab PH |
7728 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7729 | should contain the alignment of that record, which should be a strictly | |
7730 | positive value. If null or negative, then something is wrong, most | |
7731 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7732 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7733 | the current RTYPE length might be good enough for our purposes. */ |
7734 | if (TYPE_LENGTH (type) <= 0) | |
7735 | { | |
323e0a4a AC |
7736 | if (TYPE_NAME (rtype)) |
7737 | warning (_("Invalid type size for `%s' detected: %d."), | |
7738 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7739 | else | |
7740 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7741 | TYPE_LENGTH (type)); | |
714e53ab PH |
7742 | } |
7743 | else | |
7744 | { | |
7745 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7746 | TYPE_LENGTH (type)); | |
7747 | } | |
14f9c5c9 AS |
7748 | |
7749 | value_free_to_mark (mark); | |
d2e4a39e | 7750 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7751 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7752 | return rtype; |
7753 | } | |
7754 | ||
4c4b4cd2 PH |
7755 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7756 | of 1. */ | |
14f9c5c9 | 7757 | |
d2e4a39e | 7758 | static struct type * |
fc1a4b47 | 7759 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7760 | CORE_ADDR address, struct value *dval0) |
7761 | { | |
7762 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7763 | address, dval0, 1); | |
7764 | } | |
7765 | ||
7766 | /* An ordinary record type in which ___XVL-convention fields and | |
7767 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7768 | static approximations, containing all possible fields. Uses | |
7769 | no runtime values. Useless for use in values, but that's OK, | |
7770 | since the results are used only for type determinations. Works on both | |
7771 | structs and unions. Representation note: to save space, we memorize | |
7772 | the result of this function in the TYPE_TARGET_TYPE of the | |
7773 | template type. */ | |
7774 | ||
7775 | static struct type * | |
7776 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7777 | { |
7778 | struct type *type; | |
7779 | int nfields; | |
7780 | int f; | |
7781 | ||
4c4b4cd2 PH |
7782 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7783 | return TYPE_TARGET_TYPE (type0); | |
7784 | ||
7785 | nfields = TYPE_NFIELDS (type0); | |
7786 | type = type0; | |
14f9c5c9 AS |
7787 | |
7788 | for (f = 0; f < nfields; f += 1) | |
7789 | { | |
61ee279c | 7790 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7791 | struct type *new_type; |
14f9c5c9 | 7792 | |
4c4b4cd2 PH |
7793 | if (is_dynamic_field (type0, f)) |
7794 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7795 | else |
f192137b | 7796 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7797 | if (type == type0 && new_type != field_type) |
7798 | { | |
e9bb382b | 7799 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7800 | TYPE_CODE (type) = TYPE_CODE (type0); |
7801 | INIT_CPLUS_SPECIFIC (type); | |
7802 | TYPE_NFIELDS (type) = nfields; | |
7803 | TYPE_FIELDS (type) = (struct field *) | |
7804 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7805 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7806 | sizeof (struct field) * nfields); | |
7807 | TYPE_NAME (type) = ada_type_name (type0); | |
7808 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7809 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7810 | TYPE_LENGTH (type) = 0; |
7811 | } | |
7812 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7813 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7814 | } |
14f9c5c9 AS |
7815 | return type; |
7816 | } | |
7817 | ||
4c4b4cd2 | 7818 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7819 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7820 | which should be a non-dynamic-sized record, in which the variant | |
7821 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7822 | for discriminant values in DVAL0, which can be NULL if the record |
7823 | contains the necessary discriminant values. */ | |
7824 | ||
d2e4a39e | 7825 | static struct type * |
fc1a4b47 | 7826 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7827 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7828 | { |
d2e4a39e | 7829 | struct value *mark = value_mark (); |
4c4b4cd2 | 7830 | struct value *dval; |
d2e4a39e | 7831 | struct type *rtype; |
14f9c5c9 AS |
7832 | struct type *branch_type; |
7833 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7834 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7835 | |
4c4b4cd2 | 7836 | if (variant_field == -1) |
14f9c5c9 AS |
7837 | return type; |
7838 | ||
4c4b4cd2 PH |
7839 | if (dval0 == NULL) |
7840 | dval = value_from_contents_and_address (type, valaddr, address); | |
7841 | else | |
7842 | dval = dval0; | |
7843 | ||
e9bb382b | 7844 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7845 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7846 | INIT_CPLUS_SPECIFIC (rtype); |
7847 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7848 | TYPE_FIELDS (rtype) = |
7849 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7850 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7851 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7852 | TYPE_NAME (rtype) = ada_type_name (type); |
7853 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7854 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7855 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7856 | ||
4c4b4cd2 PH |
7857 | branch_type = to_fixed_variant_branch_type |
7858 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7859 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7860 | TYPE_FIELD_BITPOS (type, variant_field) |
7861 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7862 | cond_offset_target (address, |
4c4b4cd2 PH |
7863 | TYPE_FIELD_BITPOS (type, variant_field) |
7864 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7865 | if (branch_type == NULL) |
14f9c5c9 | 7866 | { |
4c4b4cd2 | 7867 | int f; |
5b4ee69b | 7868 | |
4c4b4cd2 PH |
7869 | for (f = variant_field + 1; f < nfields; f += 1) |
7870 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7871 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7872 | } |
7873 | else | |
7874 | { | |
4c4b4cd2 PH |
7875 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7876 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7877 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7878 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7879 | } |
4c4b4cd2 | 7880 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7881 | |
4c4b4cd2 | 7882 | value_free_to_mark (mark); |
14f9c5c9 AS |
7883 | return rtype; |
7884 | } | |
7885 | ||
7886 | /* An ordinary record type (with fixed-length fields) that describes | |
7887 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7888 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7889 | should be in DVAL, a record value; it may be NULL if the object |
7890 | at ADDR itself contains any necessary discriminant values. | |
7891 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7892 | values from the record are needed. Except in the case that DVAL, | |
7893 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7894 | unchecked) is replaced by a particular branch of the variant. | |
7895 | ||
7896 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7897 | is questionable and may be removed. It can arise during the | |
7898 | processing of an unconstrained-array-of-record type where all the | |
7899 | variant branches have exactly the same size. This is because in | |
7900 | such cases, the compiler does not bother to use the XVS convention | |
7901 | when encoding the record. I am currently dubious of this | |
7902 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7903 | |
d2e4a39e | 7904 | static struct type * |
fc1a4b47 | 7905 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7906 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7907 | { |
d2e4a39e | 7908 | struct type *templ_type; |
14f9c5c9 | 7909 | |
876cecd0 | 7910 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7911 | return type0; |
7912 | ||
d2e4a39e | 7913 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7914 | |
7915 | if (templ_type != NULL) | |
7916 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7917 | else if (variant_field_index (type0) >= 0) |
7918 | { | |
7919 | if (dval == NULL && valaddr == NULL && address == 0) | |
7920 | return type0; | |
7921 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7922 | dval); | |
7923 | } | |
14f9c5c9 AS |
7924 | else |
7925 | { | |
876cecd0 | 7926 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7927 | return type0; |
7928 | } | |
7929 | ||
7930 | } | |
7931 | ||
7932 | /* An ordinary record type (with fixed-length fields) that describes | |
7933 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7934 | union type. Any necessary discriminants' values should be in DVAL, | |
7935 | a record value. That is, this routine selects the appropriate | |
7936 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7937 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7938 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7939 | |
d2e4a39e | 7940 | static struct type * |
fc1a4b47 | 7941 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7942 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7943 | { |
7944 | int which; | |
d2e4a39e AS |
7945 | struct type *templ_type; |
7946 | struct type *var_type; | |
14f9c5c9 AS |
7947 | |
7948 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7949 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7950 | else |
14f9c5c9 AS |
7951 | var_type = var_type0; |
7952 | ||
7953 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7954 | ||
7955 | if (templ_type != NULL) | |
7956 | var_type = templ_type; | |
7957 | ||
b1f33ddd JB |
7958 | if (is_unchecked_variant (var_type, value_type (dval))) |
7959 | return var_type0; | |
d2e4a39e AS |
7960 | which = |
7961 | ada_which_variant_applies (var_type, | |
0fd88904 | 7962 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7963 | |
7964 | if (which < 0) | |
e9bb382b | 7965 | return empty_record (var_type); |
14f9c5c9 | 7966 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7967 | return to_fixed_record_type |
d2e4a39e AS |
7968 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7969 | valaddr, address, dval); | |
4c4b4cd2 | 7970 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7971 | return |
7972 | to_fixed_record_type | |
7973 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7974 | else |
7975 | return TYPE_FIELD_TYPE (var_type, which); | |
7976 | } | |
7977 | ||
7978 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7979 | at ADDR, and that DVAL describes a record containing any | |
7980 | discriminants used in TYPE0, returns a type for the value that | |
7981 | contains no dynamic components (that is, no components whose sizes | |
7982 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7983 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7984 | varsize_limit. */ |
14f9c5c9 | 7985 | |
d2e4a39e AS |
7986 | static struct type * |
7987 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7988 | int ignore_too_big) |
14f9c5c9 | 7989 | { |
d2e4a39e AS |
7990 | struct type *index_type_desc; |
7991 | struct type *result; | |
ad82864c | 7992 | int constrained_packed_array_p; |
14f9c5c9 | 7993 | |
b0dd7688 | 7994 | type0 = ada_check_typedef (type0); |
284614f0 | 7995 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7996 | return type0; |
14f9c5c9 | 7997 | |
ad82864c JB |
7998 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7999 | if (constrained_packed_array_p) | |
8000 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8001 | |
14f9c5c9 | 8002 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 8003 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
8004 | if (index_type_desc == NULL) |
8005 | { | |
61ee279c | 8006 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8007 | |
14f9c5c9 | 8008 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8009 | depend on the contents of the array in properly constructed |
8010 | debugging data. */ | |
529cad9c PH |
8011 | /* Create a fixed version of the array element type. |
8012 | We're not providing the address of an element here, | |
e1d5a0d2 | 8013 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8014 | the conversion. This should not be a problem, since arrays of |
8015 | unconstrained objects are not allowed. In particular, all | |
8016 | the elements of an array of a tagged type should all be of | |
8017 | the same type specified in the debugging info. No need to | |
8018 | consult the object tag. */ | |
1ed6ede0 | 8019 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8020 | |
284614f0 JB |
8021 | /* Make sure we always create a new array type when dealing with |
8022 | packed array types, since we're going to fix-up the array | |
8023 | type length and element bitsize a little further down. */ | |
ad82864c | 8024 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8025 | result = type0; |
14f9c5c9 | 8026 | else |
e9bb382b | 8027 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8028 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8029 | } |
8030 | else | |
8031 | { | |
8032 | int i; | |
8033 | struct type *elt_type0; | |
8034 | ||
8035 | elt_type0 = type0; | |
8036 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8037 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8038 | |
8039 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8040 | depend on the contents of the array in properly constructed |
8041 | debugging data. */ | |
529cad9c PH |
8042 | /* Create a fixed version of the array element type. |
8043 | We're not providing the address of an element here, | |
e1d5a0d2 | 8044 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8045 | the conversion. This should not be a problem, since arrays of |
8046 | unconstrained objects are not allowed. In particular, all | |
8047 | the elements of an array of a tagged type should all be of | |
8048 | the same type specified in the debugging info. No need to | |
8049 | consult the object tag. */ | |
1ed6ede0 JB |
8050 | result = |
8051 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8052 | |
8053 | elt_type0 = type0; | |
14f9c5c9 | 8054 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8055 | { |
8056 | struct type *range_type = | |
28c85d6c | 8057 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8058 | |
e9bb382b | 8059 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8060 | result, range_type); |
1ce677a4 | 8061 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8062 | } |
d2e4a39e | 8063 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8064 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8065 | } |
8066 | ||
2e6fda7d JB |
8067 | /* We want to preserve the type name. This can be useful when |
8068 | trying to get the type name of a value that has already been | |
8069 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8070 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8071 | ||
ad82864c | 8072 | if (constrained_packed_array_p) |
284614f0 JB |
8073 | { |
8074 | /* So far, the resulting type has been created as if the original | |
8075 | type was a regular (non-packed) array type. As a result, the | |
8076 | bitsize of the array elements needs to be set again, and the array | |
8077 | length needs to be recomputed based on that bitsize. */ | |
8078 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8079 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8080 | ||
8081 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8082 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8083 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8084 | TYPE_LENGTH (result)++; | |
8085 | } | |
8086 | ||
876cecd0 | 8087 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8088 | return result; |
d2e4a39e | 8089 | } |
14f9c5c9 AS |
8090 | |
8091 | ||
8092 | /* A standard type (containing no dynamically sized components) | |
8093 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8094 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8095 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8096 | ADDRESS or in VALADDR contains these discriminants. |
8097 | ||
1ed6ede0 JB |
8098 | If CHECK_TAG is not null, in the case of tagged types, this function |
8099 | attempts to locate the object's tag and use it to compute the actual | |
8100 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8101 | location of the tag, and therefore compute the tagged type's actual type. | |
8102 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8103 | |
f192137b JB |
8104 | static struct type * |
8105 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8106 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8107 | { |
61ee279c | 8108 | type = ada_check_typedef (type); |
d2e4a39e AS |
8109 | switch (TYPE_CODE (type)) |
8110 | { | |
8111 | default: | |
14f9c5c9 | 8112 | return type; |
d2e4a39e | 8113 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8114 | { |
76a01679 | 8115 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8116 | struct type *fixed_record_type = |
8117 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8118 | |
529cad9c PH |
8119 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8120 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8121 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8122 | type (the parent part of the record may have dynamic fields |
8123 | and the way the location of _tag is expressed may depend on | |
8124 | them). */ | |
529cad9c | 8125 | |
1ed6ede0 | 8126 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8127 | { |
b50d69b5 JG |
8128 | struct value *tag = |
8129 | value_tag_from_contents_and_address | |
8130 | (fixed_record_type, | |
8131 | valaddr, | |
8132 | address); | |
8133 | struct type *real_type = type_from_tag (tag); | |
8134 | struct value *obj = | |
8135 | value_from_contents_and_address (fixed_record_type, | |
8136 | valaddr, | |
8137 | address); | |
76a01679 | 8138 | if (real_type != NULL) |
b50d69b5 JG |
8139 | return to_fixed_record_type |
8140 | (real_type, NULL, | |
8141 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8142 | } |
4af88198 JB |
8143 | |
8144 | /* Check to see if there is a parallel ___XVZ variable. | |
8145 | If there is, then it provides the actual size of our type. */ | |
8146 | else if (ada_type_name (fixed_record_type) != NULL) | |
8147 | { | |
0d5cff50 | 8148 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8149 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8150 | int xvz_found = 0; | |
8151 | LONGEST size; | |
8152 | ||
88c15c34 | 8153 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8154 | size = get_int_var_value (xvz_name, &xvz_found); |
8155 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8156 | { | |
8157 | fixed_record_type = copy_type (fixed_record_type); | |
8158 | TYPE_LENGTH (fixed_record_type) = size; | |
8159 | ||
8160 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8161 | observed this when the debugging info is STABS, and | |
8162 | apparently it is something that is hard to fix. | |
8163 | ||
8164 | In practice, we don't need the actual type definition | |
8165 | at all, because the presence of the XVZ variable allows us | |
8166 | to assume that there must be a XVS type as well, which we | |
8167 | should be able to use later, when we need the actual type | |
8168 | definition. | |
8169 | ||
8170 | In the meantime, pretend that the "fixed" type we are | |
8171 | returning is NOT a stub, because this can cause trouble | |
8172 | when using this type to create new types targeting it. | |
8173 | Indeed, the associated creation routines often check | |
8174 | whether the target type is a stub and will try to replace | |
0963b4bd | 8175 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8176 | might cause the new type to have the wrong size too. |
8177 | Consider the case of an array, for instance, where the size | |
8178 | of the array is computed from the number of elements in | |
8179 | our array multiplied by the size of its element. */ | |
8180 | TYPE_STUB (fixed_record_type) = 0; | |
8181 | } | |
8182 | } | |
1ed6ede0 | 8183 | return fixed_record_type; |
4c4b4cd2 | 8184 | } |
d2e4a39e | 8185 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8186 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8187 | case TYPE_CODE_UNION: |
8188 | if (dval == NULL) | |
4c4b4cd2 | 8189 | return type; |
d2e4a39e | 8190 | else |
4c4b4cd2 | 8191 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8192 | } |
14f9c5c9 AS |
8193 | } |
8194 | ||
f192137b JB |
8195 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8196 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8197 | |
8198 | The typedef layer needs be preserved in order to differentiate between | |
8199 | arrays and array pointers when both types are implemented using the same | |
8200 | fat pointer. In the array pointer case, the pointer is encoded as | |
8201 | a typedef of the pointer type. For instance, considering: | |
8202 | ||
8203 | type String_Access is access String; | |
8204 | S1 : String_Access := null; | |
8205 | ||
8206 | To the debugger, S1 is defined as a typedef of type String. But | |
8207 | to the user, it is a pointer. So if the user tries to print S1, | |
8208 | we should not dereference the array, but print the array address | |
8209 | instead. | |
8210 | ||
8211 | If we didn't preserve the typedef layer, we would lose the fact that | |
8212 | the type is to be presented as a pointer (needs de-reference before | |
8213 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8214 | |
8215 | struct type * | |
8216 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8217 | CORE_ADDR address, struct value *dval, int check_tag) | |
8218 | ||
8219 | { | |
8220 | struct type *fixed_type = | |
8221 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8222 | ||
96dbd2c1 JB |
8223 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8224 | then preserve the typedef layer. | |
8225 | ||
8226 | Implementation note: We can only check the main-type portion of | |
8227 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8228 | from TYPE now returns a type that has the same instance flags | |
8229 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8230 | target type is a "struct", then the typedef elimination will return | |
8231 | a "const" version of the target type. See check_typedef for more | |
8232 | details about how the typedef layer elimination is done. | |
8233 | ||
8234 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8235 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8236 | Perhaps, we could add a check for that and preserve the typedef layer | |
8237 | only in that situation. But this seems unecessary so far, probably | |
8238 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8239 | */ | |
f192137b | 8240 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8241 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8242 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8243 | return type; |
8244 | ||
8245 | return fixed_type; | |
8246 | } | |
8247 | ||
14f9c5c9 | 8248 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8249 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8250 | |
d2e4a39e AS |
8251 | static struct type * |
8252 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8253 | { |
d2e4a39e | 8254 | struct type *type; |
14f9c5c9 AS |
8255 | |
8256 | if (type0 == NULL) | |
8257 | return NULL; | |
8258 | ||
876cecd0 | 8259 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8260 | return type0; |
8261 | ||
61ee279c | 8262 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8263 | |
14f9c5c9 AS |
8264 | switch (TYPE_CODE (type0)) |
8265 | { | |
8266 | default: | |
8267 | return type0; | |
8268 | case TYPE_CODE_STRUCT: | |
8269 | type = dynamic_template_type (type0); | |
d2e4a39e | 8270 | if (type != NULL) |
4c4b4cd2 PH |
8271 | return template_to_static_fixed_type (type); |
8272 | else | |
8273 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8274 | case TYPE_CODE_UNION: |
8275 | type = ada_find_parallel_type (type0, "___XVU"); | |
8276 | if (type != NULL) | |
4c4b4cd2 PH |
8277 | return template_to_static_fixed_type (type); |
8278 | else | |
8279 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8280 | } |
8281 | } | |
8282 | ||
4c4b4cd2 PH |
8283 | /* A static approximation of TYPE with all type wrappers removed. */ |
8284 | ||
d2e4a39e AS |
8285 | static struct type * |
8286 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8287 | { |
8288 | if (ada_is_aligner_type (type)) | |
8289 | { | |
61ee279c | 8290 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8291 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8292 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8293 | |
8294 | return static_unwrap_type (type1); | |
8295 | } | |
d2e4a39e | 8296 | else |
14f9c5c9 | 8297 | { |
d2e4a39e | 8298 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8299 | |
d2e4a39e | 8300 | if (raw_real_type == type) |
4c4b4cd2 | 8301 | return type; |
14f9c5c9 | 8302 | else |
4c4b4cd2 | 8303 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8304 | } |
8305 | } | |
8306 | ||
8307 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8308 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8309 | type Foo; |
8310 | type FooP is access Foo; | |
8311 | V: FooP; | |
8312 | type Foo is array ...; | |
4c4b4cd2 | 8313 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8314 | cross-references to such types, we instead substitute for FooP a |
8315 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8316 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8317 | |
8318 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8319 | exists, otherwise TYPE. */ |
8320 | ||
d2e4a39e | 8321 | struct type * |
61ee279c | 8322 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8323 | { |
727e3d2e JB |
8324 | if (type == NULL) |
8325 | return NULL; | |
8326 | ||
720d1a40 JB |
8327 | /* If our type is a typedef type of a fat pointer, then we're done. |
8328 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8329 | what allows us to distinguish between fat pointers that represent | |
8330 | array types, and fat pointers that represent array access types | |
8331 | (in both cases, the compiler implements them as fat pointers). */ | |
8332 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8333 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8334 | return type; | |
8335 | ||
14f9c5c9 AS |
8336 | CHECK_TYPEDEF (type); |
8337 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8338 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8339 | || TYPE_TAG_NAME (type) == NULL) |
8340 | return type; | |
d2e4a39e | 8341 | else |
14f9c5c9 | 8342 | { |
0d5cff50 | 8343 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8344 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8345 | |
05e522ef JB |
8346 | if (type1 == NULL) |
8347 | return type; | |
8348 | ||
8349 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8350 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8351 | types, only for the typedef-to-array types). If that's the case, |
8352 | strip the typedef layer. */ | |
8353 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8354 | type1 = ada_check_typedef (type1); | |
8355 | ||
8356 | return type1; | |
14f9c5c9 AS |
8357 | } |
8358 | } | |
8359 | ||
8360 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8361 | type TYPE0, but with a standard (static-sized) type that correctly | |
8362 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8363 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8364 | creation of struct values]. */ |
14f9c5c9 | 8365 | |
4c4b4cd2 PH |
8366 | static struct value * |
8367 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8368 | struct value *val0) | |
14f9c5c9 | 8369 | { |
1ed6ede0 | 8370 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8371 | |
14f9c5c9 AS |
8372 | if (type == type0 && val0 != NULL) |
8373 | return val0; | |
d2e4a39e | 8374 | else |
4c4b4cd2 PH |
8375 | return value_from_contents_and_address (type, 0, address); |
8376 | } | |
8377 | ||
8378 | /* A value representing VAL, but with a standard (static-sized) type | |
8379 | that correctly describes it. Does not necessarily create a new | |
8380 | value. */ | |
8381 | ||
0c3acc09 | 8382 | struct value * |
4c4b4cd2 PH |
8383 | ada_to_fixed_value (struct value *val) |
8384 | { | |
c48db5ca JB |
8385 | val = unwrap_value (val); |
8386 | val = ada_to_fixed_value_create (value_type (val), | |
8387 | value_address (val), | |
8388 | val); | |
8389 | return val; | |
14f9c5c9 | 8390 | } |
d2e4a39e | 8391 | \f |
14f9c5c9 | 8392 | |
14f9c5c9 AS |
8393 | /* Attributes */ |
8394 | ||
4c4b4cd2 PH |
8395 | /* Table mapping attribute numbers to names. |
8396 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8397 | |
d2e4a39e | 8398 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8399 | "<?>", |
8400 | ||
d2e4a39e | 8401 | "first", |
14f9c5c9 AS |
8402 | "last", |
8403 | "length", | |
8404 | "image", | |
14f9c5c9 AS |
8405 | "max", |
8406 | "min", | |
4c4b4cd2 PH |
8407 | "modulus", |
8408 | "pos", | |
8409 | "size", | |
8410 | "tag", | |
14f9c5c9 | 8411 | "val", |
14f9c5c9 AS |
8412 | 0 |
8413 | }; | |
8414 | ||
d2e4a39e | 8415 | const char * |
4c4b4cd2 | 8416 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8417 | { |
4c4b4cd2 PH |
8418 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8419 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8420 | else |
8421 | return attribute_names[0]; | |
8422 | } | |
8423 | ||
4c4b4cd2 | 8424 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8425 | |
4c4b4cd2 PH |
8426 | static LONGEST |
8427 | pos_atr (struct value *arg) | |
14f9c5c9 | 8428 | { |
24209737 PH |
8429 | struct value *val = coerce_ref (arg); |
8430 | struct type *type = value_type (val); | |
14f9c5c9 | 8431 | |
d2e4a39e | 8432 | if (!discrete_type_p (type)) |
323e0a4a | 8433 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8434 | |
8435 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8436 | { | |
8437 | int i; | |
24209737 | 8438 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8439 | |
d2e4a39e | 8440 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8441 | { |
14e75d8e | 8442 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8443 | return i; |
8444 | } | |
323e0a4a | 8445 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8446 | } |
8447 | else | |
24209737 | 8448 | return value_as_long (val); |
4c4b4cd2 PH |
8449 | } |
8450 | ||
8451 | static struct value * | |
3cb382c9 | 8452 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8453 | { |
3cb382c9 | 8454 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8455 | } |
8456 | ||
4c4b4cd2 | 8457 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8458 | |
d2e4a39e AS |
8459 | static struct value * |
8460 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8461 | { |
d2e4a39e | 8462 | if (!discrete_type_p (type)) |
323e0a4a | 8463 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8464 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8465 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8466 | |
8467 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8468 | { | |
8469 | long pos = value_as_long (arg); | |
5b4ee69b | 8470 | |
14f9c5c9 | 8471 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8472 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8473 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8474 | } |
8475 | else | |
8476 | return value_from_longest (type, value_as_long (arg)); | |
8477 | } | |
14f9c5c9 | 8478 | \f |
d2e4a39e | 8479 | |
4c4b4cd2 | 8480 | /* Evaluation */ |
14f9c5c9 | 8481 | |
4c4b4cd2 PH |
8482 | /* True if TYPE appears to be an Ada character type. |
8483 | [At the moment, this is true only for Character and Wide_Character; | |
8484 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8485 | |
d2e4a39e AS |
8486 | int |
8487 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8488 | { |
7b9f71f2 JB |
8489 | const char *name; |
8490 | ||
8491 | /* If the type code says it's a character, then assume it really is, | |
8492 | and don't check any further. */ | |
8493 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8494 | return 1; | |
8495 | ||
8496 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8497 | with a known character type name. */ | |
8498 | name = ada_type_name (type); | |
8499 | return (name != NULL | |
8500 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8501 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8502 | && (strcmp (name, "character") == 0 | |
8503 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8504 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8505 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8506 | } |
8507 | ||
4c4b4cd2 | 8508 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8509 | |
8510 | int | |
ebf56fd3 | 8511 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8512 | { |
61ee279c | 8513 | type = ada_check_typedef (type); |
d2e4a39e | 8514 | if (type != NULL |
14f9c5c9 | 8515 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8516 | && (ada_is_simple_array_type (type) |
8517 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8518 | && ada_array_arity (type) == 1) |
8519 | { | |
8520 | struct type *elttype = ada_array_element_type (type, 1); | |
8521 | ||
8522 | return ada_is_character_type (elttype); | |
8523 | } | |
d2e4a39e | 8524 | else |
14f9c5c9 AS |
8525 | return 0; |
8526 | } | |
8527 | ||
5bf03f13 JB |
8528 | /* The compiler sometimes provides a parallel XVS type for a given |
8529 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8530 | but older versions of the compiler have a bug that causes the offset | |
8531 | of its "F" field to be wrong. Following that field in that case | |
8532 | would lead to incorrect results, but this can be worked around | |
8533 | by ignoring the PAD type and using the associated XVS type instead. | |
8534 | ||
8535 | Set to True if the debugger should trust the contents of PAD types. | |
8536 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8537 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8538 | |
8539 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8540 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8541 | distinctive name. */ |
14f9c5c9 AS |
8542 | |
8543 | int | |
ebf56fd3 | 8544 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8545 | { |
61ee279c | 8546 | type = ada_check_typedef (type); |
714e53ab | 8547 | |
5bf03f13 | 8548 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8549 | return 0; |
8550 | ||
14f9c5c9 | 8551 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8552 | && TYPE_NFIELDS (type) == 1 |
8553 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8554 | } |
8555 | ||
8556 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8557 | the parallel type. */ |
14f9c5c9 | 8558 | |
d2e4a39e AS |
8559 | struct type * |
8560 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8561 | { |
d2e4a39e AS |
8562 | struct type *real_type_namer; |
8563 | struct type *raw_real_type; | |
14f9c5c9 AS |
8564 | |
8565 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8566 | return raw_type; | |
8567 | ||
284614f0 JB |
8568 | if (ada_is_aligner_type (raw_type)) |
8569 | /* The encoding specifies that we should always use the aligner type. | |
8570 | So, even if this aligner type has an associated XVS type, we should | |
8571 | simply ignore it. | |
8572 | ||
8573 | According to the compiler gurus, an XVS type parallel to an aligner | |
8574 | type may exist because of a stabs limitation. In stabs, aligner | |
8575 | types are empty because the field has a variable-sized type, and | |
8576 | thus cannot actually be used as an aligner type. As a result, | |
8577 | we need the associated parallel XVS type to decode the type. | |
8578 | Since the policy in the compiler is to not change the internal | |
8579 | representation based on the debugging info format, we sometimes | |
8580 | end up having a redundant XVS type parallel to the aligner type. */ | |
8581 | return raw_type; | |
8582 | ||
14f9c5c9 | 8583 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8584 | if (real_type_namer == NULL |
14f9c5c9 AS |
8585 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8586 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8587 | return raw_type; | |
8588 | ||
f80d3ff2 JB |
8589 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8590 | { | |
8591 | /* This is an older encoding form where the base type needs to be | |
8592 | looked up by name. We prefer the newer enconding because it is | |
8593 | more efficient. */ | |
8594 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8595 | if (raw_real_type == NULL) | |
8596 | return raw_type; | |
8597 | else | |
8598 | return raw_real_type; | |
8599 | } | |
8600 | ||
8601 | /* The field in our XVS type is a reference to the base type. */ | |
8602 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8603 | } |
14f9c5c9 | 8604 | |
4c4b4cd2 | 8605 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8606 | |
d2e4a39e AS |
8607 | struct type * |
8608 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8609 | { |
8610 | if (ada_is_aligner_type (type)) | |
8611 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8612 | else | |
8613 | return ada_get_base_type (type); | |
8614 | } | |
8615 | ||
8616 | ||
8617 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8618 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8619 | |
fc1a4b47 AC |
8620 | const gdb_byte * |
8621 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8622 | { |
d2e4a39e | 8623 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8624 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8625 | valaddr + |
8626 | TYPE_FIELD_BITPOS (type, | |
8627 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8628 | else |
8629 | return valaddr; | |
8630 | } | |
8631 | ||
4c4b4cd2 PH |
8632 | |
8633 | ||
14f9c5c9 | 8634 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8635 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8636 | const char * |
8637 | ada_enum_name (const char *name) | |
14f9c5c9 | 8638 | { |
4c4b4cd2 PH |
8639 | static char *result; |
8640 | static size_t result_len = 0; | |
d2e4a39e | 8641 | char *tmp; |
14f9c5c9 | 8642 | |
4c4b4cd2 PH |
8643 | /* First, unqualify the enumeration name: |
8644 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8645 | all the preceding characters, the unqualified name starts |
76a01679 | 8646 | right after that dot. |
4c4b4cd2 | 8647 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8648 | translates dots into "__". Search forward for double underscores, |
8649 | but stop searching when we hit an overloading suffix, which is | |
8650 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8651 | |
c3e5cd34 PH |
8652 | tmp = strrchr (name, '.'); |
8653 | if (tmp != NULL) | |
4c4b4cd2 PH |
8654 | name = tmp + 1; |
8655 | else | |
14f9c5c9 | 8656 | { |
4c4b4cd2 PH |
8657 | while ((tmp = strstr (name, "__")) != NULL) |
8658 | { | |
8659 | if (isdigit (tmp[2])) | |
8660 | break; | |
8661 | else | |
8662 | name = tmp + 2; | |
8663 | } | |
14f9c5c9 AS |
8664 | } |
8665 | ||
8666 | if (name[0] == 'Q') | |
8667 | { | |
14f9c5c9 | 8668 | int v; |
5b4ee69b | 8669 | |
14f9c5c9 | 8670 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8671 | { |
8672 | if (sscanf (name + 2, "%x", &v) != 1) | |
8673 | return name; | |
8674 | } | |
14f9c5c9 | 8675 | else |
4c4b4cd2 | 8676 | return name; |
14f9c5c9 | 8677 | |
4c4b4cd2 | 8678 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8679 | if (isascii (v) && isprint (v)) |
88c15c34 | 8680 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8681 | else if (name[1] == 'U') |
88c15c34 | 8682 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8683 | else |
88c15c34 | 8684 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8685 | |
8686 | return result; | |
8687 | } | |
d2e4a39e | 8688 | else |
4c4b4cd2 | 8689 | { |
c3e5cd34 PH |
8690 | tmp = strstr (name, "__"); |
8691 | if (tmp == NULL) | |
8692 | tmp = strstr (name, "$"); | |
8693 | if (tmp != NULL) | |
4c4b4cd2 PH |
8694 | { |
8695 | GROW_VECT (result, result_len, tmp - name + 1); | |
8696 | strncpy (result, name, tmp - name); | |
8697 | result[tmp - name] = '\0'; | |
8698 | return result; | |
8699 | } | |
8700 | ||
8701 | return name; | |
8702 | } | |
14f9c5c9 AS |
8703 | } |
8704 | ||
14f9c5c9 AS |
8705 | /* Evaluate the subexpression of EXP starting at *POS as for |
8706 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8707 | expression. */ |
14f9c5c9 | 8708 | |
d2e4a39e AS |
8709 | static struct value * |
8710 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8711 | { |
4b27a620 | 8712 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8713 | } |
8714 | ||
8715 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8716 | value it wraps. */ |
14f9c5c9 | 8717 | |
d2e4a39e AS |
8718 | static struct value * |
8719 | unwrap_value (struct value *val) | |
14f9c5c9 | 8720 | { |
df407dfe | 8721 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8722 | |
14f9c5c9 AS |
8723 | if (ada_is_aligner_type (type)) |
8724 | { | |
de4d072f | 8725 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8726 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8727 | |
14f9c5c9 | 8728 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8729 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8730 | |
8731 | return unwrap_value (v); | |
8732 | } | |
d2e4a39e | 8733 | else |
14f9c5c9 | 8734 | { |
d2e4a39e | 8735 | struct type *raw_real_type = |
61ee279c | 8736 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8737 | |
5bf03f13 JB |
8738 | /* If there is no parallel XVS or XVE type, then the value is |
8739 | already unwrapped. Return it without further modification. */ | |
8740 | if ((type == raw_real_type) | |
8741 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8742 | return val; | |
14f9c5c9 | 8743 | |
d2e4a39e | 8744 | return |
4c4b4cd2 PH |
8745 | coerce_unspec_val_to_type |
8746 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8747 | value_address (val), |
1ed6ede0 | 8748 | NULL, 1)); |
14f9c5c9 AS |
8749 | } |
8750 | } | |
d2e4a39e AS |
8751 | |
8752 | static struct value * | |
8753 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8754 | { |
8755 | LONGEST val; | |
8756 | ||
df407dfe | 8757 | if (type == value_type (arg)) |
14f9c5c9 | 8758 | return arg; |
df407dfe | 8759 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8760 | val = ada_float_to_fixed (type, |
df407dfe | 8761 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8762 | value_as_long (arg))); |
d2e4a39e | 8763 | else |
14f9c5c9 | 8764 | { |
a53b7a21 | 8765 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8766 | |
14f9c5c9 AS |
8767 | val = ada_float_to_fixed (type, argd); |
8768 | } | |
8769 | ||
8770 | return value_from_longest (type, val); | |
8771 | } | |
8772 | ||
d2e4a39e | 8773 | static struct value * |
a53b7a21 | 8774 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8775 | { |
df407dfe | 8776 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8777 | value_as_long (arg)); |
5b4ee69b | 8778 | |
a53b7a21 | 8779 | return value_from_double (type, val); |
14f9c5c9 AS |
8780 | } |
8781 | ||
d99dcf51 JB |
8782 | /* Given two array types T1 and T2, return nonzero iff both arrays |
8783 | contain the same number of elements. */ | |
8784 | ||
8785 | static int | |
8786 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
8787 | { | |
8788 | LONGEST lo1, hi1, lo2, hi2; | |
8789 | ||
8790 | /* Get the array bounds in order to verify that the size of | |
8791 | the two arrays match. */ | |
8792 | if (!get_array_bounds (t1, &lo1, &hi1) | |
8793 | || !get_array_bounds (t2, &lo2, &hi2)) | |
8794 | error (_("unable to determine array bounds")); | |
8795 | ||
8796 | /* To make things easier for size comparison, normalize a bit | |
8797 | the case of empty arrays by making sure that the difference | |
8798 | between upper bound and lower bound is always -1. */ | |
8799 | if (lo1 > hi1) | |
8800 | hi1 = lo1 - 1; | |
8801 | if (lo2 > hi2) | |
8802 | hi2 = lo2 - 1; | |
8803 | ||
8804 | return (hi1 - lo1 == hi2 - lo2); | |
8805 | } | |
8806 | ||
8807 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
8808 | an array with the same number of elements, but with wider integral | |
8809 | elements, return an array "casted" to TYPE. In practice, this | |
8810 | means that the returned array is built by casting each element | |
8811 | of the original array into TYPE's (wider) element type. */ | |
8812 | ||
8813 | static struct value * | |
8814 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
8815 | { | |
8816 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
8817 | LONGEST lo, hi; | |
8818 | struct value *res; | |
8819 | LONGEST i; | |
8820 | ||
8821 | /* Verify that both val and type are arrays of scalars, and | |
8822 | that the size of val's elements is smaller than the size | |
8823 | of type's element. */ | |
8824 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
8825 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
8826 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
8827 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
8828 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
8829 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
8830 | ||
8831 | if (!get_array_bounds (type, &lo, &hi)) | |
8832 | error (_("unable to determine array bounds")); | |
8833 | ||
8834 | res = allocate_value (type); | |
8835 | ||
8836 | /* Promote each array element. */ | |
8837 | for (i = 0; i < hi - lo + 1; i++) | |
8838 | { | |
8839 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
8840 | ||
8841 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
8842 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
8843 | } | |
8844 | ||
8845 | return res; | |
8846 | } | |
8847 | ||
4c4b4cd2 PH |
8848 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8849 | return the converted value. */ | |
8850 | ||
d2e4a39e AS |
8851 | static struct value * |
8852 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8853 | { |
df407dfe | 8854 | struct type *type2 = value_type (val); |
5b4ee69b | 8855 | |
14f9c5c9 AS |
8856 | if (type == type2) |
8857 | return val; | |
8858 | ||
61ee279c PH |
8859 | type2 = ada_check_typedef (type2); |
8860 | type = ada_check_typedef (type); | |
14f9c5c9 | 8861 | |
d2e4a39e AS |
8862 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8863 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8864 | { |
8865 | val = ada_value_ind (val); | |
df407dfe | 8866 | type2 = value_type (val); |
14f9c5c9 AS |
8867 | } |
8868 | ||
d2e4a39e | 8869 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8870 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8871 | { | |
d99dcf51 JB |
8872 | if (!ada_same_array_size_p (type, type2)) |
8873 | error (_("cannot assign arrays of different length")); | |
8874 | ||
8875 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
8876 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
8877 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8878 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
8879 | { | |
8880 | /* Allow implicit promotion of the array elements to | |
8881 | a wider type. */ | |
8882 | return ada_promote_array_of_integrals (type, val); | |
8883 | } | |
8884 | ||
8885 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8886 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 8887 | error (_("Incompatible types in assignment")); |
04624583 | 8888 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8889 | } |
d2e4a39e | 8890 | return val; |
14f9c5c9 AS |
8891 | } |
8892 | ||
4c4b4cd2 PH |
8893 | static struct value * |
8894 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8895 | { | |
8896 | struct value *val; | |
8897 | struct type *type1, *type2; | |
8898 | LONGEST v, v1, v2; | |
8899 | ||
994b9211 AC |
8900 | arg1 = coerce_ref (arg1); |
8901 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8902 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8903 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8904 | |
76a01679 JB |
8905 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8906 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8907 | return value_binop (arg1, arg2, op); |
8908 | ||
76a01679 | 8909 | switch (op) |
4c4b4cd2 PH |
8910 | { |
8911 | case BINOP_MOD: | |
8912 | case BINOP_DIV: | |
8913 | case BINOP_REM: | |
8914 | break; | |
8915 | default: | |
8916 | return value_binop (arg1, arg2, op); | |
8917 | } | |
8918 | ||
8919 | v2 = value_as_long (arg2); | |
8920 | if (v2 == 0) | |
323e0a4a | 8921 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8922 | |
8923 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8924 | return value_binop (arg1, arg2, op); | |
8925 | ||
8926 | v1 = value_as_long (arg1); | |
8927 | switch (op) | |
8928 | { | |
8929 | case BINOP_DIV: | |
8930 | v = v1 / v2; | |
76a01679 JB |
8931 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8932 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8933 | break; |
8934 | case BINOP_REM: | |
8935 | v = v1 % v2; | |
76a01679 JB |
8936 | if (v * v1 < 0) |
8937 | v -= v2; | |
4c4b4cd2 PH |
8938 | break; |
8939 | default: | |
8940 | /* Should not reach this point. */ | |
8941 | v = 0; | |
8942 | } | |
8943 | ||
8944 | val = allocate_value (type1); | |
990a07ab | 8945 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8946 | TYPE_LENGTH (value_type (val)), |
8947 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8948 | return val; |
8949 | } | |
8950 | ||
8951 | static int | |
8952 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8953 | { | |
df407dfe AC |
8954 | if (ada_is_direct_array_type (value_type (arg1)) |
8955 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8956 | { |
f58b38bf JB |
8957 | /* Automatically dereference any array reference before |
8958 | we attempt to perform the comparison. */ | |
8959 | arg1 = ada_coerce_ref (arg1); | |
8960 | arg2 = ada_coerce_ref (arg2); | |
8961 | ||
4c4b4cd2 PH |
8962 | arg1 = ada_coerce_to_simple_array (arg1); |
8963 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8964 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8965 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8966 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8967 | /* FIXME: The following works only for types whose |
76a01679 JB |
8968 | representations use all bits (no padding or undefined bits) |
8969 | and do not have user-defined equality. */ | |
8970 | return | |
df407dfe | 8971 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8972 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8973 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8974 | } |
8975 | return value_equal (arg1, arg2); | |
8976 | } | |
8977 | ||
52ce6436 PH |
8978 | /* Total number of component associations in the aggregate starting at |
8979 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8980 | OP_AGGREGATE. */ |
52ce6436 PH |
8981 | |
8982 | static int | |
8983 | num_component_specs (struct expression *exp, int pc) | |
8984 | { | |
8985 | int n, m, i; | |
5b4ee69b | 8986 | |
52ce6436 PH |
8987 | m = exp->elts[pc + 1].longconst; |
8988 | pc += 3; | |
8989 | n = 0; | |
8990 | for (i = 0; i < m; i += 1) | |
8991 | { | |
8992 | switch (exp->elts[pc].opcode) | |
8993 | { | |
8994 | default: | |
8995 | n += 1; | |
8996 | break; | |
8997 | case OP_CHOICES: | |
8998 | n += exp->elts[pc + 1].longconst; | |
8999 | break; | |
9000 | } | |
9001 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9002 | } | |
9003 | return n; | |
9004 | } | |
9005 | ||
9006 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9007 | component of LHS (a simple array or a record), updating *POS past | |
9008 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9009 | not modify the inferior's memory, nor does it modify LHS (unless | |
9010 | LHS == CONTAINER). */ | |
9011 | ||
9012 | static void | |
9013 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9014 | struct expression *exp, int *pos) | |
9015 | { | |
9016 | struct value *mark = value_mark (); | |
9017 | struct value *elt; | |
5b4ee69b | 9018 | |
52ce6436 PH |
9019 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9020 | { | |
22601c15 UW |
9021 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9022 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9023 | |
52ce6436 PH |
9024 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9025 | } | |
9026 | else | |
9027 | { | |
9028 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9029 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9030 | } |
9031 | ||
9032 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9033 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9034 | else | |
9035 | value_assign_to_component (container, elt, | |
9036 | ada_evaluate_subexp (NULL, exp, pos, | |
9037 | EVAL_NORMAL)); | |
9038 | ||
9039 | value_free_to_mark (mark); | |
9040 | } | |
9041 | ||
9042 | /* Assuming that LHS represents an lvalue having a record or array | |
9043 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9044 | of that aggregate's value to LHS, advancing *POS past the | |
9045 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9046 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9047 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9048 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9049 | |
9050 | static struct value * | |
9051 | assign_aggregate (struct value *container, | |
9052 | struct value *lhs, struct expression *exp, | |
9053 | int *pos, enum noside noside) | |
9054 | { | |
9055 | struct type *lhs_type; | |
9056 | int n = exp->elts[*pos+1].longconst; | |
9057 | LONGEST low_index, high_index; | |
9058 | int num_specs; | |
9059 | LONGEST *indices; | |
9060 | int max_indices, num_indices; | |
52ce6436 | 9061 | int i; |
52ce6436 PH |
9062 | |
9063 | *pos += 3; | |
9064 | if (noside != EVAL_NORMAL) | |
9065 | { | |
52ce6436 PH |
9066 | for (i = 0; i < n; i += 1) |
9067 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9068 | return container; | |
9069 | } | |
9070 | ||
9071 | container = ada_coerce_ref (container); | |
9072 | if (ada_is_direct_array_type (value_type (container))) | |
9073 | container = ada_coerce_to_simple_array (container); | |
9074 | lhs = ada_coerce_ref (lhs); | |
9075 | if (!deprecated_value_modifiable (lhs)) | |
9076 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9077 | ||
9078 | lhs_type = value_type (lhs); | |
9079 | if (ada_is_direct_array_type (lhs_type)) | |
9080 | { | |
9081 | lhs = ada_coerce_to_simple_array (lhs); | |
9082 | lhs_type = value_type (lhs); | |
9083 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9084 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9085 | } |
9086 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9087 | { | |
9088 | low_index = 0; | |
9089 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9090 | } |
9091 | else | |
9092 | error (_("Left-hand side must be array or record.")); | |
9093 | ||
9094 | num_specs = num_component_specs (exp, *pos - 3); | |
9095 | max_indices = 4 * num_specs + 4; | |
9096 | indices = alloca (max_indices * sizeof (indices[0])); | |
9097 | indices[0] = indices[1] = low_index - 1; | |
9098 | indices[2] = indices[3] = high_index + 1; | |
9099 | num_indices = 4; | |
9100 | ||
9101 | for (i = 0; i < n; i += 1) | |
9102 | { | |
9103 | switch (exp->elts[*pos].opcode) | |
9104 | { | |
1fbf5ada JB |
9105 | case OP_CHOICES: |
9106 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9107 | &num_indices, max_indices, | |
9108 | low_index, high_index); | |
9109 | break; | |
9110 | case OP_POSITIONAL: | |
9111 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9112 | &num_indices, max_indices, |
9113 | low_index, high_index); | |
1fbf5ada JB |
9114 | break; |
9115 | case OP_OTHERS: | |
9116 | if (i != n-1) | |
9117 | error (_("Misplaced 'others' clause")); | |
9118 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9119 | num_indices, low_index, high_index); | |
9120 | break; | |
9121 | default: | |
9122 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9123 | } |
9124 | } | |
9125 | ||
9126 | return container; | |
9127 | } | |
9128 | ||
9129 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9130 | construct at *POS, updating *POS past the construct, given that | |
9131 | the positions are relative to lower bound LOW, where HIGH is the | |
9132 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9133 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9134 | assign_aggregate. */ |
52ce6436 PH |
9135 | static void |
9136 | aggregate_assign_positional (struct value *container, | |
9137 | struct value *lhs, struct expression *exp, | |
9138 | int *pos, LONGEST *indices, int *num_indices, | |
9139 | int max_indices, LONGEST low, LONGEST high) | |
9140 | { | |
9141 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9142 | ||
9143 | if (ind - 1 == high) | |
e1d5a0d2 | 9144 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9145 | if (ind <= high) |
9146 | { | |
9147 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9148 | *pos += 3; | |
9149 | assign_component (container, lhs, ind, exp, pos); | |
9150 | } | |
9151 | else | |
9152 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9153 | } | |
9154 | ||
9155 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9156 | construct at *POS, updating *POS past the construct, given that | |
9157 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9158 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9159 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9160 | static void |
9161 | aggregate_assign_from_choices (struct value *container, | |
9162 | struct value *lhs, struct expression *exp, | |
9163 | int *pos, LONGEST *indices, int *num_indices, | |
9164 | int max_indices, LONGEST low, LONGEST high) | |
9165 | { | |
9166 | int j; | |
9167 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9168 | int choice_pos, expr_pc; | |
9169 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9170 | ||
9171 | choice_pos = *pos += 3; | |
9172 | ||
9173 | for (j = 0; j < n_choices; j += 1) | |
9174 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9175 | expr_pc = *pos; | |
9176 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9177 | ||
9178 | for (j = 0; j < n_choices; j += 1) | |
9179 | { | |
9180 | LONGEST lower, upper; | |
9181 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9182 | |
52ce6436 PH |
9183 | if (op == OP_DISCRETE_RANGE) |
9184 | { | |
9185 | choice_pos += 1; | |
9186 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9187 | EVAL_NORMAL)); | |
9188 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9189 | EVAL_NORMAL)); | |
9190 | } | |
9191 | else if (is_array) | |
9192 | { | |
9193 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9194 | EVAL_NORMAL)); | |
9195 | upper = lower; | |
9196 | } | |
9197 | else | |
9198 | { | |
9199 | int ind; | |
0d5cff50 | 9200 | const char *name; |
5b4ee69b | 9201 | |
52ce6436 PH |
9202 | switch (op) |
9203 | { | |
9204 | case OP_NAME: | |
9205 | name = &exp->elts[choice_pos + 2].string; | |
9206 | break; | |
9207 | case OP_VAR_VALUE: | |
9208 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9209 | break; | |
9210 | default: | |
9211 | error (_("Invalid record component association.")); | |
9212 | } | |
9213 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9214 | ind = 0; | |
9215 | if (! find_struct_field (name, value_type (lhs), 0, | |
9216 | NULL, NULL, NULL, NULL, &ind)) | |
9217 | error (_("Unknown component name: %s."), name); | |
9218 | lower = upper = ind; | |
9219 | } | |
9220 | ||
9221 | if (lower <= upper && (lower < low || upper > high)) | |
9222 | error (_("Index in component association out of bounds.")); | |
9223 | ||
9224 | add_component_interval (lower, upper, indices, num_indices, | |
9225 | max_indices); | |
9226 | while (lower <= upper) | |
9227 | { | |
9228 | int pos1; | |
5b4ee69b | 9229 | |
52ce6436 PH |
9230 | pos1 = expr_pc; |
9231 | assign_component (container, lhs, lower, exp, &pos1); | |
9232 | lower += 1; | |
9233 | } | |
9234 | } | |
9235 | } | |
9236 | ||
9237 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9238 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9239 | have not been previously assigned. The index intervals already assigned | |
9240 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9241 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9242 | static void |
9243 | aggregate_assign_others (struct value *container, | |
9244 | struct value *lhs, struct expression *exp, | |
9245 | int *pos, LONGEST *indices, int num_indices, | |
9246 | LONGEST low, LONGEST high) | |
9247 | { | |
9248 | int i; | |
5ce64950 | 9249 | int expr_pc = *pos + 1; |
52ce6436 PH |
9250 | |
9251 | for (i = 0; i < num_indices - 2; i += 2) | |
9252 | { | |
9253 | LONGEST ind; | |
5b4ee69b | 9254 | |
52ce6436 PH |
9255 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9256 | { | |
5ce64950 | 9257 | int localpos; |
5b4ee69b | 9258 | |
5ce64950 MS |
9259 | localpos = expr_pc; |
9260 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9261 | } |
9262 | } | |
9263 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9264 | } | |
9265 | ||
9266 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9267 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9268 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9269 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9270 | static void | |
9271 | add_component_interval (LONGEST low, LONGEST high, | |
9272 | LONGEST* indices, int *size, int max_size) | |
9273 | { | |
9274 | int i, j; | |
5b4ee69b | 9275 | |
52ce6436 PH |
9276 | for (i = 0; i < *size; i += 2) { |
9277 | if (high >= indices[i] && low <= indices[i + 1]) | |
9278 | { | |
9279 | int kh; | |
5b4ee69b | 9280 | |
52ce6436 PH |
9281 | for (kh = i + 2; kh < *size; kh += 2) |
9282 | if (high < indices[kh]) | |
9283 | break; | |
9284 | if (low < indices[i]) | |
9285 | indices[i] = low; | |
9286 | indices[i + 1] = indices[kh - 1]; | |
9287 | if (high > indices[i + 1]) | |
9288 | indices[i + 1] = high; | |
9289 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9290 | *size -= kh - i - 2; | |
9291 | return; | |
9292 | } | |
9293 | else if (high < indices[i]) | |
9294 | break; | |
9295 | } | |
9296 | ||
9297 | if (*size == max_size) | |
9298 | error (_("Internal error: miscounted aggregate components.")); | |
9299 | *size += 2; | |
9300 | for (j = *size-1; j >= i+2; j -= 1) | |
9301 | indices[j] = indices[j - 2]; | |
9302 | indices[i] = low; | |
9303 | indices[i + 1] = high; | |
9304 | } | |
9305 | ||
6e48bd2c JB |
9306 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9307 | is different. */ | |
9308 | ||
9309 | static struct value * | |
9310 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9311 | { | |
9312 | if (type == ada_check_typedef (value_type (arg2))) | |
9313 | return arg2; | |
9314 | ||
9315 | if (ada_is_fixed_point_type (type)) | |
9316 | return (cast_to_fixed (type, arg2)); | |
9317 | ||
9318 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9319 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9320 | |
9321 | return value_cast (type, arg2); | |
9322 | } | |
9323 | ||
284614f0 JB |
9324 | /* Evaluating Ada expressions, and printing their result. |
9325 | ------------------------------------------------------ | |
9326 | ||
21649b50 JB |
9327 | 1. Introduction: |
9328 | ---------------- | |
9329 | ||
284614f0 JB |
9330 | We usually evaluate an Ada expression in order to print its value. |
9331 | We also evaluate an expression in order to print its type, which | |
9332 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9333 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9334 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9335 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9336 | similar. | |
9337 | ||
9338 | Evaluating expressions is a little more complicated for Ada entities | |
9339 | than it is for entities in languages such as C. The main reason for | |
9340 | this is that Ada provides types whose definition might be dynamic. | |
9341 | One example of such types is variant records. Or another example | |
9342 | would be an array whose bounds can only be known at run time. | |
9343 | ||
9344 | The following description is a general guide as to what should be | |
9345 | done (and what should NOT be done) in order to evaluate an expression | |
9346 | involving such types, and when. This does not cover how the semantic | |
9347 | information is encoded by GNAT as this is covered separatly. For the | |
9348 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9349 | in the GNAT sources. | |
9350 | ||
9351 | Ideally, we should embed each part of this description next to its | |
9352 | associated code. Unfortunately, the amount of code is so vast right | |
9353 | now that it's hard to see whether the code handling a particular | |
9354 | situation might be duplicated or not. One day, when the code is | |
9355 | cleaned up, this guide might become redundant with the comments | |
9356 | inserted in the code, and we might want to remove it. | |
9357 | ||
21649b50 JB |
9358 | 2. ``Fixing'' an Entity, the Simple Case: |
9359 | ----------------------------------------- | |
9360 | ||
284614f0 JB |
9361 | When evaluating Ada expressions, the tricky issue is that they may |
9362 | reference entities whose type contents and size are not statically | |
9363 | known. Consider for instance a variant record: | |
9364 | ||
9365 | type Rec (Empty : Boolean := True) is record | |
9366 | case Empty is | |
9367 | when True => null; | |
9368 | when False => Value : Integer; | |
9369 | end case; | |
9370 | end record; | |
9371 | Yes : Rec := (Empty => False, Value => 1); | |
9372 | No : Rec := (empty => True); | |
9373 | ||
9374 | The size and contents of that record depends on the value of the | |
9375 | descriminant (Rec.Empty). At this point, neither the debugging | |
9376 | information nor the associated type structure in GDB are able to | |
9377 | express such dynamic types. So what the debugger does is to create | |
9378 | "fixed" versions of the type that applies to the specific object. | |
9379 | We also informally refer to this opperation as "fixing" an object, | |
9380 | which means creating its associated fixed type. | |
9381 | ||
9382 | Example: when printing the value of variable "Yes" above, its fixed | |
9383 | type would look like this: | |
9384 | ||
9385 | type Rec is record | |
9386 | Empty : Boolean; | |
9387 | Value : Integer; | |
9388 | end record; | |
9389 | ||
9390 | On the other hand, if we printed the value of "No", its fixed type | |
9391 | would become: | |
9392 | ||
9393 | type Rec is record | |
9394 | Empty : Boolean; | |
9395 | end record; | |
9396 | ||
9397 | Things become a little more complicated when trying to fix an entity | |
9398 | with a dynamic type that directly contains another dynamic type, | |
9399 | such as an array of variant records, for instance. There are | |
9400 | two possible cases: Arrays, and records. | |
9401 | ||
21649b50 JB |
9402 | 3. ``Fixing'' Arrays: |
9403 | --------------------- | |
9404 | ||
9405 | The type structure in GDB describes an array in terms of its bounds, | |
9406 | and the type of its elements. By design, all elements in the array | |
9407 | have the same type and we cannot represent an array of variant elements | |
9408 | using the current type structure in GDB. When fixing an array, | |
9409 | we cannot fix the array element, as we would potentially need one | |
9410 | fixed type per element of the array. As a result, the best we can do | |
9411 | when fixing an array is to produce an array whose bounds and size | |
9412 | are correct (allowing us to read it from memory), but without having | |
9413 | touched its element type. Fixing each element will be done later, | |
9414 | when (if) necessary. | |
9415 | ||
9416 | Arrays are a little simpler to handle than records, because the same | |
9417 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9418 | the amount of space actually used by each element differs from element |
21649b50 | 9419 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9420 | |
9421 | type Rec_Array is array (1 .. 2) of Rec; | |
9422 | ||
1b536f04 JB |
9423 | The actual amount of memory occupied by each element might be different |
9424 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9425 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9426 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9427 | the debugging information available, from which we can then determine |
9428 | the array size (we multiply the number of elements of the array by | |
9429 | the size of each element). | |
9430 | ||
9431 | The simplest case is when we have an array of a constrained element | |
9432 | type. For instance, consider the following type declarations: | |
9433 | ||
9434 | type Bounded_String (Max_Size : Integer) is | |
9435 | Length : Integer; | |
9436 | Buffer : String (1 .. Max_Size); | |
9437 | end record; | |
9438 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9439 | ||
9440 | In this case, the compiler describes the array as an array of | |
9441 | variable-size elements (identified by its XVS suffix) for which | |
9442 | the size can be read in the parallel XVZ variable. | |
9443 | ||
9444 | In the case of an array of an unconstrained element type, the compiler | |
9445 | wraps the array element inside a private PAD type. This type should not | |
9446 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9447 | that we also use the adjective "aligner" in our code to designate |
9448 | these wrapper types. | |
9449 | ||
1b536f04 | 9450 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9451 | known. In that case, the PAD type already has the correct size, |
9452 | and the array element should remain unfixed. | |
9453 | ||
9454 | But there are cases when this size is not statically known. | |
9455 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9456 | |
9457 | type Dynamic is array (1 .. Five) of Integer; | |
9458 | type Wrapper (Has_Length : Boolean := False) is record | |
9459 | Data : Dynamic; | |
9460 | case Has_Length is | |
9461 | when True => Length : Integer; | |
9462 | when False => null; | |
9463 | end case; | |
9464 | end record; | |
9465 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9466 | ||
9467 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9468 | Data => (others => 17), | |
9469 | Length => 1)); | |
9470 | ||
9471 | ||
9472 | The debugging info would describe variable Hello as being an | |
9473 | array of a PAD type. The size of that PAD type is not statically | |
9474 | known, but can be determined using a parallel XVZ variable. | |
9475 | In that case, a copy of the PAD type with the correct size should | |
9476 | be used for the fixed array. | |
9477 | ||
21649b50 JB |
9478 | 3. ``Fixing'' record type objects: |
9479 | ---------------------------------- | |
9480 | ||
9481 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9482 | record types. In this case, in order to compute the associated |
9483 | fixed type, we need to determine the size and offset of each of | |
9484 | its components. This, in turn, requires us to compute the fixed | |
9485 | type of each of these components. | |
9486 | ||
9487 | Consider for instance the example: | |
9488 | ||
9489 | type Bounded_String (Max_Size : Natural) is record | |
9490 | Str : String (1 .. Max_Size); | |
9491 | Length : Natural; | |
9492 | end record; | |
9493 | My_String : Bounded_String (Max_Size => 10); | |
9494 | ||
9495 | In that case, the position of field "Length" depends on the size | |
9496 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9497 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9498 | we need to fix the type of field Str. Therefore, fixing a variant |
9499 | record requires us to fix each of its components. | |
9500 | ||
9501 | However, if a component does not have a dynamic size, the component | |
9502 | should not be fixed. In particular, fields that use a PAD type | |
9503 | should not fixed. Here is an example where this might happen | |
9504 | (assuming type Rec above): | |
9505 | ||
9506 | type Container (Big : Boolean) is record | |
9507 | First : Rec; | |
9508 | After : Integer; | |
9509 | case Big is | |
9510 | when True => Another : Integer; | |
9511 | when False => null; | |
9512 | end case; | |
9513 | end record; | |
9514 | My_Container : Container := (Big => False, | |
9515 | First => (Empty => True), | |
9516 | After => 42); | |
9517 | ||
9518 | In that example, the compiler creates a PAD type for component First, | |
9519 | whose size is constant, and then positions the component After just | |
9520 | right after it. The offset of component After is therefore constant | |
9521 | in this case. | |
9522 | ||
9523 | The debugger computes the position of each field based on an algorithm | |
9524 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9525 | preceding it. Let's now imagine that the user is trying to print |
9526 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9527 | end up computing the offset of field After based on the size of the |
9528 | fixed version of field First. And since in our example First has | |
9529 | only one actual field, the size of the fixed type is actually smaller | |
9530 | than the amount of space allocated to that field, and thus we would | |
9531 | compute the wrong offset of field After. | |
9532 | ||
21649b50 JB |
9533 | To make things more complicated, we need to watch out for dynamic |
9534 | components of variant records (identified by the ___XVL suffix in | |
9535 | the component name). Even if the target type is a PAD type, the size | |
9536 | of that type might not be statically known. So the PAD type needs | |
9537 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9538 | we might end up with the wrong size for our component. This can be | |
9539 | observed with the following type declarations: | |
284614f0 JB |
9540 | |
9541 | type Octal is new Integer range 0 .. 7; | |
9542 | type Octal_Array is array (Positive range <>) of Octal; | |
9543 | pragma Pack (Octal_Array); | |
9544 | ||
9545 | type Octal_Buffer (Size : Positive) is record | |
9546 | Buffer : Octal_Array (1 .. Size); | |
9547 | Length : Integer; | |
9548 | end record; | |
9549 | ||
9550 | In that case, Buffer is a PAD type whose size is unset and needs | |
9551 | to be computed by fixing the unwrapped type. | |
9552 | ||
21649b50 JB |
9553 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9554 | ---------------------------------------------------------- | |
9555 | ||
9556 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9557 | thus far, be actually fixed? |
9558 | ||
9559 | The answer is: Only when referencing that element. For instance | |
9560 | when selecting one component of a record, this specific component | |
9561 | should be fixed at that point in time. Or when printing the value | |
9562 | of a record, each component should be fixed before its value gets | |
9563 | printed. Similarly for arrays, the element of the array should be | |
9564 | fixed when printing each element of the array, or when extracting | |
9565 | one element out of that array. On the other hand, fixing should | |
9566 | not be performed on the elements when taking a slice of an array! | |
9567 | ||
9568 | Note that one of the side-effects of miscomputing the offset and | |
9569 | size of each field is that we end up also miscomputing the size | |
9570 | of the containing type. This can have adverse results when computing | |
9571 | the value of an entity. GDB fetches the value of an entity based | |
9572 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9573 | the wrong amount of memory. In the case where the computed size is | |
9574 | too small, GDB fetches too little data to print the value of our | |
9575 | entiry. Results in this case as unpredicatble, as we usually read | |
9576 | past the buffer containing the data =:-o. */ | |
9577 | ||
9578 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9579 | for the Ada language. */ | |
9580 | ||
52ce6436 | 9581 | static struct value * |
ebf56fd3 | 9582 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9583 | int *pos, enum noside noside) |
14f9c5c9 AS |
9584 | { |
9585 | enum exp_opcode op; | |
b5385fc0 | 9586 | int tem; |
14f9c5c9 AS |
9587 | int pc; |
9588 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9589 | struct type *type; | |
52ce6436 | 9590 | int nargs, oplen; |
d2e4a39e | 9591 | struct value **argvec; |
14f9c5c9 | 9592 | |
d2e4a39e AS |
9593 | pc = *pos; |
9594 | *pos += 1; | |
14f9c5c9 AS |
9595 | op = exp->elts[pc].opcode; |
9596 | ||
d2e4a39e | 9597 | switch (op) |
14f9c5c9 AS |
9598 | { |
9599 | default: | |
9600 | *pos -= 1; | |
6e48bd2c | 9601 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
9602 | |
9603 | if (noside == EVAL_NORMAL) | |
9604 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
9605 | |
9606 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9607 | then we need to perform the conversion manually, because | |
9608 | evaluate_subexp_standard doesn't do it. This conversion is | |
9609 | necessary in Ada because the different kinds of float/fixed | |
9610 | types in Ada have different representations. | |
9611 | ||
9612 | Similarly, we need to perform the conversion from OP_LONG | |
9613 | ourselves. */ | |
9614 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9615 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9616 | ||
9617 | return arg1; | |
4c4b4cd2 PH |
9618 | |
9619 | case OP_STRING: | |
9620 | { | |
76a01679 | 9621 | struct value *result; |
5b4ee69b | 9622 | |
76a01679 JB |
9623 | *pos -= 1; |
9624 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9625 | /* The result type will have code OP_STRING, bashed there from | |
9626 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9627 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9628 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9629 | return result; |
4c4b4cd2 | 9630 | } |
14f9c5c9 AS |
9631 | |
9632 | case UNOP_CAST: | |
9633 | (*pos) += 2; | |
9634 | type = exp->elts[pc + 1].type; | |
9635 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9636 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9637 | goto nosideret; |
6e48bd2c | 9638 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9639 | return arg1; |
9640 | ||
4c4b4cd2 PH |
9641 | case UNOP_QUAL: |
9642 | (*pos) += 2; | |
9643 | type = exp->elts[pc + 1].type; | |
9644 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9645 | ||
14f9c5c9 AS |
9646 | case BINOP_ASSIGN: |
9647 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9648 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9649 | { | |
9650 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9651 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9652 | return arg1; | |
9653 | return ada_value_assign (arg1, arg1); | |
9654 | } | |
003f3813 JB |
9655 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9656 | except if the lhs of our assignment is a convenience variable. | |
9657 | In the case of assigning to a convenience variable, the lhs | |
9658 | should be exactly the result of the evaluation of the rhs. */ | |
9659 | type = value_type (arg1); | |
9660 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9661 | type = NULL; | |
9662 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9663 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9664 | return arg1; |
df407dfe AC |
9665 | if (ada_is_fixed_point_type (value_type (arg1))) |
9666 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9667 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9668 | error |
323e0a4a | 9669 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9670 | else |
df407dfe | 9671 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9672 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9673 | |
9674 | case BINOP_ADD: | |
9675 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9676 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9677 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9678 | goto nosideret; |
2ac8a782 JB |
9679 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9680 | return (value_from_longest | |
9681 | (value_type (arg1), | |
9682 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9683 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9684 | || ada_is_fixed_point_type (value_type (arg2))) | |
9685 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9686 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9687 | /* Do the addition, and cast the result to the type of the first |
9688 | argument. We cannot cast the result to a reference type, so if | |
9689 | ARG1 is a reference type, find its underlying type. */ | |
9690 | type = value_type (arg1); | |
9691 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9692 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9693 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9694 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9695 | |
9696 | case BINOP_SUB: | |
9697 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9698 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9699 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9700 | goto nosideret; |
2ac8a782 JB |
9701 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9702 | return (value_from_longest | |
9703 | (value_type (arg1), | |
9704 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9705 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9706 | || ada_is_fixed_point_type (value_type (arg2))) | |
9707 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9708 | error (_("Operands of fixed-point subtraction " |
9709 | "must have the same type")); | |
b7789565 JB |
9710 | /* Do the substraction, and cast the result to the type of the first |
9711 | argument. We cannot cast the result to a reference type, so if | |
9712 | ARG1 is a reference type, find its underlying type. */ | |
9713 | type = value_type (arg1); | |
9714 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9715 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9716 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9717 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9718 | |
9719 | case BINOP_MUL: | |
9720 | case BINOP_DIV: | |
e1578042 JB |
9721 | case BINOP_REM: |
9722 | case BINOP_MOD: | |
14f9c5c9 AS |
9723 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9724 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9725 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9726 | goto nosideret; |
e1578042 | 9727 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9728 | { |
9729 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9730 | return value_zero (value_type (arg1), not_lval); | |
9731 | } | |
14f9c5c9 | 9732 | else |
4c4b4cd2 | 9733 | { |
a53b7a21 | 9734 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9735 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9736 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9737 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9738 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9739 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9740 | return ada_value_binop (arg1, arg2, op); |
9741 | } | |
9742 | ||
4c4b4cd2 PH |
9743 | case BINOP_EQUAL: |
9744 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9745 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9746 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9747 | if (noside == EVAL_SKIP) |
76a01679 | 9748 | goto nosideret; |
4c4b4cd2 | 9749 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9750 | tem = 0; |
4c4b4cd2 | 9751 | else |
f44316fa UW |
9752 | { |
9753 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9754 | tem = ada_value_equal (arg1, arg2); | |
9755 | } | |
4c4b4cd2 | 9756 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9757 | tem = !tem; |
fbb06eb1 UW |
9758 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9759 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9760 | |
9761 | case UNOP_NEG: | |
9762 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9763 | if (noside == EVAL_SKIP) | |
9764 | goto nosideret; | |
df407dfe AC |
9765 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9766 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9767 | else |
f44316fa UW |
9768 | { |
9769 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9770 | return value_neg (arg1); | |
9771 | } | |
4c4b4cd2 | 9772 | |
2330c6c6 JB |
9773 | case BINOP_LOGICAL_AND: |
9774 | case BINOP_LOGICAL_OR: | |
9775 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9776 | { |
9777 | struct value *val; | |
9778 | ||
9779 | *pos -= 1; | |
9780 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9781 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9782 | return value_cast (type, val); | |
000d5124 | 9783 | } |
2330c6c6 JB |
9784 | |
9785 | case BINOP_BITWISE_AND: | |
9786 | case BINOP_BITWISE_IOR: | |
9787 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9788 | { |
9789 | struct value *val; | |
9790 | ||
9791 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9792 | *pos = pc; | |
9793 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9794 | ||
9795 | return value_cast (value_type (arg1), val); | |
9796 | } | |
2330c6c6 | 9797 | |
14f9c5c9 AS |
9798 | case OP_VAR_VALUE: |
9799 | *pos -= 1; | |
6799def4 | 9800 | |
14f9c5c9 | 9801 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9802 | { |
9803 | *pos += 4; | |
9804 | goto nosideret; | |
9805 | } | |
9806 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9807 | /* Only encountered when an unresolved symbol occurs in a |
9808 | context other than a function call, in which case, it is | |
52ce6436 | 9809 | invalid. */ |
323e0a4a | 9810 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9811 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9812 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9813 | { |
0c1f74cf | 9814 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9815 | /* Check to see if this is a tagged type. We also need to handle |
9816 | the case where the type is a reference to a tagged type, but | |
9817 | we have to be careful to exclude pointers to tagged types. | |
9818 | The latter should be shown as usual (as a pointer), whereas | |
9819 | a reference should mostly be transparent to the user. */ | |
9820 | if (ada_is_tagged_type (type, 0) | |
9821 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9822 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9823 | { |
9824 | /* Tagged types are a little special in the fact that the real | |
9825 | type is dynamic and can only be determined by inspecting the | |
9826 | object's tag. This means that we need to get the object's | |
9827 | value first (EVAL_NORMAL) and then extract the actual object | |
9828 | type from its tag. | |
9829 | ||
9830 | Note that we cannot skip the final step where we extract | |
9831 | the object type from its tag, because the EVAL_NORMAL phase | |
9832 | results in dynamic components being resolved into fixed ones. | |
9833 | This can cause problems when trying to print the type | |
9834 | description of tagged types whose parent has a dynamic size: | |
9835 | We use the type name of the "_parent" component in order | |
9836 | to print the name of the ancestor type in the type description. | |
9837 | If that component had a dynamic size, the resolution into | |
9838 | a fixed type would result in the loss of that type name, | |
9839 | thus preventing us from printing the name of the ancestor | |
9840 | type in the type description. */ | |
9841 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
b50d69b5 JG |
9842 | |
9843 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
9844 | { | |
9845 | struct type *actual_type; | |
9846 | ||
9847 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
9848 | if (actual_type == NULL) | |
9849 | /* If, for some reason, we were unable to determine | |
9850 | the actual type from the tag, then use the static | |
9851 | approximation that we just computed as a fallback. | |
9852 | This can happen if the debugging information is | |
9853 | incomplete, for instance. */ | |
9854 | actual_type = type; | |
9855 | return value_zero (actual_type, not_lval); | |
9856 | } | |
9857 | else | |
9858 | { | |
9859 | /* In the case of a ref, ada_coerce_ref takes care | |
9860 | of determining the actual type. But the evaluation | |
9861 | should return a ref as it should be valid to ask | |
9862 | for its address; so rebuild a ref after coerce. */ | |
9863 | arg1 = ada_coerce_ref (arg1); | |
9864 | return value_ref (arg1); | |
9865 | } | |
0c1f74cf JB |
9866 | } |
9867 | ||
4c4b4cd2 PH |
9868 | *pos += 4; |
9869 | return value_zero | |
9870 | (to_static_fixed_type | |
9871 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9872 | not_lval); | |
9873 | } | |
d2e4a39e | 9874 | else |
4c4b4cd2 | 9875 | { |
284614f0 | 9876 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
4c4b4cd2 PH |
9877 | return ada_to_fixed_value (arg1); |
9878 | } | |
9879 | ||
9880 | case OP_FUNCALL: | |
9881 | (*pos) += 2; | |
9882 | ||
9883 | /* Allocate arg vector, including space for the function to be | |
9884 | called in argvec[0] and a terminating NULL. */ | |
9885 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9886 | argvec = | |
9887 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9888 | ||
9889 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9890 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9891 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9892 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9893 | else | |
9894 | { | |
9895 | for (tem = 0; tem <= nargs; tem += 1) | |
9896 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9897 | argvec[tem] = 0; | |
9898 | ||
9899 | if (noside == EVAL_SKIP) | |
9900 | goto nosideret; | |
9901 | } | |
9902 | ||
ad82864c JB |
9903 | if (ada_is_constrained_packed_array_type |
9904 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9905 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9906 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9907 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9908 | /* This is a packed array that has already been fixed, and | |
9909 | therefore already coerced to a simple array. Nothing further | |
9910 | to do. */ | |
9911 | ; | |
df407dfe AC |
9912 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9913 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9914 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9915 | argvec[0] = value_addr (argvec[0]); |
9916 | ||
df407dfe | 9917 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9918 | |
9919 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9920 | them. So, if this is an array typedef (encoding use for array |
9921 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9922 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9923 | type = ada_typedef_target_type (type); | |
9924 | ||
4c4b4cd2 PH |
9925 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9926 | { | |
61ee279c | 9927 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9928 | { |
9929 | case TYPE_CODE_FUNC: | |
61ee279c | 9930 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9931 | break; |
9932 | case TYPE_CODE_ARRAY: | |
9933 | break; | |
9934 | case TYPE_CODE_STRUCT: | |
9935 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9936 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9937 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9938 | break; |
9939 | default: | |
323e0a4a | 9940 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9941 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9942 | break; |
9943 | } | |
9944 | } | |
9945 | ||
9946 | switch (TYPE_CODE (type)) | |
9947 | { | |
9948 | case TYPE_CODE_FUNC: | |
9949 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
9950 | { |
9951 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
9952 | ||
9953 | if (TYPE_GNU_IFUNC (type)) | |
9954 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
9955 | return allocate_value (rtype); | |
9956 | } | |
4c4b4cd2 | 9957 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
9958 | case TYPE_CODE_INTERNAL_FUNCTION: |
9959 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9960 | /* We don't know anything about what the internal | |
9961 | function might return, but we have to return | |
9962 | something. */ | |
9963 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9964 | not_lval); | |
9965 | else | |
9966 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
9967 | argvec[0], nargs, argvec + 1); | |
9968 | ||
4c4b4cd2 PH |
9969 | case TYPE_CODE_STRUCT: |
9970 | { | |
9971 | int arity; | |
9972 | ||
4c4b4cd2 PH |
9973 | arity = ada_array_arity (type); |
9974 | type = ada_array_element_type (type, nargs); | |
9975 | if (type == NULL) | |
323e0a4a | 9976 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9977 | if (arity != nargs) |
323e0a4a | 9978 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9979 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9980 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9981 | return |
9982 | unwrap_value (ada_value_subscript | |
9983 | (argvec[0], nargs, argvec + 1)); | |
9984 | } | |
9985 | case TYPE_CODE_ARRAY: | |
9986 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9987 | { | |
9988 | type = ada_array_element_type (type, nargs); | |
9989 | if (type == NULL) | |
323e0a4a | 9990 | error (_("element type of array unknown")); |
4c4b4cd2 | 9991 | else |
0a07e705 | 9992 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9993 | } |
9994 | return | |
9995 | unwrap_value (ada_value_subscript | |
9996 | (ada_coerce_to_simple_array (argvec[0]), | |
9997 | nargs, argvec + 1)); | |
9998 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9999 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
10000 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10001 | { | |
10002 | type = ada_array_element_type (type, nargs); | |
10003 | if (type == NULL) | |
323e0a4a | 10004 | error (_("element type of array unknown")); |
4c4b4cd2 | 10005 | else |
0a07e705 | 10006 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10007 | } |
10008 | return | |
10009 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
10010 | nargs, argvec + 1)); | |
10011 | ||
10012 | default: | |
e1d5a0d2 PH |
10013 | error (_("Attempt to index or call something other than an " |
10014 | "array or function")); | |
4c4b4cd2 PH |
10015 | } |
10016 | ||
10017 | case TERNOP_SLICE: | |
10018 | { | |
10019 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10020 | struct value *low_bound_val = | |
10021 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10022 | struct value *high_bound_val = |
10023 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10024 | LONGEST low_bound; | |
10025 | LONGEST high_bound; | |
5b4ee69b | 10026 | |
994b9211 AC |
10027 | low_bound_val = coerce_ref (low_bound_val); |
10028 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10029 | low_bound = pos_atr (low_bound_val); |
10030 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10031 | |
4c4b4cd2 PH |
10032 | if (noside == EVAL_SKIP) |
10033 | goto nosideret; | |
10034 | ||
4c4b4cd2 PH |
10035 | /* If this is a reference to an aligner type, then remove all |
10036 | the aligners. */ | |
df407dfe AC |
10037 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10038 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10039 | TYPE_TARGET_TYPE (value_type (array)) = | |
10040 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10041 | |
ad82864c | 10042 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10043 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10044 | |
10045 | /* If this is a reference to an array or an array lvalue, | |
10046 | convert to a pointer. */ | |
df407dfe AC |
10047 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10048 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10049 | && VALUE_LVAL (array) == lval_memory)) |
10050 | array = value_addr (array); | |
10051 | ||
1265e4aa | 10052 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10053 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10054 | (value_type (array)))) |
0b5d8877 | 10055 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10056 | |
10057 | array = ada_coerce_to_simple_array_ptr (array); | |
10058 | ||
714e53ab PH |
10059 | /* If we have more than one level of pointer indirection, |
10060 | dereference the value until we get only one level. */ | |
df407dfe AC |
10061 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10062 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10063 | == TYPE_CODE_PTR)) |
10064 | array = value_ind (array); | |
10065 | ||
10066 | /* Make sure we really do have an array type before going further, | |
10067 | to avoid a SEGV when trying to get the index type or the target | |
10068 | type later down the road if the debug info generated by | |
10069 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10070 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10071 | error (_("cannot take slice of non-array")); |
714e53ab | 10072 | |
828292f2 JB |
10073 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10074 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10075 | { |
828292f2 JB |
10076 | struct type *type0 = ada_check_typedef (value_type (array)); |
10077 | ||
0b5d8877 | 10078 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10079 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10080 | else |
10081 | { | |
10082 | struct type *arr_type0 = | |
828292f2 | 10083 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10084 | |
f5938064 JG |
10085 | return ada_value_slice_from_ptr (array, arr_type0, |
10086 | longest_to_int (low_bound), | |
10087 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10088 | } |
10089 | } | |
10090 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10091 | return array; | |
10092 | else if (high_bound < low_bound) | |
df407dfe | 10093 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10094 | else |
529cad9c PH |
10095 | return ada_value_slice (array, longest_to_int (low_bound), |
10096 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10097 | } |
14f9c5c9 | 10098 | |
4c4b4cd2 PH |
10099 | case UNOP_IN_RANGE: |
10100 | (*pos) += 2; | |
10101 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10102 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10103 | |
14f9c5c9 | 10104 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10105 | goto nosideret; |
14f9c5c9 | 10106 | |
4c4b4cd2 PH |
10107 | switch (TYPE_CODE (type)) |
10108 | { | |
10109 | default: | |
e1d5a0d2 PH |
10110 | lim_warning (_("Membership test incompletely implemented; " |
10111 | "always returns true")); | |
fbb06eb1 UW |
10112 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10113 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10114 | |
10115 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10116 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10117 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10118 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10119 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10120 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10121 | return | |
10122 | value_from_longest (type, | |
4c4b4cd2 PH |
10123 | (value_less (arg1, arg3) |
10124 | || value_equal (arg1, arg3)) | |
10125 | && (value_less (arg2, arg1) | |
10126 | || value_equal (arg2, arg1))); | |
10127 | } | |
10128 | ||
10129 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10130 | (*pos) += 2; |
4c4b4cd2 PH |
10131 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10132 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10133 | |
4c4b4cd2 PH |
10134 | if (noside == EVAL_SKIP) |
10135 | goto nosideret; | |
14f9c5c9 | 10136 | |
4c4b4cd2 | 10137 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10138 | { |
10139 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10140 | return value_zero (type, not_lval); | |
10141 | } | |
14f9c5c9 | 10142 | |
4c4b4cd2 | 10143 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10144 | |
1eea4ebd UW |
10145 | type = ada_index_type (value_type (arg2), tem, "range"); |
10146 | if (!type) | |
10147 | type = value_type (arg1); | |
14f9c5c9 | 10148 | |
1eea4ebd UW |
10149 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10150 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10151 | |
f44316fa UW |
10152 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10153 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10154 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10155 | return |
fbb06eb1 | 10156 | value_from_longest (type, |
4c4b4cd2 PH |
10157 | (value_less (arg1, arg3) |
10158 | || value_equal (arg1, arg3)) | |
10159 | && (value_less (arg2, arg1) | |
10160 | || value_equal (arg2, arg1))); | |
10161 | ||
10162 | case TERNOP_IN_RANGE: | |
10163 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10164 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10165 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10166 | ||
10167 | if (noside == EVAL_SKIP) | |
10168 | goto nosideret; | |
10169 | ||
f44316fa UW |
10170 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10171 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10172 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10173 | return |
fbb06eb1 | 10174 | value_from_longest (type, |
4c4b4cd2 PH |
10175 | (value_less (arg1, arg3) |
10176 | || value_equal (arg1, arg3)) | |
10177 | && (value_less (arg2, arg1) | |
10178 | || value_equal (arg2, arg1))); | |
10179 | ||
10180 | case OP_ATR_FIRST: | |
10181 | case OP_ATR_LAST: | |
10182 | case OP_ATR_LENGTH: | |
10183 | { | |
76a01679 | 10184 | struct type *type_arg; |
5b4ee69b | 10185 | |
76a01679 JB |
10186 | if (exp->elts[*pos].opcode == OP_TYPE) |
10187 | { | |
10188 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10189 | arg1 = NULL; | |
5bc23cb3 | 10190 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10191 | } |
10192 | else | |
10193 | { | |
10194 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10195 | type_arg = NULL; | |
10196 | } | |
10197 | ||
10198 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10199 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10200 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10201 | *pos += 4; | |
10202 | ||
10203 | if (noside == EVAL_SKIP) | |
10204 | goto nosideret; | |
10205 | ||
10206 | if (type_arg == NULL) | |
10207 | { | |
10208 | arg1 = ada_coerce_ref (arg1); | |
10209 | ||
ad82864c | 10210 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10211 | arg1 = ada_coerce_to_simple_array (arg1); |
10212 | ||
1eea4ebd UW |
10213 | type = ada_index_type (value_type (arg1), tem, |
10214 | ada_attribute_name (op)); | |
10215 | if (type == NULL) | |
10216 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
10217 | |
10218 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10219 | return allocate_value (type); |
76a01679 JB |
10220 | |
10221 | switch (op) | |
10222 | { | |
10223 | default: /* Should never happen. */ | |
323e0a4a | 10224 | error (_("unexpected attribute encountered")); |
76a01679 | 10225 | case OP_ATR_FIRST: |
1eea4ebd UW |
10226 | return value_from_longest |
10227 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10228 | case OP_ATR_LAST: |
1eea4ebd UW |
10229 | return value_from_longest |
10230 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10231 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10232 | return value_from_longest |
10233 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10234 | } |
10235 | } | |
10236 | else if (discrete_type_p (type_arg)) | |
10237 | { | |
10238 | struct type *range_type; | |
0d5cff50 | 10239 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10240 | |
76a01679 JB |
10241 | range_type = NULL; |
10242 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10243 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10244 | if (range_type == NULL) |
10245 | range_type = type_arg; | |
10246 | switch (op) | |
10247 | { | |
10248 | default: | |
323e0a4a | 10249 | error (_("unexpected attribute encountered")); |
76a01679 | 10250 | case OP_ATR_FIRST: |
690cc4eb | 10251 | return value_from_longest |
43bbcdc2 | 10252 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10253 | case OP_ATR_LAST: |
690cc4eb | 10254 | return value_from_longest |
43bbcdc2 | 10255 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10256 | case OP_ATR_LENGTH: |
323e0a4a | 10257 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10258 | } |
10259 | } | |
10260 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10261 | error (_("unimplemented type attribute")); |
76a01679 JB |
10262 | else |
10263 | { | |
10264 | LONGEST low, high; | |
10265 | ||
ad82864c JB |
10266 | if (ada_is_constrained_packed_array_type (type_arg)) |
10267 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10268 | |
1eea4ebd | 10269 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 10270 | if (type == NULL) |
1eea4ebd UW |
10271 | type = builtin_type (exp->gdbarch)->builtin_int; |
10272 | ||
76a01679 JB |
10273 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10274 | return allocate_value (type); | |
10275 | ||
10276 | switch (op) | |
10277 | { | |
10278 | default: | |
323e0a4a | 10279 | error (_("unexpected attribute encountered")); |
76a01679 | 10280 | case OP_ATR_FIRST: |
1eea4ebd | 10281 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10282 | return value_from_longest (type, low); |
10283 | case OP_ATR_LAST: | |
1eea4ebd | 10284 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10285 | return value_from_longest (type, high); |
10286 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10287 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10288 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10289 | return value_from_longest (type, high - low + 1); |
10290 | } | |
10291 | } | |
14f9c5c9 AS |
10292 | } |
10293 | ||
4c4b4cd2 PH |
10294 | case OP_ATR_TAG: |
10295 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10296 | if (noside == EVAL_SKIP) | |
76a01679 | 10297 | goto nosideret; |
4c4b4cd2 PH |
10298 | |
10299 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10300 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10301 | |
10302 | return ada_value_tag (arg1); | |
10303 | ||
10304 | case OP_ATR_MIN: | |
10305 | case OP_ATR_MAX: | |
10306 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10307 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10308 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10309 | if (noside == EVAL_SKIP) | |
76a01679 | 10310 | goto nosideret; |
d2e4a39e | 10311 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10312 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10313 | else |
f44316fa UW |
10314 | { |
10315 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10316 | return value_binop (arg1, arg2, | |
10317 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10318 | } | |
14f9c5c9 | 10319 | |
4c4b4cd2 PH |
10320 | case OP_ATR_MODULUS: |
10321 | { | |
31dedfee | 10322 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10323 | |
5b4ee69b | 10324 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10325 | if (noside == EVAL_SKIP) |
10326 | goto nosideret; | |
4c4b4cd2 | 10327 | |
76a01679 | 10328 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10329 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10330 | |
76a01679 JB |
10331 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10332 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10333 | } |
10334 | ||
10335 | ||
10336 | case OP_ATR_POS: | |
10337 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10338 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10339 | if (noside == EVAL_SKIP) | |
76a01679 | 10340 | goto nosideret; |
3cb382c9 UW |
10341 | type = builtin_type (exp->gdbarch)->builtin_int; |
10342 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10343 | return value_zero (type, not_lval); | |
14f9c5c9 | 10344 | else |
3cb382c9 | 10345 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10346 | |
4c4b4cd2 PH |
10347 | case OP_ATR_SIZE: |
10348 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10349 | type = value_type (arg1); |
10350 | ||
10351 | /* If the argument is a reference, then dereference its type, since | |
10352 | the user is really asking for the size of the actual object, | |
10353 | not the size of the pointer. */ | |
10354 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10355 | type = TYPE_TARGET_TYPE (type); | |
10356 | ||
4c4b4cd2 | 10357 | if (noside == EVAL_SKIP) |
76a01679 | 10358 | goto nosideret; |
4c4b4cd2 | 10359 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10360 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10361 | else |
22601c15 | 10362 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10363 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10364 | |
10365 | case OP_ATR_VAL: | |
10366 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10367 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10368 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10369 | if (noside == EVAL_SKIP) |
76a01679 | 10370 | goto nosideret; |
4c4b4cd2 | 10371 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10372 | return value_zero (type, not_lval); |
4c4b4cd2 | 10373 | else |
76a01679 | 10374 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10375 | |
10376 | case BINOP_EXP: | |
10377 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10378 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10379 | if (noside == EVAL_SKIP) | |
10380 | goto nosideret; | |
10381 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10382 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10383 | else |
f44316fa UW |
10384 | { |
10385 | /* For integer exponentiation operations, | |
10386 | only promote the first argument. */ | |
10387 | if (is_integral_type (value_type (arg2))) | |
10388 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10389 | else | |
10390 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10391 | ||
10392 | return value_binop (arg1, arg2, op); | |
10393 | } | |
4c4b4cd2 PH |
10394 | |
10395 | case UNOP_PLUS: | |
10396 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10397 | if (noside == EVAL_SKIP) | |
10398 | goto nosideret; | |
10399 | else | |
10400 | return arg1; | |
10401 | ||
10402 | case UNOP_ABS: | |
10403 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10404 | if (noside == EVAL_SKIP) | |
10405 | goto nosideret; | |
f44316fa | 10406 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10407 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10408 | return value_neg (arg1); |
14f9c5c9 | 10409 | else |
4c4b4cd2 | 10410 | return arg1; |
14f9c5c9 AS |
10411 | |
10412 | case UNOP_IND: | |
6b0d7253 | 10413 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10414 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10415 | goto nosideret; |
df407dfe | 10416 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10417 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10418 | { |
10419 | if (ada_is_array_descriptor_type (type)) | |
10420 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10421 | { | |
10422 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10423 | |
4c4b4cd2 | 10424 | if (arrType == NULL) |
323e0a4a | 10425 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10426 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10427 | } |
10428 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10429 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10430 | /* In C you can dereference an array to get the 1st elt. */ | |
10431 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10432 | { |
10433 | type = to_static_fixed_type | |
10434 | (ada_aligned_type | |
10435 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10436 | check_size (type); | |
10437 | return value_zero (type, lval_memory); | |
10438 | } | |
4c4b4cd2 | 10439 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10440 | { |
10441 | /* GDB allows dereferencing an int. */ | |
10442 | if (expect_type == NULL) | |
10443 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10444 | lval_memory); | |
10445 | else | |
10446 | { | |
10447 | expect_type = | |
10448 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10449 | return value_zero (expect_type, lval_memory); | |
10450 | } | |
10451 | } | |
4c4b4cd2 | 10452 | else |
323e0a4a | 10453 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10454 | } |
0963b4bd | 10455 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10456 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10457 | |
96967637 JB |
10458 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10459 | /* GDB allows dereferencing an int. If we were given | |
10460 | the expect_type, then use that as the target type. | |
10461 | Otherwise, assume that the target type is an int. */ | |
10462 | { | |
10463 | if (expect_type != NULL) | |
10464 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10465 | arg1)); | |
10466 | else | |
10467 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10468 | (CORE_ADDR) value_as_address (arg1)); | |
10469 | } | |
6b0d7253 | 10470 | |
4c4b4cd2 PH |
10471 | if (ada_is_array_descriptor_type (type)) |
10472 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10473 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10474 | else |
4c4b4cd2 | 10475 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10476 | |
10477 | case STRUCTOP_STRUCT: | |
10478 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10479 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10480 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10481 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10482 | goto nosideret; |
14f9c5c9 | 10483 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10484 | { |
df407dfe | 10485 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10486 | |
76a01679 JB |
10487 | if (ada_is_tagged_type (type1, 1)) |
10488 | { | |
10489 | type = ada_lookup_struct_elt_type (type1, | |
10490 | &exp->elts[pc + 2].string, | |
10491 | 1, 1, NULL); | |
10492 | if (type == NULL) | |
10493 | /* In this case, we assume that the field COULD exist | |
10494 | in some extension of the type. Return an object of | |
10495 | "type" void, which will match any formal | |
0963b4bd | 10496 | (see ada_type_match). */ |
30b15541 UW |
10497 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10498 | lval_memory); | |
76a01679 JB |
10499 | } |
10500 | else | |
10501 | type = | |
10502 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10503 | 0, NULL); | |
10504 | ||
10505 | return value_zero (ada_aligned_type (type), lval_memory); | |
10506 | } | |
14f9c5c9 | 10507 | else |
284614f0 JB |
10508 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10509 | arg1 = unwrap_value (arg1); | |
10510 | return ada_to_fixed_value (arg1); | |
10511 | ||
14f9c5c9 | 10512 | case OP_TYPE: |
4c4b4cd2 PH |
10513 | /* The value is not supposed to be used. This is here to make it |
10514 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10515 | (*pos) += 2; |
10516 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10517 | goto nosideret; |
14f9c5c9 | 10518 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10519 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10520 | else |
323e0a4a | 10521 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10522 | |
10523 | case OP_AGGREGATE: | |
10524 | case OP_CHOICES: | |
10525 | case OP_OTHERS: | |
10526 | case OP_DISCRETE_RANGE: | |
10527 | case OP_POSITIONAL: | |
10528 | case OP_NAME: | |
10529 | if (noside == EVAL_NORMAL) | |
10530 | switch (op) | |
10531 | { | |
10532 | case OP_NAME: | |
10533 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10534 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10535 | case OP_AGGREGATE: |
10536 | error (_("Aggregates only allowed on the right of an assignment")); | |
10537 | default: | |
0963b4bd MS |
10538 | internal_error (__FILE__, __LINE__, |
10539 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10540 | } |
10541 | ||
10542 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10543 | *pos += oplen - 1; | |
10544 | for (tem = 0; tem < nargs; tem += 1) | |
10545 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10546 | goto nosideret; | |
14f9c5c9 AS |
10547 | } |
10548 | ||
10549 | nosideret: | |
22601c15 | 10550 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10551 | } |
14f9c5c9 | 10552 | \f |
d2e4a39e | 10553 | |
4c4b4cd2 | 10554 | /* Fixed point */ |
14f9c5c9 AS |
10555 | |
10556 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10557 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10558 | Otherwise, return NULL. */ |
14f9c5c9 | 10559 | |
d2e4a39e | 10560 | static const char * |
ebf56fd3 | 10561 | fixed_type_info (struct type *type) |
14f9c5c9 | 10562 | { |
d2e4a39e | 10563 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10564 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10565 | ||
d2e4a39e AS |
10566 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10567 | { | |
14f9c5c9 | 10568 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10569 | |
14f9c5c9 | 10570 | if (tail == NULL) |
4c4b4cd2 | 10571 | return NULL; |
d2e4a39e | 10572 | else |
4c4b4cd2 | 10573 | return tail + 5; |
14f9c5c9 AS |
10574 | } |
10575 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10576 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10577 | else | |
10578 | return NULL; | |
10579 | } | |
10580 | ||
4c4b4cd2 | 10581 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10582 | |
10583 | int | |
ebf56fd3 | 10584 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10585 | { |
10586 | return fixed_type_info (type) != NULL; | |
10587 | } | |
10588 | ||
4c4b4cd2 PH |
10589 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10590 | ||
10591 | int | |
10592 | ada_is_system_address_type (struct type *type) | |
10593 | { | |
10594 | return (TYPE_NAME (type) | |
10595 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10596 | } | |
10597 | ||
14f9c5c9 AS |
10598 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10599 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10600 | delta cannot be determined. */ |
14f9c5c9 AS |
10601 | |
10602 | DOUBLEST | |
ebf56fd3 | 10603 | ada_delta (struct type *type) |
14f9c5c9 AS |
10604 | { |
10605 | const char *encoding = fixed_type_info (type); | |
facc390f | 10606 | DOUBLEST num, den; |
14f9c5c9 | 10607 | |
facc390f JB |
10608 | /* Strictly speaking, num and den are encoded as integer. However, |
10609 | they may not fit into a long, and they will have to be converted | |
10610 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10611 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10612 | &num, &den) < 2) | |
14f9c5c9 | 10613 | return -1.0; |
d2e4a39e | 10614 | else |
facc390f | 10615 | return num / den; |
14f9c5c9 AS |
10616 | } |
10617 | ||
10618 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10619 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10620 | |
10621 | static DOUBLEST | |
ebf56fd3 | 10622 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10623 | { |
10624 | const char *encoding = fixed_type_info (type); | |
facc390f | 10625 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10626 | int n; |
d2e4a39e | 10627 | |
facc390f JB |
10628 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10629 | they may not fit into a long, and they will have to be converted | |
10630 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10631 | n = sscanf (encoding, | |
10632 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10633 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10634 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10635 | |
10636 | if (n < 2) | |
10637 | return 1.0; | |
10638 | else if (n == 4) | |
facc390f | 10639 | return num1 / den1; |
d2e4a39e | 10640 | else |
facc390f | 10641 | return num0 / den0; |
14f9c5c9 AS |
10642 | } |
10643 | ||
10644 | ||
10645 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10646 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10647 | |
10648 | DOUBLEST | |
ebf56fd3 | 10649 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10650 | { |
d2e4a39e | 10651 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10652 | } |
10653 | ||
4c4b4cd2 PH |
10654 | /* The representation of a fixed-point value of type TYPE |
10655 | corresponding to the value X. */ | |
14f9c5c9 AS |
10656 | |
10657 | LONGEST | |
ebf56fd3 | 10658 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10659 | { |
10660 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10661 | } | |
10662 | ||
14f9c5c9 | 10663 | \f |
d2e4a39e | 10664 | |
4c4b4cd2 | 10665 | /* Range types */ |
14f9c5c9 AS |
10666 | |
10667 | /* Scan STR beginning at position K for a discriminant name, and | |
10668 | return the value of that discriminant field of DVAL in *PX. If | |
10669 | PNEW_K is not null, put the position of the character beyond the | |
10670 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10671 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10672 | |
10673 | static int | |
07d8f827 | 10674 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10675 | int *pnew_k) |
14f9c5c9 AS |
10676 | { |
10677 | static char *bound_buffer = NULL; | |
10678 | static size_t bound_buffer_len = 0; | |
10679 | char *bound; | |
10680 | char *pend; | |
d2e4a39e | 10681 | struct value *bound_val; |
14f9c5c9 AS |
10682 | |
10683 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10684 | return 0; | |
10685 | ||
d2e4a39e | 10686 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10687 | if (pend == NULL) |
10688 | { | |
d2e4a39e | 10689 | bound = str + k; |
14f9c5c9 AS |
10690 | k += strlen (bound); |
10691 | } | |
d2e4a39e | 10692 | else |
14f9c5c9 | 10693 | { |
d2e4a39e | 10694 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10695 | bound = bound_buffer; |
d2e4a39e AS |
10696 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10697 | bound[pend - (str + k)] = '\0'; | |
10698 | k = pend - str; | |
14f9c5c9 | 10699 | } |
d2e4a39e | 10700 | |
df407dfe | 10701 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10702 | if (bound_val == NULL) |
10703 | return 0; | |
10704 | ||
10705 | *px = value_as_long (bound_val); | |
10706 | if (pnew_k != NULL) | |
10707 | *pnew_k = k; | |
10708 | return 1; | |
10709 | } | |
10710 | ||
10711 | /* Value of variable named NAME in the current environment. If | |
10712 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10713 | otherwise causes an error with message ERR_MSG. */ |
10714 | ||
d2e4a39e AS |
10715 | static struct value * |
10716 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10717 | { |
4c4b4cd2 | 10718 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10719 | int nsyms; |
10720 | ||
4c4b4cd2 | 10721 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 10722 | &syms); |
14f9c5c9 AS |
10723 | |
10724 | if (nsyms != 1) | |
10725 | { | |
10726 | if (err_msg == NULL) | |
4c4b4cd2 | 10727 | return 0; |
14f9c5c9 | 10728 | else |
8a3fe4f8 | 10729 | error (("%s"), err_msg); |
14f9c5c9 AS |
10730 | } |
10731 | ||
4c4b4cd2 | 10732 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10733 | } |
d2e4a39e | 10734 | |
14f9c5c9 | 10735 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10736 | no such variable found, returns 0, and sets *FLAG to 0. If |
10737 | successful, sets *FLAG to 1. */ | |
10738 | ||
14f9c5c9 | 10739 | LONGEST |
4c4b4cd2 | 10740 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10741 | { |
4c4b4cd2 | 10742 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10743 | |
14f9c5c9 AS |
10744 | if (var_val == 0) |
10745 | { | |
10746 | if (flag != NULL) | |
4c4b4cd2 | 10747 | *flag = 0; |
14f9c5c9 AS |
10748 | return 0; |
10749 | } | |
10750 | else | |
10751 | { | |
10752 | if (flag != NULL) | |
4c4b4cd2 | 10753 | *flag = 1; |
14f9c5c9 AS |
10754 | return value_as_long (var_val); |
10755 | } | |
10756 | } | |
d2e4a39e | 10757 | |
14f9c5c9 AS |
10758 | |
10759 | /* Return a range type whose base type is that of the range type named | |
10760 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10761 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10762 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10763 | corresponding range type from debug information; fall back to using it | |
10764 | if symbol lookup fails. If a new type must be created, allocate it | |
10765 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10766 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10767 | |
d2e4a39e | 10768 | static struct type * |
28c85d6c | 10769 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10770 | { |
0d5cff50 | 10771 | const char *name; |
14f9c5c9 | 10772 | struct type *base_type; |
d2e4a39e | 10773 | char *subtype_info; |
14f9c5c9 | 10774 | |
28c85d6c JB |
10775 | gdb_assert (raw_type != NULL); |
10776 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10777 | |
1ce677a4 | 10778 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10779 | base_type = TYPE_TARGET_TYPE (raw_type); |
10780 | else | |
10781 | base_type = raw_type; | |
10782 | ||
28c85d6c | 10783 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10784 | subtype_info = strstr (name, "___XD"); |
10785 | if (subtype_info == NULL) | |
690cc4eb | 10786 | { |
43bbcdc2 PH |
10787 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10788 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10789 | |
690cc4eb PH |
10790 | if (L < INT_MIN || U > INT_MAX) |
10791 | return raw_type; | |
10792 | else | |
28c85d6c | 10793 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10794 | ada_discrete_type_low_bound (raw_type), |
10795 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10796 | } |
14f9c5c9 AS |
10797 | else |
10798 | { | |
10799 | static char *name_buf = NULL; | |
10800 | static size_t name_len = 0; | |
10801 | int prefix_len = subtype_info - name; | |
10802 | LONGEST L, U; | |
10803 | struct type *type; | |
10804 | char *bounds_str; | |
10805 | int n; | |
10806 | ||
10807 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10808 | strncpy (name_buf, name, prefix_len); | |
10809 | name_buf[prefix_len] = '\0'; | |
10810 | ||
10811 | subtype_info += 5; | |
10812 | bounds_str = strchr (subtype_info, '_'); | |
10813 | n = 1; | |
10814 | ||
d2e4a39e | 10815 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10816 | { |
10817 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10818 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10819 | return raw_type; | |
10820 | if (bounds_str[n] == '_') | |
10821 | n += 2; | |
0963b4bd | 10822 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10823 | n += 1; |
10824 | subtype_info += 1; | |
10825 | } | |
d2e4a39e | 10826 | else |
4c4b4cd2 PH |
10827 | { |
10828 | int ok; | |
5b4ee69b | 10829 | |
4c4b4cd2 PH |
10830 | strcpy (name_buf + prefix_len, "___L"); |
10831 | L = get_int_var_value (name_buf, &ok); | |
10832 | if (!ok) | |
10833 | { | |
323e0a4a | 10834 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10835 | L = 1; |
10836 | } | |
10837 | } | |
14f9c5c9 | 10838 | |
d2e4a39e | 10839 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10840 | { |
10841 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10842 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10843 | return raw_type; | |
10844 | } | |
d2e4a39e | 10845 | else |
4c4b4cd2 PH |
10846 | { |
10847 | int ok; | |
5b4ee69b | 10848 | |
4c4b4cd2 PH |
10849 | strcpy (name_buf + prefix_len, "___U"); |
10850 | U = get_int_var_value (name_buf, &ok); | |
10851 | if (!ok) | |
10852 | { | |
323e0a4a | 10853 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10854 | U = L; |
10855 | } | |
10856 | } | |
14f9c5c9 | 10857 | |
28c85d6c | 10858 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10859 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10860 | return type; |
10861 | } | |
10862 | } | |
10863 | ||
4c4b4cd2 PH |
10864 | /* True iff NAME is the name of a range type. */ |
10865 | ||
14f9c5c9 | 10866 | int |
d2e4a39e | 10867 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10868 | { |
10869 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10870 | } |
14f9c5c9 | 10871 | \f |
d2e4a39e | 10872 | |
4c4b4cd2 PH |
10873 | /* Modular types */ |
10874 | ||
10875 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10876 | |
14f9c5c9 | 10877 | int |
d2e4a39e | 10878 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10879 | { |
18af8284 | 10880 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10881 | |
10882 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10883 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10884 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10885 | } |
10886 | ||
4c4b4cd2 PH |
10887 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10888 | ||
61ee279c | 10889 | ULONGEST |
0056e4d5 | 10890 | ada_modulus (struct type *type) |
14f9c5c9 | 10891 | { |
43bbcdc2 | 10892 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10893 | } |
d2e4a39e | 10894 | \f |
f7f9143b JB |
10895 | |
10896 | /* Ada exception catchpoint support: | |
10897 | --------------------------------- | |
10898 | ||
10899 | We support 3 kinds of exception catchpoints: | |
10900 | . catchpoints on Ada exceptions | |
10901 | . catchpoints on unhandled Ada exceptions | |
10902 | . catchpoints on failed assertions | |
10903 | ||
10904 | Exceptions raised during failed assertions, or unhandled exceptions | |
10905 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10906 | However, we can easily differentiate these two special cases, and having | |
10907 | the option to distinguish these two cases from the rest can be useful | |
10908 | to zero-in on certain situations. | |
10909 | ||
10910 | Exception catchpoints are a specialized form of breakpoint, | |
10911 | since they rely on inserting breakpoints inside known routines | |
10912 | of the GNAT runtime. The implementation therefore uses a standard | |
10913 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10914 | of breakpoint_ops. | |
10915 | ||
0259addd JB |
10916 | Support in the runtime for exception catchpoints have been changed |
10917 | a few times already, and these changes affect the implementation | |
10918 | of these catchpoints. In order to be able to support several | |
10919 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10920 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10921 | |
10922 | /* The different types of catchpoints that we introduced for catching | |
10923 | Ada exceptions. */ | |
10924 | ||
10925 | enum exception_catchpoint_kind | |
10926 | { | |
10927 | ex_catch_exception, | |
10928 | ex_catch_exception_unhandled, | |
10929 | ex_catch_assert | |
10930 | }; | |
10931 | ||
3d0b0fa3 JB |
10932 | /* Ada's standard exceptions. */ |
10933 | ||
10934 | static char *standard_exc[] = { | |
10935 | "constraint_error", | |
10936 | "program_error", | |
10937 | "storage_error", | |
10938 | "tasking_error" | |
10939 | }; | |
10940 | ||
0259addd JB |
10941 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10942 | ||
10943 | /* A structure that describes how to support exception catchpoints | |
10944 | for a given executable. */ | |
10945 | ||
10946 | struct exception_support_info | |
10947 | { | |
10948 | /* The name of the symbol to break on in order to insert | |
10949 | a catchpoint on exceptions. */ | |
10950 | const char *catch_exception_sym; | |
10951 | ||
10952 | /* The name of the symbol to break on in order to insert | |
10953 | a catchpoint on unhandled exceptions. */ | |
10954 | const char *catch_exception_unhandled_sym; | |
10955 | ||
10956 | /* The name of the symbol to break on in order to insert | |
10957 | a catchpoint on failed assertions. */ | |
10958 | const char *catch_assert_sym; | |
10959 | ||
10960 | /* Assuming that the inferior just triggered an unhandled exception | |
10961 | catchpoint, this function is responsible for returning the address | |
10962 | in inferior memory where the name of that exception is stored. | |
10963 | Return zero if the address could not be computed. */ | |
10964 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10965 | }; | |
10966 | ||
10967 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10968 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10969 | ||
10970 | /* The following exception support info structure describes how to | |
10971 | implement exception catchpoints with the latest version of the | |
10972 | Ada runtime (as of 2007-03-06). */ | |
10973 | ||
10974 | static const struct exception_support_info default_exception_support_info = | |
10975 | { | |
10976 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10977 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10978 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10979 | ada_unhandled_exception_name_addr | |
10980 | }; | |
10981 | ||
10982 | /* The following exception support info structure describes how to | |
10983 | implement exception catchpoints with a slightly older version | |
10984 | of the Ada runtime. */ | |
10985 | ||
10986 | static const struct exception_support_info exception_support_info_fallback = | |
10987 | { | |
10988 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10989 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10990 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10991 | ada_unhandled_exception_name_addr_from_raise | |
10992 | }; | |
10993 | ||
f17011e0 JB |
10994 | /* Return nonzero if we can detect the exception support routines |
10995 | described in EINFO. | |
10996 | ||
10997 | This function errors out if an abnormal situation is detected | |
10998 | (for instance, if we find the exception support routines, but | |
10999 | that support is found to be incomplete). */ | |
11000 | ||
11001 | static int | |
11002 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11003 | { | |
11004 | struct symbol *sym; | |
11005 | ||
11006 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11007 | that should be compiled with debugging information. As a result, we | |
11008 | expect to find that symbol in the symtabs. */ | |
11009 | ||
11010 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11011 | if (sym == NULL) | |
a6af7abe JB |
11012 | { |
11013 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11014 | compiled without debugging info, or simply stripped of it. | |
11015 | It happens on some GNU/Linux distributions for instance, where | |
11016 | users have to install a separate debug package in order to get | |
11017 | the runtime's debugging info. In that situation, let the user | |
11018 | know why we cannot insert an Ada exception catchpoint. | |
11019 | ||
11020 | Note: Just for the purpose of inserting our Ada exception | |
11021 | catchpoint, we could rely purely on the associated minimal symbol. | |
11022 | But we would be operating in degraded mode anyway, since we are | |
11023 | still lacking the debugging info needed later on to extract | |
11024 | the name of the exception being raised (this name is printed in | |
11025 | the catchpoint message, and is also used when trying to catch | |
11026 | a specific exception). We do not handle this case for now. */ | |
11027 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
11028 | error (_("Your Ada runtime appears to be missing some debugging " | |
11029 | "information.\nCannot insert Ada exception catchpoint " | |
11030 | "in this configuration.")); | |
11031 | ||
11032 | return 0; | |
11033 | } | |
f17011e0 JB |
11034 | |
11035 | /* Make sure that the symbol we found corresponds to a function. */ | |
11036 | ||
11037 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11038 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11039 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11040 | ||
11041 | return 1; | |
11042 | } | |
11043 | ||
0259addd JB |
11044 | /* Inspect the Ada runtime and determine which exception info structure |
11045 | should be used to provide support for exception catchpoints. | |
11046 | ||
3eecfa55 JB |
11047 | This function will always set the per-inferior exception_info, |
11048 | or raise an error. */ | |
0259addd JB |
11049 | |
11050 | static void | |
11051 | ada_exception_support_info_sniffer (void) | |
11052 | { | |
3eecfa55 | 11053 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11054 | |
11055 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11056 | if (data->exception_info != NULL) |
0259addd JB |
11057 | return; |
11058 | ||
11059 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11060 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11061 | { |
3eecfa55 | 11062 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11063 | return; |
11064 | } | |
11065 | ||
11066 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11067 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11068 | { |
3eecfa55 | 11069 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11070 | return; |
11071 | } | |
11072 | ||
11073 | /* Sometimes, it is normal for us to not be able to find the routine | |
11074 | we are looking for. This happens when the program is linked with | |
11075 | the shared version of the GNAT runtime, and the program has not been | |
11076 | started yet. Inform the user of these two possible causes if | |
11077 | applicable. */ | |
11078 | ||
ccefe4c4 | 11079 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11080 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11081 | ||
11082 | /* If the symbol does not exist, then check that the program is | |
11083 | already started, to make sure that shared libraries have been | |
11084 | loaded. If it is not started, this may mean that the symbol is | |
11085 | in a shared library. */ | |
11086 | ||
11087 | if (ptid_get_pid (inferior_ptid) == 0) | |
11088 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11089 | ||
11090 | /* At this point, we know that we are debugging an Ada program and | |
11091 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11092 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11093 | configurable run time mode, or that a-except as been optimized |
11094 | out by the linker... In any case, at this point it is not worth | |
11095 | supporting this feature. */ | |
11096 | ||
7dda8cff | 11097 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11098 | } |
11099 | ||
f7f9143b JB |
11100 | /* True iff FRAME is very likely to be that of a function that is |
11101 | part of the runtime system. This is all very heuristic, but is | |
11102 | intended to be used as advice as to what frames are uninteresting | |
11103 | to most users. */ | |
11104 | ||
11105 | static int | |
11106 | is_known_support_routine (struct frame_info *frame) | |
11107 | { | |
4ed6b5be | 11108 | struct symtab_and_line sal; |
0d5cff50 | 11109 | const char *func_name; |
692465f1 | 11110 | enum language func_lang; |
f7f9143b | 11111 | int i; |
f35a17b5 | 11112 | const char *fullname; |
f7f9143b | 11113 | |
4ed6b5be JB |
11114 | /* If this code does not have any debugging information (no symtab), |
11115 | This cannot be any user code. */ | |
f7f9143b | 11116 | |
4ed6b5be | 11117 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11118 | if (sal.symtab == NULL) |
11119 | return 1; | |
11120 | ||
4ed6b5be JB |
11121 | /* If there is a symtab, but the associated source file cannot be |
11122 | located, then assume this is not user code: Selecting a frame | |
11123 | for which we cannot display the code would not be very helpful | |
11124 | for the user. This should also take care of case such as VxWorks | |
11125 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11126 | |
f35a17b5 JK |
11127 | fullname = symtab_to_fullname (sal.symtab); |
11128 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11129 | return 1; |
11130 | ||
4ed6b5be JB |
11131 | /* Check the unit filename againt the Ada runtime file naming. |
11132 | We also check the name of the objfile against the name of some | |
11133 | known system libraries that sometimes come with debugging info | |
11134 | too. */ | |
11135 | ||
f7f9143b JB |
11136 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11137 | { | |
11138 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11139 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11140 | return 1; |
4ed6b5be JB |
11141 | if (sal.symtab->objfile != NULL |
11142 | && re_exec (sal.symtab->objfile->name)) | |
11143 | return 1; | |
f7f9143b JB |
11144 | } |
11145 | ||
4ed6b5be | 11146 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11147 | |
e9e07ba6 | 11148 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11149 | if (func_name == NULL) |
11150 | return 1; | |
11151 | ||
11152 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11153 | { | |
11154 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11155 | if (re_exec (func_name)) | |
11156 | return 1; | |
11157 | } | |
11158 | ||
11159 | return 0; | |
11160 | } | |
11161 | ||
11162 | /* Find the first frame that contains debugging information and that is not | |
11163 | part of the Ada run-time, starting from FI and moving upward. */ | |
11164 | ||
0ef643c8 | 11165 | void |
f7f9143b JB |
11166 | ada_find_printable_frame (struct frame_info *fi) |
11167 | { | |
11168 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11169 | { | |
11170 | if (!is_known_support_routine (fi)) | |
11171 | { | |
11172 | select_frame (fi); | |
11173 | break; | |
11174 | } | |
11175 | } | |
11176 | ||
11177 | } | |
11178 | ||
11179 | /* Assuming that the inferior just triggered an unhandled exception | |
11180 | catchpoint, return the address in inferior memory where the name | |
11181 | of the exception is stored. | |
11182 | ||
11183 | Return zero if the address could not be computed. */ | |
11184 | ||
11185 | static CORE_ADDR | |
11186 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11187 | { |
11188 | return parse_and_eval_address ("e.full_name"); | |
11189 | } | |
11190 | ||
11191 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11192 | should be used when the inferior uses an older version of the runtime, | |
11193 | where the exception name needs to be extracted from a specific frame | |
11194 | several frames up in the callstack. */ | |
11195 | ||
11196 | static CORE_ADDR | |
11197 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11198 | { |
11199 | int frame_level; | |
11200 | struct frame_info *fi; | |
3eecfa55 | 11201 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
11202 | |
11203 | /* To determine the name of this exception, we need to select | |
11204 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11205 | at least 3 levels up, so we simply skip the first 3 frames | |
11206 | without checking the name of their associated function. */ | |
11207 | fi = get_current_frame (); | |
11208 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11209 | if (fi != NULL) | |
11210 | fi = get_prev_frame (fi); | |
11211 | ||
11212 | while (fi != NULL) | |
11213 | { | |
0d5cff50 | 11214 | const char *func_name; |
692465f1 JB |
11215 | enum language func_lang; |
11216 | ||
e9e07ba6 | 11217 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 11218 | if (func_name != NULL |
3eecfa55 | 11219 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
11220 | break; /* We found the frame we were looking for... */ |
11221 | fi = get_prev_frame (fi); | |
11222 | } | |
11223 | ||
11224 | if (fi == NULL) | |
11225 | return 0; | |
11226 | ||
11227 | select_frame (fi); | |
11228 | return parse_and_eval_address ("id.full_name"); | |
11229 | } | |
11230 | ||
11231 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11232 | (of any type), return the address in inferior memory where the name | |
11233 | of the exception is stored, if applicable. | |
11234 | ||
11235 | Return zero if the address could not be computed, or if not relevant. */ | |
11236 | ||
11237 | static CORE_ADDR | |
11238 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
11239 | struct breakpoint *b) | |
11240 | { | |
3eecfa55 JB |
11241 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11242 | ||
f7f9143b JB |
11243 | switch (ex) |
11244 | { | |
11245 | case ex_catch_exception: | |
11246 | return (parse_and_eval_address ("e.full_name")); | |
11247 | break; | |
11248 | ||
11249 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11250 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11251 | break; |
11252 | ||
11253 | case ex_catch_assert: | |
11254 | return 0; /* Exception name is not relevant in this case. */ | |
11255 | break; | |
11256 | ||
11257 | default: | |
11258 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11259 | break; | |
11260 | } | |
11261 | ||
11262 | return 0; /* Should never be reached. */ | |
11263 | } | |
11264 | ||
11265 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11266 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11267 | When an error is intercepted, a warning with the error message is printed, | |
11268 | and zero is returned. */ | |
11269 | ||
11270 | static CORE_ADDR | |
11271 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
11272 | struct breakpoint *b) | |
11273 | { | |
bfd189b1 | 11274 | volatile struct gdb_exception e; |
f7f9143b JB |
11275 | CORE_ADDR result = 0; |
11276 | ||
11277 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11278 | { | |
11279 | result = ada_exception_name_addr_1 (ex, b); | |
11280 | } | |
11281 | ||
11282 | if (e.reason < 0) | |
11283 | { | |
11284 | warning (_("failed to get exception name: %s"), e.message); | |
11285 | return 0; | |
11286 | } | |
11287 | ||
11288 | return result; | |
11289 | } | |
11290 | ||
28010a5d PA |
11291 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
11292 | char *, char **, | |
c0a91b2b | 11293 | const struct breakpoint_ops **); |
28010a5d PA |
11294 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11295 | ||
11296 | /* Ada catchpoints. | |
11297 | ||
11298 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11299 | stop the target on every exception the program throws. When a user | |
11300 | specifies the name of a specific exception, we translate this | |
11301 | request into a condition expression (in text form), and then parse | |
11302 | it into an expression stored in each of the catchpoint's locations. | |
11303 | We then use this condition to check whether the exception that was | |
11304 | raised is the one the user is interested in. If not, then the | |
11305 | target is resumed again. We store the name of the requested | |
11306 | exception, in order to be able to re-set the condition expression | |
11307 | when symbols change. */ | |
11308 | ||
11309 | /* An instance of this type is used to represent an Ada catchpoint | |
11310 | breakpoint location. It includes a "struct bp_location" as a kind | |
11311 | of base class; users downcast to "struct bp_location *" when | |
11312 | needed. */ | |
11313 | ||
11314 | struct ada_catchpoint_location | |
11315 | { | |
11316 | /* The base class. */ | |
11317 | struct bp_location base; | |
11318 | ||
11319 | /* The condition that checks whether the exception that was raised | |
11320 | is the specific exception the user specified on catchpoint | |
11321 | creation. */ | |
11322 | struct expression *excep_cond_expr; | |
11323 | }; | |
11324 | ||
11325 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11326 | Ada exception catchpoint kinds. */ | |
11327 | ||
11328 | static void | |
11329 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11330 | { | |
11331 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11332 | ||
11333 | xfree (al->excep_cond_expr); | |
11334 | } | |
11335 | ||
11336 | /* The vtable to be used in Ada catchpoint locations. */ | |
11337 | ||
11338 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11339 | { | |
11340 | ada_catchpoint_location_dtor | |
11341 | }; | |
11342 | ||
11343 | /* An instance of this type is used to represent an Ada catchpoint. | |
11344 | It includes a "struct breakpoint" as a kind of base class; users | |
11345 | downcast to "struct breakpoint *" when needed. */ | |
11346 | ||
11347 | struct ada_catchpoint | |
11348 | { | |
11349 | /* The base class. */ | |
11350 | struct breakpoint base; | |
11351 | ||
11352 | /* The name of the specific exception the user specified. */ | |
11353 | char *excep_string; | |
11354 | }; | |
11355 | ||
11356 | /* Parse the exception condition string in the context of each of the | |
11357 | catchpoint's locations, and store them for later evaluation. */ | |
11358 | ||
11359 | static void | |
11360 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11361 | { | |
11362 | struct cleanup *old_chain; | |
11363 | struct bp_location *bl; | |
11364 | char *cond_string; | |
11365 | ||
11366 | /* Nothing to do if there's no specific exception to catch. */ | |
11367 | if (c->excep_string == NULL) | |
11368 | return; | |
11369 | ||
11370 | /* Same if there are no locations... */ | |
11371 | if (c->base.loc == NULL) | |
11372 | return; | |
11373 | ||
11374 | /* Compute the condition expression in text form, from the specific | |
11375 | expection we want to catch. */ | |
11376 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11377 | old_chain = make_cleanup (xfree, cond_string); | |
11378 | ||
11379 | /* Iterate over all the catchpoint's locations, and parse an | |
11380 | expression for each. */ | |
11381 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11382 | { | |
11383 | struct ada_catchpoint_location *ada_loc | |
11384 | = (struct ada_catchpoint_location *) bl; | |
11385 | struct expression *exp = NULL; | |
11386 | ||
11387 | if (!bl->shlib_disabled) | |
11388 | { | |
11389 | volatile struct gdb_exception e; | |
bbc13ae3 | 11390 | const char *s; |
28010a5d PA |
11391 | |
11392 | s = cond_string; | |
11393 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11394 | { | |
1bb9788d TT |
11395 | exp = parse_exp_1 (&s, bl->address, |
11396 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11397 | } |
11398 | if (e.reason < 0) | |
11399 | warning (_("failed to reevaluate internal exception condition " | |
11400 | "for catchpoint %d: %s"), | |
11401 | c->base.number, e.message); | |
11402 | } | |
11403 | ||
11404 | ada_loc->excep_cond_expr = exp; | |
11405 | } | |
11406 | ||
11407 | do_cleanups (old_chain); | |
11408 | } | |
11409 | ||
11410 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11411 | exception catchpoint kinds. */ | |
11412 | ||
11413 | static void | |
11414 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11415 | { | |
11416 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11417 | ||
11418 | xfree (c->excep_string); | |
348d480f | 11419 | |
2060206e | 11420 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11421 | } |
11422 | ||
11423 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11424 | structure for all exception catchpoint kinds. */ | |
11425 | ||
11426 | static struct bp_location * | |
11427 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11428 | struct breakpoint *self) | |
11429 | { | |
11430 | struct ada_catchpoint_location *loc; | |
11431 | ||
11432 | loc = XNEW (struct ada_catchpoint_location); | |
11433 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11434 | loc->excep_cond_expr = NULL; | |
11435 | return &loc->base; | |
11436 | } | |
11437 | ||
11438 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11439 | exception catchpoint kinds. */ | |
11440 | ||
11441 | static void | |
11442 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11443 | { | |
11444 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11445 | ||
11446 | /* Call the base class's method. This updates the catchpoint's | |
11447 | locations. */ | |
2060206e | 11448 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11449 | |
11450 | /* Reparse the exception conditional expressions. One for each | |
11451 | location. */ | |
11452 | create_excep_cond_exprs (c); | |
11453 | } | |
11454 | ||
11455 | /* Returns true if we should stop for this breakpoint hit. If the | |
11456 | user specified a specific exception, we only want to cause a stop | |
11457 | if the program thrown that exception. */ | |
11458 | ||
11459 | static int | |
11460 | should_stop_exception (const struct bp_location *bl) | |
11461 | { | |
11462 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11463 | const struct ada_catchpoint_location *ada_loc | |
11464 | = (const struct ada_catchpoint_location *) bl; | |
11465 | volatile struct gdb_exception ex; | |
11466 | int stop; | |
11467 | ||
11468 | /* With no specific exception, should always stop. */ | |
11469 | if (c->excep_string == NULL) | |
11470 | return 1; | |
11471 | ||
11472 | if (ada_loc->excep_cond_expr == NULL) | |
11473 | { | |
11474 | /* We will have a NULL expression if back when we were creating | |
11475 | the expressions, this location's had failed to parse. */ | |
11476 | return 1; | |
11477 | } | |
11478 | ||
11479 | stop = 1; | |
11480 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11481 | { | |
11482 | struct value *mark; | |
11483 | ||
11484 | mark = value_mark (); | |
11485 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11486 | value_free_to_mark (mark); | |
11487 | } | |
11488 | if (ex.reason < 0) | |
11489 | exception_fprintf (gdb_stderr, ex, | |
11490 | _("Error in testing exception condition:\n")); | |
11491 | return stop; | |
11492 | } | |
11493 | ||
11494 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11495 | for all exception catchpoint kinds. */ | |
11496 | ||
11497 | static void | |
11498 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11499 | { | |
11500 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11501 | } | |
11502 | ||
f7f9143b JB |
11503 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11504 | for all exception catchpoint kinds. */ | |
11505 | ||
11506 | static enum print_stop_action | |
348d480f | 11507 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11508 | { |
79a45e25 | 11509 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11510 | struct breakpoint *b = bs->breakpoint_at; |
11511 | ||
956a9fb9 | 11512 | annotate_catchpoint (b->number); |
f7f9143b | 11513 | |
956a9fb9 | 11514 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11515 | { |
956a9fb9 JB |
11516 | ui_out_field_string (uiout, "reason", |
11517 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11518 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11519 | } |
11520 | ||
00eb2c4a JB |
11521 | ui_out_text (uiout, |
11522 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11523 | : "\nCatchpoint "); | |
956a9fb9 JB |
11524 | ui_out_field_int (uiout, "bkptno", b->number); |
11525 | ui_out_text (uiout, ", "); | |
f7f9143b | 11526 | |
f7f9143b JB |
11527 | switch (ex) |
11528 | { | |
11529 | case ex_catch_exception: | |
f7f9143b | 11530 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11531 | { |
11532 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11533 | char exception_name[256]; | |
11534 | ||
11535 | if (addr != 0) | |
11536 | { | |
11537 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11538 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11539 | } | |
11540 | else | |
11541 | { | |
11542 | /* For some reason, we were unable to read the exception | |
11543 | name. This could happen if the Runtime was compiled | |
11544 | without debugging info, for instance. In that case, | |
11545 | just replace the exception name by the generic string | |
11546 | "exception" - it will read as "an exception" in the | |
11547 | notification we are about to print. */ | |
967cff16 | 11548 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11549 | } |
11550 | /* In the case of unhandled exception breakpoints, we print | |
11551 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11552 | it clearer to the user which kind of catchpoint just got | |
11553 | hit. We used ui_out_text to make sure that this extra | |
11554 | info does not pollute the exception name in the MI case. */ | |
11555 | if (ex == ex_catch_exception_unhandled) | |
11556 | ui_out_text (uiout, "unhandled "); | |
11557 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11558 | } | |
11559 | break; | |
f7f9143b | 11560 | case ex_catch_assert: |
956a9fb9 JB |
11561 | /* In this case, the name of the exception is not really |
11562 | important. Just print "failed assertion" to make it clearer | |
11563 | that his program just hit an assertion-failure catchpoint. | |
11564 | We used ui_out_text because this info does not belong in | |
11565 | the MI output. */ | |
11566 | ui_out_text (uiout, "failed assertion"); | |
11567 | break; | |
f7f9143b | 11568 | } |
956a9fb9 JB |
11569 | ui_out_text (uiout, " at "); |
11570 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11571 | |
11572 | return PRINT_SRC_AND_LOC; | |
11573 | } | |
11574 | ||
11575 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11576 | for all exception catchpoint kinds. */ | |
11577 | ||
11578 | static void | |
11579 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11580 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11581 | { |
79a45e25 | 11582 | struct ui_out *uiout = current_uiout; |
28010a5d | 11583 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11584 | struct value_print_options opts; |
11585 | ||
11586 | get_user_print_options (&opts); | |
11587 | if (opts.addressprint) | |
f7f9143b JB |
11588 | { |
11589 | annotate_field (4); | |
5af949e3 | 11590 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11591 | } |
11592 | ||
11593 | annotate_field (5); | |
a6d9a66e | 11594 | *last_loc = b->loc; |
f7f9143b JB |
11595 | switch (ex) |
11596 | { | |
11597 | case ex_catch_exception: | |
28010a5d | 11598 | if (c->excep_string != NULL) |
f7f9143b | 11599 | { |
28010a5d PA |
11600 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11601 | ||
f7f9143b JB |
11602 | ui_out_field_string (uiout, "what", msg); |
11603 | xfree (msg); | |
11604 | } | |
11605 | else | |
11606 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11607 | ||
11608 | break; | |
11609 | ||
11610 | case ex_catch_exception_unhandled: | |
11611 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11612 | break; | |
11613 | ||
11614 | case ex_catch_assert: | |
11615 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11616 | break; | |
11617 | ||
11618 | default: | |
11619 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11620 | break; | |
11621 | } | |
11622 | } | |
11623 | ||
11624 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11625 | for all exception catchpoint kinds. */ | |
11626 | ||
11627 | static void | |
11628 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11629 | struct breakpoint *b) | |
11630 | { | |
28010a5d | 11631 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11632 | struct ui_out *uiout = current_uiout; |
28010a5d | 11633 | |
00eb2c4a JB |
11634 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11635 | : _("Catchpoint ")); | |
11636 | ui_out_field_int (uiout, "bkptno", b->number); | |
11637 | ui_out_text (uiout, ": "); | |
11638 | ||
f7f9143b JB |
11639 | switch (ex) |
11640 | { | |
11641 | case ex_catch_exception: | |
28010a5d | 11642 | if (c->excep_string != NULL) |
00eb2c4a JB |
11643 | { |
11644 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11645 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11646 | ||
11647 | ui_out_text (uiout, info); | |
11648 | do_cleanups (old_chain); | |
11649 | } | |
f7f9143b | 11650 | else |
00eb2c4a | 11651 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11652 | break; |
11653 | ||
11654 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11655 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11656 | break; |
11657 | ||
11658 | case ex_catch_assert: | |
00eb2c4a | 11659 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11660 | break; |
11661 | ||
11662 | default: | |
11663 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11664 | break; | |
11665 | } | |
11666 | } | |
11667 | ||
6149aea9 PA |
11668 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11669 | for all exception catchpoint kinds. */ | |
11670 | ||
11671 | static void | |
11672 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11673 | struct breakpoint *b, struct ui_file *fp) | |
11674 | { | |
28010a5d PA |
11675 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11676 | ||
6149aea9 PA |
11677 | switch (ex) |
11678 | { | |
11679 | case ex_catch_exception: | |
11680 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11681 | if (c->excep_string != NULL) |
11682 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11683 | break; |
11684 | ||
11685 | case ex_catch_exception_unhandled: | |
78076abc | 11686 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11687 | break; |
11688 | ||
11689 | case ex_catch_assert: | |
11690 | fprintf_filtered (fp, "catch assert"); | |
11691 | break; | |
11692 | ||
11693 | default: | |
11694 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11695 | } | |
d9b3f62e | 11696 | print_recreate_thread (b, fp); |
6149aea9 PA |
11697 | } |
11698 | ||
f7f9143b JB |
11699 | /* Virtual table for "catch exception" breakpoints. */ |
11700 | ||
28010a5d PA |
11701 | static void |
11702 | dtor_catch_exception (struct breakpoint *b) | |
11703 | { | |
11704 | dtor_exception (ex_catch_exception, b); | |
11705 | } | |
11706 | ||
11707 | static struct bp_location * | |
11708 | allocate_location_catch_exception (struct breakpoint *self) | |
11709 | { | |
11710 | return allocate_location_exception (ex_catch_exception, self); | |
11711 | } | |
11712 | ||
11713 | static void | |
11714 | re_set_catch_exception (struct breakpoint *b) | |
11715 | { | |
11716 | re_set_exception (ex_catch_exception, b); | |
11717 | } | |
11718 | ||
11719 | static void | |
11720 | check_status_catch_exception (bpstat bs) | |
11721 | { | |
11722 | check_status_exception (ex_catch_exception, bs); | |
11723 | } | |
11724 | ||
f7f9143b | 11725 | static enum print_stop_action |
348d480f | 11726 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11727 | { |
348d480f | 11728 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11729 | } |
11730 | ||
11731 | static void | |
a6d9a66e | 11732 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11733 | { |
a6d9a66e | 11734 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11735 | } |
11736 | ||
11737 | static void | |
11738 | print_mention_catch_exception (struct breakpoint *b) | |
11739 | { | |
11740 | print_mention_exception (ex_catch_exception, b); | |
11741 | } | |
11742 | ||
6149aea9 PA |
11743 | static void |
11744 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11745 | { | |
11746 | print_recreate_exception (ex_catch_exception, b, fp); | |
11747 | } | |
11748 | ||
2060206e | 11749 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11750 | |
11751 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11752 | ||
28010a5d PA |
11753 | static void |
11754 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11755 | { | |
11756 | dtor_exception (ex_catch_exception_unhandled, b); | |
11757 | } | |
11758 | ||
11759 | static struct bp_location * | |
11760 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11761 | { | |
11762 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11763 | } | |
11764 | ||
11765 | static void | |
11766 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11767 | { | |
11768 | re_set_exception (ex_catch_exception_unhandled, b); | |
11769 | } | |
11770 | ||
11771 | static void | |
11772 | check_status_catch_exception_unhandled (bpstat bs) | |
11773 | { | |
11774 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11775 | } | |
11776 | ||
f7f9143b | 11777 | static enum print_stop_action |
348d480f | 11778 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11779 | { |
348d480f | 11780 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11781 | } |
11782 | ||
11783 | static void | |
a6d9a66e UW |
11784 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11785 | struct bp_location **last_loc) | |
f7f9143b | 11786 | { |
a6d9a66e | 11787 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11788 | } |
11789 | ||
11790 | static void | |
11791 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11792 | { | |
11793 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11794 | } | |
11795 | ||
6149aea9 PA |
11796 | static void |
11797 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11798 | struct ui_file *fp) | |
11799 | { | |
11800 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11801 | } | |
11802 | ||
2060206e | 11803 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11804 | |
11805 | /* Virtual table for "catch assert" breakpoints. */ | |
11806 | ||
28010a5d PA |
11807 | static void |
11808 | dtor_catch_assert (struct breakpoint *b) | |
11809 | { | |
11810 | dtor_exception (ex_catch_assert, b); | |
11811 | } | |
11812 | ||
11813 | static struct bp_location * | |
11814 | allocate_location_catch_assert (struct breakpoint *self) | |
11815 | { | |
11816 | return allocate_location_exception (ex_catch_assert, self); | |
11817 | } | |
11818 | ||
11819 | static void | |
11820 | re_set_catch_assert (struct breakpoint *b) | |
11821 | { | |
843e694d | 11822 | re_set_exception (ex_catch_assert, b); |
28010a5d PA |
11823 | } |
11824 | ||
11825 | static void | |
11826 | check_status_catch_assert (bpstat bs) | |
11827 | { | |
11828 | check_status_exception (ex_catch_assert, bs); | |
11829 | } | |
11830 | ||
f7f9143b | 11831 | static enum print_stop_action |
348d480f | 11832 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11833 | { |
348d480f | 11834 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11835 | } |
11836 | ||
11837 | static void | |
a6d9a66e | 11838 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11839 | { |
a6d9a66e | 11840 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11841 | } |
11842 | ||
11843 | static void | |
11844 | print_mention_catch_assert (struct breakpoint *b) | |
11845 | { | |
11846 | print_mention_exception (ex_catch_assert, b); | |
11847 | } | |
11848 | ||
6149aea9 PA |
11849 | static void |
11850 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11851 | { | |
11852 | print_recreate_exception (ex_catch_assert, b, fp); | |
11853 | } | |
11854 | ||
2060206e | 11855 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11856 | |
f7f9143b JB |
11857 | /* Return a newly allocated copy of the first space-separated token |
11858 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11859 | token. | |
11860 | ||
11861 | Return NULL if ARGPS does not contain any more tokens. */ | |
11862 | ||
11863 | static char * | |
11864 | ada_get_next_arg (char **argsp) | |
11865 | { | |
11866 | char *args = *argsp; | |
11867 | char *end; | |
11868 | char *result; | |
11869 | ||
0fcd72ba | 11870 | args = skip_spaces (args); |
f7f9143b JB |
11871 | if (args[0] == '\0') |
11872 | return NULL; /* No more arguments. */ | |
11873 | ||
11874 | /* Find the end of the current argument. */ | |
11875 | ||
0fcd72ba | 11876 | end = skip_to_space (args); |
f7f9143b JB |
11877 | |
11878 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11879 | ||
11880 | *argsp = end; | |
11881 | ||
11882 | /* Make a copy of the current argument and return it. */ | |
11883 | ||
11884 | result = xmalloc (end - args + 1); | |
11885 | strncpy (result, args, end - args); | |
11886 | result[end - args] = '\0'; | |
11887 | ||
11888 | return result; | |
11889 | } | |
11890 | ||
11891 | /* Split the arguments specified in a "catch exception" command. | |
11892 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11893 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
11894 | specified by the user. |
11895 | If a condition is found at the end of the arguments, the condition | |
11896 | expression is stored in COND_STRING (memory must be deallocated | |
11897 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
11898 | |
11899 | static void | |
11900 | catch_ada_exception_command_split (char *args, | |
11901 | enum exception_catchpoint_kind *ex, | |
5845583d JB |
11902 | char **excep_string, |
11903 | char **cond_string) | |
f7f9143b JB |
11904 | { |
11905 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11906 | char *exception_name; | |
5845583d | 11907 | char *cond = NULL; |
f7f9143b JB |
11908 | |
11909 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
11910 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
11911 | { | |
11912 | /* This is not an exception name; this is the start of a condition | |
11913 | expression for a catchpoint on all exceptions. So, "un-get" | |
11914 | this token, and set exception_name to NULL. */ | |
11915 | xfree (exception_name); | |
11916 | exception_name = NULL; | |
11917 | args -= 2; | |
11918 | } | |
f7f9143b JB |
11919 | make_cleanup (xfree, exception_name); |
11920 | ||
5845583d | 11921 | /* Check to see if we have a condition. */ |
f7f9143b | 11922 | |
0fcd72ba | 11923 | args = skip_spaces (args); |
5845583d JB |
11924 | if (strncmp (args, "if", 2) == 0 |
11925 | && (isspace (args[2]) || args[2] == '\0')) | |
11926 | { | |
11927 | args += 2; | |
11928 | args = skip_spaces (args); | |
11929 | ||
11930 | if (args[0] == '\0') | |
11931 | error (_("Condition missing after `if' keyword")); | |
11932 | cond = xstrdup (args); | |
11933 | make_cleanup (xfree, cond); | |
11934 | ||
11935 | args += strlen (args); | |
11936 | } | |
11937 | ||
11938 | /* Check that we do not have any more arguments. Anything else | |
11939 | is unexpected. */ | |
f7f9143b JB |
11940 | |
11941 | if (args[0] != '\0') | |
11942 | error (_("Junk at end of expression")); | |
11943 | ||
11944 | discard_cleanups (old_chain); | |
11945 | ||
11946 | if (exception_name == NULL) | |
11947 | { | |
11948 | /* Catch all exceptions. */ | |
11949 | *ex = ex_catch_exception; | |
28010a5d | 11950 | *excep_string = NULL; |
f7f9143b JB |
11951 | } |
11952 | else if (strcmp (exception_name, "unhandled") == 0) | |
11953 | { | |
11954 | /* Catch unhandled exceptions. */ | |
11955 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11956 | *excep_string = NULL; |
f7f9143b JB |
11957 | } |
11958 | else | |
11959 | { | |
11960 | /* Catch a specific exception. */ | |
11961 | *ex = ex_catch_exception; | |
28010a5d | 11962 | *excep_string = exception_name; |
f7f9143b | 11963 | } |
5845583d | 11964 | *cond_string = cond; |
f7f9143b JB |
11965 | } |
11966 | ||
11967 | /* Return the name of the symbol on which we should break in order to | |
11968 | implement a catchpoint of the EX kind. */ | |
11969 | ||
11970 | static const char * | |
11971 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11972 | { | |
3eecfa55 JB |
11973 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11974 | ||
11975 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11976 | |
f7f9143b JB |
11977 | switch (ex) |
11978 | { | |
11979 | case ex_catch_exception: | |
3eecfa55 | 11980 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11981 | break; |
11982 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11983 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11984 | break; |
11985 | case ex_catch_assert: | |
3eecfa55 | 11986 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11987 | break; |
11988 | default: | |
11989 | internal_error (__FILE__, __LINE__, | |
11990 | _("unexpected catchpoint kind (%d)"), ex); | |
11991 | } | |
11992 | } | |
11993 | ||
11994 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11995 | of the EX kind. */ | |
11996 | ||
c0a91b2b | 11997 | static const struct breakpoint_ops * |
4b9eee8c | 11998 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11999 | { |
12000 | switch (ex) | |
12001 | { | |
12002 | case ex_catch_exception: | |
12003 | return (&catch_exception_breakpoint_ops); | |
12004 | break; | |
12005 | case ex_catch_exception_unhandled: | |
12006 | return (&catch_exception_unhandled_breakpoint_ops); | |
12007 | break; | |
12008 | case ex_catch_assert: | |
12009 | return (&catch_assert_breakpoint_ops); | |
12010 | break; | |
12011 | default: | |
12012 | internal_error (__FILE__, __LINE__, | |
12013 | _("unexpected catchpoint kind (%d)"), ex); | |
12014 | } | |
12015 | } | |
12016 | ||
12017 | /* Return the condition that will be used to match the current exception | |
12018 | being raised with the exception that the user wants to catch. This | |
12019 | assumes that this condition is used when the inferior just triggered | |
12020 | an exception catchpoint. | |
12021 | ||
12022 | The string returned is a newly allocated string that needs to be | |
12023 | deallocated later. */ | |
12024 | ||
12025 | static char * | |
28010a5d | 12026 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12027 | { |
3d0b0fa3 JB |
12028 | int i; |
12029 | ||
0963b4bd | 12030 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12031 | runtime units that have been compiled without debugging info; if |
28010a5d | 12032 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12033 | exception (e.g. "constraint_error") then, during the evaluation |
12034 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12035 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12036 | may then be set only on user-defined exceptions which have the |
12037 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12038 | ||
12039 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12040 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12041 | exception constraint_error" is rewritten into "catch exception |
12042 | standard.constraint_error". | |
12043 | ||
12044 | If an exception named contraint_error is defined in another package of | |
12045 | the inferior program, then the only way to specify this exception as a | |
12046 | breakpoint condition is to use its fully-qualified named: | |
12047 | e.g. my_package.constraint_error. */ | |
12048 | ||
12049 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12050 | { | |
28010a5d | 12051 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12052 | { |
12053 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12054 | excep_string); |
3d0b0fa3 JB |
12055 | } |
12056 | } | |
28010a5d | 12057 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12058 | } |
12059 | ||
12060 | /* Return the symtab_and_line that should be used to insert an exception | |
12061 | catchpoint of the TYPE kind. | |
12062 | ||
28010a5d PA |
12063 | EXCEP_STRING should contain the name of a specific exception that |
12064 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12065 | |
28010a5d PA |
12066 | ADDR_STRING returns the name of the function where the real |
12067 | breakpoint that implements the catchpoints is set, depending on the | |
12068 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12069 | |
12070 | static struct symtab_and_line | |
28010a5d | 12071 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12072 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12073 | { |
12074 | const char *sym_name; | |
12075 | struct symbol *sym; | |
f7f9143b | 12076 | |
0259addd JB |
12077 | /* First, find out which exception support info to use. */ |
12078 | ada_exception_support_info_sniffer (); | |
12079 | ||
12080 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12081 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12082 | sym_name = ada_exception_sym_name (ex); |
12083 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12084 | ||
f17011e0 JB |
12085 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12086 | did not exist, ada_exception_support_info_sniffer would have | |
12087 | raised an exception. | |
f7f9143b | 12088 | |
f17011e0 JB |
12089 | Also, ada_exception_support_info_sniffer should have already |
12090 | verified that SYM is a function symbol. */ | |
12091 | gdb_assert (sym != NULL); | |
12092 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12093 | |
12094 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12095 | *addr_string = xstrdup (sym_name); |
12096 | ||
f7f9143b | 12097 | /* Set OPS. */ |
4b9eee8c | 12098 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12099 | |
f17011e0 | 12100 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12101 | } |
12102 | ||
12103 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
12104 | ||
f7f9143b JB |
12105 | If the user asked the catchpoint to catch only a specific |
12106 | exception, then save the exception name in ADDR_STRING. | |
12107 | ||
5845583d JB |
12108 | If the user provided a condition, then set COND_STRING to |
12109 | that condition expression (the memory must be deallocated | |
12110 | after use). Otherwise, set COND_STRING to NULL. | |
12111 | ||
f7f9143b JB |
12112 | See ada_exception_sal for a description of all the remaining |
12113 | function arguments of this function. */ | |
12114 | ||
9ac4176b | 12115 | static struct symtab_and_line |
f7f9143b | 12116 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 12117 | char **excep_string, |
5845583d | 12118 | char **cond_string, |
c0a91b2b | 12119 | const struct breakpoint_ops **ops) |
f7f9143b JB |
12120 | { |
12121 | enum exception_catchpoint_kind ex; | |
12122 | ||
5845583d | 12123 | catch_ada_exception_command_split (args, &ex, excep_string, cond_string); |
28010a5d PA |
12124 | return ada_exception_sal (ex, *excep_string, addr_string, ops); |
12125 | } | |
12126 | ||
12127 | /* Create an Ada exception catchpoint. */ | |
12128 | ||
12129 | static void | |
12130 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
12131 | struct symtab_and_line sal, | |
12132 | char *addr_string, | |
12133 | char *excep_string, | |
5845583d | 12134 | char *cond_string, |
c0a91b2b | 12135 | const struct breakpoint_ops *ops, |
28010a5d PA |
12136 | int tempflag, |
12137 | int from_tty) | |
12138 | { | |
12139 | struct ada_catchpoint *c; | |
12140 | ||
12141 | c = XNEW (struct ada_catchpoint); | |
12142 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
12143 | ops, tempflag, from_tty); | |
12144 | c->excep_string = excep_string; | |
12145 | create_excep_cond_exprs (c); | |
5845583d JB |
12146 | if (cond_string != NULL) |
12147 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12148 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12149 | } |
12150 | ||
9ac4176b PA |
12151 | /* Implement the "catch exception" command. */ |
12152 | ||
12153 | static void | |
12154 | catch_ada_exception_command (char *arg, int from_tty, | |
12155 | struct cmd_list_element *command) | |
12156 | { | |
12157 | struct gdbarch *gdbarch = get_current_arch (); | |
12158 | int tempflag; | |
12159 | struct symtab_and_line sal; | |
12160 | char *addr_string = NULL; | |
28010a5d | 12161 | char *excep_string = NULL; |
5845583d | 12162 | char *cond_string = NULL; |
c0a91b2b | 12163 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
12164 | |
12165 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12166 | ||
12167 | if (!arg) | |
12168 | arg = ""; | |
5845583d JB |
12169 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, |
12170 | &cond_string, &ops); | |
28010a5d | 12171 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
12172 | excep_string, cond_string, ops, |
12173 | tempflag, from_tty); | |
9ac4176b PA |
12174 | } |
12175 | ||
5845583d JB |
12176 | /* Assuming that ARGS contains the arguments of a "catch assert" |
12177 | command, parse those arguments and return a symtab_and_line object | |
12178 | for a failed assertion catchpoint. | |
12179 | ||
12180 | Set ADDR_STRING to the name of the function where the real | |
12181 | breakpoint that implements the catchpoint is set. | |
12182 | ||
12183 | If ARGS contains a condition, set COND_STRING to that condition | |
12184 | (the memory needs to be deallocated after use). Otherwise, set | |
12185 | COND_STRING to NULL. */ | |
12186 | ||
9ac4176b | 12187 | static struct symtab_and_line |
f7f9143b | 12188 | ada_decode_assert_location (char *args, char **addr_string, |
5845583d | 12189 | char **cond_string, |
c0a91b2b | 12190 | const struct breakpoint_ops **ops) |
f7f9143b | 12191 | { |
5845583d | 12192 | args = skip_spaces (args); |
f7f9143b | 12193 | |
5845583d JB |
12194 | /* Check whether a condition was provided. */ |
12195 | if (strncmp (args, "if", 2) == 0 | |
12196 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12197 | { |
5845583d | 12198 | args += 2; |
0fcd72ba | 12199 | args = skip_spaces (args); |
5845583d JB |
12200 | if (args[0] == '\0') |
12201 | error (_("condition missing after `if' keyword")); | |
12202 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12203 | } |
12204 | ||
5845583d JB |
12205 | /* Otherwise, there should be no other argument at the end of |
12206 | the command. */ | |
12207 | else if (args[0] != '\0') | |
12208 | error (_("Junk at end of arguments.")); | |
12209 | ||
28010a5d | 12210 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
12211 | } |
12212 | ||
9ac4176b PA |
12213 | /* Implement the "catch assert" command. */ |
12214 | ||
12215 | static void | |
12216 | catch_assert_command (char *arg, int from_tty, | |
12217 | struct cmd_list_element *command) | |
12218 | { | |
12219 | struct gdbarch *gdbarch = get_current_arch (); | |
12220 | int tempflag; | |
12221 | struct symtab_and_line sal; | |
12222 | char *addr_string = NULL; | |
5845583d | 12223 | char *cond_string = NULL; |
c0a91b2b | 12224 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
12225 | |
12226 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12227 | ||
12228 | if (!arg) | |
12229 | arg = ""; | |
5845583d | 12230 | sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops); |
28010a5d | 12231 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
12232 | NULL, cond_string, ops, tempflag, |
12233 | from_tty); | |
9ac4176b | 12234 | } |
4c4b4cd2 PH |
12235 | /* Operators */ |
12236 | /* Information about operators given special treatment in functions | |
12237 | below. */ | |
12238 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
12239 | ||
12240 | #define ADA_OPERATORS \ | |
12241 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
12242 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
12243 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
12244 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
12245 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
12246 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
12247 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
12248 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
12249 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
12250 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
12251 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
12252 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
12253 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
12254 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
12255 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
12256 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
12257 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
12258 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
12259 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
12260 | |
12261 | static void | |
554794dc SDJ |
12262 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
12263 | int *argsp) | |
4c4b4cd2 PH |
12264 | { |
12265 | switch (exp->elts[pc - 1].opcode) | |
12266 | { | |
76a01679 | 12267 | default: |
4c4b4cd2 PH |
12268 | operator_length_standard (exp, pc, oplenp, argsp); |
12269 | break; | |
12270 | ||
12271 | #define OP_DEFN(op, len, args, binop) \ | |
12272 | case op: *oplenp = len; *argsp = args; break; | |
12273 | ADA_OPERATORS; | |
12274 | #undef OP_DEFN | |
52ce6436 PH |
12275 | |
12276 | case OP_AGGREGATE: | |
12277 | *oplenp = 3; | |
12278 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
12279 | break; | |
12280 | ||
12281 | case OP_CHOICES: | |
12282 | *oplenp = 3; | |
12283 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
12284 | break; | |
4c4b4cd2 PH |
12285 | } |
12286 | } | |
12287 | ||
c0201579 JK |
12288 | /* Implementation of the exp_descriptor method operator_check. */ |
12289 | ||
12290 | static int | |
12291 | ada_operator_check (struct expression *exp, int pos, | |
12292 | int (*objfile_func) (struct objfile *objfile, void *data), | |
12293 | void *data) | |
12294 | { | |
12295 | const union exp_element *const elts = exp->elts; | |
12296 | struct type *type = NULL; | |
12297 | ||
12298 | switch (elts[pos].opcode) | |
12299 | { | |
12300 | case UNOP_IN_RANGE: | |
12301 | case UNOP_QUAL: | |
12302 | type = elts[pos + 1].type; | |
12303 | break; | |
12304 | ||
12305 | default: | |
12306 | return operator_check_standard (exp, pos, objfile_func, data); | |
12307 | } | |
12308 | ||
12309 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
12310 | ||
12311 | if (type && TYPE_OBJFILE (type) | |
12312 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
12313 | return 1; | |
12314 | ||
12315 | return 0; | |
12316 | } | |
12317 | ||
4c4b4cd2 PH |
12318 | static char * |
12319 | ada_op_name (enum exp_opcode opcode) | |
12320 | { | |
12321 | switch (opcode) | |
12322 | { | |
76a01679 | 12323 | default: |
4c4b4cd2 | 12324 | return op_name_standard (opcode); |
52ce6436 | 12325 | |
4c4b4cd2 PH |
12326 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
12327 | ADA_OPERATORS; | |
12328 | #undef OP_DEFN | |
52ce6436 PH |
12329 | |
12330 | case OP_AGGREGATE: | |
12331 | return "OP_AGGREGATE"; | |
12332 | case OP_CHOICES: | |
12333 | return "OP_CHOICES"; | |
12334 | case OP_NAME: | |
12335 | return "OP_NAME"; | |
4c4b4cd2 PH |
12336 | } |
12337 | } | |
12338 | ||
12339 | /* As for operator_length, but assumes PC is pointing at the first | |
12340 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 12341 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
12342 | |
12343 | static void | |
76a01679 JB |
12344 | ada_forward_operator_length (struct expression *exp, int pc, |
12345 | int *oplenp, int *argsp) | |
4c4b4cd2 | 12346 | { |
76a01679 | 12347 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
12348 | { |
12349 | default: | |
12350 | *oplenp = *argsp = 0; | |
12351 | break; | |
52ce6436 | 12352 | |
4c4b4cd2 PH |
12353 | #define OP_DEFN(op, len, args, binop) \ |
12354 | case op: *oplenp = len; *argsp = args; break; | |
12355 | ADA_OPERATORS; | |
12356 | #undef OP_DEFN | |
52ce6436 PH |
12357 | |
12358 | case OP_AGGREGATE: | |
12359 | *oplenp = 3; | |
12360 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
12361 | break; | |
12362 | ||
12363 | case OP_CHOICES: | |
12364 | *oplenp = 3; | |
12365 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
12366 | break; | |
12367 | ||
12368 | case OP_STRING: | |
12369 | case OP_NAME: | |
12370 | { | |
12371 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 12372 | |
52ce6436 PH |
12373 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
12374 | *argsp = 0; | |
12375 | break; | |
12376 | } | |
4c4b4cd2 PH |
12377 | } |
12378 | } | |
12379 | ||
12380 | static int | |
12381 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
12382 | { | |
12383 | enum exp_opcode op = exp->elts[elt].opcode; | |
12384 | int oplen, nargs; | |
12385 | int pc = elt; | |
12386 | int i; | |
76a01679 | 12387 | |
4c4b4cd2 PH |
12388 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
12389 | ||
76a01679 | 12390 | switch (op) |
4c4b4cd2 | 12391 | { |
76a01679 | 12392 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12393 | case OP_ATR_FIRST: |
12394 | case OP_ATR_LAST: | |
12395 | case OP_ATR_LENGTH: | |
12396 | case OP_ATR_IMAGE: | |
12397 | case OP_ATR_MAX: | |
12398 | case OP_ATR_MIN: | |
12399 | case OP_ATR_MODULUS: | |
12400 | case OP_ATR_POS: | |
12401 | case OP_ATR_SIZE: | |
12402 | case OP_ATR_TAG: | |
12403 | case OP_ATR_VAL: | |
12404 | break; | |
12405 | ||
12406 | case UNOP_IN_RANGE: | |
12407 | case UNOP_QUAL: | |
323e0a4a AC |
12408 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12409 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12410 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12411 | fprintf_filtered (stream, " ("); | |
12412 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12413 | fprintf_filtered (stream, ")"); | |
12414 | break; | |
12415 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12416 | fprintf_filtered (stream, " (%d)", |
12417 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12418 | break; |
12419 | case TERNOP_IN_RANGE: | |
12420 | break; | |
12421 | ||
52ce6436 PH |
12422 | case OP_AGGREGATE: |
12423 | case OP_OTHERS: | |
12424 | case OP_DISCRETE_RANGE: | |
12425 | case OP_POSITIONAL: | |
12426 | case OP_CHOICES: | |
12427 | break; | |
12428 | ||
12429 | case OP_NAME: | |
12430 | case OP_STRING: | |
12431 | { | |
12432 | char *name = &exp->elts[elt + 2].string; | |
12433 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12434 | |
52ce6436 PH |
12435 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12436 | break; | |
12437 | } | |
12438 | ||
4c4b4cd2 PH |
12439 | default: |
12440 | return dump_subexp_body_standard (exp, stream, elt); | |
12441 | } | |
12442 | ||
12443 | elt += oplen; | |
12444 | for (i = 0; i < nargs; i += 1) | |
12445 | elt = dump_subexp (exp, stream, elt); | |
12446 | ||
12447 | return elt; | |
12448 | } | |
12449 | ||
12450 | /* The Ada extension of print_subexp (q.v.). */ | |
12451 | ||
76a01679 JB |
12452 | static void |
12453 | ada_print_subexp (struct expression *exp, int *pos, | |
12454 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12455 | { |
52ce6436 | 12456 | int oplen, nargs, i; |
4c4b4cd2 PH |
12457 | int pc = *pos; |
12458 | enum exp_opcode op = exp->elts[pc].opcode; | |
12459 | ||
12460 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12461 | ||
52ce6436 | 12462 | *pos += oplen; |
4c4b4cd2 PH |
12463 | switch (op) |
12464 | { | |
12465 | default: | |
52ce6436 | 12466 | *pos -= oplen; |
4c4b4cd2 PH |
12467 | print_subexp_standard (exp, pos, stream, prec); |
12468 | return; | |
12469 | ||
12470 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12471 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12472 | return; | |
12473 | ||
12474 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12475 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12476 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12477 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12478 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12479 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12480 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12481 | fprintf_filtered (stream, "(%ld)", |
12482 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12483 | return; |
12484 | ||
12485 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12486 | if (prec >= PREC_EQUAL) |
76a01679 | 12487 | fputs_filtered ("(", stream); |
323e0a4a | 12488 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12489 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12490 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12491 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12492 | fputs_filtered (" .. ", stream); | |
12493 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12494 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12495 | fputs_filtered (")", stream); |
12496 | return; | |
4c4b4cd2 PH |
12497 | |
12498 | case OP_ATR_FIRST: | |
12499 | case OP_ATR_LAST: | |
12500 | case OP_ATR_LENGTH: | |
12501 | case OP_ATR_IMAGE: | |
12502 | case OP_ATR_MAX: | |
12503 | case OP_ATR_MIN: | |
12504 | case OP_ATR_MODULUS: | |
12505 | case OP_ATR_POS: | |
12506 | case OP_ATR_SIZE: | |
12507 | case OP_ATR_TAG: | |
12508 | case OP_ATR_VAL: | |
4c4b4cd2 | 12509 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12510 | { |
12511 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
12512 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
12513 | &type_print_raw_options); | |
76a01679 JB |
12514 | *pos += 3; |
12515 | } | |
4c4b4cd2 | 12516 | else |
76a01679 | 12517 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12518 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12519 | if (nargs > 1) | |
76a01679 JB |
12520 | { |
12521 | int tem; | |
5b4ee69b | 12522 | |
76a01679 JB |
12523 | for (tem = 1; tem < nargs; tem += 1) |
12524 | { | |
12525 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12526 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12527 | } | |
12528 | fputs_filtered (")", stream); | |
12529 | } | |
4c4b4cd2 | 12530 | return; |
14f9c5c9 | 12531 | |
4c4b4cd2 | 12532 | case UNOP_QUAL: |
4c4b4cd2 PH |
12533 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12534 | fputs_filtered ("'(", stream); | |
12535 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12536 | fputs_filtered (")", stream); | |
12537 | return; | |
14f9c5c9 | 12538 | |
4c4b4cd2 | 12539 | case UNOP_IN_RANGE: |
323e0a4a | 12540 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12541 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12542 | fputs_filtered (" in ", stream); |
79d43c61 TT |
12543 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
12544 | &type_print_raw_options); | |
4c4b4cd2 | 12545 | return; |
52ce6436 PH |
12546 | |
12547 | case OP_DISCRETE_RANGE: | |
12548 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12549 | fputs_filtered ("..", stream); | |
12550 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12551 | return; | |
12552 | ||
12553 | case OP_OTHERS: | |
12554 | fputs_filtered ("others => ", stream); | |
12555 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12556 | return; | |
12557 | ||
12558 | case OP_CHOICES: | |
12559 | for (i = 0; i < nargs-1; i += 1) | |
12560 | { | |
12561 | if (i > 0) | |
12562 | fputs_filtered ("|", stream); | |
12563 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12564 | } | |
12565 | fputs_filtered (" => ", stream); | |
12566 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12567 | return; | |
12568 | ||
12569 | case OP_POSITIONAL: | |
12570 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12571 | return; | |
12572 | ||
12573 | case OP_AGGREGATE: | |
12574 | fputs_filtered ("(", stream); | |
12575 | for (i = 0; i < nargs; i += 1) | |
12576 | { | |
12577 | if (i > 0) | |
12578 | fputs_filtered (", ", stream); | |
12579 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12580 | } | |
12581 | fputs_filtered (")", stream); | |
12582 | return; | |
4c4b4cd2 PH |
12583 | } |
12584 | } | |
14f9c5c9 AS |
12585 | |
12586 | /* Table mapping opcodes into strings for printing operators | |
12587 | and precedences of the operators. */ | |
12588 | ||
d2e4a39e AS |
12589 | static const struct op_print ada_op_print_tab[] = { |
12590 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12591 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12592 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12593 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12594 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12595 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12596 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12597 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12598 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12599 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12600 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12601 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12602 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12603 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12604 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12605 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12606 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12607 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12608 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12609 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12610 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12611 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12612 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12613 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12614 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12615 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12616 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12617 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12618 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12619 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12620 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12621 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12622 | }; |
12623 | \f | |
72d5681a PH |
12624 | enum ada_primitive_types { |
12625 | ada_primitive_type_int, | |
12626 | ada_primitive_type_long, | |
12627 | ada_primitive_type_short, | |
12628 | ada_primitive_type_char, | |
12629 | ada_primitive_type_float, | |
12630 | ada_primitive_type_double, | |
12631 | ada_primitive_type_void, | |
12632 | ada_primitive_type_long_long, | |
12633 | ada_primitive_type_long_double, | |
12634 | ada_primitive_type_natural, | |
12635 | ada_primitive_type_positive, | |
12636 | ada_primitive_type_system_address, | |
12637 | nr_ada_primitive_types | |
12638 | }; | |
6c038f32 PH |
12639 | |
12640 | static void | |
d4a9a881 | 12641 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12642 | struct language_arch_info *lai) |
12643 | { | |
d4a9a881 | 12644 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12645 | |
72d5681a | 12646 | lai->primitive_type_vector |
d4a9a881 | 12647 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12648 | struct type *); |
e9bb382b UW |
12649 | |
12650 | lai->primitive_type_vector [ada_primitive_type_int] | |
12651 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12652 | 0, "integer"); | |
12653 | lai->primitive_type_vector [ada_primitive_type_long] | |
12654 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12655 | 0, "long_integer"); | |
12656 | lai->primitive_type_vector [ada_primitive_type_short] | |
12657 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12658 | 0, "short_integer"); | |
12659 | lai->string_char_type | |
12660 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12661 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12662 | lai->primitive_type_vector [ada_primitive_type_float] | |
12663 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12664 | "float", NULL); | |
12665 | lai->primitive_type_vector [ada_primitive_type_double] | |
12666 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12667 | "long_float", NULL); | |
12668 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12669 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12670 | 0, "long_long_integer"); | |
12671 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12672 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12673 | "long_long_float", NULL); | |
12674 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12675 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12676 | 0, "natural"); | |
12677 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12678 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12679 | 0, "positive"); | |
12680 | lai->primitive_type_vector [ada_primitive_type_void] | |
12681 | = builtin->builtin_void; | |
12682 | ||
12683 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12684 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12685 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12686 | = "system__address"; | |
fbb06eb1 | 12687 | |
47e729a8 | 12688 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12689 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12690 | } |
6c038f32 PH |
12691 | \f |
12692 | /* Language vector */ | |
12693 | ||
12694 | /* Not really used, but needed in the ada_language_defn. */ | |
12695 | ||
12696 | static void | |
6c7a06a3 | 12697 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12698 | { |
6c7a06a3 | 12699 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12700 | } |
12701 | ||
12702 | static int | |
12703 | parse (void) | |
12704 | { | |
12705 | warnings_issued = 0; | |
12706 | return ada_parse (); | |
12707 | } | |
12708 | ||
12709 | static const struct exp_descriptor ada_exp_descriptor = { | |
12710 | ada_print_subexp, | |
12711 | ada_operator_length, | |
c0201579 | 12712 | ada_operator_check, |
6c038f32 PH |
12713 | ada_op_name, |
12714 | ada_dump_subexp_body, | |
12715 | ada_evaluate_subexp | |
12716 | }; | |
12717 | ||
1a119f36 | 12718 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
12719 | for Ada. */ |
12720 | ||
1a119f36 JB |
12721 | static symbol_name_cmp_ftype |
12722 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
12723 | { |
12724 | if (should_use_wild_match (lookup_name)) | |
12725 | return wild_match; | |
12726 | else | |
12727 | return compare_names; | |
12728 | } | |
12729 | ||
a5ee536b JB |
12730 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
12731 | ||
12732 | static struct value * | |
12733 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
12734 | { | |
12735 | struct block *frame_block = NULL; | |
12736 | struct symbol *renaming_sym = NULL; | |
12737 | ||
12738 | /* The only case where default_read_var_value is not sufficient | |
12739 | is when VAR is a renaming... */ | |
12740 | if (frame) | |
12741 | frame_block = get_frame_block (frame, NULL); | |
12742 | if (frame_block) | |
12743 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
12744 | if (renaming_sym != NULL) | |
12745 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
12746 | ||
12747 | /* This is a typical case where we expect the default_read_var_value | |
12748 | function to work. */ | |
12749 | return default_read_var_value (var, frame); | |
12750 | } | |
12751 | ||
6c038f32 PH |
12752 | const struct language_defn ada_language_defn = { |
12753 | "ada", /* Language name */ | |
12754 | language_ada, | |
6c038f32 | 12755 | range_check_off, |
6c038f32 PH |
12756 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
12757 | that's not quite what this means. */ | |
6c038f32 | 12758 | array_row_major, |
9a044a89 | 12759 | macro_expansion_no, |
6c038f32 PH |
12760 | &ada_exp_descriptor, |
12761 | parse, | |
12762 | ada_error, | |
12763 | resolve, | |
12764 | ada_printchar, /* Print a character constant */ | |
12765 | ada_printstr, /* Function to print string constant */ | |
12766 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12767 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12768 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12769 | ada_val_print, /* Print a value using appropriate syntax */ |
12770 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 12771 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 12772 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 12773 | NULL, /* name_of_this */ |
6c038f32 PH |
12774 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12775 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12776 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12777 | NULL, /* Language specific |
12778 | class_name_from_physname */ | |
6c038f32 PH |
12779 | ada_op_print_tab, /* expression operators for printing */ |
12780 | 0, /* c-style arrays */ | |
12781 | 1, /* String lower bound */ | |
6c038f32 | 12782 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12783 | ada_make_symbol_completion_list, |
72d5681a | 12784 | ada_language_arch_info, |
e79af960 | 12785 | ada_print_array_index, |
41f1b697 | 12786 | default_pass_by_reference, |
ae6a3a4c | 12787 | c_get_string, |
1a119f36 | 12788 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 12789 | ada_iterate_over_symbols, |
6c038f32 PH |
12790 | LANG_MAGIC |
12791 | }; | |
12792 | ||
2c0b251b PA |
12793 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12794 | extern initialize_file_ftype _initialize_ada_language; | |
12795 | ||
5bf03f13 JB |
12796 | /* Command-list for the "set/show ada" prefix command. */ |
12797 | static struct cmd_list_element *set_ada_list; | |
12798 | static struct cmd_list_element *show_ada_list; | |
12799 | ||
12800 | /* Implement the "set ada" prefix command. */ | |
12801 | ||
12802 | static void | |
12803 | set_ada_command (char *arg, int from_tty) | |
12804 | { | |
12805 | printf_unfiltered (_(\ | |
12806 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12807 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12808 | } | |
12809 | ||
12810 | /* Implement the "show ada" prefix command. */ | |
12811 | ||
12812 | static void | |
12813 | show_ada_command (char *args, int from_tty) | |
12814 | { | |
12815 | cmd_show_list (show_ada_list, from_tty, ""); | |
12816 | } | |
12817 | ||
2060206e PA |
12818 | static void |
12819 | initialize_ada_catchpoint_ops (void) | |
12820 | { | |
12821 | struct breakpoint_ops *ops; | |
12822 | ||
12823 | initialize_breakpoint_ops (); | |
12824 | ||
12825 | ops = &catch_exception_breakpoint_ops; | |
12826 | *ops = bkpt_breakpoint_ops; | |
12827 | ops->dtor = dtor_catch_exception; | |
12828 | ops->allocate_location = allocate_location_catch_exception; | |
12829 | ops->re_set = re_set_catch_exception; | |
12830 | ops->check_status = check_status_catch_exception; | |
12831 | ops->print_it = print_it_catch_exception; | |
12832 | ops->print_one = print_one_catch_exception; | |
12833 | ops->print_mention = print_mention_catch_exception; | |
12834 | ops->print_recreate = print_recreate_catch_exception; | |
12835 | ||
12836 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12837 | *ops = bkpt_breakpoint_ops; | |
12838 | ops->dtor = dtor_catch_exception_unhandled; | |
12839 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12840 | ops->re_set = re_set_catch_exception_unhandled; | |
12841 | ops->check_status = check_status_catch_exception_unhandled; | |
12842 | ops->print_it = print_it_catch_exception_unhandled; | |
12843 | ops->print_one = print_one_catch_exception_unhandled; | |
12844 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12845 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12846 | ||
12847 | ops = &catch_assert_breakpoint_ops; | |
12848 | *ops = bkpt_breakpoint_ops; | |
12849 | ops->dtor = dtor_catch_assert; | |
12850 | ops->allocate_location = allocate_location_catch_assert; | |
12851 | ops->re_set = re_set_catch_assert; | |
12852 | ops->check_status = check_status_catch_assert; | |
12853 | ops->print_it = print_it_catch_assert; | |
12854 | ops->print_one = print_one_catch_assert; | |
12855 | ops->print_mention = print_mention_catch_assert; | |
12856 | ops->print_recreate = print_recreate_catch_assert; | |
12857 | } | |
12858 | ||
d2e4a39e | 12859 | void |
6c038f32 | 12860 | _initialize_ada_language (void) |
14f9c5c9 | 12861 | { |
6c038f32 PH |
12862 | add_language (&ada_language_defn); |
12863 | ||
2060206e PA |
12864 | initialize_ada_catchpoint_ops (); |
12865 | ||
5bf03f13 JB |
12866 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12867 | _("Prefix command for changing Ada-specfic settings"), | |
12868 | &set_ada_list, "set ada ", 0, &setlist); | |
12869 | ||
12870 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12871 | _("Generic command for showing Ada-specific settings."), | |
12872 | &show_ada_list, "show ada ", 0, &showlist); | |
12873 | ||
12874 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12875 | &trust_pad_over_xvs, _("\ | |
12876 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12877 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12878 | _("\ | |
12879 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12880 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12881 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12882 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12883 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12884 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12885 | this option to \"off\" unless necessary."), | |
12886 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12887 | ||
9ac4176b PA |
12888 | add_catch_command ("exception", _("\ |
12889 | Catch Ada exceptions, when raised.\n\ | |
12890 | With an argument, catch only exceptions with the given name."), | |
12891 | catch_ada_exception_command, | |
12892 | NULL, | |
12893 | CATCH_PERMANENT, | |
12894 | CATCH_TEMPORARY); | |
12895 | add_catch_command ("assert", _("\ | |
12896 | Catch failed Ada assertions, when raised.\n\ | |
12897 | With an argument, catch only exceptions with the given name."), | |
12898 | catch_assert_command, | |
12899 | NULL, | |
12900 | CATCH_PERMANENT, | |
12901 | CATCH_TEMPORARY); | |
12902 | ||
6c038f32 | 12903 | varsize_limit = 65536; |
6c038f32 PH |
12904 | |
12905 | obstack_init (&symbol_list_obstack); | |
12906 | ||
12907 | decoded_names_store = htab_create_alloc | |
12908 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12909 | NULL, xcalloc, xfree); | |
6b69afc4 | 12910 | |
e802dbe0 JB |
12911 | /* Setup per-inferior data. */ |
12912 | observer_attach_inferior_exit (ada_inferior_exit); | |
12913 | ada_inferior_data | |
8e260fc0 | 12914 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
14f9c5c9 | 12915 | } |