]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* symtab.c (symbol_init_cplus_specific, symbol_set_demangled_name):
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
2fa15f23 584 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
45e6c716 1299const char *
76a01679 1300ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1301{
a0bcdaa7
PA
1302 struct general_symbol_info *gsymbol_rw
1303 = (struct general_symbol_info *) gsymbol;
1304 const char **resultp
1305 = &gsymbol_rw->language_specific.mangled_lang.demangled_name;
5b4ee69b 1306
4c4b4cd2
PH
1307 if (*resultp == NULL)
1308 {
1309 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1310
714835d5 1311 if (gsymbol->obj_section != NULL)
76a01679 1312 {
714835d5 1313 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1314
10f0c4bb
TT
1315 *resultp = obstack_copy0 (&objf->objfile_obstack,
1316 decoded, strlen (decoded));
76a01679 1317 }
4c4b4cd2 1318 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1319 case, we put the result on the heap. Since we only decode
1320 when needed, we hope this usually does not cause a
1321 significant memory leak (FIXME). */
4c4b4cd2 1322 if (*resultp == NULL)
76a01679
JB
1323 {
1324 char **slot = (char **) htab_find_slot (decoded_names_store,
1325 decoded, INSERT);
5b4ee69b 1326
76a01679
JB
1327 if (*slot == NULL)
1328 *slot = xstrdup (decoded);
1329 *resultp = *slot;
1330 }
4c4b4cd2 1331 }
14f9c5c9 1332
4c4b4cd2
PH
1333 return *resultp;
1334}
76a01679 1335
2c0b251b 1336static char *
76a01679 1337ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1338{
1339 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1340}
1341
1342/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1343 suffixes that encode debugging information or leading _ada_ on
1344 SYM_NAME (see is_name_suffix commentary for the debugging
1345 information that is ignored). If WILD, then NAME need only match a
1346 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1347 either argument is NULL. */
14f9c5c9 1348
2c0b251b 1349static int
40658b94 1350match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1351{
1352 if (sym_name == NULL || name == NULL)
1353 return 0;
1354 else if (wild)
73589123 1355 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1356 else
1357 {
1358 int len_name = strlen (name);
5b4ee69b 1359
4c4b4cd2
PH
1360 return (strncmp (sym_name, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name))
1362 || (strncmp (sym_name, "_ada_", 5) == 0
1363 && strncmp (sym_name + 5, name, len_name) == 0
1364 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1365 }
14f9c5c9 1366}
14f9c5c9 1367\f
d2e4a39e 1368
4c4b4cd2 1369 /* Arrays */
14f9c5c9 1370
28c85d6c
JB
1371/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1372 generated by the GNAT compiler to describe the index type used
1373 for each dimension of an array, check whether it follows the latest
1374 known encoding. If not, fix it up to conform to the latest encoding.
1375 Otherwise, do nothing. This function also does nothing if
1376 INDEX_DESC_TYPE is NULL.
1377
1378 The GNAT encoding used to describle the array index type evolved a bit.
1379 Initially, the information would be provided through the name of each
1380 field of the structure type only, while the type of these fields was
1381 described as unspecified and irrelevant. The debugger was then expected
1382 to perform a global type lookup using the name of that field in order
1383 to get access to the full index type description. Because these global
1384 lookups can be very expensive, the encoding was later enhanced to make
1385 the global lookup unnecessary by defining the field type as being
1386 the full index type description.
1387
1388 The purpose of this routine is to allow us to support older versions
1389 of the compiler by detecting the use of the older encoding, and by
1390 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1391 we essentially replace each field's meaningless type by the associated
1392 index subtype). */
1393
1394void
1395ada_fixup_array_indexes_type (struct type *index_desc_type)
1396{
1397 int i;
1398
1399 if (index_desc_type == NULL)
1400 return;
1401 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1402
1403 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1404 to check one field only, no need to check them all). If not, return
1405 now.
1406
1407 If our INDEX_DESC_TYPE was generated using the older encoding,
1408 the field type should be a meaningless integer type whose name
1409 is not equal to the field name. */
1410 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1411 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1412 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 return;
1414
1415 /* Fixup each field of INDEX_DESC_TYPE. */
1416 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1417 {
0d5cff50 1418 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1419 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420
1421 if (raw_type)
1422 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1423 }
1424}
1425
4c4b4cd2 1426/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1427
d2e4a39e
AS
1428static char *bound_name[] = {
1429 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1430 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1431};
1432
1433/* Maximum number of array dimensions we are prepared to handle. */
1434
4c4b4cd2 1435#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1436
14f9c5c9 1437
4c4b4cd2
PH
1438/* The desc_* routines return primitive portions of array descriptors
1439 (fat pointers). */
14f9c5c9
AS
1440
1441/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1442 level of indirection, if needed. */
1443
d2e4a39e
AS
1444static struct type *
1445desc_base_type (struct type *type)
14f9c5c9
AS
1446{
1447 if (type == NULL)
1448 return NULL;
61ee279c 1449 type = ada_check_typedef (type);
720d1a40
JB
1450 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 type = ada_typedef_target_type (type);
1452
1265e4aa
JB
1453 if (type != NULL
1454 && (TYPE_CODE (type) == TYPE_CODE_PTR
1455 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1456 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1457 else
1458 return type;
1459}
1460
4c4b4cd2
PH
1461/* True iff TYPE indicates a "thin" array pointer type. */
1462
14f9c5c9 1463static int
d2e4a39e 1464is_thin_pntr (struct type *type)
14f9c5c9 1465{
d2e4a39e 1466 return
14f9c5c9
AS
1467 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1468 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1469}
1470
4c4b4cd2
PH
1471/* The descriptor type for thin pointer type TYPE. */
1472
d2e4a39e
AS
1473static struct type *
1474thin_descriptor_type (struct type *type)
14f9c5c9 1475{
d2e4a39e 1476 struct type *base_type = desc_base_type (type);
5b4ee69b 1477
14f9c5c9
AS
1478 if (base_type == NULL)
1479 return NULL;
1480 if (is_suffix (ada_type_name (base_type), "___XVE"))
1481 return base_type;
d2e4a39e 1482 else
14f9c5c9 1483 {
d2e4a39e 1484 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1485
14f9c5c9 1486 if (alt_type == NULL)
4c4b4cd2 1487 return base_type;
14f9c5c9 1488 else
4c4b4cd2 1489 return alt_type;
14f9c5c9
AS
1490 }
1491}
1492
4c4b4cd2
PH
1493/* A pointer to the array data for thin-pointer value VAL. */
1494
d2e4a39e
AS
1495static struct value *
1496thin_data_pntr (struct value *val)
14f9c5c9 1497{
828292f2 1498 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1499 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1500
556bdfd4
UW
1501 data_type = lookup_pointer_type (data_type);
1502
14f9c5c9 1503 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1504 return value_cast (data_type, value_copy (val));
d2e4a39e 1505 else
42ae5230 1506 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1507}
1508
4c4b4cd2
PH
1509/* True iff TYPE indicates a "thick" array pointer type. */
1510
14f9c5c9 1511static int
d2e4a39e 1512is_thick_pntr (struct type *type)
14f9c5c9
AS
1513{
1514 type = desc_base_type (type);
1515 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1516 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1517}
1518
4c4b4cd2
PH
1519/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1520 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1521
d2e4a39e
AS
1522static struct type *
1523desc_bounds_type (struct type *type)
14f9c5c9 1524{
d2e4a39e 1525 struct type *r;
14f9c5c9
AS
1526
1527 type = desc_base_type (type);
1528
1529 if (type == NULL)
1530 return NULL;
1531 else if (is_thin_pntr (type))
1532 {
1533 type = thin_descriptor_type (type);
1534 if (type == NULL)
4c4b4cd2 1535 return NULL;
14f9c5c9
AS
1536 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1537 if (r != NULL)
61ee279c 1538 return ada_check_typedef (r);
14f9c5c9
AS
1539 }
1540 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1541 {
1542 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1543 if (r != NULL)
61ee279c 1544 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1545 }
1546 return NULL;
1547}
1548
1549/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1550 one, a pointer to its bounds data. Otherwise NULL. */
1551
d2e4a39e
AS
1552static struct value *
1553desc_bounds (struct value *arr)
14f9c5c9 1554{
df407dfe 1555 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1556
d2e4a39e 1557 if (is_thin_pntr (type))
14f9c5c9 1558 {
d2e4a39e 1559 struct type *bounds_type =
4c4b4cd2 1560 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1561 LONGEST addr;
1562
4cdfadb1 1563 if (bounds_type == NULL)
323e0a4a 1564 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1565
1566 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1567 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1568 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1569 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1570 addr = value_as_long (arr);
d2e4a39e 1571 else
42ae5230 1572 addr = value_address (arr);
14f9c5c9 1573
d2e4a39e 1574 return
4c4b4cd2
PH
1575 value_from_longest (lookup_pointer_type (bounds_type),
1576 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1577 }
1578
1579 else if (is_thick_pntr (type))
05e522ef
JB
1580 {
1581 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1582 _("Bad GNAT array descriptor"));
1583 struct type *p_bounds_type = value_type (p_bounds);
1584
1585 if (p_bounds_type
1586 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1587 {
1588 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1589
1590 if (TYPE_STUB (target_type))
1591 p_bounds = value_cast (lookup_pointer_type
1592 (ada_check_typedef (target_type)),
1593 p_bounds);
1594 }
1595 else
1596 error (_("Bad GNAT array descriptor"));
1597
1598 return p_bounds;
1599 }
14f9c5c9
AS
1600 else
1601 return NULL;
1602}
1603
4c4b4cd2
PH
1604/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1605 position of the field containing the address of the bounds data. */
1606
14f9c5c9 1607static int
d2e4a39e 1608fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1609{
1610 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1611}
1612
1613/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1614 size of the field containing the address of the bounds data. */
1615
14f9c5c9 1616static int
d2e4a39e 1617fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1618{
1619 type = desc_base_type (type);
1620
d2e4a39e 1621 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1622 return TYPE_FIELD_BITSIZE (type, 1);
1623 else
61ee279c 1624 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1625}
1626
4c4b4cd2 1627/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1628 pointer to one, the type of its array data (a array-with-no-bounds type);
1629 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1630 data. */
4c4b4cd2 1631
d2e4a39e 1632static struct type *
556bdfd4 1633desc_data_target_type (struct type *type)
14f9c5c9
AS
1634{
1635 type = desc_base_type (type);
1636
4c4b4cd2 1637 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1638 if (is_thin_pntr (type))
556bdfd4 1639 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1640 else if (is_thick_pntr (type))
556bdfd4
UW
1641 {
1642 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1643
1644 if (data_type
1645 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1646 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1647 }
1648
1649 return NULL;
14f9c5c9
AS
1650}
1651
1652/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1653 its array data. */
4c4b4cd2 1654
d2e4a39e
AS
1655static struct value *
1656desc_data (struct value *arr)
14f9c5c9 1657{
df407dfe 1658 struct type *type = value_type (arr);
5b4ee69b 1659
14f9c5c9
AS
1660 if (is_thin_pntr (type))
1661 return thin_data_pntr (arr);
1662 else if (is_thick_pntr (type))
d2e4a39e 1663 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1664 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1665 else
1666 return NULL;
1667}
1668
1669
1670/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1671 position of the field containing the address of the data. */
1672
14f9c5c9 1673static int
d2e4a39e 1674fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1675{
1676 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1677}
1678
1679/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1680 size of the field containing the address of the data. */
1681
14f9c5c9 1682static int
d2e4a39e 1683fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1684{
1685 type = desc_base_type (type);
1686
1687 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1688 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1689 else
14f9c5c9
AS
1690 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1691}
1692
4c4b4cd2 1693/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1694 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1695 bound, if WHICH is 1. The first bound is I=1. */
1696
d2e4a39e
AS
1697static struct value *
1698desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1699{
d2e4a39e 1700 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1701 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1702}
1703
1704/* If BOUNDS is an array-bounds structure type, return the bit position
1705 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1706 bound, if WHICH is 1. The first bound is I=1. */
1707
14f9c5c9 1708static int
d2e4a39e 1709desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1710{
d2e4a39e 1711 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1712}
1713
1714/* If BOUNDS is an array-bounds structure type, return the bit field size
1715 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1716 bound, if WHICH is 1. The first bound is I=1. */
1717
76a01679 1718static int
d2e4a39e 1719desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1720{
1721 type = desc_base_type (type);
1722
d2e4a39e
AS
1723 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1724 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1725 else
1726 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1727}
1728
1729/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1730 Ith bound (numbering from 1). Otherwise, NULL. */
1731
d2e4a39e
AS
1732static struct type *
1733desc_index_type (struct type *type, int i)
14f9c5c9
AS
1734{
1735 type = desc_base_type (type);
1736
1737 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1738 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1739 else
14f9c5c9
AS
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* The number of index positions in the array-bounds type TYPE.
1744 Return 0 if TYPE is NULL. */
1745
14f9c5c9 1746static int
d2e4a39e 1747desc_arity (struct type *type)
14f9c5c9
AS
1748{
1749 type = desc_base_type (type);
1750
1751 if (type != NULL)
1752 return TYPE_NFIELDS (type) / 2;
1753 return 0;
1754}
1755
4c4b4cd2
PH
1756/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1757 an array descriptor type (representing an unconstrained array
1758 type). */
1759
76a01679
JB
1760static int
1761ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1762{
1763 if (type == NULL)
1764 return 0;
61ee279c 1765 type = ada_check_typedef (type);
4c4b4cd2 1766 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1767 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1768}
1769
52ce6436 1770/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1771 * to one. */
52ce6436 1772
2c0b251b 1773static int
52ce6436
PH
1774ada_is_array_type (struct type *type)
1775{
1776 while (type != NULL
1777 && (TYPE_CODE (type) == TYPE_CODE_PTR
1778 || TYPE_CODE (type) == TYPE_CODE_REF))
1779 type = TYPE_TARGET_TYPE (type);
1780 return ada_is_direct_array_type (type);
1781}
1782
4c4b4cd2 1783/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1784
14f9c5c9 1785int
4c4b4cd2 1786ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1787{
1788 if (type == NULL)
1789 return 0;
61ee279c 1790 type = ada_check_typedef (type);
14f9c5c9 1791 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1792 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1793 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1794 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1795}
1796
4c4b4cd2
PH
1797/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1798
14f9c5c9 1799int
4c4b4cd2 1800ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1801{
556bdfd4 1802 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1803
1804 if (type == NULL)
1805 return 0;
61ee279c 1806 type = ada_check_typedef (type);
556bdfd4
UW
1807 return (data_type != NULL
1808 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1809 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1810}
1811
1812/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1813 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1814 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1815 is still needed. */
1816
14f9c5c9 1817int
ebf56fd3 1818ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1819{
d2e4a39e 1820 return
14f9c5c9
AS
1821 type != NULL
1822 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1824 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1825 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1826}
1827
1828
4c4b4cd2 1829/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1830 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1831 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1832 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1833 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1834 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1835 a descriptor. */
d2e4a39e
AS
1836struct type *
1837ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1838{
ad82864c
JB
1839 if (ada_is_constrained_packed_array_type (value_type (arr)))
1840 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1841
df407dfe
AC
1842 if (!ada_is_array_descriptor_type (value_type (arr)))
1843 return value_type (arr);
d2e4a39e
AS
1844
1845 if (!bounds)
ad82864c
JB
1846 {
1847 struct type *array_type =
1848 ada_check_typedef (desc_data_target_type (value_type (arr)));
1849
1850 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1851 TYPE_FIELD_BITSIZE (array_type, 0) =
1852 decode_packed_array_bitsize (value_type (arr));
1853
1854 return array_type;
1855 }
14f9c5c9
AS
1856 else
1857 {
d2e4a39e 1858 struct type *elt_type;
14f9c5c9 1859 int arity;
d2e4a39e 1860 struct value *descriptor;
14f9c5c9 1861
df407dfe
AC
1862 elt_type = ada_array_element_type (value_type (arr), -1);
1863 arity = ada_array_arity (value_type (arr));
14f9c5c9 1864
d2e4a39e 1865 if (elt_type == NULL || arity == 0)
df407dfe 1866 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1867
1868 descriptor = desc_bounds (arr);
d2e4a39e 1869 if (value_as_long (descriptor) == 0)
4c4b4cd2 1870 return NULL;
d2e4a39e 1871 while (arity > 0)
4c4b4cd2 1872 {
e9bb382b
UW
1873 struct type *range_type = alloc_type_copy (value_type (arr));
1874 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1875 struct value *low = desc_one_bound (descriptor, arity, 0);
1876 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1877
5b4ee69b 1878 arity -= 1;
df407dfe 1879 create_range_type (range_type, value_type (low),
529cad9c
PH
1880 longest_to_int (value_as_long (low)),
1881 longest_to_int (value_as_long (high)));
4c4b4cd2 1882 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1883
1884 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1885 {
1886 /* We need to store the element packed bitsize, as well as
1887 recompute the array size, because it was previously
1888 computed based on the unpacked element size. */
1889 LONGEST lo = value_as_long (low);
1890 LONGEST hi = value_as_long (high);
1891
1892 TYPE_FIELD_BITSIZE (elt_type, 0) =
1893 decode_packed_array_bitsize (value_type (arr));
1894 /* If the array has no element, then the size is already
1895 zero, and does not need to be recomputed. */
1896 if (lo < hi)
1897 {
1898 int array_bitsize =
1899 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1900
1901 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1902 }
1903 }
4c4b4cd2 1904 }
14f9c5c9
AS
1905
1906 return lookup_pointer_type (elt_type);
1907 }
1908}
1909
1910/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1911 Otherwise, returns either a standard GDB array with bounds set
1912 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1913 GDB array. Returns NULL if ARR is a null fat pointer. */
1914
d2e4a39e
AS
1915struct value *
1916ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1917{
df407dfe 1918 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1919 {
d2e4a39e 1920 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1921
14f9c5c9 1922 if (arrType == NULL)
4c4b4cd2 1923 return NULL;
14f9c5c9
AS
1924 return value_cast (arrType, value_copy (desc_data (arr)));
1925 }
ad82864c
JB
1926 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1927 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1928 else
1929 return arr;
1930}
1931
1932/* If ARR does not represent an array, returns ARR unchanged.
1933 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1934 be ARR itself if it already is in the proper form). */
1935
720d1a40 1936struct value *
d2e4a39e 1937ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1938{
df407dfe 1939 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1940 {
d2e4a39e 1941 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1942
14f9c5c9 1943 if (arrVal == NULL)
323e0a4a 1944 error (_("Bounds unavailable for null array pointer."));
529cad9c 1945 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1946 return value_ind (arrVal);
1947 }
ad82864c
JB
1948 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1949 return decode_constrained_packed_array (arr);
d2e4a39e 1950 else
14f9c5c9
AS
1951 return arr;
1952}
1953
1954/* If TYPE represents a GNAT array type, return it translated to an
1955 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1956 packing). For other types, is the identity. */
1957
d2e4a39e
AS
1958struct type *
1959ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1960{
ad82864c
JB
1961 if (ada_is_constrained_packed_array_type (type))
1962 return decode_constrained_packed_array_type (type);
17280b9f
UW
1963
1964 if (ada_is_array_descriptor_type (type))
556bdfd4 1965 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1966
1967 return type;
14f9c5c9
AS
1968}
1969
4c4b4cd2
PH
1970/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1971
ad82864c
JB
1972static int
1973ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1974{
1975 if (type == NULL)
1976 return 0;
4c4b4cd2 1977 type = desc_base_type (type);
61ee279c 1978 type = ada_check_typedef (type);
d2e4a39e 1979 return
14f9c5c9
AS
1980 ada_type_name (type) != NULL
1981 && strstr (ada_type_name (type), "___XP") != NULL;
1982}
1983
ad82864c
JB
1984/* Non-zero iff TYPE represents a standard GNAT constrained
1985 packed-array type. */
1986
1987int
1988ada_is_constrained_packed_array_type (struct type *type)
1989{
1990 return ada_is_packed_array_type (type)
1991 && !ada_is_array_descriptor_type (type);
1992}
1993
1994/* Non-zero iff TYPE represents an array descriptor for a
1995 unconstrained packed-array type. */
1996
1997static int
1998ada_is_unconstrained_packed_array_type (struct type *type)
1999{
2000 return ada_is_packed_array_type (type)
2001 && ada_is_array_descriptor_type (type);
2002}
2003
2004/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2005 return the size of its elements in bits. */
2006
2007static long
2008decode_packed_array_bitsize (struct type *type)
2009{
0d5cff50
DE
2010 const char *raw_name;
2011 const char *tail;
ad82864c
JB
2012 long bits;
2013
720d1a40
JB
2014 /* Access to arrays implemented as fat pointers are encoded as a typedef
2015 of the fat pointer type. We need the name of the fat pointer type
2016 to do the decoding, so strip the typedef layer. */
2017 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2018 type = ada_typedef_target_type (type);
2019
2020 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2021 if (!raw_name)
2022 raw_name = ada_type_name (desc_base_type (type));
2023
2024 if (!raw_name)
2025 return 0;
2026
2027 tail = strstr (raw_name, "___XP");
720d1a40 2028 gdb_assert (tail != NULL);
ad82864c
JB
2029
2030 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2031 {
2032 lim_warning
2033 (_("could not understand bit size information on packed array"));
2034 return 0;
2035 }
2036
2037 return bits;
2038}
2039
14f9c5c9
AS
2040/* Given that TYPE is a standard GDB array type with all bounds filled
2041 in, and that the element size of its ultimate scalar constituents
2042 (that is, either its elements, or, if it is an array of arrays, its
2043 elements' elements, etc.) is *ELT_BITS, return an identical type,
2044 but with the bit sizes of its elements (and those of any
2045 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2046 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2047 in bits. */
2048
d2e4a39e 2049static struct type *
ad82864c 2050constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2051{
d2e4a39e
AS
2052 struct type *new_elt_type;
2053 struct type *new_type;
99b1c762
JB
2054 struct type *index_type_desc;
2055 struct type *index_type;
14f9c5c9
AS
2056 LONGEST low_bound, high_bound;
2057
61ee279c 2058 type = ada_check_typedef (type);
14f9c5c9
AS
2059 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2060 return type;
2061
99b1c762
JB
2062 index_type_desc = ada_find_parallel_type (type, "___XA");
2063 if (index_type_desc)
2064 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2065 NULL);
2066 else
2067 index_type = TYPE_INDEX_TYPE (type);
2068
e9bb382b 2069 new_type = alloc_type_copy (type);
ad82864c
JB
2070 new_elt_type =
2071 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2072 elt_bits);
99b1c762 2073 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2074 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2075 TYPE_NAME (new_type) = ada_type_name (type);
2076
99b1c762 2077 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2078 low_bound = high_bound = 0;
2079 if (high_bound < low_bound)
2080 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2081 else
14f9c5c9
AS
2082 {
2083 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2084 TYPE_LENGTH (new_type) =
4c4b4cd2 2085 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2086 }
2087
876cecd0 2088 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2089 return new_type;
2090}
2091
ad82864c
JB
2092/* The array type encoded by TYPE, where
2093 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2094
d2e4a39e 2095static struct type *
ad82864c 2096decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2097{
0d5cff50 2098 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2099 char *name;
0d5cff50 2100 const char *tail;
d2e4a39e 2101 struct type *shadow_type;
14f9c5c9 2102 long bits;
14f9c5c9 2103
727e3d2e
JB
2104 if (!raw_name)
2105 raw_name = ada_type_name (desc_base_type (type));
2106
2107 if (!raw_name)
2108 return NULL;
2109
2110 name = (char *) alloca (strlen (raw_name) + 1);
2111 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2112 type = desc_base_type (type);
2113
14f9c5c9
AS
2114 memcpy (name, raw_name, tail - raw_name);
2115 name[tail - raw_name] = '\000';
2116
b4ba55a1
JB
2117 shadow_type = ada_find_parallel_type_with_name (type, name);
2118
2119 if (shadow_type == NULL)
14f9c5c9 2120 {
323e0a4a 2121 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2122 return NULL;
2123 }
cb249c71 2124 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2125
2126 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2127 {
0963b4bd
MS
2128 lim_warning (_("could not understand bounds "
2129 "information on packed array"));
14f9c5c9
AS
2130 return NULL;
2131 }
d2e4a39e 2132
ad82864c
JB
2133 bits = decode_packed_array_bitsize (type);
2134 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2135}
2136
ad82864c
JB
2137/* Given that ARR is a struct value *indicating a GNAT constrained packed
2138 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2139 standard GDB array type except that the BITSIZEs of the array
2140 target types are set to the number of bits in each element, and the
4c4b4cd2 2141 type length is set appropriately. */
14f9c5c9 2142
d2e4a39e 2143static struct value *
ad82864c 2144decode_constrained_packed_array (struct value *arr)
14f9c5c9 2145{
4c4b4cd2 2146 struct type *type;
14f9c5c9 2147
4c4b4cd2 2148 arr = ada_coerce_ref (arr);
284614f0
JB
2149
2150 /* If our value is a pointer, then dererence it. Make sure that
2151 this operation does not cause the target type to be fixed, as
2152 this would indirectly cause this array to be decoded. The rest
2153 of the routine assumes that the array hasn't been decoded yet,
2154 so we use the basic "value_ind" routine to perform the dereferencing,
2155 as opposed to using "ada_value_ind". */
828292f2 2156 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2157 arr = value_ind (arr);
4c4b4cd2 2158
ad82864c 2159 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2160 if (type == NULL)
2161 {
323e0a4a 2162 error (_("can't unpack array"));
14f9c5c9
AS
2163 return NULL;
2164 }
61ee279c 2165
50810684 2166 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2167 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2168 {
2169 /* This is a (right-justified) modular type representing a packed
2170 array with no wrapper. In order to interpret the value through
2171 the (left-justified) packed array type we just built, we must
2172 first left-justify it. */
2173 int bit_size, bit_pos;
2174 ULONGEST mod;
2175
df407dfe 2176 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2177 bit_size = 0;
2178 while (mod > 0)
2179 {
2180 bit_size += 1;
2181 mod >>= 1;
2182 }
df407dfe 2183 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2184 arr = ada_value_primitive_packed_val (arr, NULL,
2185 bit_pos / HOST_CHAR_BIT,
2186 bit_pos % HOST_CHAR_BIT,
2187 bit_size,
2188 type);
2189 }
2190
4c4b4cd2 2191 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2192}
2193
2194
2195/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2196 given in IND. ARR must be a simple array. */
14f9c5c9 2197
d2e4a39e
AS
2198static struct value *
2199value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2200{
2201 int i;
2202 int bits, elt_off, bit_off;
2203 long elt_total_bit_offset;
d2e4a39e
AS
2204 struct type *elt_type;
2205 struct value *v;
14f9c5c9
AS
2206
2207 bits = 0;
2208 elt_total_bit_offset = 0;
df407dfe 2209 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2210 for (i = 0; i < arity; i += 1)
14f9c5c9 2211 {
d2e4a39e 2212 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2213 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2214 error
0963b4bd
MS
2215 (_("attempt to do packed indexing of "
2216 "something other than a packed array"));
14f9c5c9 2217 else
4c4b4cd2
PH
2218 {
2219 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2220 LONGEST lowerbound, upperbound;
2221 LONGEST idx;
2222
2223 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2224 {
323e0a4a 2225 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2226 lowerbound = upperbound = 0;
2227 }
2228
3cb382c9 2229 idx = pos_atr (ind[i]);
4c4b4cd2 2230 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2231 lim_warning (_("packed array index %ld out of bounds"),
2232 (long) idx);
4c4b4cd2
PH
2233 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2234 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2235 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2236 }
14f9c5c9
AS
2237 }
2238 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2239 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2240
2241 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2242 bits, elt_type);
14f9c5c9
AS
2243 return v;
2244}
2245
4c4b4cd2 2246/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2247
2248static int
d2e4a39e 2249has_negatives (struct type *type)
14f9c5c9 2250{
d2e4a39e
AS
2251 switch (TYPE_CODE (type))
2252 {
2253 default:
2254 return 0;
2255 case TYPE_CODE_INT:
2256 return !TYPE_UNSIGNED (type);
2257 case TYPE_CODE_RANGE:
2258 return TYPE_LOW_BOUND (type) < 0;
2259 }
14f9c5c9 2260}
d2e4a39e 2261
14f9c5c9
AS
2262
2263/* Create a new value of type TYPE from the contents of OBJ starting
2264 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2265 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2266 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2267 VALADDR is ignored unless OBJ is NULL, in which case,
2268 VALADDR+OFFSET must address the start of storage containing the
2269 packed value. The value returned in this case is never an lval.
2270 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2271
d2e4a39e 2272struct value *
fc1a4b47 2273ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2274 long offset, int bit_offset, int bit_size,
4c4b4cd2 2275 struct type *type)
14f9c5c9 2276{
d2e4a39e 2277 struct value *v;
4c4b4cd2
PH
2278 int src, /* Index into the source area */
2279 targ, /* Index into the target area */
2280 srcBitsLeft, /* Number of source bits left to move */
2281 nsrc, ntarg, /* Number of source and target bytes */
2282 unusedLS, /* Number of bits in next significant
2283 byte of source that are unused */
2284 accumSize; /* Number of meaningful bits in accum */
2285 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2286 unsigned char *unpacked;
4c4b4cd2 2287 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2288 unsigned char sign;
2289 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2290 /* Transmit bytes from least to most significant; delta is the direction
2291 the indices move. */
50810684 2292 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2293
61ee279c 2294 type = ada_check_typedef (type);
14f9c5c9
AS
2295
2296 if (obj == NULL)
2297 {
2298 v = allocate_value (type);
d2e4a39e 2299 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2300 }
9214ee5f 2301 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2302 {
53ba8333 2303 v = value_at (type, value_address (obj));
d2e4a39e 2304 bytes = (unsigned char *) alloca (len);
53ba8333 2305 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2306 }
d2e4a39e 2307 else
14f9c5c9
AS
2308 {
2309 v = allocate_value (type);
0fd88904 2310 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2311 }
d2e4a39e
AS
2312
2313 if (obj != NULL)
14f9c5c9 2314 {
53ba8333 2315 long new_offset = offset;
5b4ee69b 2316
74bcbdf3 2317 set_value_component_location (v, obj);
9bbda503
AC
2318 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2319 set_value_bitsize (v, bit_size);
df407dfe 2320 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2321 {
53ba8333 2322 ++new_offset;
9bbda503 2323 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2324 }
53ba8333
JB
2325 set_value_offset (v, new_offset);
2326
2327 /* Also set the parent value. This is needed when trying to
2328 assign a new value (in inferior memory). */
2329 set_value_parent (v, obj);
2330 value_incref (obj);
14f9c5c9
AS
2331 }
2332 else
9bbda503 2333 set_value_bitsize (v, bit_size);
0fd88904 2334 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2335
2336 srcBitsLeft = bit_size;
2337 nsrc = len;
2338 ntarg = TYPE_LENGTH (type);
2339 sign = 0;
2340 if (bit_size == 0)
2341 {
2342 memset (unpacked, 0, TYPE_LENGTH (type));
2343 return v;
2344 }
50810684 2345 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2346 {
d2e4a39e 2347 src = len - 1;
1265e4aa
JB
2348 if (has_negatives (type)
2349 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2350 sign = ~0;
d2e4a39e
AS
2351
2352 unusedLS =
4c4b4cd2
PH
2353 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2354 % HOST_CHAR_BIT;
14f9c5c9
AS
2355
2356 switch (TYPE_CODE (type))
4c4b4cd2
PH
2357 {
2358 case TYPE_CODE_ARRAY:
2359 case TYPE_CODE_UNION:
2360 case TYPE_CODE_STRUCT:
2361 /* Non-scalar values must be aligned at a byte boundary... */
2362 accumSize =
2363 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2364 /* ... And are placed at the beginning (most-significant) bytes
2365 of the target. */
529cad9c 2366 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2367 ntarg = targ + 1;
4c4b4cd2
PH
2368 break;
2369 default:
2370 accumSize = 0;
2371 targ = TYPE_LENGTH (type) - 1;
2372 break;
2373 }
14f9c5c9 2374 }
d2e4a39e 2375 else
14f9c5c9
AS
2376 {
2377 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2378
2379 src = targ = 0;
2380 unusedLS = bit_offset;
2381 accumSize = 0;
2382
d2e4a39e 2383 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2384 sign = ~0;
14f9c5c9 2385 }
d2e4a39e 2386
14f9c5c9
AS
2387 accum = 0;
2388 while (nsrc > 0)
2389 {
2390 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2391 part of the value. */
d2e4a39e 2392 unsigned int unusedMSMask =
4c4b4cd2
PH
2393 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2394 1;
2395 /* Sign-extend bits for this byte. */
14f9c5c9 2396 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2397
d2e4a39e 2398 accum |=
4c4b4cd2 2399 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2400 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2401 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2402 {
2403 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2404 accumSize -= HOST_CHAR_BIT;
2405 accum >>= HOST_CHAR_BIT;
2406 ntarg -= 1;
2407 targ += delta;
2408 }
14f9c5c9
AS
2409 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2410 unusedLS = 0;
2411 nsrc -= 1;
2412 src += delta;
2413 }
2414 while (ntarg > 0)
2415 {
2416 accum |= sign << accumSize;
2417 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2418 accumSize -= HOST_CHAR_BIT;
2419 accum >>= HOST_CHAR_BIT;
2420 ntarg -= 1;
2421 targ += delta;
2422 }
2423
2424 return v;
2425}
d2e4a39e 2426
14f9c5c9
AS
2427/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2428 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2429 not overlap. */
14f9c5c9 2430static void
fc1a4b47 2431move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2432 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2433{
2434 unsigned int accum, mask;
2435 int accum_bits, chunk_size;
2436
2437 target += targ_offset / HOST_CHAR_BIT;
2438 targ_offset %= HOST_CHAR_BIT;
2439 source += src_offset / HOST_CHAR_BIT;
2440 src_offset %= HOST_CHAR_BIT;
50810684 2441 if (bits_big_endian_p)
14f9c5c9
AS
2442 {
2443 accum = (unsigned char) *source;
2444 source += 1;
2445 accum_bits = HOST_CHAR_BIT - src_offset;
2446
d2e4a39e 2447 while (n > 0)
4c4b4cd2
PH
2448 {
2449 int unused_right;
5b4ee69b 2450
4c4b4cd2
PH
2451 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2452 accum_bits += HOST_CHAR_BIT;
2453 source += 1;
2454 chunk_size = HOST_CHAR_BIT - targ_offset;
2455 if (chunk_size > n)
2456 chunk_size = n;
2457 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2458 mask = ((1 << chunk_size) - 1) << unused_right;
2459 *target =
2460 (*target & ~mask)
2461 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2462 n -= chunk_size;
2463 accum_bits -= chunk_size;
2464 target += 1;
2465 targ_offset = 0;
2466 }
14f9c5c9
AS
2467 }
2468 else
2469 {
2470 accum = (unsigned char) *source >> src_offset;
2471 source += 1;
2472 accum_bits = HOST_CHAR_BIT - src_offset;
2473
d2e4a39e 2474 while (n > 0)
4c4b4cd2
PH
2475 {
2476 accum = accum + ((unsigned char) *source << accum_bits);
2477 accum_bits += HOST_CHAR_BIT;
2478 source += 1;
2479 chunk_size = HOST_CHAR_BIT - targ_offset;
2480 if (chunk_size > n)
2481 chunk_size = n;
2482 mask = ((1 << chunk_size) - 1) << targ_offset;
2483 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2484 n -= chunk_size;
2485 accum_bits -= chunk_size;
2486 accum >>= chunk_size;
2487 target += 1;
2488 targ_offset = 0;
2489 }
14f9c5c9
AS
2490 }
2491}
2492
14f9c5c9
AS
2493/* Store the contents of FROMVAL into the location of TOVAL.
2494 Return a new value with the location of TOVAL and contents of
2495 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2496 floating-point or non-scalar types. */
14f9c5c9 2497
d2e4a39e
AS
2498static struct value *
2499ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2500{
df407dfe
AC
2501 struct type *type = value_type (toval);
2502 int bits = value_bitsize (toval);
14f9c5c9 2503
52ce6436
PH
2504 toval = ada_coerce_ref (toval);
2505 fromval = ada_coerce_ref (fromval);
2506
2507 if (ada_is_direct_array_type (value_type (toval)))
2508 toval = ada_coerce_to_simple_array (toval);
2509 if (ada_is_direct_array_type (value_type (fromval)))
2510 fromval = ada_coerce_to_simple_array (fromval);
2511
88e3b34b 2512 if (!deprecated_value_modifiable (toval))
323e0a4a 2513 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2514
d2e4a39e 2515 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2516 && bits > 0
d2e4a39e 2517 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2518 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2519 {
df407dfe
AC
2520 int len = (value_bitpos (toval)
2521 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2522 int from_size;
d2e4a39e
AS
2523 char *buffer = (char *) alloca (len);
2524 struct value *val;
42ae5230 2525 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2526
2527 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2528 fromval = value_cast (type, fromval);
14f9c5c9 2529
52ce6436 2530 read_memory (to_addr, buffer, len);
aced2898
PH
2531 from_size = value_bitsize (fromval);
2532 if (from_size == 0)
2533 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2534 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2535 move_bits (buffer, value_bitpos (toval),
50810684 2536 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2537 else
50810684
UW
2538 move_bits (buffer, value_bitpos (toval),
2539 value_contents (fromval), 0, bits, 0);
972daa01 2540 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2541
14f9c5c9 2542 val = value_copy (toval);
0fd88904 2543 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2544 TYPE_LENGTH (type));
04624583 2545 deprecated_set_value_type (val, type);
d2e4a39e 2546
14f9c5c9
AS
2547 return val;
2548 }
2549
2550 return value_assign (toval, fromval);
2551}
2552
2553
52ce6436
PH
2554/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2555 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2556 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2557 * COMPONENT, and not the inferior's memory. The current contents
2558 * of COMPONENT are ignored. */
2559static void
2560value_assign_to_component (struct value *container, struct value *component,
2561 struct value *val)
2562{
2563 LONGEST offset_in_container =
42ae5230 2564 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2565 int bit_offset_in_container =
2566 value_bitpos (component) - value_bitpos (container);
2567 int bits;
2568
2569 val = value_cast (value_type (component), val);
2570
2571 if (value_bitsize (component) == 0)
2572 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2573 else
2574 bits = value_bitsize (component);
2575
50810684 2576 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2577 move_bits (value_contents_writeable (container) + offset_in_container,
2578 value_bitpos (container) + bit_offset_in_container,
2579 value_contents (val),
2580 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2581 bits, 1);
52ce6436
PH
2582 else
2583 move_bits (value_contents_writeable (container) + offset_in_container,
2584 value_bitpos (container) + bit_offset_in_container,
50810684 2585 value_contents (val), 0, bits, 0);
52ce6436
PH
2586}
2587
4c4b4cd2
PH
2588/* The value of the element of array ARR at the ARITY indices given in IND.
2589 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2590 thereto. */
2591
d2e4a39e
AS
2592struct value *
2593ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2594{
2595 int k;
d2e4a39e
AS
2596 struct value *elt;
2597 struct type *elt_type;
14f9c5c9
AS
2598
2599 elt = ada_coerce_to_simple_array (arr);
2600
df407dfe 2601 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2602 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2603 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2604 return value_subscript_packed (elt, arity, ind);
2605
2606 for (k = 0; k < arity; k += 1)
2607 {
2608 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2609 error (_("too many subscripts (%d expected)"), k);
2497b498 2610 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2611 }
2612 return elt;
2613}
2614
2615/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2616 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2617 IND. Does not read the entire array into memory. */
14f9c5c9 2618
2c0b251b 2619static struct value *
d2e4a39e 2620ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2621 struct value **ind)
14f9c5c9
AS
2622{
2623 int k;
2624
2625 for (k = 0; k < arity; k += 1)
2626 {
2627 LONGEST lwb, upb;
14f9c5c9
AS
2628
2629 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2630 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2631 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2632 value_copy (arr));
14f9c5c9 2633 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2634 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2635 type = TYPE_TARGET_TYPE (type);
2636 }
2637
2638 return value_ind (arr);
2639}
2640
0b5d8877 2641/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2642 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2643 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2644 per Ada rules. */
0b5d8877 2645static struct value *
f5938064
JG
2646ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2647 int low, int high)
0b5d8877 2648{
b0dd7688 2649 struct type *type0 = ada_check_typedef (type);
6c038f32 2650 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2651 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2652 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2653 struct type *index_type =
b0dd7688 2654 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2655 low, high);
6c038f32 2656 struct type *slice_type =
b0dd7688 2657 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2658
f5938064 2659 return value_at_lazy (slice_type, base);
0b5d8877
PH
2660}
2661
2662
2663static struct value *
2664ada_value_slice (struct value *array, int low, int high)
2665{
b0dd7688 2666 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2667 struct type *index_type =
0b5d8877 2668 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2669 struct type *slice_type =
0b5d8877 2670 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2671
6c038f32 2672 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2673}
2674
14f9c5c9
AS
2675/* If type is a record type in the form of a standard GNAT array
2676 descriptor, returns the number of dimensions for type. If arr is a
2677 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2678 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2679
2680int
d2e4a39e 2681ada_array_arity (struct type *type)
14f9c5c9
AS
2682{
2683 int arity;
2684
2685 if (type == NULL)
2686 return 0;
2687
2688 type = desc_base_type (type);
2689
2690 arity = 0;
d2e4a39e 2691 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2692 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2693 else
2694 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2695 {
4c4b4cd2 2696 arity += 1;
61ee279c 2697 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2698 }
d2e4a39e 2699
14f9c5c9
AS
2700 return arity;
2701}
2702
2703/* If TYPE is a record type in the form of a standard GNAT array
2704 descriptor or a simple array type, returns the element type for
2705 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2706 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2707
d2e4a39e
AS
2708struct type *
2709ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2710{
2711 type = desc_base_type (type);
2712
d2e4a39e 2713 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2714 {
2715 int k;
d2e4a39e 2716 struct type *p_array_type;
14f9c5c9 2717
556bdfd4 2718 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2719
2720 k = ada_array_arity (type);
2721 if (k == 0)
4c4b4cd2 2722 return NULL;
d2e4a39e 2723
4c4b4cd2 2724 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2725 if (nindices >= 0 && k > nindices)
4c4b4cd2 2726 k = nindices;
d2e4a39e 2727 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2728 {
61ee279c 2729 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2730 k -= 1;
2731 }
14f9c5c9
AS
2732 return p_array_type;
2733 }
2734 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2737 {
2738 type = TYPE_TARGET_TYPE (type);
2739 nindices -= 1;
2740 }
14f9c5c9
AS
2741 return type;
2742 }
2743
2744 return NULL;
2745}
2746
4c4b4cd2 2747/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2748 Does not examine memory. Throws an error if N is invalid or TYPE
2749 is not an array type. NAME is the name of the Ada attribute being
2750 evaluated ('range, 'first, 'last, or 'length); it is used in building
2751 the error message. */
14f9c5c9 2752
1eea4ebd
UW
2753static struct type *
2754ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2755{
4c4b4cd2
PH
2756 struct type *result_type;
2757
14f9c5c9
AS
2758 type = desc_base_type (type);
2759
1eea4ebd
UW
2760 if (n < 0 || n > ada_array_arity (type))
2761 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2762
4c4b4cd2 2763 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2764 {
2765 int i;
2766
2767 for (i = 1; i < n; i += 1)
4c4b4cd2 2768 type = TYPE_TARGET_TYPE (type);
262452ec 2769 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2770 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2771 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2772 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2773 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2774 result_type = NULL;
14f9c5c9 2775 }
d2e4a39e 2776 else
1eea4ebd
UW
2777 {
2778 result_type = desc_index_type (desc_bounds_type (type), n);
2779 if (result_type == NULL)
2780 error (_("attempt to take bound of something that is not an array"));
2781 }
2782
2783 return result_type;
14f9c5c9
AS
2784}
2785
2786/* Given that arr is an array type, returns the lower bound of the
2787 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2788 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2789 array-descriptor type. It works for other arrays with bounds supplied
2790 by run-time quantities other than discriminants. */
14f9c5c9 2791
abb68b3e 2792static LONGEST
1eea4ebd 2793ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2794{
1ce677a4 2795 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2796 int i;
262452ec
JK
2797
2798 gdb_assert (which == 0 || which == 1);
14f9c5c9 2799
ad82864c
JB
2800 if (ada_is_constrained_packed_array_type (arr_type))
2801 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2802
4c4b4cd2 2803 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2804 return (LONGEST) - which;
14f9c5c9
AS
2805
2806 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2807 type = TYPE_TARGET_TYPE (arr_type);
2808 else
2809 type = arr_type;
2810
1ce677a4
UW
2811 elt_type = type;
2812 for (i = n; i > 1; i--)
2813 elt_type = TYPE_TARGET_TYPE (type);
2814
14f9c5c9 2815 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2816 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2817 if (index_type_desc != NULL)
28c85d6c
JB
2818 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2819 NULL);
262452ec 2820 else
1ce677a4 2821 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2822
43bbcdc2
PH
2823 return
2824 (LONGEST) (which == 0
2825 ? ada_discrete_type_low_bound (index_type)
2826 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2827}
2828
2829/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2830 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2831 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2832 supplied by run-time quantities other than discriminants. */
14f9c5c9 2833
1eea4ebd 2834static LONGEST
4dc81987 2835ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2836{
df407dfe 2837 struct type *arr_type = value_type (arr);
14f9c5c9 2838
ad82864c
JB
2839 if (ada_is_constrained_packed_array_type (arr_type))
2840 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2841 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2842 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2843 else
1eea4ebd 2844 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2845}
2846
2847/* Given that arr is an array value, returns the length of the
2848 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2849 supplied by run-time quantities other than discriminants.
2850 Does not work for arrays indexed by enumeration types with representation
2851 clauses at the moment. */
14f9c5c9 2852
1eea4ebd 2853static LONGEST
d2e4a39e 2854ada_array_length (struct value *arr, int n)
14f9c5c9 2855{
df407dfe 2856 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2857
ad82864c
JB
2858 if (ada_is_constrained_packed_array_type (arr_type))
2859 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2860
4c4b4cd2 2861 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2862 return (ada_array_bound_from_type (arr_type, n, 1)
2863 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2864 else
1eea4ebd
UW
2865 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2866 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2867}
2868
2869/* An empty array whose type is that of ARR_TYPE (an array type),
2870 with bounds LOW to LOW-1. */
2871
2872static struct value *
2873empty_array (struct type *arr_type, int low)
2874{
b0dd7688 2875 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2876 struct type *index_type =
b0dd7688 2877 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2878 low, low - 1);
b0dd7688 2879 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2880
0b5d8877 2881 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2882}
14f9c5c9 2883\f
d2e4a39e 2884
4c4b4cd2 2885 /* Name resolution */
14f9c5c9 2886
4c4b4cd2
PH
2887/* The "decoded" name for the user-definable Ada operator corresponding
2888 to OP. */
14f9c5c9 2889
d2e4a39e 2890static const char *
4c4b4cd2 2891ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2892{
2893 int i;
2894
4c4b4cd2 2895 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2896 {
2897 if (ada_opname_table[i].op == op)
4c4b4cd2 2898 return ada_opname_table[i].decoded;
14f9c5c9 2899 }
323e0a4a 2900 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2901}
2902
2903
4c4b4cd2
PH
2904/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2905 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2906 undefined namespace) and converts operators that are
2907 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2908 non-null, it provides a preferred result type [at the moment, only
2909 type void has any effect---causing procedures to be preferred over
2910 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2911 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2912
4c4b4cd2
PH
2913static void
2914resolve (struct expression **expp, int void_context_p)
14f9c5c9 2915{
30b15541
UW
2916 struct type *context_type = NULL;
2917 int pc = 0;
2918
2919 if (void_context_p)
2920 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2921
2922 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2923}
2924
4c4b4cd2
PH
2925/* Resolve the operator of the subexpression beginning at
2926 position *POS of *EXPP. "Resolving" consists of replacing
2927 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2928 with their resolutions, replacing built-in operators with
2929 function calls to user-defined operators, where appropriate, and,
2930 when DEPROCEDURE_P is non-zero, converting function-valued variables
2931 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2932 are as in ada_resolve, above. */
14f9c5c9 2933
d2e4a39e 2934static struct value *
4c4b4cd2 2935resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2936 struct type *context_type)
14f9c5c9
AS
2937{
2938 int pc = *pos;
2939 int i;
4c4b4cd2 2940 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2941 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2942 struct value **argvec; /* Vector of operand types (alloca'ed). */
2943 int nargs; /* Number of operands. */
52ce6436 2944 int oplen;
14f9c5c9
AS
2945
2946 argvec = NULL;
2947 nargs = 0;
2948 exp = *expp;
2949
52ce6436
PH
2950 /* Pass one: resolve operands, saving their types and updating *pos,
2951 if needed. */
14f9c5c9
AS
2952 switch (op)
2953 {
4c4b4cd2
PH
2954 case OP_FUNCALL:
2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2957 *pos += 7;
4c4b4cd2
PH
2958 else
2959 {
2960 *pos += 3;
2961 resolve_subexp (expp, pos, 0, NULL);
2962 }
2963 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2964 break;
2965
14f9c5c9 2966 case UNOP_ADDR:
4c4b4cd2
PH
2967 *pos += 1;
2968 resolve_subexp (expp, pos, 0, NULL);
2969 break;
2970
52ce6436
PH
2971 case UNOP_QUAL:
2972 *pos += 3;
17466c1a 2973 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2974 break;
2975
52ce6436 2976 case OP_ATR_MODULUS:
4c4b4cd2
PH
2977 case OP_ATR_SIZE:
2978 case OP_ATR_TAG:
4c4b4cd2
PH
2979 case OP_ATR_FIRST:
2980 case OP_ATR_LAST:
2981 case OP_ATR_LENGTH:
2982 case OP_ATR_POS:
2983 case OP_ATR_VAL:
4c4b4cd2
PH
2984 case OP_ATR_MIN:
2985 case OP_ATR_MAX:
52ce6436
PH
2986 case TERNOP_IN_RANGE:
2987 case BINOP_IN_BOUNDS:
2988 case UNOP_IN_RANGE:
2989 case OP_AGGREGATE:
2990 case OP_OTHERS:
2991 case OP_CHOICES:
2992 case OP_POSITIONAL:
2993 case OP_DISCRETE_RANGE:
2994 case OP_NAME:
2995 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2996 *pos += oplen;
14f9c5c9
AS
2997 break;
2998
2999 case BINOP_ASSIGN:
3000 {
4c4b4cd2
PH
3001 struct value *arg1;
3002
3003 *pos += 1;
3004 arg1 = resolve_subexp (expp, pos, 0, NULL);
3005 if (arg1 == NULL)
3006 resolve_subexp (expp, pos, 1, NULL);
3007 else
df407dfe 3008 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3009 break;
14f9c5c9
AS
3010 }
3011
4c4b4cd2 3012 case UNOP_CAST:
4c4b4cd2
PH
3013 *pos += 3;
3014 nargs = 1;
3015 break;
14f9c5c9 3016
4c4b4cd2
PH
3017 case BINOP_ADD:
3018 case BINOP_SUB:
3019 case BINOP_MUL:
3020 case BINOP_DIV:
3021 case BINOP_REM:
3022 case BINOP_MOD:
3023 case BINOP_EXP:
3024 case BINOP_CONCAT:
3025 case BINOP_LOGICAL_AND:
3026 case BINOP_LOGICAL_OR:
3027 case BINOP_BITWISE_AND:
3028 case BINOP_BITWISE_IOR:
3029 case BINOP_BITWISE_XOR:
14f9c5c9 3030
4c4b4cd2
PH
3031 case BINOP_EQUAL:
3032 case BINOP_NOTEQUAL:
3033 case BINOP_LESS:
3034 case BINOP_GTR:
3035 case BINOP_LEQ:
3036 case BINOP_GEQ:
14f9c5c9 3037
4c4b4cd2
PH
3038 case BINOP_REPEAT:
3039 case BINOP_SUBSCRIPT:
3040 case BINOP_COMMA:
40c8aaa9
JB
3041 *pos += 1;
3042 nargs = 2;
3043 break;
14f9c5c9 3044
4c4b4cd2
PH
3045 case UNOP_NEG:
3046 case UNOP_PLUS:
3047 case UNOP_LOGICAL_NOT:
3048 case UNOP_ABS:
3049 case UNOP_IND:
3050 *pos += 1;
3051 nargs = 1;
3052 break;
14f9c5c9 3053
4c4b4cd2
PH
3054 case OP_LONG:
3055 case OP_DOUBLE:
3056 case OP_VAR_VALUE:
3057 *pos += 4;
3058 break;
14f9c5c9 3059
4c4b4cd2
PH
3060 case OP_TYPE:
3061 case OP_BOOL:
3062 case OP_LAST:
4c4b4cd2
PH
3063 case OP_INTERNALVAR:
3064 *pos += 3;
3065 break;
14f9c5c9 3066
4c4b4cd2
PH
3067 case UNOP_MEMVAL:
3068 *pos += 3;
3069 nargs = 1;
3070 break;
3071
67f3407f
DJ
3072 case OP_REGISTER:
3073 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3074 break;
3075
4c4b4cd2
PH
3076 case STRUCTOP_STRUCT:
3077 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3078 nargs = 1;
3079 break;
3080
4c4b4cd2 3081 case TERNOP_SLICE:
4c4b4cd2
PH
3082 *pos += 1;
3083 nargs = 3;
3084 break;
3085
52ce6436 3086 case OP_STRING:
14f9c5c9 3087 break;
4c4b4cd2
PH
3088
3089 default:
323e0a4a 3090 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3091 }
3092
76a01679 3093 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3094 for (i = 0; i < nargs; i += 1)
3095 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3096 argvec[i] = NULL;
3097 exp = *expp;
3098
3099 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3100 switch (op)
3101 {
3102 default:
3103 break;
3104
14f9c5c9 3105 case OP_VAR_VALUE:
4c4b4cd2 3106 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3107 {
3108 struct ada_symbol_info *candidates;
3109 int n_candidates;
3110
3111 n_candidates =
3112 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3113 (exp->elts[pc + 2].symbol),
3114 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3115 &candidates);
76a01679
JB
3116
3117 if (n_candidates > 1)
3118 {
3119 /* Types tend to get re-introduced locally, so if there
3120 are any local symbols that are not types, first filter
3121 out all types. */
3122 int j;
3123 for (j = 0; j < n_candidates; j += 1)
3124 switch (SYMBOL_CLASS (candidates[j].sym))
3125 {
3126 case LOC_REGISTER:
3127 case LOC_ARG:
3128 case LOC_REF_ARG:
76a01679
JB
3129 case LOC_REGPARM_ADDR:
3130 case LOC_LOCAL:
76a01679 3131 case LOC_COMPUTED:
76a01679
JB
3132 goto FoundNonType;
3133 default:
3134 break;
3135 }
3136 FoundNonType:
3137 if (j < n_candidates)
3138 {
3139 j = 0;
3140 while (j < n_candidates)
3141 {
3142 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3143 {
3144 candidates[j] = candidates[n_candidates - 1];
3145 n_candidates -= 1;
3146 }
3147 else
3148 j += 1;
3149 }
3150 }
3151 }
3152
3153 if (n_candidates == 0)
323e0a4a 3154 error (_("No definition found for %s"),
76a01679
JB
3155 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3156 else if (n_candidates == 1)
3157 i = 0;
3158 else if (deprocedure_p
3159 && !is_nonfunction (candidates, n_candidates))
3160 {
06d5cf63
JB
3161 i = ada_resolve_function
3162 (candidates, n_candidates, NULL, 0,
3163 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3164 context_type);
76a01679 3165 if (i < 0)
323e0a4a 3166 error (_("Could not find a match for %s"),
76a01679
JB
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 }
3169 else
3170 {
323e0a4a 3171 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3172 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3173 user_select_syms (candidates, n_candidates, 1);
3174 i = 0;
3175 }
3176
3177 exp->elts[pc + 1].block = candidates[i].block;
3178 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3179 if (innermost_block == NULL
3180 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3181 innermost_block = candidates[i].block;
3182 }
3183
3184 if (deprocedure_p
3185 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3186 == TYPE_CODE_FUNC))
3187 {
3188 replace_operator_with_call (expp, pc, 0, 0,
3189 exp->elts[pc + 2].symbol,
3190 exp->elts[pc + 1].block);
3191 exp = *expp;
3192 }
14f9c5c9
AS
3193 break;
3194
3195 case OP_FUNCALL:
3196 {
4c4b4cd2 3197 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3198 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3199 {
3200 struct ada_symbol_info *candidates;
3201 int n_candidates;
3202
3203 n_candidates =
76a01679
JB
3204 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3205 (exp->elts[pc + 5].symbol),
3206 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3207 &candidates);
4c4b4cd2
PH
3208 if (n_candidates == 1)
3209 i = 0;
3210 else
3211 {
06d5cf63
JB
3212 i = ada_resolve_function
3213 (candidates, n_candidates,
3214 argvec, nargs,
3215 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3216 context_type);
4c4b4cd2 3217 if (i < 0)
323e0a4a 3218 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3220 }
3221
3222 exp->elts[pc + 4].block = candidates[i].block;
3223 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3224 if (innermost_block == NULL
3225 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3226 innermost_block = candidates[i].block;
3227 }
14f9c5c9
AS
3228 }
3229 break;
3230 case BINOP_ADD:
3231 case BINOP_SUB:
3232 case BINOP_MUL:
3233 case BINOP_DIV:
3234 case BINOP_REM:
3235 case BINOP_MOD:
3236 case BINOP_CONCAT:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
3240 case BINOP_EQUAL:
3241 case BINOP_NOTEQUAL:
3242 case BINOP_LESS:
3243 case BINOP_GTR:
3244 case BINOP_LEQ:
3245 case BINOP_GEQ:
3246 case BINOP_EXP:
3247 case UNOP_NEG:
3248 case UNOP_PLUS:
3249 case UNOP_LOGICAL_NOT:
3250 case UNOP_ABS:
3251 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3252 {
3253 struct ada_symbol_info *candidates;
3254 int n_candidates;
3255
3256 n_candidates =
3257 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3258 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3259 &candidates);
4c4b4cd2 3260 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3261 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3262 if (i < 0)
3263 break;
3264
76a01679
JB
3265 replace_operator_with_call (expp, pc, nargs, 1,
3266 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3267 exp = *expp;
3268 }
14f9c5c9 3269 break;
4c4b4cd2
PH
3270
3271 case OP_TYPE:
b3dbf008 3272 case OP_REGISTER:
4c4b4cd2 3273 return NULL;
14f9c5c9
AS
3274 }
3275
3276 *pos = pc;
3277 return evaluate_subexp_type (exp, pos);
3278}
3279
3280/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3281 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3282 a non-pointer. */
14f9c5c9 3283/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3284 liberal. */
14f9c5c9
AS
3285
3286static int
4dc81987 3287ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3288{
61ee279c
PH
3289 ftype = ada_check_typedef (ftype);
3290 atype = ada_check_typedef (atype);
14f9c5c9
AS
3291
3292 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3293 ftype = TYPE_TARGET_TYPE (ftype);
3294 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3295 atype = TYPE_TARGET_TYPE (atype);
3296
d2e4a39e 3297 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3298 {
3299 default:
5b3d5b7d 3300 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3301 case TYPE_CODE_PTR:
3302 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3303 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3304 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3305 else
1265e4aa
JB
3306 return (may_deref
3307 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3312 {
3313 case TYPE_CODE_INT:
3314 case TYPE_CODE_ENUM:
3315 case TYPE_CODE_RANGE:
3316 return 1;
3317 default:
3318 return 0;
3319 }
14f9c5c9
AS
3320
3321 case TYPE_CODE_ARRAY:
d2e4a39e 3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3323 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3324
3325 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3326 if (ada_is_array_descriptor_type (ftype))
3327 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3328 || ada_is_array_descriptor_type (atype));
14f9c5c9 3329 else
4c4b4cd2
PH
3330 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3331 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3332
3333 case TYPE_CODE_UNION:
3334 case TYPE_CODE_FLT:
3335 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3336 }
3337}
3338
3339/* Return non-zero if the formals of FUNC "sufficiently match" the
3340 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3341 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3342 argument function. */
14f9c5c9
AS
3343
3344static int
d2e4a39e 3345ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3346{
3347 int i;
d2e4a39e 3348 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3349
1265e4aa
JB
3350 if (SYMBOL_CLASS (func) == LOC_CONST
3351 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3352 return (n_actuals == 0);
3353 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3354 return 0;
3355
3356 if (TYPE_NFIELDS (func_type) != n_actuals)
3357 return 0;
3358
3359 for (i = 0; i < n_actuals; i += 1)
3360 {
4c4b4cd2 3361 if (actuals[i] == NULL)
76a01679
JB
3362 return 0;
3363 else
3364 {
5b4ee69b
MS
3365 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3366 i));
df407dfe 3367 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3368
76a01679
JB
3369 if (!ada_type_match (ftype, atype, 1))
3370 return 0;
3371 }
14f9c5c9
AS
3372 }
3373 return 1;
3374}
3375
3376/* False iff function type FUNC_TYPE definitely does not produce a value
3377 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3378 FUNC_TYPE is not a valid function type with a non-null return type
3379 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3380
3381static int
d2e4a39e 3382return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3383{
d2e4a39e 3384 struct type *return_type;
14f9c5c9
AS
3385
3386 if (func_type == NULL)
3387 return 1;
3388
4c4b4cd2 3389 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3390 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3391 else
18af8284 3392 return_type = get_base_type (func_type);
14f9c5c9
AS
3393 if (return_type == NULL)
3394 return 1;
3395
18af8284 3396 context_type = get_base_type (context_type);
14f9c5c9
AS
3397
3398 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3399 return context_type == NULL || return_type == context_type;
3400 else if (context_type == NULL)
3401 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3402 else
3403 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3404}
3405
3406
4c4b4cd2 3407/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3408 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3409 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3410 that returns that type, then eliminate matches that don't. If
3411 CONTEXT_TYPE is void and there is at least one match that does not
3412 return void, eliminate all matches that do.
3413
14f9c5c9
AS
3414 Asks the user if there is more than one match remaining. Returns -1
3415 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3416 solely for messages. May re-arrange and modify SYMS in
3417 the process; the index returned is for the modified vector. */
14f9c5c9 3418
4c4b4cd2
PH
3419static int
3420ada_resolve_function (struct ada_symbol_info syms[],
3421 int nsyms, struct value **args, int nargs,
3422 const char *name, struct type *context_type)
14f9c5c9 3423{
30b15541 3424 int fallback;
14f9c5c9 3425 int k;
4c4b4cd2 3426 int m; /* Number of hits */
14f9c5c9 3427
d2e4a39e 3428 m = 0;
30b15541
UW
3429 /* In the first pass of the loop, we only accept functions matching
3430 context_type. If none are found, we add a second pass of the loop
3431 where every function is accepted. */
3432 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3433 {
3434 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3435 {
61ee279c 3436 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3437
3438 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3439 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3440 {
3441 syms[m] = syms[k];
3442 m += 1;
3443 }
3444 }
14f9c5c9
AS
3445 }
3446
3447 if (m == 0)
3448 return -1;
3449 else if (m > 1)
3450 {
323e0a4a 3451 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3452 user_select_syms (syms, m, 1);
14f9c5c9
AS
3453 return 0;
3454 }
3455 return 0;
3456}
3457
4c4b4cd2
PH
3458/* Returns true (non-zero) iff decoded name N0 should appear before N1
3459 in a listing of choices during disambiguation (see sort_choices, below).
3460 The idea is that overloadings of a subprogram name from the
3461 same package should sort in their source order. We settle for ordering
3462 such symbols by their trailing number (__N or $N). */
3463
14f9c5c9 3464static int
0d5cff50 3465encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3466{
3467 if (N1 == NULL)
3468 return 0;
3469 else if (N0 == NULL)
3470 return 1;
3471 else
3472 {
3473 int k0, k1;
5b4ee69b 3474
d2e4a39e 3475 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3478 ;
d2e4a39e 3479 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3480 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3481 {
3482 int n0, n1;
5b4ee69b 3483
4c4b4cd2
PH
3484 n0 = k0;
3485 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3486 n0 -= 1;
3487 n1 = k1;
3488 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3489 n1 -= 1;
3490 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3491 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3492 }
14f9c5c9
AS
3493 return (strcmp (N0, N1) < 0);
3494 }
3495}
d2e4a39e 3496
4c4b4cd2
PH
3497/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3498 encoded names. */
3499
d2e4a39e 3500static void
4c4b4cd2 3501sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3502{
4c4b4cd2 3503 int i;
5b4ee69b 3504
d2e4a39e 3505 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3506 {
4c4b4cd2 3507 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3508 int j;
3509
d2e4a39e 3510 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3511 {
3512 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3513 SYMBOL_LINKAGE_NAME (sym.sym)))
3514 break;
3515 syms[j + 1] = syms[j];
3516 }
d2e4a39e 3517 syms[j + 1] = sym;
14f9c5c9
AS
3518 }
3519}
3520
4c4b4cd2
PH
3521/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3522 by asking the user (if necessary), returning the number selected,
3523 and setting the first elements of SYMS items. Error if no symbols
3524 selected. */
14f9c5c9
AS
3525
3526/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3527 to be re-integrated one of these days. */
14f9c5c9
AS
3528
3529int
4c4b4cd2 3530user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3531{
3532 int i;
d2e4a39e 3533 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3534 int n_chosen;
3535 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3536 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3537
3538 if (max_results < 1)
323e0a4a 3539 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3540 if (nsyms <= 1)
3541 return nsyms;
3542
717d2f5a
JB
3543 if (select_mode == multiple_symbols_cancel)
3544 error (_("\
3545canceled because the command is ambiguous\n\
3546See set/show multiple-symbol."));
3547
3548 /* If select_mode is "all", then return all possible symbols.
3549 Only do that if more than one symbol can be selected, of course.
3550 Otherwise, display the menu as usual. */
3551 if (select_mode == multiple_symbols_all && max_results > 1)
3552 return nsyms;
3553
323e0a4a 3554 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3555 if (max_results > 1)
323e0a4a 3556 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3557
4c4b4cd2 3558 sort_choices (syms, nsyms);
14f9c5c9
AS
3559
3560 for (i = 0; i < nsyms; i += 1)
3561 {
4c4b4cd2
PH
3562 if (syms[i].sym == NULL)
3563 continue;
3564
3565 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3566 {
76a01679
JB
3567 struct symtab_and_line sal =
3568 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3569
323e0a4a
AC
3570 if (sal.symtab == NULL)
3571 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3572 i + first_choice,
3573 SYMBOL_PRINT_NAME (syms[i].sym),
3574 sal.line);
3575 else
3576 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3577 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3578 symtab_to_filename_for_display (sal.symtab),
3579 sal.line);
4c4b4cd2
PH
3580 continue;
3581 }
d2e4a39e 3582 else
4c4b4cd2
PH
3583 {
3584 int is_enumeral =
3585 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3586 && SYMBOL_TYPE (syms[i].sym) != NULL
3587 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3588 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3589
3590 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3591 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3592 i + first_choice,
3593 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3594 symtab_to_filename_for_display (symtab),
3595 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3596 else if (is_enumeral
3597 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3598 {
a3f17187 3599 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3600 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3601 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3602 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3603 SYMBOL_PRINT_NAME (syms[i].sym));
3604 }
3605 else if (symtab != NULL)
3606 printf_unfiltered (is_enumeral
323e0a4a
AC
3607 ? _("[%d] %s in %s (enumeral)\n")
3608 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3611 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3612 else
3613 printf_unfiltered (is_enumeral
323e0a4a
AC
3614 ? _("[%d] %s (enumeral)\n")
3615 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3616 i + first_choice,
3617 SYMBOL_PRINT_NAME (syms[i].sym));
3618 }
14f9c5c9 3619 }
d2e4a39e 3620
14f9c5c9 3621 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3622 "overload-choice");
14f9c5c9
AS
3623
3624 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3625 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3626
3627 return n_chosen;
3628}
3629
3630/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3631 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3632 order in CHOICES[0 .. N-1], and return N.
3633
3634 The user types choices as a sequence of numbers on one line
3635 separated by blanks, encoding them as follows:
3636
4c4b4cd2 3637 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3638 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3639 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3640
4c4b4cd2 3641 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3642
3643 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3644 prompts (for use with the -f switch). */
14f9c5c9
AS
3645
3646int
d2e4a39e 3647get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3648 int is_all_choice, char *annotation_suffix)
14f9c5c9 3649{
d2e4a39e 3650 char *args;
0bcd0149 3651 char *prompt;
14f9c5c9
AS
3652 int n_chosen;
3653 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3654
14f9c5c9
AS
3655 prompt = getenv ("PS2");
3656 if (prompt == NULL)
0bcd0149 3657 prompt = "> ";
14f9c5c9 3658
0bcd0149 3659 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3660
14f9c5c9 3661 if (args == NULL)
323e0a4a 3662 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3663
3664 n_chosen = 0;
76a01679 3665
4c4b4cd2
PH
3666 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3667 order, as given in args. Choices are validated. */
14f9c5c9
AS
3668 while (1)
3669 {
d2e4a39e 3670 char *args2;
14f9c5c9
AS
3671 int choice, j;
3672
0fcd72ba 3673 args = skip_spaces (args);
14f9c5c9 3674 if (*args == '\0' && n_chosen == 0)
323e0a4a 3675 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3676 else if (*args == '\0')
4c4b4cd2 3677 break;
14f9c5c9
AS
3678
3679 choice = strtol (args, &args2, 10);
d2e4a39e 3680 if (args == args2 || choice < 0
4c4b4cd2 3681 || choice > n_choices + first_choice - 1)
323e0a4a 3682 error (_("Argument must be choice number"));
14f9c5c9
AS
3683 args = args2;
3684
d2e4a39e 3685 if (choice == 0)
323e0a4a 3686 error (_("cancelled"));
14f9c5c9
AS
3687
3688 if (choice < first_choice)
4c4b4cd2
PH
3689 {
3690 n_chosen = n_choices;
3691 for (j = 0; j < n_choices; j += 1)
3692 choices[j] = j;
3693 break;
3694 }
14f9c5c9
AS
3695 choice -= first_choice;
3696
d2e4a39e 3697 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3698 {
3699 }
14f9c5c9
AS
3700
3701 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3702 {
3703 int k;
5b4ee69b 3704
4c4b4cd2
PH
3705 for (k = n_chosen - 1; k > j; k -= 1)
3706 choices[k + 1] = choices[k];
3707 choices[j + 1] = choice;
3708 n_chosen += 1;
3709 }
14f9c5c9
AS
3710 }
3711
3712 if (n_chosen > max_results)
323e0a4a 3713 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3714
14f9c5c9
AS
3715 return n_chosen;
3716}
3717
4c4b4cd2
PH
3718/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3719 on the function identified by SYM and BLOCK, and taking NARGS
3720 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3721
3722static void
d2e4a39e 3723replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3724 int oplen, struct symbol *sym,
270140bd 3725 const struct block *block)
14f9c5c9
AS
3726{
3727 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3728 symbol, -oplen for operator being replaced). */
d2e4a39e 3729 struct expression *newexp = (struct expression *)
8c1a34e7 3730 xzalloc (sizeof (struct expression)
4c4b4cd2 3731 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3732 struct expression *exp = *expp;
14f9c5c9
AS
3733
3734 newexp->nelts = exp->nelts + 7 - oplen;
3735 newexp->language_defn = exp->language_defn;
3489610d 3736 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3737 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3738 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3739 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3740
3741 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3742 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3743
3744 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3745 newexp->elts[pc + 4].block = block;
3746 newexp->elts[pc + 5].symbol = sym;
3747
3748 *expp = newexp;
aacb1f0a 3749 xfree (exp);
d2e4a39e 3750}
14f9c5c9
AS
3751
3752/* Type-class predicates */
3753
4c4b4cd2
PH
3754/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3755 or FLOAT). */
14f9c5c9
AS
3756
3757static int
d2e4a39e 3758numeric_type_p (struct type *type)
14f9c5c9
AS
3759{
3760 if (type == NULL)
3761 return 0;
d2e4a39e
AS
3762 else
3763 {
3764 switch (TYPE_CODE (type))
4c4b4cd2
PH
3765 {
3766 case TYPE_CODE_INT:
3767 case TYPE_CODE_FLT:
3768 return 1;
3769 case TYPE_CODE_RANGE:
3770 return (type == TYPE_TARGET_TYPE (type)
3771 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3772 default:
3773 return 0;
3774 }
d2e4a39e 3775 }
14f9c5c9
AS
3776}
3777
4c4b4cd2 3778/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781integer_type_p (struct type *type)
14f9c5c9
AS
3782{
3783 if (type == NULL)
3784 return 0;
d2e4a39e
AS
3785 else
3786 {
3787 switch (TYPE_CODE (type))
4c4b4cd2
PH
3788 {
3789 case TYPE_CODE_INT:
3790 return 1;
3791 case TYPE_CODE_RANGE:
3792 return (type == TYPE_TARGET_TYPE (type)
3793 || integer_type_p (TYPE_TARGET_TYPE (type)));
3794 default:
3795 return 0;
3796 }
d2e4a39e 3797 }
14f9c5c9
AS
3798}
3799
4c4b4cd2 3800/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3801
3802static int
d2e4a39e 3803scalar_type_p (struct type *type)
14f9c5c9
AS
3804{
3805 if (type == NULL)
3806 return 0;
d2e4a39e
AS
3807 else
3808 {
3809 switch (TYPE_CODE (type))
4c4b4cd2
PH
3810 {
3811 case TYPE_CODE_INT:
3812 case TYPE_CODE_RANGE:
3813 case TYPE_CODE_ENUM:
3814 case TYPE_CODE_FLT:
3815 return 1;
3816 default:
3817 return 0;
3818 }
d2e4a39e 3819 }
14f9c5c9
AS
3820}
3821
4c4b4cd2 3822/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3823
3824static int
d2e4a39e 3825discrete_type_p (struct type *type)
14f9c5c9
AS
3826{
3827 if (type == NULL)
3828 return 0;
d2e4a39e
AS
3829 else
3830 {
3831 switch (TYPE_CODE (type))
4c4b4cd2
PH
3832 {
3833 case TYPE_CODE_INT:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_ENUM:
872f0337 3836 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3837 return 1;
3838 default:
3839 return 0;
3840 }
d2e4a39e 3841 }
14f9c5c9
AS
3842}
3843
4c4b4cd2
PH
3844/* Returns non-zero if OP with operands in the vector ARGS could be
3845 a user-defined function. Errs on the side of pre-defined operators
3846 (i.e., result 0). */
14f9c5c9
AS
3847
3848static int
d2e4a39e 3849possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3850{
76a01679 3851 struct type *type0 =
df407dfe 3852 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3853 struct type *type1 =
df407dfe 3854 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3855
4c4b4cd2
PH
3856 if (type0 == NULL)
3857 return 0;
3858
14f9c5c9
AS
3859 switch (op)
3860 {
3861 default:
3862 return 0;
3863
3864 case BINOP_ADD:
3865 case BINOP_SUB:
3866 case BINOP_MUL:
3867 case BINOP_DIV:
d2e4a39e 3868 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3869
3870 case BINOP_REM:
3871 case BINOP_MOD:
3872 case BINOP_BITWISE_AND:
3873 case BINOP_BITWISE_IOR:
3874 case BINOP_BITWISE_XOR:
d2e4a39e 3875 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3876
3877 case BINOP_EQUAL:
3878 case BINOP_NOTEQUAL:
3879 case BINOP_LESS:
3880 case BINOP_GTR:
3881 case BINOP_LEQ:
3882 case BINOP_GEQ:
d2e4a39e 3883 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3884
3885 case BINOP_CONCAT:
ee90b9ab 3886 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3887
3888 case BINOP_EXP:
d2e4a39e 3889 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3890
3891 case UNOP_NEG:
3892 case UNOP_PLUS:
3893 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3894 case UNOP_ABS:
3895 return (!numeric_type_p (type0));
14f9c5c9
AS
3896
3897 }
3898}
3899\f
4c4b4cd2 3900 /* Renaming */
14f9c5c9 3901
aeb5907d
JB
3902/* NOTES:
3903
3904 1. In the following, we assume that a renaming type's name may
3905 have an ___XD suffix. It would be nice if this went away at some
3906 point.
3907 2. We handle both the (old) purely type-based representation of
3908 renamings and the (new) variable-based encoding. At some point,
3909 it is devoutly to be hoped that the former goes away
3910 (FIXME: hilfinger-2007-07-09).
3911 3. Subprogram renamings are not implemented, although the XRS
3912 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3913
3914/* If SYM encodes a renaming,
3915
3916 <renaming> renames <renamed entity>,
3917
3918 sets *LEN to the length of the renamed entity's name,
3919 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3920 the string describing the subcomponent selected from the renamed
0963b4bd 3921 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3922 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3923 are undefined). Otherwise, returns a value indicating the category
3924 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3925 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3926 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3927 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3928 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3929 may be NULL, in which case they are not assigned.
3930
3931 [Currently, however, GCC does not generate subprogram renamings.] */
3932
3933enum ada_renaming_category
3934ada_parse_renaming (struct symbol *sym,
3935 const char **renamed_entity, int *len,
3936 const char **renaming_expr)
3937{
3938 enum ada_renaming_category kind;
3939 const char *info;
3940 const char *suffix;
3941
3942 if (sym == NULL)
3943 return ADA_NOT_RENAMING;
3944 switch (SYMBOL_CLASS (sym))
14f9c5c9 3945 {
aeb5907d
JB
3946 default:
3947 return ADA_NOT_RENAMING;
3948 case LOC_TYPEDEF:
3949 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3950 renamed_entity, len, renaming_expr);
3951 case LOC_LOCAL:
3952 case LOC_STATIC:
3953 case LOC_COMPUTED:
3954 case LOC_OPTIMIZED_OUT:
3955 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3956 if (info == NULL)
3957 return ADA_NOT_RENAMING;
3958 switch (info[5])
3959 {
3960 case '_':
3961 kind = ADA_OBJECT_RENAMING;
3962 info += 6;
3963 break;
3964 case 'E':
3965 kind = ADA_EXCEPTION_RENAMING;
3966 info += 7;
3967 break;
3968 case 'P':
3969 kind = ADA_PACKAGE_RENAMING;
3970 info += 7;
3971 break;
3972 case 'S':
3973 kind = ADA_SUBPROGRAM_RENAMING;
3974 info += 7;
3975 break;
3976 default:
3977 return ADA_NOT_RENAMING;
3978 }
14f9c5c9 3979 }
4c4b4cd2 3980
aeb5907d
JB
3981 if (renamed_entity != NULL)
3982 *renamed_entity = info;
3983 suffix = strstr (info, "___XE");
3984 if (suffix == NULL || suffix == info)
3985 return ADA_NOT_RENAMING;
3986 if (len != NULL)
3987 *len = strlen (info) - strlen (suffix);
3988 suffix += 5;
3989 if (renaming_expr != NULL)
3990 *renaming_expr = suffix;
3991 return kind;
3992}
3993
3994/* Assuming TYPE encodes a renaming according to the old encoding in
3995 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3996 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3997 ADA_NOT_RENAMING otherwise. */
3998static enum ada_renaming_category
3999parse_old_style_renaming (struct type *type,
4000 const char **renamed_entity, int *len,
4001 const char **renaming_expr)
4002{
4003 enum ada_renaming_category kind;
4004 const char *name;
4005 const char *info;
4006 const char *suffix;
14f9c5c9 4007
aeb5907d
JB
4008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4009 || TYPE_NFIELDS (type) != 1)
4010 return ADA_NOT_RENAMING;
14f9c5c9 4011
aeb5907d
JB
4012 name = type_name_no_tag (type);
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015
4016 name = strstr (name, "___XR");
4017 if (name == NULL)
4018 return ADA_NOT_RENAMING;
4019 switch (name[5])
4020 {
4021 case '\0':
4022 case '_':
4023 kind = ADA_OBJECT_RENAMING;
4024 break;
4025 case 'E':
4026 kind = ADA_EXCEPTION_RENAMING;
4027 break;
4028 case 'P':
4029 kind = ADA_PACKAGE_RENAMING;
4030 break;
4031 case 'S':
4032 kind = ADA_SUBPROGRAM_RENAMING;
4033 break;
4034 default:
4035 return ADA_NOT_RENAMING;
4036 }
14f9c5c9 4037
aeb5907d
JB
4038 info = TYPE_FIELD_NAME (type, 0);
4039 if (info == NULL)
4040 return ADA_NOT_RENAMING;
4041 if (renamed_entity != NULL)
4042 *renamed_entity = info;
4043 suffix = strstr (info, "___XE");
4044 if (renaming_expr != NULL)
4045 *renaming_expr = suffix + 5;
4046 if (suffix == NULL || suffix == info)
4047 return ADA_NOT_RENAMING;
4048 if (len != NULL)
4049 *len = suffix - info;
4050 return kind;
a5ee536b
JB
4051}
4052
4053/* Compute the value of the given RENAMING_SYM, which is expected to
4054 be a symbol encoding a renaming expression. BLOCK is the block
4055 used to evaluate the renaming. */
52ce6436 4056
a5ee536b
JB
4057static struct value *
4058ada_read_renaming_var_value (struct symbol *renaming_sym,
4059 struct block *block)
4060{
bbc13ae3 4061 const char *sym_name;
a5ee536b
JB
4062 struct expression *expr;
4063 struct value *value;
4064 struct cleanup *old_chain = NULL;
4065
bbc13ae3 4066 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4067 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4068 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4069 value = evaluate_expression (expr);
4070
4071 do_cleanups (old_chain);
4072 return value;
4073}
14f9c5c9 4074\f
d2e4a39e 4075
4c4b4cd2 4076 /* Evaluation: Function Calls */
14f9c5c9 4077
4c4b4cd2 4078/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4079 lvalues, and otherwise has the side-effect of allocating memory
4080 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4081
d2e4a39e 4082static struct value *
40bc484c 4083ensure_lval (struct value *val)
14f9c5c9 4084{
40bc484c
JB
4085 if (VALUE_LVAL (val) == not_lval
4086 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4087 {
df407dfe 4088 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4089 const CORE_ADDR addr =
4090 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4091
40bc484c 4092 set_value_address (val, addr);
a84a8a0d 4093 VALUE_LVAL (val) = lval_memory;
40bc484c 4094 write_memory (addr, value_contents (val), len);
c3e5cd34 4095 }
14f9c5c9
AS
4096
4097 return val;
4098}
4099
4100/* Return the value ACTUAL, converted to be an appropriate value for a
4101 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4102 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4103 values not residing in memory, updating it as needed. */
14f9c5c9 4104
a93c0eb6 4105struct value *
40bc484c 4106ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4107{
df407dfe 4108 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4109 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4110 struct type *formal_target =
4111 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4113 struct type *actual_target =
4114 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4115 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4116
4c4b4cd2 4117 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4118 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4119 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4120 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4121 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4122 {
a84a8a0d 4123 struct value *result;
5b4ee69b 4124
14f9c5c9 4125 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4126 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4127 result = desc_data (actual);
14f9c5c9 4128 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4129 {
4130 if (VALUE_LVAL (actual) != lval_memory)
4131 {
4132 struct value *val;
5b4ee69b 4133
df407dfe 4134 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4135 val = allocate_value (actual_type);
990a07ab 4136 memcpy ((char *) value_contents_raw (val),
0fd88904 4137 (char *) value_contents (actual),
4c4b4cd2 4138 TYPE_LENGTH (actual_type));
40bc484c 4139 actual = ensure_lval (val);
4c4b4cd2 4140 }
a84a8a0d 4141 result = value_addr (actual);
4c4b4cd2 4142 }
a84a8a0d
JB
4143 else
4144 return actual;
b1af9e97 4145 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4146 }
4147 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4148 return ada_value_ind (actual);
4149
4150 return actual;
4151}
4152
438c98a1
JB
4153/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4154 type TYPE. This is usually an inefficient no-op except on some targets
4155 (such as AVR) where the representation of a pointer and an address
4156 differs. */
4157
4158static CORE_ADDR
4159value_pointer (struct value *value, struct type *type)
4160{
4161 struct gdbarch *gdbarch = get_type_arch (type);
4162 unsigned len = TYPE_LENGTH (type);
4163 gdb_byte *buf = alloca (len);
4164 CORE_ADDR addr;
4165
4166 addr = value_address (value);
4167 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4168 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4169 return addr;
4170}
4171
14f9c5c9 4172
4c4b4cd2
PH
4173/* Push a descriptor of type TYPE for array value ARR on the stack at
4174 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4175 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4176 to-descriptor type rather than a descriptor type), a struct value *
4177 representing a pointer to this descriptor. */
14f9c5c9 4178
d2e4a39e 4179static struct value *
40bc484c 4180make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4181{
d2e4a39e
AS
4182 struct type *bounds_type = desc_bounds_type (type);
4183 struct type *desc_type = desc_base_type (type);
4184 struct value *descriptor = allocate_value (desc_type);
4185 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4186 int i;
d2e4a39e 4187
0963b4bd
MS
4188 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4189 i > 0; i -= 1)
14f9c5c9 4190 {
19f220c3
JK
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 0),
4193 desc_bound_bitpos (bounds_type, i, 0),
4194 desc_bound_bitsize (bounds_type, i, 0));
4195 modify_field (value_type (bounds), value_contents_writeable (bounds),
4196 ada_array_bound (arr, i, 1),
4197 desc_bound_bitpos (bounds_type, i, 1),
4198 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4199 }
d2e4a39e 4200
40bc484c 4201 bounds = ensure_lval (bounds);
d2e4a39e 4202
19f220c3
JK
4203 modify_field (value_type (descriptor),
4204 value_contents_writeable (descriptor),
4205 value_pointer (ensure_lval (arr),
4206 TYPE_FIELD_TYPE (desc_type, 0)),
4207 fat_pntr_data_bitpos (desc_type),
4208 fat_pntr_data_bitsize (desc_type));
4209
4210 modify_field (value_type (descriptor),
4211 value_contents_writeable (descriptor),
4212 value_pointer (bounds,
4213 TYPE_FIELD_TYPE (desc_type, 1)),
4214 fat_pntr_bounds_bitpos (desc_type),
4215 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4216
40bc484c 4217 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4218
4219 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4220 return value_addr (descriptor);
4221 else
4222 return descriptor;
4223}
14f9c5c9 4224\f
963a6417 4225/* Dummy definitions for an experimental caching module that is not
0963b4bd 4226 * used in the public sources. */
96d887e8 4227
96d887e8
PH
4228static int
4229lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4230 struct symbol **sym, struct block **block)
96d887e8
PH
4231{
4232 return 0;
4233}
4234
4235static void
4236cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4237 const struct block *block)
96d887e8
PH
4238{
4239}
4c4b4cd2
PH
4240\f
4241 /* Symbol Lookup */
4242
c0431670
JB
4243/* Return nonzero if wild matching should be used when searching for
4244 all symbols matching LOOKUP_NAME.
4245
4246 LOOKUP_NAME is expected to be a symbol name after transformation
4247 for Ada lookups (see ada_name_for_lookup). */
4248
4249static int
4250should_use_wild_match (const char *lookup_name)
4251{
4252 return (strstr (lookup_name, "__") == NULL);
4253}
4254
4c4b4cd2
PH
4255/* Return the result of a standard (literal, C-like) lookup of NAME in
4256 given DOMAIN, visible from lexical block BLOCK. */
4257
4258static struct symbol *
4259standard_lookup (const char *name, const struct block *block,
4260 domain_enum domain)
4261{
acbd605d
MGD
4262 /* Initialize it just to avoid a GCC false warning. */
4263 struct symbol *sym = NULL;
4c4b4cd2 4264
2570f2b7 4265 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4266 return sym;
2570f2b7
UW
4267 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4268 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4269 return sym;
4270}
4271
4272
4273/* Non-zero iff there is at least one non-function/non-enumeral symbol
4274 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4275 since they contend in overloading in the same way. */
4276static int
4277is_nonfunction (struct ada_symbol_info syms[], int n)
4278{
4279 int i;
4280
4281 for (i = 0; i < n; i += 1)
4282 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4283 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4284 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4285 return 1;
4286
4287 return 0;
4288}
4289
4290/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4291 struct types. Otherwise, they may not. */
14f9c5c9
AS
4292
4293static int
d2e4a39e 4294equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4295{
d2e4a39e 4296 if (type0 == type1)
14f9c5c9 4297 return 1;
d2e4a39e 4298 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4299 || TYPE_CODE (type0) != TYPE_CODE (type1))
4300 return 0;
d2e4a39e 4301 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4302 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4303 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4304 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4305 return 1;
d2e4a39e 4306
14f9c5c9
AS
4307 return 0;
4308}
4309
4310/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4311 no more defined than that of SYM1. */
14f9c5c9
AS
4312
4313static int
d2e4a39e 4314lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4315{
4316 if (sym0 == sym1)
4317 return 1;
176620f1 4318 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4319 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4320 return 0;
4321
d2e4a39e 4322 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4323 {
4324 case LOC_UNDEF:
4325 return 1;
4326 case LOC_TYPEDEF:
4327 {
4c4b4cd2
PH
4328 struct type *type0 = SYMBOL_TYPE (sym0);
4329 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4330 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4331 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4332 int len0 = strlen (name0);
5b4ee69b 4333
4c4b4cd2
PH
4334 return
4335 TYPE_CODE (type0) == TYPE_CODE (type1)
4336 && (equiv_types (type0, type1)
4337 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4338 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4339 }
4340 case LOC_CONST:
4341 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4342 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4343 default:
4344 return 0;
14f9c5c9
AS
4345 }
4346}
4347
4c4b4cd2
PH
4348/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4349 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4350
4351static void
76a01679
JB
4352add_defn_to_vec (struct obstack *obstackp,
4353 struct symbol *sym,
2570f2b7 4354 struct block *block)
14f9c5c9
AS
4355{
4356 int i;
4c4b4cd2 4357 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4358
529cad9c
PH
4359 /* Do not try to complete stub types, as the debugger is probably
4360 already scanning all symbols matching a certain name at the
4361 time when this function is called. Trying to replace the stub
4362 type by its associated full type will cause us to restart a scan
4363 which may lead to an infinite recursion. Instead, the client
4364 collecting the matching symbols will end up collecting several
4365 matches, with at least one of them complete. It can then filter
4366 out the stub ones if needed. */
4367
4c4b4cd2
PH
4368 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4369 {
4370 if (lesseq_defined_than (sym, prevDefns[i].sym))
4371 return;
4372 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4373 {
4374 prevDefns[i].sym = sym;
4375 prevDefns[i].block = block;
4c4b4cd2 4376 return;
76a01679 4377 }
4c4b4cd2
PH
4378 }
4379
4380 {
4381 struct ada_symbol_info info;
4382
4383 info.sym = sym;
4384 info.block = block;
4c4b4cd2
PH
4385 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4386 }
4387}
4388
4389/* Number of ada_symbol_info structures currently collected in
4390 current vector in *OBSTACKP. */
4391
76a01679
JB
4392static int
4393num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4394{
4395 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4396}
4397
4398/* Vector of ada_symbol_info structures currently collected in current
4399 vector in *OBSTACKP. If FINISH, close off the vector and return
4400 its final address. */
4401
76a01679 4402static struct ada_symbol_info *
4c4b4cd2
PH
4403defns_collected (struct obstack *obstackp, int finish)
4404{
4405 if (finish)
4406 return obstack_finish (obstackp);
4407 else
4408 return (struct ada_symbol_info *) obstack_base (obstackp);
4409}
4410
96d887e8 4411/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4412 rules. Returns NULL if there is no such minimal symbol. Names
4413 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4414 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4415
96d887e8
PH
4416struct minimal_symbol *
4417ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4418{
4c4b4cd2 4419 struct objfile *objfile;
96d887e8 4420 struct minimal_symbol *msymbol;
dc4024cd 4421 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4422
c0431670
JB
4423 /* Special case: If the user specifies a symbol name inside package
4424 Standard, do a non-wild matching of the symbol name without
4425 the "standard__" prefix. This was primarily introduced in order
4426 to allow the user to specifically access the standard exceptions
4427 using, for instance, Standard.Constraint_Error when Constraint_Error
4428 is ambiguous (due to the user defining its own Constraint_Error
4429 entity inside its program). */
96d887e8 4430 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4431 name += sizeof ("standard__") - 1;
4c4b4cd2 4432
96d887e8
PH
4433 ALL_MSYMBOLS (objfile, msymbol)
4434 {
dc4024cd 4435 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4436 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4437 return msymbol;
4438 }
4c4b4cd2 4439
96d887e8
PH
4440 return NULL;
4441}
4c4b4cd2 4442
96d887e8
PH
4443/* For all subprograms that statically enclose the subprogram of the
4444 selected frame, add symbols matching identifier NAME in DOMAIN
4445 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4446 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4447 with a wildcard prefix. */
4c4b4cd2 4448
96d887e8
PH
4449static void
4450add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4451 const char *name, domain_enum namespace,
48b78332 4452 int wild_match_p)
96d887e8 4453{
96d887e8 4454}
14f9c5c9 4455
96d887e8
PH
4456/* True if TYPE is definitely an artificial type supplied to a symbol
4457 for which no debugging information was given in the symbol file. */
14f9c5c9 4458
96d887e8
PH
4459static int
4460is_nondebugging_type (struct type *type)
4461{
0d5cff50 4462 const char *name = ada_type_name (type);
5b4ee69b 4463
96d887e8
PH
4464 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4465}
4c4b4cd2 4466
8f17729f
JB
4467/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4468 that are deemed "identical" for practical purposes.
4469
4470 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4471 types and that their number of enumerals is identical (in other
4472 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4473
4474static int
4475ada_identical_enum_types_p (struct type *type1, struct type *type2)
4476{
4477 int i;
4478
4479 /* The heuristic we use here is fairly conservative. We consider
4480 that 2 enumerate types are identical if they have the same
4481 number of enumerals and that all enumerals have the same
4482 underlying value and name. */
4483
4484 /* All enums in the type should have an identical underlying value. */
4485 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4486 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4487 return 0;
4488
4489 /* All enumerals should also have the same name (modulo any numerical
4490 suffix). */
4491 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4492 {
0d5cff50
DE
4493 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4494 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4495 int len_1 = strlen (name_1);
4496 int len_2 = strlen (name_2);
4497
4498 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4499 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4500 if (len_1 != len_2
4501 || strncmp (TYPE_FIELD_NAME (type1, i),
4502 TYPE_FIELD_NAME (type2, i),
4503 len_1) != 0)
4504 return 0;
4505 }
4506
4507 return 1;
4508}
4509
4510/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4511 that are deemed "identical" for practical purposes. Sometimes,
4512 enumerals are not strictly identical, but their types are so similar
4513 that they can be considered identical.
4514
4515 For instance, consider the following code:
4516
4517 type Color is (Black, Red, Green, Blue, White);
4518 type RGB_Color is new Color range Red .. Blue;
4519
4520 Type RGB_Color is a subrange of an implicit type which is a copy
4521 of type Color. If we call that implicit type RGB_ColorB ("B" is
4522 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4523 As a result, when an expression references any of the enumeral
4524 by name (Eg. "print green"), the expression is technically
4525 ambiguous and the user should be asked to disambiguate. But
4526 doing so would only hinder the user, since it wouldn't matter
4527 what choice he makes, the outcome would always be the same.
4528 So, for practical purposes, we consider them as the same. */
4529
4530static int
4531symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4532{
4533 int i;
4534
4535 /* Before performing a thorough comparison check of each type,
4536 we perform a series of inexpensive checks. We expect that these
4537 checks will quickly fail in the vast majority of cases, and thus
4538 help prevent the unnecessary use of a more expensive comparison.
4539 Said comparison also expects us to make some of these checks
4540 (see ada_identical_enum_types_p). */
4541
4542 /* Quick check: All symbols should have an enum type. */
4543 for (i = 0; i < nsyms; i++)
4544 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4545 return 0;
4546
4547 /* Quick check: They should all have the same value. */
4548 for (i = 1; i < nsyms; i++)
4549 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4550 return 0;
4551
4552 /* Quick check: They should all have the same number of enumerals. */
4553 for (i = 1; i < nsyms; i++)
4554 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4555 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4556 return 0;
4557
4558 /* All the sanity checks passed, so we might have a set of
4559 identical enumeration types. Perform a more complete
4560 comparison of the type of each symbol. */
4561 for (i = 1; i < nsyms; i++)
4562 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4563 SYMBOL_TYPE (syms[0].sym)))
4564 return 0;
4565
4566 return 1;
4567}
4568
96d887e8
PH
4569/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4570 duplicate other symbols in the list (The only case I know of where
4571 this happens is when object files containing stabs-in-ecoff are
4572 linked with files containing ordinary ecoff debugging symbols (or no
4573 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4574 Returns the number of items in the modified list. */
4c4b4cd2 4575
96d887e8
PH
4576static int
4577remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4578{
4579 int i, j;
4c4b4cd2 4580
8f17729f
JB
4581 /* We should never be called with less than 2 symbols, as there
4582 cannot be any extra symbol in that case. But it's easy to
4583 handle, since we have nothing to do in that case. */
4584 if (nsyms < 2)
4585 return nsyms;
4586
96d887e8
PH
4587 i = 0;
4588 while (i < nsyms)
4589 {
a35ddb44 4590 int remove_p = 0;
339c13b6
JB
4591
4592 /* If two symbols have the same name and one of them is a stub type,
4593 the get rid of the stub. */
4594
4595 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4596 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4597 {
4598 for (j = 0; j < nsyms; j++)
4599 {
4600 if (j != i
4601 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4602 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4603 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4604 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4605 remove_p = 1;
339c13b6
JB
4606 }
4607 }
4608
4609 /* Two symbols with the same name, same class and same address
4610 should be identical. */
4611
4612 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4613 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4614 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4615 {
4616 for (j = 0; j < nsyms; j += 1)
4617 {
4618 if (i != j
4619 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4620 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4621 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4622 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4623 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4624 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4625 remove_p = 1;
4c4b4cd2 4626 }
4c4b4cd2 4627 }
339c13b6 4628
a35ddb44 4629 if (remove_p)
339c13b6
JB
4630 {
4631 for (j = i + 1; j < nsyms; j += 1)
4632 syms[j - 1] = syms[j];
4633 nsyms -= 1;
4634 }
4635
96d887e8 4636 i += 1;
14f9c5c9 4637 }
8f17729f
JB
4638
4639 /* If all the remaining symbols are identical enumerals, then
4640 just keep the first one and discard the rest.
4641
4642 Unlike what we did previously, we do not discard any entry
4643 unless they are ALL identical. This is because the symbol
4644 comparison is not a strict comparison, but rather a practical
4645 comparison. If all symbols are considered identical, then
4646 we can just go ahead and use the first one and discard the rest.
4647 But if we cannot reduce the list to a single element, we have
4648 to ask the user to disambiguate anyways. And if we have to
4649 present a multiple-choice menu, it's less confusing if the list
4650 isn't missing some choices that were identical and yet distinct. */
4651 if (symbols_are_identical_enums (syms, nsyms))
4652 nsyms = 1;
4653
96d887e8 4654 return nsyms;
14f9c5c9
AS
4655}
4656
96d887e8
PH
4657/* Given a type that corresponds to a renaming entity, use the type name
4658 to extract the scope (package name or function name, fully qualified,
4659 and following the GNAT encoding convention) where this renaming has been
4660 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4661
96d887e8
PH
4662static char *
4663xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4664{
96d887e8 4665 /* The renaming types adhere to the following convention:
0963b4bd 4666 <scope>__<rename>___<XR extension>.
96d887e8
PH
4667 So, to extract the scope, we search for the "___XR" extension,
4668 and then backtrack until we find the first "__". */
76a01679 4669
96d887e8
PH
4670 const char *name = type_name_no_tag (renaming_type);
4671 char *suffix = strstr (name, "___XR");
4672 char *last;
4673 int scope_len;
4674 char *scope;
14f9c5c9 4675
96d887e8
PH
4676 /* Now, backtrack a bit until we find the first "__". Start looking
4677 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4678
96d887e8
PH
4679 for (last = suffix - 3; last > name; last--)
4680 if (last[0] == '_' && last[1] == '_')
4681 break;
76a01679 4682
96d887e8 4683 /* Make a copy of scope and return it. */
14f9c5c9 4684
96d887e8
PH
4685 scope_len = last - name;
4686 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4687
96d887e8
PH
4688 strncpy (scope, name, scope_len);
4689 scope[scope_len] = '\0';
4c4b4cd2 4690
96d887e8 4691 return scope;
4c4b4cd2
PH
4692}
4693
96d887e8 4694/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4695
96d887e8
PH
4696static int
4697is_package_name (const char *name)
4c4b4cd2 4698{
96d887e8
PH
4699 /* Here, We take advantage of the fact that no symbols are generated
4700 for packages, while symbols are generated for each function.
4701 So the condition for NAME represent a package becomes equivalent
4702 to NAME not existing in our list of symbols. There is only one
4703 small complication with library-level functions (see below). */
4c4b4cd2 4704
96d887e8 4705 char *fun_name;
76a01679 4706
96d887e8
PH
4707 /* If it is a function that has not been defined at library level,
4708 then we should be able to look it up in the symbols. */
4709 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4710 return 0;
14f9c5c9 4711
96d887e8
PH
4712 /* Library-level function names start with "_ada_". See if function
4713 "_ada_" followed by NAME can be found. */
14f9c5c9 4714
96d887e8 4715 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4716 functions names cannot contain "__" in them. */
96d887e8
PH
4717 if (strstr (name, "__") != NULL)
4718 return 0;
4c4b4cd2 4719
b435e160 4720 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4721
96d887e8
PH
4722 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4723}
14f9c5c9 4724
96d887e8 4725/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4726 not visible from FUNCTION_NAME. */
14f9c5c9 4727
96d887e8 4728static int
0d5cff50 4729old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4730{
aeb5907d
JB
4731 char *scope;
4732
4733 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4734 return 0;
4735
4736 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4737
96d887e8 4738 make_cleanup (xfree, scope);
14f9c5c9 4739
96d887e8
PH
4740 /* If the rename has been defined in a package, then it is visible. */
4741 if (is_package_name (scope))
aeb5907d 4742 return 0;
14f9c5c9 4743
96d887e8
PH
4744 /* Check that the rename is in the current function scope by checking
4745 that its name starts with SCOPE. */
76a01679 4746
96d887e8
PH
4747 /* If the function name starts with "_ada_", it means that it is
4748 a library-level function. Strip this prefix before doing the
4749 comparison, as the encoding for the renaming does not contain
4750 this prefix. */
4751 if (strncmp (function_name, "_ada_", 5) == 0)
4752 function_name += 5;
f26caa11 4753
aeb5907d 4754 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4755}
4756
aeb5907d
JB
4757/* Remove entries from SYMS that corresponds to a renaming entity that
4758 is not visible from the function associated with CURRENT_BLOCK or
4759 that is superfluous due to the presence of more specific renaming
4760 information. Places surviving symbols in the initial entries of
4761 SYMS and returns the number of surviving symbols.
96d887e8
PH
4762
4763 Rationale:
aeb5907d
JB
4764 First, in cases where an object renaming is implemented as a
4765 reference variable, GNAT may produce both the actual reference
4766 variable and the renaming encoding. In this case, we discard the
4767 latter.
4768
4769 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4770 entity. Unfortunately, STABS currently does not support the definition
4771 of types that are local to a given lexical block, so all renamings types
4772 are emitted at library level. As a consequence, if an application
4773 contains two renaming entities using the same name, and a user tries to
4774 print the value of one of these entities, the result of the ada symbol
4775 lookup will also contain the wrong renaming type.
f26caa11 4776
96d887e8
PH
4777 This function partially covers for this limitation by attempting to
4778 remove from the SYMS list renaming symbols that should be visible
4779 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4780 method with the current information available. The implementation
4781 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4782
4783 - When the user tries to print a rename in a function while there
4784 is another rename entity defined in a package: Normally, the
4785 rename in the function has precedence over the rename in the
4786 package, so the latter should be removed from the list. This is
4787 currently not the case.
4788
4789 - This function will incorrectly remove valid renames if
4790 the CURRENT_BLOCK corresponds to a function which symbol name
4791 has been changed by an "Export" pragma. As a consequence,
4792 the user will be unable to print such rename entities. */
4c4b4cd2 4793
14f9c5c9 4794static int
aeb5907d
JB
4795remove_irrelevant_renamings (struct ada_symbol_info *syms,
4796 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4797{
4798 struct symbol *current_function;
0d5cff50 4799 const char *current_function_name;
4c4b4cd2 4800 int i;
aeb5907d
JB
4801 int is_new_style_renaming;
4802
4803 /* If there is both a renaming foo___XR... encoded as a variable and
4804 a simple variable foo in the same block, discard the latter.
0963b4bd 4805 First, zero out such symbols, then compress. */
aeb5907d
JB
4806 is_new_style_renaming = 0;
4807 for (i = 0; i < nsyms; i += 1)
4808 {
4809 struct symbol *sym = syms[i].sym;
270140bd 4810 const struct block *block = syms[i].block;
aeb5907d
JB
4811 const char *name;
4812 const char *suffix;
4813
4814 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4815 continue;
4816 name = SYMBOL_LINKAGE_NAME (sym);
4817 suffix = strstr (name, "___XR");
4818
4819 if (suffix != NULL)
4820 {
4821 int name_len = suffix - name;
4822 int j;
5b4ee69b 4823
aeb5907d
JB
4824 is_new_style_renaming = 1;
4825 for (j = 0; j < nsyms; j += 1)
4826 if (i != j && syms[j].sym != NULL
4827 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4828 name_len) == 0
4829 && block == syms[j].block)
4830 syms[j].sym = NULL;
4831 }
4832 }
4833 if (is_new_style_renaming)
4834 {
4835 int j, k;
4836
4837 for (j = k = 0; j < nsyms; j += 1)
4838 if (syms[j].sym != NULL)
4839 {
4840 syms[k] = syms[j];
4841 k += 1;
4842 }
4843 return k;
4844 }
4c4b4cd2
PH
4845
4846 /* Extract the function name associated to CURRENT_BLOCK.
4847 Abort if unable to do so. */
76a01679 4848
4c4b4cd2
PH
4849 if (current_block == NULL)
4850 return nsyms;
76a01679 4851
7f0df278 4852 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4853 if (current_function == NULL)
4854 return nsyms;
4855
4856 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4857 if (current_function_name == NULL)
4858 return nsyms;
4859
4860 /* Check each of the symbols, and remove it from the list if it is
4861 a type corresponding to a renaming that is out of the scope of
4862 the current block. */
4863
4864 i = 0;
4865 while (i < nsyms)
4866 {
aeb5907d
JB
4867 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4868 == ADA_OBJECT_RENAMING
4869 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4870 {
4871 int j;
5b4ee69b 4872
aeb5907d 4873 for (j = i + 1; j < nsyms; j += 1)
76a01679 4874 syms[j - 1] = syms[j];
4c4b4cd2
PH
4875 nsyms -= 1;
4876 }
4877 else
4878 i += 1;
4879 }
4880
4881 return nsyms;
4882}
4883
339c13b6
JB
4884/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4885 whose name and domain match NAME and DOMAIN respectively.
4886 If no match was found, then extend the search to "enclosing"
4887 routines (in other words, if we're inside a nested function,
4888 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4889 If WILD_MATCH_P is nonzero, perform the naming matching in
4890 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4891
4892 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4893
4894static void
4895ada_add_local_symbols (struct obstack *obstackp, const char *name,
4896 struct block *block, domain_enum domain,
d0a8ab18 4897 int wild_match_p)
339c13b6
JB
4898{
4899 int block_depth = 0;
4900
4901 while (block != NULL)
4902 {
4903 block_depth += 1;
d0a8ab18
JB
4904 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4905 wild_match_p);
339c13b6
JB
4906
4907 /* If we found a non-function match, assume that's the one. */
4908 if (is_nonfunction (defns_collected (obstackp, 0),
4909 num_defns_collected (obstackp)))
4910 return;
4911
4912 block = BLOCK_SUPERBLOCK (block);
4913 }
4914
4915 /* If no luck so far, try to find NAME as a local symbol in some lexically
4916 enclosing subprogram. */
4917 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4918 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4919}
4920
ccefe4c4 4921/* An object of this type is used as the user_data argument when
40658b94 4922 calling the map_matching_symbols method. */
ccefe4c4 4923
40658b94 4924struct match_data
ccefe4c4 4925{
40658b94 4926 struct objfile *objfile;
ccefe4c4 4927 struct obstack *obstackp;
40658b94
PH
4928 struct symbol *arg_sym;
4929 int found_sym;
ccefe4c4
TT
4930};
4931
40658b94
PH
4932/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4933 to a list of symbols. DATA0 is a pointer to a struct match_data *
4934 containing the obstack that collects the symbol list, the file that SYM
4935 must come from, a flag indicating whether a non-argument symbol has
4936 been found in the current block, and the last argument symbol
4937 passed in SYM within the current block (if any). When SYM is null,
4938 marking the end of a block, the argument symbol is added if no
4939 other has been found. */
ccefe4c4 4940
40658b94
PH
4941static int
4942aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4943{
40658b94
PH
4944 struct match_data *data = (struct match_data *) data0;
4945
4946 if (sym == NULL)
4947 {
4948 if (!data->found_sym && data->arg_sym != NULL)
4949 add_defn_to_vec (data->obstackp,
4950 fixup_symbol_section (data->arg_sym, data->objfile),
4951 block);
4952 data->found_sym = 0;
4953 data->arg_sym = NULL;
4954 }
4955 else
4956 {
4957 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4958 return 0;
4959 else if (SYMBOL_IS_ARGUMENT (sym))
4960 data->arg_sym = sym;
4961 else
4962 {
4963 data->found_sym = 1;
4964 add_defn_to_vec (data->obstackp,
4965 fixup_symbol_section (sym, data->objfile),
4966 block);
4967 }
4968 }
4969 return 0;
4970}
4971
4972/* Compare STRING1 to STRING2, with results as for strcmp.
4973 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4974 implies compare_names (STRING1, STRING2) (they may differ as to
4975 what symbols compare equal). */
5b4ee69b 4976
40658b94
PH
4977static int
4978compare_names (const char *string1, const char *string2)
4979{
4980 while (*string1 != '\0' && *string2 != '\0')
4981 {
4982 if (isspace (*string1) || isspace (*string2))
4983 return strcmp_iw_ordered (string1, string2);
4984 if (*string1 != *string2)
4985 break;
4986 string1 += 1;
4987 string2 += 1;
4988 }
4989 switch (*string1)
4990 {
4991 case '(':
4992 return strcmp_iw_ordered (string1, string2);
4993 case '_':
4994 if (*string2 == '\0')
4995 {
052874e8 4996 if (is_name_suffix (string1))
40658b94
PH
4997 return 0;
4998 else
1a1d5513 4999 return 1;
40658b94 5000 }
dbb8534f 5001 /* FALLTHROUGH */
40658b94
PH
5002 default:
5003 if (*string2 == '(')
5004 return strcmp_iw_ordered (string1, string2);
5005 else
5006 return *string1 - *string2;
5007 }
ccefe4c4
TT
5008}
5009
339c13b6
JB
5010/* Add to OBSTACKP all non-local symbols whose name and domain match
5011 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5012 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5013
5014static void
40658b94
PH
5015add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5016 domain_enum domain, int global,
5017 int is_wild_match)
339c13b6
JB
5018{
5019 struct objfile *objfile;
40658b94 5020 struct match_data data;
339c13b6 5021
6475f2fe 5022 memset (&data, 0, sizeof data);
ccefe4c4 5023 data.obstackp = obstackp;
339c13b6 5024
ccefe4c4 5025 ALL_OBJFILES (objfile)
40658b94
PH
5026 {
5027 data.objfile = objfile;
5028
5029 if (is_wild_match)
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 wild_match, NULL);
5033 else
5034 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5035 aux_add_nonlocal_symbols, &data,
5036 full_match, compare_names);
5037 }
5038
5039 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5040 {
5041 ALL_OBJFILES (objfile)
5042 {
5043 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5044 strcpy (name1, "_ada_");
5045 strcpy (name1 + sizeof ("_ada_") - 1, name);
5046 data.objfile = objfile;
0963b4bd
MS
5047 objfile->sf->qf->map_matching_symbols (name1, domain,
5048 objfile, global,
5049 aux_add_nonlocal_symbols,
5050 &data,
40658b94
PH
5051 full_match, compare_names);
5052 }
5053 }
339c13b6
JB
5054}
5055
4eeaa230
DE
5056/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5057 non-zero, enclosing scope and in global scopes, returning the number of
5058 matches.
9f88c959 5059 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5060 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5061 any) in which they were found. This vector is transient---good only to
5062 the next call of ada_lookup_symbol_list.
5063
5064 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5065 symbol match within the nest of blocks whose innermost member is BLOCK0,
5066 is the one match returned (no other matches in that or
d9680e73 5067 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5068 surrounding BLOCK0, then these alone are returned.
5069
9f88c959 5070 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5071 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5072
4eeaa230
DE
5073static int
5074ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5075 domain_enum namespace,
5076 struct ada_symbol_info **results,
5077 int full_search)
14f9c5c9
AS
5078{
5079 struct symbol *sym;
14f9c5c9 5080 struct block *block;
4c4b4cd2 5081 const char *name;
82ccd55e 5082 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5083 int cacheIfUnique;
4c4b4cd2 5084 int ndefns;
14f9c5c9 5085
4c4b4cd2
PH
5086 obstack_free (&symbol_list_obstack, NULL);
5087 obstack_init (&symbol_list_obstack);
14f9c5c9 5088
14f9c5c9
AS
5089 cacheIfUnique = 0;
5090
5091 /* Search specified block and its superiors. */
5092
4c4b4cd2 5093 name = name0;
76a01679
JB
5094 block = (struct block *) block0; /* FIXME: No cast ought to be
5095 needed, but adding const will
5096 have a cascade effect. */
339c13b6
JB
5097
5098 /* Special case: If the user specifies a symbol name inside package
5099 Standard, do a non-wild matching of the symbol name without
5100 the "standard__" prefix. This was primarily introduced in order
5101 to allow the user to specifically access the standard exceptions
5102 using, for instance, Standard.Constraint_Error when Constraint_Error
5103 is ambiguous (due to the user defining its own Constraint_Error
5104 entity inside its program). */
4c4b4cd2
PH
5105 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5106 {
4c4b4cd2
PH
5107 block = NULL;
5108 name = name0 + sizeof ("standard__") - 1;
5109 }
5110
339c13b6 5111 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5112
4eeaa230
DE
5113 if (block != NULL)
5114 {
5115 if (full_search)
5116 {
5117 ada_add_local_symbols (&symbol_list_obstack, name, block,
5118 namespace, wild_match_p);
5119 }
5120 else
5121 {
5122 /* In the !full_search case we're are being called by
5123 ada_iterate_over_symbols, and we don't want to search
5124 superblocks. */
5125 ada_add_block_symbols (&symbol_list_obstack, block, name,
5126 namespace, NULL, wild_match_p);
5127 }
5128 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5129 goto done;
5130 }
d2e4a39e 5131
339c13b6
JB
5132 /* No non-global symbols found. Check our cache to see if we have
5133 already performed this search before. If we have, then return
5134 the same result. */
5135
14f9c5c9 5136 cacheIfUnique = 1;
2570f2b7 5137 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5138 {
5139 if (sym != NULL)
2570f2b7 5140 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5141 goto done;
5142 }
14f9c5c9 5143
339c13b6
JB
5144 /* Search symbols from all global blocks. */
5145
40658b94 5146 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5147 wild_match_p);
d2e4a39e 5148
4c4b4cd2 5149 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5150 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5151
4c4b4cd2 5152 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5153 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5154 wild_match_p);
14f9c5c9 5155
4c4b4cd2
PH
5156done:
5157 ndefns = num_defns_collected (&symbol_list_obstack);
5158 *results = defns_collected (&symbol_list_obstack, 1);
5159
5160 ndefns = remove_extra_symbols (*results, ndefns);
5161
2ad01556 5162 if (ndefns == 0 && full_search)
2570f2b7 5163 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5164
2ad01556 5165 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5166 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5167
aeb5907d 5168 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5169
14f9c5c9
AS
5170 return ndefns;
5171}
5172
4eeaa230
DE
5173/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5174 in global scopes, returning the number of matches, and setting *RESULTS
5175 to a vector of (SYM,BLOCK) tuples.
5176 See ada_lookup_symbol_list_worker for further details. */
5177
5178int
5179ada_lookup_symbol_list (const char *name0, const struct block *block0,
5180 domain_enum domain, struct ada_symbol_info **results)
5181{
5182 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5183}
5184
5185/* Implementation of the la_iterate_over_symbols method. */
5186
5187static void
5188ada_iterate_over_symbols (const struct block *block,
5189 const char *name, domain_enum domain,
5190 symbol_found_callback_ftype *callback,
5191 void *data)
5192{
5193 int ndefs, i;
5194 struct ada_symbol_info *results;
5195
5196 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5197 for (i = 0; i < ndefs; ++i)
5198 {
5199 if (! (*callback) (results[i].sym, data))
5200 break;
5201 }
5202}
5203
f8eba3c6
TT
5204/* If NAME is the name of an entity, return a string that should
5205 be used to look that entity up in Ada units. This string should
5206 be deallocated after use using xfree.
5207
5208 NAME can have any form that the "break" or "print" commands might
5209 recognize. In other words, it does not have to be the "natural"
5210 name, or the "encoded" name. */
5211
5212char *
5213ada_name_for_lookup (const char *name)
5214{
5215 char *canon;
5216 int nlen = strlen (name);
5217
5218 if (name[0] == '<' && name[nlen - 1] == '>')
5219 {
5220 canon = xmalloc (nlen - 1);
5221 memcpy (canon, name + 1, nlen - 2);
5222 canon[nlen - 2] = '\0';
5223 }
5224 else
5225 canon = xstrdup (ada_encode (ada_fold_name (name)));
5226 return canon;
5227}
5228
4e5c77fe
JB
5229/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5230 to 1, but choosing the first symbol found if there are multiple
5231 choices.
5232
5e2336be
JB
5233 The result is stored in *INFO, which must be non-NULL.
5234 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5235
5236void
5237ada_lookup_encoded_symbol (const char *name, const struct block *block,
5238 domain_enum namespace,
5e2336be 5239 struct ada_symbol_info *info)
14f9c5c9 5240{
4c4b4cd2 5241 struct ada_symbol_info *candidates;
14f9c5c9
AS
5242 int n_candidates;
5243
5e2336be
JB
5244 gdb_assert (info != NULL);
5245 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5246
4eeaa230 5247 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5248 if (n_candidates == 0)
4e5c77fe 5249 return;
4c4b4cd2 5250
5e2336be
JB
5251 *info = candidates[0];
5252 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5253}
aeb5907d
JB
5254
5255/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5256 scope and in global scopes, or NULL if none. NAME is folded and
5257 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5258 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5259 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5260
aeb5907d
JB
5261struct symbol *
5262ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5263 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5264{
5e2336be 5265 struct ada_symbol_info info;
4e5c77fe 5266
aeb5907d
JB
5267 if (is_a_field_of_this != NULL)
5268 *is_a_field_of_this = 0;
5269
4e5c77fe 5270 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5271 block0, namespace, &info);
5272 return info.sym;
4c4b4cd2 5273}
14f9c5c9 5274
4c4b4cd2
PH
5275static struct symbol *
5276ada_lookup_symbol_nonlocal (const char *name,
76a01679 5277 const struct block *block,
21b556f4 5278 const domain_enum domain)
4c4b4cd2 5279{
94af9270 5280 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5281}
5282
5283
4c4b4cd2
PH
5284/* True iff STR is a possible encoded suffix of a normal Ada name
5285 that is to be ignored for matching purposes. Suffixes of parallel
5286 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5287 are given by any of the regular expressions:
4c4b4cd2 5288
babe1480
JB
5289 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5290 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5291 TKB [subprogram suffix for task bodies]
babe1480 5292 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5293 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5294
5295 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5296 match is performed. This sequence is used to differentiate homonyms,
5297 is an optional part of a valid name suffix. */
4c4b4cd2 5298
14f9c5c9 5299static int
d2e4a39e 5300is_name_suffix (const char *str)
14f9c5c9
AS
5301{
5302 int k;
4c4b4cd2
PH
5303 const char *matching;
5304 const int len = strlen (str);
5305
babe1480
JB
5306 /* Skip optional leading __[0-9]+. */
5307
4c4b4cd2
PH
5308 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5309 {
babe1480
JB
5310 str += 3;
5311 while (isdigit (str[0]))
5312 str += 1;
4c4b4cd2 5313 }
babe1480
JB
5314
5315 /* [.$][0-9]+ */
4c4b4cd2 5316
babe1480 5317 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5318 {
babe1480 5319 matching = str + 1;
4c4b4cd2
PH
5320 while (isdigit (matching[0]))
5321 matching += 1;
5322 if (matching[0] == '\0')
5323 return 1;
5324 }
5325
5326 /* ___[0-9]+ */
babe1480 5327
4c4b4cd2
PH
5328 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5329 {
5330 matching = str + 3;
5331 while (isdigit (matching[0]))
5332 matching += 1;
5333 if (matching[0] == '\0')
5334 return 1;
5335 }
5336
9ac7f98e
JB
5337 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5338
5339 if (strcmp (str, "TKB") == 0)
5340 return 1;
5341
529cad9c
PH
5342#if 0
5343 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5344 with a N at the end. Unfortunately, the compiler uses the same
5345 convention for other internal types it creates. So treating
529cad9c 5346 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5347 some regressions. For instance, consider the case of an enumerated
5348 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5349 name ends with N.
5350 Having a single character like this as a suffix carrying some
0963b4bd 5351 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5352 to be something like "_N" instead. In the meantime, do not do
5353 the following check. */
5354 /* Protected Object Subprograms */
5355 if (len == 1 && str [0] == 'N')
5356 return 1;
5357#endif
5358
5359 /* _E[0-9]+[bs]$ */
5360 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5361 {
5362 matching = str + 3;
5363 while (isdigit (matching[0]))
5364 matching += 1;
5365 if ((matching[0] == 'b' || matching[0] == 's')
5366 && matching [1] == '\0')
5367 return 1;
5368 }
5369
4c4b4cd2
PH
5370 /* ??? We should not modify STR directly, as we are doing below. This
5371 is fine in this case, but may become problematic later if we find
5372 that this alternative did not work, and want to try matching
5373 another one from the begining of STR. Since we modified it, we
5374 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5375 if (str[0] == 'X')
5376 {
5377 str += 1;
d2e4a39e 5378 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5379 {
5380 if (str[0] != 'n' && str[0] != 'b')
5381 return 0;
5382 str += 1;
5383 }
14f9c5c9 5384 }
babe1480 5385
14f9c5c9
AS
5386 if (str[0] == '\000')
5387 return 1;
babe1480 5388
d2e4a39e 5389 if (str[0] == '_')
14f9c5c9
AS
5390 {
5391 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5392 return 0;
d2e4a39e 5393 if (str[2] == '_')
4c4b4cd2 5394 {
61ee279c
PH
5395 if (strcmp (str + 3, "JM") == 0)
5396 return 1;
5397 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5398 the LJM suffix in favor of the JM one. But we will
5399 still accept LJM as a valid suffix for a reasonable
5400 amount of time, just to allow ourselves to debug programs
5401 compiled using an older version of GNAT. */
4c4b4cd2
PH
5402 if (strcmp (str + 3, "LJM") == 0)
5403 return 1;
5404 if (str[3] != 'X')
5405 return 0;
1265e4aa
JB
5406 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5407 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5408 return 1;
5409 if (str[4] == 'R' && str[5] != 'T')
5410 return 1;
5411 return 0;
5412 }
5413 if (!isdigit (str[2]))
5414 return 0;
5415 for (k = 3; str[k] != '\0'; k += 1)
5416 if (!isdigit (str[k]) && str[k] != '_')
5417 return 0;
14f9c5c9
AS
5418 return 1;
5419 }
4c4b4cd2 5420 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5421 {
4c4b4cd2
PH
5422 for (k = 2; str[k] != '\0'; k += 1)
5423 if (!isdigit (str[k]) && str[k] != '_')
5424 return 0;
14f9c5c9
AS
5425 return 1;
5426 }
5427 return 0;
5428}
d2e4a39e 5429
aeb5907d
JB
5430/* Return non-zero if the string starting at NAME and ending before
5431 NAME_END contains no capital letters. */
529cad9c
PH
5432
5433static int
5434is_valid_name_for_wild_match (const char *name0)
5435{
5436 const char *decoded_name = ada_decode (name0);
5437 int i;
5438
5823c3ef
JB
5439 /* If the decoded name starts with an angle bracket, it means that
5440 NAME0 does not follow the GNAT encoding format. It should then
5441 not be allowed as a possible wild match. */
5442 if (decoded_name[0] == '<')
5443 return 0;
5444
529cad9c
PH
5445 for (i=0; decoded_name[i] != '\0'; i++)
5446 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5447 return 0;
5448
5449 return 1;
5450}
5451
73589123
PH
5452/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5453 that could start a simple name. Assumes that *NAMEP points into
5454 the string beginning at NAME0. */
4c4b4cd2 5455
14f9c5c9 5456static int
73589123 5457advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5458{
73589123 5459 const char *name = *namep;
5b4ee69b 5460
5823c3ef 5461 while (1)
14f9c5c9 5462 {
aa27d0b3 5463 int t0, t1;
73589123
PH
5464
5465 t0 = *name;
5466 if (t0 == '_')
5467 {
5468 t1 = name[1];
5469 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5470 {
5471 name += 1;
5472 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5473 break;
5474 else
5475 name += 1;
5476 }
aa27d0b3
JB
5477 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5478 || name[2] == target0))
73589123
PH
5479 {
5480 name += 2;
5481 break;
5482 }
5483 else
5484 return 0;
5485 }
5486 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5487 name += 1;
5488 else
5823c3ef 5489 return 0;
73589123
PH
5490 }
5491
5492 *namep = name;
5493 return 1;
5494}
5495
5496/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5497 informational suffixes of NAME (i.e., for which is_name_suffix is
5498 true). Assumes that PATN is a lower-cased Ada simple name. */
5499
5500static int
5501wild_match (const char *name, const char *patn)
5502{
22e048c9 5503 const char *p;
73589123
PH
5504 const char *name0 = name;
5505
5506 while (1)
5507 {
5508 const char *match = name;
5509
5510 if (*name == *patn)
5511 {
5512 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5513 if (*p != *name)
5514 break;
5515 if (*p == '\0' && is_name_suffix (name))
5516 return match != name0 && !is_valid_name_for_wild_match (name0);
5517
5518 if (name[-1] == '_')
5519 name -= 1;
5520 }
5521 if (!advance_wild_match (&name, name0, *patn))
5522 return 1;
96d887e8 5523 }
96d887e8
PH
5524}
5525
40658b94
PH
5526/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5527 informational suffix. */
5528
c4d840bd
PH
5529static int
5530full_match (const char *sym_name, const char *search_name)
5531{
40658b94 5532 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5533}
5534
5535
96d887e8
PH
5536/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5537 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5538 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5539 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5540
5541static void
5542ada_add_block_symbols (struct obstack *obstackp,
76a01679 5543 struct block *block, const char *name,
96d887e8 5544 domain_enum domain, struct objfile *objfile,
2570f2b7 5545 int wild)
96d887e8 5546{
8157b174 5547 struct block_iterator iter;
96d887e8
PH
5548 int name_len = strlen (name);
5549 /* A matching argument symbol, if any. */
5550 struct symbol *arg_sym;
5551 /* Set true when we find a matching non-argument symbol. */
5552 int found_sym;
5553 struct symbol *sym;
5554
5555 arg_sym = NULL;
5556 found_sym = 0;
5557 if (wild)
5558 {
8157b174
TT
5559 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5560 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5561 {
5eeb2539
AR
5562 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5563 SYMBOL_DOMAIN (sym), domain)
73589123 5564 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5565 {
2a2d4dc3
AS
5566 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5567 continue;
5568 else if (SYMBOL_IS_ARGUMENT (sym))
5569 arg_sym = sym;
5570 else
5571 {
76a01679
JB
5572 found_sym = 1;
5573 add_defn_to_vec (obstackp,
5574 fixup_symbol_section (sym, objfile),
2570f2b7 5575 block);
76a01679
JB
5576 }
5577 }
5578 }
96d887e8
PH
5579 }
5580 else
5581 {
8157b174
TT
5582 for (sym = block_iter_match_first (block, name, full_match, &iter);
5583 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5584 {
5eeb2539
AR
5585 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5586 SYMBOL_DOMAIN (sym), domain))
76a01679 5587 {
c4d840bd
PH
5588 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5589 {
5590 if (SYMBOL_IS_ARGUMENT (sym))
5591 arg_sym = sym;
5592 else
2a2d4dc3 5593 {
c4d840bd
PH
5594 found_sym = 1;
5595 add_defn_to_vec (obstackp,
5596 fixup_symbol_section (sym, objfile),
5597 block);
2a2d4dc3 5598 }
c4d840bd 5599 }
76a01679
JB
5600 }
5601 }
96d887e8
PH
5602 }
5603
5604 if (!found_sym && arg_sym != NULL)
5605 {
76a01679
JB
5606 add_defn_to_vec (obstackp,
5607 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5608 block);
96d887e8
PH
5609 }
5610
5611 if (!wild)
5612 {
5613 arg_sym = NULL;
5614 found_sym = 0;
5615
5616 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5617 {
5eeb2539
AR
5618 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5619 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5620 {
5621 int cmp;
5622
5623 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5624 if (cmp == 0)
5625 {
5626 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5627 if (cmp == 0)
5628 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5629 name_len);
5630 }
5631
5632 if (cmp == 0
5633 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5634 {
2a2d4dc3
AS
5635 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5636 {
5637 if (SYMBOL_IS_ARGUMENT (sym))
5638 arg_sym = sym;
5639 else
5640 {
5641 found_sym = 1;
5642 add_defn_to_vec (obstackp,
5643 fixup_symbol_section (sym, objfile),
5644 block);
5645 }
5646 }
76a01679
JB
5647 }
5648 }
76a01679 5649 }
96d887e8
PH
5650
5651 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5652 They aren't parameters, right? */
5653 if (!found_sym && arg_sym != NULL)
5654 {
5655 add_defn_to_vec (obstackp,
76a01679 5656 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5657 block);
96d887e8
PH
5658 }
5659 }
5660}
5661\f
41d27058
JB
5662
5663 /* Symbol Completion */
5664
5665/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5666 name in a form that's appropriate for the completion. The result
5667 does not need to be deallocated, but is only good until the next call.
5668
5669 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5670 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5671 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5672 in its encoded form. */
5673
5674static const char *
5675symbol_completion_match (const char *sym_name,
5676 const char *text, int text_len,
6ea35997 5677 int wild_match_p, int encoded_p)
41d27058 5678{
41d27058
JB
5679 const int verbatim_match = (text[0] == '<');
5680 int match = 0;
5681
5682 if (verbatim_match)
5683 {
5684 /* Strip the leading angle bracket. */
5685 text = text + 1;
5686 text_len--;
5687 }
5688
5689 /* First, test against the fully qualified name of the symbol. */
5690
5691 if (strncmp (sym_name, text, text_len) == 0)
5692 match = 1;
5693
6ea35997 5694 if (match && !encoded_p)
41d27058
JB
5695 {
5696 /* One needed check before declaring a positive match is to verify
5697 that iff we are doing a verbatim match, the decoded version
5698 of the symbol name starts with '<'. Otherwise, this symbol name
5699 is not a suitable completion. */
5700 const char *sym_name_copy = sym_name;
5701 int has_angle_bracket;
5702
5703 sym_name = ada_decode (sym_name);
5704 has_angle_bracket = (sym_name[0] == '<');
5705 match = (has_angle_bracket == verbatim_match);
5706 sym_name = sym_name_copy;
5707 }
5708
5709 if (match && !verbatim_match)
5710 {
5711 /* When doing non-verbatim match, another check that needs to
5712 be done is to verify that the potentially matching symbol name
5713 does not include capital letters, because the ada-mode would
5714 not be able to understand these symbol names without the
5715 angle bracket notation. */
5716 const char *tmp;
5717
5718 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5719 if (*tmp != '\0')
5720 match = 0;
5721 }
5722
5723 /* Second: Try wild matching... */
5724
e701b3c0 5725 if (!match && wild_match_p)
41d27058
JB
5726 {
5727 /* Since we are doing wild matching, this means that TEXT
5728 may represent an unqualified symbol name. We therefore must
5729 also compare TEXT against the unqualified name of the symbol. */
5730 sym_name = ada_unqualified_name (ada_decode (sym_name));
5731
5732 if (strncmp (sym_name, text, text_len) == 0)
5733 match = 1;
5734 }
5735
5736 /* Finally: If we found a mach, prepare the result to return. */
5737
5738 if (!match)
5739 return NULL;
5740
5741 if (verbatim_match)
5742 sym_name = add_angle_brackets (sym_name);
5743
6ea35997 5744 if (!encoded_p)
41d27058
JB
5745 sym_name = ada_decode (sym_name);
5746
5747 return sym_name;
5748}
5749
5750/* A companion function to ada_make_symbol_completion_list().
5751 Check if SYM_NAME represents a symbol which name would be suitable
5752 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5753 it is appended at the end of the given string vector SV.
5754
5755 ORIG_TEXT is the string original string from the user command
5756 that needs to be completed. WORD is the entire command on which
5757 completion should be performed. These two parameters are used to
5758 determine which part of the symbol name should be added to the
5759 completion vector.
c0af1706 5760 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5761 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5762 encoded formed (in which case the completion should also be
5763 encoded). */
5764
5765static void
d6565258 5766symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5767 const char *sym_name,
5768 const char *text, int text_len,
5769 const char *orig_text, const char *word,
cb8e9b97 5770 int wild_match_p, int encoded_p)
41d27058
JB
5771{
5772 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5773 wild_match_p, encoded_p);
41d27058
JB
5774 char *completion;
5775
5776 if (match == NULL)
5777 return;
5778
5779 /* We found a match, so add the appropriate completion to the given
5780 string vector. */
5781
5782 if (word == orig_text)
5783 {
5784 completion = xmalloc (strlen (match) + 5);
5785 strcpy (completion, match);
5786 }
5787 else if (word > orig_text)
5788 {
5789 /* Return some portion of sym_name. */
5790 completion = xmalloc (strlen (match) + 5);
5791 strcpy (completion, match + (word - orig_text));
5792 }
5793 else
5794 {
5795 /* Return some of ORIG_TEXT plus sym_name. */
5796 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5797 strncpy (completion, word, orig_text - word);
5798 completion[orig_text - word] = '\0';
5799 strcat (completion, match);
5800 }
5801
d6565258 5802 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5803}
5804
ccefe4c4 5805/* An object of this type is passed as the user_data argument to the
7b08b9eb 5806 expand_partial_symbol_names method. */
ccefe4c4
TT
5807struct add_partial_datum
5808{
5809 VEC(char_ptr) **completions;
6f937416 5810 const char *text;
ccefe4c4 5811 int text_len;
6f937416
PA
5812 const char *text0;
5813 const char *word;
ccefe4c4
TT
5814 int wild_match;
5815 int encoded;
5816};
5817
7b08b9eb
JK
5818/* A callback for expand_partial_symbol_names. */
5819static int
e078317b 5820ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5821{
5822 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5823
5824 return symbol_completion_match (name, data->text, data->text_len,
5825 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5826}
5827
49c4e619
TT
5828/* Return a list of possible symbol names completing TEXT0. WORD is
5829 the entire command on which completion is made. */
41d27058 5830
49c4e619 5831static VEC (char_ptr) *
6f937416
PA
5832ada_make_symbol_completion_list (const char *text0, const char *word,
5833 enum type_code code)
41d27058
JB
5834{
5835 char *text;
5836 int text_len;
b1ed564a
JB
5837 int wild_match_p;
5838 int encoded_p;
2ba95b9b 5839 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5840 struct symbol *sym;
5841 struct symtab *s;
41d27058
JB
5842 struct minimal_symbol *msymbol;
5843 struct objfile *objfile;
5844 struct block *b, *surrounding_static_block = 0;
5845 int i;
8157b174 5846 struct block_iterator iter;
41d27058 5847
2f68a895
TT
5848 gdb_assert (code == TYPE_CODE_UNDEF);
5849
41d27058
JB
5850 if (text0[0] == '<')
5851 {
5852 text = xstrdup (text0);
5853 make_cleanup (xfree, text);
5854 text_len = strlen (text);
b1ed564a
JB
5855 wild_match_p = 0;
5856 encoded_p = 1;
41d27058
JB
5857 }
5858 else
5859 {
5860 text = xstrdup (ada_encode (text0));
5861 make_cleanup (xfree, text);
5862 text_len = strlen (text);
5863 for (i = 0; i < text_len; i++)
5864 text[i] = tolower (text[i]);
5865
b1ed564a 5866 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5867 /* If the name contains a ".", then the user is entering a fully
5868 qualified entity name, and the match must not be done in wild
5869 mode. Similarly, if the user wants to complete what looks like
5870 an encoded name, the match must not be done in wild mode. */
b1ed564a 5871 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5872 }
5873
5874 /* First, look at the partial symtab symbols. */
41d27058 5875 {
ccefe4c4
TT
5876 struct add_partial_datum data;
5877
5878 data.completions = &completions;
5879 data.text = text;
5880 data.text_len = text_len;
5881 data.text0 = text0;
5882 data.word = word;
b1ed564a
JB
5883 data.wild_match = wild_match_p;
5884 data.encoded = encoded_p;
7b08b9eb 5885 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5886 }
5887
5888 /* At this point scan through the misc symbol vectors and add each
5889 symbol you find to the list. Eventually we want to ignore
5890 anything that isn't a text symbol (everything else will be
5891 handled by the psymtab code above). */
5892
5893 ALL_MSYMBOLS (objfile, msymbol)
5894 {
5895 QUIT;
d6565258 5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5897 text, text_len, text0, word, wild_match_p,
5898 encoded_p);
41d27058
JB
5899 }
5900
5901 /* Search upwards from currently selected frame (so that we can
5902 complete on local vars. */
5903
5904 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5905 {
5906 if (!BLOCK_SUPERBLOCK (b))
5907 surrounding_static_block = b; /* For elmin of dups */
5908
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
d6565258 5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5912 text, text_len, text0, word,
b1ed564a 5913 wild_match_p, encoded_p);
41d27058
JB
5914 }
5915 }
5916
5917 /* Go through the symtabs and check the externs and statics for
5918 symbols which match. */
5919
5920 ALL_SYMTABS (objfile, s)
5921 {
5922 QUIT;
5923 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5924 ALL_BLOCK_SYMBOLS (b, iter, sym)
5925 {
d6565258 5926 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5927 text, text_len, text0, word,
b1ed564a 5928 wild_match_p, encoded_p);
41d27058
JB
5929 }
5930 }
5931
5932 ALL_SYMTABS (objfile, s)
5933 {
5934 QUIT;
5935 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5936 /* Don't do this block twice. */
5937 if (b == surrounding_static_block)
5938 continue;
5939 ALL_BLOCK_SYMBOLS (b, iter, sym)
5940 {
d6565258 5941 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5942 text, text_len, text0, word,
b1ed564a 5943 wild_match_p, encoded_p);
41d27058
JB
5944 }
5945 }
5946
49c4e619 5947 return completions;
41d27058
JB
5948}
5949
963a6417 5950 /* Field Access */
96d887e8 5951
73fb9985
JB
5952/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5953 for tagged types. */
5954
5955static int
5956ada_is_dispatch_table_ptr_type (struct type *type)
5957{
0d5cff50 5958 const char *name;
73fb9985
JB
5959
5960 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5961 return 0;
5962
5963 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5964 if (name == NULL)
5965 return 0;
5966
5967 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5968}
5969
ac4a2da4
JG
5970/* Return non-zero if TYPE is an interface tag. */
5971
5972static int
5973ada_is_interface_tag (struct type *type)
5974{
5975 const char *name = TYPE_NAME (type);
5976
5977 if (name == NULL)
5978 return 0;
5979
5980 return (strcmp (name, "ada__tags__interface_tag") == 0);
5981}
5982
963a6417
PH
5983/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5984 to be invisible to users. */
96d887e8 5985
963a6417
PH
5986int
5987ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5988{
963a6417
PH
5989 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5990 return 1;
ffde82bf 5991
73fb9985
JB
5992 /* Check the name of that field. */
5993 {
5994 const char *name = TYPE_FIELD_NAME (type, field_num);
5995
5996 /* Anonymous field names should not be printed.
5997 brobecker/2007-02-20: I don't think this can actually happen
5998 but we don't want to print the value of annonymous fields anyway. */
5999 if (name == NULL)
6000 return 1;
6001
ffde82bf
JB
6002 /* Normally, fields whose name start with an underscore ("_")
6003 are fields that have been internally generated by the compiler,
6004 and thus should not be printed. The "_parent" field is special,
6005 however: This is a field internally generated by the compiler
6006 for tagged types, and it contains the components inherited from
6007 the parent type. This field should not be printed as is, but
6008 should not be ignored either. */
73fb9985
JB
6009 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6010 return 1;
6011 }
6012
ac4a2da4
JG
6013 /* If this is the dispatch table of a tagged type or an interface tag,
6014 then ignore. */
73fb9985 6015 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6016 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6017 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6018 return 1;
6019
6020 /* Not a special field, so it should not be ignored. */
6021 return 0;
963a6417 6022}
96d887e8 6023
963a6417 6024/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6025 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6026
963a6417
PH
6027int
6028ada_is_tagged_type (struct type *type, int refok)
6029{
6030 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6031}
96d887e8 6032
963a6417 6033/* True iff TYPE represents the type of X'Tag */
96d887e8 6034
963a6417
PH
6035int
6036ada_is_tag_type (struct type *type)
6037{
6038 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6039 return 0;
6040 else
96d887e8 6041 {
963a6417 6042 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6043
963a6417
PH
6044 return (name != NULL
6045 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6046 }
96d887e8
PH
6047}
6048
963a6417 6049/* The type of the tag on VAL. */
76a01679 6050
963a6417
PH
6051struct type *
6052ada_tag_type (struct value *val)
96d887e8 6053{
df407dfe 6054 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6055}
96d887e8 6056
b50d69b5
JG
6057/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6058 retired at Ada 05). */
6059
6060static int
6061is_ada95_tag (struct value *tag)
6062{
6063 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6064}
6065
963a6417 6066/* The value of the tag on VAL. */
96d887e8 6067
963a6417
PH
6068struct value *
6069ada_value_tag (struct value *val)
6070{
03ee6b2e 6071 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6072}
6073
963a6417
PH
6074/* The value of the tag on the object of type TYPE whose contents are
6075 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6076 ADDRESS. */
96d887e8 6077
963a6417 6078static struct value *
10a2c479 6079value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6080 const gdb_byte *valaddr,
963a6417 6081 CORE_ADDR address)
96d887e8 6082{
b5385fc0 6083 int tag_byte_offset;
963a6417 6084 struct type *tag_type;
5b4ee69b 6085
963a6417 6086 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6087 NULL, NULL, NULL))
96d887e8 6088 {
fc1a4b47 6089 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6090 ? NULL
6091 : valaddr + tag_byte_offset);
963a6417 6092 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6093
963a6417 6094 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6095 }
963a6417
PH
6096 return NULL;
6097}
96d887e8 6098
963a6417
PH
6099static struct type *
6100type_from_tag (struct value *tag)
6101{
6102 const char *type_name = ada_tag_name (tag);
5b4ee69b 6103
963a6417
PH
6104 if (type_name != NULL)
6105 return ada_find_any_type (ada_encode (type_name));
6106 return NULL;
6107}
96d887e8 6108
b50d69b5
JG
6109/* Given a value OBJ of a tagged type, return a value of this
6110 type at the base address of the object. The base address, as
6111 defined in Ada.Tags, it is the address of the primary tag of
6112 the object, and therefore where the field values of its full
6113 view can be fetched. */
6114
6115struct value *
6116ada_tag_value_at_base_address (struct value *obj)
6117{
6118 volatile struct gdb_exception e;
6119 struct value *val;
6120 LONGEST offset_to_top = 0;
6121 struct type *ptr_type, *obj_type;
6122 struct value *tag;
6123 CORE_ADDR base_address;
6124
6125 obj_type = value_type (obj);
6126
6127 /* It is the responsability of the caller to deref pointers. */
6128
6129 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6130 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6131 return obj;
6132
6133 tag = ada_value_tag (obj);
6134 if (!tag)
6135 return obj;
6136
6137 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6138
6139 if (is_ada95_tag (tag))
6140 return obj;
6141
6142 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6143 ptr_type = lookup_pointer_type (ptr_type);
6144 val = value_cast (ptr_type, tag);
6145 if (!val)
6146 return obj;
6147
6148 /* It is perfectly possible that an exception be raised while
6149 trying to determine the base address, just like for the tag;
6150 see ada_tag_name for more details. We do not print the error
6151 message for the same reason. */
6152
6153 TRY_CATCH (e, RETURN_MASK_ERROR)
6154 {
6155 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6156 }
6157
6158 if (e.reason < 0)
6159 return obj;
6160
6161 /* If offset is null, nothing to do. */
6162
6163 if (offset_to_top == 0)
6164 return obj;
6165
6166 /* -1 is a special case in Ada.Tags; however, what should be done
6167 is not quite clear from the documentation. So do nothing for
6168 now. */
6169
6170 if (offset_to_top == -1)
6171 return obj;
6172
6173 base_address = value_address (obj) - offset_to_top;
6174 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6175
6176 /* Make sure that we have a proper tag at the new address.
6177 Otherwise, offset_to_top is bogus (which can happen when
6178 the object is not initialized yet). */
6179
6180 if (!tag)
6181 return obj;
6182
6183 obj_type = type_from_tag (tag);
6184
6185 if (!obj_type)
6186 return obj;
6187
6188 return value_from_contents_and_address (obj_type, NULL, base_address);
6189}
6190
1b611343
JB
6191/* Return the "ada__tags__type_specific_data" type. */
6192
6193static struct type *
6194ada_get_tsd_type (struct inferior *inf)
963a6417 6195{
1b611343 6196 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6197
1b611343
JB
6198 if (data->tsd_type == 0)
6199 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6200 return data->tsd_type;
6201}
529cad9c 6202
1b611343
JB
6203/* Return the TSD (type-specific data) associated to the given TAG.
6204 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6205
1b611343 6206 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6207
1b611343
JB
6208static struct value *
6209ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6210{
4c4b4cd2 6211 struct value *val;
1b611343 6212 struct type *type;
5b4ee69b 6213
1b611343
JB
6214 /* First option: The TSD is simply stored as a field of our TAG.
6215 Only older versions of GNAT would use this format, but we have
6216 to test it first, because there are no visible markers for
6217 the current approach except the absence of that field. */
529cad9c 6218
1b611343
JB
6219 val = ada_value_struct_elt (tag, "tsd", 1);
6220 if (val)
6221 return val;
e802dbe0 6222
1b611343
JB
6223 /* Try the second representation for the dispatch table (in which
6224 there is no explicit 'tsd' field in the referent of the tag pointer,
6225 and instead the tsd pointer is stored just before the dispatch
6226 table. */
e802dbe0 6227
1b611343
JB
6228 type = ada_get_tsd_type (current_inferior());
6229 if (type == NULL)
6230 return NULL;
6231 type = lookup_pointer_type (lookup_pointer_type (type));
6232 val = value_cast (type, tag);
6233 if (val == NULL)
6234 return NULL;
6235 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6236}
6237
1b611343
JB
6238/* Given the TSD of a tag (type-specific data), return a string
6239 containing the name of the associated type.
6240
6241 The returned value is good until the next call. May return NULL
6242 if we are unable to determine the tag name. */
6243
6244static char *
6245ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6246{
529cad9c
PH
6247 static char name[1024];
6248 char *p;
1b611343 6249 struct value *val;
529cad9c 6250
1b611343 6251 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6252 if (val == NULL)
1b611343 6253 return NULL;
4c4b4cd2
PH
6254 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6255 for (p = name; *p != '\0'; p += 1)
6256 if (isalpha (*p))
6257 *p = tolower (*p);
1b611343 6258 return name;
4c4b4cd2
PH
6259}
6260
6261/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6262 a C string.
6263
6264 Return NULL if the TAG is not an Ada tag, or if we were unable to
6265 determine the name of that tag. The result is good until the next
6266 call. */
4c4b4cd2
PH
6267
6268const char *
6269ada_tag_name (struct value *tag)
6270{
1b611343
JB
6271 volatile struct gdb_exception e;
6272 char *name = NULL;
5b4ee69b 6273
df407dfe 6274 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6275 return NULL;
1b611343
JB
6276
6277 /* It is perfectly possible that an exception be raised while trying
6278 to determine the TAG's name, even under normal circumstances:
6279 The associated variable may be uninitialized or corrupted, for
6280 instance. We do not let any exception propagate past this point.
6281 instead we return NULL.
6282
6283 We also do not print the error message either (which often is very
6284 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6285 the caller print a more meaningful message if necessary. */
6286 TRY_CATCH (e, RETURN_MASK_ERROR)
6287 {
6288 struct value *tsd = ada_get_tsd_from_tag (tag);
6289
6290 if (tsd != NULL)
6291 name = ada_tag_name_from_tsd (tsd);
6292 }
6293
6294 return name;
4c4b4cd2
PH
6295}
6296
6297/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6298
d2e4a39e 6299struct type *
ebf56fd3 6300ada_parent_type (struct type *type)
14f9c5c9
AS
6301{
6302 int i;
6303
61ee279c 6304 type = ada_check_typedef (type);
14f9c5c9
AS
6305
6306 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6307 return NULL;
6308
6309 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6310 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6311 {
6312 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6313
6314 /* If the _parent field is a pointer, then dereference it. */
6315 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6316 parent_type = TYPE_TARGET_TYPE (parent_type);
6317 /* If there is a parallel XVS type, get the actual base type. */
6318 parent_type = ada_get_base_type (parent_type);
6319
6320 return ada_check_typedef (parent_type);
6321 }
14f9c5c9
AS
6322
6323 return NULL;
6324}
6325
4c4b4cd2
PH
6326/* True iff field number FIELD_NUM of structure type TYPE contains the
6327 parent-type (inherited) fields of a derived type. Assumes TYPE is
6328 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6329
6330int
ebf56fd3 6331ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6332{
61ee279c 6333 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6334
4c4b4cd2
PH
6335 return (name != NULL
6336 && (strncmp (name, "PARENT", 6) == 0
6337 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6338}
6339
4c4b4cd2 6340/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6341 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6342 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6343 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6344 structures. */
14f9c5c9
AS
6345
6346int
ebf56fd3 6347ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6348{
d2e4a39e 6349 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6350
d2e4a39e 6351 return (name != NULL
4c4b4cd2
PH
6352 && (strncmp (name, "PARENT", 6) == 0
6353 || strcmp (name, "REP") == 0
6354 || strncmp (name, "_parent", 7) == 0
6355 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6356}
6357
4c4b4cd2
PH
6358/* True iff field number FIELD_NUM of structure or union type TYPE
6359 is a variant wrapper. Assumes TYPE is a structure type with at least
6360 FIELD_NUM+1 fields. */
14f9c5c9
AS
6361
6362int
ebf56fd3 6363ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6364{
d2e4a39e 6365 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6366
14f9c5c9 6367 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6368 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6369 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6370 == TYPE_CODE_UNION)));
14f9c5c9
AS
6371}
6372
6373/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6374 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6375 returns the type of the controlling discriminant for the variant.
6376 May return NULL if the type could not be found. */
14f9c5c9 6377
d2e4a39e 6378struct type *
ebf56fd3 6379ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6380{
d2e4a39e 6381 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6382
7c964f07 6383 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6384}
6385
4c4b4cd2 6386/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6387 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6388 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6389
6390int
ebf56fd3 6391ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6392{
d2e4a39e 6393 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6394
14f9c5c9
AS
6395 return (name != NULL && name[0] == 'O');
6396}
6397
6398/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6399 returns the name of the discriminant controlling the variant.
6400 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6401
d2e4a39e 6402char *
ebf56fd3 6403ada_variant_discrim_name (struct type *type0)
14f9c5c9 6404{
d2e4a39e 6405 static char *result = NULL;
14f9c5c9 6406 static size_t result_len = 0;
d2e4a39e
AS
6407 struct type *type;
6408 const char *name;
6409 const char *discrim_end;
6410 const char *discrim_start;
14f9c5c9
AS
6411
6412 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6413 type = TYPE_TARGET_TYPE (type0);
6414 else
6415 type = type0;
6416
6417 name = ada_type_name (type);
6418
6419 if (name == NULL || name[0] == '\000')
6420 return "";
6421
6422 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6423 discrim_end -= 1)
6424 {
4c4b4cd2
PH
6425 if (strncmp (discrim_end, "___XVN", 6) == 0)
6426 break;
14f9c5c9
AS
6427 }
6428 if (discrim_end == name)
6429 return "";
6430
d2e4a39e 6431 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6432 discrim_start -= 1)
6433 {
d2e4a39e 6434 if (discrim_start == name + 1)
4c4b4cd2 6435 return "";
76a01679 6436 if ((discrim_start > name + 3
4c4b4cd2
PH
6437 && strncmp (discrim_start - 3, "___", 3) == 0)
6438 || discrim_start[-1] == '.')
6439 break;
14f9c5c9
AS
6440 }
6441
6442 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6443 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6444 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6445 return result;
6446}
6447
4c4b4cd2
PH
6448/* Scan STR for a subtype-encoded number, beginning at position K.
6449 Put the position of the character just past the number scanned in
6450 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6451 Return 1 if there was a valid number at the given position, and 0
6452 otherwise. A "subtype-encoded" number consists of the absolute value
6453 in decimal, followed by the letter 'm' to indicate a negative number.
6454 Assumes 0m does not occur. */
14f9c5c9
AS
6455
6456int
d2e4a39e 6457ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6458{
6459 ULONGEST RU;
6460
d2e4a39e 6461 if (!isdigit (str[k]))
14f9c5c9
AS
6462 return 0;
6463
4c4b4cd2 6464 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6465 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6466 LONGEST. */
14f9c5c9
AS
6467 RU = 0;
6468 while (isdigit (str[k]))
6469 {
d2e4a39e 6470 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6471 k += 1;
6472 }
6473
d2e4a39e 6474 if (str[k] == 'm')
14f9c5c9
AS
6475 {
6476 if (R != NULL)
4c4b4cd2 6477 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6478 k += 1;
6479 }
6480 else if (R != NULL)
6481 *R = (LONGEST) RU;
6482
4c4b4cd2 6483 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6484 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6485 number representable as a LONGEST (although either would probably work
6486 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6487 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6488
6489 if (new_k != NULL)
6490 *new_k = k;
6491 return 1;
6492}
6493
4c4b4cd2
PH
6494/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6495 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6496 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6497
d2e4a39e 6498int
ebf56fd3 6499ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6500{
d2e4a39e 6501 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6502 int p;
6503
6504 p = 0;
6505 while (1)
6506 {
d2e4a39e 6507 switch (name[p])
4c4b4cd2
PH
6508 {
6509 case '\0':
6510 return 0;
6511 case 'S':
6512 {
6513 LONGEST W;
5b4ee69b 6514
4c4b4cd2
PH
6515 if (!ada_scan_number (name, p + 1, &W, &p))
6516 return 0;
6517 if (val == W)
6518 return 1;
6519 break;
6520 }
6521 case 'R':
6522 {
6523 LONGEST L, U;
5b4ee69b 6524
4c4b4cd2
PH
6525 if (!ada_scan_number (name, p + 1, &L, &p)
6526 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6527 return 0;
6528 if (val >= L && val <= U)
6529 return 1;
6530 break;
6531 }
6532 case 'O':
6533 return 1;
6534 default:
6535 return 0;
6536 }
6537 }
6538}
6539
0963b4bd 6540/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6541
6542/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6543 ARG_TYPE, extract and return the value of one of its (non-static)
6544 fields. FIELDNO says which field. Differs from value_primitive_field
6545 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6546
4c4b4cd2 6547static struct value *
d2e4a39e 6548ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6549 struct type *arg_type)
14f9c5c9 6550{
14f9c5c9
AS
6551 struct type *type;
6552
61ee279c 6553 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6554 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6555
4c4b4cd2 6556 /* Handle packed fields. */
14f9c5c9
AS
6557
6558 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6559 {
6560 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6561 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6562
0fd88904 6563 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6564 offset + bit_pos / 8,
6565 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6566 }
6567 else
6568 return value_primitive_field (arg1, offset, fieldno, arg_type);
6569}
6570
52ce6436
PH
6571/* Find field with name NAME in object of type TYPE. If found,
6572 set the following for each argument that is non-null:
6573 - *FIELD_TYPE_P to the field's type;
6574 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6575 an object of that type;
6576 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6577 - *BIT_SIZE_P to its size in bits if the field is packed, and
6578 0 otherwise;
6579 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6580 fields up to but not including the desired field, or by the total
6581 number of fields if not found. A NULL value of NAME never
6582 matches; the function just counts visible fields in this case.
6583
0963b4bd 6584 Returns 1 if found, 0 otherwise. */
52ce6436 6585
4c4b4cd2 6586static int
0d5cff50 6587find_struct_field (const char *name, struct type *type, int offset,
76a01679 6588 struct type **field_type_p,
52ce6436
PH
6589 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6590 int *index_p)
4c4b4cd2
PH
6591{
6592 int i;
6593
61ee279c 6594 type = ada_check_typedef (type);
76a01679 6595
52ce6436
PH
6596 if (field_type_p != NULL)
6597 *field_type_p = NULL;
6598 if (byte_offset_p != NULL)
d5d6fca5 6599 *byte_offset_p = 0;
52ce6436
PH
6600 if (bit_offset_p != NULL)
6601 *bit_offset_p = 0;
6602 if (bit_size_p != NULL)
6603 *bit_size_p = 0;
6604
6605 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6606 {
6607 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6608 int fld_offset = offset + bit_pos / 8;
0d5cff50 6609 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6610
4c4b4cd2
PH
6611 if (t_field_name == NULL)
6612 continue;
6613
52ce6436 6614 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6615 {
6616 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6617
52ce6436
PH
6618 if (field_type_p != NULL)
6619 *field_type_p = TYPE_FIELD_TYPE (type, i);
6620 if (byte_offset_p != NULL)
6621 *byte_offset_p = fld_offset;
6622 if (bit_offset_p != NULL)
6623 *bit_offset_p = bit_pos % 8;
6624 if (bit_size_p != NULL)
6625 *bit_size_p = bit_size;
76a01679
JB
6626 return 1;
6627 }
4c4b4cd2
PH
6628 else if (ada_is_wrapper_field (type, i))
6629 {
52ce6436
PH
6630 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6631 field_type_p, byte_offset_p, bit_offset_p,
6632 bit_size_p, index_p))
76a01679
JB
6633 return 1;
6634 }
4c4b4cd2
PH
6635 else if (ada_is_variant_part (type, i))
6636 {
52ce6436
PH
6637 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6638 fixed type?? */
4c4b4cd2 6639 int j;
52ce6436
PH
6640 struct type *field_type
6641 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6642
52ce6436 6643 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6644 {
76a01679
JB
6645 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6646 fld_offset
6647 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6648 field_type_p, byte_offset_p,
52ce6436 6649 bit_offset_p, bit_size_p, index_p))
76a01679 6650 return 1;
4c4b4cd2
PH
6651 }
6652 }
52ce6436
PH
6653 else if (index_p != NULL)
6654 *index_p += 1;
4c4b4cd2
PH
6655 }
6656 return 0;
6657}
6658
0963b4bd 6659/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6660
52ce6436
PH
6661static int
6662num_visible_fields (struct type *type)
6663{
6664 int n;
5b4ee69b 6665
52ce6436
PH
6666 n = 0;
6667 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6668 return n;
6669}
14f9c5c9 6670
4c4b4cd2 6671/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6672 and search in it assuming it has (class) type TYPE.
6673 If found, return value, else return NULL.
6674
4c4b4cd2 6675 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6676
4c4b4cd2 6677static struct value *
d2e4a39e 6678ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6679 struct type *type)
14f9c5c9
AS
6680{
6681 int i;
14f9c5c9 6682
5b4ee69b 6683 type = ada_check_typedef (type);
52ce6436 6684 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6685 {
0d5cff50 6686 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6687
6688 if (t_field_name == NULL)
4c4b4cd2 6689 continue;
14f9c5c9
AS
6690
6691 else if (field_name_match (t_field_name, name))
4c4b4cd2 6692 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6693
6694 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6695 {
0963b4bd 6696 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6697 ada_search_struct_field (name, arg,
6698 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6699 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6700
4c4b4cd2
PH
6701 if (v != NULL)
6702 return v;
6703 }
14f9c5c9
AS
6704
6705 else if (ada_is_variant_part (type, i))
4c4b4cd2 6706 {
0963b4bd 6707 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6708 int j;
5b4ee69b
MS
6709 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6710 i));
4c4b4cd2
PH
6711 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6712
52ce6436 6713 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6714 {
0963b4bd
MS
6715 struct value *v = ada_search_struct_field /* Force line
6716 break. */
06d5cf63
JB
6717 (name, arg,
6718 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6719 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6720
4c4b4cd2
PH
6721 if (v != NULL)
6722 return v;
6723 }
6724 }
14f9c5c9
AS
6725 }
6726 return NULL;
6727}
d2e4a39e 6728
52ce6436
PH
6729static struct value *ada_index_struct_field_1 (int *, struct value *,
6730 int, struct type *);
6731
6732
6733/* Return field #INDEX in ARG, where the index is that returned by
6734 * find_struct_field through its INDEX_P argument. Adjust the address
6735 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6736 * If found, return value, else return NULL. */
52ce6436
PH
6737
6738static struct value *
6739ada_index_struct_field (int index, struct value *arg, int offset,
6740 struct type *type)
6741{
6742 return ada_index_struct_field_1 (&index, arg, offset, type);
6743}
6744
6745
6746/* Auxiliary function for ada_index_struct_field. Like
6747 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6748 * *INDEX_P. */
52ce6436
PH
6749
6750static struct value *
6751ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6752 struct type *type)
6753{
6754 int i;
6755 type = ada_check_typedef (type);
6756
6757 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6758 {
6759 if (TYPE_FIELD_NAME (type, i) == NULL)
6760 continue;
6761 else if (ada_is_wrapper_field (type, i))
6762 {
0963b4bd 6763 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6764 ada_index_struct_field_1 (index_p, arg,
6765 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6766 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6767
52ce6436
PH
6768 if (v != NULL)
6769 return v;
6770 }
6771
6772 else if (ada_is_variant_part (type, i))
6773 {
6774 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6775 find_struct_field. */
52ce6436
PH
6776 error (_("Cannot assign this kind of variant record"));
6777 }
6778 else if (*index_p == 0)
6779 return ada_value_primitive_field (arg, offset, i, type);
6780 else
6781 *index_p -= 1;
6782 }
6783 return NULL;
6784}
6785
4c4b4cd2
PH
6786/* Given ARG, a value of type (pointer or reference to a)*
6787 structure/union, extract the component named NAME from the ultimate
6788 target structure/union and return it as a value with its
f5938064 6789 appropriate type.
14f9c5c9 6790
4c4b4cd2
PH
6791 The routine searches for NAME among all members of the structure itself
6792 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6793 (e.g., '_parent').
6794
03ee6b2e
PH
6795 If NO_ERR, then simply return NULL in case of error, rather than
6796 calling error. */
14f9c5c9 6797
d2e4a39e 6798struct value *
03ee6b2e 6799ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6800{
4c4b4cd2 6801 struct type *t, *t1;
d2e4a39e 6802 struct value *v;
14f9c5c9 6803
4c4b4cd2 6804 v = NULL;
df407dfe 6805 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6806 if (TYPE_CODE (t) == TYPE_CODE_REF)
6807 {
6808 t1 = TYPE_TARGET_TYPE (t);
6809 if (t1 == NULL)
03ee6b2e 6810 goto BadValue;
61ee279c 6811 t1 = ada_check_typedef (t1);
4c4b4cd2 6812 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6813 {
994b9211 6814 arg = coerce_ref (arg);
76a01679
JB
6815 t = t1;
6816 }
4c4b4cd2 6817 }
14f9c5c9 6818
4c4b4cd2
PH
6819 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6820 {
6821 t1 = TYPE_TARGET_TYPE (t);
6822 if (t1 == NULL)
03ee6b2e 6823 goto BadValue;
61ee279c 6824 t1 = ada_check_typedef (t1);
4c4b4cd2 6825 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6826 {
6827 arg = value_ind (arg);
6828 t = t1;
6829 }
4c4b4cd2 6830 else
76a01679 6831 break;
4c4b4cd2 6832 }
14f9c5c9 6833
4c4b4cd2 6834 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6835 goto BadValue;
14f9c5c9 6836
4c4b4cd2
PH
6837 if (t1 == t)
6838 v = ada_search_struct_field (name, arg, 0, t);
6839 else
6840 {
6841 int bit_offset, bit_size, byte_offset;
6842 struct type *field_type;
6843 CORE_ADDR address;
6844
76a01679 6845 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6846 address = value_address (ada_value_ind (arg));
4c4b4cd2 6847 else
b50d69b5 6848 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6849
1ed6ede0 6850 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6851 if (find_struct_field (name, t1, 0,
6852 &field_type, &byte_offset, &bit_offset,
52ce6436 6853 &bit_size, NULL))
76a01679
JB
6854 {
6855 if (bit_size != 0)
6856 {
714e53ab
PH
6857 if (TYPE_CODE (t) == TYPE_CODE_REF)
6858 arg = ada_coerce_ref (arg);
6859 else
6860 arg = ada_value_ind (arg);
76a01679
JB
6861 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6862 bit_offset, bit_size,
6863 field_type);
6864 }
6865 else
f5938064 6866 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6867 }
6868 }
6869
03ee6b2e
PH
6870 if (v != NULL || no_err)
6871 return v;
6872 else
323e0a4a 6873 error (_("There is no member named %s."), name);
14f9c5c9 6874
03ee6b2e
PH
6875 BadValue:
6876 if (no_err)
6877 return NULL;
6878 else
0963b4bd
MS
6879 error (_("Attempt to extract a component of "
6880 "a value that is not a record."));
14f9c5c9
AS
6881}
6882
6883/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6884 If DISPP is non-null, add its byte displacement from the beginning of a
6885 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6886 work for packed fields).
6887
6888 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6889 followed by "___".
14f9c5c9 6890
0963b4bd 6891 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6892 be a (pointer or reference)+ to a struct or union, and the
6893 ultimate target type will be searched.
14f9c5c9
AS
6894
6895 Looks recursively into variant clauses and parent types.
6896
4c4b4cd2
PH
6897 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6898 TYPE is not a type of the right kind. */
14f9c5c9 6899
4c4b4cd2 6900static struct type *
76a01679
JB
6901ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6902 int noerr, int *dispp)
14f9c5c9
AS
6903{
6904 int i;
6905
6906 if (name == NULL)
6907 goto BadName;
6908
76a01679 6909 if (refok && type != NULL)
4c4b4cd2
PH
6910 while (1)
6911 {
61ee279c 6912 type = ada_check_typedef (type);
76a01679
JB
6913 if (TYPE_CODE (type) != TYPE_CODE_PTR
6914 && TYPE_CODE (type) != TYPE_CODE_REF)
6915 break;
6916 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6917 }
14f9c5c9 6918
76a01679 6919 if (type == NULL
1265e4aa
JB
6920 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6921 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6922 {
4c4b4cd2 6923 if (noerr)
76a01679 6924 return NULL;
4c4b4cd2 6925 else
76a01679
JB
6926 {
6927 target_terminal_ours ();
6928 gdb_flush (gdb_stdout);
323e0a4a
AC
6929 if (type == NULL)
6930 error (_("Type (null) is not a structure or union type"));
6931 else
6932 {
6933 /* XXX: type_sprint */
6934 fprintf_unfiltered (gdb_stderr, _("Type "));
6935 type_print (type, "", gdb_stderr, -1);
6936 error (_(" is not a structure or union type"));
6937 }
76a01679 6938 }
14f9c5c9
AS
6939 }
6940
6941 type = to_static_fixed_type (type);
6942
6943 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6944 {
0d5cff50 6945 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6946 struct type *t;
6947 int disp;
d2e4a39e 6948
14f9c5c9 6949 if (t_field_name == NULL)
4c4b4cd2 6950 continue;
14f9c5c9
AS
6951
6952 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6953 {
6954 if (dispp != NULL)
6955 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6956 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6957 }
14f9c5c9
AS
6958
6959 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6960 {
6961 disp = 0;
6962 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6963 0, 1, &disp);
6964 if (t != NULL)
6965 {
6966 if (dispp != NULL)
6967 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6968 return t;
6969 }
6970 }
14f9c5c9
AS
6971
6972 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6973 {
6974 int j;
5b4ee69b
MS
6975 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6976 i));
4c4b4cd2
PH
6977
6978 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6979 {
b1f33ddd
JB
6980 /* FIXME pnh 2008/01/26: We check for a field that is
6981 NOT wrapped in a struct, since the compiler sometimes
6982 generates these for unchecked variant types. Revisit
0963b4bd 6983 if the compiler changes this practice. */
0d5cff50 6984 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6985 disp = 0;
b1f33ddd
JB
6986 if (v_field_name != NULL
6987 && field_name_match (v_field_name, name))
6988 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6989 else
0963b4bd
MS
6990 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6991 j),
b1f33ddd
JB
6992 name, 0, 1, &disp);
6993
4c4b4cd2
PH
6994 if (t != NULL)
6995 {
6996 if (dispp != NULL)
6997 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6998 return t;
6999 }
7000 }
7001 }
14f9c5c9
AS
7002
7003 }
7004
7005BadName:
d2e4a39e 7006 if (!noerr)
14f9c5c9
AS
7007 {
7008 target_terminal_ours ();
7009 gdb_flush (gdb_stdout);
323e0a4a
AC
7010 if (name == NULL)
7011 {
7012 /* XXX: type_sprint */
7013 fprintf_unfiltered (gdb_stderr, _("Type "));
7014 type_print (type, "", gdb_stderr, -1);
7015 error (_(" has no component named <null>"));
7016 }
7017 else
7018 {
7019 /* XXX: type_sprint */
7020 fprintf_unfiltered (gdb_stderr, _("Type "));
7021 type_print (type, "", gdb_stderr, -1);
7022 error (_(" has no component named %s"), name);
7023 }
14f9c5c9
AS
7024 }
7025
7026 return NULL;
7027}
7028
b1f33ddd
JB
7029/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7030 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7031 represents an unchecked union (that is, the variant part of a
0963b4bd 7032 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7033
7034static int
7035is_unchecked_variant (struct type *var_type, struct type *outer_type)
7036{
7037 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7038
b1f33ddd
JB
7039 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7040 == NULL);
7041}
7042
7043
14f9c5c9
AS
7044/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7045 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7046 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7047 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7048
d2e4a39e 7049int
ebf56fd3 7050ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7051 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7052{
7053 int others_clause;
7054 int i;
d2e4a39e 7055 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7056 struct value *outer;
7057 struct value *discrim;
14f9c5c9
AS
7058 LONGEST discrim_val;
7059
0c281816
JB
7060 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7061 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7062 if (discrim == NULL)
14f9c5c9 7063 return -1;
0c281816 7064 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7065
7066 others_clause = -1;
7067 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7068 {
7069 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7070 others_clause = i;
14f9c5c9 7071 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7072 return i;
14f9c5c9
AS
7073 }
7074
7075 return others_clause;
7076}
d2e4a39e 7077\f
14f9c5c9
AS
7078
7079
4c4b4cd2 7080 /* Dynamic-Sized Records */
14f9c5c9
AS
7081
7082/* Strategy: The type ostensibly attached to a value with dynamic size
7083 (i.e., a size that is not statically recorded in the debugging
7084 data) does not accurately reflect the size or layout of the value.
7085 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7086 conventional types that are constructed on the fly. */
14f9c5c9
AS
7087
7088/* There is a subtle and tricky problem here. In general, we cannot
7089 determine the size of dynamic records without its data. However,
7090 the 'struct value' data structure, which GDB uses to represent
7091 quantities in the inferior process (the target), requires the size
7092 of the type at the time of its allocation in order to reserve space
7093 for GDB's internal copy of the data. That's why the
7094 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7095 rather than struct value*s.
14f9c5c9
AS
7096
7097 However, GDB's internal history variables ($1, $2, etc.) are
7098 struct value*s containing internal copies of the data that are not, in
7099 general, the same as the data at their corresponding addresses in
7100 the target. Fortunately, the types we give to these values are all
7101 conventional, fixed-size types (as per the strategy described
7102 above), so that we don't usually have to perform the
7103 'to_fixed_xxx_type' conversions to look at their values.
7104 Unfortunately, there is one exception: if one of the internal
7105 history variables is an array whose elements are unconstrained
7106 records, then we will need to create distinct fixed types for each
7107 element selected. */
7108
7109/* The upshot of all of this is that many routines take a (type, host
7110 address, target address) triple as arguments to represent a value.
7111 The host address, if non-null, is supposed to contain an internal
7112 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7113 target at the target address. */
14f9c5c9
AS
7114
7115/* Assuming that VAL0 represents a pointer value, the result of
7116 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7117 dynamic-sized types. */
14f9c5c9 7118
d2e4a39e
AS
7119struct value *
7120ada_value_ind (struct value *val0)
14f9c5c9 7121{
c48db5ca 7122 struct value *val = value_ind (val0);
5b4ee69b 7123
b50d69b5
JG
7124 if (ada_is_tagged_type (value_type (val), 0))
7125 val = ada_tag_value_at_base_address (val);
7126
4c4b4cd2 7127 return ada_to_fixed_value (val);
14f9c5c9
AS
7128}
7129
7130/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7131 qualifiers on VAL0. */
7132
d2e4a39e
AS
7133static struct value *
7134ada_coerce_ref (struct value *val0)
7135{
df407dfe 7136 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7137 {
7138 struct value *val = val0;
5b4ee69b 7139
994b9211 7140 val = coerce_ref (val);
b50d69b5
JG
7141
7142 if (ada_is_tagged_type (value_type (val), 0))
7143 val = ada_tag_value_at_base_address (val);
7144
4c4b4cd2 7145 return ada_to_fixed_value (val);
d2e4a39e
AS
7146 }
7147 else
14f9c5c9
AS
7148 return val0;
7149}
7150
7151/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7152 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7153
7154static unsigned int
ebf56fd3 7155align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7156{
7157 return (off + alignment - 1) & ~(alignment - 1);
7158}
7159
4c4b4cd2 7160/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7161
7162static unsigned int
ebf56fd3 7163field_alignment (struct type *type, int f)
14f9c5c9 7164{
d2e4a39e 7165 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7166 int len;
14f9c5c9
AS
7167 int align_offset;
7168
64a1bf19
JB
7169 /* The field name should never be null, unless the debugging information
7170 is somehow malformed. In this case, we assume the field does not
7171 require any alignment. */
7172 if (name == NULL)
7173 return 1;
7174
7175 len = strlen (name);
7176
4c4b4cd2
PH
7177 if (!isdigit (name[len - 1]))
7178 return 1;
14f9c5c9 7179
d2e4a39e 7180 if (isdigit (name[len - 2]))
14f9c5c9
AS
7181 align_offset = len - 2;
7182 else
7183 align_offset = len - 1;
7184
4c4b4cd2 7185 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7186 return TARGET_CHAR_BIT;
7187
4c4b4cd2
PH
7188 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7189}
7190
852dff6c 7191/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7192
852dff6c
JB
7193static struct symbol *
7194ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7195{
7196 struct symbol *sym;
7197
7198 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7199 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7200 return sym;
7201
7202 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7203 return sym;
14f9c5c9
AS
7204}
7205
dddfab26
UW
7206/* Find a type named NAME. Ignores ambiguity. This routine will look
7207 solely for types defined by debug info, it will not search the GDB
7208 primitive types. */
4c4b4cd2 7209
852dff6c 7210static struct type *
ebf56fd3 7211ada_find_any_type (const char *name)
14f9c5c9 7212{
852dff6c 7213 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7214
14f9c5c9 7215 if (sym != NULL)
dddfab26 7216 return SYMBOL_TYPE (sym);
14f9c5c9 7217
dddfab26 7218 return NULL;
14f9c5c9
AS
7219}
7220
739593e0
JB
7221/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7222 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7223 symbol, in which case it is returned. Otherwise, this looks for
7224 symbols whose name is that of NAME_SYM suffixed with "___XR".
7225 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7226
7227struct symbol *
270140bd 7228ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7229{
739593e0 7230 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7231 struct symbol *sym;
7232
739593e0
JB
7233 if (strstr (name, "___XR") != NULL)
7234 return name_sym;
7235
aeb5907d
JB
7236 sym = find_old_style_renaming_symbol (name, block);
7237
7238 if (sym != NULL)
7239 return sym;
7240
0963b4bd 7241 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7242 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7243 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7244 return sym;
7245 else
7246 return NULL;
7247}
7248
7249static struct symbol *
270140bd 7250find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7251{
7f0df278 7252 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7253 char *rename;
7254
7255 if (function_sym != NULL)
7256 {
7257 /* If the symbol is defined inside a function, NAME is not fully
7258 qualified. This means we need to prepend the function name
7259 as well as adding the ``___XR'' suffix to build the name of
7260 the associated renaming symbol. */
0d5cff50 7261 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7262 /* Function names sometimes contain suffixes used
7263 for instance to qualify nested subprograms. When building
7264 the XR type name, we need to make sure that this suffix is
7265 not included. So do not include any suffix in the function
7266 name length below. */
69fadcdf 7267 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7268 const int rename_len = function_name_len + 2 /* "__" */
7269 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7270
529cad9c 7271 /* Strip the suffix if necessary. */
69fadcdf
JB
7272 ada_remove_trailing_digits (function_name, &function_name_len);
7273 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7274 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7275
4c4b4cd2
PH
7276 /* Library-level functions are a special case, as GNAT adds
7277 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7278 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7279 have this prefix, so we need to skip this prefix if present. */
7280 if (function_name_len > 5 /* "_ada_" */
7281 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7282 {
7283 function_name += 5;
7284 function_name_len -= 5;
7285 }
4c4b4cd2
PH
7286
7287 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7288 strncpy (rename, function_name, function_name_len);
7289 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7290 "__%s___XR", name);
4c4b4cd2
PH
7291 }
7292 else
7293 {
7294 const int rename_len = strlen (name) + 6;
5b4ee69b 7295
4c4b4cd2 7296 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7297 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7298 }
7299
852dff6c 7300 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7301}
7302
14f9c5c9 7303/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7304 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7305 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7306 otherwise return 0. */
7307
14f9c5c9 7308int
d2e4a39e 7309ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7310{
7311 if (type1 == NULL)
7312 return 1;
7313 else if (type0 == NULL)
7314 return 0;
7315 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7316 return 1;
7317 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7318 return 0;
4c4b4cd2
PH
7319 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7320 return 1;
ad82864c 7321 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7322 return 1;
4c4b4cd2
PH
7323 else if (ada_is_array_descriptor_type (type0)
7324 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7325 return 1;
aeb5907d
JB
7326 else
7327 {
7328 const char *type0_name = type_name_no_tag (type0);
7329 const char *type1_name = type_name_no_tag (type1);
7330
7331 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7332 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7333 return 1;
7334 }
14f9c5c9
AS
7335 return 0;
7336}
7337
7338/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7339 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7340
0d5cff50 7341const char *
d2e4a39e 7342ada_type_name (struct type *type)
14f9c5c9 7343{
d2e4a39e 7344 if (type == NULL)
14f9c5c9
AS
7345 return NULL;
7346 else if (TYPE_NAME (type) != NULL)
7347 return TYPE_NAME (type);
7348 else
7349 return TYPE_TAG_NAME (type);
7350}
7351
b4ba55a1
JB
7352/* Search the list of "descriptive" types associated to TYPE for a type
7353 whose name is NAME. */
7354
7355static struct type *
7356find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7357{
7358 struct type *result;
7359
7360 /* If there no descriptive-type info, then there is no parallel type
7361 to be found. */
7362 if (!HAVE_GNAT_AUX_INFO (type))
7363 return NULL;
7364
7365 result = TYPE_DESCRIPTIVE_TYPE (type);
7366 while (result != NULL)
7367 {
0d5cff50 7368 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7369
7370 if (result_name == NULL)
7371 {
7372 warning (_("unexpected null name on descriptive type"));
7373 return NULL;
7374 }
7375
7376 /* If the names match, stop. */
7377 if (strcmp (result_name, name) == 0)
7378 break;
7379
7380 /* Otherwise, look at the next item on the list, if any. */
7381 if (HAVE_GNAT_AUX_INFO (result))
7382 result = TYPE_DESCRIPTIVE_TYPE (result);
7383 else
7384 result = NULL;
7385 }
7386
7387 /* If we didn't find a match, see whether this is a packed array. With
7388 older compilers, the descriptive type information is either absent or
7389 irrelevant when it comes to packed arrays so the above lookup fails.
7390 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7391 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7392 return ada_find_any_type (name);
7393
7394 return result;
7395}
7396
7397/* Find a parallel type to TYPE with the specified NAME, using the
7398 descriptive type taken from the debugging information, if available,
7399 and otherwise using the (slower) name-based method. */
7400
7401static struct type *
7402ada_find_parallel_type_with_name (struct type *type, const char *name)
7403{
7404 struct type *result = NULL;
7405
7406 if (HAVE_GNAT_AUX_INFO (type))
7407 result = find_parallel_type_by_descriptive_type (type, name);
7408 else
7409 result = ada_find_any_type (name);
7410
7411 return result;
7412}
7413
7414/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7415 SUFFIX to the name of TYPE. */
14f9c5c9 7416
d2e4a39e 7417struct type *
ebf56fd3 7418ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7419{
0d5cff50
DE
7420 char *name;
7421 const char *typename = ada_type_name (type);
14f9c5c9 7422 int len;
d2e4a39e 7423
14f9c5c9
AS
7424 if (typename == NULL)
7425 return NULL;
7426
7427 len = strlen (typename);
7428
b4ba55a1 7429 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7430
7431 strcpy (name, typename);
7432 strcpy (name + len, suffix);
7433
b4ba55a1 7434 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7435}
7436
14f9c5c9 7437/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7438 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7439
d2e4a39e
AS
7440static struct type *
7441dynamic_template_type (struct type *type)
14f9c5c9 7442{
61ee279c 7443 type = ada_check_typedef (type);
14f9c5c9
AS
7444
7445 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7446 || ada_type_name (type) == NULL)
14f9c5c9 7447 return NULL;
d2e4a39e 7448 else
14f9c5c9
AS
7449 {
7450 int len = strlen (ada_type_name (type));
5b4ee69b 7451
4c4b4cd2
PH
7452 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7453 return type;
14f9c5c9 7454 else
4c4b4cd2 7455 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7456 }
7457}
7458
7459/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7460 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7461
d2e4a39e
AS
7462static int
7463is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7464{
7465 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7466
d2e4a39e 7467 return name != NULL
14f9c5c9
AS
7468 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7469 && strstr (name, "___XVL") != NULL;
7470}
7471
4c4b4cd2
PH
7472/* The index of the variant field of TYPE, or -1 if TYPE does not
7473 represent a variant record type. */
14f9c5c9 7474
d2e4a39e 7475static int
4c4b4cd2 7476variant_field_index (struct type *type)
14f9c5c9
AS
7477{
7478 int f;
7479
4c4b4cd2
PH
7480 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7481 return -1;
7482
7483 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7484 {
7485 if (ada_is_variant_part (type, f))
7486 return f;
7487 }
7488 return -1;
14f9c5c9
AS
7489}
7490
4c4b4cd2
PH
7491/* A record type with no fields. */
7492
d2e4a39e 7493static struct type *
e9bb382b 7494empty_record (struct type *template)
14f9c5c9 7495{
e9bb382b 7496 struct type *type = alloc_type_copy (template);
5b4ee69b 7497
14f9c5c9
AS
7498 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7499 TYPE_NFIELDS (type) = 0;
7500 TYPE_FIELDS (type) = NULL;
b1f33ddd 7501 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7502 TYPE_NAME (type) = "<empty>";
7503 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7504 TYPE_LENGTH (type) = 0;
7505 return type;
7506}
7507
7508/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7509 the value of type TYPE at VALADDR or ADDRESS (see comments at
7510 the beginning of this section) VAL according to GNAT conventions.
7511 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7512 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7513 an outer-level type (i.e., as opposed to a branch of a variant.) A
7514 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7515 of the variant.
14f9c5c9 7516
4c4b4cd2
PH
7517 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7518 length are not statically known are discarded. As a consequence,
7519 VALADDR, ADDRESS and DVAL0 are ignored.
7520
7521 NOTE: Limitations: For now, we assume that dynamic fields and
7522 variants occupy whole numbers of bytes. However, they need not be
7523 byte-aligned. */
7524
7525struct type *
10a2c479 7526ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7527 const gdb_byte *valaddr,
4c4b4cd2
PH
7528 CORE_ADDR address, struct value *dval0,
7529 int keep_dynamic_fields)
14f9c5c9 7530{
d2e4a39e
AS
7531 struct value *mark = value_mark ();
7532 struct value *dval;
7533 struct type *rtype;
14f9c5c9 7534 int nfields, bit_len;
4c4b4cd2 7535 int variant_field;
14f9c5c9 7536 long off;
d94e4f4f 7537 int fld_bit_len;
14f9c5c9
AS
7538 int f;
7539
4c4b4cd2
PH
7540 /* Compute the number of fields in this record type that are going
7541 to be processed: unless keep_dynamic_fields, this includes only
7542 fields whose position and length are static will be processed. */
7543 if (keep_dynamic_fields)
7544 nfields = TYPE_NFIELDS (type);
7545 else
7546 {
7547 nfields = 0;
76a01679 7548 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7549 && !ada_is_variant_part (type, nfields)
7550 && !is_dynamic_field (type, nfields))
7551 nfields++;
7552 }
7553
e9bb382b 7554 rtype = alloc_type_copy (type);
14f9c5c9
AS
7555 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7556 INIT_CPLUS_SPECIFIC (rtype);
7557 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7558 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7559 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7560 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7561 TYPE_NAME (rtype) = ada_type_name (type);
7562 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7563 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7564
d2e4a39e
AS
7565 off = 0;
7566 bit_len = 0;
4c4b4cd2
PH
7567 variant_field = -1;
7568
14f9c5c9
AS
7569 for (f = 0; f < nfields; f += 1)
7570 {
6c038f32
PH
7571 off = align_value (off, field_alignment (type, f))
7572 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7573 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7574 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7575
d2e4a39e 7576 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7577 {
7578 variant_field = f;
d94e4f4f 7579 fld_bit_len = 0;
4c4b4cd2 7580 }
14f9c5c9 7581 else if (is_dynamic_field (type, f))
4c4b4cd2 7582 {
284614f0
JB
7583 const gdb_byte *field_valaddr = valaddr;
7584 CORE_ADDR field_address = address;
7585 struct type *field_type =
7586 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7587
4c4b4cd2 7588 if (dval0 == NULL)
b5304971
JG
7589 {
7590 /* rtype's length is computed based on the run-time
7591 value of discriminants. If the discriminants are not
7592 initialized, the type size may be completely bogus and
0963b4bd 7593 GDB may fail to allocate a value for it. So check the
b5304971
JG
7594 size first before creating the value. */
7595 check_size (rtype);
7596 dval = value_from_contents_and_address (rtype, valaddr, address);
7597 }
4c4b4cd2
PH
7598 else
7599 dval = dval0;
7600
284614f0
JB
7601 /* If the type referenced by this field is an aligner type, we need
7602 to unwrap that aligner type, because its size might not be set.
7603 Keeping the aligner type would cause us to compute the wrong
7604 size for this field, impacting the offset of the all the fields
7605 that follow this one. */
7606 if (ada_is_aligner_type (field_type))
7607 {
7608 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7609
7610 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7611 field_address = cond_offset_target (field_address, field_offset);
7612 field_type = ada_aligned_type (field_type);
7613 }
7614
7615 field_valaddr = cond_offset_host (field_valaddr,
7616 off / TARGET_CHAR_BIT);
7617 field_address = cond_offset_target (field_address,
7618 off / TARGET_CHAR_BIT);
7619
7620 /* Get the fixed type of the field. Note that, in this case,
7621 we do not want to get the real type out of the tag: if
7622 the current field is the parent part of a tagged record,
7623 we will get the tag of the object. Clearly wrong: the real
7624 type of the parent is not the real type of the child. We
7625 would end up in an infinite loop. */
7626 field_type = ada_get_base_type (field_type);
7627 field_type = ada_to_fixed_type (field_type, field_valaddr,
7628 field_address, dval, 0);
27f2a97b
JB
7629 /* If the field size is already larger than the maximum
7630 object size, then the record itself will necessarily
7631 be larger than the maximum object size. We need to make
7632 this check now, because the size might be so ridiculously
7633 large (due to an uninitialized variable in the inferior)
7634 that it would cause an overflow when adding it to the
7635 record size. */
7636 check_size (field_type);
284614f0
JB
7637
7638 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7639 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7640 /* The multiplication can potentially overflow. But because
7641 the field length has been size-checked just above, and
7642 assuming that the maximum size is a reasonable value,
7643 an overflow should not happen in practice. So rather than
7644 adding overflow recovery code to this already complex code,
7645 we just assume that it's not going to happen. */
d94e4f4f 7646 fld_bit_len =
4c4b4cd2
PH
7647 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7648 }
14f9c5c9 7649 else
4c4b4cd2 7650 {
5ded5331
JB
7651 /* Note: If this field's type is a typedef, it is important
7652 to preserve the typedef layer.
7653
7654 Otherwise, we might be transforming a typedef to a fat
7655 pointer (encoding a pointer to an unconstrained array),
7656 into a basic fat pointer (encoding an unconstrained
7657 array). As both types are implemented using the same
7658 structure, the typedef is the only clue which allows us
7659 to distinguish between the two options. Stripping it
7660 would prevent us from printing this field appropriately. */
7661 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7662 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7663 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7664 fld_bit_len =
4c4b4cd2
PH
7665 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7666 else
5ded5331
JB
7667 {
7668 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7669
7670 /* We need to be careful of typedefs when computing
7671 the length of our field. If this is a typedef,
7672 get the length of the target type, not the length
7673 of the typedef. */
7674 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7675 field_type = ada_typedef_target_type (field_type);
7676
7677 fld_bit_len =
7678 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7679 }
4c4b4cd2 7680 }
14f9c5c9 7681 if (off + fld_bit_len > bit_len)
4c4b4cd2 7682 bit_len = off + fld_bit_len;
d94e4f4f 7683 off += fld_bit_len;
4c4b4cd2
PH
7684 TYPE_LENGTH (rtype) =
7685 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7686 }
4c4b4cd2
PH
7687
7688 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7689 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7690 the record. This can happen in the presence of representation
7691 clauses. */
7692 if (variant_field >= 0)
7693 {
7694 struct type *branch_type;
7695
7696 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7697
7698 if (dval0 == NULL)
7699 dval = value_from_contents_and_address (rtype, valaddr, address);
7700 else
7701 dval = dval0;
7702
7703 branch_type =
7704 to_fixed_variant_branch_type
7705 (TYPE_FIELD_TYPE (type, variant_field),
7706 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7707 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7708 if (branch_type == NULL)
7709 {
7710 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7711 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7712 TYPE_NFIELDS (rtype) -= 1;
7713 }
7714 else
7715 {
7716 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7717 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7718 fld_bit_len =
7719 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7720 TARGET_CHAR_BIT;
7721 if (off + fld_bit_len > bit_len)
7722 bit_len = off + fld_bit_len;
7723 TYPE_LENGTH (rtype) =
7724 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7725 }
7726 }
7727
714e53ab
PH
7728 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7729 should contain the alignment of that record, which should be a strictly
7730 positive value. If null or negative, then something is wrong, most
7731 probably in the debug info. In that case, we don't round up the size
0963b4bd 7732 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7733 the current RTYPE length might be good enough for our purposes. */
7734 if (TYPE_LENGTH (type) <= 0)
7735 {
323e0a4a
AC
7736 if (TYPE_NAME (rtype))
7737 warning (_("Invalid type size for `%s' detected: %d."),
7738 TYPE_NAME (rtype), TYPE_LENGTH (type));
7739 else
7740 warning (_("Invalid type size for <unnamed> detected: %d."),
7741 TYPE_LENGTH (type));
714e53ab
PH
7742 }
7743 else
7744 {
7745 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7746 TYPE_LENGTH (type));
7747 }
14f9c5c9
AS
7748
7749 value_free_to_mark (mark);
d2e4a39e 7750 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7751 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7752 return rtype;
7753}
7754
4c4b4cd2
PH
7755/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7756 of 1. */
14f9c5c9 7757
d2e4a39e 7758static struct type *
fc1a4b47 7759template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7760 CORE_ADDR address, struct value *dval0)
7761{
7762 return ada_template_to_fixed_record_type_1 (type, valaddr,
7763 address, dval0, 1);
7764}
7765
7766/* An ordinary record type in which ___XVL-convention fields and
7767 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7768 static approximations, containing all possible fields. Uses
7769 no runtime values. Useless for use in values, but that's OK,
7770 since the results are used only for type determinations. Works on both
7771 structs and unions. Representation note: to save space, we memorize
7772 the result of this function in the TYPE_TARGET_TYPE of the
7773 template type. */
7774
7775static struct type *
7776template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7777{
7778 struct type *type;
7779 int nfields;
7780 int f;
7781
4c4b4cd2
PH
7782 if (TYPE_TARGET_TYPE (type0) != NULL)
7783 return TYPE_TARGET_TYPE (type0);
7784
7785 nfields = TYPE_NFIELDS (type0);
7786 type = type0;
14f9c5c9
AS
7787
7788 for (f = 0; f < nfields; f += 1)
7789 {
61ee279c 7790 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7791 struct type *new_type;
14f9c5c9 7792
4c4b4cd2
PH
7793 if (is_dynamic_field (type0, f))
7794 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7795 else
f192137b 7796 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7797 if (type == type0 && new_type != field_type)
7798 {
e9bb382b 7799 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7800 TYPE_CODE (type) = TYPE_CODE (type0);
7801 INIT_CPLUS_SPECIFIC (type);
7802 TYPE_NFIELDS (type) = nfields;
7803 TYPE_FIELDS (type) = (struct field *)
7804 TYPE_ALLOC (type, nfields * sizeof (struct field));
7805 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7806 sizeof (struct field) * nfields);
7807 TYPE_NAME (type) = ada_type_name (type0);
7808 TYPE_TAG_NAME (type) = NULL;
876cecd0 7809 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7810 TYPE_LENGTH (type) = 0;
7811 }
7812 TYPE_FIELD_TYPE (type, f) = new_type;
7813 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7814 }
14f9c5c9
AS
7815 return type;
7816}
7817
4c4b4cd2 7818/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7819 whose address in memory is ADDRESS, returns a revision of TYPE,
7820 which should be a non-dynamic-sized record, in which the variant
7821 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7822 for discriminant values in DVAL0, which can be NULL if the record
7823 contains the necessary discriminant values. */
7824
d2e4a39e 7825static struct type *
fc1a4b47 7826to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7827 CORE_ADDR address, struct value *dval0)
14f9c5c9 7828{
d2e4a39e 7829 struct value *mark = value_mark ();
4c4b4cd2 7830 struct value *dval;
d2e4a39e 7831 struct type *rtype;
14f9c5c9
AS
7832 struct type *branch_type;
7833 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7834 int variant_field = variant_field_index (type);
14f9c5c9 7835
4c4b4cd2 7836 if (variant_field == -1)
14f9c5c9
AS
7837 return type;
7838
4c4b4cd2
PH
7839 if (dval0 == NULL)
7840 dval = value_from_contents_and_address (type, valaddr, address);
7841 else
7842 dval = dval0;
7843
e9bb382b 7844 rtype = alloc_type_copy (type);
14f9c5c9 7845 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7846 INIT_CPLUS_SPECIFIC (rtype);
7847 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7848 TYPE_FIELDS (rtype) =
7849 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7850 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7851 sizeof (struct field) * nfields);
14f9c5c9
AS
7852 TYPE_NAME (rtype) = ada_type_name (type);
7853 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7854 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7855 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7856
4c4b4cd2
PH
7857 branch_type = to_fixed_variant_branch_type
7858 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7859 cond_offset_host (valaddr,
4c4b4cd2
PH
7860 TYPE_FIELD_BITPOS (type, variant_field)
7861 / TARGET_CHAR_BIT),
d2e4a39e 7862 cond_offset_target (address,
4c4b4cd2
PH
7863 TYPE_FIELD_BITPOS (type, variant_field)
7864 / TARGET_CHAR_BIT), dval);
d2e4a39e 7865 if (branch_type == NULL)
14f9c5c9 7866 {
4c4b4cd2 7867 int f;
5b4ee69b 7868
4c4b4cd2
PH
7869 for (f = variant_field + 1; f < nfields; f += 1)
7870 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7871 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7872 }
7873 else
7874 {
4c4b4cd2
PH
7875 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7876 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7877 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7878 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7879 }
4c4b4cd2 7880 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7881
4c4b4cd2 7882 value_free_to_mark (mark);
14f9c5c9
AS
7883 return rtype;
7884}
7885
7886/* An ordinary record type (with fixed-length fields) that describes
7887 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7888 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7889 should be in DVAL, a record value; it may be NULL if the object
7890 at ADDR itself contains any necessary discriminant values.
7891 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7892 values from the record are needed. Except in the case that DVAL,
7893 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7894 unchecked) is replaced by a particular branch of the variant.
7895
7896 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7897 is questionable and may be removed. It can arise during the
7898 processing of an unconstrained-array-of-record type where all the
7899 variant branches have exactly the same size. This is because in
7900 such cases, the compiler does not bother to use the XVS convention
7901 when encoding the record. I am currently dubious of this
7902 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7903
d2e4a39e 7904static struct type *
fc1a4b47 7905to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7906 CORE_ADDR address, struct value *dval)
14f9c5c9 7907{
d2e4a39e 7908 struct type *templ_type;
14f9c5c9 7909
876cecd0 7910 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7911 return type0;
7912
d2e4a39e 7913 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7914
7915 if (templ_type != NULL)
7916 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7917 else if (variant_field_index (type0) >= 0)
7918 {
7919 if (dval == NULL && valaddr == NULL && address == 0)
7920 return type0;
7921 return to_record_with_fixed_variant_part (type0, valaddr, address,
7922 dval);
7923 }
14f9c5c9
AS
7924 else
7925 {
876cecd0 7926 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7927 return type0;
7928 }
7929
7930}
7931
7932/* An ordinary record type (with fixed-length fields) that describes
7933 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7934 union type. Any necessary discriminants' values should be in DVAL,
7935 a record value. That is, this routine selects the appropriate
7936 branch of the union at ADDR according to the discriminant value
b1f33ddd 7937 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7938 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7939
d2e4a39e 7940static struct type *
fc1a4b47 7941to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7942 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7943{
7944 int which;
d2e4a39e
AS
7945 struct type *templ_type;
7946 struct type *var_type;
14f9c5c9
AS
7947
7948 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7949 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7950 else
14f9c5c9
AS
7951 var_type = var_type0;
7952
7953 templ_type = ada_find_parallel_type (var_type, "___XVU");
7954
7955 if (templ_type != NULL)
7956 var_type = templ_type;
7957
b1f33ddd
JB
7958 if (is_unchecked_variant (var_type, value_type (dval)))
7959 return var_type0;
d2e4a39e
AS
7960 which =
7961 ada_which_variant_applies (var_type,
0fd88904 7962 value_type (dval), value_contents (dval));
14f9c5c9
AS
7963
7964 if (which < 0)
e9bb382b 7965 return empty_record (var_type);
14f9c5c9 7966 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7967 return to_fixed_record_type
d2e4a39e
AS
7968 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7969 valaddr, address, dval);
4c4b4cd2 7970 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7971 return
7972 to_fixed_record_type
7973 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7974 else
7975 return TYPE_FIELD_TYPE (var_type, which);
7976}
7977
7978/* Assuming that TYPE0 is an array type describing the type of a value
7979 at ADDR, and that DVAL describes a record containing any
7980 discriminants used in TYPE0, returns a type for the value that
7981 contains no dynamic components (that is, no components whose sizes
7982 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7983 true, gives an error message if the resulting type's size is over
4c4b4cd2 7984 varsize_limit. */
14f9c5c9 7985
d2e4a39e
AS
7986static struct type *
7987to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7988 int ignore_too_big)
14f9c5c9 7989{
d2e4a39e
AS
7990 struct type *index_type_desc;
7991 struct type *result;
ad82864c 7992 int constrained_packed_array_p;
14f9c5c9 7993
b0dd7688 7994 type0 = ada_check_typedef (type0);
284614f0 7995 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7996 return type0;
14f9c5c9 7997
ad82864c
JB
7998 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7999 if (constrained_packed_array_p)
8000 type0 = decode_constrained_packed_array_type (type0);
284614f0 8001
14f9c5c9 8002 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8003 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8004 if (index_type_desc == NULL)
8005 {
61ee279c 8006 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8007
14f9c5c9 8008 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8009 depend on the contents of the array in properly constructed
8010 debugging data. */
529cad9c
PH
8011 /* Create a fixed version of the array element type.
8012 We're not providing the address of an element here,
e1d5a0d2 8013 and thus the actual object value cannot be inspected to do
529cad9c
PH
8014 the conversion. This should not be a problem, since arrays of
8015 unconstrained objects are not allowed. In particular, all
8016 the elements of an array of a tagged type should all be of
8017 the same type specified in the debugging info. No need to
8018 consult the object tag. */
1ed6ede0 8019 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8020
284614f0
JB
8021 /* Make sure we always create a new array type when dealing with
8022 packed array types, since we're going to fix-up the array
8023 type length and element bitsize a little further down. */
ad82864c 8024 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8025 result = type0;
14f9c5c9 8026 else
e9bb382b 8027 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8028 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8029 }
8030 else
8031 {
8032 int i;
8033 struct type *elt_type0;
8034
8035 elt_type0 = type0;
8036 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8037 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8038
8039 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8040 depend on the contents of the array in properly constructed
8041 debugging data. */
529cad9c
PH
8042 /* Create a fixed version of the array element type.
8043 We're not providing the address of an element here,
e1d5a0d2 8044 and thus the actual object value cannot be inspected to do
529cad9c
PH
8045 the conversion. This should not be a problem, since arrays of
8046 unconstrained objects are not allowed. In particular, all
8047 the elements of an array of a tagged type should all be of
8048 the same type specified in the debugging info. No need to
8049 consult the object tag. */
1ed6ede0
JB
8050 result =
8051 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8052
8053 elt_type0 = type0;
14f9c5c9 8054 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8055 {
8056 struct type *range_type =
28c85d6c 8057 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8058
e9bb382b 8059 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8060 result, range_type);
1ce677a4 8061 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8062 }
d2e4a39e 8063 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8064 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8065 }
8066
2e6fda7d
JB
8067 /* We want to preserve the type name. This can be useful when
8068 trying to get the type name of a value that has already been
8069 printed (for instance, if the user did "print VAR; whatis $". */
8070 TYPE_NAME (result) = TYPE_NAME (type0);
8071
ad82864c 8072 if (constrained_packed_array_p)
284614f0
JB
8073 {
8074 /* So far, the resulting type has been created as if the original
8075 type was a regular (non-packed) array type. As a result, the
8076 bitsize of the array elements needs to be set again, and the array
8077 length needs to be recomputed based on that bitsize. */
8078 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8079 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8080
8081 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8082 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8083 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8084 TYPE_LENGTH (result)++;
8085 }
8086
876cecd0 8087 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8088 return result;
d2e4a39e 8089}
14f9c5c9
AS
8090
8091
8092/* A standard type (containing no dynamically sized components)
8093 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8094 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8095 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8096 ADDRESS or in VALADDR contains these discriminants.
8097
1ed6ede0
JB
8098 If CHECK_TAG is not null, in the case of tagged types, this function
8099 attempts to locate the object's tag and use it to compute the actual
8100 type. However, when ADDRESS is null, we cannot use it to determine the
8101 location of the tag, and therefore compute the tagged type's actual type.
8102 So we return the tagged type without consulting the tag. */
529cad9c 8103
f192137b
JB
8104static struct type *
8105ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8106 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8107{
61ee279c 8108 type = ada_check_typedef (type);
d2e4a39e
AS
8109 switch (TYPE_CODE (type))
8110 {
8111 default:
14f9c5c9 8112 return type;
d2e4a39e 8113 case TYPE_CODE_STRUCT:
4c4b4cd2 8114 {
76a01679 8115 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8116 struct type *fixed_record_type =
8117 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8118
529cad9c
PH
8119 /* If STATIC_TYPE is a tagged type and we know the object's address,
8120 then we can determine its tag, and compute the object's actual
0963b4bd 8121 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8122 type (the parent part of the record may have dynamic fields
8123 and the way the location of _tag is expressed may depend on
8124 them). */
529cad9c 8125
1ed6ede0 8126 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8127 {
b50d69b5
JG
8128 struct value *tag =
8129 value_tag_from_contents_and_address
8130 (fixed_record_type,
8131 valaddr,
8132 address);
8133 struct type *real_type = type_from_tag (tag);
8134 struct value *obj =
8135 value_from_contents_and_address (fixed_record_type,
8136 valaddr,
8137 address);
76a01679 8138 if (real_type != NULL)
b50d69b5
JG
8139 return to_fixed_record_type
8140 (real_type, NULL,
8141 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8142 }
4af88198
JB
8143
8144 /* Check to see if there is a parallel ___XVZ variable.
8145 If there is, then it provides the actual size of our type. */
8146 else if (ada_type_name (fixed_record_type) != NULL)
8147 {
0d5cff50 8148 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8149 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8150 int xvz_found = 0;
8151 LONGEST size;
8152
88c15c34 8153 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8154 size = get_int_var_value (xvz_name, &xvz_found);
8155 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8156 {
8157 fixed_record_type = copy_type (fixed_record_type);
8158 TYPE_LENGTH (fixed_record_type) = size;
8159
8160 /* The FIXED_RECORD_TYPE may have be a stub. We have
8161 observed this when the debugging info is STABS, and
8162 apparently it is something that is hard to fix.
8163
8164 In practice, we don't need the actual type definition
8165 at all, because the presence of the XVZ variable allows us
8166 to assume that there must be a XVS type as well, which we
8167 should be able to use later, when we need the actual type
8168 definition.
8169
8170 In the meantime, pretend that the "fixed" type we are
8171 returning is NOT a stub, because this can cause trouble
8172 when using this type to create new types targeting it.
8173 Indeed, the associated creation routines often check
8174 whether the target type is a stub and will try to replace
0963b4bd 8175 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8176 might cause the new type to have the wrong size too.
8177 Consider the case of an array, for instance, where the size
8178 of the array is computed from the number of elements in
8179 our array multiplied by the size of its element. */
8180 TYPE_STUB (fixed_record_type) = 0;
8181 }
8182 }
1ed6ede0 8183 return fixed_record_type;
4c4b4cd2 8184 }
d2e4a39e 8185 case TYPE_CODE_ARRAY:
4c4b4cd2 8186 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8187 case TYPE_CODE_UNION:
8188 if (dval == NULL)
4c4b4cd2 8189 return type;
d2e4a39e 8190 else
4c4b4cd2 8191 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8192 }
14f9c5c9
AS
8193}
8194
f192137b
JB
8195/* The same as ada_to_fixed_type_1, except that it preserves the type
8196 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8197
8198 The typedef layer needs be preserved in order to differentiate between
8199 arrays and array pointers when both types are implemented using the same
8200 fat pointer. In the array pointer case, the pointer is encoded as
8201 a typedef of the pointer type. For instance, considering:
8202
8203 type String_Access is access String;
8204 S1 : String_Access := null;
8205
8206 To the debugger, S1 is defined as a typedef of type String. But
8207 to the user, it is a pointer. So if the user tries to print S1,
8208 we should not dereference the array, but print the array address
8209 instead.
8210
8211 If we didn't preserve the typedef layer, we would lose the fact that
8212 the type is to be presented as a pointer (needs de-reference before
8213 being printed). And we would also use the source-level type name. */
f192137b
JB
8214
8215struct type *
8216ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8217 CORE_ADDR address, struct value *dval, int check_tag)
8218
8219{
8220 struct type *fixed_type =
8221 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8222
96dbd2c1
JB
8223 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8224 then preserve the typedef layer.
8225
8226 Implementation note: We can only check the main-type portion of
8227 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8228 from TYPE now returns a type that has the same instance flags
8229 as TYPE. For instance, if TYPE is a "typedef const", and its
8230 target type is a "struct", then the typedef elimination will return
8231 a "const" version of the target type. See check_typedef for more
8232 details about how the typedef layer elimination is done.
8233
8234 brobecker/2010-11-19: It seems to me that the only case where it is
8235 useful to preserve the typedef layer is when dealing with fat pointers.
8236 Perhaps, we could add a check for that and preserve the typedef layer
8237 only in that situation. But this seems unecessary so far, probably
8238 because we call check_typedef/ada_check_typedef pretty much everywhere.
8239 */
f192137b 8240 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8241 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8242 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8243 return type;
8244
8245 return fixed_type;
8246}
8247
14f9c5c9 8248/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8249 TYPE0, but based on no runtime data. */
14f9c5c9 8250
d2e4a39e
AS
8251static struct type *
8252to_static_fixed_type (struct type *type0)
14f9c5c9 8253{
d2e4a39e 8254 struct type *type;
14f9c5c9
AS
8255
8256 if (type0 == NULL)
8257 return NULL;
8258
876cecd0 8259 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8260 return type0;
8261
61ee279c 8262 type0 = ada_check_typedef (type0);
d2e4a39e 8263
14f9c5c9
AS
8264 switch (TYPE_CODE (type0))
8265 {
8266 default:
8267 return type0;
8268 case TYPE_CODE_STRUCT:
8269 type = dynamic_template_type (type0);
d2e4a39e 8270 if (type != NULL)
4c4b4cd2
PH
8271 return template_to_static_fixed_type (type);
8272 else
8273 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8274 case TYPE_CODE_UNION:
8275 type = ada_find_parallel_type (type0, "___XVU");
8276 if (type != NULL)
4c4b4cd2
PH
8277 return template_to_static_fixed_type (type);
8278 else
8279 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8280 }
8281}
8282
4c4b4cd2
PH
8283/* A static approximation of TYPE with all type wrappers removed. */
8284
d2e4a39e
AS
8285static struct type *
8286static_unwrap_type (struct type *type)
14f9c5c9
AS
8287{
8288 if (ada_is_aligner_type (type))
8289 {
61ee279c 8290 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8291 if (ada_type_name (type1) == NULL)
4c4b4cd2 8292 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8293
8294 return static_unwrap_type (type1);
8295 }
d2e4a39e 8296 else
14f9c5c9 8297 {
d2e4a39e 8298 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8299
d2e4a39e 8300 if (raw_real_type == type)
4c4b4cd2 8301 return type;
14f9c5c9 8302 else
4c4b4cd2 8303 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8304 }
8305}
8306
8307/* In some cases, incomplete and private types require
4c4b4cd2 8308 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8309 type Foo;
8310 type FooP is access Foo;
8311 V: FooP;
8312 type Foo is array ...;
4c4b4cd2 8313 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8314 cross-references to such types, we instead substitute for FooP a
8315 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8316 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8317
8318/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8319 exists, otherwise TYPE. */
8320
d2e4a39e 8321struct type *
61ee279c 8322ada_check_typedef (struct type *type)
14f9c5c9 8323{
727e3d2e
JB
8324 if (type == NULL)
8325 return NULL;
8326
720d1a40
JB
8327 /* If our type is a typedef type of a fat pointer, then we're done.
8328 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8329 what allows us to distinguish between fat pointers that represent
8330 array types, and fat pointers that represent array access types
8331 (in both cases, the compiler implements them as fat pointers). */
8332 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8333 && is_thick_pntr (ada_typedef_target_type (type)))
8334 return type;
8335
14f9c5c9
AS
8336 CHECK_TYPEDEF (type);
8337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8338 || !TYPE_STUB (type)
14f9c5c9
AS
8339 || TYPE_TAG_NAME (type) == NULL)
8340 return type;
d2e4a39e 8341 else
14f9c5c9 8342 {
0d5cff50 8343 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8344 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8345
05e522ef
JB
8346 if (type1 == NULL)
8347 return type;
8348
8349 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8350 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8351 types, only for the typedef-to-array types). If that's the case,
8352 strip the typedef layer. */
8353 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8354 type1 = ada_check_typedef (type1);
8355
8356 return type1;
14f9c5c9
AS
8357 }
8358}
8359
8360/* A value representing the data at VALADDR/ADDRESS as described by
8361 type TYPE0, but with a standard (static-sized) type that correctly
8362 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8363 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8364 creation of struct values]. */
14f9c5c9 8365
4c4b4cd2
PH
8366static struct value *
8367ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8368 struct value *val0)
14f9c5c9 8369{
1ed6ede0 8370 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8371
14f9c5c9
AS
8372 if (type == type0 && val0 != NULL)
8373 return val0;
d2e4a39e 8374 else
4c4b4cd2
PH
8375 return value_from_contents_and_address (type, 0, address);
8376}
8377
8378/* A value representing VAL, but with a standard (static-sized) type
8379 that correctly describes it. Does not necessarily create a new
8380 value. */
8381
0c3acc09 8382struct value *
4c4b4cd2
PH
8383ada_to_fixed_value (struct value *val)
8384{
c48db5ca
JB
8385 val = unwrap_value (val);
8386 val = ada_to_fixed_value_create (value_type (val),
8387 value_address (val),
8388 val);
8389 return val;
14f9c5c9 8390}
d2e4a39e 8391\f
14f9c5c9 8392
14f9c5c9
AS
8393/* Attributes */
8394
4c4b4cd2
PH
8395/* Table mapping attribute numbers to names.
8396 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8397
d2e4a39e 8398static const char *attribute_names[] = {
14f9c5c9
AS
8399 "<?>",
8400
d2e4a39e 8401 "first",
14f9c5c9
AS
8402 "last",
8403 "length",
8404 "image",
14f9c5c9
AS
8405 "max",
8406 "min",
4c4b4cd2
PH
8407 "modulus",
8408 "pos",
8409 "size",
8410 "tag",
14f9c5c9 8411 "val",
14f9c5c9
AS
8412 0
8413};
8414
d2e4a39e 8415const char *
4c4b4cd2 8416ada_attribute_name (enum exp_opcode n)
14f9c5c9 8417{
4c4b4cd2
PH
8418 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8419 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8420 else
8421 return attribute_names[0];
8422}
8423
4c4b4cd2 8424/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8425
4c4b4cd2
PH
8426static LONGEST
8427pos_atr (struct value *arg)
14f9c5c9 8428{
24209737
PH
8429 struct value *val = coerce_ref (arg);
8430 struct type *type = value_type (val);
14f9c5c9 8431
d2e4a39e 8432 if (!discrete_type_p (type))
323e0a4a 8433 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8434
8435 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8436 {
8437 int i;
24209737 8438 LONGEST v = value_as_long (val);
14f9c5c9 8439
d2e4a39e 8440 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8441 {
14e75d8e 8442 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8443 return i;
8444 }
323e0a4a 8445 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8446 }
8447 else
24209737 8448 return value_as_long (val);
4c4b4cd2
PH
8449}
8450
8451static struct value *
3cb382c9 8452value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8453{
3cb382c9 8454 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8455}
8456
4c4b4cd2 8457/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8458
d2e4a39e
AS
8459static struct value *
8460value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8461{
d2e4a39e 8462 if (!discrete_type_p (type))
323e0a4a 8463 error (_("'VAL only defined on discrete types"));
df407dfe 8464 if (!integer_type_p (value_type (arg)))
323e0a4a 8465 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8466
8467 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8468 {
8469 long pos = value_as_long (arg);
5b4ee69b 8470
14f9c5c9 8471 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8472 error (_("argument to 'VAL out of range"));
14e75d8e 8473 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8474 }
8475 else
8476 return value_from_longest (type, value_as_long (arg));
8477}
14f9c5c9 8478\f
d2e4a39e 8479
4c4b4cd2 8480 /* Evaluation */
14f9c5c9 8481
4c4b4cd2
PH
8482/* True if TYPE appears to be an Ada character type.
8483 [At the moment, this is true only for Character and Wide_Character;
8484 It is a heuristic test that could stand improvement]. */
14f9c5c9 8485
d2e4a39e
AS
8486int
8487ada_is_character_type (struct type *type)
14f9c5c9 8488{
7b9f71f2
JB
8489 const char *name;
8490
8491 /* If the type code says it's a character, then assume it really is,
8492 and don't check any further. */
8493 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8494 return 1;
8495
8496 /* Otherwise, assume it's a character type iff it is a discrete type
8497 with a known character type name. */
8498 name = ada_type_name (type);
8499 return (name != NULL
8500 && (TYPE_CODE (type) == TYPE_CODE_INT
8501 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8502 && (strcmp (name, "character") == 0
8503 || strcmp (name, "wide_character") == 0
5a517ebd 8504 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8505 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8506}
8507
4c4b4cd2 8508/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8509
8510int
ebf56fd3 8511ada_is_string_type (struct type *type)
14f9c5c9 8512{
61ee279c 8513 type = ada_check_typedef (type);
d2e4a39e 8514 if (type != NULL
14f9c5c9 8515 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8516 && (ada_is_simple_array_type (type)
8517 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8518 && ada_array_arity (type) == 1)
8519 {
8520 struct type *elttype = ada_array_element_type (type, 1);
8521
8522 return ada_is_character_type (elttype);
8523 }
d2e4a39e 8524 else
14f9c5c9
AS
8525 return 0;
8526}
8527
5bf03f13
JB
8528/* The compiler sometimes provides a parallel XVS type for a given
8529 PAD type. Normally, it is safe to follow the PAD type directly,
8530 but older versions of the compiler have a bug that causes the offset
8531 of its "F" field to be wrong. Following that field in that case
8532 would lead to incorrect results, but this can be worked around
8533 by ignoring the PAD type and using the associated XVS type instead.
8534
8535 Set to True if the debugger should trust the contents of PAD types.
8536 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8537static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8538
8539/* True if TYPE is a struct type introduced by the compiler to force the
8540 alignment of a value. Such types have a single field with a
4c4b4cd2 8541 distinctive name. */
14f9c5c9
AS
8542
8543int
ebf56fd3 8544ada_is_aligner_type (struct type *type)
14f9c5c9 8545{
61ee279c 8546 type = ada_check_typedef (type);
714e53ab 8547
5bf03f13 8548 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8549 return 0;
8550
14f9c5c9 8551 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8552 && TYPE_NFIELDS (type) == 1
8553 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8554}
8555
8556/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8557 the parallel type. */
14f9c5c9 8558
d2e4a39e
AS
8559struct type *
8560ada_get_base_type (struct type *raw_type)
14f9c5c9 8561{
d2e4a39e
AS
8562 struct type *real_type_namer;
8563 struct type *raw_real_type;
14f9c5c9
AS
8564
8565 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8566 return raw_type;
8567
284614f0
JB
8568 if (ada_is_aligner_type (raw_type))
8569 /* The encoding specifies that we should always use the aligner type.
8570 So, even if this aligner type has an associated XVS type, we should
8571 simply ignore it.
8572
8573 According to the compiler gurus, an XVS type parallel to an aligner
8574 type may exist because of a stabs limitation. In stabs, aligner
8575 types are empty because the field has a variable-sized type, and
8576 thus cannot actually be used as an aligner type. As a result,
8577 we need the associated parallel XVS type to decode the type.
8578 Since the policy in the compiler is to not change the internal
8579 representation based on the debugging info format, we sometimes
8580 end up having a redundant XVS type parallel to the aligner type. */
8581 return raw_type;
8582
14f9c5c9 8583 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8584 if (real_type_namer == NULL
14f9c5c9
AS
8585 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8586 || TYPE_NFIELDS (real_type_namer) != 1)
8587 return raw_type;
8588
f80d3ff2
JB
8589 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8590 {
8591 /* This is an older encoding form where the base type needs to be
8592 looked up by name. We prefer the newer enconding because it is
8593 more efficient. */
8594 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8595 if (raw_real_type == NULL)
8596 return raw_type;
8597 else
8598 return raw_real_type;
8599 }
8600
8601 /* The field in our XVS type is a reference to the base type. */
8602 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8603}
14f9c5c9 8604
4c4b4cd2 8605/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8606
d2e4a39e
AS
8607struct type *
8608ada_aligned_type (struct type *type)
14f9c5c9
AS
8609{
8610 if (ada_is_aligner_type (type))
8611 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8612 else
8613 return ada_get_base_type (type);
8614}
8615
8616
8617/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8618 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8619
fc1a4b47
AC
8620const gdb_byte *
8621ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8622{
d2e4a39e 8623 if (ada_is_aligner_type (type))
14f9c5c9 8624 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8625 valaddr +
8626 TYPE_FIELD_BITPOS (type,
8627 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8628 else
8629 return valaddr;
8630}
8631
4c4b4cd2
PH
8632
8633
14f9c5c9 8634/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8635 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8636const char *
8637ada_enum_name (const char *name)
14f9c5c9 8638{
4c4b4cd2
PH
8639 static char *result;
8640 static size_t result_len = 0;
d2e4a39e 8641 char *tmp;
14f9c5c9 8642
4c4b4cd2
PH
8643 /* First, unqualify the enumeration name:
8644 1. Search for the last '.' character. If we find one, then skip
177b42fe 8645 all the preceding characters, the unqualified name starts
76a01679 8646 right after that dot.
4c4b4cd2 8647 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8648 translates dots into "__". Search forward for double underscores,
8649 but stop searching when we hit an overloading suffix, which is
8650 of the form "__" followed by digits. */
4c4b4cd2 8651
c3e5cd34
PH
8652 tmp = strrchr (name, '.');
8653 if (tmp != NULL)
4c4b4cd2
PH
8654 name = tmp + 1;
8655 else
14f9c5c9 8656 {
4c4b4cd2
PH
8657 while ((tmp = strstr (name, "__")) != NULL)
8658 {
8659 if (isdigit (tmp[2]))
8660 break;
8661 else
8662 name = tmp + 2;
8663 }
14f9c5c9
AS
8664 }
8665
8666 if (name[0] == 'Q')
8667 {
14f9c5c9 8668 int v;
5b4ee69b 8669
14f9c5c9 8670 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8671 {
8672 if (sscanf (name + 2, "%x", &v) != 1)
8673 return name;
8674 }
14f9c5c9 8675 else
4c4b4cd2 8676 return name;
14f9c5c9 8677
4c4b4cd2 8678 GROW_VECT (result, result_len, 16);
14f9c5c9 8679 if (isascii (v) && isprint (v))
88c15c34 8680 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8681 else if (name[1] == 'U')
88c15c34 8682 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8683 else
88c15c34 8684 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8685
8686 return result;
8687 }
d2e4a39e 8688 else
4c4b4cd2 8689 {
c3e5cd34
PH
8690 tmp = strstr (name, "__");
8691 if (tmp == NULL)
8692 tmp = strstr (name, "$");
8693 if (tmp != NULL)
4c4b4cd2
PH
8694 {
8695 GROW_VECT (result, result_len, tmp - name + 1);
8696 strncpy (result, name, tmp - name);
8697 result[tmp - name] = '\0';
8698 return result;
8699 }
8700
8701 return name;
8702 }
14f9c5c9
AS
8703}
8704
14f9c5c9
AS
8705/* Evaluate the subexpression of EXP starting at *POS as for
8706 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8707 expression. */
14f9c5c9 8708
d2e4a39e
AS
8709static struct value *
8710evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8711{
4b27a620 8712 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8713}
8714
8715/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8716 value it wraps. */
14f9c5c9 8717
d2e4a39e
AS
8718static struct value *
8719unwrap_value (struct value *val)
14f9c5c9 8720{
df407dfe 8721 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8722
14f9c5c9
AS
8723 if (ada_is_aligner_type (type))
8724 {
de4d072f 8725 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8726 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8727
14f9c5c9 8728 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8729 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8730
8731 return unwrap_value (v);
8732 }
d2e4a39e 8733 else
14f9c5c9 8734 {
d2e4a39e 8735 struct type *raw_real_type =
61ee279c 8736 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8737
5bf03f13
JB
8738 /* If there is no parallel XVS or XVE type, then the value is
8739 already unwrapped. Return it without further modification. */
8740 if ((type == raw_real_type)
8741 && ada_find_parallel_type (type, "___XVE") == NULL)
8742 return val;
14f9c5c9 8743
d2e4a39e 8744 return
4c4b4cd2
PH
8745 coerce_unspec_val_to_type
8746 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8747 value_address (val),
1ed6ede0 8748 NULL, 1));
14f9c5c9
AS
8749 }
8750}
d2e4a39e
AS
8751
8752static struct value *
8753cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8754{
8755 LONGEST val;
8756
df407dfe 8757 if (type == value_type (arg))
14f9c5c9 8758 return arg;
df407dfe 8759 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8760 val = ada_float_to_fixed (type,
df407dfe 8761 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8762 value_as_long (arg)));
d2e4a39e 8763 else
14f9c5c9 8764 {
a53b7a21 8765 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8766
14f9c5c9
AS
8767 val = ada_float_to_fixed (type, argd);
8768 }
8769
8770 return value_from_longest (type, val);
8771}
8772
d2e4a39e 8773static struct value *
a53b7a21 8774cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8775{
df407dfe 8776 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8777 value_as_long (arg));
5b4ee69b 8778
a53b7a21 8779 return value_from_double (type, val);
14f9c5c9
AS
8780}
8781
d99dcf51
JB
8782/* Given two array types T1 and T2, return nonzero iff both arrays
8783 contain the same number of elements. */
8784
8785static int
8786ada_same_array_size_p (struct type *t1, struct type *t2)
8787{
8788 LONGEST lo1, hi1, lo2, hi2;
8789
8790 /* Get the array bounds in order to verify that the size of
8791 the two arrays match. */
8792 if (!get_array_bounds (t1, &lo1, &hi1)
8793 || !get_array_bounds (t2, &lo2, &hi2))
8794 error (_("unable to determine array bounds"));
8795
8796 /* To make things easier for size comparison, normalize a bit
8797 the case of empty arrays by making sure that the difference
8798 between upper bound and lower bound is always -1. */
8799 if (lo1 > hi1)
8800 hi1 = lo1 - 1;
8801 if (lo2 > hi2)
8802 hi2 = lo2 - 1;
8803
8804 return (hi1 - lo1 == hi2 - lo2);
8805}
8806
8807/* Assuming that VAL is an array of integrals, and TYPE represents
8808 an array with the same number of elements, but with wider integral
8809 elements, return an array "casted" to TYPE. In practice, this
8810 means that the returned array is built by casting each element
8811 of the original array into TYPE's (wider) element type. */
8812
8813static struct value *
8814ada_promote_array_of_integrals (struct type *type, struct value *val)
8815{
8816 struct type *elt_type = TYPE_TARGET_TYPE (type);
8817 LONGEST lo, hi;
8818 struct value *res;
8819 LONGEST i;
8820
8821 /* Verify that both val and type are arrays of scalars, and
8822 that the size of val's elements is smaller than the size
8823 of type's element. */
8824 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8825 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8826 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8827 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8828 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8829 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8830
8831 if (!get_array_bounds (type, &lo, &hi))
8832 error (_("unable to determine array bounds"));
8833
8834 res = allocate_value (type);
8835
8836 /* Promote each array element. */
8837 for (i = 0; i < hi - lo + 1; i++)
8838 {
8839 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8840
8841 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8842 value_contents_all (elt), TYPE_LENGTH (elt_type));
8843 }
8844
8845 return res;
8846}
8847
4c4b4cd2
PH
8848/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8849 return the converted value. */
8850
d2e4a39e
AS
8851static struct value *
8852coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8853{
df407dfe 8854 struct type *type2 = value_type (val);
5b4ee69b 8855
14f9c5c9
AS
8856 if (type == type2)
8857 return val;
8858
61ee279c
PH
8859 type2 = ada_check_typedef (type2);
8860 type = ada_check_typedef (type);
14f9c5c9 8861
d2e4a39e
AS
8862 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8863 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8864 {
8865 val = ada_value_ind (val);
df407dfe 8866 type2 = value_type (val);
14f9c5c9
AS
8867 }
8868
d2e4a39e 8869 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8870 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8871 {
d99dcf51
JB
8872 if (!ada_same_array_size_p (type, type2))
8873 error (_("cannot assign arrays of different length"));
8874
8875 if (is_integral_type (TYPE_TARGET_TYPE (type))
8876 && is_integral_type (TYPE_TARGET_TYPE (type2))
8877 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8878 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8879 {
8880 /* Allow implicit promotion of the array elements to
8881 a wider type. */
8882 return ada_promote_array_of_integrals (type, val);
8883 }
8884
8885 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8886 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8887 error (_("Incompatible types in assignment"));
04624583 8888 deprecated_set_value_type (val, type);
14f9c5c9 8889 }
d2e4a39e 8890 return val;
14f9c5c9
AS
8891}
8892
4c4b4cd2
PH
8893static struct value *
8894ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8895{
8896 struct value *val;
8897 struct type *type1, *type2;
8898 LONGEST v, v1, v2;
8899
994b9211
AC
8900 arg1 = coerce_ref (arg1);
8901 arg2 = coerce_ref (arg2);
18af8284
JB
8902 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8903 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8904
76a01679
JB
8905 if (TYPE_CODE (type1) != TYPE_CODE_INT
8906 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8907 return value_binop (arg1, arg2, op);
8908
76a01679 8909 switch (op)
4c4b4cd2
PH
8910 {
8911 case BINOP_MOD:
8912 case BINOP_DIV:
8913 case BINOP_REM:
8914 break;
8915 default:
8916 return value_binop (arg1, arg2, op);
8917 }
8918
8919 v2 = value_as_long (arg2);
8920 if (v2 == 0)
323e0a4a 8921 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8922
8923 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8924 return value_binop (arg1, arg2, op);
8925
8926 v1 = value_as_long (arg1);
8927 switch (op)
8928 {
8929 case BINOP_DIV:
8930 v = v1 / v2;
76a01679
JB
8931 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8932 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8933 break;
8934 case BINOP_REM:
8935 v = v1 % v2;
76a01679
JB
8936 if (v * v1 < 0)
8937 v -= v2;
4c4b4cd2
PH
8938 break;
8939 default:
8940 /* Should not reach this point. */
8941 v = 0;
8942 }
8943
8944 val = allocate_value (type1);
990a07ab 8945 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8946 TYPE_LENGTH (value_type (val)),
8947 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8948 return val;
8949}
8950
8951static int
8952ada_value_equal (struct value *arg1, struct value *arg2)
8953{
df407dfe
AC
8954 if (ada_is_direct_array_type (value_type (arg1))
8955 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8956 {
f58b38bf
JB
8957 /* Automatically dereference any array reference before
8958 we attempt to perform the comparison. */
8959 arg1 = ada_coerce_ref (arg1);
8960 arg2 = ada_coerce_ref (arg2);
8961
4c4b4cd2
PH
8962 arg1 = ada_coerce_to_simple_array (arg1);
8963 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8964 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8965 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8966 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8967 /* FIXME: The following works only for types whose
76a01679
JB
8968 representations use all bits (no padding or undefined bits)
8969 and do not have user-defined equality. */
8970 return
df407dfe 8971 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8972 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8973 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8974 }
8975 return value_equal (arg1, arg2);
8976}
8977
52ce6436
PH
8978/* Total number of component associations in the aggregate starting at
8979 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8980 OP_AGGREGATE. */
52ce6436
PH
8981
8982static int
8983num_component_specs (struct expression *exp, int pc)
8984{
8985 int n, m, i;
5b4ee69b 8986
52ce6436
PH
8987 m = exp->elts[pc + 1].longconst;
8988 pc += 3;
8989 n = 0;
8990 for (i = 0; i < m; i += 1)
8991 {
8992 switch (exp->elts[pc].opcode)
8993 {
8994 default:
8995 n += 1;
8996 break;
8997 case OP_CHOICES:
8998 n += exp->elts[pc + 1].longconst;
8999 break;
9000 }
9001 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9002 }
9003 return n;
9004}
9005
9006/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9007 component of LHS (a simple array or a record), updating *POS past
9008 the expression, assuming that LHS is contained in CONTAINER. Does
9009 not modify the inferior's memory, nor does it modify LHS (unless
9010 LHS == CONTAINER). */
9011
9012static void
9013assign_component (struct value *container, struct value *lhs, LONGEST index,
9014 struct expression *exp, int *pos)
9015{
9016 struct value *mark = value_mark ();
9017 struct value *elt;
5b4ee69b 9018
52ce6436
PH
9019 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9020 {
22601c15
UW
9021 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9022 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9023
52ce6436
PH
9024 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9025 }
9026 else
9027 {
9028 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9029 elt = ada_to_fixed_value (elt);
52ce6436
PH
9030 }
9031
9032 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9033 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9034 else
9035 value_assign_to_component (container, elt,
9036 ada_evaluate_subexp (NULL, exp, pos,
9037 EVAL_NORMAL));
9038
9039 value_free_to_mark (mark);
9040}
9041
9042/* Assuming that LHS represents an lvalue having a record or array
9043 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9044 of that aggregate's value to LHS, advancing *POS past the
9045 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9046 lvalue containing LHS (possibly LHS itself). Does not modify
9047 the inferior's memory, nor does it modify the contents of
0963b4bd 9048 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9049
9050static struct value *
9051assign_aggregate (struct value *container,
9052 struct value *lhs, struct expression *exp,
9053 int *pos, enum noside noside)
9054{
9055 struct type *lhs_type;
9056 int n = exp->elts[*pos+1].longconst;
9057 LONGEST low_index, high_index;
9058 int num_specs;
9059 LONGEST *indices;
9060 int max_indices, num_indices;
52ce6436 9061 int i;
52ce6436
PH
9062
9063 *pos += 3;
9064 if (noside != EVAL_NORMAL)
9065 {
52ce6436
PH
9066 for (i = 0; i < n; i += 1)
9067 ada_evaluate_subexp (NULL, exp, pos, noside);
9068 return container;
9069 }
9070
9071 container = ada_coerce_ref (container);
9072 if (ada_is_direct_array_type (value_type (container)))
9073 container = ada_coerce_to_simple_array (container);
9074 lhs = ada_coerce_ref (lhs);
9075 if (!deprecated_value_modifiable (lhs))
9076 error (_("Left operand of assignment is not a modifiable lvalue."));
9077
9078 lhs_type = value_type (lhs);
9079 if (ada_is_direct_array_type (lhs_type))
9080 {
9081 lhs = ada_coerce_to_simple_array (lhs);
9082 lhs_type = value_type (lhs);
9083 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9084 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9085 }
9086 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9087 {
9088 low_index = 0;
9089 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9090 }
9091 else
9092 error (_("Left-hand side must be array or record."));
9093
9094 num_specs = num_component_specs (exp, *pos - 3);
9095 max_indices = 4 * num_specs + 4;
9096 indices = alloca (max_indices * sizeof (indices[0]));
9097 indices[0] = indices[1] = low_index - 1;
9098 indices[2] = indices[3] = high_index + 1;
9099 num_indices = 4;
9100
9101 for (i = 0; i < n; i += 1)
9102 {
9103 switch (exp->elts[*pos].opcode)
9104 {
1fbf5ada
JB
9105 case OP_CHOICES:
9106 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9107 &num_indices, max_indices,
9108 low_index, high_index);
9109 break;
9110 case OP_POSITIONAL:
9111 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9112 &num_indices, max_indices,
9113 low_index, high_index);
1fbf5ada
JB
9114 break;
9115 case OP_OTHERS:
9116 if (i != n-1)
9117 error (_("Misplaced 'others' clause"));
9118 aggregate_assign_others (container, lhs, exp, pos, indices,
9119 num_indices, low_index, high_index);
9120 break;
9121 default:
9122 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9123 }
9124 }
9125
9126 return container;
9127}
9128
9129/* Assign into the component of LHS indexed by the OP_POSITIONAL
9130 construct at *POS, updating *POS past the construct, given that
9131 the positions are relative to lower bound LOW, where HIGH is the
9132 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9133 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9134 assign_aggregate. */
52ce6436
PH
9135static void
9136aggregate_assign_positional (struct value *container,
9137 struct value *lhs, struct expression *exp,
9138 int *pos, LONGEST *indices, int *num_indices,
9139 int max_indices, LONGEST low, LONGEST high)
9140{
9141 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9142
9143 if (ind - 1 == high)
e1d5a0d2 9144 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9145 if (ind <= high)
9146 {
9147 add_component_interval (ind, ind, indices, num_indices, max_indices);
9148 *pos += 3;
9149 assign_component (container, lhs, ind, exp, pos);
9150 }
9151 else
9152 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9153}
9154
9155/* Assign into the components of LHS indexed by the OP_CHOICES
9156 construct at *POS, updating *POS past the construct, given that
9157 the allowable indices are LOW..HIGH. Record the indices assigned
9158 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9159 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9160static void
9161aggregate_assign_from_choices (struct value *container,
9162 struct value *lhs, struct expression *exp,
9163 int *pos, LONGEST *indices, int *num_indices,
9164 int max_indices, LONGEST low, LONGEST high)
9165{
9166 int j;
9167 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9168 int choice_pos, expr_pc;
9169 int is_array = ada_is_direct_array_type (value_type (lhs));
9170
9171 choice_pos = *pos += 3;
9172
9173 for (j = 0; j < n_choices; j += 1)
9174 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9175 expr_pc = *pos;
9176 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9177
9178 for (j = 0; j < n_choices; j += 1)
9179 {
9180 LONGEST lower, upper;
9181 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9182
52ce6436
PH
9183 if (op == OP_DISCRETE_RANGE)
9184 {
9185 choice_pos += 1;
9186 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9187 EVAL_NORMAL));
9188 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9189 EVAL_NORMAL));
9190 }
9191 else if (is_array)
9192 {
9193 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9194 EVAL_NORMAL));
9195 upper = lower;
9196 }
9197 else
9198 {
9199 int ind;
0d5cff50 9200 const char *name;
5b4ee69b 9201
52ce6436
PH
9202 switch (op)
9203 {
9204 case OP_NAME:
9205 name = &exp->elts[choice_pos + 2].string;
9206 break;
9207 case OP_VAR_VALUE:
9208 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9209 break;
9210 default:
9211 error (_("Invalid record component association."));
9212 }
9213 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9214 ind = 0;
9215 if (! find_struct_field (name, value_type (lhs), 0,
9216 NULL, NULL, NULL, NULL, &ind))
9217 error (_("Unknown component name: %s."), name);
9218 lower = upper = ind;
9219 }
9220
9221 if (lower <= upper && (lower < low || upper > high))
9222 error (_("Index in component association out of bounds."));
9223
9224 add_component_interval (lower, upper, indices, num_indices,
9225 max_indices);
9226 while (lower <= upper)
9227 {
9228 int pos1;
5b4ee69b 9229
52ce6436
PH
9230 pos1 = expr_pc;
9231 assign_component (container, lhs, lower, exp, &pos1);
9232 lower += 1;
9233 }
9234 }
9235}
9236
9237/* Assign the value of the expression in the OP_OTHERS construct in
9238 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9239 have not been previously assigned. The index intervals already assigned
9240 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9241 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9242static void
9243aggregate_assign_others (struct value *container,
9244 struct value *lhs, struct expression *exp,
9245 int *pos, LONGEST *indices, int num_indices,
9246 LONGEST low, LONGEST high)
9247{
9248 int i;
5ce64950 9249 int expr_pc = *pos + 1;
52ce6436
PH
9250
9251 for (i = 0; i < num_indices - 2; i += 2)
9252 {
9253 LONGEST ind;
5b4ee69b 9254
52ce6436
PH
9255 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9256 {
5ce64950 9257 int localpos;
5b4ee69b 9258
5ce64950
MS
9259 localpos = expr_pc;
9260 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9261 }
9262 }
9263 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9264}
9265
9266/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9267 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9268 modifying *SIZE as needed. It is an error if *SIZE exceeds
9269 MAX_SIZE. The resulting intervals do not overlap. */
9270static void
9271add_component_interval (LONGEST low, LONGEST high,
9272 LONGEST* indices, int *size, int max_size)
9273{
9274 int i, j;
5b4ee69b 9275
52ce6436
PH
9276 for (i = 0; i < *size; i += 2) {
9277 if (high >= indices[i] && low <= indices[i + 1])
9278 {
9279 int kh;
5b4ee69b 9280
52ce6436
PH
9281 for (kh = i + 2; kh < *size; kh += 2)
9282 if (high < indices[kh])
9283 break;
9284 if (low < indices[i])
9285 indices[i] = low;
9286 indices[i + 1] = indices[kh - 1];
9287 if (high > indices[i + 1])
9288 indices[i + 1] = high;
9289 memcpy (indices + i + 2, indices + kh, *size - kh);
9290 *size -= kh - i - 2;
9291 return;
9292 }
9293 else if (high < indices[i])
9294 break;
9295 }
9296
9297 if (*size == max_size)
9298 error (_("Internal error: miscounted aggregate components."));
9299 *size += 2;
9300 for (j = *size-1; j >= i+2; j -= 1)
9301 indices[j] = indices[j - 2];
9302 indices[i] = low;
9303 indices[i + 1] = high;
9304}
9305
6e48bd2c
JB
9306/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9307 is different. */
9308
9309static struct value *
9310ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9311{
9312 if (type == ada_check_typedef (value_type (arg2)))
9313 return arg2;
9314
9315 if (ada_is_fixed_point_type (type))
9316 return (cast_to_fixed (type, arg2));
9317
9318 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9319 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9320
9321 return value_cast (type, arg2);
9322}
9323
284614f0
JB
9324/* Evaluating Ada expressions, and printing their result.
9325 ------------------------------------------------------
9326
21649b50
JB
9327 1. Introduction:
9328 ----------------
9329
284614f0
JB
9330 We usually evaluate an Ada expression in order to print its value.
9331 We also evaluate an expression in order to print its type, which
9332 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9333 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9334 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9335 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9336 similar.
9337
9338 Evaluating expressions is a little more complicated for Ada entities
9339 than it is for entities in languages such as C. The main reason for
9340 this is that Ada provides types whose definition might be dynamic.
9341 One example of such types is variant records. Or another example
9342 would be an array whose bounds can only be known at run time.
9343
9344 The following description is a general guide as to what should be
9345 done (and what should NOT be done) in order to evaluate an expression
9346 involving such types, and when. This does not cover how the semantic
9347 information is encoded by GNAT as this is covered separatly. For the
9348 document used as the reference for the GNAT encoding, see exp_dbug.ads
9349 in the GNAT sources.
9350
9351 Ideally, we should embed each part of this description next to its
9352 associated code. Unfortunately, the amount of code is so vast right
9353 now that it's hard to see whether the code handling a particular
9354 situation might be duplicated or not. One day, when the code is
9355 cleaned up, this guide might become redundant with the comments
9356 inserted in the code, and we might want to remove it.
9357
21649b50
JB
9358 2. ``Fixing'' an Entity, the Simple Case:
9359 -----------------------------------------
9360
284614f0
JB
9361 When evaluating Ada expressions, the tricky issue is that they may
9362 reference entities whose type contents and size are not statically
9363 known. Consider for instance a variant record:
9364
9365 type Rec (Empty : Boolean := True) is record
9366 case Empty is
9367 when True => null;
9368 when False => Value : Integer;
9369 end case;
9370 end record;
9371 Yes : Rec := (Empty => False, Value => 1);
9372 No : Rec := (empty => True);
9373
9374 The size and contents of that record depends on the value of the
9375 descriminant (Rec.Empty). At this point, neither the debugging
9376 information nor the associated type structure in GDB are able to
9377 express such dynamic types. So what the debugger does is to create
9378 "fixed" versions of the type that applies to the specific object.
9379 We also informally refer to this opperation as "fixing" an object,
9380 which means creating its associated fixed type.
9381
9382 Example: when printing the value of variable "Yes" above, its fixed
9383 type would look like this:
9384
9385 type Rec is record
9386 Empty : Boolean;
9387 Value : Integer;
9388 end record;
9389
9390 On the other hand, if we printed the value of "No", its fixed type
9391 would become:
9392
9393 type Rec is record
9394 Empty : Boolean;
9395 end record;
9396
9397 Things become a little more complicated when trying to fix an entity
9398 with a dynamic type that directly contains another dynamic type,
9399 such as an array of variant records, for instance. There are
9400 two possible cases: Arrays, and records.
9401
21649b50
JB
9402 3. ``Fixing'' Arrays:
9403 ---------------------
9404
9405 The type structure in GDB describes an array in terms of its bounds,
9406 and the type of its elements. By design, all elements in the array
9407 have the same type and we cannot represent an array of variant elements
9408 using the current type structure in GDB. When fixing an array,
9409 we cannot fix the array element, as we would potentially need one
9410 fixed type per element of the array. As a result, the best we can do
9411 when fixing an array is to produce an array whose bounds and size
9412 are correct (allowing us to read it from memory), but without having
9413 touched its element type. Fixing each element will be done later,
9414 when (if) necessary.
9415
9416 Arrays are a little simpler to handle than records, because the same
9417 amount of memory is allocated for each element of the array, even if
1b536f04 9418 the amount of space actually used by each element differs from element
21649b50 9419 to element. Consider for instance the following array of type Rec:
284614f0
JB
9420
9421 type Rec_Array is array (1 .. 2) of Rec;
9422
1b536f04
JB
9423 The actual amount of memory occupied by each element might be different
9424 from element to element, depending on the value of their discriminant.
21649b50 9425 But the amount of space reserved for each element in the array remains
1b536f04 9426 fixed regardless. So we simply need to compute that size using
21649b50
JB
9427 the debugging information available, from which we can then determine
9428 the array size (we multiply the number of elements of the array by
9429 the size of each element).
9430
9431 The simplest case is when we have an array of a constrained element
9432 type. For instance, consider the following type declarations:
9433
9434 type Bounded_String (Max_Size : Integer) is
9435 Length : Integer;
9436 Buffer : String (1 .. Max_Size);
9437 end record;
9438 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9439
9440 In this case, the compiler describes the array as an array of
9441 variable-size elements (identified by its XVS suffix) for which
9442 the size can be read in the parallel XVZ variable.
9443
9444 In the case of an array of an unconstrained element type, the compiler
9445 wraps the array element inside a private PAD type. This type should not
9446 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9447 that we also use the adjective "aligner" in our code to designate
9448 these wrapper types.
9449
1b536f04 9450 In some cases, the size allocated for each element is statically
21649b50
JB
9451 known. In that case, the PAD type already has the correct size,
9452 and the array element should remain unfixed.
9453
9454 But there are cases when this size is not statically known.
9455 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9456
9457 type Dynamic is array (1 .. Five) of Integer;
9458 type Wrapper (Has_Length : Boolean := False) is record
9459 Data : Dynamic;
9460 case Has_Length is
9461 when True => Length : Integer;
9462 when False => null;
9463 end case;
9464 end record;
9465 type Wrapper_Array is array (1 .. 2) of Wrapper;
9466
9467 Hello : Wrapper_Array := (others => (Has_Length => True,
9468 Data => (others => 17),
9469 Length => 1));
9470
9471
9472 The debugging info would describe variable Hello as being an
9473 array of a PAD type. The size of that PAD type is not statically
9474 known, but can be determined using a parallel XVZ variable.
9475 In that case, a copy of the PAD type with the correct size should
9476 be used for the fixed array.
9477
21649b50
JB
9478 3. ``Fixing'' record type objects:
9479 ----------------------------------
9480
9481 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9482 record types. In this case, in order to compute the associated
9483 fixed type, we need to determine the size and offset of each of
9484 its components. This, in turn, requires us to compute the fixed
9485 type of each of these components.
9486
9487 Consider for instance the example:
9488
9489 type Bounded_String (Max_Size : Natural) is record
9490 Str : String (1 .. Max_Size);
9491 Length : Natural;
9492 end record;
9493 My_String : Bounded_String (Max_Size => 10);
9494
9495 In that case, the position of field "Length" depends on the size
9496 of field Str, which itself depends on the value of the Max_Size
21649b50 9497 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9498 we need to fix the type of field Str. Therefore, fixing a variant
9499 record requires us to fix each of its components.
9500
9501 However, if a component does not have a dynamic size, the component
9502 should not be fixed. In particular, fields that use a PAD type
9503 should not fixed. Here is an example where this might happen
9504 (assuming type Rec above):
9505
9506 type Container (Big : Boolean) is record
9507 First : Rec;
9508 After : Integer;
9509 case Big is
9510 when True => Another : Integer;
9511 when False => null;
9512 end case;
9513 end record;
9514 My_Container : Container := (Big => False,
9515 First => (Empty => True),
9516 After => 42);
9517
9518 In that example, the compiler creates a PAD type for component First,
9519 whose size is constant, and then positions the component After just
9520 right after it. The offset of component After is therefore constant
9521 in this case.
9522
9523 The debugger computes the position of each field based on an algorithm
9524 that uses, among other things, the actual position and size of the field
21649b50
JB
9525 preceding it. Let's now imagine that the user is trying to print
9526 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9527 end up computing the offset of field After based on the size of the
9528 fixed version of field First. And since in our example First has
9529 only one actual field, the size of the fixed type is actually smaller
9530 than the amount of space allocated to that field, and thus we would
9531 compute the wrong offset of field After.
9532
21649b50
JB
9533 To make things more complicated, we need to watch out for dynamic
9534 components of variant records (identified by the ___XVL suffix in
9535 the component name). Even if the target type is a PAD type, the size
9536 of that type might not be statically known. So the PAD type needs
9537 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9538 we might end up with the wrong size for our component. This can be
9539 observed with the following type declarations:
284614f0
JB
9540
9541 type Octal is new Integer range 0 .. 7;
9542 type Octal_Array is array (Positive range <>) of Octal;
9543 pragma Pack (Octal_Array);
9544
9545 type Octal_Buffer (Size : Positive) is record
9546 Buffer : Octal_Array (1 .. Size);
9547 Length : Integer;
9548 end record;
9549
9550 In that case, Buffer is a PAD type whose size is unset and needs
9551 to be computed by fixing the unwrapped type.
9552
21649b50
JB
9553 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9554 ----------------------------------------------------------
9555
9556 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9557 thus far, be actually fixed?
9558
9559 The answer is: Only when referencing that element. For instance
9560 when selecting one component of a record, this specific component
9561 should be fixed at that point in time. Or when printing the value
9562 of a record, each component should be fixed before its value gets
9563 printed. Similarly for arrays, the element of the array should be
9564 fixed when printing each element of the array, or when extracting
9565 one element out of that array. On the other hand, fixing should
9566 not be performed on the elements when taking a slice of an array!
9567
9568 Note that one of the side-effects of miscomputing the offset and
9569 size of each field is that we end up also miscomputing the size
9570 of the containing type. This can have adverse results when computing
9571 the value of an entity. GDB fetches the value of an entity based
9572 on the size of its type, and thus a wrong size causes GDB to fetch
9573 the wrong amount of memory. In the case where the computed size is
9574 too small, GDB fetches too little data to print the value of our
9575 entiry. Results in this case as unpredicatble, as we usually read
9576 past the buffer containing the data =:-o. */
9577
9578/* Implement the evaluate_exp routine in the exp_descriptor structure
9579 for the Ada language. */
9580
52ce6436 9581static struct value *
ebf56fd3 9582ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9583 int *pos, enum noside noside)
14f9c5c9
AS
9584{
9585 enum exp_opcode op;
b5385fc0 9586 int tem;
14f9c5c9
AS
9587 int pc;
9588 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9589 struct type *type;
52ce6436 9590 int nargs, oplen;
d2e4a39e 9591 struct value **argvec;
14f9c5c9 9592
d2e4a39e
AS
9593 pc = *pos;
9594 *pos += 1;
14f9c5c9
AS
9595 op = exp->elts[pc].opcode;
9596
d2e4a39e 9597 switch (op)
14f9c5c9
AS
9598 {
9599 default:
9600 *pos -= 1;
6e48bd2c 9601 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9602
9603 if (noside == EVAL_NORMAL)
9604 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9605
9606 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9607 then we need to perform the conversion manually, because
9608 evaluate_subexp_standard doesn't do it. This conversion is
9609 necessary in Ada because the different kinds of float/fixed
9610 types in Ada have different representations.
9611
9612 Similarly, we need to perform the conversion from OP_LONG
9613 ourselves. */
9614 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9615 arg1 = ada_value_cast (expect_type, arg1, noside);
9616
9617 return arg1;
4c4b4cd2
PH
9618
9619 case OP_STRING:
9620 {
76a01679 9621 struct value *result;
5b4ee69b 9622
76a01679
JB
9623 *pos -= 1;
9624 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9625 /* The result type will have code OP_STRING, bashed there from
9626 OP_ARRAY. Bash it back. */
df407dfe
AC
9627 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9628 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9629 return result;
4c4b4cd2 9630 }
14f9c5c9
AS
9631
9632 case UNOP_CAST:
9633 (*pos) += 2;
9634 type = exp->elts[pc + 1].type;
9635 arg1 = evaluate_subexp (type, exp, pos, noside);
9636 if (noside == EVAL_SKIP)
4c4b4cd2 9637 goto nosideret;
6e48bd2c 9638 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9639 return arg1;
9640
4c4b4cd2
PH
9641 case UNOP_QUAL:
9642 (*pos) += 2;
9643 type = exp->elts[pc + 1].type;
9644 return ada_evaluate_subexp (type, exp, pos, noside);
9645
14f9c5c9
AS
9646 case BINOP_ASSIGN:
9647 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9648 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9649 {
9650 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9651 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9652 return arg1;
9653 return ada_value_assign (arg1, arg1);
9654 }
003f3813
JB
9655 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9656 except if the lhs of our assignment is a convenience variable.
9657 In the case of assigning to a convenience variable, the lhs
9658 should be exactly the result of the evaluation of the rhs. */
9659 type = value_type (arg1);
9660 if (VALUE_LVAL (arg1) == lval_internalvar)
9661 type = NULL;
9662 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9663 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9664 return arg1;
df407dfe
AC
9665 if (ada_is_fixed_point_type (value_type (arg1)))
9666 arg2 = cast_to_fixed (value_type (arg1), arg2);
9667 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9668 error
323e0a4a 9669 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9670 else
df407dfe 9671 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9672 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9673
9674 case BINOP_ADD:
9675 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9676 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9677 if (noside == EVAL_SKIP)
4c4b4cd2 9678 goto nosideret;
2ac8a782
JB
9679 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9680 return (value_from_longest
9681 (value_type (arg1),
9682 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9683 if ((ada_is_fixed_point_type (value_type (arg1))
9684 || ada_is_fixed_point_type (value_type (arg2)))
9685 && value_type (arg1) != value_type (arg2))
323e0a4a 9686 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9687 /* Do the addition, and cast the result to the type of the first
9688 argument. We cannot cast the result to a reference type, so if
9689 ARG1 is a reference type, find its underlying type. */
9690 type = value_type (arg1);
9691 while (TYPE_CODE (type) == TYPE_CODE_REF)
9692 type = TYPE_TARGET_TYPE (type);
f44316fa 9693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9694 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9695
9696 case BINOP_SUB:
9697 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9698 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9699 if (noside == EVAL_SKIP)
4c4b4cd2 9700 goto nosideret;
2ac8a782
JB
9701 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9702 return (value_from_longest
9703 (value_type (arg1),
9704 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9705 if ((ada_is_fixed_point_type (value_type (arg1))
9706 || ada_is_fixed_point_type (value_type (arg2)))
9707 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9708 error (_("Operands of fixed-point subtraction "
9709 "must have the same type"));
b7789565
JB
9710 /* Do the substraction, and cast the result to the type of the first
9711 argument. We cannot cast the result to a reference type, so if
9712 ARG1 is a reference type, find its underlying type. */
9713 type = value_type (arg1);
9714 while (TYPE_CODE (type) == TYPE_CODE_REF)
9715 type = TYPE_TARGET_TYPE (type);
f44316fa 9716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9717 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9718
9719 case BINOP_MUL:
9720 case BINOP_DIV:
e1578042
JB
9721 case BINOP_REM:
9722 case BINOP_MOD:
14f9c5c9
AS
9723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9724 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9725 if (noside == EVAL_SKIP)
4c4b4cd2 9726 goto nosideret;
e1578042 9727 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9728 {
9729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9730 return value_zero (value_type (arg1), not_lval);
9731 }
14f9c5c9 9732 else
4c4b4cd2 9733 {
a53b7a21 9734 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9735 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9736 arg1 = cast_from_fixed (type, arg1);
df407dfe 9737 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9738 arg2 = cast_from_fixed (type, arg2);
f44316fa 9739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9740 return ada_value_binop (arg1, arg2, op);
9741 }
9742
4c4b4cd2
PH
9743 case BINOP_EQUAL:
9744 case BINOP_NOTEQUAL:
14f9c5c9 9745 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9746 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9747 if (noside == EVAL_SKIP)
76a01679 9748 goto nosideret;
4c4b4cd2 9749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9750 tem = 0;
4c4b4cd2 9751 else
f44316fa
UW
9752 {
9753 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9754 tem = ada_value_equal (arg1, arg2);
9755 }
4c4b4cd2 9756 if (op == BINOP_NOTEQUAL)
76a01679 9757 tem = !tem;
fbb06eb1
UW
9758 type = language_bool_type (exp->language_defn, exp->gdbarch);
9759 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9760
9761 case UNOP_NEG:
9762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9763 if (noside == EVAL_SKIP)
9764 goto nosideret;
df407dfe
AC
9765 else if (ada_is_fixed_point_type (value_type (arg1)))
9766 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9767 else
f44316fa
UW
9768 {
9769 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9770 return value_neg (arg1);
9771 }
4c4b4cd2 9772
2330c6c6
JB
9773 case BINOP_LOGICAL_AND:
9774 case BINOP_LOGICAL_OR:
9775 case UNOP_LOGICAL_NOT:
000d5124
JB
9776 {
9777 struct value *val;
9778
9779 *pos -= 1;
9780 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9781 type = language_bool_type (exp->language_defn, exp->gdbarch);
9782 return value_cast (type, val);
000d5124 9783 }
2330c6c6
JB
9784
9785 case BINOP_BITWISE_AND:
9786 case BINOP_BITWISE_IOR:
9787 case BINOP_BITWISE_XOR:
000d5124
JB
9788 {
9789 struct value *val;
9790
9791 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9792 *pos = pc;
9793 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9794
9795 return value_cast (value_type (arg1), val);
9796 }
2330c6c6 9797
14f9c5c9
AS
9798 case OP_VAR_VALUE:
9799 *pos -= 1;
6799def4 9800
14f9c5c9 9801 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9802 {
9803 *pos += 4;
9804 goto nosideret;
9805 }
9806 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9807 /* Only encountered when an unresolved symbol occurs in a
9808 context other than a function call, in which case, it is
52ce6436 9809 invalid. */
323e0a4a 9810 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9811 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9812 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9813 {
0c1f74cf 9814 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9815 /* Check to see if this is a tagged type. We also need to handle
9816 the case where the type is a reference to a tagged type, but
9817 we have to be careful to exclude pointers to tagged types.
9818 The latter should be shown as usual (as a pointer), whereas
9819 a reference should mostly be transparent to the user. */
9820 if (ada_is_tagged_type (type, 0)
9821 || (TYPE_CODE(type) == TYPE_CODE_REF
9822 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9823 {
9824 /* Tagged types are a little special in the fact that the real
9825 type is dynamic and can only be determined by inspecting the
9826 object's tag. This means that we need to get the object's
9827 value first (EVAL_NORMAL) and then extract the actual object
9828 type from its tag.
9829
9830 Note that we cannot skip the final step where we extract
9831 the object type from its tag, because the EVAL_NORMAL phase
9832 results in dynamic components being resolved into fixed ones.
9833 This can cause problems when trying to print the type
9834 description of tagged types whose parent has a dynamic size:
9835 We use the type name of the "_parent" component in order
9836 to print the name of the ancestor type in the type description.
9837 If that component had a dynamic size, the resolution into
9838 a fixed type would result in the loss of that type name,
9839 thus preventing us from printing the name of the ancestor
9840 type in the type description. */
9841 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9842
9843 if (TYPE_CODE (type) != TYPE_CODE_REF)
9844 {
9845 struct type *actual_type;
9846
9847 actual_type = type_from_tag (ada_value_tag (arg1));
9848 if (actual_type == NULL)
9849 /* If, for some reason, we were unable to determine
9850 the actual type from the tag, then use the static
9851 approximation that we just computed as a fallback.
9852 This can happen if the debugging information is
9853 incomplete, for instance. */
9854 actual_type = type;
9855 return value_zero (actual_type, not_lval);
9856 }
9857 else
9858 {
9859 /* In the case of a ref, ada_coerce_ref takes care
9860 of determining the actual type. But the evaluation
9861 should return a ref as it should be valid to ask
9862 for its address; so rebuild a ref after coerce. */
9863 arg1 = ada_coerce_ref (arg1);
9864 return value_ref (arg1);
9865 }
0c1f74cf
JB
9866 }
9867
4c4b4cd2
PH
9868 *pos += 4;
9869 return value_zero
9870 (to_static_fixed_type
9871 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9872 not_lval);
9873 }
d2e4a39e 9874 else
4c4b4cd2 9875 {
284614f0 9876 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9877 return ada_to_fixed_value (arg1);
9878 }
9879
9880 case OP_FUNCALL:
9881 (*pos) += 2;
9882
9883 /* Allocate arg vector, including space for the function to be
9884 called in argvec[0] and a terminating NULL. */
9885 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9886 argvec =
9887 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9888
9889 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9890 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9891 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9892 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9893 else
9894 {
9895 for (tem = 0; tem <= nargs; tem += 1)
9896 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9897 argvec[tem] = 0;
9898
9899 if (noside == EVAL_SKIP)
9900 goto nosideret;
9901 }
9902
ad82864c
JB
9903 if (ada_is_constrained_packed_array_type
9904 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9905 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9906 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9907 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9908 /* This is a packed array that has already been fixed, and
9909 therefore already coerced to a simple array. Nothing further
9910 to do. */
9911 ;
df407dfe
AC
9912 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9913 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9914 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9915 argvec[0] = value_addr (argvec[0]);
9916
df407dfe 9917 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9918
9919 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9920 them. So, if this is an array typedef (encoding use for array
9921 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9922 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9923 type = ada_typedef_target_type (type);
9924
4c4b4cd2
PH
9925 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9926 {
61ee279c 9927 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9928 {
9929 case TYPE_CODE_FUNC:
61ee279c 9930 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9931 break;
9932 case TYPE_CODE_ARRAY:
9933 break;
9934 case TYPE_CODE_STRUCT:
9935 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9936 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9937 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9938 break;
9939 default:
323e0a4a 9940 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9941 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9942 break;
9943 }
9944 }
9945
9946 switch (TYPE_CODE (type))
9947 {
9948 case TYPE_CODE_FUNC:
9949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9950 {
9951 struct type *rtype = TYPE_TARGET_TYPE (type);
9952
9953 if (TYPE_GNU_IFUNC (type))
9954 return allocate_value (TYPE_TARGET_TYPE (rtype));
9955 return allocate_value (rtype);
9956 }
4c4b4cd2 9957 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9958 case TYPE_CODE_INTERNAL_FUNCTION:
9959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 /* We don't know anything about what the internal
9961 function might return, but we have to return
9962 something. */
9963 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9964 not_lval);
9965 else
9966 return call_internal_function (exp->gdbarch, exp->language_defn,
9967 argvec[0], nargs, argvec + 1);
9968
4c4b4cd2
PH
9969 case TYPE_CODE_STRUCT:
9970 {
9971 int arity;
9972
4c4b4cd2
PH
9973 arity = ada_array_arity (type);
9974 type = ada_array_element_type (type, nargs);
9975 if (type == NULL)
323e0a4a 9976 error (_("cannot subscript or call a record"));
4c4b4cd2 9977 if (arity != nargs)
323e0a4a 9978 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9980 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9981 return
9982 unwrap_value (ada_value_subscript
9983 (argvec[0], nargs, argvec + 1));
9984 }
9985 case TYPE_CODE_ARRAY:
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 {
9988 type = ada_array_element_type (type, nargs);
9989 if (type == NULL)
323e0a4a 9990 error (_("element type of array unknown"));
4c4b4cd2 9991 else
0a07e705 9992 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9993 }
9994 return
9995 unwrap_value (ada_value_subscript
9996 (ada_coerce_to_simple_array (argvec[0]),
9997 nargs, argvec + 1));
9998 case TYPE_CODE_PTR: /* Pointer to array */
9999 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10001 {
10002 type = ada_array_element_type (type, nargs);
10003 if (type == NULL)
323e0a4a 10004 error (_("element type of array unknown"));
4c4b4cd2 10005 else
0a07e705 10006 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10007 }
10008 return
10009 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10010 nargs, argvec + 1));
10011
10012 default:
e1d5a0d2
PH
10013 error (_("Attempt to index or call something other than an "
10014 "array or function"));
4c4b4cd2
PH
10015 }
10016
10017 case TERNOP_SLICE:
10018 {
10019 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10020 struct value *low_bound_val =
10021 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10022 struct value *high_bound_val =
10023 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10024 LONGEST low_bound;
10025 LONGEST high_bound;
5b4ee69b 10026
994b9211
AC
10027 low_bound_val = coerce_ref (low_bound_val);
10028 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10029 low_bound = pos_atr (low_bound_val);
10030 high_bound = pos_atr (high_bound_val);
963a6417 10031
4c4b4cd2
PH
10032 if (noside == EVAL_SKIP)
10033 goto nosideret;
10034
4c4b4cd2
PH
10035 /* If this is a reference to an aligner type, then remove all
10036 the aligners. */
df407dfe
AC
10037 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10038 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10039 TYPE_TARGET_TYPE (value_type (array)) =
10040 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10041
ad82864c 10042 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10043 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10044
10045 /* If this is a reference to an array or an array lvalue,
10046 convert to a pointer. */
df407dfe
AC
10047 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10048 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10049 && VALUE_LVAL (array) == lval_memory))
10050 array = value_addr (array);
10051
1265e4aa 10052 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10053 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10054 (value_type (array))))
0b5d8877 10055 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10056
10057 array = ada_coerce_to_simple_array_ptr (array);
10058
714e53ab
PH
10059 /* If we have more than one level of pointer indirection,
10060 dereference the value until we get only one level. */
df407dfe
AC
10061 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10062 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10063 == TYPE_CODE_PTR))
10064 array = value_ind (array);
10065
10066 /* Make sure we really do have an array type before going further,
10067 to avoid a SEGV when trying to get the index type or the target
10068 type later down the road if the debug info generated by
10069 the compiler is incorrect or incomplete. */
df407dfe 10070 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10071 error (_("cannot take slice of non-array"));
714e53ab 10072
828292f2
JB
10073 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10074 == TYPE_CODE_PTR)
4c4b4cd2 10075 {
828292f2
JB
10076 struct type *type0 = ada_check_typedef (value_type (array));
10077
0b5d8877 10078 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10079 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10080 else
10081 {
10082 struct type *arr_type0 =
828292f2 10083 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10084
f5938064
JG
10085 return ada_value_slice_from_ptr (array, arr_type0,
10086 longest_to_int (low_bound),
10087 longest_to_int (high_bound));
4c4b4cd2
PH
10088 }
10089 }
10090 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 return array;
10092 else if (high_bound < low_bound)
df407dfe 10093 return empty_array (value_type (array), low_bound);
4c4b4cd2 10094 else
529cad9c
PH
10095 return ada_value_slice (array, longest_to_int (low_bound),
10096 longest_to_int (high_bound));
4c4b4cd2 10097 }
14f9c5c9 10098
4c4b4cd2
PH
10099 case UNOP_IN_RANGE:
10100 (*pos) += 2;
10101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10102 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10103
14f9c5c9 10104 if (noside == EVAL_SKIP)
4c4b4cd2 10105 goto nosideret;
14f9c5c9 10106
4c4b4cd2
PH
10107 switch (TYPE_CODE (type))
10108 {
10109 default:
e1d5a0d2
PH
10110 lim_warning (_("Membership test incompletely implemented; "
10111 "always returns true"));
fbb06eb1
UW
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10114
10115 case TYPE_CODE_RANGE:
030b4912
UW
10116 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10117 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10119 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10120 type = language_bool_type (exp->language_defn, exp->gdbarch);
10121 return
10122 value_from_longest (type,
4c4b4cd2
PH
10123 (value_less (arg1, arg3)
10124 || value_equal (arg1, arg3))
10125 && (value_less (arg2, arg1)
10126 || value_equal (arg2, arg1)));
10127 }
10128
10129 case BINOP_IN_BOUNDS:
14f9c5c9 10130 (*pos) += 2;
4c4b4cd2
PH
10131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10132 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10133
4c4b4cd2
PH
10134 if (noside == EVAL_SKIP)
10135 goto nosideret;
14f9c5c9 10136
4c4b4cd2 10137 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10138 {
10139 type = language_bool_type (exp->language_defn, exp->gdbarch);
10140 return value_zero (type, not_lval);
10141 }
14f9c5c9 10142
4c4b4cd2 10143 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10144
1eea4ebd
UW
10145 type = ada_index_type (value_type (arg2), tem, "range");
10146 if (!type)
10147 type = value_type (arg1);
14f9c5c9 10148
1eea4ebd
UW
10149 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10150 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10151
f44316fa
UW
10152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10154 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10155 return
fbb06eb1 10156 value_from_longest (type,
4c4b4cd2
PH
10157 (value_less (arg1, arg3)
10158 || value_equal (arg1, arg3))
10159 && (value_less (arg2, arg1)
10160 || value_equal (arg2, arg1)));
10161
10162 case TERNOP_IN_RANGE:
10163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10166
10167 if (noside == EVAL_SKIP)
10168 goto nosideret;
10169
f44316fa
UW
10170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10172 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10173 return
fbb06eb1 10174 value_from_longest (type,
4c4b4cd2
PH
10175 (value_less (arg1, arg3)
10176 || value_equal (arg1, arg3))
10177 && (value_less (arg2, arg1)
10178 || value_equal (arg2, arg1)));
10179
10180 case OP_ATR_FIRST:
10181 case OP_ATR_LAST:
10182 case OP_ATR_LENGTH:
10183 {
76a01679 10184 struct type *type_arg;
5b4ee69b 10185
76a01679
JB
10186 if (exp->elts[*pos].opcode == OP_TYPE)
10187 {
10188 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10189 arg1 = NULL;
5bc23cb3 10190 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10191 }
10192 else
10193 {
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 type_arg = NULL;
10196 }
10197
10198 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10199 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10200 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10201 *pos += 4;
10202
10203 if (noside == EVAL_SKIP)
10204 goto nosideret;
10205
10206 if (type_arg == NULL)
10207 {
10208 arg1 = ada_coerce_ref (arg1);
10209
ad82864c 10210 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10211 arg1 = ada_coerce_to_simple_array (arg1);
10212
1eea4ebd
UW
10213 type = ada_index_type (value_type (arg1), tem,
10214 ada_attribute_name (op));
10215 if (type == NULL)
10216 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10217
10218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10219 return allocate_value (type);
76a01679
JB
10220
10221 switch (op)
10222 {
10223 default: /* Should never happen. */
323e0a4a 10224 error (_("unexpected attribute encountered"));
76a01679 10225 case OP_ATR_FIRST:
1eea4ebd
UW
10226 return value_from_longest
10227 (type, ada_array_bound (arg1, tem, 0));
76a01679 10228 case OP_ATR_LAST:
1eea4ebd
UW
10229 return value_from_longest
10230 (type, ada_array_bound (arg1, tem, 1));
76a01679 10231 case OP_ATR_LENGTH:
1eea4ebd
UW
10232 return value_from_longest
10233 (type, ada_array_length (arg1, tem));
76a01679
JB
10234 }
10235 }
10236 else if (discrete_type_p (type_arg))
10237 {
10238 struct type *range_type;
0d5cff50 10239 const char *name = ada_type_name (type_arg);
5b4ee69b 10240
76a01679
JB
10241 range_type = NULL;
10242 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10243 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10244 if (range_type == NULL)
10245 range_type = type_arg;
10246 switch (op)
10247 {
10248 default:
323e0a4a 10249 error (_("unexpected attribute encountered"));
76a01679 10250 case OP_ATR_FIRST:
690cc4eb 10251 return value_from_longest
43bbcdc2 10252 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10253 case OP_ATR_LAST:
690cc4eb 10254 return value_from_longest
43bbcdc2 10255 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10256 case OP_ATR_LENGTH:
323e0a4a 10257 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10258 }
10259 }
10260 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10261 error (_("unimplemented type attribute"));
76a01679
JB
10262 else
10263 {
10264 LONGEST low, high;
10265
ad82864c
JB
10266 if (ada_is_constrained_packed_array_type (type_arg))
10267 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10268
1eea4ebd 10269 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10270 if (type == NULL)
1eea4ebd
UW
10271 type = builtin_type (exp->gdbarch)->builtin_int;
10272
76a01679
JB
10273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10274 return allocate_value (type);
10275
10276 switch (op)
10277 {
10278 default:
323e0a4a 10279 error (_("unexpected attribute encountered"));
76a01679 10280 case OP_ATR_FIRST:
1eea4ebd 10281 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10282 return value_from_longest (type, low);
10283 case OP_ATR_LAST:
1eea4ebd 10284 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10285 return value_from_longest (type, high);
10286 case OP_ATR_LENGTH:
1eea4ebd
UW
10287 low = ada_array_bound_from_type (type_arg, tem, 0);
10288 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10289 return value_from_longest (type, high - low + 1);
10290 }
10291 }
14f9c5c9
AS
10292 }
10293
4c4b4cd2
PH
10294 case OP_ATR_TAG:
10295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10296 if (noside == EVAL_SKIP)
76a01679 10297 goto nosideret;
4c4b4cd2
PH
10298
10299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10300 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10301
10302 return ada_value_tag (arg1);
10303
10304 case OP_ATR_MIN:
10305 case OP_ATR_MAX:
10306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10309 if (noside == EVAL_SKIP)
76a01679 10310 goto nosideret;
d2e4a39e 10311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10312 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10313 else
f44316fa
UW
10314 {
10315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10316 return value_binop (arg1, arg2,
10317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10318 }
14f9c5c9 10319
4c4b4cd2
PH
10320 case OP_ATR_MODULUS:
10321 {
31dedfee 10322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10323
5b4ee69b 10324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10325 if (noside == EVAL_SKIP)
10326 goto nosideret;
4c4b4cd2 10327
76a01679 10328 if (!ada_is_modular_type (type_arg))
323e0a4a 10329 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10330
76a01679
JB
10331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10332 ada_modulus (type_arg));
4c4b4cd2
PH
10333 }
10334
10335
10336 case OP_ATR_POS:
10337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10339 if (noside == EVAL_SKIP)
76a01679 10340 goto nosideret;
3cb382c9
UW
10341 type = builtin_type (exp->gdbarch)->builtin_int;
10342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10343 return value_zero (type, not_lval);
14f9c5c9 10344 else
3cb382c9 10345 return value_pos_atr (type, arg1);
14f9c5c9 10346
4c4b4cd2
PH
10347 case OP_ATR_SIZE:
10348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10349 type = value_type (arg1);
10350
10351 /* If the argument is a reference, then dereference its type, since
10352 the user is really asking for the size of the actual object,
10353 not the size of the pointer. */
10354 if (TYPE_CODE (type) == TYPE_CODE_REF)
10355 type = TYPE_TARGET_TYPE (type);
10356
4c4b4cd2 10357 if (noside == EVAL_SKIP)
76a01679 10358 goto nosideret;
4c4b4cd2 10359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10361 else
22601c15 10362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10364
10365 case OP_ATR_VAL:
10366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10368 type = exp->elts[pc + 2].type;
14f9c5c9 10369 if (noside == EVAL_SKIP)
76a01679 10370 goto nosideret;
4c4b4cd2 10371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10372 return value_zero (type, not_lval);
4c4b4cd2 10373 else
76a01679 10374 return value_val_atr (type, arg1);
4c4b4cd2
PH
10375
10376 case BINOP_EXP:
10377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
10381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10382 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10383 else
f44316fa
UW
10384 {
10385 /* For integer exponentiation operations,
10386 only promote the first argument. */
10387 if (is_integral_type (value_type (arg2)))
10388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10389 else
10390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10391
10392 return value_binop (arg1, arg2, op);
10393 }
4c4b4cd2
PH
10394
10395 case UNOP_PLUS:
10396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10397 if (noside == EVAL_SKIP)
10398 goto nosideret;
10399 else
10400 return arg1;
10401
10402 case UNOP_ABS:
10403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10404 if (noside == EVAL_SKIP)
10405 goto nosideret;
f44316fa 10406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10408 return value_neg (arg1);
14f9c5c9 10409 else
4c4b4cd2 10410 return arg1;
14f9c5c9
AS
10411
10412 case UNOP_IND:
6b0d7253 10413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10414 if (noside == EVAL_SKIP)
4c4b4cd2 10415 goto nosideret;
df407dfe 10416 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10418 {
10419 if (ada_is_array_descriptor_type (type))
10420 /* GDB allows dereferencing GNAT array descriptors. */
10421 {
10422 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10423
4c4b4cd2 10424 if (arrType == NULL)
323e0a4a 10425 error (_("Attempt to dereference null array pointer."));
00a4c844 10426 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10427 }
10428 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10429 || TYPE_CODE (type) == TYPE_CODE_REF
10430 /* In C you can dereference an array to get the 1st elt. */
10431 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10432 {
10433 type = to_static_fixed_type
10434 (ada_aligned_type
10435 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10436 check_size (type);
10437 return value_zero (type, lval_memory);
10438 }
4c4b4cd2 10439 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10440 {
10441 /* GDB allows dereferencing an int. */
10442 if (expect_type == NULL)
10443 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10444 lval_memory);
10445 else
10446 {
10447 expect_type =
10448 to_static_fixed_type (ada_aligned_type (expect_type));
10449 return value_zero (expect_type, lval_memory);
10450 }
10451 }
4c4b4cd2 10452 else
323e0a4a 10453 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10454 }
0963b4bd 10455 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10456 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10457
96967637
JB
10458 if (TYPE_CODE (type) == TYPE_CODE_INT)
10459 /* GDB allows dereferencing an int. If we were given
10460 the expect_type, then use that as the target type.
10461 Otherwise, assume that the target type is an int. */
10462 {
10463 if (expect_type != NULL)
10464 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10465 arg1));
10466 else
10467 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10468 (CORE_ADDR) value_as_address (arg1));
10469 }
6b0d7253 10470
4c4b4cd2
PH
10471 if (ada_is_array_descriptor_type (type))
10472 /* GDB allows dereferencing GNAT array descriptors. */
10473 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10474 else
4c4b4cd2 10475 return ada_value_ind (arg1);
14f9c5c9
AS
10476
10477 case STRUCTOP_STRUCT:
10478 tem = longest_to_int (exp->elts[pc + 1].longconst);
10479 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 if (noside == EVAL_SKIP)
4c4b4cd2 10482 goto nosideret;
14f9c5c9 10483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10484 {
df407dfe 10485 struct type *type1 = value_type (arg1);
5b4ee69b 10486
76a01679
JB
10487 if (ada_is_tagged_type (type1, 1))
10488 {
10489 type = ada_lookup_struct_elt_type (type1,
10490 &exp->elts[pc + 2].string,
10491 1, 1, NULL);
10492 if (type == NULL)
10493 /* In this case, we assume that the field COULD exist
10494 in some extension of the type. Return an object of
10495 "type" void, which will match any formal
0963b4bd 10496 (see ada_type_match). */
30b15541
UW
10497 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10498 lval_memory);
76a01679
JB
10499 }
10500 else
10501 type =
10502 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10503 0, NULL);
10504
10505 return value_zero (ada_aligned_type (type), lval_memory);
10506 }
14f9c5c9 10507 else
284614f0
JB
10508 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10509 arg1 = unwrap_value (arg1);
10510 return ada_to_fixed_value (arg1);
10511
14f9c5c9 10512 case OP_TYPE:
4c4b4cd2
PH
10513 /* The value is not supposed to be used. This is here to make it
10514 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10515 (*pos) += 2;
10516 if (noside == EVAL_SKIP)
4c4b4cd2 10517 goto nosideret;
14f9c5c9 10518 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10519 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10520 else
323e0a4a 10521 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10522
10523 case OP_AGGREGATE:
10524 case OP_CHOICES:
10525 case OP_OTHERS:
10526 case OP_DISCRETE_RANGE:
10527 case OP_POSITIONAL:
10528 case OP_NAME:
10529 if (noside == EVAL_NORMAL)
10530 switch (op)
10531 {
10532 case OP_NAME:
10533 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10534 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10535 case OP_AGGREGATE:
10536 error (_("Aggregates only allowed on the right of an assignment"));
10537 default:
0963b4bd
MS
10538 internal_error (__FILE__, __LINE__,
10539 _("aggregate apparently mangled"));
52ce6436
PH
10540 }
10541
10542 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10543 *pos += oplen - 1;
10544 for (tem = 0; tem < nargs; tem += 1)
10545 ada_evaluate_subexp (NULL, exp, pos, noside);
10546 goto nosideret;
14f9c5c9
AS
10547 }
10548
10549nosideret:
22601c15 10550 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10551}
14f9c5c9 10552\f
d2e4a39e 10553
4c4b4cd2 10554 /* Fixed point */
14f9c5c9
AS
10555
10556/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10557 type name that encodes the 'small and 'delta information.
4c4b4cd2 10558 Otherwise, return NULL. */
14f9c5c9 10559
d2e4a39e 10560static const char *
ebf56fd3 10561fixed_type_info (struct type *type)
14f9c5c9 10562{
d2e4a39e 10563 const char *name = ada_type_name (type);
14f9c5c9
AS
10564 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10565
d2e4a39e
AS
10566 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10567 {
14f9c5c9 10568 const char *tail = strstr (name, "___XF_");
5b4ee69b 10569
14f9c5c9 10570 if (tail == NULL)
4c4b4cd2 10571 return NULL;
d2e4a39e 10572 else
4c4b4cd2 10573 return tail + 5;
14f9c5c9
AS
10574 }
10575 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10576 return fixed_type_info (TYPE_TARGET_TYPE (type));
10577 else
10578 return NULL;
10579}
10580
4c4b4cd2 10581/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10582
10583int
ebf56fd3 10584ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10585{
10586 return fixed_type_info (type) != NULL;
10587}
10588
4c4b4cd2
PH
10589/* Return non-zero iff TYPE represents a System.Address type. */
10590
10591int
10592ada_is_system_address_type (struct type *type)
10593{
10594 return (TYPE_NAME (type)
10595 && strcmp (TYPE_NAME (type), "system__address") == 0);
10596}
10597
14f9c5c9
AS
10598/* Assuming that TYPE is the representation of an Ada fixed-point
10599 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10600 delta cannot be determined. */
14f9c5c9
AS
10601
10602DOUBLEST
ebf56fd3 10603ada_delta (struct type *type)
14f9c5c9
AS
10604{
10605 const char *encoding = fixed_type_info (type);
facc390f 10606 DOUBLEST num, den;
14f9c5c9 10607
facc390f
JB
10608 /* Strictly speaking, num and den are encoded as integer. However,
10609 they may not fit into a long, and they will have to be converted
10610 to DOUBLEST anyway. So scan them as DOUBLEST. */
10611 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10612 &num, &den) < 2)
14f9c5c9 10613 return -1.0;
d2e4a39e 10614 else
facc390f 10615 return num / den;
14f9c5c9
AS
10616}
10617
10618/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10619 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10620
10621static DOUBLEST
ebf56fd3 10622scaling_factor (struct type *type)
14f9c5c9
AS
10623{
10624 const char *encoding = fixed_type_info (type);
facc390f 10625 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10626 int n;
d2e4a39e 10627
facc390f
JB
10628 /* Strictly speaking, num's and den's are encoded as integer. However,
10629 they may not fit into a long, and they will have to be converted
10630 to DOUBLEST anyway. So scan them as DOUBLEST. */
10631 n = sscanf (encoding,
10632 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10633 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10634 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10635
10636 if (n < 2)
10637 return 1.0;
10638 else if (n == 4)
facc390f 10639 return num1 / den1;
d2e4a39e 10640 else
facc390f 10641 return num0 / den0;
14f9c5c9
AS
10642}
10643
10644
10645/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10646 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10647
10648DOUBLEST
ebf56fd3 10649ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10650{
d2e4a39e 10651 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10652}
10653
4c4b4cd2
PH
10654/* The representation of a fixed-point value of type TYPE
10655 corresponding to the value X. */
14f9c5c9
AS
10656
10657LONGEST
ebf56fd3 10658ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10659{
10660 return (LONGEST) (x / scaling_factor (type) + 0.5);
10661}
10662
14f9c5c9 10663\f
d2e4a39e 10664
4c4b4cd2 10665 /* Range types */
14f9c5c9
AS
10666
10667/* Scan STR beginning at position K for a discriminant name, and
10668 return the value of that discriminant field of DVAL in *PX. If
10669 PNEW_K is not null, put the position of the character beyond the
10670 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10671 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10672
10673static int
07d8f827 10674scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10675 int *pnew_k)
14f9c5c9
AS
10676{
10677 static char *bound_buffer = NULL;
10678 static size_t bound_buffer_len = 0;
10679 char *bound;
10680 char *pend;
d2e4a39e 10681 struct value *bound_val;
14f9c5c9
AS
10682
10683 if (dval == NULL || str == NULL || str[k] == '\0')
10684 return 0;
10685
d2e4a39e 10686 pend = strstr (str + k, "__");
14f9c5c9
AS
10687 if (pend == NULL)
10688 {
d2e4a39e 10689 bound = str + k;
14f9c5c9
AS
10690 k += strlen (bound);
10691 }
d2e4a39e 10692 else
14f9c5c9 10693 {
d2e4a39e 10694 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10695 bound = bound_buffer;
d2e4a39e
AS
10696 strncpy (bound_buffer, str + k, pend - (str + k));
10697 bound[pend - (str + k)] = '\0';
10698 k = pend - str;
14f9c5c9 10699 }
d2e4a39e 10700
df407dfe 10701 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10702 if (bound_val == NULL)
10703 return 0;
10704
10705 *px = value_as_long (bound_val);
10706 if (pnew_k != NULL)
10707 *pnew_k = k;
10708 return 1;
10709}
10710
10711/* Value of variable named NAME in the current environment. If
10712 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10713 otherwise causes an error with message ERR_MSG. */
10714
d2e4a39e
AS
10715static struct value *
10716get_var_value (char *name, char *err_msg)
14f9c5c9 10717{
4c4b4cd2 10718 struct ada_symbol_info *syms;
14f9c5c9
AS
10719 int nsyms;
10720
4c4b4cd2 10721 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10722 &syms);
14f9c5c9
AS
10723
10724 if (nsyms != 1)
10725 {
10726 if (err_msg == NULL)
4c4b4cd2 10727 return 0;
14f9c5c9 10728 else
8a3fe4f8 10729 error (("%s"), err_msg);
14f9c5c9
AS
10730 }
10731
4c4b4cd2 10732 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10733}
d2e4a39e 10734
14f9c5c9 10735/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10736 no such variable found, returns 0, and sets *FLAG to 0. If
10737 successful, sets *FLAG to 1. */
10738
14f9c5c9 10739LONGEST
4c4b4cd2 10740get_int_var_value (char *name, int *flag)
14f9c5c9 10741{
4c4b4cd2 10742 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10743
14f9c5c9
AS
10744 if (var_val == 0)
10745 {
10746 if (flag != NULL)
4c4b4cd2 10747 *flag = 0;
14f9c5c9
AS
10748 return 0;
10749 }
10750 else
10751 {
10752 if (flag != NULL)
4c4b4cd2 10753 *flag = 1;
14f9c5c9
AS
10754 return value_as_long (var_val);
10755 }
10756}
d2e4a39e 10757
14f9c5c9
AS
10758
10759/* Return a range type whose base type is that of the range type named
10760 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10761 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10762 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10763 corresponding range type from debug information; fall back to using it
10764 if symbol lookup fails. If a new type must be created, allocate it
10765 like ORIG_TYPE was. The bounds information, in general, is encoded
10766 in NAME, the base type given in the named range type. */
14f9c5c9 10767
d2e4a39e 10768static struct type *
28c85d6c 10769to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10770{
0d5cff50 10771 const char *name;
14f9c5c9 10772 struct type *base_type;
d2e4a39e 10773 char *subtype_info;
14f9c5c9 10774
28c85d6c
JB
10775 gdb_assert (raw_type != NULL);
10776 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10777
1ce677a4 10778 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10779 base_type = TYPE_TARGET_TYPE (raw_type);
10780 else
10781 base_type = raw_type;
10782
28c85d6c 10783 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10784 subtype_info = strstr (name, "___XD");
10785 if (subtype_info == NULL)
690cc4eb 10786 {
43bbcdc2
PH
10787 LONGEST L = ada_discrete_type_low_bound (raw_type);
10788 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10789
690cc4eb
PH
10790 if (L < INT_MIN || U > INT_MAX)
10791 return raw_type;
10792 else
28c85d6c 10793 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10794 ada_discrete_type_low_bound (raw_type),
10795 ada_discrete_type_high_bound (raw_type));
690cc4eb 10796 }
14f9c5c9
AS
10797 else
10798 {
10799 static char *name_buf = NULL;
10800 static size_t name_len = 0;
10801 int prefix_len = subtype_info - name;
10802 LONGEST L, U;
10803 struct type *type;
10804 char *bounds_str;
10805 int n;
10806
10807 GROW_VECT (name_buf, name_len, prefix_len + 5);
10808 strncpy (name_buf, name, prefix_len);
10809 name_buf[prefix_len] = '\0';
10810
10811 subtype_info += 5;
10812 bounds_str = strchr (subtype_info, '_');
10813 n = 1;
10814
d2e4a39e 10815 if (*subtype_info == 'L')
4c4b4cd2
PH
10816 {
10817 if (!ada_scan_number (bounds_str, n, &L, &n)
10818 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10819 return raw_type;
10820 if (bounds_str[n] == '_')
10821 n += 2;
0963b4bd 10822 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10823 n += 1;
10824 subtype_info += 1;
10825 }
d2e4a39e 10826 else
4c4b4cd2
PH
10827 {
10828 int ok;
5b4ee69b 10829
4c4b4cd2
PH
10830 strcpy (name_buf + prefix_len, "___L");
10831 L = get_int_var_value (name_buf, &ok);
10832 if (!ok)
10833 {
323e0a4a 10834 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10835 L = 1;
10836 }
10837 }
14f9c5c9 10838
d2e4a39e 10839 if (*subtype_info == 'U')
4c4b4cd2
PH
10840 {
10841 if (!ada_scan_number (bounds_str, n, &U, &n)
10842 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10843 return raw_type;
10844 }
d2e4a39e 10845 else
4c4b4cd2
PH
10846 {
10847 int ok;
5b4ee69b 10848
4c4b4cd2
PH
10849 strcpy (name_buf + prefix_len, "___U");
10850 U = get_int_var_value (name_buf, &ok);
10851 if (!ok)
10852 {
323e0a4a 10853 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10854 U = L;
10855 }
10856 }
14f9c5c9 10857
28c85d6c 10858 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10859 TYPE_NAME (type) = name;
14f9c5c9
AS
10860 return type;
10861 }
10862}
10863
4c4b4cd2
PH
10864/* True iff NAME is the name of a range type. */
10865
14f9c5c9 10866int
d2e4a39e 10867ada_is_range_type_name (const char *name)
14f9c5c9
AS
10868{
10869 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10870}
14f9c5c9 10871\f
d2e4a39e 10872
4c4b4cd2
PH
10873 /* Modular types */
10874
10875/* True iff TYPE is an Ada modular type. */
14f9c5c9 10876
14f9c5c9 10877int
d2e4a39e 10878ada_is_modular_type (struct type *type)
14f9c5c9 10879{
18af8284 10880 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10881
10882 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10883 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10884 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10885}
10886
4c4b4cd2
PH
10887/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10888
61ee279c 10889ULONGEST
0056e4d5 10890ada_modulus (struct type *type)
14f9c5c9 10891{
43bbcdc2 10892 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10893}
d2e4a39e 10894\f
f7f9143b
JB
10895
10896/* Ada exception catchpoint support:
10897 ---------------------------------
10898
10899 We support 3 kinds of exception catchpoints:
10900 . catchpoints on Ada exceptions
10901 . catchpoints on unhandled Ada exceptions
10902 . catchpoints on failed assertions
10903
10904 Exceptions raised during failed assertions, or unhandled exceptions
10905 could perfectly be caught with the general catchpoint on Ada exceptions.
10906 However, we can easily differentiate these two special cases, and having
10907 the option to distinguish these two cases from the rest can be useful
10908 to zero-in on certain situations.
10909
10910 Exception catchpoints are a specialized form of breakpoint,
10911 since they rely on inserting breakpoints inside known routines
10912 of the GNAT runtime. The implementation therefore uses a standard
10913 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10914 of breakpoint_ops.
10915
0259addd
JB
10916 Support in the runtime for exception catchpoints have been changed
10917 a few times already, and these changes affect the implementation
10918 of these catchpoints. In order to be able to support several
10919 variants of the runtime, we use a sniffer that will determine
28010a5d 10920 the runtime variant used by the program being debugged. */
f7f9143b
JB
10921
10922/* The different types of catchpoints that we introduced for catching
10923 Ada exceptions. */
10924
10925enum exception_catchpoint_kind
10926{
10927 ex_catch_exception,
10928 ex_catch_exception_unhandled,
10929 ex_catch_assert
10930};
10931
3d0b0fa3
JB
10932/* Ada's standard exceptions. */
10933
10934static char *standard_exc[] = {
10935 "constraint_error",
10936 "program_error",
10937 "storage_error",
10938 "tasking_error"
10939};
10940
0259addd
JB
10941typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10942
10943/* A structure that describes how to support exception catchpoints
10944 for a given executable. */
10945
10946struct exception_support_info
10947{
10948 /* The name of the symbol to break on in order to insert
10949 a catchpoint on exceptions. */
10950 const char *catch_exception_sym;
10951
10952 /* The name of the symbol to break on in order to insert
10953 a catchpoint on unhandled exceptions. */
10954 const char *catch_exception_unhandled_sym;
10955
10956 /* The name of the symbol to break on in order to insert
10957 a catchpoint on failed assertions. */
10958 const char *catch_assert_sym;
10959
10960 /* Assuming that the inferior just triggered an unhandled exception
10961 catchpoint, this function is responsible for returning the address
10962 in inferior memory where the name of that exception is stored.
10963 Return zero if the address could not be computed. */
10964 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10965};
10966
10967static CORE_ADDR ada_unhandled_exception_name_addr (void);
10968static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10969
10970/* The following exception support info structure describes how to
10971 implement exception catchpoints with the latest version of the
10972 Ada runtime (as of 2007-03-06). */
10973
10974static const struct exception_support_info default_exception_support_info =
10975{
10976 "__gnat_debug_raise_exception", /* catch_exception_sym */
10977 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10978 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10979 ada_unhandled_exception_name_addr
10980};
10981
10982/* The following exception support info structure describes how to
10983 implement exception catchpoints with a slightly older version
10984 of the Ada runtime. */
10985
10986static const struct exception_support_info exception_support_info_fallback =
10987{
10988 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10989 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10990 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10991 ada_unhandled_exception_name_addr_from_raise
10992};
10993
f17011e0
JB
10994/* Return nonzero if we can detect the exception support routines
10995 described in EINFO.
10996
10997 This function errors out if an abnormal situation is detected
10998 (for instance, if we find the exception support routines, but
10999 that support is found to be incomplete). */
11000
11001static int
11002ada_has_this_exception_support (const struct exception_support_info *einfo)
11003{
11004 struct symbol *sym;
11005
11006 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11007 that should be compiled with debugging information. As a result, we
11008 expect to find that symbol in the symtabs. */
11009
11010 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11011 if (sym == NULL)
a6af7abe
JB
11012 {
11013 /* Perhaps we did not find our symbol because the Ada runtime was
11014 compiled without debugging info, or simply stripped of it.
11015 It happens on some GNU/Linux distributions for instance, where
11016 users have to install a separate debug package in order to get
11017 the runtime's debugging info. In that situation, let the user
11018 know why we cannot insert an Ada exception catchpoint.
11019
11020 Note: Just for the purpose of inserting our Ada exception
11021 catchpoint, we could rely purely on the associated minimal symbol.
11022 But we would be operating in degraded mode anyway, since we are
11023 still lacking the debugging info needed later on to extract
11024 the name of the exception being raised (this name is printed in
11025 the catchpoint message, and is also used when trying to catch
11026 a specific exception). We do not handle this case for now. */
11027 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11028 error (_("Your Ada runtime appears to be missing some debugging "
11029 "information.\nCannot insert Ada exception catchpoint "
11030 "in this configuration."));
11031
11032 return 0;
11033 }
f17011e0
JB
11034
11035 /* Make sure that the symbol we found corresponds to a function. */
11036
11037 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11038 error (_("Symbol \"%s\" is not a function (class = %d)"),
11039 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11040
11041 return 1;
11042}
11043
0259addd
JB
11044/* Inspect the Ada runtime and determine which exception info structure
11045 should be used to provide support for exception catchpoints.
11046
3eecfa55
JB
11047 This function will always set the per-inferior exception_info,
11048 or raise an error. */
0259addd
JB
11049
11050static void
11051ada_exception_support_info_sniffer (void)
11052{
3eecfa55 11053 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11054
11055 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11056 if (data->exception_info != NULL)
0259addd
JB
11057 return;
11058
11059 /* Check the latest (default) exception support info. */
f17011e0 11060 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11061 {
3eecfa55 11062 data->exception_info = &default_exception_support_info;
0259addd
JB
11063 return;
11064 }
11065
11066 /* Try our fallback exception suport info. */
f17011e0 11067 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11068 {
3eecfa55 11069 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11070 return;
11071 }
11072
11073 /* Sometimes, it is normal for us to not be able to find the routine
11074 we are looking for. This happens when the program is linked with
11075 the shared version of the GNAT runtime, and the program has not been
11076 started yet. Inform the user of these two possible causes if
11077 applicable. */
11078
ccefe4c4 11079 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11080 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11081
11082 /* If the symbol does not exist, then check that the program is
11083 already started, to make sure that shared libraries have been
11084 loaded. If it is not started, this may mean that the symbol is
11085 in a shared library. */
11086
11087 if (ptid_get_pid (inferior_ptid) == 0)
11088 error (_("Unable to insert catchpoint. Try to start the program first."));
11089
11090 /* At this point, we know that we are debugging an Ada program and
11091 that the inferior has been started, but we still are not able to
0963b4bd 11092 find the run-time symbols. That can mean that we are in
0259addd
JB
11093 configurable run time mode, or that a-except as been optimized
11094 out by the linker... In any case, at this point it is not worth
11095 supporting this feature. */
11096
7dda8cff 11097 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11098}
11099
f7f9143b
JB
11100/* True iff FRAME is very likely to be that of a function that is
11101 part of the runtime system. This is all very heuristic, but is
11102 intended to be used as advice as to what frames are uninteresting
11103 to most users. */
11104
11105static int
11106is_known_support_routine (struct frame_info *frame)
11107{
4ed6b5be 11108 struct symtab_and_line sal;
0d5cff50 11109 const char *func_name;
692465f1 11110 enum language func_lang;
f7f9143b 11111 int i;
f35a17b5 11112 const char *fullname;
f7f9143b 11113
4ed6b5be
JB
11114 /* If this code does not have any debugging information (no symtab),
11115 This cannot be any user code. */
f7f9143b 11116
4ed6b5be 11117 find_frame_sal (frame, &sal);
f7f9143b
JB
11118 if (sal.symtab == NULL)
11119 return 1;
11120
4ed6b5be
JB
11121 /* If there is a symtab, but the associated source file cannot be
11122 located, then assume this is not user code: Selecting a frame
11123 for which we cannot display the code would not be very helpful
11124 for the user. This should also take care of case such as VxWorks
11125 where the kernel has some debugging info provided for a few units. */
f7f9143b 11126
f35a17b5
JK
11127 fullname = symtab_to_fullname (sal.symtab);
11128 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11129 return 1;
11130
4ed6b5be
JB
11131 /* Check the unit filename againt the Ada runtime file naming.
11132 We also check the name of the objfile against the name of some
11133 known system libraries that sometimes come with debugging info
11134 too. */
11135
f7f9143b
JB
11136 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11137 {
11138 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11139 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11140 return 1;
4ed6b5be
JB
11141 if (sal.symtab->objfile != NULL
11142 && re_exec (sal.symtab->objfile->name))
11143 return 1;
f7f9143b
JB
11144 }
11145
4ed6b5be 11146 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11147
e9e07ba6 11148 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11149 if (func_name == NULL)
11150 return 1;
11151
11152 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11153 {
11154 re_comp (known_auxiliary_function_name_patterns[i]);
11155 if (re_exec (func_name))
11156 return 1;
11157 }
11158
11159 return 0;
11160}
11161
11162/* Find the first frame that contains debugging information and that is not
11163 part of the Ada run-time, starting from FI and moving upward. */
11164
0ef643c8 11165void
f7f9143b
JB
11166ada_find_printable_frame (struct frame_info *fi)
11167{
11168 for (; fi != NULL; fi = get_prev_frame (fi))
11169 {
11170 if (!is_known_support_routine (fi))
11171 {
11172 select_frame (fi);
11173 break;
11174 }
11175 }
11176
11177}
11178
11179/* Assuming that the inferior just triggered an unhandled exception
11180 catchpoint, return the address in inferior memory where the name
11181 of the exception is stored.
11182
11183 Return zero if the address could not be computed. */
11184
11185static CORE_ADDR
11186ada_unhandled_exception_name_addr (void)
0259addd
JB
11187{
11188 return parse_and_eval_address ("e.full_name");
11189}
11190
11191/* Same as ada_unhandled_exception_name_addr, except that this function
11192 should be used when the inferior uses an older version of the runtime,
11193 where the exception name needs to be extracted from a specific frame
11194 several frames up in the callstack. */
11195
11196static CORE_ADDR
11197ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11198{
11199 int frame_level;
11200 struct frame_info *fi;
3eecfa55 11201 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11202
11203 /* To determine the name of this exception, we need to select
11204 the frame corresponding to RAISE_SYM_NAME. This frame is
11205 at least 3 levels up, so we simply skip the first 3 frames
11206 without checking the name of their associated function. */
11207 fi = get_current_frame ();
11208 for (frame_level = 0; frame_level < 3; frame_level += 1)
11209 if (fi != NULL)
11210 fi = get_prev_frame (fi);
11211
11212 while (fi != NULL)
11213 {
0d5cff50 11214 const char *func_name;
692465f1
JB
11215 enum language func_lang;
11216
e9e07ba6 11217 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11218 if (func_name != NULL
3eecfa55 11219 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11220 break; /* We found the frame we were looking for... */
11221 fi = get_prev_frame (fi);
11222 }
11223
11224 if (fi == NULL)
11225 return 0;
11226
11227 select_frame (fi);
11228 return parse_and_eval_address ("id.full_name");
11229}
11230
11231/* Assuming the inferior just triggered an Ada exception catchpoint
11232 (of any type), return the address in inferior memory where the name
11233 of the exception is stored, if applicable.
11234
11235 Return zero if the address could not be computed, or if not relevant. */
11236
11237static CORE_ADDR
11238ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11239 struct breakpoint *b)
11240{
3eecfa55
JB
11241 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11242
f7f9143b
JB
11243 switch (ex)
11244 {
11245 case ex_catch_exception:
11246 return (parse_and_eval_address ("e.full_name"));
11247 break;
11248
11249 case ex_catch_exception_unhandled:
3eecfa55 11250 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11251 break;
11252
11253 case ex_catch_assert:
11254 return 0; /* Exception name is not relevant in this case. */
11255 break;
11256
11257 default:
11258 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11259 break;
11260 }
11261
11262 return 0; /* Should never be reached. */
11263}
11264
11265/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11266 any error that ada_exception_name_addr_1 might cause to be thrown.
11267 When an error is intercepted, a warning with the error message is printed,
11268 and zero is returned. */
11269
11270static CORE_ADDR
11271ada_exception_name_addr (enum exception_catchpoint_kind ex,
11272 struct breakpoint *b)
11273{
bfd189b1 11274 volatile struct gdb_exception e;
f7f9143b
JB
11275 CORE_ADDR result = 0;
11276
11277 TRY_CATCH (e, RETURN_MASK_ERROR)
11278 {
11279 result = ada_exception_name_addr_1 (ex, b);
11280 }
11281
11282 if (e.reason < 0)
11283 {
11284 warning (_("failed to get exception name: %s"), e.message);
11285 return 0;
11286 }
11287
11288 return result;
11289}
11290
28010a5d
PA
11291static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11292 char *, char **,
c0a91b2b 11293 const struct breakpoint_ops **);
28010a5d
PA
11294static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11295
11296/* Ada catchpoints.
11297
11298 In the case of catchpoints on Ada exceptions, the catchpoint will
11299 stop the target on every exception the program throws. When a user
11300 specifies the name of a specific exception, we translate this
11301 request into a condition expression (in text form), and then parse
11302 it into an expression stored in each of the catchpoint's locations.
11303 We then use this condition to check whether the exception that was
11304 raised is the one the user is interested in. If not, then the
11305 target is resumed again. We store the name of the requested
11306 exception, in order to be able to re-set the condition expression
11307 when symbols change. */
11308
11309/* An instance of this type is used to represent an Ada catchpoint
11310 breakpoint location. It includes a "struct bp_location" as a kind
11311 of base class; users downcast to "struct bp_location *" when
11312 needed. */
11313
11314struct ada_catchpoint_location
11315{
11316 /* The base class. */
11317 struct bp_location base;
11318
11319 /* The condition that checks whether the exception that was raised
11320 is the specific exception the user specified on catchpoint
11321 creation. */
11322 struct expression *excep_cond_expr;
11323};
11324
11325/* Implement the DTOR method in the bp_location_ops structure for all
11326 Ada exception catchpoint kinds. */
11327
11328static void
11329ada_catchpoint_location_dtor (struct bp_location *bl)
11330{
11331 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11332
11333 xfree (al->excep_cond_expr);
11334}
11335
11336/* The vtable to be used in Ada catchpoint locations. */
11337
11338static const struct bp_location_ops ada_catchpoint_location_ops =
11339{
11340 ada_catchpoint_location_dtor
11341};
11342
11343/* An instance of this type is used to represent an Ada catchpoint.
11344 It includes a "struct breakpoint" as a kind of base class; users
11345 downcast to "struct breakpoint *" when needed. */
11346
11347struct ada_catchpoint
11348{
11349 /* The base class. */
11350 struct breakpoint base;
11351
11352 /* The name of the specific exception the user specified. */
11353 char *excep_string;
11354};
11355
11356/* Parse the exception condition string in the context of each of the
11357 catchpoint's locations, and store them for later evaluation. */
11358
11359static void
11360create_excep_cond_exprs (struct ada_catchpoint *c)
11361{
11362 struct cleanup *old_chain;
11363 struct bp_location *bl;
11364 char *cond_string;
11365
11366 /* Nothing to do if there's no specific exception to catch. */
11367 if (c->excep_string == NULL)
11368 return;
11369
11370 /* Same if there are no locations... */
11371 if (c->base.loc == NULL)
11372 return;
11373
11374 /* Compute the condition expression in text form, from the specific
11375 expection we want to catch. */
11376 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11377 old_chain = make_cleanup (xfree, cond_string);
11378
11379 /* Iterate over all the catchpoint's locations, and parse an
11380 expression for each. */
11381 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11382 {
11383 struct ada_catchpoint_location *ada_loc
11384 = (struct ada_catchpoint_location *) bl;
11385 struct expression *exp = NULL;
11386
11387 if (!bl->shlib_disabled)
11388 {
11389 volatile struct gdb_exception e;
bbc13ae3 11390 const char *s;
28010a5d
PA
11391
11392 s = cond_string;
11393 TRY_CATCH (e, RETURN_MASK_ERROR)
11394 {
1bb9788d
TT
11395 exp = parse_exp_1 (&s, bl->address,
11396 block_for_pc (bl->address), 0);
28010a5d
PA
11397 }
11398 if (e.reason < 0)
11399 warning (_("failed to reevaluate internal exception condition "
11400 "for catchpoint %d: %s"),
11401 c->base.number, e.message);
11402 }
11403
11404 ada_loc->excep_cond_expr = exp;
11405 }
11406
11407 do_cleanups (old_chain);
11408}
11409
11410/* Implement the DTOR method in the breakpoint_ops structure for all
11411 exception catchpoint kinds. */
11412
11413static void
11414dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11415{
11416 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11417
11418 xfree (c->excep_string);
348d480f 11419
2060206e 11420 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11421}
11422
11423/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11424 structure for all exception catchpoint kinds. */
11425
11426static struct bp_location *
11427allocate_location_exception (enum exception_catchpoint_kind ex,
11428 struct breakpoint *self)
11429{
11430 struct ada_catchpoint_location *loc;
11431
11432 loc = XNEW (struct ada_catchpoint_location);
11433 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11434 loc->excep_cond_expr = NULL;
11435 return &loc->base;
11436}
11437
11438/* Implement the RE_SET method in the breakpoint_ops structure for all
11439 exception catchpoint kinds. */
11440
11441static void
11442re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11443{
11444 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11445
11446 /* Call the base class's method. This updates the catchpoint's
11447 locations. */
2060206e 11448 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11449
11450 /* Reparse the exception conditional expressions. One for each
11451 location. */
11452 create_excep_cond_exprs (c);
11453}
11454
11455/* Returns true if we should stop for this breakpoint hit. If the
11456 user specified a specific exception, we only want to cause a stop
11457 if the program thrown that exception. */
11458
11459static int
11460should_stop_exception (const struct bp_location *bl)
11461{
11462 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11463 const struct ada_catchpoint_location *ada_loc
11464 = (const struct ada_catchpoint_location *) bl;
11465 volatile struct gdb_exception ex;
11466 int stop;
11467
11468 /* With no specific exception, should always stop. */
11469 if (c->excep_string == NULL)
11470 return 1;
11471
11472 if (ada_loc->excep_cond_expr == NULL)
11473 {
11474 /* We will have a NULL expression if back when we were creating
11475 the expressions, this location's had failed to parse. */
11476 return 1;
11477 }
11478
11479 stop = 1;
11480 TRY_CATCH (ex, RETURN_MASK_ALL)
11481 {
11482 struct value *mark;
11483
11484 mark = value_mark ();
11485 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11486 value_free_to_mark (mark);
11487 }
11488 if (ex.reason < 0)
11489 exception_fprintf (gdb_stderr, ex,
11490 _("Error in testing exception condition:\n"));
11491 return stop;
11492}
11493
11494/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11495 for all exception catchpoint kinds. */
11496
11497static void
11498check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11499{
11500 bs->stop = should_stop_exception (bs->bp_location_at);
11501}
11502
f7f9143b
JB
11503/* Implement the PRINT_IT method in the breakpoint_ops structure
11504 for all exception catchpoint kinds. */
11505
11506static enum print_stop_action
348d480f 11507print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11508{
79a45e25 11509 struct ui_out *uiout = current_uiout;
348d480f
PA
11510 struct breakpoint *b = bs->breakpoint_at;
11511
956a9fb9 11512 annotate_catchpoint (b->number);
f7f9143b 11513
956a9fb9 11514 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11515 {
956a9fb9
JB
11516 ui_out_field_string (uiout, "reason",
11517 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11518 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11519 }
11520
00eb2c4a
JB
11521 ui_out_text (uiout,
11522 b->disposition == disp_del ? "\nTemporary catchpoint "
11523 : "\nCatchpoint ");
956a9fb9
JB
11524 ui_out_field_int (uiout, "bkptno", b->number);
11525 ui_out_text (uiout, ", ");
f7f9143b 11526
f7f9143b
JB
11527 switch (ex)
11528 {
11529 case ex_catch_exception:
f7f9143b 11530 case ex_catch_exception_unhandled:
956a9fb9
JB
11531 {
11532 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11533 char exception_name[256];
11534
11535 if (addr != 0)
11536 {
11537 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11538 exception_name [sizeof (exception_name) - 1] = '\0';
11539 }
11540 else
11541 {
11542 /* For some reason, we were unable to read the exception
11543 name. This could happen if the Runtime was compiled
11544 without debugging info, for instance. In that case,
11545 just replace the exception name by the generic string
11546 "exception" - it will read as "an exception" in the
11547 notification we are about to print. */
967cff16 11548 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11549 }
11550 /* In the case of unhandled exception breakpoints, we print
11551 the exception name as "unhandled EXCEPTION_NAME", to make
11552 it clearer to the user which kind of catchpoint just got
11553 hit. We used ui_out_text to make sure that this extra
11554 info does not pollute the exception name in the MI case. */
11555 if (ex == ex_catch_exception_unhandled)
11556 ui_out_text (uiout, "unhandled ");
11557 ui_out_field_string (uiout, "exception-name", exception_name);
11558 }
11559 break;
f7f9143b 11560 case ex_catch_assert:
956a9fb9
JB
11561 /* In this case, the name of the exception is not really
11562 important. Just print "failed assertion" to make it clearer
11563 that his program just hit an assertion-failure catchpoint.
11564 We used ui_out_text because this info does not belong in
11565 the MI output. */
11566 ui_out_text (uiout, "failed assertion");
11567 break;
f7f9143b 11568 }
956a9fb9
JB
11569 ui_out_text (uiout, " at ");
11570 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11571
11572 return PRINT_SRC_AND_LOC;
11573}
11574
11575/* Implement the PRINT_ONE method in the breakpoint_ops structure
11576 for all exception catchpoint kinds. */
11577
11578static void
11579print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11580 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11581{
79a45e25 11582 struct ui_out *uiout = current_uiout;
28010a5d 11583 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11584 struct value_print_options opts;
11585
11586 get_user_print_options (&opts);
11587 if (opts.addressprint)
f7f9143b
JB
11588 {
11589 annotate_field (4);
5af949e3 11590 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11591 }
11592
11593 annotate_field (5);
a6d9a66e 11594 *last_loc = b->loc;
f7f9143b
JB
11595 switch (ex)
11596 {
11597 case ex_catch_exception:
28010a5d 11598 if (c->excep_string != NULL)
f7f9143b 11599 {
28010a5d
PA
11600 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11601
f7f9143b
JB
11602 ui_out_field_string (uiout, "what", msg);
11603 xfree (msg);
11604 }
11605 else
11606 ui_out_field_string (uiout, "what", "all Ada exceptions");
11607
11608 break;
11609
11610 case ex_catch_exception_unhandled:
11611 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11612 break;
11613
11614 case ex_catch_assert:
11615 ui_out_field_string (uiout, "what", "failed Ada assertions");
11616 break;
11617
11618 default:
11619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11620 break;
11621 }
11622}
11623
11624/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11625 for all exception catchpoint kinds. */
11626
11627static void
11628print_mention_exception (enum exception_catchpoint_kind ex,
11629 struct breakpoint *b)
11630{
28010a5d 11631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11632 struct ui_out *uiout = current_uiout;
28010a5d 11633
00eb2c4a
JB
11634 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11635 : _("Catchpoint "));
11636 ui_out_field_int (uiout, "bkptno", b->number);
11637 ui_out_text (uiout, ": ");
11638
f7f9143b
JB
11639 switch (ex)
11640 {
11641 case ex_catch_exception:
28010a5d 11642 if (c->excep_string != NULL)
00eb2c4a
JB
11643 {
11644 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11645 struct cleanup *old_chain = make_cleanup (xfree, info);
11646
11647 ui_out_text (uiout, info);
11648 do_cleanups (old_chain);
11649 }
f7f9143b 11650 else
00eb2c4a 11651 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11652 break;
11653
11654 case ex_catch_exception_unhandled:
00eb2c4a 11655 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11656 break;
11657
11658 case ex_catch_assert:
00eb2c4a 11659 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11660 break;
11661
11662 default:
11663 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11664 break;
11665 }
11666}
11667
6149aea9
PA
11668/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11669 for all exception catchpoint kinds. */
11670
11671static void
11672print_recreate_exception (enum exception_catchpoint_kind ex,
11673 struct breakpoint *b, struct ui_file *fp)
11674{
28010a5d
PA
11675 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11676
6149aea9
PA
11677 switch (ex)
11678 {
11679 case ex_catch_exception:
11680 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11681 if (c->excep_string != NULL)
11682 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11683 break;
11684
11685 case ex_catch_exception_unhandled:
78076abc 11686 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11687 break;
11688
11689 case ex_catch_assert:
11690 fprintf_filtered (fp, "catch assert");
11691 break;
11692
11693 default:
11694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 }
d9b3f62e 11696 print_recreate_thread (b, fp);
6149aea9
PA
11697}
11698
f7f9143b
JB
11699/* Virtual table for "catch exception" breakpoints. */
11700
28010a5d
PA
11701static void
11702dtor_catch_exception (struct breakpoint *b)
11703{
11704 dtor_exception (ex_catch_exception, b);
11705}
11706
11707static struct bp_location *
11708allocate_location_catch_exception (struct breakpoint *self)
11709{
11710 return allocate_location_exception (ex_catch_exception, self);
11711}
11712
11713static void
11714re_set_catch_exception (struct breakpoint *b)
11715{
11716 re_set_exception (ex_catch_exception, b);
11717}
11718
11719static void
11720check_status_catch_exception (bpstat bs)
11721{
11722 check_status_exception (ex_catch_exception, bs);
11723}
11724
f7f9143b 11725static enum print_stop_action
348d480f 11726print_it_catch_exception (bpstat bs)
f7f9143b 11727{
348d480f 11728 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11729}
11730
11731static void
a6d9a66e 11732print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11733{
a6d9a66e 11734 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11735}
11736
11737static void
11738print_mention_catch_exception (struct breakpoint *b)
11739{
11740 print_mention_exception (ex_catch_exception, b);
11741}
11742
6149aea9
PA
11743static void
11744print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11745{
11746 print_recreate_exception (ex_catch_exception, b, fp);
11747}
11748
2060206e 11749static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11750
11751/* Virtual table for "catch exception unhandled" breakpoints. */
11752
28010a5d
PA
11753static void
11754dtor_catch_exception_unhandled (struct breakpoint *b)
11755{
11756 dtor_exception (ex_catch_exception_unhandled, b);
11757}
11758
11759static struct bp_location *
11760allocate_location_catch_exception_unhandled (struct breakpoint *self)
11761{
11762 return allocate_location_exception (ex_catch_exception_unhandled, self);
11763}
11764
11765static void
11766re_set_catch_exception_unhandled (struct breakpoint *b)
11767{
11768 re_set_exception (ex_catch_exception_unhandled, b);
11769}
11770
11771static void
11772check_status_catch_exception_unhandled (bpstat bs)
11773{
11774 check_status_exception (ex_catch_exception_unhandled, bs);
11775}
11776
f7f9143b 11777static enum print_stop_action
348d480f 11778print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11779{
348d480f 11780 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11781}
11782
11783static void
a6d9a66e
UW
11784print_one_catch_exception_unhandled (struct breakpoint *b,
11785 struct bp_location **last_loc)
f7f9143b 11786{
a6d9a66e 11787 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11788}
11789
11790static void
11791print_mention_catch_exception_unhandled (struct breakpoint *b)
11792{
11793 print_mention_exception (ex_catch_exception_unhandled, b);
11794}
11795
6149aea9
PA
11796static void
11797print_recreate_catch_exception_unhandled (struct breakpoint *b,
11798 struct ui_file *fp)
11799{
11800 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11801}
11802
2060206e 11803static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11804
11805/* Virtual table for "catch assert" breakpoints. */
11806
28010a5d
PA
11807static void
11808dtor_catch_assert (struct breakpoint *b)
11809{
11810 dtor_exception (ex_catch_assert, b);
11811}
11812
11813static struct bp_location *
11814allocate_location_catch_assert (struct breakpoint *self)
11815{
11816 return allocate_location_exception (ex_catch_assert, self);
11817}
11818
11819static void
11820re_set_catch_assert (struct breakpoint *b)
11821{
843e694d 11822 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11823}
11824
11825static void
11826check_status_catch_assert (bpstat bs)
11827{
11828 check_status_exception (ex_catch_assert, bs);
11829}
11830
f7f9143b 11831static enum print_stop_action
348d480f 11832print_it_catch_assert (bpstat bs)
f7f9143b 11833{
348d480f 11834 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11835}
11836
11837static void
a6d9a66e 11838print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11839{
a6d9a66e 11840 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11841}
11842
11843static void
11844print_mention_catch_assert (struct breakpoint *b)
11845{
11846 print_mention_exception (ex_catch_assert, b);
11847}
11848
6149aea9
PA
11849static void
11850print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11851{
11852 print_recreate_exception (ex_catch_assert, b, fp);
11853}
11854
2060206e 11855static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11856
f7f9143b
JB
11857/* Return a newly allocated copy of the first space-separated token
11858 in ARGSP, and then adjust ARGSP to point immediately after that
11859 token.
11860
11861 Return NULL if ARGPS does not contain any more tokens. */
11862
11863static char *
11864ada_get_next_arg (char **argsp)
11865{
11866 char *args = *argsp;
11867 char *end;
11868 char *result;
11869
0fcd72ba 11870 args = skip_spaces (args);
f7f9143b
JB
11871 if (args[0] == '\0')
11872 return NULL; /* No more arguments. */
11873
11874 /* Find the end of the current argument. */
11875
0fcd72ba 11876 end = skip_to_space (args);
f7f9143b
JB
11877
11878 /* Adjust ARGSP to point to the start of the next argument. */
11879
11880 *argsp = end;
11881
11882 /* Make a copy of the current argument and return it. */
11883
11884 result = xmalloc (end - args + 1);
11885 strncpy (result, args, end - args);
11886 result[end - args] = '\0';
11887
11888 return result;
11889}
11890
11891/* Split the arguments specified in a "catch exception" command.
11892 Set EX to the appropriate catchpoint type.
28010a5d 11893 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11894 specified by the user.
11895 If a condition is found at the end of the arguments, the condition
11896 expression is stored in COND_STRING (memory must be deallocated
11897 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11898
11899static void
11900catch_ada_exception_command_split (char *args,
11901 enum exception_catchpoint_kind *ex,
5845583d
JB
11902 char **excep_string,
11903 char **cond_string)
f7f9143b
JB
11904{
11905 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11906 char *exception_name;
5845583d 11907 char *cond = NULL;
f7f9143b
JB
11908
11909 exception_name = ada_get_next_arg (&args);
5845583d
JB
11910 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11911 {
11912 /* This is not an exception name; this is the start of a condition
11913 expression for a catchpoint on all exceptions. So, "un-get"
11914 this token, and set exception_name to NULL. */
11915 xfree (exception_name);
11916 exception_name = NULL;
11917 args -= 2;
11918 }
f7f9143b
JB
11919 make_cleanup (xfree, exception_name);
11920
5845583d 11921 /* Check to see if we have a condition. */
f7f9143b 11922
0fcd72ba 11923 args = skip_spaces (args);
5845583d
JB
11924 if (strncmp (args, "if", 2) == 0
11925 && (isspace (args[2]) || args[2] == '\0'))
11926 {
11927 args += 2;
11928 args = skip_spaces (args);
11929
11930 if (args[0] == '\0')
11931 error (_("Condition missing after `if' keyword"));
11932 cond = xstrdup (args);
11933 make_cleanup (xfree, cond);
11934
11935 args += strlen (args);
11936 }
11937
11938 /* Check that we do not have any more arguments. Anything else
11939 is unexpected. */
f7f9143b
JB
11940
11941 if (args[0] != '\0')
11942 error (_("Junk at end of expression"));
11943
11944 discard_cleanups (old_chain);
11945
11946 if (exception_name == NULL)
11947 {
11948 /* Catch all exceptions. */
11949 *ex = ex_catch_exception;
28010a5d 11950 *excep_string = NULL;
f7f9143b
JB
11951 }
11952 else if (strcmp (exception_name, "unhandled") == 0)
11953 {
11954 /* Catch unhandled exceptions. */
11955 *ex = ex_catch_exception_unhandled;
28010a5d 11956 *excep_string = NULL;
f7f9143b
JB
11957 }
11958 else
11959 {
11960 /* Catch a specific exception. */
11961 *ex = ex_catch_exception;
28010a5d 11962 *excep_string = exception_name;
f7f9143b 11963 }
5845583d 11964 *cond_string = cond;
f7f9143b
JB
11965}
11966
11967/* Return the name of the symbol on which we should break in order to
11968 implement a catchpoint of the EX kind. */
11969
11970static const char *
11971ada_exception_sym_name (enum exception_catchpoint_kind ex)
11972{
3eecfa55
JB
11973 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11974
11975 gdb_assert (data->exception_info != NULL);
0259addd 11976
f7f9143b
JB
11977 switch (ex)
11978 {
11979 case ex_catch_exception:
3eecfa55 11980 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11981 break;
11982 case ex_catch_exception_unhandled:
3eecfa55 11983 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11984 break;
11985 case ex_catch_assert:
3eecfa55 11986 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11987 break;
11988 default:
11989 internal_error (__FILE__, __LINE__,
11990 _("unexpected catchpoint kind (%d)"), ex);
11991 }
11992}
11993
11994/* Return the breakpoint ops "virtual table" used for catchpoints
11995 of the EX kind. */
11996
c0a91b2b 11997static const struct breakpoint_ops *
4b9eee8c 11998ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11999{
12000 switch (ex)
12001 {
12002 case ex_catch_exception:
12003 return (&catch_exception_breakpoint_ops);
12004 break;
12005 case ex_catch_exception_unhandled:
12006 return (&catch_exception_unhandled_breakpoint_ops);
12007 break;
12008 case ex_catch_assert:
12009 return (&catch_assert_breakpoint_ops);
12010 break;
12011 default:
12012 internal_error (__FILE__, __LINE__,
12013 _("unexpected catchpoint kind (%d)"), ex);
12014 }
12015}
12016
12017/* Return the condition that will be used to match the current exception
12018 being raised with the exception that the user wants to catch. This
12019 assumes that this condition is used when the inferior just triggered
12020 an exception catchpoint.
12021
12022 The string returned is a newly allocated string that needs to be
12023 deallocated later. */
12024
12025static char *
28010a5d 12026ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12027{
3d0b0fa3
JB
12028 int i;
12029
0963b4bd 12030 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12031 runtime units that have been compiled without debugging info; if
28010a5d 12032 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12033 exception (e.g. "constraint_error") then, during the evaluation
12034 of the condition expression, the symbol lookup on this name would
0963b4bd 12035 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12036 may then be set only on user-defined exceptions which have the
12037 same not-fully-qualified name (e.g. my_package.constraint_error).
12038
12039 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12040 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12041 exception constraint_error" is rewritten into "catch exception
12042 standard.constraint_error".
12043
12044 If an exception named contraint_error is defined in another package of
12045 the inferior program, then the only way to specify this exception as a
12046 breakpoint condition is to use its fully-qualified named:
12047 e.g. my_package.constraint_error. */
12048
12049 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12050 {
28010a5d 12051 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12052 {
12053 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12054 excep_string);
3d0b0fa3
JB
12055 }
12056 }
28010a5d 12057 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12058}
12059
12060/* Return the symtab_and_line that should be used to insert an exception
12061 catchpoint of the TYPE kind.
12062
28010a5d
PA
12063 EXCEP_STRING should contain the name of a specific exception that
12064 the catchpoint should catch, or NULL otherwise.
f7f9143b 12065
28010a5d
PA
12066 ADDR_STRING returns the name of the function where the real
12067 breakpoint that implements the catchpoints is set, depending on the
12068 type of catchpoint we need to create. */
f7f9143b
JB
12069
12070static struct symtab_and_line
28010a5d 12071ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12072 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12073{
12074 const char *sym_name;
12075 struct symbol *sym;
f7f9143b 12076
0259addd
JB
12077 /* First, find out which exception support info to use. */
12078 ada_exception_support_info_sniffer ();
12079
12080 /* Then lookup the function on which we will break in order to catch
f7f9143b 12081 the Ada exceptions requested by the user. */
f7f9143b
JB
12082 sym_name = ada_exception_sym_name (ex);
12083 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12084
f17011e0
JB
12085 /* We can assume that SYM is not NULL at this stage. If the symbol
12086 did not exist, ada_exception_support_info_sniffer would have
12087 raised an exception.
f7f9143b 12088
f17011e0
JB
12089 Also, ada_exception_support_info_sniffer should have already
12090 verified that SYM is a function symbol. */
12091 gdb_assert (sym != NULL);
12092 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12093
12094 /* Set ADDR_STRING. */
f7f9143b
JB
12095 *addr_string = xstrdup (sym_name);
12096
f7f9143b 12097 /* Set OPS. */
4b9eee8c 12098 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12099
f17011e0 12100 return find_function_start_sal (sym, 1);
f7f9143b
JB
12101}
12102
12103/* Parse the arguments (ARGS) of the "catch exception" command.
12104
f7f9143b
JB
12105 If the user asked the catchpoint to catch only a specific
12106 exception, then save the exception name in ADDR_STRING.
12107
5845583d
JB
12108 If the user provided a condition, then set COND_STRING to
12109 that condition expression (the memory must be deallocated
12110 after use). Otherwise, set COND_STRING to NULL.
12111
f7f9143b
JB
12112 See ada_exception_sal for a description of all the remaining
12113 function arguments of this function. */
12114
9ac4176b 12115static struct symtab_and_line
f7f9143b 12116ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12117 char **excep_string,
5845583d 12118 char **cond_string,
c0a91b2b 12119 const struct breakpoint_ops **ops)
f7f9143b
JB
12120{
12121 enum exception_catchpoint_kind ex;
12122
5845583d 12123 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12124 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12125}
12126
12127/* Create an Ada exception catchpoint. */
12128
12129static void
12130create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12131 struct symtab_and_line sal,
12132 char *addr_string,
12133 char *excep_string,
5845583d 12134 char *cond_string,
c0a91b2b 12135 const struct breakpoint_ops *ops,
28010a5d
PA
12136 int tempflag,
12137 int from_tty)
12138{
12139 struct ada_catchpoint *c;
12140
12141 c = XNEW (struct ada_catchpoint);
12142 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12143 ops, tempflag, from_tty);
12144 c->excep_string = excep_string;
12145 create_excep_cond_exprs (c);
5845583d
JB
12146 if (cond_string != NULL)
12147 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12148 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12149}
12150
9ac4176b
PA
12151/* Implement the "catch exception" command. */
12152
12153static void
12154catch_ada_exception_command (char *arg, int from_tty,
12155 struct cmd_list_element *command)
12156{
12157 struct gdbarch *gdbarch = get_current_arch ();
12158 int tempflag;
12159 struct symtab_and_line sal;
12160 char *addr_string = NULL;
28010a5d 12161 char *excep_string = NULL;
5845583d 12162 char *cond_string = NULL;
c0a91b2b 12163 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12164
12165 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12166
12167 if (!arg)
12168 arg = "";
5845583d
JB
12169 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12170 &cond_string, &ops);
28010a5d 12171 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12172 excep_string, cond_string, ops,
12173 tempflag, from_tty);
9ac4176b
PA
12174}
12175
5845583d
JB
12176/* Assuming that ARGS contains the arguments of a "catch assert"
12177 command, parse those arguments and return a symtab_and_line object
12178 for a failed assertion catchpoint.
12179
12180 Set ADDR_STRING to the name of the function where the real
12181 breakpoint that implements the catchpoint is set.
12182
12183 If ARGS contains a condition, set COND_STRING to that condition
12184 (the memory needs to be deallocated after use). Otherwise, set
12185 COND_STRING to NULL. */
12186
9ac4176b 12187static struct symtab_and_line
f7f9143b 12188ada_decode_assert_location (char *args, char **addr_string,
5845583d 12189 char **cond_string,
c0a91b2b 12190 const struct breakpoint_ops **ops)
f7f9143b 12191{
5845583d 12192 args = skip_spaces (args);
f7f9143b 12193
5845583d
JB
12194 /* Check whether a condition was provided. */
12195 if (strncmp (args, "if", 2) == 0
12196 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12197 {
5845583d 12198 args += 2;
0fcd72ba 12199 args = skip_spaces (args);
5845583d
JB
12200 if (args[0] == '\0')
12201 error (_("condition missing after `if' keyword"));
12202 *cond_string = xstrdup (args);
f7f9143b
JB
12203 }
12204
5845583d
JB
12205 /* Otherwise, there should be no other argument at the end of
12206 the command. */
12207 else if (args[0] != '\0')
12208 error (_("Junk at end of arguments."));
12209
28010a5d 12210 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12211}
12212
9ac4176b
PA
12213/* Implement the "catch assert" command. */
12214
12215static void
12216catch_assert_command (char *arg, int from_tty,
12217 struct cmd_list_element *command)
12218{
12219 struct gdbarch *gdbarch = get_current_arch ();
12220 int tempflag;
12221 struct symtab_and_line sal;
12222 char *addr_string = NULL;
5845583d 12223 char *cond_string = NULL;
c0a91b2b 12224 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12225
12226 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227
12228 if (!arg)
12229 arg = "";
5845583d 12230 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12231 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12232 NULL, cond_string, ops, tempflag,
12233 from_tty);
9ac4176b 12234}
4c4b4cd2
PH
12235 /* Operators */
12236/* Information about operators given special treatment in functions
12237 below. */
12238/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12239
12240#define ADA_OPERATORS \
12241 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12242 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12243 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12244 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12247 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12248 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12249 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12250 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12252 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12253 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12254 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12255 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12256 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12257 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12258 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12259 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12260
12261static void
554794dc
SDJ
12262ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12263 int *argsp)
4c4b4cd2
PH
12264{
12265 switch (exp->elts[pc - 1].opcode)
12266 {
76a01679 12267 default:
4c4b4cd2
PH
12268 operator_length_standard (exp, pc, oplenp, argsp);
12269 break;
12270
12271#define OP_DEFN(op, len, args, binop) \
12272 case op: *oplenp = len; *argsp = args; break;
12273 ADA_OPERATORS;
12274#undef OP_DEFN
52ce6436
PH
12275
12276 case OP_AGGREGATE:
12277 *oplenp = 3;
12278 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12279 break;
12280
12281 case OP_CHOICES:
12282 *oplenp = 3;
12283 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12284 break;
4c4b4cd2
PH
12285 }
12286}
12287
c0201579
JK
12288/* Implementation of the exp_descriptor method operator_check. */
12289
12290static int
12291ada_operator_check (struct expression *exp, int pos,
12292 int (*objfile_func) (struct objfile *objfile, void *data),
12293 void *data)
12294{
12295 const union exp_element *const elts = exp->elts;
12296 struct type *type = NULL;
12297
12298 switch (elts[pos].opcode)
12299 {
12300 case UNOP_IN_RANGE:
12301 case UNOP_QUAL:
12302 type = elts[pos + 1].type;
12303 break;
12304
12305 default:
12306 return operator_check_standard (exp, pos, objfile_func, data);
12307 }
12308
12309 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12310
12311 if (type && TYPE_OBJFILE (type)
12312 && (*objfile_func) (TYPE_OBJFILE (type), data))
12313 return 1;
12314
12315 return 0;
12316}
12317
4c4b4cd2
PH
12318static char *
12319ada_op_name (enum exp_opcode opcode)
12320{
12321 switch (opcode)
12322 {
76a01679 12323 default:
4c4b4cd2 12324 return op_name_standard (opcode);
52ce6436 12325
4c4b4cd2
PH
12326#define OP_DEFN(op, len, args, binop) case op: return #op;
12327 ADA_OPERATORS;
12328#undef OP_DEFN
52ce6436
PH
12329
12330 case OP_AGGREGATE:
12331 return "OP_AGGREGATE";
12332 case OP_CHOICES:
12333 return "OP_CHOICES";
12334 case OP_NAME:
12335 return "OP_NAME";
4c4b4cd2
PH
12336 }
12337}
12338
12339/* As for operator_length, but assumes PC is pointing at the first
12340 element of the operator, and gives meaningful results only for the
52ce6436 12341 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12342
12343static void
76a01679
JB
12344ada_forward_operator_length (struct expression *exp, int pc,
12345 int *oplenp, int *argsp)
4c4b4cd2 12346{
76a01679 12347 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12348 {
12349 default:
12350 *oplenp = *argsp = 0;
12351 break;
52ce6436 12352
4c4b4cd2
PH
12353#define OP_DEFN(op, len, args, binop) \
12354 case op: *oplenp = len; *argsp = args; break;
12355 ADA_OPERATORS;
12356#undef OP_DEFN
52ce6436
PH
12357
12358 case OP_AGGREGATE:
12359 *oplenp = 3;
12360 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12361 break;
12362
12363 case OP_CHOICES:
12364 *oplenp = 3;
12365 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12366 break;
12367
12368 case OP_STRING:
12369 case OP_NAME:
12370 {
12371 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12372
52ce6436
PH
12373 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12374 *argsp = 0;
12375 break;
12376 }
4c4b4cd2
PH
12377 }
12378}
12379
12380static int
12381ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12382{
12383 enum exp_opcode op = exp->elts[elt].opcode;
12384 int oplen, nargs;
12385 int pc = elt;
12386 int i;
76a01679 12387
4c4b4cd2
PH
12388 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12389
76a01679 12390 switch (op)
4c4b4cd2 12391 {
76a01679 12392 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12393 case OP_ATR_FIRST:
12394 case OP_ATR_LAST:
12395 case OP_ATR_LENGTH:
12396 case OP_ATR_IMAGE:
12397 case OP_ATR_MAX:
12398 case OP_ATR_MIN:
12399 case OP_ATR_MODULUS:
12400 case OP_ATR_POS:
12401 case OP_ATR_SIZE:
12402 case OP_ATR_TAG:
12403 case OP_ATR_VAL:
12404 break;
12405
12406 case UNOP_IN_RANGE:
12407 case UNOP_QUAL:
323e0a4a
AC
12408 /* XXX: gdb_sprint_host_address, type_sprint */
12409 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12410 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12411 fprintf_filtered (stream, " (");
12412 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12413 fprintf_filtered (stream, ")");
12414 break;
12415 case BINOP_IN_BOUNDS:
52ce6436
PH
12416 fprintf_filtered (stream, " (%d)",
12417 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12418 break;
12419 case TERNOP_IN_RANGE:
12420 break;
12421
52ce6436
PH
12422 case OP_AGGREGATE:
12423 case OP_OTHERS:
12424 case OP_DISCRETE_RANGE:
12425 case OP_POSITIONAL:
12426 case OP_CHOICES:
12427 break;
12428
12429 case OP_NAME:
12430 case OP_STRING:
12431 {
12432 char *name = &exp->elts[elt + 2].string;
12433 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12434
52ce6436
PH
12435 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12436 break;
12437 }
12438
4c4b4cd2
PH
12439 default:
12440 return dump_subexp_body_standard (exp, stream, elt);
12441 }
12442
12443 elt += oplen;
12444 for (i = 0; i < nargs; i += 1)
12445 elt = dump_subexp (exp, stream, elt);
12446
12447 return elt;
12448}
12449
12450/* The Ada extension of print_subexp (q.v.). */
12451
76a01679
JB
12452static void
12453ada_print_subexp (struct expression *exp, int *pos,
12454 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12455{
52ce6436 12456 int oplen, nargs, i;
4c4b4cd2
PH
12457 int pc = *pos;
12458 enum exp_opcode op = exp->elts[pc].opcode;
12459
12460 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12461
52ce6436 12462 *pos += oplen;
4c4b4cd2
PH
12463 switch (op)
12464 {
12465 default:
52ce6436 12466 *pos -= oplen;
4c4b4cd2
PH
12467 print_subexp_standard (exp, pos, stream, prec);
12468 return;
12469
12470 case OP_VAR_VALUE:
4c4b4cd2
PH
12471 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12472 return;
12473
12474 case BINOP_IN_BOUNDS:
323e0a4a 12475 /* XXX: sprint_subexp */
4c4b4cd2 12476 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12477 fputs_filtered (" in ", stream);
4c4b4cd2 12478 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12479 fputs_filtered ("'range", stream);
4c4b4cd2 12480 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12481 fprintf_filtered (stream, "(%ld)",
12482 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12483 return;
12484
12485 case TERNOP_IN_RANGE:
4c4b4cd2 12486 if (prec >= PREC_EQUAL)
76a01679 12487 fputs_filtered ("(", stream);
323e0a4a 12488 /* XXX: sprint_subexp */
4c4b4cd2 12489 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12490 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12491 print_subexp (exp, pos, stream, PREC_EQUAL);
12492 fputs_filtered (" .. ", stream);
12493 print_subexp (exp, pos, stream, PREC_EQUAL);
12494 if (prec >= PREC_EQUAL)
76a01679
JB
12495 fputs_filtered (")", stream);
12496 return;
4c4b4cd2
PH
12497
12498 case OP_ATR_FIRST:
12499 case OP_ATR_LAST:
12500 case OP_ATR_LENGTH:
12501 case OP_ATR_IMAGE:
12502 case OP_ATR_MAX:
12503 case OP_ATR_MIN:
12504 case OP_ATR_MODULUS:
12505 case OP_ATR_POS:
12506 case OP_ATR_SIZE:
12507 case OP_ATR_TAG:
12508 case OP_ATR_VAL:
4c4b4cd2 12509 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12510 {
12511 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12512 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12513 &type_print_raw_options);
76a01679
JB
12514 *pos += 3;
12515 }
4c4b4cd2 12516 else
76a01679 12517 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12518 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12519 if (nargs > 1)
76a01679
JB
12520 {
12521 int tem;
5b4ee69b 12522
76a01679
JB
12523 for (tem = 1; tem < nargs; tem += 1)
12524 {
12525 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12526 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12527 }
12528 fputs_filtered (")", stream);
12529 }
4c4b4cd2 12530 return;
14f9c5c9 12531
4c4b4cd2 12532 case UNOP_QUAL:
4c4b4cd2
PH
12533 type_print (exp->elts[pc + 1].type, "", stream, 0);
12534 fputs_filtered ("'(", stream);
12535 print_subexp (exp, pos, stream, PREC_PREFIX);
12536 fputs_filtered (")", stream);
12537 return;
14f9c5c9 12538
4c4b4cd2 12539 case UNOP_IN_RANGE:
323e0a4a 12540 /* XXX: sprint_subexp */
4c4b4cd2 12541 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12542 fputs_filtered (" in ", stream);
79d43c61
TT
12543 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12544 &type_print_raw_options);
4c4b4cd2 12545 return;
52ce6436
PH
12546
12547 case OP_DISCRETE_RANGE:
12548 print_subexp (exp, pos, stream, PREC_SUFFIX);
12549 fputs_filtered ("..", stream);
12550 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 return;
12552
12553 case OP_OTHERS:
12554 fputs_filtered ("others => ", stream);
12555 print_subexp (exp, pos, stream, PREC_SUFFIX);
12556 return;
12557
12558 case OP_CHOICES:
12559 for (i = 0; i < nargs-1; i += 1)
12560 {
12561 if (i > 0)
12562 fputs_filtered ("|", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 }
12565 fputs_filtered (" => ", stream);
12566 print_subexp (exp, pos, stream, PREC_SUFFIX);
12567 return;
12568
12569 case OP_POSITIONAL:
12570 print_subexp (exp, pos, stream, PREC_SUFFIX);
12571 return;
12572
12573 case OP_AGGREGATE:
12574 fputs_filtered ("(", stream);
12575 for (i = 0; i < nargs; i += 1)
12576 {
12577 if (i > 0)
12578 fputs_filtered (", ", stream);
12579 print_subexp (exp, pos, stream, PREC_SUFFIX);
12580 }
12581 fputs_filtered (")", stream);
12582 return;
4c4b4cd2
PH
12583 }
12584}
14f9c5c9
AS
12585
12586/* Table mapping opcodes into strings for printing operators
12587 and precedences of the operators. */
12588
d2e4a39e
AS
12589static const struct op_print ada_op_print_tab[] = {
12590 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12591 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12592 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12593 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12594 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12595 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12596 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12597 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12598 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12599 {">=", BINOP_GEQ, PREC_ORDER, 0},
12600 {">", BINOP_GTR, PREC_ORDER, 0},
12601 {"<", BINOP_LESS, PREC_ORDER, 0},
12602 {">>", BINOP_RSH, PREC_SHIFT, 0},
12603 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12604 {"+", BINOP_ADD, PREC_ADD, 0},
12605 {"-", BINOP_SUB, PREC_ADD, 0},
12606 {"&", BINOP_CONCAT, PREC_ADD, 0},
12607 {"*", BINOP_MUL, PREC_MUL, 0},
12608 {"/", BINOP_DIV, PREC_MUL, 0},
12609 {"rem", BINOP_REM, PREC_MUL, 0},
12610 {"mod", BINOP_MOD, PREC_MUL, 0},
12611 {"**", BINOP_EXP, PREC_REPEAT, 0},
12612 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12613 {"-", UNOP_NEG, PREC_PREFIX, 0},
12614 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12615 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12616 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12617 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12618 {".all", UNOP_IND, PREC_SUFFIX, 1},
12619 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12620 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12621 {NULL, 0, 0, 0}
14f9c5c9
AS
12622};
12623\f
72d5681a
PH
12624enum ada_primitive_types {
12625 ada_primitive_type_int,
12626 ada_primitive_type_long,
12627 ada_primitive_type_short,
12628 ada_primitive_type_char,
12629 ada_primitive_type_float,
12630 ada_primitive_type_double,
12631 ada_primitive_type_void,
12632 ada_primitive_type_long_long,
12633 ada_primitive_type_long_double,
12634 ada_primitive_type_natural,
12635 ada_primitive_type_positive,
12636 ada_primitive_type_system_address,
12637 nr_ada_primitive_types
12638};
6c038f32
PH
12639
12640static void
d4a9a881 12641ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12642 struct language_arch_info *lai)
12643{
d4a9a881 12644 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12645
72d5681a 12646 lai->primitive_type_vector
d4a9a881 12647 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12648 struct type *);
e9bb382b
UW
12649
12650 lai->primitive_type_vector [ada_primitive_type_int]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "integer");
12653 lai->primitive_type_vector [ada_primitive_type_long]
12654 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12655 0, "long_integer");
12656 lai->primitive_type_vector [ada_primitive_type_short]
12657 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12658 0, "short_integer");
12659 lai->string_char_type
12660 = lai->primitive_type_vector [ada_primitive_type_char]
12661 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12662 lai->primitive_type_vector [ada_primitive_type_float]
12663 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12664 "float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_double]
12666 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12667 "long_float", NULL);
12668 lai->primitive_type_vector [ada_primitive_type_long_long]
12669 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12670 0, "long_long_integer");
12671 lai->primitive_type_vector [ada_primitive_type_long_double]
12672 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12673 "long_long_float", NULL);
12674 lai->primitive_type_vector [ada_primitive_type_natural]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 0, "natural");
12677 lai->primitive_type_vector [ada_primitive_type_positive]
12678 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12679 0, "positive");
12680 lai->primitive_type_vector [ada_primitive_type_void]
12681 = builtin->builtin_void;
12682
12683 lai->primitive_type_vector [ada_primitive_type_system_address]
12684 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12685 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12686 = "system__address";
fbb06eb1 12687
47e729a8 12688 lai->bool_type_symbol = NULL;
fbb06eb1 12689 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12690}
6c038f32
PH
12691\f
12692 /* Language vector */
12693
12694/* Not really used, but needed in the ada_language_defn. */
12695
12696static void
6c7a06a3 12697emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12698{
6c7a06a3 12699 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12700}
12701
12702static int
12703parse (void)
12704{
12705 warnings_issued = 0;
12706 return ada_parse ();
12707}
12708
12709static const struct exp_descriptor ada_exp_descriptor = {
12710 ada_print_subexp,
12711 ada_operator_length,
c0201579 12712 ada_operator_check,
6c038f32
PH
12713 ada_op_name,
12714 ada_dump_subexp_body,
12715 ada_evaluate_subexp
12716};
12717
1a119f36 12718/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12719 for Ada. */
12720
1a119f36
JB
12721static symbol_name_cmp_ftype
12722ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12723{
12724 if (should_use_wild_match (lookup_name))
12725 return wild_match;
12726 else
12727 return compare_names;
12728}
12729
a5ee536b
JB
12730/* Implement the "la_read_var_value" language_defn method for Ada. */
12731
12732static struct value *
12733ada_read_var_value (struct symbol *var, struct frame_info *frame)
12734{
12735 struct block *frame_block = NULL;
12736 struct symbol *renaming_sym = NULL;
12737
12738 /* The only case where default_read_var_value is not sufficient
12739 is when VAR is a renaming... */
12740 if (frame)
12741 frame_block = get_frame_block (frame, NULL);
12742 if (frame_block)
12743 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12744 if (renaming_sym != NULL)
12745 return ada_read_renaming_var_value (renaming_sym, frame_block);
12746
12747 /* This is a typical case where we expect the default_read_var_value
12748 function to work. */
12749 return default_read_var_value (var, frame);
12750}
12751
6c038f32
PH
12752const struct language_defn ada_language_defn = {
12753 "ada", /* Language name */
12754 language_ada,
6c038f32 12755 range_check_off,
6c038f32
PH
12756 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12757 that's not quite what this means. */
6c038f32 12758 array_row_major,
9a044a89 12759 macro_expansion_no,
6c038f32
PH
12760 &ada_exp_descriptor,
12761 parse,
12762 ada_error,
12763 resolve,
12764 ada_printchar, /* Print a character constant */
12765 ada_printstr, /* Function to print string constant */
12766 emit_char, /* Function to print single char (not used) */
6c038f32 12767 ada_print_type, /* Print a type using appropriate syntax */
be942545 12768 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12769 ada_val_print, /* Print a value using appropriate syntax */
12770 ada_value_print, /* Print a top-level value */
a5ee536b 12771 ada_read_var_value, /* la_read_var_value */
6c038f32 12772 NULL, /* Language specific skip_trampoline */
2b2d9e11 12773 NULL, /* name_of_this */
6c038f32
PH
12774 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12775 basic_lookup_transparent_type, /* lookup_transparent_type */
12776 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12777 NULL, /* Language specific
12778 class_name_from_physname */
6c038f32
PH
12779 ada_op_print_tab, /* expression operators for printing */
12780 0, /* c-style arrays */
12781 1, /* String lower bound */
6c038f32 12782 ada_get_gdb_completer_word_break_characters,
41d27058 12783 ada_make_symbol_completion_list,
72d5681a 12784 ada_language_arch_info,
e79af960 12785 ada_print_array_index,
41f1b697 12786 default_pass_by_reference,
ae6a3a4c 12787 c_get_string,
1a119f36 12788 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12789 ada_iterate_over_symbols,
6c038f32
PH
12790 LANG_MAGIC
12791};
12792
2c0b251b
PA
12793/* Provide a prototype to silence -Wmissing-prototypes. */
12794extern initialize_file_ftype _initialize_ada_language;
12795
5bf03f13
JB
12796/* Command-list for the "set/show ada" prefix command. */
12797static struct cmd_list_element *set_ada_list;
12798static struct cmd_list_element *show_ada_list;
12799
12800/* Implement the "set ada" prefix command. */
12801
12802static void
12803set_ada_command (char *arg, int from_tty)
12804{
12805 printf_unfiltered (_(\
12806"\"set ada\" must be followed by the name of a setting.\n"));
12807 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12808}
12809
12810/* Implement the "show ada" prefix command. */
12811
12812static void
12813show_ada_command (char *args, int from_tty)
12814{
12815 cmd_show_list (show_ada_list, from_tty, "");
12816}
12817
2060206e
PA
12818static void
12819initialize_ada_catchpoint_ops (void)
12820{
12821 struct breakpoint_ops *ops;
12822
12823 initialize_breakpoint_ops ();
12824
12825 ops = &catch_exception_breakpoint_ops;
12826 *ops = bkpt_breakpoint_ops;
12827 ops->dtor = dtor_catch_exception;
12828 ops->allocate_location = allocate_location_catch_exception;
12829 ops->re_set = re_set_catch_exception;
12830 ops->check_status = check_status_catch_exception;
12831 ops->print_it = print_it_catch_exception;
12832 ops->print_one = print_one_catch_exception;
12833 ops->print_mention = print_mention_catch_exception;
12834 ops->print_recreate = print_recreate_catch_exception;
12835
12836 ops = &catch_exception_unhandled_breakpoint_ops;
12837 *ops = bkpt_breakpoint_ops;
12838 ops->dtor = dtor_catch_exception_unhandled;
12839 ops->allocate_location = allocate_location_catch_exception_unhandled;
12840 ops->re_set = re_set_catch_exception_unhandled;
12841 ops->check_status = check_status_catch_exception_unhandled;
12842 ops->print_it = print_it_catch_exception_unhandled;
12843 ops->print_one = print_one_catch_exception_unhandled;
12844 ops->print_mention = print_mention_catch_exception_unhandled;
12845 ops->print_recreate = print_recreate_catch_exception_unhandled;
12846
12847 ops = &catch_assert_breakpoint_ops;
12848 *ops = bkpt_breakpoint_ops;
12849 ops->dtor = dtor_catch_assert;
12850 ops->allocate_location = allocate_location_catch_assert;
12851 ops->re_set = re_set_catch_assert;
12852 ops->check_status = check_status_catch_assert;
12853 ops->print_it = print_it_catch_assert;
12854 ops->print_one = print_one_catch_assert;
12855 ops->print_mention = print_mention_catch_assert;
12856 ops->print_recreate = print_recreate_catch_assert;
12857}
12858
d2e4a39e 12859void
6c038f32 12860_initialize_ada_language (void)
14f9c5c9 12861{
6c038f32
PH
12862 add_language (&ada_language_defn);
12863
2060206e
PA
12864 initialize_ada_catchpoint_ops ();
12865
5bf03f13
JB
12866 add_prefix_cmd ("ada", no_class, set_ada_command,
12867 _("Prefix command for changing Ada-specfic settings"),
12868 &set_ada_list, "set ada ", 0, &setlist);
12869
12870 add_prefix_cmd ("ada", no_class, show_ada_command,
12871 _("Generic command for showing Ada-specific settings."),
12872 &show_ada_list, "show ada ", 0, &showlist);
12873
12874 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12875 &trust_pad_over_xvs, _("\
12876Enable or disable an optimization trusting PAD types over XVS types"), _("\
12877Show whether an optimization trusting PAD types over XVS types is activated"),
12878 _("\
12879This is related to the encoding used by the GNAT compiler. The debugger\n\
12880should normally trust the contents of PAD types, but certain older versions\n\
12881of GNAT have a bug that sometimes causes the information in the PAD type\n\
12882to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12883work around this bug. It is always safe to turn this option \"off\", but\n\
12884this incurs a slight performance penalty, so it is recommended to NOT change\n\
12885this option to \"off\" unless necessary."),
12886 NULL, NULL, &set_ada_list, &show_ada_list);
12887
9ac4176b
PA
12888 add_catch_command ("exception", _("\
12889Catch Ada exceptions, when raised.\n\
12890With an argument, catch only exceptions with the given name."),
12891 catch_ada_exception_command,
12892 NULL,
12893 CATCH_PERMANENT,
12894 CATCH_TEMPORARY);
12895 add_catch_command ("assert", _("\
12896Catch failed Ada assertions, when raised.\n\
12897With an argument, catch only exceptions with the given name."),
12898 catch_assert_command,
12899 NULL,
12900 CATCH_PERMANENT,
12901 CATCH_TEMPORARY);
12902
6c038f32 12903 varsize_limit = 65536;
6c038f32
PH
12904
12905 obstack_init (&symbol_list_obstack);
12906
12907 decoded_names_store = htab_create_alloc
12908 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12909 NULL, xcalloc, xfree);
6b69afc4 12910
e802dbe0
JB
12911 /* Setup per-inferior data. */
12912 observer_attach_inferior_exit (ada_inferior_exit);
12913 ada_inferior_data
8e260fc0 12914 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12915}